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ABSTRACT

EXACT AND APPRO XIM ATE DECOUPLING AND 
NONINTERACTING CON TROL PROBLEM S

Nail Akar
M.S. in Electrical and Electronics Engineering 

Supervisor: Assoc. Prof. Dr. A. Bülent Özgüler 
September, 1989

In this thesis, we consider “exact” and “approximate” versions of the disturbance 
decoupling problem and the noninteracting control problem for linear, time-invariant 
systems. In the exact versions of these problems, we obtain necessary and sufficient 
conditions for the existence of an internally stabilizing dynamic output feedback 
controller such that prespecified interactions between certain sets of inputs and 
certain sets of outputs are annihilated in the closed-loop system. In the approximate 
version of these problems we require these interactions to be quenched in the ‘Hoo 
sense, up to any degree of accuracy. The solvability of the noninteracting control 
problems are shown to be equivalent to the existence of a common solution to two 
linear matrix equations over a principal ideal domain. A common solution to these 
equations exists if and only if the equations each have a solution and a bilateral 
matrix equation is solvable. This yields a system theoretical interpretation for the 
solvability of the original noninteracting control problem.

Keywords. Multivariable systems; control system synthesis; decoupling; almost 
decoupling; noninteracting control; internal stability; matrix algebra.
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ÖZET

TAM  VE \^4KLAŞIK AYRIŞTIRM A VE ETKİLEŞİMSİZ DENETİM
PROBLEM LERİ

Nail Akar
Elektrik ve Elektronik Mühendisliği Bölümü Yüksek Lisans 

Tez Yöneticisi: Doç. Dr. A. Bülent Özgüler 
Eylül, 19S9

Bu tezde doğrusal, zamanla değişmeyen bir dizgede, bozucu etkinin sıfırlanması 
problemi ile etkileşimsiz denetim probleminin “tam” ve “yaklaşık” türleri ele 
alınmıştır. Bu problemlerin “tam” türlerinde, iç-kararlı bir kapalı döngü dizge 
elde etmenin yanısıra, bazı belirli giriş ve çıkış kümeleri arasında önceden 
belirlenmiş etkileşimleri yok eden bir dinamik çıkış geribeslemesinin varlığı için 
gerekli %-e yeterli koşullar elde edilmiştir. Diğer yandan “yaklaşık” problemlerde bu 
etkileşimlerin Hoo anlamında istenen dereceye kadar bastırılması amaçlanmaktadır. 
Bakılan-etkileşimsiz denetim problemlerinin çözülebilirliğinin iki doğrusal matris 
denkleminin bazı “esas ideal halkaları” (principal ideal domain) içinde ortak 
çözümlerinin olmasına eşdeğer olduğu gösterilmiştir. Bu ise, denkleınlorin kendi 
aralarında çözülobilirliğine ve ayrıca iki taraflı ve doğrusal bir matris denkleminin 
çözülebilirliğine denktir. Bu kullanılarak a.sıl etkileşimsiz denetim probleminin 
çözülebilirliğini dizgeler teorisi açısından yoruınlayabilmeıniz sağlanmıştır.

Anahtar kelimeler. Çok girişli, çok çıkışlı dizgeler; denetim dizgesi sentezi; 
ayrıştırma; yaklaşık ayrıştırma; etkileşimsiz denetim; iç-kararlılık; matris cebiri.
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Chapter 1

INTRODUCTION

This thesis is concerned with the control via dynamic output feedback of linear, 
time-invariant, finite dimensional, multivariable systems. The control problems 
we consider are in the general category of “decoupling problems” . In particular, 
we examine “disturbance decoupling” and “noninteracting control” problems. The 
names disturbance decoupling and noninteracting control are motivated by quite 
different applications. However, mathematically, both type of problems might be 
considered under the same heading since their solutions involve zeroing (or making 
arbitrarily small) a predetermined set of of transfer matrices.

The problems are posed on a linear system having two types of inputs (control 
inputs and exogenous inputs) and two types of outputs (measurement outputs and 
exogenous outputs). The control inputs represent the control actions that one can 
employ to influence the behavior of the system. The exogenous inputs represent 
either unknown influences actijig on the plant or inputs that might be used for 
further control purposes. The measurement outputs are those outputs which arc 
available as inputs to the controller (compensator). Finally, the exogenous outputs 
represent the response of the system relevant to the outside world. Naturally, a set 
of inputs (outputs) can be included in both groujis of inputs (outputs).

We now comment on the distinction between “exact” and “approximate” 
decoupling problems. The exact decoupling problems, broadly speaking, consist 
of finding a dynamic feedback compensator so that, in the closed-loop system, the 
undesired interactions between certain sets of exogenous inputs and certain sets of

1



CHAPTER 1. INTRODUCTION

exogenous outputs are annihilated (zeroed). In the approximate or (by the now 
popular usage) “almost” version of these problems, the aim is approximate zeroing 
of certain transfer matrices instead of exact zeroing. Although there are many 
alternative ways of quantifying measures of proximity to zero, we shall choose an 
extreme approach and measure closeness to zero of a transfer matrix by its Wco- 
norm. hloreover, rather than trying to determine a solution which makes this norm as 
small as possible, we seek conditions under which this norm can be made arbitrarily 
small. The former problem is one of “optimization” and has occupied a great deal of 
attention in the recent literature (see, e.g., [1],[2]). The almost decoupling problems 
we consider, however, turn out to be purely algebraic and has its roots in the works 
of Willems ([3],[4]).

A fundamental additional requirement in all the decoupling problems we inves­
tigate is “internal stability” of the overall system obtained by the interconnection of 
the plant and the compensator. Internal stability constraint consists of requiring that 
none of the internal modes of the overall feedback system grow without bound. As 
is well-known, the constraint of internal stability is essential in all feedback control 
problems and it forbids any anomaly that might occur when the feedback loop is 
closed.

The approach we make use of to tackle these control problems is the siable proper 
factorization approach [5]. The central idea of this approach is to represent the 
transfer matrix of a given system (not necessarily stable) as the ratio of stable proper 
matrices. One advantage of using this approach is the ease with which the set of 
internally stabilizing compensators are characterized. Exploiting this, we carry out 
the following program in obtaining solutions to all the control problems with internal 
stability. We first parameterize the set of all internally stabilizing compensators 
in terms of a free parameter and reflect further problem constraints on tliis free 
parameter. Most of the further manipulations are directed towards expressing the 
results in linear matrix equations directly in terms of the problem data so that a 
system theoretical interpretation becomes transparent.

The following figure will aid the description of the particular decoupling problems 
we investigate. The figure consists of the feedback configuration which we employ.

Disturbance decoupling problem with internal stability  ̂DDPIS, defined for .V = 2 
in Fig.l consists of finding an internally stabilizing compensator which decouples
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t/2 (controlled output) from U2 (disturbance). The general noninteracting control 
problem can be described as follows. Find an internally stabilizing compensator so 
that the off-diagonal blocks of the closed-loop transfer matrix from the exogenous 
inputs to the exogenous outputs are annihilated, in other words the closed-loop 
transfer matrices from to î/j i  ,1 < i^j < N are zeroed. We denote
this problem for the case jV = 3 by NICPIS , nonintcracting control problem with 
internal stability. In the almost counterparts of DDPIS and NICPIS, abbreviated 
by ADDPIS and ANICPIS, respectively, we consider almost zeroing of the same 
transfer matrices. In other words, we seek the conditions under which the Hoo- 
norms of these transfer matrices can be made as close to zero as desired by suitable 
choices of compensation. It should be mentioned that, the descriptions given for the 
noninteracting control problems above are considerably different from those in tlie 
“classical” context of noninteracting control (e.g., [6],[7]). The classical problem 
of noninteracting control, roughly speaking, can be described as follows: given 
a plant with a control input and a given number of exogenous outi)uts, design 
exogenous input variables, a precompensator having these variables as its inputs, 
and a compensator from the measured output to the control inj)ut so tliat the closed- 
loop system is block-diagonal. Some other requirements like output controllability 
are also imposed on the description of the problems to avoid trivialities. The major 
distinction between the two set-ups is on the exogenous inputs: in our set-up, they
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are predetermined and in the classical problem, they are up to the designer’s choice.

In the following paragraphs, for each of the problems DDPIS, ADDPIS, NICPIS, 
and ANICPIS, we describe the relevant results in the literature and the main results 
of this thesis.

The problem DDPIS has been subject to numerous investigations in the system 
theory literature. For a full bibliography on this problem, see e.g., [8]. The results 
of Chapter 4 are mainly restatements of some well-known results on DDPIS in tlie 
language of stable proper rational matrices. They are included in this thesis for ease 
of reference and for being able to contrast with the results obtained for ADDPIS 
and (A)NICPIS.

We consider ADDPIS for continuous-time systems by taking the stability region 
as the open left half plane. Different versions of this problem have been solved by 
geometric techniques in [9] and by frequency domain techniques in [10] and [11]. 
The constraint of internal stability is with respect to the closed left half plane in [9] 
and [10], and with respect to the open left half plane in [11]. The basic motivation 
for our slightly different solution to ADDPIS lies in the fact that, our results are 
amenable to an easy extension for obtaining a solution to ANICPIS. A relevant 
remark at this point is that ADDPIS can be viewed as an extreme case of the 
standard problem. In this optimization problem the purpose is
to determine an optimal solution which achieves the infimum cost. On the other 
hand, ADDPIS can be reformulated as seeking conditions under which the infimum 
cost is zero. Consequently, a solution to ADDPIS (if it exists) can be obtained 
by using Woo'OplHi îzation techniques. Our different approach, however, is still 
justified since the emi)hasis here is on determining simple solvability conditions which 
have interpretations in terms of zeros and poles of the open-loop plant rather than 
obtaining a solution whenever it exists.

The main motivation for NICPIS is that, if NICPIS is solvable, tlien we can 
decompose the overall system into smaller scale subsystems having no interaction 
among each other. Once this is done by a primary feedback, then this decomposition 
facilitates the design and implementation of a further feedback law which might be 
employed for more sophisticated control purposes. The state feedback version of 
this problem, when full state observation is possible, has been formulated in [12] and 
has been further developed in [13]. In the measurement feedback version (when the
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internal stability constraint is absent), this problem has been reduced to the common 
solvability of a pair of linear matrix equations

,4i = BiXCi , .42 = B2 X C 2 (1.1)

over the ring of proper rational functions, where -4,·, and C /s / = 1,2 are transfer 
matrices of various subsystems. Our main result on NICPIS is that, using Theorem 
6.1, we reduce the solvability of XICPIS to the solvability of (1.1) over the ring of 
stable proper rational functions, where Aî  and C /s z = 1,2 are now system 
matrices associated with various subsystems of the system model.

Concerning the almost version ANICPIS, when full state observation is possible, 
solvability conditions in geometric terms have been obtained in [13]. In the 
measurement feedback case, when internal stability is not required, the problem 
(AXICP) has been reduced in [14] to the solvability of (1.1), but this time over the 
field of rational functions contrary to tlie exact version of this problem. In our main 
result on NICPIS, we show that the solvability of the problem is again equivalent to 
the solvability of equations of the type (1.1) over various relevant rings.

One of the main contributions of this thesis has been the derivation of a set 
of necessary and sufficient conditions for the solvability of (1.1). Actually, it is 
well-known that the equations of the type (1.1) can easily be analyzed via the use 
of Kronecker products and via the theory of the linear vector equation Ax = b. 
This approach, however, leads to an alteration of the given data (i.e., the matrices 
Ai^BiyCi) and makes it difficult to have an intuitive system theoretical interpretation 
for the solvability for the original problem.

Solvability conditions for these equations, in case all the matrices in (1.1) have 
elements in a field T  and A' is sought over T  ̂ have been obtained in [15] and [14]. 
W'Q show in Theorem 8.1 that, the equations (1.1) have a common solution A" over 
an arbitrary but fixed principal ideal domain 7Z if and only if they are separately 
solvable over 7Z and a matrix equation of the type

B X  + IX / = A ( 1.2)

is solvable over Tv. Tlie first condition, the separate solvability of these equations, 
occurs as the solvability condition for DDPIS and the conditions under which an 
equation A = B X C  has a solution is well-known in the literature. The existence of



a solution to (1.2) can easily be checked by using the fundamental result of Roth 
[16]. Such conditions, on the other hand, occur as the solvability conditions for 
various output regulation and/or tracking problems (see e.g., [17],[18]). The result 
of Theorem 8.1 constitutes a solution to an open problem posed in [14].

The techniques used in reducing (A)NICPIS to the solvability of a pair of linear 
matrix equations extend to the general A-channel case. This is part of the objective 
of Chapter 9. We have, however, not yet been able to derive similar solvability 
conditions for this general problem to what we have obtained in Theorem 8.1 for the 
case N = 3,

CHAPTER 1. INTRODUCTION 6

The organization of the material is as follows.

In Chapter 2, we briefly cover the algebraic and analytical background necessary 
to develop the contents of the subsequent chapters. In Chapter 3, we consider the 
problem of internal stability and give a parameterization of internally stabilizing 
compensators. Chapters 4, 5, 6, and 7 are addressed to DDPIS, ADDPIS, 
NICPIS, and ANICPIS, respectively. The main theme in each chapter is that, 
we obtain solvability conditions and give synthesis procedures for the solutions 
of the corresponding problems. Chapter 8 is devoted to an investigation of the 
equations of the type (1.1). In this chapter, verifiable solvability conditions are stated 
preserving the structure of matrices occurring in the equation and a procedure for 
the construction of a solution is given. In the last chapter, we examine the general 
noninteracting control problem and some special problems relevant to noninteracting 
control. Our results in Chapters 3 and 4 follow [19] closely and the main results of 
Chapter 5 is an extension of the main result of [10]. The results of Chapter 8, on 
the other hand, are in part contained in [20].



Chapter 2

PRELIMINARIES AND 
NOTATION

The purpose of this chapter is to fix the notation of the thesis and to give some 
definitions and facts that will be used in the subsequent chapters. Section 2.1 is 
devoted to algebraic preliminaries concerning matrices over a principal ideal domain 
(pid). We give certain terminology and facts on some particular matrix norms 
(Euclidean norm and Tfoo-norm) in Section 2.2.

2.1 Algebraic Preliminaries

In this section, we will mainly consider matrices which have elements from a pid Tv. 
We then describe the ring of stable proper rational functions S, which plays a central 
role in the synthesis problems we investigate. All the facts below, stated without 
proof, can be found in [21] and [5].

Let Tv be a principal ideal domain. If x G Tv has an inverse ?/ G Tv such that 
xy = yx = T then X is called a imii of Tv. \̂'e say that x divides y if there is an 
element z £ TZ such that y = xz which is denoted by .7:|i/. If x and y are elements of 
Tv, not both zero, a greatest common divisor (ged) of .t and y is any element d £ TZ 
such that (i) i/|x and d\y (ii) c|.r,c|  ̂ implies c\d. Now let Tv^ ”̂  ̂ constitute the set 
of 7? X 777 matrices whose elements belong to Tv. A matrix A £ Tv̂ ^̂  ̂ is said to



have rank I if there is an / X / nonzero minor of .4 and every (/ + 1) x (/ + 1) minor 
of Л is zero. If n = / (m = /), then .4 is said to have full rou· rank (full column 
rank). A matrix U £ is called unimodular if there exists U~  ̂ £ such
that UU~^ = U~^U = / ,  or equivalently, U is unimodular if det(f/) is a unit in TZ. 
A matrix U £ is called right unimodular if there is an clement U· £
such that U“̂U = I. Similarly, U is called left unimodular \{ there exists L'" 6 
satisfying UV** — I. A matrix A £ is a left associate of В £ jf there
is a unimodular matrix U £ 7^"^" such that A = UB. It is a right associate of 
В if there is a unimodular matrix V £ such that A = B V . Two matrices
A ,B  £ Tv"^'" are called equivalent if there exist unimodular matrices U and V such 
that A = UBV.

CHAPTER 2. PRELIMINARIES AND NOTATION 8

We now give some facts concerning the standard forms (Hermite and Smith 
forms) of a matrix A £ 7^"^’".

FACT 2.1 (H erm ite row form ) : The matrix A is a left associate of a matrix 
of the form

G
0

if n > i?r , G" if n = m , J G" ♦ j if n < m ,

where the square matrix G can be chosen to be either upper or lower triangular. 
The Hermite column form of a matrix can be defined analogously.

FACT 2.2 (Smith form ) : If A has rank /, then A is equivalent to a matrix 
5.4 of the form

’’ A 0
5a =

0 0
;A  = dm<7{Ai,A2,...,A;} ,

where A,· divides A,q.i for i = 1 , 2 , . . . , / — 1. Moreover, AiA2 ---A,· is a greatest 
common divisor of all i X i minors of A and the A,’s are unique up to a multiplication 
by a unit. We call Ai,A2 , . . . ,A ; as the invariant factor's of A and in particular we 
call A; as the largest invariant factor oi A. Using tlie Smith form of .4, one can easily 
show the existence of unimodular matrices U and V such that

VA = , = [ .42 0

where .4i is of full row rank and Л2 is of full column rank.

M
0
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Next, we extend the definition of gcd to the matrix case. If three matrices over 
Tv are in the relation A = CG^ then G is called a right divisor of A and C is called 
a left divisor of A. Let A be a full column rank matrix over Tv. A greatest right 
divisor of A is a square nonsingular matrix L over TZ such that A = UL for a right 
unimodular U. A greatest common right divisor (gerd) of two matrices .4 and B is

Aa greatest right divisor of 

Tv liave a gerd G expressib

. Every pair of matrices A and B with elements in
B

e in die form

G = PA + QB ,

with P  and Q over Tv. If the composite matrix
A
B

is of full column rank, the

matrices A and B have a nonsingular gerd G and every gerd of .4 and B is of the 
form VG  where V is unimodular. Two matrices A G Tv̂ ‘^^,i? G Tv̂ *̂ ^̂  are called 
right coprime if a gerd of A and B is unimodular. Suppose A and B are right coprime 
and n A k > m. Also let U be a unimodular matrix such that

A V"
B 0

where
V
0

u

is the Hermite row form of A
B

( 2 . 1 )

. It follows that V G is a

unimodular gerd of A and B. Exploiting this, one can show the existence of matrices 
K\^I\2 ^A^B^Ki  ̂ and K 2 over Tv of appropriate sizes satisfying

(2.2)A 1 h 2 A Ki ' 1 0
A B B K 2 0 I

A greatest left divisor of a matrix, a greatest common left divisor of a pair of 
matrices, and left coprimeness can be defined similarly or via. matrix transposition.

Let A and B be two matrices over Tv of sizes p X g and q x r. respectively. 
The ordered pair (A ,i?) is called skew-prime if there are matrices A’ G Tv"̂ ^̂ ’ and 
Y G Tv̂ ^̂  such that A\4 + BY = 7. It is shown in [22] that, excluding some 
trivial cases, (A, i?) is skew-prime iff there exist matrices B and A over Tv, such that 
AB = BA with A and B left coprime and B and A right coprime. The following 
fact concerns the equations of the type

BX  + YC  = A . (2.3)
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The condition (ii) below yields a checkable condition for its solvability [16] and the 
condition (iii) expresses the solvability of the equation in terms of skew-primeness of 
certain matrices [23].

FACT 2.4 : Let A G G and C G 7Z^^^, The following statements
are equivalent.

(i) The matrix equation B X  + YC = A is solvable,

(ii)
B 0
0 c

and
B A 
0 C

are equivalent over 7Z,

(iii) The pair
/  A 
0 C

B 0
0 /

is skew-prime.

Let R{s) denote the set of rational functions with coefficients in R, the field of 
real numbers, in the indeterminate s. Also let Z G One can express Z in
powers of 6“  ̂ as

oo
Z = J 2  , (2-4)

1 = “ /:
for unique matrices A{ in R p^^ where ^ 0. The highest power of 5  (=  k) in 
this Laurent series expansion of Z is called the causality degree of Z and is denoted 
by deg(Z). The rational matrix Z is called proper \{ deg(Z) < 0 and strieiJy proper 
if deg(Z) < 0. If for a square rational matrix Z, dog(Z) = 0 and Ao in the expansion 
(2.4) is nonsingular, then Z is called biproper,

A siahiliiy region (stability set) Q, is any conjugate symmetric subset of the set 
of complex numbers C. A rational matrix Z is called i}-siable if the denominator 
polynomial of every entry of Z has all its roots in the stability region ii. When 
the stability region needs to be emphasized, we denote the set of f?-stable rational 
functions by R(.‘j)o, ii-stable proper rational functions by R(.<̂ )̂ ;Q, and ii-stable 
strictly proper rational functions by R(6‘)_q . When tlie stability region is arbitrary 
but fixed, we denote the set of stable proper rational functions by S, the set of ])roper 
rational functions by P, and the set of strictly proper rational functions by SP.

The following fact concerns the existence of a bicoprime factorization over S of 
a given transfer matrix Z over P.
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FACT 2.4 : Given any Z over P, there exists a quadruple S = {P .Q ,R ,W )  
over S satisfying

(i) det(Q) 7  ̂ 0 and Z = PQ~^R + IF,

(ii) P  and Q are right coprime,

(iii) Q and R are left coprime.

If these three conditions are satisfied, the quadruple E = (P^Q^R^W) is called 
a bicoprime factorization (representation) of Z over S. Actually, any quadruple 
S = (P^Q,R, W ) satisfying (i) (but not necessarily (ii) and (iii)) is called di fractional 
representation of Z.

Given a fractional representation S = (P^Q^R  ̂W ) associated of a transfer matrix 
Z, we can define the decoupling zeros of this representation. Given a stability region 
cj, a complex number 2: G C is called an (unstable) input decoupling zero of E if 2: 
lies outside u and given any geld D oi Q and R over S, dei D {z) = 0. Similarly, 
2r G C is called an (unstable) output decoupling zero of E if 2: lies outside u and given 
any gerd C of P and Q over S, detC (2r) = 0. The representation E is bicoprime iff 
E has no input and output decoupling zeros. We shall call 2:1 G C as an (unstable) 
system zero iff z\ lies outside u and is a zero of the largest invariant factor of

Q R
- P  W

where II is called the system matrix associated with the quadruple (P, Q ,P , IF). We 
note that many other definitions of system zeros exist in the literature.

n = (2.5)

Finally, we give a brief description of the “Kronecker product” of two matrices 
based on [24]. The description will be given for matrices over 7v, but it is valid for 
arbitrary rings.

If A G and B G then the 7'ight Kronccker product of A and i?,
denoted by A © P, is defined to be the partitioned matrix

auB O1 2 B ··· o r̂iB 

a2\B «22^ *** ^2nP
A ® B  =

^ m 1 -0 (7 7712 P
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For a matrix .4 G write -4 =
1 ,2 .. . . ,  71. The vector

A 2 ··· -4„ ] where .4/ G ; i =

-4i
^ 2

is said to be the vec-funciion of .4 and we denote it by A, It is the vector formed 
by stacking the columns of ,4 into one long vector. The fact below demonstrates the 
relationship between the Kronecker product and the vec-function.

FACT 2.5 : Let ^ G G G TZ^^K Then A := A X B  if and
only if

A = (B ^ 0  .1),V .

2.2 Preliminaries on Matrix Norms

Let and C_ denote the open right half plane, the jUNaxis, and the open
left half plane, respectively. Also let S denote the set of proper rational functions 
which are stable with respect to C _, throughout this section. The Wco-iiorm of a 
matrix A G is defined by

IMIloo = sup CT[/l(i)] ,
Hts> 0

(2.6)

where ^{B) denotes the largest singular value of a matrix B (i.e., the square root 
of the largest eigenvalue of the symmetric matrix B*B where + stands for conjugate 
transpose). Recall that the Euclidean norm of a vector x in is defined by

||.r||2 = .

If i? G then its Euclidean induced norm is defined by

m h =  s»i>

and equals d{B). Thus, the Wco-i'iorm of a matrix -4 G can also be defined by

|.̂ l||co = sup ||̂ l(i)||2 ·
R t s > 0

(2.7)
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A significant fact on the T-ir -̂nonn of a matrix A over S is that, the norm of .4 can 
be computed based on the behavior of A(·) on the jir-axis only. This is formally 
shown as follows:

\\A\\oo = sup ct[/1(5)] = sup a[A(jiv)] . (2.8)
R t s > 0  u GR-

Finally, we consider the inner-outer factorization of a matrix A G Let G^{s)
denote G (—5 )^, the transpose of G {—s), A matrix G G is called inner if
G""{s)G{s) = I  and outer if rankG(s) = n, \/s G C _̂, or equivalently, if G has a 
right inverse which is analytic in C^.

FA CT 2.6 : Suppose A G and has rank min(n,m). Then A has a
factorization A = AiAo where A{ is inner and Ao is outer. If n > ??7, then Aq 
is square, whereas if n < ???, then Ai is square.

An important property of inner matrices is that left multiplication by an inner 
matrix preserves T^co-norms. That is, given F  G and given an inner matrix
^   ̂ gnxm tiiere holds

\\GF\\oo = \\F\U



Chapter 3

INTERNAL STABILITY 
PROBLEM

In this chapter, we consider the internal stability problem from a fractional viewpoint. 
In the first section, we define the internal stability of a feedback loop consisting of 
a plant and a compensator. In the second and the third sections of the chapter, we 
obtain a convenient characterization of all internally stabilizing compensators.

3.1 stability of a Feedback Loop

In this section, we are concerned with the internal stability of a feedback loop 
consisting of a plant and a compensator. The plant has the transfer matrix 
representation

y ^ Z u U ,  (3.1)

where Z\\ G and the compensator has the transfer matrix representation

Vc = ZeVe , (3.2)

where Zc G The plant and the compensator are connected in a feedback loop
by the laws

u = V e -  Vc , Uc = Vc€ + y J (3.3)

where and Vee are external inputs to the system which may serve as new control 
inputs in case of additional control applications. The resulting closed-loop system

14
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has the transfer matrix representation

y
Vc

Zu -  ZuycZn —Z\iy

YcZu Yc
Ue
Uce

(3.4)

where

y, := Z c ( /+ Z n ^ c ) “ ' , (3.5)

which is proper by strict properness of Z\\. We are now ready to define the internal 
stability problem as follows.

The pair (Zu^Zc) is iniernally stable if and only if the transfer matrix in (3.4) 
is over S, or equivalently, all the four transfer matrices

-̂ 11 — ZuYcZii (3.6)

are matrices over S.

In order to justify the word “internally” in this definition, we need to examine 
the implication of this type of stability on the internal modes of the closed-loop 
system. This can be done by considering the state-space realizations of Z\i and Zc· 
An alternative way, however, is to examine a suitable fractional representation of 
the closed-loop system. For this purpose let

Z n ^P iQ ^ ^R i + W n .  (3.7)

Zc = PcQ:'^Rc (3.8)

be some fractional representations of Z\\ and Zc over S. We do not assume at the 
outset that the fractional representation of Zn is bicoprime.

In fact, the cancellations that occur in the right hand side of (3.7) are of primary 
importance for the control problems we are going to investigate. We therefore 
examine this fractional representation closely, identify the possible cancellations, 
and obtain a natural bicoprime representation for Z\\ in (3.7). Therefore, let

Cl := gcrd{Pi,Qn) , Di := gcld(Qn,Ri)

so tliat

Qn — QiCi = D 1 Q2 , P\ = PC\ , i?i = D\R.q (3.9)

for a right coprime pair (P, Q i) and a left coprime pair (Q 2 ,Ro) of matrices over S. 
Further, let

C := gcrd{PuQ2) , D := gcld{Qi,R^)
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SO th a t

Л  = PoC , Q2 = QoC , Qi = DQ , Ri = DR  (3.10)

for a right coprime pair (Po,Qo) and a left coprime pair (Q,i2) of matrices over S. 
By definitions of gcrd and geld, it follows that

Cl = CoC , Di = DDo

for some matrices Co and Dq over S. It follows that

QCo = DoQo, (3.11)

where (Q,Do) is left coprime and (QoiCo) is right coprime by left coprimeness of 
the pair {Q ,R) and right coprimeness of the pair (Pq,Q o). Moreover, both of the 
fractional representations in

^11  = PoQo Po + = PQ-^R + W (3.12)

are bicoprime, where W  := l^n. By (3.11), we have det(Co) = v det(Do) where 
ti is a unit of S and the unstable zeros of det(Co) will be called the (unstable) 
input-output decoupling zeros of {P\,Qi\,Ri,W ). Recall that, the unstable zeros of 
det(Ci) and det(Z)i) are, respectively, the output and the input decoupling zeros of 
(P u Q iu R u W ).

Let
PQ-^ = Qf^R, , Q-^R = PrQ -\  (3.13)

for some left coprime matrices {Qi,Ri) and right coprime matrices (Pr,Qr) over S. 
Thus, the following two equalities hold.

and

К - L

Ri Qi _

Q R
Lf Rr

Q N,
- P  Ml

M Pr 
N Qr

’ / o '

-
0 /

’ / o '
0 /

(3.14)

(3.15)

for some matrices Lr over S. We also have

Zn = {PPr + ^vQr)Q;^ = QT\Qi^y + RiR) ■ (3-ic)

Moreover, the first representation above is right coprime and the second one is left
coprime since we can write

Qi{Mi + PMNi -  WNNi) + {QiW + RiR)NNi = I , (3.17)
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{Kr +  LrKR -  LrLW)Qr + LrL{PPr + WQr) = I . (3.18)

We shall frequently have to refer to equalities (3.9)-(3.18) in this chapter and in the 
subsequent chapters.

The previous definition of the internal stability problem is in terms of the 
compensator Zc· We are now prepared to give an equivalent definition in terms 
of the triplet {Pc,Qc,Rc), in the following lemma.

LE M M A 3 .1 : Given (3.12), there exists a compensator Zc such that [Z u , Zc) is 
internally stable if and only if there exists a triplet {PcQ c Rc) unfh Pc G €
S‘ ^‘ ,Rc G and Qc biproper such that

$ := Q RPc
-R cP  Qc + Rc^VPc

(3.19)

is unimodular. Furihery if Zc is an internally stabilizing compensator for Zn , then 
the triplet of matrices in any bicoprime fractional representation of Zc = PcQc^Rc 
is such that $ is unimodular and , conversely, given any triplet (Pc?Qci^c) Qc 
biproper and $ is unimodular, Zc defined by Zc := PcQc^Rc such that {Z\\,Zc) is 
internally stable.

P roo f : Writing Zc = PcQc^Rc^ it can easily be shown that

Z\\ — Z\\YcZ\T, Zî Yo ' P WPc $-1 R 0
+

W  0
YcZn -Yc 0 -P c RcW Rc 0 0

’ P -W P c
0 -P c

1

(3.20)
Now let (Z ii,Z c) be internally stable so that the left hand side of (3.20) is a matrix 
over S. Let PcQc^Rc be any bicoprime fractional representation of Zc over S. By 
right coprimeness of the pairs (P^Q) and {Pc,Qc)^ if follows that the pair

Q RPc
-R cP  Qc + RcWPc

is right coprime. By left coprimeness of the pairs {Q ,R ) and {Q ^R c)’, it follows that 
the pair

Q RPc
-RcP Qc + RcWPc

is left coprime. Hence, the representation (3.20) is bicoprime yielding that is a 
matrix over S, or equivalently, $ is unimodular. Conversely, let a triplet {P^Qc^Rc)

R 0
>

RcW Rc
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be such that all three matrices are over S and Qc is biproper. It follows that Zc = 
PcQ~^Rc is a matrix over P. In case $ is unimodular, then the right hand side of 
(3.20) is over S, that is, all the four transfer matrices ic , ZuYc^ Zu — ZuYcZu
are over S. □

3.2 Solutions to the Internal Stability Problem

In this section, we first construct a solution to the internal stability problem and 
then we give a characterization of all internally stabilizing compensators, by making 
use of the factorizations introduced in Section 3.1.

Let us define

Per := NNi , Qer := Mi + PMNi -  WNNi , (3.21)

so that Qcr = Qi^ — ZiiNNi is biproper by the fact that Qi is biproper and Zn is 
strictly proper. Thus, the compensator defined by

Z e r  : =  PcrQl

is proper and is such that

(3.22)

det($) = det
Q RNNi 

- P  Mi + PMNi
= det Q Ni

- P  Ml
(3.23)

by using suitable column operations. Noting the unimodularity of the last term of 
(3.23), ZcT defined by (3.21) and (3.22) is an internally stabilizing compensator for 
Z\\. Analogously, it can be shown using (3.15) that the compensator defined by

Zd ■= Qd^^ci,

where
Qel := K r "l· -LyA R — LfLW  , Rei — LrL 

is also a stabilizing compensator for Z\\.

(3.21)

(3.25)

The method just described above has the advantage of leading us to a 
characterization of all compensators Zc such that the pair (Z n ,Z c) is internally 
stable. We state and prove this result in the following theorem.
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T H E O R E M  3.1 : The set of all internally stabilizing compensators for Z\\ is 
given by one of the following sets :

Zcr(X) := {{NNi + QrX){Mi +  PMNi -  WNNi -  PPrX -  WQrX)~^ : A' €

(3.2G)
ZciiY) := {{K r  + LrKR -  LrLW  + YRiR + YQ tW )~\LrL -  YQ,) : Y £ .

(3.27)
P r o o f  : Note by Lemma 3.1 that {Zn,Zcr) is internally stable if and only if

:=
Qt {RiR + QiW)P,,

- I  Qcr
(3.28)

is unimodular for any right coprime fractional representation PcrQ„^ of Zcr- On the 
other hand, in (3.26), each Zcr{X) is given in a right coprime fraction since

Q ,(M i+PM N t-W N N i-W Q rX -PPrX )+iQ tW +R ,R ){N N i+Q rX ) = /  , (3.29)

by (3.13) and (3.17). Unimodularity of can easily be shown by performing 
suitable elementary operations on $r, in case any element of Zcr(X) is used as 
the compensator. Consequently, every element in Zcr{X) internally stabilizes Zn· 
Conversely, given any Zc which internally stabilizes Zu, let Zc = PcrQjr  ̂ right 
coprime fraction for Zc and note that in (3.28) is unimodular by Lemma 3.1. 
Unimodularity of implies that

U := QiQcr + (QiW + R,R)Pcr 

is also unimodular. Comparing (3.13) and (3.30), we have

QcrU-'  ̂ -  {Ml + PMN, -  WNN,) = -(PP, + irQr)A' 

Pert/-' -  NNi = QrX

(3.30)

(3.31)

(3.32)

for some matrix A" over S. Now, (3.30) and (3.31) imply that Zc is in Zcr (A”). 
The fact that Zci{Y) is an alternative characterization for all internally stabilizing 
compensators for Zn follows by analogous arguments. □



Chapter 4

DISTURBANCE
DECOUPLING PROBLEM

This chapter concerns DDPIS, Disturbance Decoupling Problem with Internal 
Stability, which is posed for a 2-channel plant. In Section 4.1, the 2-channel plant 
model is given and DDPIS is defined in terms of the closed-loop system obtained 
using dynamic compensation by measurement feedback. We state a necessary and 
sufficient condition for the solvability of DDPIS in terms of the solvability of a linear 
matrix equation of the type A = B X C  in Section 4.2 and we examine the solvability 
of such matrix equations in Section 4.3.

4.1 System Model and Problem Definition

The basic system model for our two-channel plant is the following input-output 
model in terms of its transfer matrix Zp·.

Z\x Z\2yi
V2

Ui

U2 Z 21 Z22
«1
«2

(4.1)

where Zn  G Z 12  € ppx", Z 21 G and Z22 G P^^". We assume that

Zii G SPP^"*, (4.2)

which is a standard simplifying assumption used to avoid complications concerning 
the well-definedness of the feedback loop when a feedback is applied around the first

20
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channel.

This model is widely used for various problems where it is necessary to distinguish 
between two types of outputs and inputs: the outputs that can be employed for 
dynamic feedback and those whose behavior need to be changed under feedback, the 
inputs that can be used for control purposes and those with unwanted influences on 
the plant. A particular input or output may be included in both of the channels 
depending on the problem requirements. Motivated by applications, the output 
vector yi is called ihe measured output and y2 is called the controlled output  ̂ the 
input vector Ui is called the control input and г¿2 is called the disturbance input. 
Thus, the first channel of the plant is called the control channel around which the 
feedback is applied.

Q il [ R i ^2 ] + (4.3)

The plant transfer matrix can be represented in matrix fractions over S as

Wu W,2 
W21 W22

where Pi G SP><^P2 G G S^><^Pı G S "x^ ,P 2 € G ,W u  G
SP^^^W2 i G and IT22 G with i^n being nonsingular. We assume that
this representation is bicoprime, i.e.,

Z -[2 ' Pi '
Z21 Z22 P2 _

{[P^ P2 V 1 Q 1 1 ) right coprime,,

(Q n ,[P i P 2]) is coprime.

In spite of the fact that the overall representation in (4.3) is bicoprime, the 
representation of the control input-to-measured output subplant

1̂1 = PiQTiRi +

may not be bicoprime. We now use the same factorizations (3.9) and (3.10) to 
obtain a bicoprime fractional representation for Zu as in (3.12). Also suppose that 
(3.13)-(3.18)hold.

Now, define the feedback law

U\ = —Zcy\ + Wei ,

where the compensator Zc G We then obtain the closed-loop plant

2/1 ■ ^11 — ZiiYcZn Z\2 — ■̂ 1i5c'̂ 12 Uel
2/2 Z21 — ^ 2 1 ^0 ^ 1 1  -̂ 22 — ■̂ 21̂ С'̂ 12 U2

(4.4)

(4 .5 )
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where the matrix
Yc = ( I+ZcZii ) -^Z, (4.6)

is in by (4.2). The solvability of the disturbance decoupling problem will
concern the closed-loop transfer matrix

Zdc = Z22 — Z,2\YcZ\2 (4.7)

between the disturbance input and the controlled output. If the transfer matrix 
of the compensator is written in matrix fractions as

— PcQc  ̂Pc 9 (4.8)

where Pc G  ̂ G then we can write a natural matrix
fractional representation for the closed-loop transfer matrix Z / of (4.5) as follows:

’ Pi -W Pc Qll R\Pc
- 1

Ri R2
+

w i r , 2  ’
P2 -W21 Pc _ —RePI Qc + ReWPe ReW RcW,2 W21 yV22 _

Zj = 

where W  := W îi.
(4.9)

Given the open-loop plant (4.1) in which (4.2) holdŝ  DDPIS is determining an 
internally stabilizing compensator Zc defined hy{AA) which decouples the disturbance 
input from the controlled output. The second condition is expressed by

d̂c — 0 ? (4.10)

where Zdc is Ihe closed-loop transfer matrix from the disturbance input to the 
controlled output and is given by (4.7).

If an internally stabilizing compensator for Zn is applied, then the closed-loop 
plant Zj in (4.9) can be expressed as a function of the free parameter A'. Employing 
the right coprime fraction in (3.26) for Zcr(A'), the closed-loop transfer matrix 
between the disturbance input and the controlled output can be written in terms of 
the free parameter A" as

+ IIV2

(4.11)

Qn Ri{NN, + QrX)
-1

’ R2 '
- P i  Ml + PMNi -  PPrX vri2

Zdc = [ P 2 - W 2x{NNiYQrX)

Note by (3.9) and (3.10) that

Qn — DQC\ , R\ = DR , P\ = PC\ (4.12)
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By the fact that the representation (4.3) is bicoprime, it follows that (P2 ?C"i) is right 
coprime and (P ,i? 2 ) is left coprime. Let us write

, D~^R2 = , (4.13)

for left coprime {C\,T) and right coprime (S,D)  over S. Using (3.14) and (3.15), it 
is easy to verify the following alternative expression for Zdc·

Zdc = C^HTOn + O2 1 S -  021^012 + C1 IU2 2P  -  ÍÍ2iA'Í7i2 )5 - ' , (4.14)

where
012 := KS -  LW uD  , 021 := TM  -  Ciir2iiV (4.15)

and
ÍÍ12 := R l S + Q l W u D  , ÍÍ21 := TPr + CiW2iQr . (4.16)

The technique of obtaining solutions to DDPIS will be based on reflecting the 
disturbance decoupling constraint to the free parameter X.

P R O P O SIT IO N  4.1 : DDPIS is solvable if and only if there exists X  G 
satisfying

ÍÍ21^ ííl2 = T012 + 0 2 1 “  021Q012 + C1 W2 2D , (4-17)

where 0i2j02i?i^2i .̂nd ÍÍ12  are as defined by (4.15) and (4.16).

P ro o f : If Zc is a solution to DDPIS, then (Zn ,Zc) is internally stable, in 
particular. Thus, by Theorem 3.1, there exists X  G such that Zc = Zcr(-Y).
Now, Zdc(X) is given by (4.11) and by the decoupling property (4.10) of Z^ X  
satisfies (4.17). Conversely, given any A" satisfying (4.17), let Zc := Zcr{X) and 
note, by Theorem 3.1, that (Z n ,Z c) is internally stable. On the other hand, (4.10) 
immediately follows from (4.14) and (4.17). Therefore, Zc = Zcr{X) solves DDPIS. 
□

Although this solvability condition is good enough for all practical purposes, it 
does not give an idea about the pole-zero structure of the open-loop plant since it is 
not directly in terms of the problem data. Below we obtain an alternative condition 
which is devoid of this drawback.

Consider the following system matrices

I l j 2  : =
’  Q

- P
s

WnD  _
, I l 2 i

’  Q
- T

R
C i l U 2 ,  _

, I I 22 Q s
- T  CiW22D

( 4



CHAPTER 4. DISTURBANCE DECOUPLING PROBLEM 24

associated with the fractional representations of transfer matrices Z\2 D^C\Z2\·, and 
C 1 Z 2 2 -D, respectively. By (3.14), (3.1-5), (4.15), and (4.16), we have

K  - L

Ri Qi
IT12  = I 012 

0 ii i2

’ M -Pr /  0
II21 =

— 021 D21_N Qr ^

(4.19)

(4.20)

Note from these that the nontrivial invariant factors of iTi2 are the same as those of 
fii2 and the nontrivial invariant factors of IT2 1 are the same as those of fl2 i· We can 
now prove the main result of this section.

TH E O R E M  4.1 : DDPIS is solvable if and only if there exists X  G S(’'+’" )x(’'+p) 
satisfying

n2iA ni2 = n22 ■ (4.21)

P roo f : [Only If] Let DDPIS have a solution so that, by Proposition 4.1, there 
exists X  G satisfying (4.17). Define

X  := -Pr
Qr

[ Ri Qi +
K  + M - M Q K  M Q L -L  

N - N Q K NQL
(4.22)

where M ,N ,K ,L  satisfy (3.14) and (3.15). Note that A' G Moreover,

-Pr
Qr

JI21

by (4.19) and (4.20), and 

n 2 i

X  [ 7?, Q i]  ii i2 =
0 0 
0

(4.23)

’ K + M -  M Q K MQL -  L '
II12 = ' Q s

N -  N Q K NQL - T Ci W2 2D -  D2 1 -Vfil2
(4.24)

by (4.17), (4.19), and (4.20). It follows from (4.22), (4.23), and (4.24) that (4.21) 
holds.

[If] Suppose that (4.21) has a solution X. Let

r 1 'V ' Ni 'A' := -L r  Kr J A'
Ml _

(4 .2 5 )
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where the matrices satisfy (3.14) and (3.15). Employing the equalities

A /fii2 = S — QQ \2 ? — IE1 2 -D + PQ \2 ?

^ 2 \Lr = T — Q2 1 Q 5 = C1 TE2I + O2 1 P  ?

we obtain

fi2lA 'iii2 = [ e 2 l Q - T  Ci W21 + Q2i R X S -  QQj2 
W ni) + P0 1 2

0 2 1  I  n 2 lATIi2
- 0 1 2

I

=  P 0 1 2  + 02i 5 -  0 2 1 ^ 0 1 2  + ClH^2 2 P .

(4.26)

(4.27)

(4.28)

Therefore, (4.17) is satisfied by our choice of X  in (4.25) implying that DDPIS is 
solvable, by Lemma 4.1. □

4.2 Two-sided Matrix Equation and Its Solution

We have shown in Section 4.1 that the central solvability condition for DDPIS is the 
solvability over S of a linear matrix equation of the type

A = B X C  . (4.29)

Since no special property of the ring S is required for the development, the following 
analysis below will be carried out for an arbitrary pid TZ.

Let A € G and C G Also let M  G and N G TẐ '̂ '̂  be
unimodular matrices such that

M B  =
B
0

, C A  = [ C 0  ]

with B of full row rank in and C of full column rank in TẐ '̂ \ where k :=
rank(B) and / := rank{C). Set

A := M AN  =
All A i2

A21 A22
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partitioned so that An  is in , Further, let Z be a greatest left divisor of B and 
let i? be a greatest right divisor of C so that

B = LU , C = VR

for a left unimodular U and a right unimodular V'.

TH EO RE M  4.2 : The equation

A = B X C

has a solution X  over if and only if

(i) A i2 = 0 , -421 = 0 , ^ 2 2  = 0 9

(ii) L-^AnR-^  e .

P ro o f : Let X  be in satisfying A = B X C . It follows that

A = ’ i n i l 2 ' B '

i 21 i 22 0
X  [ C 0  J

which implies (i). Note that A n  = B X C  which yields U XV  = L~^A\iR~^where 
the left hand side is over TZ. Thus, (ii) holds. Conversely, let i/** 6  and
pS G be such that

t /f /“ = /  , V'^V = I ,

On setting
.Y := U^L~UnR~^V^

and by using (i) and (ii), A = B X C  holds with X  G □



Chapter 5

ALMOST DISTURBANCE 
DECOUPLING PROBLEM

In this section, we will be concerned with ADDPIS, Almost Disturbance Decoupling 
Problem with Internal Stability, which is a slightly different version of DDPIS 
examined in Chapter 4. The results of this chapter pertain to continuous-time 
systems contrary to the results of Chapter 4 where the stability region is arbitrarily 
chosen. Consequently, we define the particular stability regions u  and ii as 
u  := C... U Cjyj and ii := C_ where ii is the usual stability set for continuous­
time systems.

Given the bicoprime fractional representation (4.3) of Zp defined in (4 .1 ) over 
R (5 )oO? ADDPIS can be described as follows : Determine the conditions under which 
for every real number £ > 0 , there exists a compensator Zc{s) which internally fi- 
stabilizes the plant and for which ||̂ ifc(̂ )||oo ^ s. Further  ̂ give a synthesis procedure 
for such a compensator Zc(s) for a given £ > 0 , when the problem is solvable.

To avoid too much technicality, we will have the assumption that C\ and D 
defined through (4.13) are unimodular over H{s)on which means that the fractional 
representation of Zu is free of input and output decoupling zeros. Under this 
assumption, we immediately have the following proposition.

P R O P O S IT IO N  5.1 : ADDPIS is solvable if and only if for any given £ > 0,

27
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there exists -Y(£·) £ satisfying

||î 2 lA (£')Oi2 — r © i 2 -  ©2 1 -S’ + ©2i Q © 1 2  ~ ll'"2 2 ||oo < C , 

where ©i2  ̂021) i^i2 j ondS>2\ are as defined by (4.15) and (4.16).

(5.1)

P r o o f : Noting that Ci and D can be taken as identity matrices of suitable sizes, 
the proof of the proposition is an immediate consequence of the problem definition.

Instead of using this post-introduced data in Proposition 5.1 in the synthesis of 
ADDPIS, we can rather deal with system matrices as in DDPIS. This will be carried 
out by the following lemma.

LEM M A 5.1 : ADDPIS is solvable if and only if for any given e > 0, there 
exists X  £ such that

I|n2i-V (c)ni2 -  n 2 2 li < e (5.2)

P r o o f : [Only If] Let c > 0  be given and also let ADDPIS have a solution so that, 
by Proposition 5.1, there exists A’(£) £ R-(«)^^’’ satisfying (5.1). Set

X {e) := -Pr
Qr

A' ( 0  [ Qi] +
K  + M - M Q K  M Q L -L  

N - N Q K NQL

where all the above matrices are defined as in Chapter 3 over R(s)on· Note that, 
-Y(£) is il-stable proper. Moreover,

0 0 

0 il21-̂  ( )̂ 1̂2 "t" 02iQ012 ~ 021*5' — TQ12 ~ 1̂ 22
Il2 iA (c)IIi2 — IT22 — 

by (4.8), (4.10), and (4.11). (5.2) immediately follows from here.

[If] Let f  > 0 be given. Also let

e :=

021
—  0 1 2  

I

By (5 .2 ), there exists X {s) £ such that

I|n2 1 -V (f)ni2 -  n 2 2 ||oo < f  .
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Define

x (5 )  := -L r  Kr m
Ni
Ml

where the matrices Lr,Ii’r,Ni, and Mi satisfy (3.10) and (3.11). Using (4.17) and 
(4.18) we obtain

^21-̂  (£)Di2 — TQ \ 2  ~ + 0 2 li? 0 1 2  + bf̂ 22|

- 0 1 2
02 1  I (n2lA'(c)ITi2 -  П22)

< £ .

This completes the proof of Lemma 5.1.
The lemma below easily follows from Lemma 5.1 and the unimodularity of C\ and 
D.

L E M M A  5.2 : ADDPIS is solvable if and only if for any given s > 0, there 
exists X {e ) £ R,(^+m)x(T+p)

||Il2iA '(£)rii2 — I I 22II00 < £ · (5.3)

Before giving solvability conditions for ADDPIS, let us introduce the notation

T(oo) := lim T(s) ,5—»-OO

for any proper rational matrix T. Also, let be distinct and finite
zeros of the largest invariant factor of either JI21 or II12  on the nonnegative ju?-axis. 
The following theorem is the main result of this section.

TH E O R E M  5.1 : ADDPIS is solvable if and only if the following three 
conditions hold.

(C l) There exists a matrix A"o G satisfying

П2 1 (ос)Л'оП1 2 (ос-) = 1 1 2 2 (0 0 ) , (5.4)

(C2) For each u;,*, i = there exists a matrix A'u;, G
satisfying

n 2 i(^ ^ ’i ) -V u ;,n i2 ( M )  =  П 2 2 ( М )  , (5 .5 )
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(C3) There exists X  G such that

II21A IT12 =  IT22 · (0.6)

P ro o f : [Only If] Let ADDPIS be solvable and let £ > 0 be given. By ( 5 ..3 ), there 
exists a ii-stable proper matrix X {e) such that

|ln2 l-Y(£)ni2 -  B2 2 IU < e ,

which yields

||n2 i(itn).Y(£)IIi2 (iw ) -  Il2 2 (iin)||2 < £ ,Vu> G R  .

Therefore, in particular

||IT2i (oo)A'(£:,oc)IIi2(co) -  IT22(oo)||2 < e , 

where ,Y(£,oo) := lima_oo Xi^)·

Let Moo N00 be real nonsingular matrices with unity || · H2 norms so that

A^oon2 i(oo) =
n 2i(oo)

0
, n i 2 (oo)iVoo = [ il i2 (oo) 0 ] , (5.7)

with 1) 2 1 (0 0 ) of full row rank and 1) 1 2 (0 0 ) of full column rank. Set

-/lfoon2 2 (oo)iVoo =
Ili(oo) 112(00) 

1)3(00) 1)4(00)
(5.8)

Using (5.7) and (5.8), one can show that

1)1(00) -  n2i(oo)Ar(£·, 00)1)12(00) 1)2(00)

1)3(00) 1)4(00)
< e

Since the above statement is valid for all £ > 0 and 1) 2 ( 0 0 ), 1 1 3 (0 0 ), and lI.i(oc) are 
independent of £, it is clear that

n,(oo) = 0 I = 2,3,4. (5.9)

On referring to the solvability condition (i) of Theorem 4.2, (5.8) directly implies 
(C l). Note that, the solvability condition (ii) of Theorem 4.2 is automatically 
satisfied since R  is a field rather than a principal ideal domain. The necessity of 
(C 2 ) can be shown similarly, by following the same steps.
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In order to show (C3), let M  and N be unimodular matrices over R (s)£,q with 
unity II · Iloo norms such that

B
0 , ITi2 Â  “  [ ^   ̂ ] ’M B 21 =

with B of full row rank and C of full column rank. Write

M n 2 2 A' :=
Ai A2
A3  A4

(5.10)

(5.11)

partitioned so that A\ has as many rows as B and has as many columns as C. Using 
(5.10) and (5.11), it is clear that

Ai -  BX{£)C A2 
A3 A4

< £ .

Since this is valid for all £ > 0 and 2 1 2 ,^ 3 , and A4 are independent of £,

^, = 0; 1 = 2,3,4.

Further, consider the inner-outer factorization of B so that we can write

B = BiBo, Bi inner, Bo outer .

Similarly, inner-outer factorization of C  yields

C =  CoCi, C'i inner, C ' outer .

Using (5.12), (5.13), and (5.14), we have

sup \\Ti{jw) -  T2(iti;)||2 < £ ,

(5.12)

(5.13)

(5.14)

(5.15)

(5.16)
where

Ti := B ~A iC r  , T2 := BoX{£)Co .

^̂ ’'e will now show that T\ may not have any C 4. pole. In order to show this, let the 
least common multiple of all the denominators of Ti have C+ zeros (Ti ,(T2 , . ..  ,(T;v 
with multiplicities nii,m 2 , ■ ■ ■ respectively. Define

n £ i ( «  -  o .r ·S (s ) := (5.17)

Noting that T2 is ii-stable rational, ^(^)[T'i(5) — 7 2 (5 )] is analytic in the closed right 
half plane. Moreover, for any i G {1 ,2 ,.. there holds

\s=ai  ̂ 0 ,
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g{s)T2 is) 0 .

Thus, 5 (i)[T’i(s) -  T2 (s)] |s=CT, is nonzero and independent of e. By the maximum 
modulus principle it follows that

\\Tl{jw) -  T2(jw)\\2 = sup ||</(ju>)[7l(iw') -  ? 2(iii'’)ll2
u’6 R u'€R

> ||5(s)Ti (s)||2 1.= ., .

This contradicts (5.15), therefore Ti is free of poles which implies that T\ is 
o;-stable rational. Recalling the left unimodularity of outer matrices over H{s)ouj we 
have

B ,B l = I ,C lC o  = I ,  (5.18)

where and are w-stable matrices. On letting X  := B^TiC^ which is tj-stable 
rational and using (5.12), n 2 iA'IIi2 = II22 holds. This implies (C3) and thus the 
necessity part of Theorem 5.1 is established.

[If] Before giving a synthesis procedure for the solution of ADDPIS, we need the 
following lemma.

L E M M A  5.3 : Let A E R^_l^(s),B E R^n^(s), and C E R"n’ (s). Also let 
V '=  IMIloo· U there exists X  E R[,^^(s) such that ||A — BXC\\oo < then there 
exists X ' E R^^®(s) with deg(A”') = deg(A') — 1 such that

\\A -  BA'ClIoo < 2e .

P ro o f : Since A is strictly proper, there exists a positive real number R such
that

sup a[A(jw)] < e 
\w\>R

Now, let A be a real number satisfying 0 < A < and define

f {s )  := 1
1 “f" As

Note that, ||/||co = 1· Setting X ' := JX  which is o;-stable with dcg(A'') = deg(A') — 
1, it is clear that

A -  B X 'C  = f(A  -  B X C ) + (1 -  J)A

and

||A -  BA’'C|U < 11-4 -  BXCWoo + ||(1 -  /)-4|U · (5-19)
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Since (1 — f )A  is an ir-stable strictly proper matrix, its Tic^-noim exists and is 
determined as follows:

11(1 -  /U lloo = sup |1 -  f(ju')\a[A(jw)],
u'GR

= max ( SUP|„,|<fl , SUP|̂ „|>;j \/A0+1  ̂ ) ’
= max (-7?, 1 -c) ,

n
= e .

Consequently, using (5.19), ||A — 5A''C||oo < 2f . □

Now, given £ > 0, the first objective is to construct a w-stable proper rational 
matrix X {e)  such that

l|n2 iX (£ )n i2 - n 2 2 |loo<ei = £ / 2 . (5.20)

Suppose that (C l) and (C3) hold. Let r := deg(A’’). If r < 0, then A" is cj-stable 
proper, set X (f )  := X  and we are done. Therefore, assume r > 0. By (C l), the 
matrix W  defined by

W  := II22 ~ Il2 iA^oni2 (5.21)

is fl-stable and strictly proper. Let t] := ||H'"||oo· If < £ 1 5  then set X {s )  := X q 
satisfying (5.20). Therefore, assume 7? > £ 1 and define X  := A' — A'o , £ := 2“ ^£i. It 
is then clear that Iliy -  Il2 iA’ IIi2 ||oo = 0 < £. Then, applying Lemma 5.3 r times, 
we show the existence of A''(£) € such that

||IT -  n2lA"(£)ni2||oo = ||n22 ~ n2l(A'o + X'(£))ni2||oo < 2̂ £ = £i .

By defining X {e) :=  A'o + X(^)f which is clearly proper and uj-stable, (5.20) is 
satisfied. Now, given that (5.20) holds, our aim is to construct a il-stable proper 
rational matrix A'(£·) such that

||Il2i A (£)ITi2 — II2 2 IIC0  < £ · (5.22)

Since X {e)  defined above may have ju'-axis poles, let us define the polynomial n as 
the least common multiple of all the denominators of X(£) and factorize it as

7? := 77,„,77J W ' * 0  7 (5.23)

where nj^ is monic and has zeros on the ju ’-axis and has zeros on the open left or 
right half plane. Without loss of generality, we can assume that is in the form

llju, = (5̂  + 7i’^)'‘ '(s^ + · · · (£  ̂+ U’A /)""  » (5.24)



CHAPTER 5. ALMOST DISTURBANCE DECOUPLING PROBLEM 34

because, if-Y(s) has a pole different from any zero of the largest invariant factor of 
IT21 or rii2 , then we can still find acj-stable -V'(£:) satisfying (5.20) with corresponding 
n'·  ̂ in the form (5.24). Also, choose a monic polynomial ns whose zeros are in C_ 
and wdiich converge to those of as i   ̂ 0. Finally, let

n,·
fs-.= n̂s (5.25)

We now need the following lemma in the construction of A’'(£) satisfying (5.22).

LE M M A  5.4 : Given a real number Wq > 0 and a complex number p := 
Rê ^̂  6 6  [0,27t), there exists an il-stable proper rational function q{s) such that

q{jwo) = p ■

P roo f : The proof is by construction. Choose q as follows:

(5.26)

q{s) := <

' R if^  = 0
7? S — (y ^ 2  _  1 - c o s ^  2  ^ -  i + c o s e ^ o if 0 <  ̂ < 7T
- R if  ̂= 7T

n  5 — Of rt.2 —  l + c o s g ^ . 2  ’ “  “  l - c o s e " ^ 0 if ;r <  ̂ < 2 ;r

It is immediate to see that 9 (5 ) is ii-stable proper rational and satisfies (5.26). In 
case = 0 and p is real, simply choose q(s) := p. The matrix generalization of this 
result is that, given a real number u;o > 0 and a matrix J? G there exists a
ii-stable proper rational matrix Q such that Q{jwo) = R·

Using Lemma 5 .4 , it is easy to show that there exist ii-stable proper rational 
matrices (?,·, i = 1 ,2 ,.. . ,  M  such that

Now, define

Q' :=

Wi + . (5.27)

w M 2 I _ 2

E « · ! !  2 2—  wi — wftz=l J = 1 3 t
(5.28)

and note that is ii-stable proper rational and satisfies 

Q'Uw.) = , Q 'i-jw i) = A ':.· M (5.29)

where A'*,· denotes the complex conjugate of A'̂ ,,· without transposition. Now, we 
are ready to define A '(f) explicitly so that (5.22) holds. Set

X { e , 6 ) - f s X { e )  +  { l - f s ) Q ' , (5.30)
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which is clearly ii-stable and proper. Observe that

IT22 — n 2 l-Y(£:,<5)IIi2 = fs 0 ^ 2 2  — II21 A"(£“)n i2 ) + ( 1  — / 5 ) (n 22 “  ^ 2 lQ '^ 1 2 ) · (5.31)

Also note that there exist Ki > 0, A'2 > 0, and ¿ 1  > 0 such that

| 1  -  fs(jw)\ < , ||n2 2 (jiy) -  n 2 iO'u;)Q'(;u’)II]2 (iu-’)ll2 < ,

\fw G R  and 0 <  ̂ < (?i. Moreover, for each zero u'k of nju,, there exists an open 
neighborhood ilk around Wk on the jin-axis such that within this neighborhood

||n2 2 (jii') -  ~n2l{jw )Q '(jw )Ili2 (jw )\\2 < Si/Ki .

This is clear by (C3) and (5.29). Now, let il be the union of all the sets ilk and 
= R  — ii. Since is compact and does not contain any zeros of / 5 , | 1  — f6(ĵ )̂\ 

converges to zero uniformly in Hence, there exists <̂ 2 > 0 such that

|1 -  ^ , Vit; G and 0 < S < 62 ·

On letting So := m in (ii,i2 ) sind choosing A'(£‘) := A"(£’,^o) in the definition (5.30), 
we obtain

||H22 — H2 lA’'(£:)ni2 l|oo ^  ̂ ^

by employing (5.20) and (5.31). This completes the proof of the sufficiency part of 
Theorem 5.1. □



Chapter 6

NONINTERACTING 
CONTROL PROBLEM

We now consider what might be considered as the core problem of noninteracting 
control ; the simplest case of a problem which can be posed for iV-channel plants. 
In this part, we will, particularly be dealing with three channel systems which have 
two exogenous inputs and two exogenous outputs in addition to a control input and 
a control output. If a system of this kind is controlled by a dynamic feedback 
compensator which processes the measurement output, we obtain a closed loop 
system with two exogenous inputs and two exogenous outputs. The Noninteracting 
Control Problem with Internal Stability (NICPIS) can be described as follows : Find 
an internally siahilizing compensator such that the off-diagonal blocks of the transfer 
matrix of the closed loop system from the exogenous inputs to the exogenous outputs 
are identically equal to zero.

There are many different versions of noninteracting control problems in the 
literature. It is more or less agreed that, such problems are among the more difficult 
algebraic control problems in the sense that the solvability conditions are rarely 
obtained in compact form and even when they are obtained, their implications on 
the open loop plant structure are not usually clear. However, in the three channel 
case considered here, the solvability conditions we obtain are conceptually simple 
yielding intuitive system theoretical interpretations.

36
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yi Ui ’ 1̂1 Z\ 2 Z\ 3

J/2 = z . U2 = Z21 Z22 Z23 U2

V3 W3 Z3 \ Z32 Z33 U3

In this chapter exact problem definition of NICPIS will be stated and the 
solvability of NICPIS will be reduced to the simultaneous solvability of a pair of 
linear matrix equations of the type Ai = BiXCi , A 2 = B2 X C 2 over S.

The basic system model for our three channel plant is the following input-output 
model in terms of its transfer matrix Zp :

(6.1)

where Zii G G G G PP^^i',Z22 G PP^>"«,Z23 G
pp2 X9 3^^gj £ pp3^9i  ̂Z32 G PP3 ><i2 and Z33 G PP3 ><9 3_ \\Tq 3 ) 5 0  assume Zn to be 
strictly proper to avoid complications concerning the well-definedness of the feedback 
loop when a feedback is applied around the first channel. The output vector yi is 
called the measured output and j/2 and are called the exogenous outputs. The 
input vector Ui is called the control input and « 2  and U3  are called the exogenous 
inputs.

Let Zc G and consider the feedback law

ui = -Z cyi

resulting in the closed loop plant

Z22 — Z2 lYcZi2 
Z3 2  — Z3iYcZ\2

(6 .2 )

V2 ¿22 ¿23 U2

. . ¿31 ¿33 U3 _
Z23 -  Z2ilcZ]3 
Z3 3  — Z3iYcZ\3

U2

U3

where the matrix

Ye := { J + Z c Z n r Z c  =  Z c ( /+  Z „Z c )

(6.3)

(6.4)

is in because Zn is strictly proper. We now give the following definition for
NICPIS.

NICPIS is solvable if and only if there exists an internally stabilizing compensator 
Zc G such that

(») Z 23 = 0 , (6.5)

(ii) Z32  = 0 . (6 .6 )
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Let the plant transfer matrix be represented in matrix fractions over S as

’ Pi ' W,2 W,3 '
Zp — P2 Qn R\ i ?2 R3 ] “1" iP2 1 1 P22 H'23

Pz 7̂ 31 W32 H'33
with Qii £ We assume that the representation is bicoprime, i.e.,

{[PiT pT Q-i-i) is right coprime,

{ Q \ i i [ R i  P 2  iis]) is left coprime.

If the transfer matrix Zc of the compensator is written in matrix fractions over S as 
Zc = PcQc^Rc, the closed loop transfer matrix Z  from the exogenous inputs to the 
exogenous outputs is written in matrix fractions as

Z  =
P2 - W 2xPc 
Pz -W^iPc

Qii R\Pc
— RcPl Qc + Rc^^\lPc

-1 r
R2 Rz

RcW ^2 RcŴ Z
+ W22 1̂ 23 

Ĥ 32 Ĥ 33
(6.7)

The off-diagonal blocks Z 2 3 and Z32 concerning the noninteracting control problem 
can be written by using (6.7) as

Rz$ -1^23 = [ P2 - W 21 Pc 

Z32 =  [ Pz -W^iPc ]

RcW,3

R2

RcWr2

+ 23

+ W32

(6.8)

(6.9)

where

$ := (6.10)Q n  R \P c

—R cP \ Qc +  R c^^\iP c  

Since the internal stability of the pair (Z n ,Z c) is the fundamental requirement in 
NICPIS, we should rather deal with internally stabilizing compensators for Z jj, 
not with arbitrary compensators. Note that, the set of all internally slabilizing 
compensators is given by either one of the sets Zcr(X) or Z d {y )  in (.3.26) and (3.27), 
respectively. Using the characterization of all internally stabilizing compensators as

Zcr(X) = {XNi +  QrX)(M, + PMNi -  -  PP^X + lU (?rA ')-’ ,

the closed loop transfer matrices Z23 and Z32  can be written in terms of the free 
parameter A' as follows :

Z2z = [ P 2 - lP 2 i(V.V; + 0 rV ) ]
' Qn Ri(NN, + QrX)

-1
’ Rz '

-Pi Ml + PMNi -  PPrX ir ,3
+ W2 3 ,

(6.11)
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¿ 3 2 = [ Р з  -H^3 l(.V .V i+i?rX ) ]
’ i?ii RiiNNi^QrX)

-1
’ P 2 '

-Pi MiP P M N i-  PPrX 1 Г12  _
+ И̂ 32.

(6 .12)

Note by (3.9) and (3.10) that

Qn — DQC\, R\ =  DR,Pi — PC\.

By the fact that the representation (6.7) is bicoprime, it follows that 

is right coprime and (J3, [i?2 Рз]) is 1®̂  coprime. Let us write

P2
Рз

,Ci

P2
Рз

for left coprime I Ci,

T2
Тг

T2
Тз

, D - ^ [ r 2 Рз ] = [ 5 2  5з ] D~" , (6.13)

and right coprime ( [ 5 2  5з],1)) over S. Employing

(3.14), (3.15), and (5.13) , it is possible to come up with the alternative expression 
below for ¿ 2 3  :

¿23 = ^(72013 + 02i 5*3 ©21^013 + C\W2sD — fl2lX ^ l 3 )D - 1

where

and

013 := XSs -  LWi3D , 02i := T2M -  CyW2iN

(6.14)

(6.15)

(6.16)f i i 3 :=  R 1S 3 +  Q 1W 1 3 D  , ii2i ·=  Т 2 РГ +  C \ W 2 iQ r ·  

Similarly, one can show that

¿32 — С'{‘ ^ (7 з012 +  031*5*2 — 031 012 +  i? lfi^ 3 2 ^  ~  ^ 3 1 ^  ^ 1̂ 2 ) ^  

where

and

012 := X S 2 -  LW,2 D , 031 := T3 M -  C.WsiN 

fii2 := RiS2 + QiWuD  , ^31 := Г3 Р. + CWV^iQr·

(6.18)

(G.19)

We can now state a first set of solvability conditions for NICPIS. These are in terms 
of the existence of a common solution to a pair of linear matrix equations of the type 
Ai = B{XCi , 2 = 1,2 over S.
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L E M M A  6 . 1  : NICPIS is solvable if and only if there exists X  G such
that the following two equalities hold:

fii3 = 7̂ 2013 + ©21*5'3 — 02i Q013 + C\W2^D̂  

fi31 A fil2 = 73012 + 031 ‘̂ ’2 “  031Q012 + Cl 11̂ 32̂ . ( 6 .2 0 )

P ro o f : If Zc is a solution to NICPIS, then in particular, the pair (Z n ,Z c) is 
internally stable. Thus, by Theorem 3.1, there exists A"' over S such that Z = Zcr{X)· 
Now, Z 2 3 (A") and Z3 2 (A') are given as in (6.14) and (6.17) and by definition of 
NICPIS, A" satisfies (6 .2 0 ). Conversely, given any X  satisfying (6 .2 0 ), let Zc := 
Zcr{X) and note that Zc internally stabilizes the system. On the other hand, Z23 = 0 

and Z32 = 0 immediately follows from (6.14) and (6.17). Therefore, the choice of 
Zc = Zcr(A') solves NICPIS.□

In order to eliminate the subsidiary matrices employed in (6.20), we introduce 
system matrices associated with particular transfer matrices, similar to what we have 
done while solving DDPIS. Thus, consider the system matrices

H2 1 — Q R ' Q S3 ' ' Q S3 '
- T 2 ClW^21 _

) Ili3 —
- P  Wi3 D

>1123 =
- T 2 C^W23D

(6.21)
and

n 31
Q R ' Q S2 ' ' Q S2 '

-T3 C1W31 _
»Hi2 =

- P  W ni)
)H32 =

-T3 C\W23D
(6 .22 )

associated with the suitable fractional representations of the transfer matrices 
C 1 Z 2 1 , Z i3 £), C1 Z2 3 D and C 1 Z3 1 , Z 1 2 J5 , Cl Z3 2 D, respectively. We also have

K -L

Ri Qi
n 13

/ 013
0 fii3

and

M -P . / 0
II21 =

N Qr -021 O2I

■ K -L ’ / 012
H12 = 1

- Rt 0 fll2

' M -Pr
- -

I 0
■

=
N Qr - 0 3 1 i^31

(6.23)

(6.24)

(6.25)

(6.26)
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It follows that the nontrivial invariant factors of II1 3 , II2 1 , II1 2 , and II3 1 arc the 
same as those of ili3 , fi2 ii i^i2 > and fl3 i respectively.

We are now ready to prove the main result of this section.

TH EO REM  6 . 1  : NICPIS is solvable if and only if there exists X  6  

S(''+9i)><(’'+Pi) such that

Il2 iA"ni3  = IT23 1 n3iXIIi2 = II3 2 . (6.27)

P roo f : Using (6.23), (6.24),(6.25), and (6.26), it is now a matter of 
straightforward calculation, to show that if X  satisfies (6.20), then the matrix

.Y := -P r
Qr

+
K -\ -M -M Q K  M Q L -L  

N - NQK XQL
A '[ i7 , Qi

satisfies (6.27), and conversely, if X  satisfies (6.27), then

X  := [ -L r  Kr ] A'

satisfies (6.20). O

(6.28)

Ni
Ml

(6.29)



Chapter 7

ALMOST
NONINTERACTING 
CONTROL PROBLEM

We now consider the almost version of NICPIS. This problem is called ANICPIS, 
Almost Noninteracting Control with Internal Stability. For the synthesis of this 
problem, we will concentrate on the three-channel plant (6 .1 ) and its corresponding 
matrix fractional representation over R(5)oO? where ft := C _. The stability region 
u := C_ UCjuj employed in the synthesis of ADDPIS, will also be used in determining 
solvability conditions for ANICPIS.

The basic assumption of Chapter 5 that C\ = I  and D = 1 \s still valid 
throughout this chapter. The details of some of the proofs in this section will be 
omitted since their contents are more or less the same as in the previous sections.

define ANICPIS as follows: Determine the conditions under which for every 
real number £ > 0 , there exists a compensator Zc{s) which internally i}-stabilizcs 
the plant and for which ||Z2 3 (£‘)||co ^  ̂  ̂ ||¿3 2 (<̂ )||co ^ u'here ¿ 2 3  and Z32 are as 
defined in (6 .8 ) and (6.9), rcsjxctively. Further give a synthesis procedure for such a 
compensator Zc{s) for a given £* > 0 , when the problem is solvable.

We now consider (6.14) and (6.17) involving the expressions of ¿ 2 3  and ¿ 3 2  in 
terms of the free parameter X . These expressions constitute the set of all transfer
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matrices obtained when an internally stabilizing compensator is employed. We now 
have the following proposition which we state without proof.

PROPOSITION  7.1 : ANICPIS is solvable if and only if for any given £ > 0, 
there exists X {e) £ K{s)l\^^^ such that the following hold,

( )̂i l̂3 — 3 ^ 2 01 3  — 0 2 i5 ’3 + 0 2 1 ^ 0 1 3  ~ ff̂ 2 3||co ^  ̂ , (”·!)

I|i^31-^ (£^)f^l2 — 73© 12  ·“  ©31*5’2 +  0 3 1 ^ 0 1 2  ^P32||oo ^  ^ 9 (^ -2 )

where all the matrices above are defined in (6.13)-(6.19) over K (s)oQ·

The proof of the proposition is omitted since it is just the same as the proof 
of Lemma 6 .1 . We make use of the manipulations in the proofs of Lemma 5.1 and 
Theorem 6.1 so that the following proposition follows.

PROPOSITION  7.2 : ANICPIS is solvable if and only if for any given £ > 0, 
there exists X {e) ouer R ( 5 )oO such that both of the following hold.

||n2lA (£)IIi3 -  II23II00 <  ̂> ||n3iA (£)IIi2 — IT32II00 ^  ̂ · (7.3)

where n2i,IIi3,Il23,n3i,IIi2, and IT32 are the system matrices associated with the 
transfer matrices 2̂1?-̂ 13> 2’23, Z31, Z12, and Z32, respectively.

Before giving our main result on ANICPIS, we introduce some preliminary 
information which we will require in giving solvability conditions for this problem.

Let 5*1 := ju 2̂ ? · · · be the set of all distinct and finite zeros of the
largest invariant factor of either II21 or II13, on the nonnegative jiu-axis. Also, let 
2̂ := {jV i ,j<7 2 , . . .  ,i<Tyn2} be the set of all such zeros of either IT31 or IIi2 on the 

same interval. We define 5 := 5i fl S2 and we assume that 5 = {juq, jiU2 i · · · 
where m < min(7n l , 7?r2 ). We are now ready to state the main result of this section.

THEOREM  7 . 1  : ANICPIS is solvable if and only if the following three 
conditions hold.

(C l) There exists a matrix A"o G R(^+^0x(^+pi) satisfying

Il2 i(oc)Aoni3 (oo) = IT23(^) , n 3 i(oc)A’’oIIi2 (cx:') = 1 1 3 2 (0 0 ), (7.4)

where [*](oo) := lim -̂ ôoi*]·
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(C 2 ) For each W{ i = there exists a matrix X^. G such
that

Il2i(iuj,*)-V^i;.ni3(M·) = Il23(M ) , IT3 1  IIi2 (ii/;,·) = IT320‘uv), (7.5)

(C3) There exists X  G that

n2iAIIi3 = IT23 ? n3iAIIi2 = II32 . (7-6)

P ro o f : [Only If] Let ANICPIS be solvable and let £ > 0 be given so that there 
exists a ii-stable rational matrix such that ( 7 .3 ) holds.

Let A ®  B denote the right Kronecker product of the matrices A and 5 , and A 
denote the uec-function of the matrix A. Note that if A G R('5)^^ ” with Halloo < e, 
then 00 < mns. It then follows that

IKIlfa 0  Il2l)X(£) -  ii23||oo < £{r + P2){r + qs)

11( 11^ 2  0ll3ijf(i:)-n32||oo < £(r+P3)(»· + 9 2 ) · 

Using the triangle inequality in matrix norms, it is clear that

< eL ,^13 ® II21
A (0 - H23

n ^2 ® Lisi B32

(7.7)

(7.8)

(7.9)

where L = 2[(r + P2 )(r + 9 3 ) + (r + ps)(r + 9 2 )]. Since this is true for all £ > 0, we 
can apply our result on ADDPIS in Theorem 5.1 to have the existence of a w-stable 
rational matrix A'l such that

(7.10)

It is clear that (7.10) implies (C3) on choosing X  G such that X  =

X i. The necessity of (C l) and (C2 ) can be shown by following the the same steps. 
It is in fact true that, a condition of the type (C l) and (C2 ) is to be satisfied for all 
points on the ju ’-axis, but in order to make the solvability conditions checkable, we 
reduce them to a finite number of points as in (C l) and (C 2 ).

[If] Before giving a synthesis procedure for the construction of a solution for 
ANICPIS, we first need the following lemma.

nls ® ^ 2 1 Ai = H23
n ^2 ® ^31 n32
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LE M M A  7.1 : Let Ai 6  R {sYJ^^\A2 G G G
G and C2 G R (5 ) :^ « . Also let iji := IM.iU i = 1,2. If there

exists X  G R(s)^^^ such that \\Ai -  BiXC\\\ < e and ||A2 -  B2X C 2 W00 < f, then 
there exists w-stable rational X ' with deg(A'') = deg(A") — 1 such that

IIAi -  .SiA'Cilloo < 2e , ||A2 -  B2X'C2\U < 2̂ (7.11)

P ro o f : Since A\ and A2 are strictly proper matrices, there exist positive real 
numbers pi and p2 such that

sup a[Ai{jw)\ < s , sup a[A2 (jw)] < e .
|u/|>i>i K'I>P2

On letting p := max(/9i ,p 2 ) and 77 := max(77i,772), the choice of X ' expressed in 
terms of X,T],p, and e in Lemma 5.3 will satisfy (7.11). Since this verification is 
quite similar to that of Lemma 5.3, it will be omitted.

Now let £ > 0 be given and suppose that (C l), (C2 ), and (C3) hold. Our primary 
aim is to construct a a;-stable matrix A (e) such that

||n2iA(£)ni3 -  n23|U < £ 1  , ||n3iA(e)n,2 -  n32||oo < £ 1  . (7.12)

where £ 1  := e/2 . Let r := deg(A), where X  satisfies (C3). If r < 0 , then A"" is 
cu-stable proper, set X(£) := X  which will clearly yield (7.12). In case r > 0 , the 
matrices defined by

W\ := II23 — n 2 iA'oIIi3  , W2 := II32 — n3iA'oIIi2

are il-stable and strictly proper. Let 77,· := ||Ŵ,||oo * = 1,2. If 77 := max(77i, 772) < £1 , 
then set A(£) := A'o satisfying ( 7 .1 2 ). Therefore assume 77 > fj and define Y  := 
X  — Ao, £ := 2 “ ’'£i . It follows that

||ITi -  n2iyni3||oo = 1111^2 -  n3iyni2||co = 0  < £.

We can apply Lemma 8 . 1  r times to show the existence of a w-stable proper rational 
matrix A'(£) such that (7.12) holds. Now, given that (7.12) holds, our objective is 
to construct a fi-stable proper rational matrix A'’(£) satisfying

||Il2iA(£)IIi3 — II2 3 II00 £  £ , IIHaiA (£)IIi2 — II3 2 II00 ^ £ (7.13)

Considering the construction of out of A", we note that the jii;-axis poles of 
A"(£*) are precisely those of A". We can also assume without loss of generality that
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the jw-SiXis poles of X  are contained in the set S which has been defined prior to 
Theorem 7.1. Otherwise, we can still find an cj-stable rational matrix X ' satisfying 
(7.6) and having all its jw-Sixls poles in the set 5. Therefore, let the polynomial p 
denote the least common multiple of all the denominators of A”(£:) and factorize p as

P =  PjwPo

where pĵ j is monic and has all of its zeros in the set S and po has zeros on the open 
left or the open right half plane. Also choose a monic polynomial p$ whose zeros are 
in C_ and which converge to those of as <5 0.

Using Lemma 5 .4 , it is easy to show that there exist ii-stable proper rational 
matrices M», i = 1 , 2 , . . . ,  m such that

Mi(jwi) = Xy,i(jwi + .

Now, define M ' in a similar way to the definition of Q' in (5.28) as follows:

1 ^ ^ o2 I A..2
M ' := -------- v m .· n  V A

(7.14)

(7.15)

and note that M ' is ii-stable proper rational and satisfies

M \jwi) = Xrvi , M \ -jw i)  = A"*,· , i = 1 , . . . ,  m 

where X^· denotes the complex conjugate of X ;̂{ without transposition. 

We now claim that the choice of

(7.16)

X ( e J )  := ^ X ( e )  + ( l - i ^ ^ ) M '
P6 PS

will satisfy (7.13), provided 6 is chosen small enough so that

( 1  -  ^)M 'ijw )\\ < € i ,  V w e R .
PS II2

The verification part of this proof will be omitted, since the technical details are the 
same as those in the sufficiency part of Theorem 5.1.D

Pjv



Chapter 8

A COMMON SOLUTION TO 
TWO MATRIX EQUATIONS 
OVER A PID

In Chapters 6-7, we have encountered the solvability of a pair of linear matrix 
equations

Ai = B iX C i , A 2 = B2 X C 2 , (8 .1 )

over S for the NICPIS case and over the ring of a;-stable rational functions for the 
ANICPIS case where the stability set u  = C_ U Cj^, Actually, one can use the 
Kronecker products for reducing the equations (8 .1 ) into one linear matrix equation 
of the form Ax = b whose solvability is well-known in the literature. However, 
this approach alters the form of the given matrices in (8 .1 ) causing difficulties in 
giving system theoretical interpretations for the original control problem. Therefore, 
we give an alternative solvability condition in order to avoid this difficulty. Note 
that the main rings of interest of Chapters 6-7 are all principal ideal domains. We 
therefore focus our attention to the solvability of (8 .1 ) over an arbitrary pid which 
we denote by TZ,

Let Ai e A 2 e  E Tl^^^^,B2 e E and
C2 G Also let Mi E G E and N2 G be

47
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unimodular matrices such that

= Bi
0

, MoBo = B2
0

,C iA ^ = [ c 'i  o ] , C 2 -V2 = [ C 2 o ] ,  (8 .2 )

where Bi G J? 2  G are of full row rank and Ci G , € 2  6  are
of full column rank. Now set

A\ MiA\N\ = ' i l l il2 , Ä2 *= M2A2N2 — i21 i22
i l 3 i l 4 i 23 ^ 2 4

(8.3)

partitioned so that A\\ G and 2I21 € Further, let L\,L2 be greatest
left divisors of B\,B2 and R 1 1 R2 be greatest right divisors of C'i,C'2 ) respectively, 
such that

B, = Ldh  , B2 = L2 U2 , Cl = ViRi , C2 = V2 R2 (8.4)

for some left unimodular Ui,U2 and right unimodular Vi,V2 - Define

1 ^ 1  := . V̂2 := L^^A2 i R2  ̂ ■

Now, we are ready to state the main result of this chapter.

TH E O R E M  8 . 1  : The linear matrix equations

Ai = BiXCi , j42 = B2 X C 2

have a common solution X  over TZ if and only if the following conditions hold.

(C l) A {2 = 0  , Aiz = 0  , .4,4 = 0  ; t = 1 , 2 .

(C2) Wi G TZ>='̂ ‘ ‘ ; t = 1,2.

(C3) There exist Xi G TẐ ‘̂\ X 2 € TẐ ‘̂^,Yi G andY2 G such that

(8.5)

Ui

Ü2
[ A'l A'2  ] +

’ I Fi 0
+ 1^1 I'i =

52 _ 0 -IF 2
(8.6)

P roof: [Only if] Suppose X  G is such that (8.1) holds. By Theorem 4.2, this 
immediately implies (C l) and (C2). It is easy to check with

A'l := A'Fi , A'2 := 0 , Ti := 0 , Y2 := -U 2 X
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equality (8 .6 ) also holds.

[If] Suppose (C l), (C 2 ), and (C3) hold. Employing Theorem 4.2 (C l) and (C2 ) 
immediately imply that there exist Zj and Z2 over 7Z such that

UiZiVi = Wi , U2 Z2 V2 = W2 .

Let M  G 7̂ ’’ ’̂’ and N  G be unimodular matrices such that

Vi V2 
0 0

’ Ui '
M  = ' Ui 0

. ^ 2  . . ^ 2 0
, ^  V2 ] =

where ill G n^^^\U2 G G Tl<^ '̂\V2 G

(8.7)

(8.8)

Ui

U2
is of full column rank

and J Vi V2 ] rank. It is clear that, U1 1 U2 are left unimodular and
V\,V2 are right unimodular. Now let

M-^ZiN-'^ =
Zii Z\2
Z \3 Z\\

, M -^Z 2 N~^ = Z21 Z22
Z23 Z24

partitioned so that Zn  G and Z 2 1 G TV·̂ .̂ By (8.7), they satisfy

UiZiiVi = Wi , U2 Z2 1 V2 = W2 .

Defining

[ X i X 2
’ A'l X 2 ' = ’ Yi Y3 '

. X4 Y2 _ Y2 Y4

(8.9)

(8 .10)

partitioned so that Xi G TZ*̂ ‘^,X 2 G n*^'^,Yi G and Y2 G (8 .6 ) and
(8 .1 0 ) yield the equality

(8.11)' Ui ' r - ~ 1 ' Yi ' . ’ W i 0
A'l X2 + Vi V2 \ =

-IE2. ^2 .
i  ̂ J

. ’̂ 2 . 0

Note that, if we can find a common solution A% G TV̂ '̂  to

iJiXS\ = TEi , U2Xsi^ = W2

by using (8.9) and (8.11), then the matrix M X , 0 

0 0
N will be a common solution

to the equations (8 .1 ). This is clear by (8 .2 ), (8.3), (8.4), (8.5), and (C l).
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Let G be a greatest common right divisor of Ui and U2 so that

Ui = 0 jG  , U2 — Q2 G , (8 .12)

for some right coprime ©i and 0 2  over TZ. Since, Ui and U2 are left unimodular, 
there exist ¿/f G and G such that

ÜıÜl = I , U2 Ü̂  = I

Setting 0 j := GÜ{ and 0 2  := СЩ will immediately yield

0 i 0 “i = / ,  0 2 0 “

(8.13)

(8.14)

It is clear by (8 .8 ) that ki + k2 > t- In case strict inequality holds, since 0 i 
and 02 are right coprime there exist matrices K i G TẐ ’̂̂ ^J<2 G G

£ -JZhicki+h-t^Q^ £ T^h+h-ixki g -Jih+k2 -txk2 g y ^ . ] j

the following identity holds

(8.15)’ Кг I<2 ' ■ 0 1  кг ' J O

0 1  0 2 0 2  î<2 0  /

Similarly, let F be a greatest common left divisor of Vi and V2 so that

Vi = F ^ i , 1>2 = , (8.16)

for some left coprime Ф1 and Ф2 over IZ* Since V\ and V2 are left unimodular, there 

exist l>i" G TZ'̂ ‘̂̂  and G such that

У /Ц  = /  , У2“1‘ 2̂ = I  .

Setting ф5 := V^F and ф“ := î 2“F , we obtain

Ф“Ф1 = / ,  Ф“2 Ф2 = / .

(8.17)

(8.18)

Note that by (8 .8 ), h + h > d- If strict inequality holds, then since ’I'l and 'i'2  

are left coprime there exist matrices L\ G G 6  ,L 2 G
^h+h-dxti g -j^lixii+h-d and $ 2  G such that the following identity

holds
.T, vr. r >fi T (\

(8.19)Ф1 Ф2 Tl Ф1 ' /  0

¿ 1  ¿ 2 L2 Ф2 0  I

The problem can be investigated in two cases as follows :
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Case 1: Ii + I2 > d , ki + k2 > t

For this case, we define the following matrices which we will soon make use of :

On premultiplying equality (8.11) by

A AiXi + X 2L2 1

Y  := Kxi\ + K 2 Y2 , 

X := A - i # i + X 2 ^ 2  ,

Y  := © ifi + 02F2 , 

Z :=  Z\\ — Z21 .

Ki K 2

(8.20)

(8.21 )

(8 .22)

(8.23)

(8.24)

postmultiplying it by

Xi
L2 ^ 2  

following equalities ;

©1 ©2

and using (8.20), (8.21), (8.22), (8.23), and (8.24) we obtain the

GX + YF  =  KiQiGZuF^iLi -  K2Q2GZ2iF^2L2

GX = KiQiGZnF^i^i -  7G©2GZ2iFi>2^2 , 

YF  = 0 i© iC ^ llF ’i'iX i — &2^2GZ21F 9 2 2̂ )

0 = ©i©iC72F'$'x’i'i = ©2 ©2 0 ^^F'f2 '^ 2  ·

We now show that the matrix

(8.25)

(8.26)

(8.27)

(8.28)

X  := M

extended so that A' G and where

A , 0

0 0
N

A , = Z n + { Z n F ^ i ^ i - X ) { L 2 - L y ¥ ,^ 2 )V^

+ U^{fi2 -  ©2 0 "i A i)(0 i© iG Z „  -  1 0

+{UlUi -  /)(A  -  ZnF^,Li){I-^i¥,)92V^ 
+ F«©2 (©"i © 1  -  I){Y  +  A'2 ©2 GZu ) ( / -  Fi F /) (8.29)

is a common solution to the equations (8.1). We first clmm that, A^ is a common 
solution to the following equations

(8.30)
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U^XsVi = IV2 . (8.31)

In order for (8.30) to be satisfied, the last four terms of X 3 , when premultiplied 
by Uj and postmultiplied by Fi, should vanish. By (8.12) and (8.1G), F1 -Y4F1 = 
©iG 'XiF’I’i. Note that

6 iG (ZuF^i'^i -  X ) = e i K 2 e 2 GZF'^i^i ,

= Iil0202GZF92^2  )
= 0 .

by (8.26), (8.15), and (8.28) respectively. Also

(0 i 0 i G Z „ - i ' ) / ’ 'i'i = 0 i 0 iG Z F ’i 2 i 2 ’i 'i ,
= 0 i 0 iG Z F 'i'i# iX i ,

=  0 .

by (8.27), (8.19), and (8.28) respectively.

Finally, Ui(UfUi -  / )  = 0 by (8.13) and (I  -  ViVj>)Vi = 0 by (8.17) implying 
that U\XsVi = FiZiiFi = W\ by (8.9). Therefore, X 3 defined as in (8.29) satisfies 
(8.30).

Now, consider (8.31). Note that, in order for (8.31) to be satisfied, by referring 
to (8 .9 ) and (8.24), the last four terms wdien premultiplied by U2 ŝ d̂ postmultiplied 
by V2 , should be equal to —U2 ZV2 · By (8.12) and (8.16), (¡2 X 3 ^ 2  — Q iG X ,F ^ 2 · 
Also note that

F2(Zi iF5'i '|-i -  X) { L 2 -  U¥■^^2 )V¡V2 =  02 (/v'2©2G'ZF’J'i 'I i )(T2 -  ¿ l ’i '“l'i 2̂ ) ,

= 0 2 ( -A '2 0 2 G ZF'i'iF i -  I<2 Q2G Z F ^ i '̂ \ 

+ /r202<?ZF 4 'iii’i*i’i'5)i'2

by (8 .1 2 ), (8.17), (8.26), and (8.19) respectively. Moreover

U2Ul{K2 -  020“iA'i)(0i0iG'Zn -  Y)V2 = {K2 ~ 020“iA 'i)(0 i0i6 'Z „ -  lOF’i'2 ,

= (A'2  -  020"iA 'i)(0i0,GZF4'2i2)i^2 ,

= e 2 { -K iQ iG Z F ^ 2 L2 -Q \Q \G ZF^ 2 L2

-\-Q\QiKiQiGZF'<il2 L2 ) ^ 2
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by (8.13), (8.16), (8.27), and (8.15). Further

U2İU{Uг -  I){X -  ZnF^iLi){I -  

+ U2Ule2{Q\Qi -  I){Y + A'202G'Z„)(7 -  ViVi“)l>2 

= 0 2 { ( 0 “i0 i  -  I)[G{X -  Z^.F^^Li) + {Y + A202G^ii)A](/ -  ' i i ’i “i)}^2 

= 02[(0 i01  -/)(A'202<?ZF’i'2A2)(/- ^ l ’i*l)]®2

by (8.13), (8.14), (8.17), (8.18), (8.25), (8.15), and (8.19) respectively. Finally, by 
employing (8.15),(8.19), and (8.28) several times, we obtain € 2 X 3 X2 = ¿̂ 2 ( ^ 1 1  ~ 
Z)V2 — U2 Z2 1 V2 which also equals W2 by (8.9). Therefore, (8.31) is also satisfied.

Considering the matrix equalities in (8 .8 ), it is clear that, A” is a common solution 
to the following matrix equations

UiXVi = IF, , U2XV 2 = IF2 . (8.32)

By using (8 .2 ), (8.3), (8.4), and (8.5) together with (C l), (8.32) immediately implies 
that X  is a common solution to the equations (8 .1 ). □

Case 2 : (i) li + I2 = d and/or (ii) ki + k2 = t

In this case, the same X  defined as in (8.29) works, provided that in the definition 
of X j, second term is dropped if (i) holds, third term is dropped if (ii) holds and 
both the second and the third terms are dropped if (i) and (ii) together hold. The 
verification in these cases are even simpler than Case 1  and the details of the proof 
are omitted.

Rem ark 8 . 1  : We note by Theorem 7.1 that the solvability conditions of 
ANICPIS also consist of the solvability of the equations (8 .1 ) over various fields. 
We can immediately show that (C l) and (C3) in Theorem 8.1 are necessary and 
sufficient for the solvability of (8 .1 ) over a field F, where the unknown matrices in 
(8 .6 ) are sought over F .

Rem ark 8 . 2  : Considering the result of Woude [14] for the case 72 is a field, it 
may be natural to expect (for pid case) that (C3) may be replaced by (C4) below.

(C4) There exist X \ ,X 2 ,Y\ andY2 overTZ such that

B2
X  ̂ X 2 +

52
[C ,  C2

Ai 0

0  - A 2
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Evidently, (C3) implies (C4), which together with (C l) and (C2 ) is necessary for 
the solvability of the problem. To show that (C l), (C2 ) and (C4) are not in general 
sufficient for the solvability of the problem, let TZ = R[^], the ring of polynomials 
in the indeterminate 2 . Let A\ := z  ̂ A 2 := z  ̂ Bi :=  ̂ 1 2: j , B2 : =

z 
0

[ 0 . 5  0  ] , Cl := and C2 := Note that, with

Z, =
1 0 
0 0

and Z2 —
2 0 
0 0

Ai = B\Z\C\ and ^42 = B2 Z2 C2 · Therefore, (C l) and (C2 ) are satisfied. Also, by

letting A”i :=
2 z
-1

, A 2 :=

is also satisfied. Now, suppose t

0
0

lat t

, U  := 0 0 and T2 := [ - 1  0 ] , ( C 4 )

lere exists a common solution A' G to
the matrix equations (8 .1 ), in the form

A  = A ll A i2

A'2 1  A'22

By simple manipulations, the unique A 21 is found to be -T which is, indeed not a 
polynomial in z. This contradicts A' G □

Rem ark 8 . 3  : One of the special cases that would eliminate the complexity of 
the common solution A  stated in (8.29) is the unimodularity of G and F  over Tv. In 
particular, take G = I  and F — I. We claim that the matrix

Â , 0

0 0
A  := M N

extended so that X  G and where

A , = Z „  -  Z^2L2 -  K2Q2Z^lLl^2^\ + A'i0iZ'i'2X2’i ' i ’i '“i 

is a common solution to the equations (8 .1 ). To show this

©lA’j ’f i  = W\ — O iZ 'i2 i'2 ^i F Q iFiQiZ'^2 L2 ^\ ■)

= Wi -  Qi K 2Q2 Z ^ 2 L2 ^\ ,

=

by (8 .9 ), (8.15), (8.17), (8.19), and (8.28). Similarly, it is not difficult to find out that 
0 2 -^4 '^ 2  = î 2̂ · It follows trivially using the above equalities that. A' is a common 
solution to the equations (8 .1 ).



Chapter 9

SPECIAL CASES AND 
EXTENSIONS

111 this chapter, we examine certain special cases of NICPIS and the general 
noninteracting control problem. In Chapters 6 -8 , we have considered the case N = 3 
and ŵe have been able to state solvability conditions on the problem data for NICPIS 
and for its almost version ANICPIS. As a special case, we can define NICPIS for 
a 2-channel plant. This problem is going to be our main concern in Section 9.1. 
Moreover, it is easy to see that most of the results of Chapter 6  can be generalized 
to the case A’ > 3. In Section 9 .2 , we briefly discuss this general problem.

9.1 Noninteracting Control for a Two Channel Plant

Let our system model for the 2 -channel plant be in terms of its transfer matrix Zp, 
defined in (4.1). Also, assume that (3.9)-(3.18) hold. Employing the feedback law 
(4.4), we can write a matrix fractional representation for the two-by-two closed-loop 
transfer matrix Zj in (4 .9 ), in terms of the parameters of the compensator. NICPIS 
is the problem of determining a compensator Zc such that the two off-diagonal block 
matrices are identically equal to zero with the additional requirement of internal 
stability. Using the same kind of manipulations as we made in synthesizing NICPIS 
in Chapter 6 , it is not difficult to prove the following proposition.
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PR O PO SITIO N  9.1 : NICPIS is solvable if and only if there exists X  E 
g(i'+9i)x(’'+pi) ^ych that

rii2 — niiATIi2 , ri2i — ri2iAIlii , (9.1)

where

’  Q s ’  Q R
illn  = ’  Q R

- P Wj2D
, n 2 1  =

- T A  11^21 - P l y i i
Hi2 =

and 5 ,r ,C l,  and D are defined through the factorizations (4.13). Note that, in 
Theorem 6.1, we have encountered similar type of equations. However, in (9.1), the 
two equations are coupled via Hu and the two sides of each equation are dependent 
on each other. This difference allows us to obtain simpler solvability conditions for 
this problem in the sense that separate solvability of the two equations will be enough 
to determine a common solution. This is established in the following theorem.

TH EO RE M  9.1 : NICPIS is solvable if and only if there exist matrices Yi,Y2 
over S such that

iii2 = n „y in i2  , (9.2)

flii = n2iy2nn . (9.3)

P ro o f : The necessity part of the proof is obvious.

[If] Assume that (9.2) and (9.3) hold. On premultiplying the equality (9.2) by 
n 2 il 2̂ > we have

fl2l(y2 -  yi)ni2 = 0 . (9.4)

At this stage, we need the following lemma.

LE M M A  9.1 : Let A 6 G If AYB = 0, then there
exist matrices Ak,Bk,Zi and Z2 over S such that

y  — AkZ\ + Z^Bk ,

where AAk = 0 and BkB = 0.

P ro o f : Let i/ be a unimodular matrix over S such that

U A =  ^
0

(9.5)
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where A is of full row rank. Furthermore, let L be a greatest left divisor of A such 
that A = LA, with A being left unimodular. Therefore, let 4̂̂  denote the right 
inverse of A such that

AA^ = I .

It is clear that, if AYB  ~ 0, then AYB =  0. It follows that, there exist matrices Zq 
and Bk satisfying

AY = ZoBk

with BkB =  0, which yields A{Y  — A^ZoBk) = 0. Therefore, there exist matrices Z\ 
and Ak such that

Y = AkZxY A'^ZoBk

with AAk = 0. On choosing Zj := A^Zq and noting that AAk = 0, (9.5) directly 
follows. □

Using (9.4) and Lemma 9.1, Y2 — Y\ can be expressed as

Y2 — 5'l = + Z2^l2k y

for some matrices fl2ik^^i2k̂  and Z2 where

n2in2lA; = 0 , iii2;tni2 = 0 .

Now, we define

(9.6)

X  := Y2 — 2̂\kZ\ — Vi + Z2 II1 2 A- (9.7)

so that (9.1) holds. □

9.2 The General Noninteracting Control Problem

In this section, we consider the general noninteracting control problem with 
internal stability for i\' -̂channel plants with N > 3. Let the bicoprinie fractional 
representation of the open-loop plant Zp over S be as follows:

y\ Ui

V2
=  Z p

U2

. . UN _
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and

■ Pi ■ 
P2

Q u [ R i R2 · • · Rn ] +

■ IFii 
IF21

IF12 
1̂ 22 ·

W,N ' 

·· W2N

Pn . Wni Wn2 · ■ ■ Wnn .

, (9.8)

where Pi € i =  ( ? „  G Ri 6 i = Wij G
SPiX9>, i , j  =  1 , . . . ,  N.  Also assume that (3.9)-(3.18) hold. Now, if the feedback law 
(4.4) is applied to the system, then we obtain a natural matrix fractional description 
of the closed-loop transfer matrix Zf in terms of P c Q c  and Rc as follows;

where

P2 -W2lPc
P3 -WsiPc

Pn -WmPc

$ - 1 R2 R3
RcWii RcŴ i

Rn

RcW in
+

$  = Q n  R \P c

-RcP\ QcP RcW\iPc

W21 TF22 ··· 1F27V
IF31 1F32 ··· IF37V

Wni Wn2 ··· Wnn
(9.9)

? the solvability
conditions under which there exists an internally stabilizing compensator = 
PcQc^Rc such that the off-diagonal blocks of Zj defined in (9.9) are identically equal 
to zero.

For this purpose, let us define

D-^

Also let us define

P2 T2

P3
= cr'

T3

Pn . _Tn _

1  = f  5 2 5 3  ·

n,i =

III, =

Q R

-T i CiWn

Q Sj
- P  W ijb

, ¿ = 2 ,3 , . . . ,A. 

, ;  = 2 ,3 , . . . ,A .
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and
Q Sj

- T i  c ^ W i i b

We are now ready to state the main result of this section.

n ,j —

TH E O R E M  9.2 : NICPIS is solvable if and only if there exists X  G 
S(r+9i)x(r+pi) satisfying

Ylij = n ,iA  fiij , i^j = 2 ,3 ,.. . ,  AT , i ^ j  . (9.10)

P roo f : We do not go into the details of the proof, but, instead we give the 
outline. Since internal stability is the fundamental constraint, first replace Pc by 
Pcr(A"), Qc by Qcr{X),  and Rc by Ip̂  where Zcr{X) = Pcr(A")Qcr(AT)"^ is the set 
of all internally stabilizing compensators and is defined via (3.26). Then, as an 
intermediate step, obtain — 37V + 2 equations similar to what we have obtained 
in (6.20). Here, the necessary manipulations would be exactly the same as we did 
in proving Lemma 6.1. The final step is to use the same transformations (6.28) and 
(6.29) to conclude that the solvability of (9.10) is equivalent to the solvability of 
NICPIS in the general iV-channel case. □

Another interesting problem is NICPISDP, Noninteracting Control Problem with 
Internal Stability and Diagonal Preservation [14]. In this problem, we not only 
require the diagonal blocks of the open-loop plant Zp to be preserved after closing 
the loop, but also we require that NICPIS is solvable. This matching problem can 
be stated in terms of a matrix equation of the type A = BXC,  We present this fact 
by the following proposition which we state without proof.

P R O P O S IT IO N  9.2
S(’’+9i)x(^+Pi) such that

NICPISDP is solvable if and only if there exists X  G

H21 II22 II23 · · ■ I1 2 N
Hai r - 1 ÍÍ32 H33 · · ·

Ha î

A 1̂ IIi2 IIi3 · ■· HiA' J =

Ha'3 · · · ^NN

(9.11)

The significance of this result is that, the solvability of NICPISDP is reduced to the 
solvability of an equation of the type A = B X C  ioi which we have given verifiable 
and easily interpretable solvability conditions in Theorem 4.2.



Chapter 10

CONCLUSIONS

The main contributions of this thesis are Theorems 5.1, 6.1, 7.1, and 8.1. Theorems 
5.1, 6.1, and 7.1 yield new results on the problems ADDPIS, NICPIS, and ANICPIS, 
respectively. The conditions are in terms of the solvability of linear matrix equations 
involving system matrices associated with certain natural subplants of the original 
plant. The conditions of Theorem 5.1 can be restated in the language of geometric 
(state-space) theory (see [25],[26]). This condition amounts to a “ zero-cancellation” 
condition in the frequency domain terminology and to an “invariant space inclusion” 
condition in geometric terminology.

Theorem 8.1 is crucial for obtaining a geometric counterpart to the conditions 
of Theorems 6.1 and 7.1 which are essentially the common solvability of two 
linear matrix equations of the type encountered in Theorems 4.2 or 5.1. By the 
result of Theorem 8.1, a common solution to these equations exists if and only 
if they are separately solvable (zero-cancellation occurs) and a bilateral matrix 
equation is solvable. A geometric counterpart for the solvability of this bilateral 
matrix equation can also be obtained using the results of [27] and the geometric 
interpretation of skew-primeness equations. Thus, the condition (C3) of Theorem 8.1 
amounts to a “decomposition condition for certain invariant subspaces,” a condition 
encountered in [28] for the solvability of the regulator problem. In frequency domain, 
the condition (C3) amounts to a disjointness condition among appropriate zeros 
associated with certain matrices. Therefore, when reflected to Theorems 6.1 and 
7.1, the condition (C3) will yield a disjointness condition among the system zeros
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of suitable subsystems, or equivalently, it is expected to yield a “decomposition 
condition” [28, Corollary 7.3] for certain invariant subspaces of the state-space of 
the original system.

It is clear that, there is work to be done towards explicitly obtaining the geometric 
counterparts of the solvability conditions we have given in Theorems 6.1 and 7.1. 
This will in principle be easily accomplished via a geometric counterpart of the 
condition (C3) of Theorem 8.1 for which a readily available result is Theorem 5.12 
of [27]. This line of research has been deliberately avoided in this thesis since its 
development requires a rather different algebraic background.

A problem which is left open in this thesis is stating an analogue of Theorem
8.1 for the common solvability of N linear matrix equations when N > 3. As far 
as checking the solvability and obtaining a solution (when it exists) of the general 
NICP, Theorem 9.2 serves well since it may be restated in terms of an equation 
of the type Ax = b over a principal ideal domain. However, exactly what type of 
constraints this imposes on the structure of the open-loop plant is not clear at this 
stage.
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