
TEXT, Ш А вЕ , т т ы іс ш E ù i r m

in á 1

“HİS? s

ШШмШ Ш .шштФШ
Of ВШ

!п Partis? Fiâîfürmasst Of Tho Raoislrsmsnts
For Th® ̂ ,̂Dsgr@e Of

j l i ï s ïs a t C o ş a r
S®? t̂3snnber 1SSİ

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bilkent University Institutional Repository

https://core.ac.uk/display/52927634?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

TEXT, IMAGE , GRAPHICS EDITOR

A THESIS

SUBMITTED TO THE DEPARTMENT OF COMPUTER

ENGINEERING AND

INFORMATION SCIENCES

AND THE INSTITUTE OF ENGINEERING AND SCIENCES

OF BILKENT UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF SCIENCE

By
Ahmet Coşar

September 1988 fcaraii*idaa k^i^laiiaiisUr.

<5Л

с \ г

ія г 'г

S i m

I certify that I have read this thesis and that in my
opinion it is fully adequate, in scope and in quality, as
a thesis for the degree of Master of Science.

Assoc. Prof. Dr. Bülent Özgüç (Principal Advisor)

I certify that I have read this thesis and that in my
opinion it is fully adequate, in scope and in quality, as
a thesis for the degree of Master of Science.

Prof. aray

I certify that I have read this thesis and that in my
opinion it is fully adequate, in scope and in quality, as
a thesis for the degree of Master of Science.

Approved for the Institute of Engineering and Sciences:

Prof. Dr. Mehmet Baray, Director of Institüte of Engineering and Sciences

11

ABSTRACT

T E X T , IM AG E , GRAPHICS ED ITO R

Ahmet Coşar

M.S. in Computer Engineering and

Information Sciences

Supervisor: Assoc. Prof. Dr. Bülent ÖZG Ü Ç

September 1988

The editor proposed in this study can manipulate textual, graphics and

image data in a unified way. Each data type can be edited individually or

dependencies can be set up between various data items so that modifying

one might propagate its effects on others. The system is developed by us­

ing new software tools and techniques such as object oriented programming,

multi window workstations running with event selection principles and iconic

interfacing. Facilities for data protection, such as journaling are provided.

Data storage and editing principles are handled within guidelines of well es­

tablished standards. However, where such definitions fall short, proposals

for new techniques are made especially with respect to relation sets binding

various data types.

Keywords : Text, image, graphics, user interface, window manager, object-

oriented programming.

Ill

ÖZET

Y A ZI, RESİM, ÇİZİM İŞLEMCİSİ

Ahmet Coşar

Bilgisayar Mühendisliği ve Enformatik Bilimleri Yüksek Lisans

Tez Yöneticisi: Doç. Dr. Bülent ÖZGÜ Ç

Eylül 1988

Bu çalışmanın sonucunda geliştirilen sistem yazı, çizim ve görüntü verilerini

tek tek ya da aralarında ilişkiler tanımlayarak bir bütün olarak işleyebilmek-

tedir. Bu yöntemle herhangi bir veride yapılan bir değişiklik diğer verileri de

etkileyebilmektedir. Sistemin geliştirilmesinde birçok yeni yazılım geliştirme

teknikleri ve hazır yazılımlar kullanılmıştır. Bunlardan başhcaları, nesne-

sel yaklaşımlı programlama, çok pencereli iş istasyonları, imgesel kullanıcı

arayüzeyidir. Veri saklama ve koruma amacıyla yedekleme olanakları da sağ­

lanmıştır. Bu yazılım geliştirilirken genel olarak kabul görmüş standartlara

uyulmaya çalışılmış ancak gerekli olduğu zaman, özellikle değişik veri türleri

arasında ilişki tanımlama amacıyla, bir takım yeni teknikler kullanılmıştır.

Anahtar Kelimeler; Yazı, çizim, görüntü, nesneye-yönelik programlama,

etkileşim sistemleri, çok pencereli iş düzeni.

IV

ACKNOWLEDGEMENT

I would like to thank my thesis advisor, Assoc. Prof. Bülent ÖZGÜÇ for

his guidance and support during the development of this study.

I also appreciate my colleagues, Mesut Göktepe and Aydın Kaya for their

valuable discussions and comments.

TABLE OF CONTENTS

1 INTRODUCTION 1

2 STANDARDS AND RELATIONS ON DATA 5

2.1 STANDARDS ON D A T A ... 5

2.1.1 Graphics data standards... 5

2.1.2 Image data s ta n d ard s.. 12

2.1.3 Text data standards... 14

2.2 DOCUMENT ARCHITECTURE M O D E L 17

2.2.1 Document structures and o b je c ts 17

2.2.2 Content p o rtio n s .. 18

2.2.3 Object types and their characteristics.......................... 18

2.2.4 Object classes and object definitions............................. 22

2.2.5 Document classes and document definitions................ 23

2.2.6 Overall document architecture model and document

p ro file ... 23

vi

3 RELATIONS BETWEEN DATA TYPES AND DATA MA­

NIPULATION 25

3.1 RELATIONS BETWEEN DATA TYPES 25

3.2 DATA MANIPULATION 26

3.3 DATA STORAGE 29

3.4 DATA STRUCTURES 30

4 SESSION CAPTURE, ARCHIVING AND BACKUP, UNDO,
REDO 35

4.1 UNDO AND REDO IMPLEMENTATION 37

5 USER INTERFACE COMPONENTS 39

5.1 WINDOWS 39

5.2 MENUS 40

5.3 PANELS... 41

5.4 INPUTS, EVENTS, S E L E C T IO N ... 41

5.5 INTERRUPTS AND THEIR M A N AG EM EN T...................... 43

6 CONCLUSIONS 47

A OPERATIONS THAT ARE CURRENTLY AVAILABLE IN

THE SYSTEM 49

A .l TEXT O PE R A TIO N S... 50

A. 1.1 Moving text items . 50

Vll

A. 1.2 Resizing text item s... 50

A. 1.3 Editing text d a ta .. 51

A .1.4 Defining text item s.. 51

A .1.5 Selecting text i t e m s ... 51

A.2 IMAGE O P E R A T IO N S ... 52

A.2.1 Moving image i t e m s .. 52

A.2.2 Resizing image item s.. 52

A.2.3 Editing image i t e m s .. 52

A.2.4 Defining image item s... 52

A .2.5 Selecting image i t e m s .. 53

A.3 GRAPHICS OPERATIONS.. 53

A.3.1 Moving graphics item s.. 53

A.3.2 Resizing graphics i t e m s ... 53

A.3.3 Editing graphics ite m s .. 54

A.3.4 Defining graphics i t e m s ... 54

A.3.5 Selecting graphics ite m s ... 54

B The Language of The System 56

Vlll

LIST OF FIGURES

1.1 A sample document having relations among text and image

data.. 2

1.2 A rectangle with its defining attributes....................................... 2

2.1 Graphics Standards at Different Levels of Data......................... 7

2.2 Logical object structure... 19

2.3 Layout structure.. 20

2.4 ODA document architecture... 24

3.1 The ’’ circle” and the circle with the attribute definitions of the

circle. CircleJC and Circle_Y give the center of the circle. . . 26

3.2 Positioning text data inside a rectangle....................................... 27

3.3 Changing font size as covering rectangle shrinks and expands. 27

3.4 Placing text data inside graphical items...................................... 29

3.5 The object structure... 30

3.6 The attribute structure.. 31

3.7 The page structure.. 31

ix

3.8 A Scimple two page document... 32

3.9 Attributes of a rectangle.. 33

3.10 Attributes of a circle... 33

3.11 Attributes of an ellipse... 33

3.12 Attributes of an image... 34

4.1 A sample file saved on disk. 36

5.1 A general layout of the screen. 40

5.2 Notifier-Selection mechanism. 42

5.3 Notifier-Selection mechanism with broadcast messages. 44

5.4 Broadcast algorithm for performing necessary updates............ 46

A .l The result of moving graphics items to the same point. 53

A.2 The effects of resizing graphics items.. 54

A.3 Editing operations on polygons.. 55

1. INTRODUCTION

The purpose of this work is to define an environment for the manipulation of

three different data types namely text, image and graphics. There are many

products that manipulate text, image or graphics data independently, but

most of these systems are unable to manipulate them in a unified document.

The problem is even more complex when the user has documents containing

relations between different data types such as relative positions and lengths.

There are two possible approaches in providing such relation definitions.

The first one is a set of predefined operations that can be selected through

menus, function keys, keywords, etc. The limitations of such a system are

obvious but the implementation is easier and more efficient code can be writ­

ten for each relation. In the second approach each data item has attributes

associated with it and these attributes are used while processing that data

item for display. These attributes can reference other data items through the

usage of some expressions that can be edited by the user. The data items

of such a system are dynamic since expression evaluations are performed for

other possible changes when a particular item is modified. In this environ­

ment it is possible to define documents with relations such that changing a

text item may cause a graphical or image item to be modified if the text

aftributes are accordingly prepared (Figure 1.1).

For each item these attributes are stored in a linked list and users are free

to add or update them using either the keyboard or the mouse. Figure 1.2

1

Figure 1.1: A sample document having relations among text and image data.

-- -----

B*X-JC B*r_T n A B#r-M 4 Bor_H r> Color

mall n
n 1« 1 2· 10 1

nert afcrlbute — mil

r e c ta n g le l
a t t r i b u t e s
nertob je c t mil

Figure 1.2: A rectangle with its defining attributes.

shows a graphical object with its associated attributes and the data structures

used for storing these attributes. For each data type (i.e. text, image and

graphics) there is a special display procedure (e.g. Graphics_Display()) that

is called with the item to be displayed as its argument. This procedure

checks the item attributes while displaying it on the screen. This type of an

implementation is general and modular in nature and the addition of a new

attribute is greatly simplified. A simple example of setting color is discussed

next to clarify the effects of the attributes. An attribute with the name Color

and an integer value between 0 and 255 acting as an index to a colormap table

are to be used. The C code that concatenates this information to the display

parameter is given below. The attribute structure is as defined above and

the pixel operation specifies a logical operation (like OR or XOR) among the

corresponding bits of the image to be displayed and the image that already

exists in the frame buffer of the workstation. PIX.COLOR [16] is a macro

that is used for inserting color information into the pixel operation.

if(A= (struct attrib *)exist_attr(item,"Color"))

pixel_operation |= PIX_COLOR(A->attrval);

It is possible to define each attribute either by an integer value or a

string expression. In order to allow users to define their relations using this

simple language special primitives have been included. The use of such a

language has made our system different than the ODA (Office Document

Architecture) [7] standard since it is not possible to represent all of the re­

lations that can be defined by such a language using the relations provided

by ODA. This, however, does not mean that one cannot represent the same

document by using ODA. A simple relation is given below with an expression

used for defining two items to have the same color.

Color= ’otheriteraname ’Color \ival

The quotation marks preceding words denote that those words are not

evaluated and pushed into a stack and are later used by other commands as

parameters. The backslash character precedes the commands of the language

(as in the TeX convention [13]). The \ival command that stands for item

value pops two strings from stack. The first popped string is the attribute and

the second one is the item name that is unique for each item. The attributes

are then evaluated recursively. Since this may cause infinite loops with a

cyclic relation, special checks are made to terminate the recursion when an

item is revisited. Chapter 5 explains this effect in detail.

By setting various relations between different data items of any type,

users will not have to deal with details that they have already defined. The

implication of this is when a change in only one data item is made, all other

data items might be updated accordingly if this is specified in the relation set.

One such relationship is defined for inserting text into a text data that causes

the rest of the line to be shifted right and if the right justification function

is already defined for that text data, all of the text will be realigned without

any additional user command. This function is already used in commercial

text editors (e.g. Wordstar^). Similar examples can be given for image and

graphics data as well.

^Wordstar © , MicroPro International Corp.

2. STANDARDS AND RELATIONS ON
DATA

2.1 STANDARDS ON DATA

Since the main objective of this work is to define standard operations for

defining relations between text, image, and graphics data elements, we must

have the standard definitions of these data types as well. Otherwise, defining

a standard above non-standard objects cannot give much benefit to us.

2.1.1 Graphics data standards

A graphics element is a drawing possibly including lines, geometric shapes

(circles, ellipses), or some graphics objects already defined in the graphics

database. Several operations on graphics data are supplied, some of them are:

• graphical transformations

• painting closed polygons

• clipping

Unfortunately the hardware devices used for computer graphics opera­

tions are not always compatible with each other both in the data structures

they use and in the ways they manipulate these data structures. This fact

5

causes the users to introduce higher level interfaces to be able to do device

independent graphics applications.

National Computer Graphics Association (NCGA) has endorsed the adop­

tion and widespread use of the Graphical Kernel System(GKS) as the first

family of compatible standards for computer graphics [9,6].

Several standards are currently in effect for computer graphics:

IGES(Initial Graphics Exchange Standards) [8] and NAPLES (North Amer­

ican Presentation-Level Protocol Syntax) [12] are two examples for these

standards. IGES provides a standard file format for transporting CAD/CAM

design data between different systems. NAPLES is a compact code for en­

coding the graphical and textual content of a picture for transmission and

storage.

GKS is close to attaining official status. Balloting at the ISO (Interna­

tional Standards Organization) is closed. In the US, GKS was in the public

review stage of the ANSI procedure, in 1985.

The ANSI public review stage of VDM (Virtual Device Metafile) [18]

closed May 6, 1984, and the corresponding stage at the international level

was put into progress. VDM is intended to be a graphics picture file standard

concerned with the transfer of sufficient device independent information to

enable a picture to be regenerated on a wide range of graphics devices.

VDI (Virtual Device Interface) [1] is behind VDM. The first letter ballot

had begun in April 1984. VDI is a two way communication protocol that

takes place at the lowest level of device independence.

The PHIGS (Programmer’s Hierarchical Interactive Graphics System) [3]

is in the early stages of development.

Object Application Graphics Device Videotex
Database Program Utility Drivers Device

System
IGES GKS VDI NAPLPS

PHIGS VDM

Figure 2.1: Graphics Standards at Different Levels of Data.

From a general view, all of these efforts attempt to standardize interfaces.

IGES operates at the level between the object database and the applica­

tion program. GKS and PHIGS interface between the application program

and the graphics utility system. VDI and VDM are positioned between the

graphics utility system and device drivers, and NAPLPS functions between

a NAPLPS device driver and a videotex device, as shown in Figure 2.1.

CORE [19] is a graphics system for creation, modification, and manip­

ulation of three-dimensional, planar faced objects. Every object in a scene

consists of one or more planar polygon faces. A face may be defined by

supplying its vertices as points in space, or alternatively by naming points

already in the (partial) description of the object. In order to create or modify

an object description, the object must be opened. When done it is closed,

and it may be re-opened later for modification.

Colors are associated with objects and individual faces by specifying a

color table index. Faces can have different colors on each side, including

invisible. Object can be translated, rotated, and scaled. The camera is also

an object and can be similarly manipulated. The camera focal length can be

specified to produce varying magnification of the scene. See table 1.

The Graphical Kernel System (GKS) is the first international standard

for computer graphics programming. CORE was developed before GKS but

it is not as widely accepted as GKS due to the complexities of programming

TABLE 1

C O R E

C R E A T IO N C O M M A N D S D E L E T IO N C O M M A N D S

C R -O B J E C T N A M E C O L O R
C R -F A C E P O IN T L IS T (N AM E [C L R l [CLR2]]]
C R -L IN E X I Y1 Z l X 2 Y 2 Z2 N A M E C O L O R
C R -A X IS X I Y 1 Z l X 2 Y 2 Z2 N A M E
C R -P O IN T X Y Z [NAxME]

D E L E T E -O B J E C T [O B J E C T]...
D E L E T E -L IN E L IN E N A M E
D E L E T E -P O IN T X Y Z
D E L E T E -F A C E F A C E N A M E

D U P L IC A T IO N C O M M A N D S M O D IF IC A T IO N C O M M A N D S

C O P Y -O B J E C T O B J E C T N E W N A M E R E N A M E -O B J E C T O B J E C T N E W N A M E
C O L O R -O B J E C T O B J E C T C C W -C L R C W -C L R
P L C O L O R RACE C C W -C O L O R C W -C O L O R
O P T IM IZ E O B J E C T FU ZZ

C O M B IN E C O M M A N D S C O L O R C O M M A N D S

M E R G E IN T O O B J E C T O B I .. OBN
C O N C A T E N A T E IN T O O B JE C T O B l .. O B N

C O L O R T A B L E N CO LO .M TS L
G E T C O L O R IN D l .. INDN
C H A N G E C O L O R IN D E X C O L O R L IS T
SE T B A C K G R O U N D N

M O V E M E N T C O M M A N D S V IE W P O IN T C O M M A N D S

T R A N S L A T E O B J E C T D X D Y DZ
M O V E O B JE C T P O IN T X Y Z
SC A L E O B JE C T XS YS ZS X C Y C ZC
R O T A T E O B JE C T T H E T A X T Y T Z T X II Y H ZII
R O T A T E X O B J E C T T H E T A
R O T A T E Y O B J E C T T H E T A
R O T A T E Z O B J E C T T H E T A
R O T A T E V O B J E C T T H E T A X Y Z

S E T -V IE W X I Y 1 Z l X 2 Y2 Z2
S E T -W IN D O W H X H Y
S E T -A N G L E A N G L E
S E T -V IE W P O R T L L X LLY U R X U R Y
C E N T E R -D IS P L A Y

by CORE. GKS defines an interface for programming device-independent

graphics applications. The graphics model includes concepts such as seg­

ments, logical input devices, and workstations. GKS was developed as a two

dimensional graphics system, and now a three-dimensional extension is be­

ing considered. Even though GKS was selected as the standard for doing

graphics in a device independent environment, its functions are mainly for

communicating with different graphics devices. This is the reason why it was

initially designed as a two dimensional system. Even if the three-dimensional

extension is successfully done, problems will (and do) arise in areas where

efficient manipulation of graphics data is important. See table 2.

To address this problem a new standard, PHIGS (Programmer’s Hierar­

chical Interactive Graphics System), has been proposed. PHIGS is compat­

ible with GKS and it was designed on top of GKS by adding ffexibility in

data structures and defining additional functions for dynamic manipulation

of graphics data.

PHIGS is a graphics standard being developed under the regulations of

the ANSI.

PHIGS Structures: In PHIGS the whole graphical data is seen as a tree

of structures and each structure is a list of structure elements that can be:

• graphical primitives (line, marker, text, polygon, etc.)

• an attribute or view selection

• a transformation matrix

• an Execute Structure element

In PHIGS, structures can be edited dynamically in run time without re­

definition (which is not possible in GKS), and the attributes are bound to

T A B L E 2

G R A P H IC A L K E R N EL S Y S T E M (G K S)

LEVELS STATES

IN P U T O U T P U T
G K C L - GK S CLO SED
G K O P - GKS O P E N
W S O P - W O R K S T A T IO N OPEN
W S A C - W O R K S T A T IO N

A C T IV E
S G O P - A SE G M E N T O PEN

a- NO IN P U T
b- R E Q U E S T IN P U T O N L Y
c- FULL IN P U T

m- M IN IM AL
0- A LL P R IM IT IV E S A N D

A T T R IB U T E S
1- B A SIC SE G M E N T A T IO N

W IT H FULL O U T P U T
2- W O R K S T A T IO N IN D E P E N D E N T

S E G M E N T S T O R A G E

D A T A T Y P E S C O N T R O L F U N C T IO N S O U T P U T FU N CTIO N S
I- Intfiger
R- R e d
S- String
P* P oin t(x ,y)
. W C - W orld C oordinates
. N D C - N orm .D ev .C oord .
. D C -D evice C oordinates
N- Nam e, an identifier
E- Enum eration
F- File
W - W orkstation type
C- C onnection id.
D- D ata R ecord

O P E N GKS
C LO SE GKS
O P E N W O R K S T A T IO N
C LO SE W O R K S T A T IO N
A C T IV A T E W O R K S T A T IO N
D E A C T IV A T E W O R K S T A T IO N
U P D A T E W O R K S T A T IO N
R E D R A W A ll Segments
U P D A T E W O R K S T A T IO N
S E T D E F E R R A L STATE
M E SSA G E
E S C A P E

P O L Y L IN E
P O L Y M A R K E R
T E X T
FILL A R E A
C ELL A R R A Y
G E N E R A L IZ E D D R A W IN G

P R IM IT IV E S
. C ircular A rc
. C ircular Sector
. Spline Curve

T R A N S F O R M A T IO N F U N C T IO N S
N O R M A L IZ E D

T R A N S F O R M A T IO N S
W ORKSTATIO N -

T R A N S F O R M A T IO N S
S E T W IN D O W
S E T V IE W P O R T
S E T V IE W P O R T IN P U T P R IO R IT Y
S E L E C T N O R M A L IZ A T IO N T R A N S F O R M A T IO N
S E T C L IP P IN G IN D IC A T O R

S E T W O R K S T A T IO N
W IN D O W

S E T W O R K S T A T IO N
V IE W P O R T

IN P U T F U N C T IO N S
IN IT IA L IZ A T IO N O F

IN P U T D E V IC E S
S E T T IN G OF IN P U T

D E V ICE S
R E Q U E S T IN P U T FUN CTION S

IN IT IA L IZE L O C A T O R
IN IT M L IZ E S T R O K E
IN IT IA L IZ E V A L U A T O R
IN IT IA L IZ E C H O IC E
IN IT U L IZ E P IC K
IN IT IA L IZE S T R IN G

S E T S T R O K E M O D E
S E T V A L U A T O R M O D E
S E T C H O IC E M O D E
S E T P IC K M O D E
S E T ST R IN G M O D E

R E Q U E S T L O C A T O R
R E Q E S T S T R O K E
R E Q U E S T V A L U A T O R
R E Q U E S T C H O IC E
R E Q U E S T P IC K
R E Q U E S T ST R IN G

10

TABLE 2 - continued

SEGMENT
SEGMENT MANIPULATION FUNCTIONS

UNCTIONS
SEGMENT ATTRIBUTES

CREATE SEGMENT
CLOSE SEGMENT
RENAME SEGMENT
DELETE SEGMENT
DELETE SEGMENT FROM WS
ASSOCIATE SEGMENT TO WS
INSERT SEGMENT

SET SEGMENT TRANSFORMATION
SET VISIBILITY
SET HIGHLIGHTING
SET SEGMENT PRIORITY
SET DETECTABILITY

OUTPUT ATTRIBUTES
WORKSTATION INDEPENDENT

PRIMITIVE ATTRIBUTES
WORKSTATION ATTRIBUTES

SET POLYLINE INDEX
SET LINET\TE
. solid
. dashed
. dotted
. dashed-dotted
SET LINEWIDTH SCALE FACTOR
SET POLYLINE COLOR INDEX
SET MARKER TYPE
SET MARKER SIZE SCALE FACTOR
SET POLY^IARKER COLOR INDEX
SET TEXT INDEX
SET TEXT FONT & PRECISION
SET CHARACTER EXPANSION FACTOR
SET CHAR-VCTER SPACING
SET TEXT COLOR INDEX
SET CHARACTER HEIGHT
SET CHARACTER UP VECTOR
SET TEXT PATH
SET TEXT ALIGNMENT: left,right
SET FILL-AREA INDEX
SET FILL AREA INTERIOR STYLE
SET FILL AREA STYLE INDEX
SET FILL AREA COLOR INDEX
SET PATTERN SIZE
SET PATTERN REFERENCE POINT
SET ASPECT SOURCE FLAGS

SET POLYLINE REPRESENTATIONS
SET POLYMARKER REPRESENTATIONS
SET TEXT REPRESENTATIONS
SET FILL-AREA REPRESENTATIONS
SET PATTERN REPRESENTATIONS
SET COLOR REPRESENTATIONS

METAFILE FUNCTIONS
WRITE ITEM TO GKSM
GET ITEM FROM GKSM
READ ITEM FROM GKSM
INTERPRET ITEM

11

structures while they are being traversed for display, that is called by Execute

Structure element. Since our design includes functions for a user interface for

doing editing on graphics data, PHIGS is used as the basis of implementing

editing functions on graphics data. In fact, PHIGS includes functions for text

editing as well, thus only image data must be handled apart from PHIGS.

Viewing Transformations: PHIGS allows the users to define their data

in Modelling Coordinate (MC) system, and then maps them to an image

in Device Coordinate (DC) system while displaying. In fact the mapping

includes three intermediate coordinate system transformations:

• modelling coordinate system

• world coordinate system

• viewing coordinate system

• normalized projection coordinate system

• device coordinate system

2.1.2 Image data standards

Images can be obtained from many sources using different technologies. For

example, video cameras convert light reflected from objects into an electronic

signal that can be easily digitized. It is also possible for such devices to

produce color information. They can also control the direction and resolution

of sensors and use their own light sources as well. Smoothing and enhancing

of images are other functions that can be performed by such devices.

While generating images we can also include information such as orienta­

tion of the object surface, velocity, or range of the object. Such information

can be obtained by processing the image later.

12

In order to represent the abstraction of an image, image functions are

utilized. Usually, an image function is a vector valued function of a vector

parameter. The digital (discrete) image function is a special image function

where all of the elements of the parameter axe integers. Different image

functions can be defined for the same image depending on the characteristics

of the image that we want to represent. An example of such a function

is f(X)=f(x ,y) where the value gives the gray level intensity of the image

in coordinates (x,y). A color image can be represented by a vector valued

function with three components each one giving the brightness of the image

in red, green, and blue. All of the RGB monitors need such an image for

display. Another problem that must be solved is to convert the continuous

image function into a discrete function preserving the quality of the image.

The number of gray levels that can be used is also limited and for a one bit

plane monitor there are only two levels that are black and white. To display

gray scale pictures on such devices, techniques such as dithering must be

employed.

Today there exist many graphics workstations that have a resolution of

1000x1000 or higher and each pixel can have a color value chosen among

thousands of available colors. However, representing each pixel on the screen

with the absolute color values is not practical due to the large amount of

memory required. Instead, each pixel is represented by an index (usually

just eight bits long) to a table of 256 (if we use 8-bits long index) elements

where each row consists of a set of red, green, and blue density values to

represent the color of that pixel. This table is called the colormap-table and

is useful for representing a high number of available colors by using a small

number of bits per pixel. This technique is used for encoding images as

well, since it reduces the amount of storage required fundamentally and can

provide high quality images if the number of bits per pixel and the colormap

table to be used are determined with care.

13

In this system images are saved in rasterfile [16] format. The first three

parameters of this form define the width, height and depth (in bits) of the

image. Depth of an image is determined by the number of different colors

used in the image and these colors are assigned to single pixels as an index

to the colormap table of that image. For example, a monochrome image has

only two colors in it and one bit is enough to address these colors in the

colormap table, assuming that these colors are placed at the beginning of

the colormap table. Since the maximum number of entries in the colormap

table in our application is 256, the maximum depth is eight while displaying

an image. But it is possible to store and manipulate images that have a

larger depth. These three parameters are followed by the colormap table.

The remaining part of the file is the image to be interpreted according to the

above defined header information.

2.1.3 Text data standards

Text elements are arranged in a hierardiy such that text data consists of

paragraphs that in turn consist of lines, and finally lines consist of characters.

While moving down this hierarchy each paragraph, line, or character can have

its attributes changed to affect the text data under lower hierarchies. The

users are able to define their own hierarchies by defining a nesting operation

on the text data. Each attribute setting will be saved while entering a new

hierarchy and restored upon exit from the hierarchy.

The attributes that can be changed include fonts, line and paragraph

styles, line lengths, spacings between lines and characters, etc. A color at­

tribute selection is also available for displaying text data in different colors.

In order to allow multiple text styles, available text formatters, like nroff and

ditroff [10] axe used. However, some of the widely used functions are included

14

in the system (e.g. right and left justification of text data) for efficiency pur­

poses.

Fonts: It is necessary to use characters of different fonts in printed text

for making some points clearer, and also to convey a special meaning to the

reader. For example, in a manual, text written in bold letters may be those

entered by the user from keyboard and the output on the screen might be

printed in italic so that users can differentiate the responses of the system

from user commands.

Many printers and computers come along with a number of fonts either

in hardware or in software libraries. Some of the commonly used fonts are:

• times roman

• times italic

• times bold

• typewriter, etc.

There are also special fonts for mathematics and letters from foreign lan­

guages (other than English). The users can define their own fonts as well,

but this is a very tedious work and takes very long time. What users usually

want to do is to change the sizes of characters from these already defined

fonts. Such an operation is very complicated and requires the fonts to be

defined in such a way that they can be freely expanded and shrinked that

is obviously not possible with a simple bitmap. A simple solution to this

problem is to redefine the same font for each different size, that is of course

a space consuming solution. The first method is chosen for our system and

the fonts are defined in an appropriate structure.

Another problem that may occur while printing image or graphics data

is the difference in the resolutions of screens and printers. This problem

15

is especially predominant with image data since it is not easy to perform

scaling operations on image data. We can only duplicate bits as powers of

two that may not give the true result always. Thus, in attempts to build a

true WYSIWYG (What You See Is What You Get) editor one must also

consider such factors and find appropriate solutions.

There are various software available for public use in preparing docu­

ments and graphics designs. Most of these software produce a source code

that is simple to interpret and compact with respect to the bitmap repre­

sentations of the same document. This code is later interpreted (usually by

printer drivers) and corresponding listing is obtained from the printer. This

approach is useful for being device independent and also for ease of changing

and debugging documents. There are two widely used language types for

this purpose, Postscipt and Prescript. The programs written in these lan­

guage types can be directly sent to printers that know how to interpret these

languages and produce identical results (as far as quality is not concerned)

on different printers. Postscript is a stack oriented language (like FORTH)

and uses postfix notation. For example, 2 2 add means 2+2. You can create

your bitmap by using three different painting operations defined in postscript:

one-dimensional paths, two-dimensional sampled images, and text. It is also

necessary to mention that postscript supports intermediate gray levels by

digital halftoning meaning that the image is divided into cells where each cell

consists of many pixels and can be filled with different patterns to produce a

gray level illusion effect. Prescript is based on the same ideas but uses prefix

notation instead. The problem with these languages is that they require a

software interface to convert users’ document description into a program in

one of these languages. They are very difficult to use and debug. Another

point is that they are simply used for defining a page of listing. Consequently,

when you change your document you will have to recreate the whole program

again. Moreover, since these languages define documents page by page we

cannot expect them to help us in representing relations which may get across

16

2.2 DOCUM ENT ARCHITECTURE MODEL

In the ODA standard, a document is a structured amount of text that can be

interchanged either in image form for display or in processible form to allow

later editing. Text consists of graphic, geometric and photographic elements

and some additional control information.

2.2.1 Document structures and objects

In ODA, every document has a logical structure defining the hierarchy of

logical objects such as titles, paragraphs, figures, etc., and a layout structure

giving the hierarchy of layout objects like pages and columns. In our system

this hierarchy is defined by the users by setting up relations between data

items. Hierarchical relations are rigid and not all relations can be shown by

using a hierarchical relation set. In our approach, however, every relation is

independent of the other relations that can be defined among the same items,

unless they are purposely defined to be dependent on common attributes.

The logical order of a document in ODA is primarily hierarchical and

sequential. A hierarchical order is set up, for example, by paragraphs, il­

lustrations, and footnotes as constituents of subsections. A sequential order

exists among the objects of the same hierarchical level. For example, a con­

tents list is followed by the document body. This logical structure is a tree

structure with the logical objects forming the nodes in this graph.

Before a document cem be imaged, its layout structure must be estab­

lished. The graphic elements of the content associated with the logical ob­

jects must be arranged within certain layout areas that represent the layout

page boundaries quite easily.

17

objects. During imaging, these areas are then mapped onto a physical pre­

sentation medium. The layout structure is also a tree structure.

Objects have properties and relationships which are expressed by attributes

assigned to them.

Besides the hierarchical relationships, which link objects to build up a tree

structure and are expressed by the attribute references to subordinate objects,

there may exist logical logical relationships among logical objects that extend

across the logical structure, and layout-layout relationships among layout

objects. Typical logical-logical relationships are, for instance, cross-references

to figures or footnotes. A layout- layout relationship is the overlay order of

intersecting blocks.

There are also logical — layout relationships to control the layout process

given as attributes of logical objects.

2.2.2 Content portions

The architectural model distinguishes between composite objects and basic

objects. Composite objects consist of components that may be other compos­

ite objects and/or basic objects. Basic objects are at the lowest hierarchical

levels, and it is only through them that content portions are directly associ­

ated by means of the attribute references to content portions.

2.2.3 Object types and their characteristics

Each object in the interchanged data stream is represented at least by the

attributes object identifier and object type. The object type assigns additional

attributes that may be applied to objects of that type.

ODA distinguishes the logical object types document, composite logical

18

LEGEND

DOCUMENT

COMPOSITE LOGICAL OBJECT !
LEVEL 1 '

------------ r --------------- '
:— I— >

1---- I----- 1
COMPOSITE LOGICAL OBJECT ,

LEVEL N '

BASIC LOGICAL OBJECT

CONTENT PORTION

r~
L

MANDATORY OBJECT

OPTIONAL OBJECT

OPTIONAL CONTENT
PORTION

I— I— I POSSIBILITY OF MULTIPLE
SUBORDINATES

POSSIBILITY OF INTERMEDIATE
1- f -, LEVELS WITH MULTIPLE
' ' SUBORDINATES

Figure 2.2: Logical object structure.

object^ and basic logical object. Figure 2.2 shows how logical objects form

a logical structure and Figure 2.3 shows how a layout structure is formed

by layout objects. Note that all of these functions are batch processes and

must be performed each time an update is performed. In our system, however,

only the changed attributes are reevaluated and the users can see the changes

almost instantly and this property makes it superior to a batch processing

system. The set of attributes are also predefined in ODA and users cannot

insert their own attributes into the document and thus, are not able to define

their own relations. Definition of all of these relations are dynamic in our

system, and users can define attributes and relations by using either a menu

driven system or a very simple language where none of these facilities exist

in ODA. All of these deficiencies of ODA are due to the fact that it is defined

on a sequential, non-interactive process and a strict hierarchy must exist in

the document structure.

The layout object types are document, page set, composite page, or basic

19

DOCUMENT

_ J i z i : iL _
PAGE SET LEVEL 1

r___ J-____ t-

DOCUMENT

_ _ T L _
PAGE SET LEVEL 1

T

r

I PAGE SET LEVEL N 1 I
J______ L

PAGE SET LEVEL N

1— - - - .

____! ___ 1
COMPOSITE PAGE

L__L_^
I FRAME LEVEL 1 |

LEGEND

I--------
I FRAME LEVEL N ' I

___ 1___ 1
BLOCK

......I....... L......
CONTENT PORTION

MANDATORY OBJECT H - i
POSSIBILITY OF MULTIPLE
SUBORDINATES

I---------1
I_____ ! OPTIONAL OBJECT

• OPTIONAL CONTENT
• PORTION

I POSSIBILITY OF INTERMEDIATE
I— r 1 l e v e l s w ith MULTIPLE

SUBORDINATES

Figure 2.3: Layout structure.

20

page, fram e, and block.

An object of the page set type is a composite layout object that comprises

one or more pages and/or one or more subordinate page sets, which need to

be identified as a group. An example is a page set with a title page and

continuation pages, either one having different layout areas.

A page is a rectangular area that corresponds to a unit of the presentation

medium. It is the reference area used for positioning and imaging the content

of the document. The size of a page may be smaller than, equal to, or greater

than the size of the corresponding unit of the presentation medium. If a

document’s content is of a single content architecture, the basic layout objects

can be of the basic page type. In the case of several content architectures,

basic layout objects must be of the block type, and pages are then of the

composite page type.

A fram e is a rectangular layout area within a page or within a frame of

a higher hierarchical level. Frames define boundaries within a page for the

layout of the content; e.g., they can represent header, column, and footer

areas.

A block is a rectangular area containing one or more content portions of

the same content architecture.

Each page, frame, and block has an orthogonal coordinate system. Its

origin is the objects top left-hand corner. The vertical axis coincides with

the object’s left edge and the horizontal axis with its top edge. All frames and

blocks are positioned relative to the coordinate system of their immediately

superior object and are entirely contained within the area of that object.

Within a page, frames and blocks may be positioned in such a way that

they intersect partially or fully. In this case, their overlay order is given

2 1

by a sequence specified in the attribute imaging order of their lowest com­

mon superior object. Intersecting layout objects have a property attribute

background texture,

2.2.4 Object classes and object definitions

Objects of the same type with additional common characteristics can be

grouped into object classes. Logical object classes with objects of the basic

logical object type are, e.g., the classes paragraph., footnote, and figure title.

Examples of the layout object classes of the frame type are the classes header

frame, column frame, and footer frame.

An object definition is notified by definition identifier attribute and its

class is specified by a reference to object definition. These attributes, by

means of constant or variable expressions, can specify the below four types

of rules.

1. Property rules

2. Relation rules

3. Content rules

4. Construction rules

These expressions, unlike our system, can only define relationships among

text items. Defining relations among graphic and image items is not defined.

Even though some positional relationships can be given by arranging layout

objects this cannot be done for more complex relations like, color selection,

image rotation, colormap selection, etc.

2 2

2.2.5 Document classes and document definitions

Similar documents can be grouped into a document class. Document classes

are classes such as business letter, report, memo, and order form. Like other

classes, document classes are not standardized. They can be defined by the

application by means of document definitions. A document definition has to

contain the definitions for all objects that are allowed to occur in a document

of that class.

2.2.6 Overall document architecture model and docu­
ment profile

A document may contain a logical structure and/or layout structure with

text content. Description of its document class can be given, as well. A

document profile also exists for saving information necessary for manipulating

the document, such as the structures and definitions in the document and

some descriptive information for editing, indexing, filing, etc. Figure 2.4

shows the overall document architecture model as defined in ODA.

To the best of our knowledge, ODA is the closest system to our appli­

cation. It is, however, rigid and relation definitions are only applicable to

textual data. In the following chapters, our system is going to be defined

mostly with respect to the techniques used in breaking this rigidity and pro­

viding relations between various data types.

23

F ig u re 2 .4 : O D A d o c u m e n t a r ch ite c tu re .

24

3. RELATIONS BETWEEN DATA TYPES
AND DATA MANIPULATION

3.1 RELATIONS BETW EEN DATA TYPES

When various data types are brought together in an editor, it becomes nec­

essary to define procedures for relating the attributes of one type to another.

An example of such a relation is the visibility of data items. It might be

desirable to relate the visibility of text data circle to the visibility or existence

of the graphical item circle so that the text circle appears only when the

circle is drawn (figure 3.1). Another possibility is to define the position of

the text circle to be inside the circle. Centering the text data in the circle

and expanding or shrinking the circle as the text inside it expands or shrinks

are also possible relations to be defined (figures 3.2 and 3.3). The availability

of such relations require a highly dynamic and efficiently manipulated data

structure for both the data and the relations.

Definition of these relations, and possibly many more, further requires a

rather complex language to be employed. This language can be used by the

user to define the relations explicitly or a user interface for automatically

selecting some of these relations can be provided. Of course it is not possible

to define all relations via the user interface. In order to simplify the selection

operations, a default set is defined for each environment and the users will

have to deal with the language or nested selections only when they want to

25

(i>) (c)

(a) Text_X= ’circlel ’Circle_X \ival \textwidth 2 / -
Text_Y= ’circlel ’Circle_Y \ival ’circlel ’Circle_R

\ival + \textheight + 5 +
(b) Text_X= ’circlel ’Circle_X \ival \textwidth 2 / -

Text_Y= ’circlel ’Circle_Y \ival
(c) Pixop = ’textl ’Pixop \ival

Figure 3.1: The ’’ circle” and the circle with the attribute definitions of the
circle. Circle_X and Circle.Y give the center of the circle.

use non-default options. Font of a text item, for example, is assumed to be a

default font unless the user specifies one with the Font attribute.

3.2 DATA MANIPULATION

Data need to be updated either due to an addition or correction. Text editing

is well defined by the existing text editors that are widely accepted and used.

Some of the commonly used editing functions are:

• insertion and deletion of characters

• insertion and deletion of lines

• block operations like copying, moving and deleting blocks of text

There are other primitives for editing text attributes like font selection,

blinking, underlining, coloring, etc. These operations can be done either by

26

TEXT7I

tCEXIfi-

TEXT5

TEXT4

TEXT3

T F .Y T O

■TEXTT

T e x t .X = ’117 ’ I lo x .X \ival ’ R7 ’B o x -W \ival + \textw idth -
T c x t .Y = ’117 ’ B o x .Y \ival \texthcigbt +

T c x t .X = ’ lie ’B ox -X \ival
T e x t .Y = ’ l ie ’B o x .Y \ival ’ IIG ’ B o x .ll \ival +

Text J l = ’115 ’B o x -X \ival ’ 115 ’ B o x .W \ival 2 / + \texlw idth 2 / -
T e x t .Y = ’ 115 ’ B o x -Y \iv;d ’115 ’B o x .l l \ival 2 / + \texthelglit 2 / +

T e x t-X = ’ R4 ’ B o x .X \ival
T e x t .Y = ’ R4 ’ B o x .Y \ival ’ 114 ’ B o x .ll \ival 2 / + \textheight 2 / +

T e x t .X = ’ R3 ’ B o x .X \ival ’ 113 ’ B o x .W \ival + \textw idth -
T e x t .Y = ’ R3 ’ B o x .Y \ival ’ R3 ’ B ox.H \ival 2 / + \textheiglit 2 / +

Text J v = ’ 112 ’ B o x .X \ival ’ 112 ’ B o x .W \ival 2 / + \textw idth 2 / -
T c x t .Y = ’ U2 ’ B o x .Y \ival ’ R2 ’ B o x .ll \ival +

T e x t .X = ’ 111 ’ B o x .X \ival ’ 111 ’ B o x .W \ival 2 / + \textwidtli 2 / --
T c x t .Y = ’ 111 ’ B o x .Y \ival \tcxthcight +

Figure 3.2: Positioning text data inside a rectcvngle.

TEXT
TEXT
TEXT

TEXT

T E X T

T E X T

T U X T

Char.il= ’Rcct ’Box.H \ival 4 -
Char.W= ’Rect ’Box.W \ival \textlon / 1 -

Figure 3.3: Changing font size as covering rectangle shrinks and expands.

27

selecting options from a menu or by adding control information into the text

data. In the latter case we must distinguish between the two modes of display,

one for defining these options, second for viewing the appearance of the text

under these options.

Graphics data editing is generally more involved because there is the

problem of identifying which portion of graphics data is to be edited, the type

of editing requested, and the exact positioning and orientation of the item.

There are some commonly used techniques for overcoming these problems:

• scale and guideline

• gravity fields

• dragging

• rubber-banding

These techniques are used for editing graphics data as they simplify var­

ious operations [15].

Image editing functions include cut and paste operations and painting

pixels with arbitrary patterns. Working at a single pixel size is also possible.

Scaling of images to expand or shrink and rotating images are also defined

operations on image data. It is also possible to convert text and graphics

data into image form and manipulate them as an image. In order to facilitate

for such editing, insertion (pushing everything on the right by one pixel) and

deletion (pulling everything on the right by one pixel) from images in the form

of a vertical line (height can be adjusted) is also possible. Cut operations are

also enhanced to allow for cutting regions in the shape of any one of the

graphical primitives such as rectangles, circles, polygons, and free drawings

14.11)·

2 8

This İs a ^ext itea
inside a graphical Itea This is a free floatiaj text.

Figure 3.4: Placing text data inside graphical items.

3.3 DATA STORAGE

Grciphical descriptions are stored as single items each one having its own at­

tribute list. These data items are used mainly for drawing purposes. Another

important use of graphics items is for placing textual data inside them. If a

text item has the attribute inside giving the name of a graphical item, then

the position of that text item is calculated with respect to the bounding box

of the specified graphics item. If no such attribute is given for a text item,

then its position is calculated with respect to the top left corner of the screen

or the window.

Storing an image is very much like storing a rectangle since only the

coordinates of the rectangular area surrounding the image are saved in the

item definition. The corresponding image is stored on a disk file in rasterfile

format [16]. When an image is to be edited it is read from the file and stored

in a special structure that can readily be transferred to the frame buffer.

Storing and manipulating text data is slightly more tedious since the

ordering of text data elements (characters, or groups of characters) must be

preserved while inserting and deleting characters. This makes it necessary

to keep the item list in correct order and the problem becomes even more

complicated when more than one such list must be maintained. Figure 3.4

displays such a situation. The physical way how these data types and their

relations are stored is explained in the next section.

29

Figure 3.5: The object structure.

3.4 DATA STRUCTURES

All of the text, image and graphics items are stored in a doubly linked list of

objects, each one representing an item (Figure 3.5). Each object has a unique

name and object number which are used for accessing that object. Associated

with each object, there is a linked list of attributes giving information about

size, location, color, etc. of the corresponding item (Figure 3.6).

Text, image and graphics items are stored as three different object lists

for every page of the document. The pages are also stored in a linked list as

in Figure 3.7.

In order to explain the use of these structures for defining documents

containing text, image and graphics items an example document is shown in

Figure 3.8. The data stored in the system for this document are also given

and discussed.

30

nextattr

prevattr

attrname

attrexp

attrvaJ --

nextattr

prev'attr

attrname

attrexp

attrval

nextattr

prevattr

attrname |

attrexp 1-

attrval p-

Figure 3.6: The attribute structure.

nextpage

prevpage

textitems

imageitems

graphicitems

nextpage

prevpage

textitems

imageitems

graphicitems

nextpage

prevpage

textitems

imageitems

graphicitems

Figure 3.7: The page structure.

31

This is a ScUD
pla text show
ing a text it
era continued
through diffo
rent graphic
items, also a
oross pages.

!Jota that
text is
automatice L

P age-1

Figure 3.8: A sample two page document.

The sample document consists of two pages. In the first page two rect­

angular areas are defined for placing text data into them. This is done by

assigning the inside attribute to the text item. It is also possible to define a

text item to be layed out inside more than one graphical area in a predefined

order as it is done in the first page. This property is defined by assigning the

intext attribute to the graphical items which are to include the given text

item. This attribute gives both the name of the text item and the order of the

graphical item. Please note that, all of these attribute definitions are internal

details of the system and the user does not need to know the definition of

these attributes that would require the users to find out the internal names

of the text items, avoid duplicate numbers etc. Menu selections using the

mouse are provided for defining these attributes automatically for any given

pair of text and graphics items.

Continuation of a text item across pages is also possible and can be

achieved in the way mentioned above with the only difference that the text

32

(Box_X. Box_Y)

Box.H

Box_W

Figure 3.9: Attributes of a rectangle.

Figure 3.10: Attributes of a circle.

and graphics items reside on different pages. The system, while displaying

a text item, checks all of these attributes and performs appropriate adjust­

ments automatically. It is also possible to define text items that are free from

all of these attribute definitions and such items can be placed anywhere on

the document without having to put them into a graphical item.

Graphics items are simpler to display relative to text items. They simply

contain attributes for defining the parameters of a graphical shape. Currently,

the system recognizes lines, rectangles, circles, ellipses and polygons. Some of

the attributes used for describing these shapes are given in figures 3.9-3.11.

Figure 3.11: Attributes of an ellipse.

33

(Image_X,Image_Y)

Image_H

Image_W

Figure 3.12: Attributes of an image.

Image items are restricted to occupy a rectangular area on the document.

The upper left corner, width and height of this area are defined as attributes

of an image item. The actual image data is displayed to the user inside

this rectangular area and stored in a disk file using the rasterfile format[16]

(Figure 3.12).

34

4. SESSION CAPTURE, ARCHIVING AND
BACKUP, UNDO, REDO

In order to allow the users to save their work and also as a safeguard against

system failures, facilities for storing text, image, and graphics data incre­

mentally are implemented (Figure 4.1). UNDO and REDO are two main

operations that are available and give a lot of flexibility to users while per­

forming editing on their documents.

Modern interactive systems have UNDO and REDO commands for re­

covery (e.g. database management systems). The UNDO command causes

the effects of the last edit operation to be removed and the previous state to

be restored. The REDO command simply performs the opposite function of

UNDO, and does the last UNDOne command again.

The UNDO and REDO commands are enough to have a complete system

for backuping. Furthermore, both of them must exist in such a system.

In order for the UNDO and REDO commands to achieve the work they are

expected to do, they must be supplied with a sufficient amount of information

about the type of editing and the data that is affected. One simple way is

to save the previous contents of data in a backup file each time an update

is performed and restore the data from this file when an UNDO operation

is requested. This method is not efficient since it usually requires a large

amount of secondary storage and long processing time.

35

\graphicsitems
’rect {

’Box_Y 20 \vdef
'Box_X 20 \vdef
’Box_H 100 \vdef
’Box_W 100 \vdef

} \defitem
\imageitems
\textitems

’textl {
’Font 1 \vdef
’Char_H 10 \vdef
’Char.W 10 \vdef
’Text.Y 16 \vdef
’Text.X 41 \vdef
’suntext {This is the first text item.)· \edef
’inside {rect} \edef

)■ \defitem
’text2 {

’Font 0 \vdef
’\n 0 \vdef
’suntext {This is the first line break.} \edef

} \defitem

Figure 4.1: A sample file saved on disk.

36

A better method is to save the type of the modification done and the part

of the data that is minimally sufficient for recovery. When such information

is stored in a backup file as updates are being made, it becomes possible to

perform UNDO and REDO operations without any restriction. Such a facility

is especially useful while performing editing operations on different data types

since unexpected results can be encountered quite easily. Furthermore, this

facility protects the users from failures that may occur and cause loss of data.

4.1 UNDO AND REDO IMPLEMENTATION

Data is kept in two types of lists called item and attribute lists. All of

the updates on these scructures are performed by four different routines as

follows.

• insert an attribute

• delete an attribute

• insert an item

• delete an item

Each time an update is performed using these routines a corresponding

UNDO-REDO record is pushed to the stack that saves these updates. Some

of the information kept in this structure is given below:

• updateno : an update may cause several updates in the system and

these are grouped together in this field.

• mode : can be one of text, image, or graphics.

• operation: the type of update done with this record.

37

• objname : name of the updated object.

• attribute data: for saving inserted/deleted attributes.

• oldimage : the structure in which old image is kept

• newimage : the structure in which new image is stored.

For each update performed by the user, only the related information is

saved in this structure. Since a stack of these records is kept in the or­

der they are performed, it becomes possible to have an arbitrary level of

UNDO/REDO operations (limited by the virtual memory of the computer).

For practical reasons, however, a stack size of a small finite value is imposed

by the system.

38

5. USER INTERFACE COMPONENTS

Object oriented programming is a new style widely used in many graphics

applications. In order to simplify the programming part of this work and

also to obtain a user friendly system the tools of this technique were used in

implementing the user interface [17]. This approach has a lot that resembles

Smalltalk [5] in the principles and standards of interaction, object definition,

etc. but it has been implemented in the C language. Figure 5.1 shows the

general screen organization of the system.

5.1 WINDOW S

The concept of a window in this paper is a particular subdivision of a screen

in which a unique task is running. In order to manage the whole screen

effectively a window manager is required since otherwise concurrency prob­

lems are sure to occur. In such an environment each window can belong to

a different task and simulate a terminal controlling that task. When there

are multiple windows on the screen the problem is to define the one that is

currently active and will receive the inputs provided by the user (keyboard,

mouse, etc.). This problem is solved by defining a cursor attached to the

mouse and moving it around the screen. The active window is simply defined

as the one that the cursor is currently in.

In the case of overlapping windows the window manager avoids confusions

39

ILw]
C c o u r .b .24ft* U r e c t ä n g l e

Object nam· : 0

A t t r ib u t e nani·: In i l d a

A t t r i b u t · S K p .: S

A t t r i b u t · v a l .: 0

Mas»a(j»;
CMcrve
[LoAq]

C?D< SET CREO

This is a cat.

Figure 5.1: A general layout of the screen.

between user interrupts generated through the mouse by selecting the window

that is at the top of the hierarchy and has the cursor in it.

5.2 MENUS

When a special predefined event is performed such as clicking the button of

a mouse at a particular location on a window or on the screen (the whole

graphics screen is also a window that is always lowest in the hierarchy), the

user might be assigned a temporary obj’ect that performs an input through

a choice selection mechanism usually referred to as menu. Menus contain a

list of items in the form of te^ftual, numeric, or pictorial (icon) data. Menus

can be used both for selecting options and giving commands to the window

manager or individual tasks.

40

5.3 PANELS

Panels include items that can be selected and call special user defined pro­

cedures. They can also be used for selecting among a number of items and

also for entering text data. Another widely used form of panels is the slider

item that allows the graphical representation and selection of a value within

a range. They are appropriate for situations where it is desired to make fine

adjustments over a continuous range of values.

5.4 INPUTS, EVENTS, SELECTION

Since there may be a large number of tasks running concurrently in a multiple

window environment, and each one may be waiting for an input (or an event

in more general sense) for processing, there arises the problem of determining

which input (event) is relevant for what window (task) on the screen. Another

problem is to notify these tasks of the fact that an event related to them has

occurred. The solution to this problem is the Notifier- Selection mechanism

that filters out proper events and notifies an appropriate object or module

upon the arrival of such an event (Figure 5.2).

This mechanism is also used for managing the screen layout and display­

ing windows, icons, etc. in the correct form. The functions for changing

the hierarchy of windows (hiding, exposing) and for updating the appear­

ance of the screen to conform to the changes made due to previous events

are also supplied. In fact, in such an environment each one of the windows,

menus, panels, etc. are also predefined objects performing predefined opera­

tions when particular events occur. In order to help users to remember the

functions that each event performs, help menus and help panels are provided.

There are many other events generated by the system and together with user

41

APPLICATION NOTIFICATION

Figure 5.2: Notifier-Selection mechanism.

42

defined events they make a great number of events most of which are irrel­

evant to particular tasks. In order to allow the tasks to ignore such events

and also to control events that might cause concurrency problems if they are

processed arbitrarily, event-locking mechanisms are used.

Some events may cause broadcasts or further events, since many relations

are defined between different data types and an update on a data item may

propagate its effects onto other related items(Figure 5.3). This makes it

necessary to determine what events may occur concurrently with what other

events due to the fact that the detection of an event while still processing a

previous event may cause the system to process these events incorrectly. The

mechanism used for solving this problem is discussed in the next section.

5.5 INTERRUPTS AN D THEIR M AN AG EM EN T

The complexity of our system is kept at a minimum by manipulating the

events generated by the user within a hierarchy. In other words, once an

event has occurred and the system is processing it, further events of the

same level are locked and any event that might occur now only is trapped

by the current process. If the process, resulting from a single high level and

possibly many lower level events, has caused some relations to be altered, or

has generated the need for a relation function to execute, it sets appropriate

flags signalling so. Until this process is finished, however, other processes are

not notified since the user might undo or further modify the effects of the set

of events he has generated. Once a done signal is received for the process,

then a chain of other processes might start to execute. While still keeping a

lock on further events, the main selection function of the system invokes all

other processes that it controls. These contain the data type manipulation

functions, relation functions, output formatters [2] and various journal or

recording utilities. Once the effect of the user request is finished, only then

43

APPLICATION NOTIFICATION

Figure 5.3: Notifier-Selection mechanism with broadcast messages.

44

the flags are turned off and the lock from the event is removed. This process

is called a broadcast and it is during this stage when the relation functions

are executed. The menus or a formal language through a text editor only-

set the definition of these relations in a data template reflecting a particular

attribute of an item. Upon the broadcast activities, these data templates are

used in their most recent state, imposing the rules of the relation set to the

appropriate data type (Figure 5.4). The execution of such a relation function

could trigger more flags to be set and if one event changes the state of one

data type that is bound to the third one, the whole chain will execute until

all of the necessary modifications are made. Much care is taken in order

to avoid relation sets that are cyclic thus causing infinite loops that never

signals a done flag. The output formatters are used for the reorganization of

the display to show the effects of the events.

45

4G

Text Objects

SET or CLEAR FLAGs SET or CLEAR FLAGs SET or CLEAR FLAGs

Figure 5.4: Broadcast algorithm for performing necessary updates.

46

6. CONCLUSIONS

The editor designed and implemented in this thesis enabled us to create and

edit complicated documents containing text, image and graphics data items.

The use of relation definitions between data items has also proved to be very

useful and it was observed that a great amount of work could be saved with

this technique. These relations can be used for designing layout areas for

text, image and graphics windows with respect to each other. References to

parts of a document such as figures and tables are also possible and relieves

the user of tedious and error prone updates especially in large documents

such as articles, theses, books, etc.

The implementation discussed in this thesis can be improved by consid­

ering a more enhanced set of text editing functions and some utilities for

automatic generation of table of contents, list of figures, index, etc. The

speed of the system can also be increased by using shorter attribute names

or having a standard set of parameter names valid for any graphical item.

Adding zooming and grid size selection facilities for online editing would also

be useful. Similar improvements are also possible for graphics and image

editing parts of the system. More powerful implementations of the editor for

each type of data will increase the productivity of the system, as well. It

would also be a good idea to allow the users to enter text and graphics data

in image mode and save them as image data. The data defined in this way

can be edited only by using image editing functions later. This, however,

makes it easier to design simple figures which can be easily redrawn if an

47

update is needed.

Finally, the implementation of this system and its use has shown the

possibility and usefulness of the relations in a document editing system. The

graphical user interface and its capability to display the results of an update

on the screen as they are being performed is also a very useful property

and makes this system superior to batch oriented editors. The possibility of

UNDO/REDO operations and journaling and backup facilities are also useful

features especially in a multi data type document with possibly very complex

relations.

48

A. OPERATIONS THAT ARE
CURRENTLY AVAILABLE IN THE

SYSTEM

This system is designed for efficient and easy definition and manipulation of

text, image and graphics data that can exist in a document at any place and

in any combination. The main difference of this particular system from other

similar systems is its capability of defining relationships among any given set

of data items. These relationships are implemented as attributes defined by

giving expressions involving attributes of other items.

Another feature of this system is its graphical user interface enabling

rapid update and definition operations on the data items. This feature allows

visual interaction techniques to be utilized for showing the results of these

operations instantly on the screen.

In order to simplify the number of steps required for making an update or

definition, the system is assumed to be working on a single data type at any

time. The selected data type (i.e., text or image or graphics) is displayed to

the user on the screen and can be changed upon user request.

The type of operation to be performed by the user must also be selected,

as in the data type selection, to be one of the below operations:

• move

49

• resize

• edit

• define

• select

All of these operations are self explanatory and their functions are dis­

cussed in the following paragraphs while explaining the operation logic of the

system on each data type.

A .l TE X T OPERATIONS

АЛЛ Moving text items

This operation updates the T ext-X and TextJV attributes of a text item

so that the text data will be placed on the screen to the position where the

mouse currently points.

АЛ .2 Resizing text items

This is an important facility of this system that does not exist in most of the

other similar systems. With this operation users can change the height and

the width of a character (or a group of characters) to meet their requirements.

To enable such a function, special fonts are previously defined in terms of

polygons and Bezier Curves. Then, it becomes possible to perform width and

height changes by simple graphical scaling functions. Rotation and shearing

of characters are also possible, though not implemented.

50

A. 1.3 Editing text data

In order to allow users to update previously entered text data or to correct

typing errors, a simple set of text editing functions exist in the system. These

include:

• inserting characters

• deleting characters

• cutting a block of text

pasting a block of text

changing font of a block of text

• etc.

A. 1.4 Defining text items

This operation allows text items to be defined either for placing inside a

graphics item or as a stand alone data item.

A .1.5 Selecting text items

Since there may be more than one text item in a document it becomes nec­

essary to select one of them as the subject of further editing operations. In

other words, this operation simply changes the current text item as to be the

one pointed by the mouse.

51

A.2 IM AGE OPERATIONS

A .2.1 Moving image items

This operation updates the Im agt-X and Im age-Y attributes of an image

item to move the top left corner of its image window to the position of the

mouse.

A .2.2 Resizing image items

This operation changes the Im age-W and Irnage.H attributes of an image

item so that the width and height of its image window are adjusted appro­

priately.

A .2.3 Editing image items

The system provides many standard painting patterns to the users so that

one of them can be selected and copied on an image window applying a bit

level logical operation such as, OR, AND, XOR, etc. Selection of a color is

also possible for a colored image to be painted with a special color such as,

red, green, blue, etc.

A .2.4 Defining image items

This operation allows the users to determine a rectangular area that will

include the image data. It also creates appropriate data structures for storing

the image data in memory and in a disk file.

52

Figure A .l: The result of moving graphics items to the same point.

A .2.5 Selecting image items

This operation selects one of the image items as the current image item so

that further image editing operations are clipped against the boundaries of

its image window.

A.3 GRAPHICS OPERATIONS

A .3.1 Moving graphics items

This operation is more complicated because the attributes to be updated

depend on the type of the current graphics item. Figure A .l is given to

demonstrate this fact.

A .3.2 Resizing graphics items

This operation again depends on the type of the current graphics item. The

below figure explains the result of a particular resizing operation on each

graphical shape.

53

Figure A.2: The effects of resizing graphics items.

A .3.3 Editing graphics items

This operation is used only for editing polygons since other graphical shapes

can be put into desired shape using move and resize operations.

A .3.4 Defining graphics items

This operation requires the users to select the type of the graphical shape to

be drawn. Then, these graphical shapes are drawn on the screen using the

dragging technique until the user completes the definition.

A .3.5 Selecting graphics items

This operation can be used for selecting any one of the graphical items to

make it the current graphics item.

54

Select edge P2.

Select edge
Delete edge
Append Edge
Hove Edge
Select POLV

PI

Insert edge before P2.

Select edge
Insert Edge
Append Edge
Move Edge
Select POLY
—

P3

After edge is inserted. Delete edge P2.

The final polygon.

Figure A.3: Editing operations on polygons.

55

B. The Language of The System

This system uses a postfix format language for defining the expressions giving

relations between the items of a document. Each expression is evaluated by

the system using a built-in interpreter. The commands in an expression are

evaluated from left to right and the results are pushed to a stack. With

this mechanism other commands can fetch their parameters from this stack.

Looping and conditional statements are also available that allow for very

complex relations to be written. The postfix format of the language makes

the interpreter very simple and new commands can be added very easily.

Some of the mostly used commands are explained below:

• \ival: ’<item name> ’<attribute name> \ival

This command finds the value of the item name of which is given and

pushes the result into the stack.

• perform usual arithmetic operations on integer data popped

from the stack.

• \if { < if not negative>} {< if negative> }

Pops a value from the stack and performs one of the next two expres­

sions depending on the value of it.

• \loop { <any expression > }

Evaluates the next expression while the result of it is not zero.

56

The language has some simple conventions such as string parameters are

preceded by single quotation marks and the commands start with the back­

slash character. There are some other commands used by the system, but

they are not needed for writing usual expressions. These functions can be

learned from the source listing of the interpreter very easily in case that one

needs to use them.

57

REFERENCES

[1] Computer Graphics Virtual Device Interface, document X3H3/85- 47,

X3 Secreteriat, CBEMA, 311 First st. NW, Suite 500, Washington, DC

20001, 1985.

[2] Coşar, A., Özgüç, B., Text, Im,age, Graphics Editor, SERC Report:CIS-

8803, 1988.

[3] Coutaz, J., Abstractions for User Interface Design, Computer, Vol. 18,

No. 9, Sep. 1985, pp. 21-34.

[4] David Shuey, David Bailey and Thomas P. Morrissey, PHIGS: A Stan­

dard, Dynamic, Interactive Graphics Interface, IEE E C G & A , August

1986.

[5] Dawson, B. M., Introduction to Image Processing Algorithms , B Y T E ,

March 1987 pp.169-186.

[6] Goldberg, A. and Robson, D., Smalltalk-80: The Language and its Im­

plementation, Addison-Wesley, 1983.

[7] F.R.A. Hopgood, D.A. Dure, J.R. Gallop and D.C. Sutcliffe: In tro­

du ction to the G raphical K ernel System (G K S), 2nd edition.

Academic Press (1986).

[8] Horak, W., Office Document Architecture and Office Document Inter­

change Formats: Current Status of International Standardization, IEEE

C om puter, Oct. 1985.

5 8

[9] Initial Graphics Exchange Specification (IGES), Version S.O, NBS,

Gaithersburg, Maryland, Apr. 1986.

[10] ISO 7942 Information Processing Systems -Computer Graphics- Graph­

ical Kernel System (GKS) functional description, ISO Geneva (1985).

[11] Joseph F. Ossanna, NrofF/TrofF U ser’s M anual, Bell Laboratories,

Murray Hill, New Jersey.

[12] Kaya, A. and Ozgiig, B., Continuous Processing of Images Through User

Sketched Functional Blocks, C om pu ter G raphics Forum , 1988 (in

print).

[13] Keith Y. Cheng, Microcomputer Graphics and Applications with

NAPLES Videotex, IEEE C G & A , June 1985.

[14] Knuth, D. E., T he T E X b o o k , ninth printing, October 1986, Copyright

1984, 1986 by the American Mathematical Society.

[15] Lofton Henderson, Margaret Joutney and Chris Osland, The Computer

Graphics Metafile, IEEE CG&cA, Aug. 1986.

[16] Newman, M. W., Sproull, F. R., Principles of Interactive Computer

Graphics, Ch. 17, Me Graw Hill, 1979

[17] SUN Pixrect Reference Manual, Sun̂ ^̂ ̂ Microsystems, Feb. 1987.

[18] Ozgiig, B., Thoughts on User Interface Design for Multi Window Envi­

ronments, Proceedings of the Second International Symposium on Com­

puter and Information Sciences, Istanbul 1987, pp. 477-488.

[19] Reed, Theodore N., Standardization of the Virtual Device Interface and

the Virtual Device Metafile, C om puters and G raphics, Vol.9, No.l,

1985, pp.33-38.

[20] SunCore^"^ R eference M anual, Sun^^ ̂ Microsystems.

59

[21] Sun^·^ Microsystems, 1986

[22] W. N. Joy, M. Horton, A n In trodu ction to D isplay Editing w ith

V i, University of California, Berkeley.

