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ABSTRACT

ATOMIC THEORY OF THE 
SCANNING TUNNELING MICROSCOPE

TEKMAN, Ahmet Erkan 
M. S. in Physics

Supervisor : Prof. Dr. Salim Çıracı 
January 1988, 99 pages

The Scanning Tunneling Microscope is proven to be one of the most 

powerful tools for surface structure determination. Present theories are able to 

explain the operation of the microscope when the tip is far from the surface. For 

the small tip height case the atomic-scale interaction of the tip and the surface 

has to be included in the theory. The electronic structure of the combined 

system of the tip and the surface is calculated with an Empirical Tight Binding 

approach for graphite. It is found that in the vicinity of the tip some Tip 

Induced Localized States are formed. These states play an important role in 

the tunneling phenomenon. The contribution of these states to the tunneling 

current is calculated.

Key words: Scanning Tunneling Microscopy, Tunneling, Empirical Tight 

Binding, Tip Induced Localized States, Graphite.
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ÖZETÇE

TARAMA TÜNELLEME 
MİKROSKOBUNUN 
ATOMSAL KURAMI

TEKMAN, Ahmet Erkan 
Yüksek Lisans Tezi, Fizik Bölümü 

Tez Yöneticisi : Prof. Dr. Salim Çıracı 
Ocak 1988, 99 salıife

Tarama Tünelleme Mikroskobunun yüzey yapısı belirlenmesinde güçlü 

bir araç olduğu ortaya çıkmıştır. Şu ana kadar öne sürülen kuramlar uç 

yüzeyden uzakta iken mikroskobun çalışma ilkesini açıklayabilmektedirler. Ufak 

uç yüksekliği durumunda uç ile yüzey arasında atomik boyuttaki etkileşimin 

kurama eklenmesi gerekmektedir. Uç ve yüzeyin oluşturduğu bileşik sistemin 

elektronik yapısı Denemesel Sıkı Bağlanma yöntemi ile grafit için hesaplandı. 

Uç çevresinde Uç Güdümlenmiş Yöreselleşmiş Durumlar oluştuğu bulundu. 

Bu durumların tünellenme olayında önemli katkılarının olduğu gözlendi. Bu 

durumların tünelleme akımına katkıları hesaplandı.

Anahtar sözcükler: Tarama Tünelleme Mikroskobu, Tünelleme, Deneme­

sel sıkı Bağlanma, Uç Güdümlenmiş Yöreselleşmiş Durumlar, Grafit.
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me, with his constant decisiveness and his friendly, welcoming personality. 

Without his remarks, advices and ideas this study could not be completed.

I debt special thanks to Assoc. Prof. Dr. Metin Durgut, Assoc. Prof. Dr. 

Şinasi Ellialtioğlu and Assoc. Prof. Dr. Recai Ellialtioglu for their valuable 

remarks and discussions on the subject.

Finally I would like to thank to the Research Assistants of the Engineering 

and Science Faculty of Bilkent University for their continuous morale support, 

especially to Oğuz Giilseren for his accompaniments while this study was on 

progress, and to Ilhami Torunoglu for his guiding comments on my dissertation 

talk.

IV



Table of Contents

A b s tr a c t .......................................................................................

Ö z e tç e .......................................................................................... jjj

A cknow ledgem ent.....................................................................  iv

Table of C o n te n ts .....................................................................  v

List of F ig u r e s ...............................................................................vii

List of T a b le s ........................................................................ ..  ^

1 Introduction 1

2 A Survey of Scanning Tunneling Microscopy

2.1 Experimental Technique of Scanning Tunneling Microscopy

2.2 Experimental Results of Scanning Tunneling Microscopy............ 11

2.3 Theories for Scanning Tunneling Microscopy................................ 16

3 Analysis of the Tip Induced Localized States 28



3.1 An Atomic Approach to Scanning Tunneling Microscopy of

Graphite 28

3.1.1 Electronic Structure of Graphite and the T i p .................. 28

3.1.2 Theories for Scanning Tunneling Mici’oscopy of Graphite . 36

3.2 Energy Band Calculations and Tip Induced Localized States 44

3.2.1 Method of Calculations 44

3.2.2 Results of Calculations.......................................................  53

4 Tunneling Current for Small Tip Height Regim e 68

4.1 Bardeen’s Formalism for Tunneling............................................... 68

4.2 Tunneling Current in the Presence of Tip Induced Localized States 73

4.3 A Simple Model for the Effects of Tip-Surface Interaction . . . .  76

4.4 Tunneling Current For Small Tip Heights: G rap h ite ..................  81

5 Conclusions and Discussion 89

References 93

VI



List o f Figures

2.1 A schematic description of the scanning tunneling microscope . . 6

2.2 A pocket-size scanning tunneling microscope 9

2.3 Relief of Si (111) surface-reconstructed (7 x 7) 13

2.4 Scanning tunneling microscope image of g raph ite .......................  15

2.5 Anomalous corrugation amplitudes for graphite..........................  16

3.1 Structure of graphite........... .. .......................................................  29

3.2 Brillouin zone of g rap h ite .............................................................  31

3.3 Field-ion pattern of mono-atomic t i p ............................................ 35

3.4 Local density of states for graphite s l a b ......................................  38

3.5 Corrugation amplitude as a function of tunneling current 41

3.6 Electronic energy band structure of graphite monolayer 50

3.7 Band structure for the on-top position-I......................................  56

3.8 Band structure for the on-top position-II......................................  60

3.9 Local density of states for TSi ....................................................  62

3.10 Band structure for the hollow-site position...................................  64

3.11 Band structure for the bridge position .........................................  66

4.1 Local density of states for graphite monolayer.............................  82

v ii



4.2 Local density of states in the vertical plane for graphite monolayer 83

4.3 Energies of tip induced localized s ta tes ......................................... 84

4.4 Energies of tip induced localized states: On-Top Position 85

4.5 Tunneling current...........................................................................  86

4.6 Tunneling current along special directions................................... 87

vm



List o f Tables

3.1 Fitted Hamiltonian matrix elements (eV) 49

3.2 The model wavefunctions and scaling............................................ 51

3.3 The band results for the on-top position......................................  63

3.4 The band results for the bridge position ......................................  67

IX



Chapter 1

Introduction

It has been known since the first years of the quantum mechanics that, 

particles can be found in the regions of space, which classical mechanics 

excludes, with a nonzero probability. This statement is a result of the 

wave-particle duality, and henceforth Heisenberg uncertainity principle. The 

tunneling phenomenon is a special demonstration of this fact. In tunneling, a 

particle transferred between two classically allowed regions by passing through 

a classically forbidden barrier region. Tunneling phenomena in solids have been 

investigated for a large number of different systems and is shown to be one of 

the basic physical events.

The first application of tunneling was done by Oppenheimer [1] in 1928 to 

analyze the effects of huge electric fields on hydrogen atoms. He predicted an 

auto-ionization as a result of the formation of a lowered potential barrier in the 

direction of electric field. His study on the field emission was the basis of the 

subsequent theories of tunneling. In 1928 Fowler and Nordheim [2] explained 

the field emission from metals, which was observed in 1922, but was unexplained
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since then, using the quantum mechanical theory of tunneling. There were other 

applications of tunneling in nuclear and atomic physics, which were treated 

in late-twenties [3]. In 1930 Frenkel [4] proposed a tunneling approach to the 

metal-metal junction resistances, which became the basis of the later solid state 

tunneling experiments. Nevertheless, the solid state physics is not the only area 

of physics in which, tunneling plays an important role.

After mid-fifties parallel to the development of the electronic devices, 

tunneling experiments in solid state systems attracted interest. In 1958 the 

p-n tunnel diode was proposed by Esaki [5]. For this invention he was awarded 

the Nobel Prize in Physics in 1960. In sixties tunneling experiments were held 

with superconducting structures and the coupling of superconducting systems 

could be understood in terms of tunneling.

One of the most striking applications of tunneling was realized in early- 

eighties for analyzing the surface structure of solids with an atomic-scale 

resolution . The first Scanning Tunneling Microscope was built by G. Binnig 

and H. Rohrer [6,7] in 1982. Since then the microscope has been developed into 

a widely used precise imaging tool. After this invention Binnig and Rohrer were 

awarded the Nobel Prize in Physics in 1986.

The underlying physical idea for the Scanning Tunneling Microscope is 

just the theory of tunneling. Previous applications of tunneling in solids were



made with solid insulating barriers [3]. Therefore the electrode-barrier-electrode 

structure was not variable for these cases. However, if one can change the 

geometry of the structure the tunneling phenomenon will also differ. This 

change in tunneling process is related to both the change of the structure and 

the quantum mechanical properties of the electrodes and the barrier. When 

one uses a vacuum barrier, and if the quantum mechanical state of one of the 

electrodes is known, then one can get information about the other electrode by 

analyzing the change in tunneling data [8].

The Scanning Tunneling Microscope essentially consists of a metal tip, 

the position of which can be controlled very accurately, a vacuum barrier which 

can be controlled by the position of the tip, and the sample surface to be 

investigated. While measuring the current at different lateral positions one can 

attain the surface topography with atomic resolution [6,7,9].

The set-up of the Scanning Tunneling Microscope has been developed since 

it was first proposed [10]. Nowadays it is possible to put the mechanical part 

of a microscope, which has atomic resolution, into a pocket-sized apparatus. 

Nevertheless there are still some unexplained problems. These are mainly 

anomalous corrugations which are not consistent with the electronic structure 

or the symmetry of the surface.

Present theories of Scanning Tunneling Microscopy are derived from



Bardeen’s formalism [11] for tunneling. In this method the electrodes are 

assumed to be independent of each other. However, for small tip-surface 

separations, the atomic scale interactions between the tip and the surface have 

to be included in the theory.

In this thesis I will analyze the atomic scale effects of the tip-surface 

interaction on tunneling. In Chapter 2 a survey of the experimental and 

theoretical studies on Scanning Tunneling Microscopy will be given. In 

Chapter 3 special emphasis will be given to one of the important cases in 

Scanning Tunneling Microscopy, namely graphite surface, and the effect of 

the tip structure. In this chapter methods of calculations, and the results for 

electronic structure of the tip-surface combined system will be given. The effects 

of these results on the tunneling will be investigated in Chapter 4. General 

discussions and concluding remarks will be presented in Chapter 5.



Chapter 2

A Survey of Scanning Tunneling 

M icroscopy

2.1 E xperim ental Technique o f Scanning Tun­

neling M icroscopy

Originating from the idea of using a metal tip as one of the electrodes, 

a controllable vacuum gap as the insulating barrier, and a sample surface as 

the second electrode, Binnig and Rohrer [6,7,8,9] built up a basic tool for 

investigating the solid surfaces. The so-called Scanning Tunneling Microscope 

consisted of a metal tip, a piezoelectric translator for varying the position of 

the tip and a sample surface to be detected. The schematic setup of a Scanning 

Tunneling Microscope is shown in Figure 2.1.

Applying a bias to the tip with respect to the surface and carrying the tip 

to the close proximity of the surface with a small vacuum gap in between, there 

will be a tunneling current between the tip and the surface. One can change the



Figure 2.1: A schematic description of the scanning; tunneling; microscope

position of the tip with respect to the surface by using the translators, and thus 

obtain the tunneling current as a function of position. It is clear that this change 

in the tunneling current is closely related to the quantum mechanical state of 

the surface. Therefore these scans are characteristic images of the surfaces.

Having obtained the characteristic scans, the second step for surface 

structure determination is to relate them to the topographical, electronic and 

other properties of the surfaces. The first interpretation of Scanning Tunneling 

Microscopy was proposed by the inventors themselves [6,7]. It is clear from the 

previous theoretical work on tunneling that the tunneling current from the tip to 

the surface is caused by the overlapping exponential-like tails of wavefunctions 

of the tip and the surface. Hence by changing the position of the tip, the 

overlap of these tails will change, so will the tunneling current. Since the tip
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wavefunction is assumed to be unaltered, the tunneling current will be related 

to the wavefunction of the substrate in the vicinity of the tip.

At this point one can mention the basic advantage of the Scanning 

Tunneling Microscope. Since the tunneling current is related to the 

wavefunction of the surface at the vicinity of the tip, Scanning Tunneling 

Microscope can make in situ real space measurements. There is need for neither 

a periodicity, as in the X-ray diffraction or Low Energy Electron Diffraction, nor 

a large density of states in a microscopically large area, as in the Electron Energy 

Loss Spectroscopy or Scanning Electron Microscopy [12]. Even small clusters 

like biological molecules [13] or single defects on surfaces such as adsorbates [14] 

or steps [7] can be observed with a good resolution.

Initially it was conjectured that when the tip is at the on-top position of 

one of the surface atoms, the surface wavefunction will have a large magnitude 

and the current will be large. Away from the on-top position the overlap of 

the wavefunctions and hence the current will decrease. Therefore, according to 

this interpretation the line scans of Scanning Tunneling Microscopy will directly 

reproduce the surface topography [7].

Based on the above theory the basic operation mode of the Scanning 

Tunneling Microscope was arranged as follows. A fixed voltage bias is applied 

between the tip and the surface. The height of the tip arranged to yield



a constant tunneling current while the tip scans the surface. This mode of 

operation is called the constant voltage-constant current mode [7,12] of the 

Scanning Tunneling Microscope. Since the tunneling current is related to the 

surface wavefunction, the height of the tip will be a measure of the magnitude 

of the wavefunction. Hence the density profile of the surface can be extracted 

from the scanning data.

The first Scanning Tunneling Microscope was a large apparatus [9] 

since some very precise supporting tools were used for isolating the system 

from vibrations and obtaining an ultra high vacuum. This so-called first 

generation Scanning Tunneling Microscope has been developed with some new 

considerations. Furthermore, some observations showed that the environmental 

disturbances may be so small that the use of simple isolating equipment would 

be sufEcient[7,12j. Hence, nowadays for most of the applications the so-called 

Pocket-Size Scanning Tunneling Microscope [10,12] is commonly used. In 

addition ultra high vacuum and low temperatures are not necessary for a large 

variety of experiments. Therefore, experiments can be done in air [14], or even 

in some liquids [15,16,17] and at room temperature. These developments made 

the Scanning Tunneling Microscope a practical and feasible tool for surface 

studies. As a result, today over 200 laboratories are using Scanning Tunneling 

Microscopes in their studies.

In Figure 2.2 the mechanical part of a Pocket-Size Scanning Tunneling



Figure 2.2: A pocket-size scanning tunneling microscope

The scale shown at the bottom corresponds to 1 cm. The drawing is taken from 
Reference [12]. @1986, American Institute of Physics.

Microscope is shown. The basic parts of the microscope are as follows [12];

1. The sample holder is attached to a stepper (louse) consisting of a tripod 

attached to a piezoelectric body. The louse stands on a steel plate using 

three anodized aluminum pods. These pods are not solidly connected to 

the plate, but the louse is electrostatically clamped to the plate. By setting 

one of the pods free and applying a voltage across the piezoelectric body 

to change its length one can move the feet on the plate. This procedure 

is applied several times to get the sample to the proximity of the tip with 

a coarse adjustment. The sample holder is made of a light metal such as 

titanium, and a few clamps are used to fix the sample on the holder.

9



2. The base of the microscope is made of a number of steel plates, separated 

by viton pieces for absorbing the external vibrations. This system is not 

effective at low temperatures and it is necessary to use more complicated 

vibration isolation equipments.

.3. The tip holder is also made of a light metal. It is connected to a 

piezoelectrical tripod (scanner). Usually there are electronic units to 

control the X -  , y- and z-scan of the tip. By applying voltages to the 

feet of the tripod, controllable displacements of the order of 0.1 A can be 

achieved.

4. The louse, the sample holder, the scanner and the tip holder are connected 

to the external circuitry. Most of the operation is controlled, and the 

results are analyzed by a computer.

The basic operation principle of the microscope can be summarized as [12]:

1. The sample is clamped to the holder and by using the stepper, the louse 

is brought to the close proximity of the tip, that is to a distance of the 

order of 0.01 mm.

2. A constant voltage bias is applied across the tip-surface barrier. The 

surface is scanned while adjusting the position of the tip by using the 

piezo tripod keeping the tunneling current held constant, the surface is 

scanned. The typical scanning speed is 100 A/sec . Typical resolution of 

the tip position is 1 A for x- and y-scans, and 0.1 A for z-scan.
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•3. The resulting line scans are analyzed to obtain a grey-scale image of the 

surface by a computer. This is the final data of a Scanning Tunneling 

Microscopy experiment and includes all the information which can be 

collected in the constant voltage-constant current mode. The variation of 

tip height as a function of lateral position is called corrugation and the 

maximum value of corrugation is called corrugation amplitude.

2.2 E xperim ental R esults o f Scanning Tunnel­

ing M icroscopy

In Section 2.1 the basic principles of the Scanning Tunneling Microscope 

were introduced. In this section special emphasis will be given to the 

experimental results which were obtained by using Scanning Tunneling 

Microscopy. As it was mentioned, the local character of the imaging is one 

of the main advantages of this microscope. Therefore it is very appropriate to 

use it for structure determination experiments on some complicated surfaces 

and molecules.

Nevertheless, the Scanning Tunneling Microscope was first used on metal 

surfaces [18,19]. Since the tunneling phenomenon depends on the flow of a 

current, it is important for the sample to have a conducting character. Because 

of its atomic scale resolution, the microscope is a very good candidate for 

determining the reconstruction of metal surfaces.
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In 1983 and 1984 the inventors used Scanning Tunneling Microscopy to 

find the reconstruction schemes of Au (110) [18] and (100) [19] surfaces. For 

(110) they observed (1 x 2) and (1 x 3) reconstructed geometries, which have 

sawtooth like profiles consisted of energetically favorable (111) triangular facets. 

On the other hand, for the (100) surface several (1x5) reconstruction geometries 

are observed. These are the first results of Scanning Tunneling Microscopy with 

atomic scale resolution.

One of the most striking applications of Scanning Tunneling Microscopy 

is on the Si (111) surface, reconstructed in a (7 x 7) geometry [20]. This 

reconstruction scheme is hard to analyze as a result of the large unit cell, 

containing 49 atoms of the surface. The Scanning Tunneling Microscopy results 

were very accurate and consistent with the known parameters, such as the size 

of the 7 x 7  unit cell. The relief of the surface which includes two complete 

unit cells is shown in Figure 2.3. This pictoresque result was obtained by the 

inventors. In each unit cell twelve maxima and nine deep minima are observed. 

The minima pattern shows threefold rotational symmetry, whereas the maxima 

exhibit sixfold rotational symmetry around the rhombohedron corners. This 

result is in agreement with the “milk-stool” model of Snyder et al. [21] or the 

modified adatom model of Harrison [22]. As seen the imaging method has an 

atomic scale resolution to give a clearcut picture of the reconstruction scheme, 

and to guide the further research.

12



Figure 2.3: Relief of Si (HI) surface-reconstructed (7 x 7)

Two complete unit cells are clearly visible with atomic scale resolution. The figure is 
taken from Reference [20]. ©1983, The American Physical Society.

Scanning Tunneling Microscopy is used on grating surfaces, steps and 

single atom defects as well [10]. The results are at least as precise as those 

obtained by any other surface structure determination method. Observation of 

single atom steps, single atom defects and adatoms with atomic scale resolution 

are signs for the strength of the method [7]. Even some complicated biological 

molecules are investigated by using a flat surface metal as a background [13]. 

All of these results can not be achieved by a single surface imaging tool, other 

than Scanning Tunneling Microscope.

The preceding examples give an idea about the power of Scanning Tunnel­

ing Microscopy for surface structure determination experiments. Nevertheless
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there are some special cases for which the results of Scanning Tunneling 

Microscopy are not acceptable as far as the surface topography is concerned. 

The most striking example for these anomalous results is the graphite surface.

Graphite surface is one of the most easily investigated structures by 

using the Scanning Tunneling Microscope [10,12,14,17,23,24,25]. The surface 

is extremely inert as compared to the other substrates studied so far. Inertness 

of the surface and the distinct electronic properties lead to the atomic scale 

imaging under extremely varying environments. Atomic resolution is attainable 

in vacuum, in air [14] and when immersed in a liquid [17]. In addition to 

that it is very easy to prepare precisely oriented graphite surfaces, flat over 

microscopically large regions.

A typical Scanning Tunneling Microscopy image of the graphite surface is 

shown in Figure 2.4 [26]. The image was taken at a tunneling voltage of 50 mV. 

The corrugation amplitude is about 1.3 A. Owing to the symmetry properties of 

the graphite, which will be explained in Section 3.1.2, the honeycomb structure 

is not apparent in the image. Instead, two different kinds of carbon sites are 

found. The graphite surface is one of the structures that give most satisfactory 

results, excluding the small current experiments. Similar images were obtained 

by several groups with consistent corrugations.

In those experiments carried out with smaller bias voltages, an anomalous

14



Figure 2.4: Scanning tunneling microscope image of graphite

The dark regions are corresponding to smaller current. Full lines build up the unit 
cell and the dashed lines show the hexagon. Full (open) circles are B-type (A-type) 
atoms. The asymmetry between the two basis atoms is clearly visible. The figure is

taken from Reference [26]

increase in the corrugation amplitude was observed. One of these experimental 

results is shown in Figure 2.5 [23]. Several authors reported corrugations 

up to order of 10 A [10,14,17]. It is clear that for small tunneling voltages 

the tip-surface separation will become smaller. Hence this giant corrugations 

are explainable only if this small separation regime is analyzed. In addition, 

there is a possibility of contamination of the tip for small tip heights. Several 

experimentalists reported that, it is not rare to hit the surface with the tip and 

take some surface atoms on the tip [14,27,28]. This situation is also common 

in microscopy of semiconductor surfaces. Thus, it is very difficult to have clear 

scans of these surfaces and to differentiate between the anomalous results.

Another structure which gives anomalous results are some the charge-
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Figure 2.5: Anomalous corrugation amplitudes for graphite

The tip height is shown for one scan. The corresponding bias voltage and tunneling 
current are indicated. The figure is taken from Reference [23]

density wave systems [29]. For lH-TaSe2 some large corrugation amplitudes 

were reported. This is not the case for 2H-TaSe2 structure. The explanation of 

these anomalous results are nearly the same as those of graphite, which will be 

described in detail in Section 3.1.2.

2.3 Theories for Scanning Tunneling M icroscopy

As mentioned in Section 2.1 the interpretation of the Scanning Tunneling 

Microscopy data in terms of surface properties is one of the main objectives. The 

initial explanation of microscopy, assumes that the corrugation is a measure of 

the surface wavefunction, and thus the surface charge density. For the metallic

16



surfaces there is cilmost no need for further analysis since the Fermi surfaces of 

these materials are extended, and the local density of states is not very different 

from the total charge density. Hence the line scans are topographical images of 

the charge density, as pointed out by the inventors [6,7].

Later on Scanning Tunneling Microscopy was used on metallic surfaces 

with small Fermi surfaces, and even on semiconducting or insulating surfaces. 

For these materials the preceding explanation is no more valid, and there is 

a need for a general theory for Scanning Tunneling Microscopy. In order to 

examine tunneling from the tip to the surface in detail several models were 

proposed. In this Section I will give a brief summary of these theories.

One of the first ideas was directly solving the Schrödinger equation in the 

presence of a corrugated surface and thus calculating the tunneling current [30]. 

One-dimensional version of this problem is a classical subject in quantum 

mechanics textbooks. Garcia et al. [30] used a highly corrugated constant 

potential region for modeling the tip and a smoothly corrugated constant 

potential region for modeling the surface. Both of the structures were taken to 

be periodic; the surface with a period of lateral lattice constant and the tip with 

a period large enough to decouple the neighboring tips. In addition, they did 

not use the realistic barrier potential, which includes the effects of work-function 

difference of the tip and the surface, image field effects and self-consistent field 

corrections. Instead, they used a rectangular potential barrier of height </?, which

17



can be thought as the average work-function of the electrodes. The solutions 

were expanded in terms of plane waves and the resulting matrix equation was 

solved. They calculated the local current distribution in the barrier and found 

the tunneling current expression as:

eUI = ^ G  N{Ep) exp [-2.14 d|2m (2.1)

In this equation N{Ep) is the density of states at Fermi level for the tip, Vq 

is the bias applied, and d is the tip to surface distance. G is a geometrical 

constant, without any dependence on the other parameters.

This result is similar to those of plane surfaces, but due to the curvature of 

the surface there is a factor 2.14 in the exponent instead of 2 for a plane. Garcia 

et al. also investigated the effects of barrier height ip and effective curvature Ref/, 

defined as the geometric average of the curvatures of the tip and the surface, 

on the observed corrugation amplitude. They concluded that in order to obtain 

the real corrugation of the surface the tip have to be very sharp. They analyzed 

the experimental results for Au (110)(1 x 2) reconstructed surface. They have 

calculated the effective tip radius as ~ 3.5 A and the maximum tip height 

as ~  3.9 A. Their results showed that the output of Scanning Tunneling 

Microscopy is far from being a direct image of the surface topography, and have 

to be analyzed carefully to obtain the physically acceptable results.

A more extended study based on similar approximations was proposed by 

Stoll et al. in 1983 [31]. They used the same structure as Garcia et al. [30] but
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put emphasis on the boundary value matching, instead of solving the problem 

as a whole. They obtained the transmission coefficient as a function of lateral 

wave-vector. The sum of these contributions of all the wave-vectors yielded the 

total tunneling current. Using an expansion around the zero lateral wave-vector 

and a local approximation to the transmissivity they calculated the tunneling

current as:

8 7Г --iS exp [-2  ( ^ ) · / ^  dl (R ,n ld f l^  (2.2)

Here îicl Uefj are the geometrical averages of the two Fermi levels and

heights of potential wells, respectively. E is the incident current, and .Re// is 

defined as the inverse of the arithmetic average of inverse curvatures.

Stoll et al. also obtained the local current density and tip scan curves for 

the constant voltage-constant current mode. They analyzed the effective radius 

of the tip by using the local current density. Their total current expression 

implies that the exponential dependence of the current on the tip height has 

a factor 2. Nevertheless, this approximation neglects the effects of the higher 

Fourier components of the incident current. Their simple fitting results in a 

factor of 2.08. However, they pointed out that in three dimensions this factor 

would be increased, and it will be close to the value found by Garcia et al. [30] . 

They have found that the resolution of the microscope decreases with increasing 

tip size and increasing tip height.

The method described above has a computational advantage, since by
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solving the Schrödinger equation using ~ 20 plane waves one can get the 

local current distribution, and the tunneling current can be calculated easily. 

Nevertheless, it has some drawbacks which limit its applicability to more 

complicated systems. The starting point of the theory is a free-electron 

approximation, which assumes that the potentials are flat in the tip,surface and 

barrier regions and the transitions are abrupt. This approximation is reasonable 

for metallic electrodes. However, for semiconductors or metals with small Fermi 

surfaces, free-electron-like solutions are far from being realistic. In addition the 

use of an extended tip body with periodic large corrugations for modeling the 

tip may cause some artifacts. Tunneling from the tip body to the surface 

has to be excluded from the total tunneling current, otherwise there will be 

a background conductance which can lead to erroneous results. The effects of 

periodic tip may also cause some problems. This multi-tip model has some extra 

contributions to the tunneling current due to the artificial periodicity of the tip.

More recent theories originate from the quantum mechanical theory of 

tunneling instead of the basic quantum mechanics methods like plane-wave-like 

solutions. The simplest theory which can be applied to Scanning Tunneling 

Microscopy was proposed by Bardeen in 1961 [11]. He treated the tunneling 

as a transition between the many-body states of two uncoupled systems, which 

are interacting through a transfer Hamiltonian. Applying the first-order time- 

dependent perturbation theory one can find the tunneling current as:

/  = 2 7T e
n E  11 -  /(-E- +  I P «(E;. -  E„) (2.3)

ß,!/
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where ¡j. and u label the tip and the surface wave-functions, respectively. Here /  

is the Fermi-Dirac distribution factor and takes care of the statistical probability 

of a particular tunneling event to happen, V is the applied bias and Mfj,  ̂ is the 

transition matrix element between the tip state /i and the surface statue u. 

Bardeen showed that this matrix element can be written as:

=
2 m (2.4)

The integral is to be taken over any surface lying completely inside the barrier 

region. It is clear that the expression in the parantheses is the current operator 

for a general quantum mechanical system. However, one has to bear in mind 

the special feature of this system which is explained below.

The difference of Equation 2.3 with respect to the ordinary time- 

dependent perturbation theory is on the overcompleteness of the basis set. The 

states and 7/>̂ are solutions of the isolated tip and surface Hamiltonians, 

respectively. Therefore, each set is complete and we can express the solution in 

terms of either one of them. However, since the tunneling is a transition between 

two systems separated from each other by a classically forbidden region, we can 

see that it is approximately equal to an element of one set at i —>· — oo and to 

an element of the other set at i —»■ oo. Thus, it is more appropriate to expand 

the tunneling solution 'F in terms of both sets. This point will be discussed in 

detail in Chapter 4.

Bardeen’s formalism for many-body theory of tunneling was used by
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several authors for explaining Scanning Tunneling Microscopy. The most 

frequently referred theory for the Scanning Tunneling Microscope was proposed 

by Tersoif and Hamann in 1983 [32,33]. They took Bardeen’s tunneling current 

expression as the starting point of their work. They used the following model 

wavefunction for the surface;

■0̂ = exp[(«^+ I KG d] exp(i kq ■ p) (2.5)
a

where Qs is the normalization volume, k — h~^{2rrupyl'^, and kq = ¿y + G is the 

extended scheme surface state Bloch wave-vector, p is the lateral component of 

the position vector, and the summation is over the reciprocal lattice vectors of 

the surface. They modeled the tip as a locally spherical potential well. Taking 

the local curvature of the tip as the radius of the sphere and using the asymptotic 

spherical form of the wavefunction they found:

Cl K .R I c -  ro I)·' (2.6)

where is the normalization volume, ct a geometrical normalization constant 

of the order of one, and tq is the position of the center of the sphere. Note that 

the work-functions of the tip and the surface are assumed to be the same and 

only the s-type wavefunction of the tip is used.

Inserting these wavefunctions into Equation 2.3 and assuming that the bias 

is negligibly small compared to other energy measures, they found for tunneling 

current to be:

I  = ^2TT^n-^e'^Vip'^Nt{EF)B}K-^t^'^^ ^  | V’v(ro) P S{E, -  Ep) (2.7)
1/
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where Nt(Ep) is the density of tip states at the Fermi level. In a more tractable 

form the tunneling conductance can be written as:

<7 <x piro^Ep) (2.8)

where p{fQ,Ep) is the local density of states at the Fermi level and evaluated 

at the position of the tip.

Tersoff and Hamann commented that the appearance of the value of 

surface wavefunction at the position of the center of the tip is not a physical 

expectation but resulted from analytic properties of the model wavefunctions 

used [33]. For large tip heights they also arrived to behavior for the

tunneling current. They applied their theory to Au(llO) scans for two different 

reconstruction schemes and had a c|uite good agreement with the experimental 

results. They also reported that Scanning Tunneling Microscopy is not sensitive 

to structural deviations for particular reconstructions at low voltage, that is 

large height regime.

Recently Chung et al. [34] included the effects of higher angular 

momentum states of the spherical tip in the tunneling current expression. They 

have found that for the case of accidental degeneracy of s- and d-states an 

additional current contribution from the d-state would arise and would be 

approximately 10% of the s-state current. They also calculated the resolution 

of the microscope and found that the results of completely different approaches 

yield similar forms.

23



This theory has a drawback about the shape of the tip. Using a sphere 

instead of an almost arbitrarily shaped tip with a curvature restricts the 

applicability of the theory. In addition, a disconnected sphere representing 

the tip would not have any electrical connection for a current passing through. 

Therefore application of Bardeen’s procedure to this geometry is not totally 

correct, since the tip describes a quasi-stationary state instead of a sink. 

Recently Chen [35] used a parabolic tip for overriding this difficulty and found 

a tunneling current expression in terms of Kummer’s functions.

Feuchtwang et al. [36] showed that the tunneling current can be found 

as a convolution of the tip and the surface spectral density functions. They 

emphasised the effects of the microscopic structure of the tip. They arrived at 

the conclusion that the incidence angle would be a determining factor for the 

effective barrier height seen by the electrons. An advantage of this method is 

its applicability for all types of tip structure. These results converge to those of 

Tersoff and Hamann in that limit. However, calculation of the spectral density 

functions is a tedious task and this procedure is not practical except for some 

special cases and requires information about the microscopic structure of the tip.

In 1984 Baratoff [37] made a review of the proposed theories and discussed 

some crucial points of Scanning Tunneling Microscopy. He pointed out that the 

electronic structure of the surface determines the completeness of the result of
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Scanning Tunneling Spectroscopy and showed that it could be necessary to make 

different type of scans to get a thorough topographical image of the surface, for 

example to image both filled and empty bands of the semiconductor surfaces.

Baratoff also commented on the independent electrode approximation that 

was used by all earlier theories [37]. Actually, this is one of the most important 

deficiency of the theories reviewed above. This approximation can be assumed 

to hold for large tip heights. On the other hand, for small height cases there is 

a nonnegligible interaction between the tip and the surface, so that the wave- 

functions used in Equation 2.3 are no more acceptable solutions.

Very recently Feuchtwang and Cutler [38] gave a survey of the studies on 

Scanning Tunneling Microscopy and criticized the existing theories. They also 

pointed out the general problems arising from the tunneling theory itself. They 

drew attention to the probable resonance mechanisms in Scanning Tunneling 

Microscopy. These mechanisms are mainly related to the image field effects 

such as bound states and potential resonances.

Some theories concerning the atomic aspects of the tunneling and Scanning 

Tunneling Microscopy were also developed. Lang [39,40,41] proposed a system 

for analyzing the local effects of the atoms in 1985. He used electrodes consisting 

of a semi-infinite jelium and an adsorbate atom. He solved the independent 

electrode Hamiltonians to find the states which are participating in tunneling.
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Using these wavefunctions he foiind the total time dependent wavefunction 

for the coupled two-electrode system. The current density is straightforward 

from bcisic quantum mechanics:

] = V ^  ImCf. V i(B„ -  Ef) (2.9)

which reduces to:

j~ = f V Z  «(-E, -  Ejr) 6(E, -  Ef) (2.10)

where and are the local and total current operator expectation

values between the tip states labeled by /.i and the surface states labeled by 

1/, respectively. This expression is equivalent to Bardeen’s formula for the 

tunneling current.

Lang also analyzed the effects of symmetric and energetic effects of the 

adsorbate atoms on the tunneling current. However, he has chosen the atom 

species according to their ease of computation, and therefore, his conclusions 

are not directly applicable to Scanning Tunneling Microscopy.

Recently Doyen and Drakova [42] used a method of chemisorption theory 

for describing the effect of the tip-surface interaction. They took the effects 

of this interaction into account by modifying the tip states. Their current

expression is:

1 = 2 7T e
h, E  5 ;  5 ;. sj, L·'^. w M  w(u.') (2.11)

M.M'
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where ¡j. and ¡.l' label a convenient set of orbitals localized at the vicinity of 

the tip and represent the outermost tip atom. S  is square root of the sum of 

squared projections of the surface and the extended tip states on these localized 

orbitals. A’s can be approximated by Kronecker deltas. iy(/j) is the normalized 

potential element between the tip atom and the surface. They used this method 

for finding the scans for a step on a flat W (110) surface but as a result of the 

large tip height they used, they did not find any additional effect due to the 

tip-surface interaction.

As discussed in this section, the theory of the Scanning Tunneling 

Microscope is far from being complete. Every method has its own drawbacks, 

and as a result of the complexity of some experimental results, theories can not 

rigorously tested. It is clear that methods from other areas of physics will be 

beneficial for arriving at a conclusive theory.

A number of theoretical and experimental studies indicates the atomic 

nature of tunneling between the tip and the surface. Although the real tip is 

a very large and nonuniform cluster of atoms, the resulting corrugation images 

seem to be related to the outermost atom. For small tip heights one expects to 

have atomic scale interactions between the surface and tip atoms. The correct 

description lies somewhere between independent tunneling and chemisorption 

theory.
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Chapter 3

Analysis of the Tip Induced  

Localized States

3.1 An A tom ic Approach to Scanning Tunnel­

ing M icroscopy of Graphite

3.1.1 E lectronic Structure o f G raphite and the Tip

As commented in Chapter 2 one has to use an atomic method to consider 

the interaction of the tip and the surface at small tip heights in order to analyze 

the reasons of anomalous results of Scanning Tunneling Microscopy. Graphite is 

a very appropriate candidate for this purpose, since its semi-metallic character 

makes it necessary to put the tip in very close proximity of the surface for 

obtaining reasonable tunneling currents. Therefore, graphite will be the subject 

matter of the rest of this work. Arguments similar to those that will be made 

for graphite can also be applied to other structures, such as semiconductors and 

other semi-metals.
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Graphite has a very anisotropic crystal structure [43]. It basically consists 

of honeycomb-like layers, which are in turn loosely bound to the adjacent layers. 

The crystal structure is shown in Figure 3.1. In a layer there are two different 

types of carbon atom sites as far as their bonding arrangements are concerned. 

Half of them have carbon atoms in the neighboring layers which are directly 

above or below them; these are designated as A-type atoms. The other half 

have centers of hexagons directly above or below them; designated as B-type 

atoms. The nearest-neighbor distance is Qq = 1.418 A and the interlayer spacing 

is c/2  = 3.348 A. The primitive translation vectors are:

Ri = ( Go , 0 , 0 )

R2 = ( V3/2  ao , 3/2 ao , 0 ) (3.1)

R3 = ( 0 , 0 . C )

Figure 3.1: Structure of graphite

The dark arrows are the principal translation vectors. The full (open) circles are
A-type (B-type) atoms.

The space group of graphite is PQs/mmc [43,44]. The corresponding point
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group is isomorphic to Df̂ h- There are two inversion centers, one is halfway 

between the two adjacent A-type atoms, and the other is obtained from the first 

one by translating it in the parallel the layers by half a primitive translation 

vector. The local symmetry about the atoms is the same for A- and B-type 

atoms and is isomorphic to the group Dzh- The Brillouin zone of the reciprocal 

lattice is shown in Figure 3.2. The center of the Brillouin zone is the F point 

and the point group is D̂ h- This group has a two-dimensional representation 

E' according to which (x, y) transforms. This leads to degeneracy of the px and 

Py originated bands at the F point. On the line connecting F to H, the point 

group is Czv and it has a two-dimensional representation, compatible with E'. 

At the H point on the top surface of the Brillouin zone the group is again Dzh- 

At the corner of the = 0 cross-section of the zone, namely at K point, the 

point group is Czh- This group has a two-dimensional representation for (x, y). 

Along the line connecting K to the top surface, the point group is Cz- At the 

top surface, P point, the point group is again Czv Along this line the two- 

dimensional representation is continuous.

Carbon is a tetravalent atom having a closed shell Is orbital and a half- 

filled 2s 2p  ̂ shell. The electronic structure of the graphite can be understood in 

terms of crystal structure and the electronic structure of the carbon atom. Since 

the interlayer spacing, c, is much greater than the nearest-neighbor distance, 

oo, carbon atoms can be assumed to form bonds in the plane of the layers. 

Therefore, in-plane hybrid orbitals, directed on the directions of bonds will give
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Figure 3.2: Brillouin, zone of graphite

a good picture of electronic structure. These are the three 2sp^ hybrid orbitals, 

which form a bonds. In a monolayer structure the remaining 2pz orbitals^ do 

not interact with the hybrids because of the different symmetries under cr/j, 

corresponding to the reflection in the layer plane. For the bulk graphite ah is 

not a symmetry operation , thus this separation no longer hold. For kz ^   ̂

there will be a non-zero interaction between these two kinds of orbitals. The 

Pz orbitals of the atoms on the same layer will form tt bonds The small overlap 

of these orbitals leads to a weak van der Waals type of binding of the adjacent 

layers, which is essential in the formation of the crystal [43].

After this qualitative discussion on crystal binding one can look at the 

energy bands of graphite. The graphite monolayer has been investigated by 

several researchers [45]. In the monolayer the A- and B-type atoms become 

equivalent, the point group changes to T>3/i. There is an inversion center 

located at halfway between the two nearest-neighbors. There are three special

^The z-direction is taken as perpendicular to the monolayer plane
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synametry points in the unit cell of graphite monolayer. The first one is the 

position of a monolayer atom, called the on-top position. The second one is 

just at the halfway between the two nearest-neighbor atoms, and is called the 

bridge position. The last one being the center of the hexagon is called the 

hollow site. This nomenclature will be used extensively in Chapters 3 and 4. 

For the monolayer the Brillouin zone is just the = 0 cross-section of the bulk 

graphite Brillouin zone.

The graphite monolayer electronic band structure is shown in Figure 3.6. 

The main features of the bands are summarized as follows [43,45,46]:

• As pointed above a and tt bands, originated from hybrids and 

orbitals respectively, are completely decoupled. The tt and tt* bands have 

bonding and anti-bonding character respectively. At the Brillouin zone 

corner K, these two bands are non-interacting and thus degenerate. This 

energy is the Fermi energy (—8.0 eV). Hence the Fermi surface of the 

graphite monolayer is collapsed to a single point in the Brillouin zone, 

namely K. This means that graphite monolayer is a semi-metal with zero 

band gap.

• The remaining a and cr* bands are like valence and conduction bands 

respectively. But their energies are far from the Fermi level, thus they do 

not effect the electronic properties in an essential way.

• At Fermi level there are four linearly independent states. These states 

can be described as follows: The length of the kK vector is one-third of a
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reciprocal lattice vector. Thus, for the A-type and B-type atom sublattices 

the phase difference between two neighbors will be exp[±i 27t/ 3). These 

two phase differences give two linearly independent states. Furthermore 

one may separate the wavefunctions of A-sublattice and B-sublattice to 

find four linearly independent states. If one uses, for example, a 3 x 3 

geometry for the band calculation all four states can be identified. These 

states will be used in the discussion of electronic structure for the total 

system described in Section 3.2.2.

The bulk properties of graphite have close relations with the monolayer 

structure. Nonetheless there are some corrections due to the non-zero 

interaction between the layers, and these differences determine the actual 

characteristics of graphite. As mentioned above, sp  ̂ and Pz orbitals are 

interacting and as a result the bands will not be reducible for kz ^  0, however 

at the central plane of the Brillouin zone is a proper symmetry operation 

and one can separate the a and tt bands [43,44]. As a second point, interlayer 

interactions will cause splitting of otherwise degenerate bands. Thus Fermi 

surface is not simply a point, but is a cigar-like extension along K-P direction 

of the Brillouin zone. Also the density of states at Fermi level will be different 

than zero. For further information about the electronic properties of graphite, 

one can refer to the work of Tatar and Rabii [43].

The structure of the tip is as important as the structure of the sample. 

The tunneling phenomenon is governed by the electronic structures of these two
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electrodes. In the previous theories [30,31,33,35] the tip was assumed to have 

some particular shapes for the sake of convenience. Since the basic aim of this 

study is to investigate the small separation operation of the Scanning Tunneling 

Microscope, it is absolutely necessary to know the microscopic structure of the 

tip.

The production of the tip is not controllable in the full sense. The tips 

are not reproducible and they deform during the microscopy or preparation. 

The tips are made of metals like W and Au [6,12]. In spite of that it is 

shown that even unreasonably different tips give meaningful results, even atomic 

resolution [28]. The tip is electrochemically etched from single crystal wire of 

diameter ~1 mm, and annealed in high electric field at a proper temperature. 

To have a stable tip, special emphasis have to be given to chose a low energy 

surface pyramid for the tip orientation. This tip is monitored by a Field Ion 

Microscope in the course of production. Kuk and Silverman [28] reported tips 

with an effective diameter of 6.3 A. This tip had a six-atom cluster on the 

surface, and is appropriate for atomic resolution. Tips with monomers, dimers 

and trimers were unstable. After several scans the tip is often deformed by 

adsorption of surface atoms or by hitting to the surface. But it can be cleaned 

and reformed by field evaporation.

More recently Fink [47] reported a detailed study for the production of 

a mono-atomic tip. By using evaporation techniques he managed to form W
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tips with a single atom on the surface. The Field Ion Microscopy patterns 

are shown in Figure 3.3. He also commented that it is possible to design tips 

by evaporating different kind of atoms onto the tip. But these studies are not 

extensively used in Scanning Tunneling Microscopy yet. Nevertheless, it is clear 

that the possibility of building mono-atom tips is very likely.

Figure 3.3: Field-ion pattern of mono-atomic tip

From left to right the first three atomic layers of the tip are shown. The layers are 
lifted by field evaporation. The figure is taken from Reference [47]

Even though the atomic structure of the tip can be analyzed, until now it 

was not possible to find its electronic structure in detail. The tip structure is 

very complicated, which makes a detailed account of the electronic structure 

difficult. This situation becomes a source of uncertainity in the tunneling 

mechanism. Nevertheless, the atomic structure by itself can give an idea about 

the possible model for the tip. In the present study a mono-atomic tip model 

has been used. For atomic scale resolution Park and Quate [14] remark that 

“This suggests that the effective tip must consist of a single atom”.
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3.1.2 T heories for Scanning Tunneling M icroscopy of 

G raphite

As a result of both its unusual electronic structure and appropriateness 

for the Scanning Tunneling Microscopy, graphite has drawn interests of both 

experimentalists and theoreticians. Since the first application of Scanning 

Tunneling Microscopy on graphite there have been a lot of suggestions about 

the mechanism of the anomalous tunneling current.

In 1985 Selloni et al. [48] calculated the energy band structure of graphite 

and found the corrugation maps for different finite biases. They used the 

spherical tip approximation of Tersoff and Hamann [33], and for non-zero biases 

used a triangular barrier for which the analytical tunneling current expression 

is known. They used empirical local pseudo-potential method to calculate 

the energy bands for a graphite slab, placed in a square potential well to 

approximate the surface potential. They found that by changing the bias one 

can tune any of the electron states to image. For infinitesimal bias, their charge 

density contour plots indicate that, the two basis atoms in the surface monolayer 

are not equivalent. However, this point was not recognized initially by Selloni 

et al. [48]. Corrugation amplitude for the on-top position and the hollow-site 

position is approximately 0.7 — 1.0 A. They also pointed out the possibility of 

observing surface states by the use of Scanning Tunneling Microscopy.

In 1986 Batra et al. [26] carried out self-consistent field calculations for
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a graphite slab to investigate the Scanning Tunneling Microscopy data. Their 

results showed that the total charge density has a very small corrugation. In 

their analysis they found for the first time, that the A-type atoms have slightly 

smaller densities than B-type ones. They also found the local density of states 

at the Fermi energy. A typical local charge density plot of their results is shown 

in Figure 3.4. Their results for the corrugation amplitudes for this case increase 

up to 1.5 A between a B-type atom and the hollow-site, and are consistent with 

those of Selloni et al. [48]. However, they [26] observed a more pronounced 

difference, as large as 0.5 A, between the corrugations of different types of 

atoms compared to 0.05 A of Selloni et al. as shown in their figures. Batra and 

Ciraci [49] reported similar results in a study concerning with the tip-surface 

interaction in Scanning Tunneling Microscopy and Atomic Force Microscopy. 

Batra et al. [26] also commented that the huge corrugations and loss of trigonal 

symmetry for the experimental results can be due to a slip of one of the planes. 

Some of the figures in Marti’s work [12] resemble the charge densities obtained 

by the slipped planes. This shows that the slip plane possibility is a reasonable

one.

Tersoff [50] connected the anomalous corrugation to the imaging of 

individual states. In 1986 he analyzed the unusual corrugations observed for 

the graphite and for charge-density waves in TaSe2. Using the tunneling current 

expression he and Hamann [33] derived, he concluded that for structures with 

point-like Fermi surfaces, small biases image only the Fermi level state. This
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Figure 3.4: Local density of states for graphite slab

The density is calculated for a height 3.2 a.u. above the surface plane. The arrow 
indicates the direction on which density increases. The lateral positions are in units of 

a. u. . The figure is taken from Reference [26].

conclusion implies that for some structures it is almost impossible to find the 

topography, just by looking at the tunneling images, since Fermi level state 

need not have to have any basic relation with the atomic structure. Therefore 

it should be clear that depending on the particular system used. Scanning 

Tunneling Microscopy can give information about both surface geometry and 

electronic structure.

Tersoff [50] used a single monolayer for the graphite surface, since the 

interlayer interactions are very small and do not have anything to do with the 

anomalous corrugation. He took the six smallest reciprocal lattice vectors and 

expanded the local density of states in terms of these. Using Equation 2.8 he
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found for the tunneling conductance:

3

(  = l n [ Y ^  siri  ̂ Wn · ?f ] +  Co (3.2)
n = l

where C = 2/i2T(, zt being the tip height, ff = kpp, Co = —In(cr) + 

constant , this constant depending on the experimental and material 

parameters, u) define the directions of the reciprocal lattice vectors, namely 

(0,1), (jV^, —5), and (—|V^, —1). Using this six-plane-wave expansion he 

showed that there are nodes oi p{fo^EF) at the hollow site of the unit cell. 

Which should be clear from the discussion in Section 3.1.1.

This dip at the hollow site means an infinite corrugation, and by itself is 

an anomalous result. However Tersoff commented that this dip is smoothened 

for the graphite slab due to symmetry reduction as a result of interlayer 

interactions [50]. In addition tip wavefunction would have some components 

with non-zero angular momentum around the surface normal, which will couple 

with the surface and give rise to a small but non-zero tunneling current.

Tersoff also found that in the six-plane-wave approximation corrugation 

amplitude is independent of the tip height zt [50]. He stated that this property 

of graphite, while being not exact, is the reason for easy resolution of graphite 

surface. His results indicating that there are some examples for which Scanning 

Tunneling Microscopy images are not related to the topography, but are the 

images of individual states at Fermi level.
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This anomaly for the huge corrugation amplitude in graphite is explained 

in terms of elastic deformations by Soler at al. [23] . They argued that the 

giant corrugations observed are due to the local elastic deformations, which in 

turn enhance the electronically based corrugation. In their experiments they 

observed voltage dependent corrugations and they concluded that for small tip 

heights the tip is practically in “physical” contact with the surface and “It 

is then clear that the actual tip displacement cannot he solely a matter of the 

electronically induced corrugation. They used the standard elasticity theory 

to find the elastic force between the tip and the surface [23]. Their result 

shows that for large tip heights the force is attractive and for small heights it is 

repulsive. One can then qualitatively state that when the tip is on the hollow 

site, there will be a very small current between the tip and the surface. In 

order to keep the current constant the tip will move towards the surface, thus 

by deforming the surface like a membrane it will create a dip-like deformation 

on the surface. This will yield a height reading, very much below the actual 

tip-surface separation. When the tip is on the on-top site, there will be an 

attractive force between the tip and the surface and there will appear a bump 

on the surface. The height reading will give a value larger than the tip-surface 

separation. Combining these two effects one can say that there will be a giant 

corrugation which is not related to the electronic structure of the surface alone.

Using the local density of states formalism for the tunneling current in 

the geometry determined by the elastic force they obtained the corrugation

40



Figure 3.5: Corrugation amplitude as a function of tunneling current

The lines indicate the theoretical results. The circles, triangles and squares are 
experimental values. The figure is taken from Reference [23]

amplitude as a function of tunnel current. The result is shown in Figure 3.5. 

The agreement with experimental results is very good and on the physical basis 

there are reasons for the presence of this kind of mechanism. As a result of 

the loose interlayer binding the graphite surface is sufficiently soft for these 

kind of giant deformations. In addition being a semi-metal with zero energy 

gap, graphite can be inspected by Scanning Tunneling Microscopy only for very 

small tip heights, leading to a strong interaction between the tip and the surface.

Recently Ciraci and Batra [51] carried out calculations for the electronic 

structure of the combined tip and surface system. They found that the total 

energy results lead to a force regime similar to that of Soler et al. [23]. They 

concluded that for small tip heights the height of the barrier becomes smaller
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and a chemical bonding between the tip and the surface becomes possible. For 

this case the system is short circuited to lead to the cease of tunneling.

The giant corrugation amplitude is not the only anomalous result of 

Scanning Tunneling Microscopy in graphite. Mizes et al. [52] recently 

investigated the reasons for the images with different geometries, but having 

the same period. Using the same argument as several other researchers [50], 

they neglected the effects of reciprocal wave-vectors with magnitudes greater 

than that of the smallest six vectors. This negiection resumes on the relation;

-  I fc| P) = (3.3)

Therefore the decay rate of larger Fourier components is larger, and at large 

tip heights they will not contribute to the current. Mizes et al. [52] used a two 

atom tip, with a random phase difference between them. They found that the 

current is proportional to the sum of local densities of states at Fermi level, at 

the positions of the two tip atoms. Since the surface wavefunction is described 

by three Fourier components [50,52], the final result is the summation of two 

sine waves with a phase difference. They showed that by changing this phase 

several different patterns can be obtained as one observed in the experiment. 

These pattern differences have nothing to do with the structure of the surface, 

but is related to the structure and the orientation of the tip with respect to the 

surface.

Another anomalous result was obtained for gold-sputtered surfaces [24].
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The gold atoms give rise to bright dots on the gray-scale output when the tip 

height is large. But when tip gets closer to the surface these dots diminish 

and the adatom becomes invisible. This case is observed by Bryant et al. 

[24] in 1986. They explained this anomaly with the incorporation of the gold 

atom into the graphite. Since gold atom wavefunctions decay into the barrier 

slower than graphite tt bond states, their effects become apparent at large 

distances. However when the tip is near the surface, graphite states dominate 

the corrugation since the gold atom is sitting below the top layer.

Very recently Tomanek et al. [25] investigated the reasons of the 

asymmetric corrugation for A- and B-type atoms. This asymmetry previously 

explained by Batra et al. [26] using the local densities of states and interlayer 

bonding. Tomanek and coworkers commented that this inequality is not a result 

of local densities of states. They calculated the electronic band structure and 

found that 7T bands, localized on A-type atoms disperse along the K-P line as 

a result of interlayer interaction. On the other hand, bands associated with 

the B-type atoms are flat and at the Fermi level. This leads to imaging all 

B-type states in Scanning Tunneling Microscopy, and only a small fraction of 

A-type states due to small energy window through which tunneling occur. Their 

calculations gave qualitatively good result and their results are parallel to those 

of Batra et al. [26]. However, the tip heights they used, that is 1 A and 0.5 A 

are not appropriate to use the local density of states expression for tunneling 

current that will be explained in Section 3.1.2.
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3.2 Energy B and C alculations and Tip In­

duced Localized States

3.2.1 M ethod o f C alculations

In this Section the tip-surface interaction at the atomic scale will be 

analyzed and the states which will be formed as a result of this interaction will 

be characterized. Since our concern is the local features of Scanning Tunneling 

Microscopy, a localized set of orbitals will be used. Linear Combination of 

Atomic Orbitals [53] method is found to be the most appropriate approach. In 

this method the results directly gives the atomic contributions in the eigenstates, 

so the characterization will be via comparison of these contributions. The actual 

problem is to solve the full Schrödinger equation for the system consisting of 

the tip and graphite. However, this system will comprises thousands of atoms, 

even in the vicinity of the tip. Consequently, one has to make some further 

approximations to get a feasible solution. The first one of these is a further 

simplification of the calculation method. In the Tight Binding Method [53] 

one has to handle some basis wavefunctions and model potentials. This will 

make the calculations lengthy and complicated. Therefore the Empirical Tight 

Binding Method [53,54] will be used, in which not the basis wavefunctions, 

but only the Hamiltonian matrix elements are necessary for calculation. These 

matiix elements can be obtained in terms of a minimal set of parameters, which
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in turn fitted to results of either more realistic calculations or experiments.

In Section 3.1.1 it was noted that the graphite monolayer is a very good 

approximation for the bulk graphite, unless the point of interest is implicitly in 

the three dimensional nature of graphite. Since Scanning Tunneling Microscopy 

is basicly an investigation of a surface, graphite can be approximated by a 

single monolayer. This is a very common approximation as long as Scanning 

Tunneling Microscopy is considered. Note that all the experiments cited, are 

made on (0001) plane of the pyrolitic graphite which is the layer plane.

In Section 3.1.1 the tip structure was discussed. However, it is clear from 

the discussion there and in the earlier works, that the exact structure of the tip 

is far from being designable or even reproducible. Therefore, it is not possible 

to use a “real” tip model, but, a “realistic” tip model. In the earlier studies tip 

models are always chosen in such a way that the other approximations involved 

are not affected. Since the objective is to search for the atomic-scale description 

of Scanning Tunneling Microscopy, it is reasonable to use a few-atom tip in the 

calculations. This is a good approximation when the tip height is on the same 

order as atomic length scales. There are some comments in the literature about 

the tip effectively being a single atom [14,47]. A single atom tip will be used in 

the following calculations.

Having determined the geometry of the two parts of system,the next step
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is to incorporate these two parts into a single geometry. To this end a (3x3) 

supercell consisting of nine graphite monolayer unit cells with a single tip atom 

is used. This unit of structure is repeated periodically to prevent the existence 

of cluster states, which are hard to analyze. There will be some effects of this 

artificial periodicity on the electronic states. However, the results will show 

that the effects of periodicity, specifically in inter-tip coupling is negligible for 

the (3x3) structure. In the Brillouin zone of this (3x3) unit cell the Fermi level 

is at the F point as a result of zone folding.

The next step in the present work is the determination of interaction 

matrix elements or energy parameters. For the sake of simplicity the non­

zero interaction parameters are limited to the nearest-neighbor distance and 

the overlap matrix is taken to be equal to identity. This approximation leads 

to an eight parameters set for describing the whole monolayer bands. The ah 

symmetry operation block diagonalizes the 8 x 8 Hamiltonian matrix into a 2 x 2 

and a 6 X  6 matrix. The p, orbitals are interacting only between themselves.

and the band dispersion for their bands is given by:

■B»,,· =  (p.p«)o T 3 (p,Piir)i [2 c o s ( ^ )  +  1] (3.4)

where is the normalized a;-component of k, that is (̂  = 1 at K, the corner of 

the Brillouin zone. The energy parameters are:

(3.5){pzPz)o = < P z i \ ^ \ P z \ >

{PzPzT̂ )! = < P zx \^ \P z2>

the number subscripts are for numbering the basis atoms in the unit cell. By
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fitting the value of E.  ̂ to the results of Tatar and Rabii at the F and K points 

of the Brillouin zone, respectively, one finds:

(PzPz)o = -8.0 eV 

(PzPzT̂ )i = —2.367 eV
(3.6)

For the in plane orbitals the fitting problem is more complicated. The sp'̂  

hybrid orbitals will be used as an intermediate basis set to determine these 

parameters. At the F point of the Brillouin zone the band energies are given 

by the relations:

Flp — — 62 ±  (es +  2 65) =F (2 64 +  ee)
(3.7)

=  6i + 2 62 ± (es + 2 65) 2 (2 64 + 66

where the energy parameters e,·, are the Hamiltonian matrix elements of hybrid 

orbitals \ hj >. The hybrids are defined as follows:

h =  M a

■Sl

Pxl

P y l

S2

Px2

Py2

(3.8)

a = (3.9)

M =

A A 7 Î 0 0 0

A - A A 0 0 0

A 0 v f 0 0 0

0 0 0 A - A
0 0 0 A
0 0 0 0 71
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(3.11)

d  = < h i \ ' i i \ h i >

62 — < I H I /I2 >
63 =  < /ii I H  I /14 >

64 =  < /ii I H  I /l5 >

ee =  < /̂ 2 I H  I /15 >

&Q — < /2.2 I H  I /ig >

From Equation 3.7 one can fix ei and 62 and can find two equations in terms 

of remaining ti's. At the other high symmetry points of the Brillouin zone 

energy eigenvalues are very hard to calculate, so it is convenient to use a least 

square fitting method for adjusting the values of the remaining two independent 

parameters. The result is then transformed back to the atomic orbital basis by 

using the relation:

H' =  a M (3.12)

due to the orthogonality of M. The fitted parameters are given in Table 3.1 and 

the band structure obtained by using this parameters is shown in Figure 3.6. 

The identification of the parameters is made in Reference [53]. The a bands 

have a root-mean-square error of 0.20eV’ along the symmetry directions shown, 

and maximum error is 1.21eF.

An important remark about the determination of interaction parameters 

is the invariance of the intralayer and intra-tip energy parameters as a result 

of the tip-surface interactions. These parameters have to change accordingly, 

as a result of the new diagonalization in terms of the original states, as well. 

However, these changes are coming from the self-consistent field effects. Since 

the method used is not a self-consistent one, and also the results are not

and the matrix elements e,· are defined as:
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Table 3.1: Fitted Hamiltonian matrix elements (eV)

i (55),· (sp)i (ppTT)i (ppcr)i
0 -10.7.3 0 -6.13 0
1 -5.41 5.59 5.844 -2.018

predicting any abrupt transition, as a first order approximation, the above 

assumption holds.

This completes the determination of the monolayer energy parameters of 

graphite. Now the tip parameters and the tip-monolayer interaction parameters 

have to be found. At this point the use of the real extended tip will be made. As 

explained in Chapter 2, the experiment is carried out with a bias voltage applied 

across the barrier, between the metallic tip and the sample surface. Since the 

applied voltage will determine the energy levels of the tip with respect to the 

graphite, one can assume that the orbital energies of the tip atom will be shifted 

with respect to the graphite energy levels accordingly. Thus it is sufficient to 

determine the positions of these orbital energies, for example, with respect to 

the Fermi level of the tip.

In order to determine these energy differences it is necessary to have a 

knowledge about the atomic structure of the tip. However, as noted earlier, the 

tip structure is neither unique, nor controllable. Moreover, it is impossible to
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Figure 3.6: Electronic energy band structure of graphite monolayer

The bands are calculated by using the parameters listed in Table 3.1. The full lines 
are a and a* bands, while the dashed ones are tt and x* bands. The circles and the 

stars pointing the energy values at symmetry points taken from Reference [43].

determine the structure in situ. Therefore one has to make some approximations 

about the tip. In Section 2.3 it was stated that for most of the theoretical work 

the tip and surface work-functions are taken to be equal. The experimentalists, 

on the other hand, report that in experiments with surfaces, for which tip height 

is very small, the tip is contaminated by the surface atoms [27]. Therefore it is 

a good approximation to take the outermost tip atoms of the same species as 

the surface atoms. Accordingly, a carbon atom is used as the tip, in conjuction 

with these observations. Since the tunneling phenomenon comprises only the 

states near the Fermi level it is sufficient to shift the pz orbital energy of the
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Table 3.2: The model wavefunctions and scaling

l-ip ra

-fj>3 r

I'̂ SS — f̂ s

l̂ pp — l̂ p
,, — Mj+Mprsp 2

1.6083

1.5679

1.5881

a  =  x, x j , z

The ¡jt, values are taken from Reference [55]

tip atom to Ep = —8.0 eT̂ . Other orbital energies are shifted accordingly, as if 

the diiferences are equal to those in a graphite monolayer.

The parameters defining the tip-monolayer interaction need a special 

care. As a result of uncertainity in the tip structure it is very hard to find 

a “real” expression for this interaction. However, one can again find “realistic” 

expressions. Since the tip atom is taken to be a carbon atom, its interaction with 

the graphite monolayer will be similar to intralayer interactions. On the other 

hand, in order to investigate the electronic band structure of the system with 

varying tip height, one has to scale the interaction parameters accordingly. This 

scaling can be done by using some exponentially decaying model wavefunctions 

for orbitals. For this purpose Slater type wavefunctions are used and the 

exponential factors are taken from dementi and Raimondi’s [55] study on the
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screening constant. The wavefunction and the exponential factors are given in 

Table 3.2. When the tip-monolayer atom internuclear separation, dts is equal 

to the intralayer nearest-neighbor distance, gq, it is assumed that:

(ss)i5 = (ss)i

{sp)ts = {sp)i (3.13)

{PPT^)ts  =  {PzPzT^)l

where the subscript ts stands for tip-surface interaction. Note that for p — p 

interactions, the monolayer p, orbitals are taken as the starting point since 

they are more likely to be extended into vacuum than sp  ̂ like orbitals which 

form stronger bonds. This assumption leaves the value of (ppcr)ts undetermined. 

For calculating this parameter the simple argument of Harrison [53] about the 

comparison of free-electron and Bloch wave dispersions is used. The related

expression is:

(ppa)ts = -4  {ppTr)t3 (3.14)

The resulting parameters are also listed in Table 3.2. When tip-monolayer atom 

separation is different than Oq, the above parameters are scaled by the factor:

expl-iHj (du -  ao)| (3.15)

The tip-surface interaction is not limited only to the nearest-neighbors. Since 

the tip atom p̂  orbital is assumed to be a free orbital without any strong binding 

to the other tip atoms, this orbital is more like to interact with several atoms. 

From the above cited work one can find /U,, and Ppp, for psp the arithmetic 

average of the first two is used.

52



Determining the energy parameters one can built up the Hamiltonian for 

the complete system and diagonalize it. For this purpose the standard method 

of band theory for Empirical Tight Binding calculations is used. The detailed 

description of this method is given by Slater and Koster [54].

3.2.2 R esu lts o f C alculations

Using the Empirical Tight Binding method described in Section 3.2.1 the 

electronic band structure for the combined monolayer-tip system is calculated 

for different configurations. The results lead to identification of a new class of 

states, namely Tip Induced Localized States. Owing to the interaction between 

the tip and the surface at small tip heights, the degeneracy of the states mainly 

localized at the tip and the surface are lifted. These states hybridized to form 

new bonding and anti-bonding like states in the vicinity of the tip. The energies 

and the orbital characters of these states strongly depend on the lateral position 

of the tip in addition to its height. Thus it can be concluded that the formation 

of these states effect the Scanning Tunneling Microscopy in a nonlinear manner. 

This subject will be the topic of Chapter 4. In this Chapter the results of 

electronic energy band calculation results will be given. The preliminary results 

of these study was reported before [56], where a different set of parameters was 

used and so there are some quantitative differences between them. However, 

the qualitative results are the same.
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It is clear from the structure of the graphite that the interaction between 

the tip and the surface will be most significant when the tip atom is at the 

on-top position. At this position the internuclear distance between the tip and 

surface atoms is smallest for the given tip height. Furthermore, the symmetry 

of the original states allows localization of certain states. Therefore, the on-top 

position will be the focus of attention.

For several tip heights ranging from 1 A to 5 A the electronic band 

structure of the combined system is calculated by using the method described 

in Section 3.2.1. From the results three different regimes of interaction were 

identified.^

The first one is the chemical binding regime. This case occurs for tip 

heights between 1 A and ~  1.75 A. Both qualitative and quantitative features 

of states are changing drastically when one changes the height between these 

limits. The band diagrams for this interaction regime for four different tip 

heights are given in Figure 3.7. Some preliminary observations about the system 

is as follows:

i. The nearest-neighbor separation of graphite monolayer is ~ 1.45 A. Thus 

the cases under consideration correspond to chemical contact between the 

tip and the surface. For these tip heights the single atom approximation of

^The tip atom is taken to be on an A-type graphite monolayer atom. In spite of the fact 
that A- and B-type atoms are identical for a single layer, I will use this notation for the sake 
of brievity.
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the tip is not very accurate since the interaction between the surface and 

the tip is large enough to effect the tip states very much alike the substrate 

states. Nevertheless, it gives an idea about the strong interaction of the 

tip and the surface.

ii. Due to the exponential scaling of interaction parameters, the rate of 

change of parameters is large as compared to that of the large tip heights. 

This variation may lead to changes in the band structure as well.

hi. The symmetry of this particular lateral position manifests the degeneracy 

of bands at some special points of Brillouin zone as explained in 

Section 3.1.1. In conjuction with (ii) one expects some important variation 

in the band structure as a function of tip height.

For the tip height equal to 1 A (Figure 3.7.a):

• The bands labeled TSi are monolayer 7r-like states with a significant 

orbital contribution of B-type atoms. Around F point of the Brillouin 

zone the tip and Py states begin to mix with them. At F the energy is 

—8.74 eV and the tip contribution is 17%.

• The band labeled Ti is formed mainly by the tip p. orbital and behaves 

like a bonding state of the tip and monolayer. The energy is —8.10 eV 

without a significant dispersion, and the tip contribution is 85%.

• The bands labeled TS2 are again mixed states of tip Px and Py orbitals and 

monolayer tt* and a* states. The contribution of the tip decreases towards
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Figure 3.7: Band structure for the on-top position-I 

Tip height is equal to a) 1.0 A, b) 1.25 A, c) 1.50 A, d) 1.75 A.

r  point and diminishes there. At the F point the states are identically 

monolayer states localized on the A-type atoms at —8.0 eV (Ep).

The earlier theories of Scanning Tunneling Microscopy of graphite were 

based on the m = 0 orbitals of the tip^, that is s and p, for / = 0 and / = 1, 

respectively [33]. The other orbitals which are elements of m ^  0 classes 

are shown to have minor effects on the tunneling current [34]. In the system 

described above and py orbitals play important roles. This is a direct result

of chemical bonding nature of the interaction. It will be shown that for larger

is the angular momentum component parallel to the z-axis. The m 7̂ 0 states have nodes 
on the z-axis between the tip and the surface regions to result in smaller contributions to the 
tunneling current.
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tip heights, these states will not mix with others to contribute to the tunneling 

current appreciably. Thus, for those cases the result for non-interacting tip 

and surface model can be applied to the interacting model. At this point a 

comment about the validity of this calculation is in order. It is clear that a 

tip height of 1 A is the chemical interaction regime, thus the fitted parameters 

in this Empirical Tight Binding method or the smooth pseudo-wavefunctions 

in a Pseudopotential calculation will be insufficient to represent the effects of 

the atomic cores which become effective for small distance. Nonetheless, these 

results can be used in a qualitative way, in order to explore the trend.

For the tip height equal to 1.25 A (Figure 3.7.b):

• The bands labeled TSi in the previous case are not present for this tip 

height. The new band labeled TSi is a bonding state of the tip orbital 

and 7T states of monolayer localized on the A-type atoms. Due to strong 

interaction it is well below the Fermi energy. At P, its energy is —9.73 eV 

and the tip contribution is rather small (3%). •

• The band labeled TS2 is reminescent of the above described bands for 

tip height 1 A with an almost zero tip contribution. Its energy at P is 

-8.26 eV.

• The band labeled TS3 is built up of both tip orbitals and monolayer tt 

states localized on the B-type atoms. These states come together by a 

weak contribution of monolayer states of the A-type atoms. At P, the tip
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contribution diminishes and the band becomes degenerate with TS2. The 

tip contribution is mainly s-like and the rest from p,.

• The band labeled Ti is a bonding state of the tip s orbital and monolayer 

states. The tip contribution is 60% and the energy is ~ —7.25 eV.

• The band labeled TS4 is the reminiscent of the above descrij^ed state TS2 

for 1 A. The degeneracy is lifted and there is only one state with the same 

character. The tip contribution is smaller than that of TS2 for 1 A.

• Above these bands there are two bonding states of tip and py orbitals 

and monolayer a* states. These bands are characteristic for the cases 

described below.

The change in the band structure shows a transition from the chemical 

binding to weak interaction between the tip and the surface. The energy of the 

tip s orbital and the symmetries of tip px and py orbitals imply the insignificant 

roles of these orbitals in Scanning Tunneling Microscopy. However, it should 

be noted that when the tip is extremely close to the surface the situation is no 

more tunneling but a chemical interaction. This leads to the formation of states 

originating from these orbitals and energies close to the Fermi level. However, 

when the tip retracts away from the surface the interaction becomes weaker. 

Due to the reduced interaction among the orbitals,the bands originated from 

these orbitals begin to shift to energies closer to the original orbital energies. 

The only relevant orbital, namely the tip p̂  orbital, begins to contribute to the 

tip-surface mixed states in an essential way. The two diagrams for tip heights
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of 1.5 A and 1.75 A show this shift of bands. The detailed analysis of these 

bands show that the main features are not very much different than the ones 

listed above for tip height of 1.25 A. Therefore these band diagrams which are
f

shown in Figure 3.7 .c and .d will not be analyzed in detail here.

The second regime apparent from the band diagrams is the weak 

interaction regime. This regime is named as Tip Induced Localized States regime. 

This regime includes tip heights from 2 A to ~  3.5 A. The band structures are 

shown in Figure 3.8. The qualitative features of the bands are the same for 

the whole range of tip heights. Only some quantitative properties are changing. 

This is why effects of tip height in Scanning Tunneling Microscopy are varying 

nonlinearly. The bands will be analyzed for tip height 2 A in detail, and for 

other tip heights only the related quantities will be given.

For the tip height equal to 2 A (Figure 3.8.a):

• The band labeled TSi is one of the Tip Induced Localized States. It is 

a mixture of the tip Pz orbital and the monolayer tt states. The main 

contribution of monolayer is from the A-type atoms. Away from the F 

point the state has a small tip component and becomes a pure tt state. At 

r  it is a bonding state. To pictorize its local bonding character its local 

density of states is shown in Figure 3.9. The tip contribution increases 

towards the center of Brillouin zone. The energy at F is —8.63 eV, the 

tip contribution is 36%.
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Figure 3.8: Band structure for the on-top position-II 

Tip height is equal to a) 2.0 A, b) 2.25 A, c) 2.50 A, d) 2.75 A.

• The band labeled Si is almost like the free monolayer tt state. The tip 

contribution is less than 1%. It is clear that this is a monolayer state 

which is both orthogonal to and not interacting with tip orbital. Thus 

it survives without any change when the tip gets closer to the surface. At 

r  it is exactly at the Fermi level.

• The band labeled Ti has 75% tip contribution away from F. The energy 

is —7.73 eV. Near the center of the Brillouin zone this band changes 

character and becomes a monolayer state. At F it is a pure monolayer 

state at the Fermi energy.
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• The band labeled S2 is the counterpart of Si. It is a tt* state of the 

monolayer.

• The band labeled TS2 is the counterpart of the first Tip Induced Localized 

State. It is produced by the tip pz orbital and monolayer tt* state, and 

has anti-bonding character. At T, its energy is —7.12 eV and the tip 

contribution is %52.

• The states which have originated from the tip s, Px and Py orbitals are 

near the orbital energies of these states. Their monolayer contributions 

are very small. Due to the symmetry of Brillouin zone it is not possible 

to find doubly-degenerated states at a  ̂ point other than F or K. This 

leads to anti-crossing of bands. Around these anti-crossing points the tip 

and the monolayer states begin to mix. However this is not an essential 

interaction.

The detailed information about the tip height dependence of these 

quantities are given in Table 3.3. It is expected that the Tip Induced Localized 

States get closer to the Fermi energy with increasing tip height. This is a direct 

consequence of the decreasing strength of interaction. The third regime is just 

a smooth transition of Tip Induced Localized States into pure tip states. The 

numerical results do not fit to this expectation, but the reason for this is the 

degeneracy of the tip pz orbital and monolayer state at the Fermi level for 

infinite separation. This point will be clearer with the discussion in Section 4.3. 

This full decoupling situation occurs at tip height ~  3.5 A .  Beyond this tip
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Figure 3.9: Local density of states for TSi

The tip height is equal to 2.0 A. The density of states are calculated 2.0 A above the 
monolayer. The dark areas represent the regions with low density. The density is 

changing by a factor 4.3 between two consecutive contours. Stars are the monolayer 
atom positions and triangles are the projections of the tip atoms on the monolayer

plane.

height the band diagram of this total system is just projection of tip electronic 

energies onto the monolayer energy band. This regime is called the independent 

electrode regime.

This completes the discussion on the effects of the tip-surface interaction 

on the band structure of the system for the tip located at the on-top site 

position. As a final conclusion one can say that for small tip heights the 

independent electrode approximation fails and the system needs to be handled 

as a whole. This is the case for Scanning Tunneling Microscopy of graphite.
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Table 3.3: The band results for the on-top position

tip height (A)

E h ,  i^V)
tip contribution(%)

Et, (eF)

tip contribution(%)

Eis, (e r)
tip contribution(%)

2.00

-8.63

36

-7.73

76

-7.12

52

2.25

-8.33

43

-7.90

93

-7.59

54

2.50

-8.17

47

-7.97

98

-7.81

53

2.75

-8.08

48

-7.99

99

-7.91

52

3.00

-8.04

49

- 8.00

100

-7.96
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There are two other lateral positions of the tip which have importance 

as long as the effects of tip-surface interaction are concerned. One of them 

is the hollow site. This position is the center of the hexagonal honeycomb 

ring. The earlier theories predicted zero tunneling current for this position for 

a monolayer [50]. Now the band structures shown in Figure 3.10 will be analyze.

For the tip height equal to 1 A (Figure 3.10.a):

• The bands labeled Sx are monolayer tt states. They deviated from the free 

monolayer bands in the vicinity of F. At this point the tip contribution 

is 7%, and the energy is —8.64 eV. •

• The band labeled TSi is the binding state of the tip s and pz orbitals and 

monolayer tt states. The tip contribution is ~  90% and at F the energy
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Figure 3.10: Band structure for the hollow-site position 

Tip height is equal to a) 1.0 A, b) 2.0 A, c) 3.0 A, d) 4.0 /1.

is —8.84 eV. There is an anti-crossing with Si bands near the center of 

Brillouin zone.

• The bands labeled S2 are monolayer tt* • states. The tip contribution is 

negligible. They are degenerate at the center of the Brillouin zone at the 

Fermi level.

The above observations show that for the hollow-site position there is a 

chemical bonding regime just as the on-top position. However, for this case 

the weak interaction regime is not important as it is for the previous one. The 

symmetry of hollow-site position predicts no bonding states at all. This is the

64



direct consequence of the eciuivalence of all six ring atoms, that is their phases 

for states at the Fermi level cancel each other to give a zero sum. Nevertheless 

for tip heights ~ 2 A, as a result of the long range interactions of the tip atom 

with the surface, one may find some pseudo-Tip Induced Localized States. For 

these states the tip contribution is still less than 2%. Thus one can conclude that 

no bonding states can be found for the hollow-site position. This remark is a 

stronger manifestation of a large corrugation for graphite in Scanning Tunneling 

Microscopy, as it will be explained in Chapter 4.

The third special position is the bridge position which lies at the middle 

of the line segment connecting two nearest-neighbors. The band structures are 

shown in Figure 3.11.

For the tip height equal to 1 A (Figure 3.11.a):

• The bands labeled TSi and TS2 are mixed states of the tip orbitals and 

the monolayer states. For TSi tip px and Py contribution is ~ 3% and for 

TS2 tip s and Pz contribution is ~  7%. Their energies are ~ —9.2 eV and 

—7.2 eV, respectively. The anti-crossings with other bands are clearly 

visible.

• The bands labeled Si and S2 are mainly monolayer tt and tt* states. The 

tip contribution is less than 3%. They are degenerated at the center of 

Brillouin zone with energies at the Fermi level.
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Figure 3.11; Band structure for the bridge position 

Tip height is equal to a) 1.0 A, b) 2.0 A, c) 3.0 A, d) 4.0 A. •

• The band labeled Ti is a tip px and py band at energy —6.3 eV. Again 

the anti-crossings are tractable.

This case again exhibits the basic features of chemical binding. Due to the 

geometry and the symmetry of bridge position the weak interaction regime is not 

as effective as it was for the on-top position. The bands shown in Figure 3.11.b 

and .c are qualitatively equivalent to those in Figure 3.8. The quantitative 

results are given in Table 3.4.

The above analysis shows that the tip-surface interaction at the atomic
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Table 3.4: The band results for the bridge position

tip height (A) 2.00 3.00

-̂ T5i -8.53 -8.04

tip contribution(%) 37 49

Et, (eV) -7.77 -8.00

tip contribution(%) 81 100

E L ·,  i ‘ V ) -7.23 -7.96

tip contribution(%) 55 51

scale is playing a dominant role in electronic band structure for small tip heights. 

It is expected that the tunneling phenomenon will be modified as a result of 

the presence of these Tip Induced Localized States. This will be the subject of 

Chapter 4.
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Chapter 4

Tunneling Current for Small Tip 

Height Regim e

4.1 B ardeen’s Form alism  for Tunneling

In Section 2.3 it was pointed out that the theory used for the Scanning 

Tunneling Microscopy is based on Bardeen’s formalism [11] for tunneling. In 

the present section this formalism and its application to Scanning Tunneling 

Microscopy will be outlined.

The phenomenon of tunneling is a transition between two states which 

are originally eigenstates of different structures. This transition is activated by 

the overlap of the wavefunctions in the region which separates those structures, 

the so-called barrier region. The preceding brief description can be taken as 

the starting point of Bardeen’s formalism [11]. It is very appropriate to expand 

the total wavefunction for tunneling in terms of the original eigenstates of two 

electrodes, so that for t —> —oo this state will be approximately equal to one 

of left electrode’s eigentstates, and for i —̂ oo there will be transmitted and
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reflected constituents of the total wavefunction.

In Bardeen’s theory electrons are treated in one-dimension, but by a 

careful analysis the theory can be extended to three-dimension. The tunneling 

structure that he had used in his original work is a barrier region extending 

between Xa and Xb {xa < Xb) and two semi-inflnite electrodes. Since one 

of the most important cases of tunneling is with superconducting electrodes, 

he employs a many-particle description of the electrodes. This many-body 

form can be simplified to give a one-particle expression for Scanning Tunneling 

Microscopy studies, since the many-body aspects of this phenomenon is not 

known completely, and the systems that are investigated can be analyzed by an 

effective one-particle Hamiltonian without considerable errors.

For the system described above let us consider the ground state Tq and 

an excited state '^mn which differs from the former by the transfer of a quasi­

electron labeled m from the left electrode into a quasi-electron state n in the 

right electrode. The quasi-particle concept is used to emphasize that these states 

are many-body states. These quasi-electron states m and n are oscillatory in 

the left and right electrodes, respectively, and decaying exponentially into the 

barrier region. Bardeen assumed that these wavefunctions smoothly approach 

to zero beyond the edge of the barrier, into the other electrode [11]. Thus these 

states are the quasi-particle states of infinitely separated electrodes in the first 

order.
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some given regions of space. The same method that is used for the decay of 

a state into others can also be used here. Since the electron is initially in 

and assuming that dao/dt ~  0, hmn{t) — 0, and ao{t) ~  1, one finds a simple 

expression for the transition amplitude from To to that is for the tunneling 

from the left to the right electrode.

~ <  'î™, I H -  I «îo > (4.5)

Because the prefactor of the exponential does not depend on time, one gets a 

Dirac-delta function after the time integration. The total tunneling probability 

is given by the magnitude squared of the total transition amplitude. The 

possibility of degeneracy is excluded here by using a quasi-continuous spectrum 

for the electrodes, then the resulting probability will be the sum of individual 

probabilities due to the Dirac-delta functions. Finally, the tunneling current 

can be written as:

_ 2 7T e ^ ^  j -
S(̂ Eq — £*77171 ) (4.6)

where, Mmn —< ^mn I H — Flo I ’ï'o >· Note that the tunneling current can be 

written as the product of the electronic charge and the transition probability 

per unit time. This final form is very similar to the Fermi’s Golden rule in 

time-dependent perturbation theory.

The specifics of the tunneling problem enables one to simplify the 

expression for Mmn- From Equation 4.1 it is clear that the integral for Mmn is 

over TZr only, since in the integrand is identically zero. To make the integral
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symmetric in L and R one can add a term which vanishes identically in TZr [11]. 

Using Equation 4.1 one gets:

(4.7)
JTCr

The total Hamiltonian consists of a part including the kinetic terms, and the 

potential energy part. The potential energy part does not contribute to the 

above integral. The expression then simplifies to:

Mmn = cPr
m JtZr

(4.S)

where —h^/2m is used for the summation of kinetic energy operators of all 

electrons in the system. Using Gauss’ law one finds:

M„ 2 m JdTiR (4.9)

where dS is the infinitesimal normal vector pointing towards TZl and the 

integration is over the boundary of 'R-r . The integrand has a similar form 

as the quantum mechanical current operator. As before, the difference lies in 

the fact that these states form an overcomplete non-orthogonal basis. Bardeen 

defined the current operator as [11]:

Af)Tin I ?i j dS ■ Jmn JdTlR
(4.10)

where:

Jm n  —  ·

1
i 2% m -  ío Ví ; , ! (4.11)

In the one-dimensional case this current density is constant in the interval 

[xa,Xb] irrespective of the actual point of evaluation and the integral in
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Equation 4.9 can be computed over any surface lying within TZr f) IZi,. This final 

current expression is used in most of Scanning Tunneling Microscopy studies by 

replacing many-body wavefunctions with effective one-particle wavefunctions, 

due to the assumption of only one particle involves in tunneling, and adding 

the bias term. In order to include the statistical probabilities of individual 

transitions, appropriate Fermi-Dirac distribution functions are also included:

2 7T e
n X: I I" 6{E„ - E g  + eV) /(£?. + eV) (1 -  f(Ep)] (4.12)

ap

where a labels the tip states and ^  the states of the sample, /  is the Fermi-Dirac 

distribution, and V is the bias applied between the tip and the sample.

Bardeen’s expression is not adequate for analyzing the effects of Tip 

Induced Localized States in Scanning Tunneling Microscopy, and has to be 

modified accordingly. In the next Section this modification will be handled.

4.2 Tunneling Current in the P resence of Tip

Induced Localized States

Bardeen’s approach to the tunneling, described in the preceding Section, 

originates from the assumption that the tunneling phenomenon can be described 

in terms of original eigenstates of two electrodes. As it is discussed in detail 

in Section 3.2.2 when the tip height becomes of the order of nearest-neighbor 

spacing of the surface under consideration some Tip Induced Localized States
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begin to be formed in the vicinity of the tip. It is shown that these states 

effect the electronic band structure of the system in an essential manner. 

Consequently one expects them to have their effects in the tunneling current as 

well.

The first observation is that for the above outlined system, the previously 

used theory becomes insufficient. In Bardeen’s formalism [11] for a new set of 

physically different states, that is for the states of the second electrode, the set 

of basis functions was added to the previous one at the cost of over completeness. 

Using this argument, I included a new set of states, namely the Tip Induced 

Localized States in the basis set used by Bardeen. It is clear that the original 

basis set is sufficient to express these states, nonetheless in order to display 

the physical implications of these new localized states it is necessary to include 

them explicitly.

The second observation is about the physical meaning of Bardeen’s current 

expression. If the total Hamiltonian H of the system could be solved, the 

tunneling current can be expressed in terms of the eigenstates of this single 

Hamiltonian. This is the case for one-dimension for which the barrier profile 

becomes a simple analytic expression, such as of rectangular or trapezoidal 

shapes. Those solutions can be used in the simple quantum mechanical current 

expression in order to find the total current. The analysis of Chapter 3 is not 

to be confused with this type of a calculation. For a complete analysis of the
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system, emphasis should be given also to the extended nature of the electrodes 

in addition to the local effects. The Empirical Tight Binding calculations used 

in this study includes only the local interaction of the tip and the surface, 

but not their extended natures. Therefore, results of the electronic structure 

calculations have to be used in conjuction with the traveling wave solutions of 

the electrodes to get a correct expression for tunneling current.

In the new scheme, the space is divided to three fictitious regions. In 

addition to Bardeen’s left and right regions I use a new region TIt i l s  which lies 

in the close proximity of the tip, and where the Tip Induced Localized States 

are good solutions of the total Hamiltonian.

H  =  E<,-p T i , - p ( r )  f e T Z t i p

H T,( r )  = E, T,(fO f e n ,  (4.13)

H TT7i 5(r) =  Exils "^^TiLs(f) f  € n^Ls

where s stands for R  in Equation 4.1, and tip for L. The total wavefunction is

now constructed by including these new states , similar to Equation 4.3. Using

the approximations bxiLs,bs — 0; daup/dt ~  0; and aup 1 the Schrödinger

equation leads to the following set:

bs —i ( M , ^ U p  -  S ·  M x i L s - t i p )

b x i L S
~ h { i - \ s  p)

{ M x i L s - t i p  -  s M s . t i p )

( 4 .14)

where:

^TILS-tip = 3^  f  ̂  ~

■̂̂3 — tip (4.15)
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where the integrations are over the boundary of TZup. Carrying out the 

integrations one gets:

/  = I  TV e
ft (1_ I 5  |2)2 S  I -  5" Mms-tip P -  E.) (4.16)

This expression is the final form that can be obtained at this point. Some 

approximations may cause it to simplify into a more compact form. These 

cases will be investigated in Section 4.4 and 4.3.

4.3 A Sim ple M odel for the Effects o f Tip- 

Surface Interaction

The derivation of the tunneling current in Section 4.2 showed that as a 

result of the tip-surface interaction the tunneling states of the combined system 

are different from a simple superposition of the original states of two electrodes. 

As a simple picture of this result, here the problem for the on-site position of 

graphite will be analyzed.

The atomic structure for the tip at the on-top position was investigated in 

Section 3.1.1. The relevant basis states for the system are the pz orbital of the 

tip iptip, and the Fermi level states of the surface (/?/, (/?//, and Where

<pi and ip} are two linearly independent states localized on the A-sublattice and 

at the Fermi level, and p n  and p}j are the same for the B-sublattice. The Tip 

Induced Localized States can be expressed in terms of these basis states as a
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first order approximation. The problem reduces to finding the eigenstates of 

the combined system:

a,· î i i = tip, I, I*, II, II*
i

H a =  i;a

(4.17)

(4.18)

It is clear that the basis states ipu a.nd ip]j do not have any non-zero matrix 

elements with other basis states. Thus the final Hamiltonian matrix is as follows:

Etip Ht—i
H = (4.19)Ht-i El 0

Ht-i 0 El

Here the fact that the Ht-i is real, is due to the strong short-range interaction 

between the tip and the surface. The system is assumed to be in the Tip Induced 

States regime, thus only the nearest-neighbor interactions are considered. Note 

that E[ = Ell = Ep- Another observation is the symmetry for (pi and ip}. The 

three eigenstates of the system are obtained as:

E = Ef T = ^11
E = Ef = (4.20)

E = Ef T =

The presence of these undistorted states was seen in Section 3.2.2 as well. In

order to find the Tip Induced Localized States one has to solve the following

2 x 2  matrix equation in terms of (pup and (ipi -|- ip})/^/2:

Etip y/2 Ht-i 

Ht-i E[

O-tip
= E

0,tip

a/+ a/+
(4.21)

The solutions are:

El + Etip ,
El,2 -  -  ± + 2 H i ,

, 1/2

(4.22)
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At this point certain realistic considerations are in order. The tip is assumed to 

be at a infinitesimally higher energy than the surface in order to guarantee that 

there will be a tunneling current from the tip to the surface. The interaction 

of the tip and the surface is an exponentially decaying function of the distance. 

That is one takes:
Etip = Ep q Vq

(4.23
Ht-i = q Uo

where q is the electronic charge and h is the tip height. Substituting these in 

Equation 4.22 one gets;

E,a = Ef + ' ^  ±q Uoe-̂ >̂  + 2
 ̂ L 2 oo .

, 1/2

(̂1-2) _<2/+ -  'S
r. Vi,Vi) 1

A U o ^ 2  V2tfo
2 , 9  - 2 p .h

,1/2'
( T ^ r  + 2e , ( 1.2 )

(4.24)

(4.25)

It is clear that Ei corresponds to the anti-bonding state, and E2 corresponds to 

the bonding state. One important limiting case is the independent tip regime, 

namely /1 —> 00. In this limit both of the energies approach to the Fermi level.

a1+ = 0

= 0
(4.26)

Thus the tip and surface states decouples. The bias is assumed to be low enough

for the tip heights of interest, so that one can write:

„(1.2) _  ^  1 „(1.2) _  ^1
~ ^  72 -  ^2 ^  ̂27)

E l ,2 =  E p  y/2 q  e~^^ UQ

Now using these results in Equation 4.16 one obtains the tunneling current. 

Note that the overlap of the Tip Induced State and the original monolayer

state is:

5 = V2 a/+ = 4 (4.28)
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There is a point which needs special attention. For the independent electrode 

regime S  becomes one and the current becomes infinite. However it follows 

from the discussion of Section 4.2 that the related Tip Induced States have to 

be empty prior to tunneling. On the contrary the bonding state is filled and 

contributes only to the higher order effects which are neglected in Bardeen’s 

formalism. Therefore one gets for Vo <C Uo&~̂  ̂ by using the normalization of 

the states and the simple phases of the terms in the magnitude square bracket 

in Equation 4.16:

/ = 4 I p  E I  -  E,) (4.29)

The matrix elements M  can be calculated by considering the original problem. 

Since the self-consistent corrections are neglected, the M's are the ones which 

will appear in the equations for the independent tip regime. That is it is 

sufficient to use the Tip Induced Localized State and the original states of 

the electrodes to calculate the matrix elements above. One writes:

^  Ms-tip = {-----IldosŶ ^
^  2 7T oŝ tip ^

Y ]  M r i L S - t i p  =  - i  ( x --------  I r i L S - t i p Y ^ ^
S %  2 7T g

(4.30)

(4.31)

where I l d o s  is the current calculated in the independent electrode approxima­

tion, and Ir iL S - tip  is the current input into the Tip Induced Localized State 

from the tip:

Ir iL S-tip  — ------ -- I C( p (4.32)m

where kp is the Fermi wave-vector and C( is the tip contribution to the Tip
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Induced Localized State and is given by:

— t̂ip — ^ (4.33)

The final form of the current expression becomes:

— {4 Ildos + 2 IxiLS-tip} = (4 Ildos -\-G \ct p) (4.34)

where G includes only geometrical terms and material parameters, and is of the 

order of Ildos· Note that Equation 4.34 is valid for on-top site only. As a first- 

order approximation G is the ratio of the exponential factors of tip and surface 

wavefunctions, that is G/Ildos — kp/n and for typical experimental values is 

equal to 1.25. Thus at the on-top position the real current is ~ 5.25 times larger 

than the one calculated by using the independent electrode approximation.

As it was shown in Section 3.2.2 for the hollow-site position of the tip 

no Tip Induced Localized States exist. Therefore the independent electrode 

approximation is valid for small tip heights as well. The current is simply Ildos·

It is clear that the Tip Induced Localized States affect the tunneling in an 

essential way. For a general position of the tip it is hard to obtain an analytical 

calculation for the resulting current, as done in this Section. In the following 

Section the results for the graphite surface will be given.
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4.4 Tunneling Current For Small Tip Heights: 

Graphite

The analytical model of the previous Section showed that there can be 

large enhancements in tunneling current as a result of the tip-surface interaction. 

To observe these effects I carried out numerical calculations using the methods 

described in Section 3.2.1 for tip heights ranging from 2 A to 2.75 A. In 

Section 3.2.2 it is shown that in this range the electronic structure belongs to 

the Tip Induced Localized States regime. For the other two regimes described 

there, there is no need for extensive analysis of current. In the chemical binding 

regime the tip and the surface are electrically connected to each other and this 

is not a normal operation mode of the Scanning Tunneling Microscope. In the 

independent electrode regime, previous theories give acceptable results in terms 

of the local density of states at the Fermi level. In this Section the results of 

these calculations will be presented.

Before analyzing the results of the combined system, it will be beneficial 

to look at the independent electrode approximation results. The local densities 

of states at Fermi level are shown in Figure 4.1. In Figure 4.2 the same 

quantity is shown as a function of both height from the surface and the lateral 

position. It is clear from the figure that, the corrugation of the local density gets 

smaller as one gets away from the surface. This remark is in disagreement with 

Tersoff’s result [50]. But his six-plane-wave expansion is just an approximation
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Figure 4.1: Local density of states for graphite monolayer

Tip height is a) 2.0 A, b) 2.25 A, c) 2.5 A, d) 2.75 A. The inset shows the geometry 
of the cell in which the corresponding quantities are calculated. 0 stands for the 

on-top site, H for the hollow site, and B for the bridge site.

to the realistic model, and does not contain wavevectors other than the smallest 

reciprocal lattice vectors, which are responsible for the local features of the state 

function and the smoothening of the density at large distances.

In the absence of the tip-surface interaction these functions would 

determine the tunneling current. However there are also the Tip Induced 

Localized States. Their energies as a function of tip height and lateral position 

are shown in Figure 4.3. It is observable that the effect of interaction is
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Figure 4.2: Local density of states in the vertical plane for graphite monolayer

a) Along the line between two on-top sites, b) Along the line between an on-top site 
and a hollow-site. The density is changing by a factor 1.65 between two consecutive

contours

maximum at the on-top position and diminishes smoothly towards the hollow- 

site position. To compare these results of the Empirical Tight Binding method 

with the results obtained by the analytical method described in the previous 

Section, Tip Induced Localized State energies for the on-top position and 

different heights are shown in Figure 4.4. This curve is fitted to an exponential 

function and the following parameters for that are found:

3.06 = 1.59 a.u.-^ (4.35)

qUo = 11.04 eV (4.36)

These values are very close to the ones used in the numerical band
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Figure 4.3: Energies of tip induced localized states

Tip height is a) 2.25 A, b) 2.5 A, c) 2.75 A, d) 2.75 A. The geometry is the same as
Figure 4.1.

calculations, namely to 1.5888 and 9.4846, respectively. The error in Uq is 

due to the shift of the tip Pz state to higher energy, thus the related shift of this 

state with respect to its original energy level. Thus the Tip Induced Localized 

State regime is confirmed once more.

The calculations reveal that at any position of the unit cell, except the 

hollow-site position. Tip Induced Localized States are formed. Furthermore the 

tip contribution to these states are almost equal at all of these points. This can 

be understood as a consequence of the degeneracy of the tip and the surface
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Figure 4.4: Energies of tip induced localized states: On-Top Position

states. This degeneracy is lifted when the small bias is of the same order as the 

tip-surface interaction parameter:

Vo ~  Uo (4.37)

for a bias of 10 mV, the relevant distance is ~ 3.5 A. The tunneling is modified 

by the presence of the Tip Induced Localized States when the tip height is 

smaller than this value.

It is shown in Section 3.2.2 that there are three undistorted Fermi level 

states even in the presence of the Tip Induced Localized States. Thus in the 

four dimensional basis space formed by (/?/, (pu^dxiá the tip determines 

one direction and there are three states produced by the monolayer states, and 

at the Fermi level. In order to find S  to be used in Equation 4.16 one just takes
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Figure 4.5: Tunneling current

Tip height is a) 2.25 A, b) 2.5 A, c) 2.75 A, d) 2.75 A. The geometry is the same as
Figure 4.1.

the square of the magnitude of this value. One can use the relation:

I  = {1- I S  p} ^(Ildos+ I 5 P G I Ci p) (4.38)

for calculating the tunneling current for any tip position. Now remains the 

determination of G. From the definition of MxiLS-t h is clear that the relevant 

integration is over the boundary of the tip region, Thus G corresponds to 

a transition probability from the tip into the Tip Induced Localized State. It 

is more like a real current, however as the tip height increases it gets smaller 

as result of localization near electrodes. Therefore it is a good approximation
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to use a scaling procedure for G according to the height of the tip. I scaled G 

by the on-top site current, by using the approximate form given in Section 4.3. 

The results for the tunneling current is shown in Figure 4.5.

The tunneling current is shown in Figure 4.6 to emphasize the enhance­

ment due to the presence of the Tip Induced Localized States. The current is 

traced for a tip height of 2.25 A and along the line connecting the on-top site 

to hollow-site and bridge site.

< 2, 5 -

bridge on- top
Figure 4.6: Tunneling current along special directions 

The tip height is taken to be equal to 2.0 A.

hollow
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The results show that there is a strong enhancement in the tunneling 

current as a result of the tip-surface interaction. This point explains the effects 

of this intercation on the large corrugation observed for graphite. When the 

tip is above some point other than the hollow-site it can not come closer to 

the surface than a special cut-off distance beyond which current is enhanced 

due to the presence of the Tip Induced Localized States. However around the 

hollow-site practically there is no tip-surface interaction that would lead to a 

jump in the current, which would block the tip. There the tip can come close 

to surface to attain the prescribed constant current. This mechanism can lead 

to corrugations up to ~ 3 — 4 A depending on the bias. When the bias is large, 

first there is no need to be close to the surface to obtain the constant current, 

and second the Tip Induced States will not be this effective due to the lifted 

degeneracy.
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Chapter 5

Conclusions and Discussion

In this study I investigated the atomic nature of Scanning Tunneling 

Microscopy. Some experiments are carried out so far for extremely small tip 

heights for some special structures. Such small separation operation is rather 

different from that of the large separation regime. In the latter by using detailed 

microscopic knowledge about the electrodes, one can find the tunneling current 

easily as a result of the independent tip and surface. This case was analyzed by 

several researchers.

For the small separation case, the tip and the surface atoms have 

internuclear separations of the order of nearest-neighbor distance for the 

original electrodes. For this case there appears a possibility of the existence 

of some localized states at the vicinity of the tip. This basic idea is a 

direct consequence of the chemisorption theory. In order to determine and 

identify these localized states, it is necessary to have the information about the 

microscopical structure of the tip. Even in the state-of-the-art studies this is 

not fully possible. Therefore, it is necessary to make some simplifying, still
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For the simplicity of its structure and for its wide applications in Scanning- 

Tunneling Microscopy, I have chosen the graphite (0001) surface as the sample 

substrate. As a result of its very anisotropic structure only a monolayer is taken 

to represent the graphite surface. The tip in turn is defined by a single atom, 

which is thought to be in a jelium-like background in order to complete the 

electrical connections. The interaction parameters are again not determined 

from the first principles, due to the lack of information about the real tip. The 

electronic energy bands are calculated by using the Empirical Tight Binding- 

method.

Calculating the electronic band structure for several structures it is found 

that the combined system can belong to one of three regimes:

• Chemical binding regime in which the tip and the surface are in physical 

contact. The band structure does not resemble original ones as a result 

of strong interaction. •

realistic approximations.

• Tip Induced Localized States regime in which there is a non-zero 

interaction between the tip and the surface, but not strong enough 

to connect the two electrodes chemically. The so-called Tip Induced 

Localized States are hybrid combinations of the original tip orbitals and

the surface states.
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• Independent electrode regime in which the interaction between the tip 

and the surface is negligibly small. The previous studies on Scanning 

Tunneling Microscopy used the underlying results which are particular to 

this regime.

It is found that the presence and the character of the Tip Induced 

Localized States depend of the lateral position of the tip, in addition to its 

height. While at the on-top site the Tip Induced Localized States are most 

elfective, there are no such states at the hollow-site position.

The Golden-rule expression of Bardeen for tunneling is modified to include 

the effects of the Tip Induced Localized States on tunneling. It is found that 

there is an enhancement of the current as a result of the states of the combined 

system. For graphite it is shown that the current increases by a factor > 4 in 

the Tip Induced Localized States regime.

This final result can partly explain the observed giant corrugations for 

graphite. Due to the presence of the Tip Induced Localized States the tunneling 

current becomes equal to the local density prediction up to a few A’s above the 

expected position from the local density calculations. Thus even though the 

corrugation of the local density of states is small, the observed corrugation may 

be large.

Owing to the limited information about the tip structure, the calculations
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cannot be carried out from the first principles. The parameters and functions 

are used by some simple scaling and fitting procedures.

The concept of Tip Induced Localized States which is proposed for 

graphite, can be used for all structures, for which the tip comes close to the 

sample surface. The natural candidates are semiconductors and the charge- 

density wave structures.

As the final conclusion of this study one can say that the tip-surface 

interaction in Scanning Tunneling Microscopy is one of the basic aspects, which 

has to be taken into account for a correct description of the problem.
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