
ία

^

' t

ίίΐ

» - ¡Λ

Un
Ш €

:!
■ €0

fc
-a

i
S

й̂
f'

'r
ч

#
#

5*
-*s

-c
Іі

да

'■
0

tt
.4

^|
w

ΣΤ
’*

*1 f}yt
‘

й«
>.

»
e‘4 гзя

л
ii

t·
'

m
ι·.

·-·
ΐ3

: 4̂
¿

fí
*«

*4
l

>r¡í
J

m

-

%
¿·

a

»*
γ·

*ι

«Ч
йа

.:
С m

ö
S

' f̂“İî
...

.
€ί

Г W

ä
Ш

f'T
İ

ίϊί
■ÜU

»·
у.# ;î3

K
’е

Ц;·̂

ñ
fT

î
^

·
W

Ш
.

(Ä
*î̂

î ;î

 ̂̂

a
S
 Ч

 ‘
1

m ft
rr

z*
o^
#

î2

ÇS

t#
o

ГЧ

Щ
\f
 m

 m

i
 i
li

rn
 H

W

‘“*v
fi

i^
.

*ü
«w

»¿

г*

3

©
sJ

·**

*»
Ш

 »
 r̂

3
ίφ

 ®
 Ä

Ö
Щ

13
^

3
'̂1

CQ
0

 ̂

:s
’J5
‘

t:
£

'
tv

«
»K

.Î
»

'*
¿̂

 Х
‘Ф

j·* Ф

0

Ш
■

»
>

6

®
·

H
 -

Ч iS
 I

Ш Й
 ÿ

 §
S

 Ш
 S

>
 W

m
 Ч

SECONDARY STORAGE MANAGEMENT IN AN
OBJECT-ORIENTED DATABASE

MANAGEMENT SYSTEM

A THESIS

SUBMITTED TO THE DEPARTMENT OF COMPUTER

ENGINEERING AND

INFORMATION SCIENCES

AND THE INSTITUTE OF ENGINEERING AND SCIENCES

OF BILKENT UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF
MASTER OF SCIENCE

By
Murat Karaorman

July 1988 taraii-ta batisiaaaastir.

• D 3

ß '.«fiti

I certify that I have read this thesis and that in my
opinion it is fully adequate, in scope and in quality, as
a thesis for the degree of Master of Science.

Pro; un(Principal Advisor)

I certify that I have read this thesis and that in my
opinion it is fully adequate, in scope and in quality, as
a thesis for the degree of Master of Science.

l U M i u\ l)}ÜajQ/v\l)̂
Dr.^ l̂tay Güvenir

I certify that I have read this thesis and that in my
opinion it is fully adequate, in scope and in quality, as
a thesis for the degree of Master of Science.

Approved for the Institute of Engineering and Sciences:

_̂________

Prof. Dr. Mehmet Baray, Director of In^tute of Engineering and Sciences

11

ABSTRACT

SE C O N D A R Y STO R AG E M A N A G E M E N T IN A N
O B JE C T-O R IE N TE D D ATABASE M A N A G E M E N T

SYSTEM

Murat Karaorman

M .S. in Computer Engineering and
Information Sciences

Supervisor: Prof.Dr.Erol Arkun
July 1988

In this thesis, a survey on object-orientation and object-oriented database
management systems has been carried out and a secondary storage manage­
ment and indexing module is implemented for an object-oriented database
management system prototype developed at Bilkent University.

First, basic concepts, characteristics, and application areas of object-
oriented approach are introduced, then, the designed prototype system is
presented, the secondary storage management module is explained in detail
and the functions of the other modules are summarized. Finally, the current
research issues in the object-oriented database systems are introduced.

Keywords:
indexing

object, class, object-oriented databases, secondary storage.

111

ÖZET

NESNESEL BİR VERİ TA B A N I SİSTEM İNDE YAR D IM CI
BELLEK

Murat Karaorman
Bilgisayar Mühendisliği ve Enformatik Bilimleri Yüksek Lisans

Tez Yöneticisi: Prof.Dr.Erol Arkun
Temmuz 1988

Bu tezde nesnesel yaklaşım ve nesnesel veri tabanı işletim sistemleri üze­
rinde araştırma yapılmış ve Bilkent Üniversitesinde geliştirilen bir nesnesel
veri tabanı sistemi prototipi için yardımcı bellek tasarlanmıştır.

Tezin birinci kısmı yapılan araştırmanın sonuçlarını özetlemektedir. Nes­
nesel yaklaşımın başlıca kavramları, özellikleri ve uygulama alanları anlatıl­
maktadır. ikinci kısımda, tasarlanan prototip tanıtılmaktadır. Sistemin
yardımcı belleği ayrıntılı olarak anlatılmakta, diğer bölümleri özetlenmekte­
dir. Son olarak nesnesel veri tabanı sistemlerindeki en son araştırma konuları
sunulmaktadır.

Anahtar kelimeler : nesnesel veri tabanı sistemleri, nesne, sınıf, yardımcı
bellek

IV

ACKNOWLEDGEMENT

I would like to acknowledge first the help and cooperation of my supervisor
Professor Erol Arkun without whom this work could not have been completed.
I would also like to thank Nihan Kesim and Sibel Ozelçi with whom we
worked together on the project of developing an object-oriented database
management system prototype, which forms the basis of this thesis, for their
patient suggestions and comments. I also acknowledge the help of Attila
Gürsoy, Özgür Ulusoy, Mesut Göktepe, and Ahmet Coşar in the preparation
of this thesis. Dr. Nierstrazs has also been very helpful by his remarks and
suggestions.

TABLE OF CONTENTS

1 INTRODUCTION 1

2 SURVEY OF OBJECT-ORIENTED SYSTEMS 4

2.1 Background... 4

2.2 Basic Concepts of Object Orientation 5

2.3 Basic Properties of Object-Oriented S y ste m s.......................... 7

2.3.1 Data Abstraction... 7

2.3.2 Independence and Object Id en tity 8

2.3.3 Message Passing P arad igm ... 11

2.3.4 Inheritance... 12

2.3.5 Reusability... 15

2.3.6 Overloading and Polymorphism 15

2.3.7 C oncurrency.. 16

2.3.8 Hom ogeneity.. 17

2.3.9 Dynamic Binding... 17

2.3.10 Interactive Interfaces... 17

2.4 Object-Oriented Programming Languages............................... 18

2.4.1 Historical Perspective of Object-Oriented Languages . 19

vi

2.4.2 Examples of Some Object-Oriented Languages 20

2.5 Object Oriented D atabases... 20

2.5.1 Object Oriented Databases versus Object Oriented Pro­
gramming Languages... 21

2.5.2 Object Oriented Databases versus Traditional Databases 22

2.5.3 Making Object Oriented Database System s............... 24

2.5.4 Existing Object-Oriented Database Management Sys­
tems ... 25

2.5.5 Language Issues on 0 -0 D B M S s.................................. 25

2.5.6 Performance Issues in 0 -0 DBM Ss............................... 26

2.5.7 Schema E v o lu tion .. 27

2.5.8 Indexing... 28

3 AN EXPERIMENTAL OBJECT-ORIENTED DBMS PRO­
TOTYPE 31

3.1 An Overview of the Prototype.. 31

3.2 Main Subsystems of the P rototype ... 32

3.2.1 Object Memory and Schema Evolution......................... 32

3.2.2 Message P assin g .. 35

3.2.3 Secondary Storage Management and Indexing............ 38

3.2.4 The User Interface... 38

4 SECONDARY STORAGE MANAGEMENT AND INDEX­
ING 39

4.1 Statement of the P rob lem ... 39

4.1.1 Main Issues of Secondary Storage Management 40

vn

4.2 EXISTING APPROACHES TO SECONDARY STORAGE
MANAGEMENT.. 47

4.2.1 Gem stone.. 49

4.2.2 IR IS ... 52

4.2.3 O R IO N ... 53

4.2.4 E N C O R E .. 57

4.3 SECONDARY STORAGE MANAGEMENT OF THE PRO­
TOTYPE .. 62

4.3.1 The Goals and Requirements.. 62

4.3.2 The Secondary Storage Architecture............................ 64

4.3.3 Implementation of the Storage M anager...................... 77

4.4 IN D EXIN G ... 79

4.4.1 Design Considerations.. 82

4.4.2 Implementation... 85

4.5 Problem Areas and Directions for Future R esearch................. 85

5 CONCLUSION 87

A APPENDIX 89

vin

LIST OF FIGURES

2.1 Inheritance graph with multiple inheritance............................ 14

3.1 The four main modules of the prototype..................................... 32

3.2 The format of an allocated object ... 33

•3.3 The format of a class object .. 34

3.4 The initial class hierarchy and the system defined classes 34

4.1 Major Pieces of GemStone... 50

4.2 Dereferencing process in E N C O R E ... 60

4.3 DBF and Segment Structures.. 61

4.4 Allocated chunks for a memory o b je c t 66

4.5 The abstract view of a variable sized con ta in er...................... 68

4.6 The abstract view of a variable sized container with external
super-part ... 68

4.7 Container for TitledNameWithLetters o b j e c t 70

4.8 Class definitions eind allocated chunks for a memory object . 73

4.9 Secondary Storage representation of a memory object 74

4.10 Allocated chunks for a memory o b je c t 75

4.11 Secondary storage representation of an Employee object . . . 76

ix

4.12 Save A lgorithm ... ' 80

4.13 Retrieve Algorithm... 81

X

1. INTRODUCTION

As computers became more available and powerful, the demand and sophis­
tication of the users of these systems has increased with influences to various
areas of computing, and computer applications. The demand for more sophis­
tication has in many ways rendered conventional problem solving approaches
inefficient and impractical. The areas of database systems, programming lan­
guages, and artificial intelligence already had overlaps in many ways. Then,
newer applications like Computer Aided Design/Computer Aided Manufac­
turing (CAD/CAM) and office information systems (OIS) have evolved with
demands that can not be handled efficiently by existing approaches. At this

.point. Object Orientation represents a most successful unifying paradigm in
various areas of computing, including Programming Languages, Databases,
Knowledge Representation, Computer Aided Design, and Office Information
Systems. However, being one of the most fashionable, and overused terms of
recent years, there is no clear definition of what Object-Oriented means. In
the survey part of this thesis, a focused survey of different approaches will be
presented and properties of object-orientation and especially object-oriented
database systems will be elaborated.

Informally, an object-oriented database management system can be de­
fined as follows: a system which is based on a data model that allows the
representation of an entity, whatever its complexity and structure, by ex­
actly one object of the database. No decomposition into simpler concepts
is necessary. As entities may be composed of subentities which are entities
themselves, an object-oriented data model must allow recursively composed
objects.

Conventional record-oriented database management systems reduce ap­
plication development time and improve data sharing among applications.
However they are subject to the limitations of a finite set of data types and
the need to normalize data. In contrast, object-oriented systems offer flex­
ible abstract data-typing facilities and the ability to encapsulate data and

operations with the message metaphor. In addition, they reduce application
development efforts. Object-oriented database management systems support
more direct modeling and require less encoding compared to other data mod­
els and they capture more information semantics [1]. Also, one can easily
represent models which can not be represented using normalized relations,
thus keeping the semantic gap as small as possible and representing most of
the problem semantics in the database itself. Another point is that, object-
oriented systems aim at solving the impedance mismatch problem seen in
conventional database systems in which there are separate languages for data
definition and data manipulation by providing a unified language supporting
both functions. Lastly, object-oriented database systems allow nested (non-
first normal form or NINF) relations, can capture the temporal aspect of the
data and can handle multiple versions [16].

The object-oriented database management system prototype designed and
implemented at Bilkent University consists of four major modules which are
object memory and schema evolution; message passing; secondary storage
management, indexing and the user interface [18]. Object memory handles
the representation, access and manipulation of the objects in the system [31] .
The schema evolution module supports some basic modifications to the class
hierarchy. The message passing module is built on top of the object memory
and schema evolution module and forms the basis for the user interface mod­
ule [29] . It includes the definition and support of the designed command
language and error handling in addition to message passing. It consists of
five submodules which are the lexical analyzer, parser, code generator, execu­
tor module and query processor. The designed language aims at solving the
impedance mismatch problem. The secondary storage management and in­
dexing module handles persistent objects by storing and retrieving them from
secondary storage files and the indexing facility provides B-tree structures for
efficient execution of value-based queries. The user interface module is object-
oriented and supports three types of users, namely, the developer/maintainer,
the domain specialist and the end-user.

The prototype has been implemented on Sun workstations running under
Berkeley Unix ̂ and the C programming language. The system is single-user
and all objects are persistent and passive. Simple inheritance is supported
resulting in a class lattice in the form of a tree. Authorization, concurrent
access to data and versions are not supported.

Ûnix is a trademark of AT&T Bell Laboratories

The thesis has two parts, the first part discusses various aspects of object-
orientation and a survey of object-oriented systems and concepts. The second
part will give information on the prototype developed at Bilkent University
with emphasis on Secondary Storage Management Issues. Some open prob­
lems and future extensions to the system are also presented.

2. SURVEY OF OBJECT-ORIENTED
SYSTEMS

The term object-oriented has gained tremendous popularity and is used
widely for diverse areas from operating systems to user interfaces, from pro­
gramming languages to databases. However, there is no agreement in lit­
erature on what the minimum specifications axe to maJce a system object-
oriented. The survey aims at introducing the general concepts and the prop­
erties and discussing various approaches to object-orientation.

2.1 Background

The aim of this section is to introduce general terminology and concepts that
are used in the rest of the thesis within the context of programming.

Objects represent the entities and concepts from the application domain
being modeled. They are unique entities in the environment, with their own
identity and existence, and they can be referred to regardless of their attribute
values.

All of the action in object-oriented programming comes from sending mes­
sages between objects. Message sending is a form of indirect procedure call.
Instead of naming a procedure to perform an operation on the object, one
sends the object a message.

Objects with similar implementations and interfaces constitute a class]
and the members of a class constitute its instances. Each class of objects is
associated with a set of procedure-like operations called methods] and meth­
ods are performed when objects are sent messages. A message is a request for
an object to access, modify, or return part of its private part. Objects provide

methods as a part of their definition. Methods describe how to carry out the
necessary operations and a message specifies which method is desired but not
how that operation is performed. The set of messages to which an object can
respond is called its interface. When a message is sent to an instance, the
method that implements that message is found in the class definition. Meth­
ods are not visible from outside the object. Objects communicate with one
another through messages. A crucial property of an object is that its private
memory can be manipulated only by its own operations and the messages are
the only way to invoke an object’s operations [17].

2.2 Basic Concepts of Object Orientation

It is generally agreed [32] that object-orientation is an approach, or style
rather than a specific set of language constructs, and object-oriented pro­
gramming is primarily characterized as a ’’ code-packaging” technique rather
than a coding technique. In fact one can use an arbitrary programming
language and still write in object-oriented style.

One thing common to all object-oriented systems is the concept of object
which brings about the related concepts such as classes, hierarchies , message
passing, etc., which will be elaborated later in detail.

Yet, the meaning of object also varies. To some, object is merely a new
name for abstract data type where data and operations are encapsulated into
objects. To others, objects and classes are a concrete form of type theory.
To still others, object-oriented systems are a way of organizing and sharing
code in a large system [8].

The object concept originally belongs within the paradigm of imperative
programming. It is an offspring of the block concept as introduced in Algol 60
and exploited more extensively in Simula [47], a language for programming
computer simulations. Algol features procedures and in-line blocks whereas
Simula adds the concept of classes. Within the Algol context, a block is a
collection of declared ’quantities’, typically variables and procedures operat­
ing on these variables but possibly also entities of other kinds. Some kind of
blocks also contain a behavior pattern describing own actions in an impera­
tive style. An object then is a dynamic instance of a block, possibly a class
body block. The variables of the object have values representing its current
state and the object behaves through time according to its given capabilities.

The state of an object can change as the result of its own actions, if any, or
as the result of local updating procedures invoked frqm outside the object.
It is useful to distinguish between the concepts ’’object” and ’’ class” . The
latter is the common description of the potentially unlimited set of objects
that might be generated which are said to belong to that same class.

The association of data structures and algorithms inherent in the class
and object concepts makes it possible to construct entities meaningful on
more abstract levels. In its most basic form we have a module of a program
consisting of a number of static variables together with the set of procedures
that are used to manipulate the variables. This data abstraction is by far the
most important concept in the object-oriented approach [47],[17].

Another important aspect of object orientation follows from the locality
of identifiers declared in an object: there is no name conflict with those of
other, disjoint objects, even for objects which belong to the same class. Thus
if X is an object and f is a function local to it, x.f identifies that function
independently of functions that are named elsewhere in the system. Since x
in x.f(..) is at the same time an argument to f, the locality principle provides
a simple and natural rule of function overloading [47].

Since all objects belonging to the same class contain textually similar
declarations, it is sometimes convenient to think of a function as being local
to the class rather than the object. With this perspective x.f(...) means
C.f(x,...), where C is the class which x belongs to.

The idea of subclasses introduced in Simula provides a convenient means
of formulating general concepts which are easy to reuse and to specialize in
different directions. It is important that objects belonging to a subclass at
the same time belong to its superclasses and, via inheritance, can play roles
defined in them. The concept of subtypes is equally useful, in particular to
the extent that theorems valid for a type remain valid for its subtypes.

Object orientation implies a technique of system (de)composition: a sys­
tem is viewed as the collection of objects it contains together with their inter­
relations and interactions. One often wants better, i.e. more complete, de­
composition than that usually obtained with older languages of the Algol
Pascal type. Programs written in these languages are essentially structured
as textually nested blocks, and the unrestricted access to nonlocal quanti­
ties, especially the write access to variables, makes such programs resistant
to decomposition. Consequently object-oriented languages prohibits direct

access to nonlocals and textual enclosure in the Algol sense. As an extreme
case distributed systems consist of objects which can interact only through
communication lines by sending and receiving messages of globally known
types [47].

2.3 Basic Properties of Object-Oriented Systems

The main properties of the object-oriented approach can be listed as follows:

1. Data abstraction and encapsulation.

2. Independence (object identity).

3. Message-passing paradigm.

4. Inheritance.

5. Reusability.

6. Overloading and Polymorphism.

7. Concurrency (some systems).

8. Homogeniety.

9. Dynamic Binding

10. Interactive interfaces (with menus,windows and mouse).

2.3.1 Data Abstraction

Abstraction is perhaps the most powerful human tool for managing com­
plexity. It allows one to deal with high-level concepts and understand them,
before proceeding to consider details of instances; in certain contexts, it might
never be necessary to consider the instances at all. Equally, it allows one to
classify instances one has examined according to the perceived similarities.

By fax the most important concept in object-oriented approach is data
abstraction. Data abstraction in this context means that we are interested
in the behavior of an object rather than its representation, which also means
that an object packages an entity and the operations that apply to it. A

language has data abstraction when it has a mechanism for bundling together
all of the procedures for a data type [8].

Object-oriented languages support abstraction through classes and mes­
sages. Classes support data abstraction and concept classification. Messages
support procedural abstraction. Classes also support hierarchical classifica­
tion, which is extremely useful for managing complexity. Classes are arranged
in a hierarchy such that each is an abstraction of all its descendants.

Every object has a clearly defined interface which is independent of the
object’s internal representation. The interface is a collection of operations
or ’’methods” which may be invoked by another object. Furthermore, one
may have many instances of an object type (class), and new types can be
added without restrictions. A type definition is very much like a module
from our understanding of software engineering. In the type definition there
are a collection of permanent variables encoding the state of the object, and
a set of methods that use and change the state. All that one should know to
create a new instance of a type (class) is the interface, that is, the names of
the methods and the types of the input and output parameters [27].

One benefit of this approach is the fact that the programmer is free to use
higher levels of abstraction as appropriate.(that is, at each level of abstraction
one concentrates on that level’s functionality, while hiding the lower level
details of implementation.) This can be compared with the layering concept
of OSI in computer networking where each layer is a level of abstraction.
In object oriented design one is encouraged to decompose a programming
problem into a collection of cooperating objects of various levels of complexity.

The separation of interface and implementation of a new class renders
the classes representation-independent to some extent. This enables the pro­
grammer to experiment with different implementations, and increase main­
tainability of the software due to the global structural visibility [46] induced
by this inherent decomposition.

2.3.2 Independence and Object Identity

Identity is that property of an object which distinguishes it from other ob­
jects. Most programming languages use variable names to distinguish tempo­
rary objects, mixing addressability and identity. Most database systems use
identifier keys (i.e. attributes which uniquely identify a tuple) to distinguish

8

persistent objects, mixing data value and identity. Both of these approaches
compromise identity. Object-oriented languages use separate mechanisms to
handle these concepts, so that each object maintains a separate and consis­
tent notion of identity regardless of how it is accessed or how it is modeled
with descriptive data.

There are two important dimensions involved in the support of identity,
namely the representation dimension and the temporal dimension. The rep­
resentational dimension distinguishes languages based on whether they rep­
resent the identity of an object by its value, by a user defined name, or built
into the language. The temporal dimension distinguishes languages based on
whether they preserve their representation of identity within a single program
or transaction, between transactions or between structural reorganizations
[Ill-

Most general-purpose programming languages are designed without the
notion of persistent data in mind. For this reason they provide weak support
of identity in the temporal dimension. As far as the language is concerned,
the data lives only during the execution of the program. Persistent data is
handled by the file system which is not part of the language. The struc­
tures supported in the virtual address space of the program are not usually
supported in the file system.

Database languages are designed to support large and persistent data
that models large and persistent real-world systems. These characteristics
require strong support of identity in both the representation and temporal
dimensions.

The way computational languages and database languages approach to
support of identity thus induces different concepts and structures as far as
programming is concerned (e.g. lists, arrays, atomic variables versus sets,
records) and it could be generalized that the notion of identity in program­
ming languages is typically weaker than that of database languages. This di­
version brings about the problem of ’’ impedance mismatch” [CopelandMaier
’’Making Smalltalk a DB”] because much of the meta information (e.g. struc­
tures and operations) in either system is reflected back at the interface rather
passing through it. This meta information must be redundantly defined in
both languages, and also transformations might be needed when data or oper­
ations need to pass through the interface. The impedance mismatch problem
has led to the evolution of hybrid languages and ultimately to object- ori­
ented languages which tend to bring solutions with their support of identity.

There are different implementation techniques to pro’̂ ide object identity in
programming languages and database languages and some of these techniques
are briefly given below

• Identity through physical address.
Achieved by assigning an object a real or virtual address. An example
could be a Pascal record implemented through a virtual heap address.
They provide minimal location independence, as single objects can not
easily be moved within the address space.

• Identity Through Indirection.
The object-oriented-pointer (oop) concept introduced by Smalltalk-80
is an example for this kind of support. An oop is an entry in an object-
table and therefore identities are implemented through a level of indi­
rection. This mechanism provides full data independence and stronger
location independence.

• Identity Through Structured Identifier.
This mechanism is used in implementing file systems for distributed
environments and the identifiers of files (the objects of the system) are
structured, where part of the structure contains information related to
the location of the object. They provide full data and location inde­
pendence.

• Identity Through Identifier Keys.
This is the main approach for supporting identitj»· in database manage­
ment systems by direct implementation of user-supplied identifier keys.
Identifier key implementations provide full location independence, but
no value independence. They also do not provide structure indepen­
dence because they are unique only within a single relation and applied
only to tuples and not to attributes.

• Identity Through Tuple Identifiers.
They are system generated identifiers which are unique for all tuples
within a single relation and have no relationship to physical location,
but they are typically used in internal implementation of relational
databases (such as System R, INGRES) and do not directly correspond
to any conceptual notion of identity. They provide full location inde­
pendence and value independence but not full structure independence
since they are unique only within a single relation and they are applied
only to tuples and not to attributes.

10

• Identity Through Surrogates.
The most powerful technique for supporting identity is through sur­
rogates. Surrogates are system generated globally unique identifiers,
completely independent of any physical location. They provide full lo­
cation independence and value independence, but not full structure in­
dependence. If surrogates are associated with every object as in OPAL
[15], then they provide full data independence.

Object-Oriented systems have an inherent notion of unique object identi­
fiers for object identity and thus have the capabilities to use surrogates, the
most powerful technique for supporting identity. The fact that objects can be
referenced regardless of their attribute values is also the basis of "referential
integrity” in object-oriented databases.

2.3.3 Message Passing Paradigm

Independence of objects is supported conceptually by using message-passing
as a model for object communication. The object-oriented model disallows an
object to operate on another object. The only way an object can interact with
the outside world is by sending and receiving messages. Consequently, object
A invokes a method of object B by sending B the message "please execute
this method” . How object B interprets the method and what subsequent
actions it assumes axe the responsibility of object B; it may choose to delay
responding, or that it does not wish to handle the request at all and return
an exception report. The results or acknowledgments are also sent back using
message- passing [32].

The term message-passing has several meanings. The first object-oriented
language Simula, had coroutines, which is an asynchronous form of message
passing in which the sender saves its state and must be explicitly reawak­
ened by a resume call rather than by an automatic reply from the receiver.
Smalltalk and Loops equate message-passing with remote procedure calls,
a synchronous form of message-passing in which the sender must wait for
a reply from the receiver before continuing. Modules in distributed systems
may communicate by rendezvous, which combines remote procedure call with
synchronization between the calling and called processes, by asynchronous
message-passing, or both.

11

It should be realized that message-passing is a model for object communi­
cation rather than an implementation requirement. During implementation
the message-passing can be accomplished by straightforward procedure calls,
especially in non-concurrent environments. In concurrent environments with
active objects, real message-passing seems to be the natural implementation
technique, though. There are also some hybrid approaches that combine
procedure calls with message sending.

2.3.4 Inheritance

In object oriented languages inheritance is the concept that is used to define
objects that are almost like other objects. Inheritance is, in this sense, the
mechanism providing the ability to specialize object types. It allows new
classes to be built on top of older, less specialized classes instead of being
rewritten from scratch. A specialized type (subclass) inherits the properties
of its parent class and then possibly adds more properties, this helps to keep
programs shorter and more tightly organized [8].

Grouping objects into classes helps avoid the specification and storage of
much redundant information. The concept of a class hierarchy extends this
information hiding further. A class hierarchy is a hierarchy of classes in which
an edge between a node and a child node represents the IS-A relationship;
that is the child node is a specialization of the parent node (and conversely
the parent node is a generalization of the child node). For a parent-child
pair node on a class hierarchy, the parent is called the superclass of the child,
and the child is called the subclass of the parent. The instance variables
and methods (collectively called properties) specified for a class are inherited
(shared) by all its subclasses, and additional properties may be specified
for each of the subclasses. A class needs to inherit properties only from
its immediate superclass. Since the latter inherits properties from its own
superclass, it follows by induction that a class inherits properties from every
class in its superclass chain. The concept of inheritance, like the concept
of object-orientation has different connotations in literature, and a way of
classifying inheritance mechanism is found in [8]:

• Type Theory Inheritance. This is related to the similarity of the data
structure between a subclass and a superclass. The structure of a sub­
class contains all the instance variables of its superclass and may include
its own instance variables. For example,

12

labeled-point = (x-coord : integer;
y-coord : integer;
label : string)

is a subclass of

point = (x-coord
y-coord

integer ;
integer)

because labeled-point has two instance variables of point plus one ad­
ditional instance variable.

• External Interface Inheritance. This refers to the similarity of the ex­
ternally visible interface provided by a class and its superclass. The
class is able to provide all the external interface of its superclass and
may specialize its superclass by providing its own interface as well [23]

deque = (push-right, pop-right, p u sh -le ft , p o p -left)

is a subclass of

queue = (push-right, p o p -le ft)

even if deque is implemented with an array and queue is implemented
with a linked list.

• Code Sharing and Reuse. Here a subclass can use the functions provided
by its superclass as if they were defined in the subclass itself. Hence
redundancy of some code is eliminated. As a result, more complex
programs can be built out of simpler ones. In the previous example
with queues and deques, a queue is a subclass of a deque, because
queue can be implemented by deque, that is, the queue exports two of
the deque’s functions and hides the other two. This interpretation of
subclass is opposite to the deque example given above.

13

Figure 2.1: Inheritance graph with multiple inheritance

• Polymorphism [23]. In the context of object-oriented languages, associ­
ation of generic names with behaviours is called overloading of operator
names or polymorphism. For example, many objects may respond to
Delete messages, each with a method specific to that object but each
fulfilling the same role for the object with which it is associated. The
advantage of this encapsulation is that the programmer needs keep track
of the names of only a (relatively) few behaviors that axe exhibited by
a set of objects; the names of the larger set of specific procedures that
implement the behaviors need not be remembered.

Object-Oriented systems combine some or all of the above kinds of inheri­
tance into one structure, which is usually a tree; According to these structural
aspects, inheritance can be viewed as either simple inheritance or multiple
inheritance. In simple inheritance, a class may have only one superclass form­
ing a tree structured class hierarchy , while in multiple inheritance, a class
may have more than one superclass inheriting the definition and properties
of all of its superclasses and forming a lattice structure as the class hierarchy.
(Note that the term lattice in this context is used to mean a directed acyclic
graph structure, rather than the lattice in lattice algebra). Fig.2.1 shows an
inheritance graph with multiple inheritance. In this example, class x is the
root class. Class x inherits from classes y l and y2, and classes y l and y2
both inherit from class z.

Multiple inheritance simplifies data modeling and often requires fewer
classes to be specified than with simple inheritance. However it introduces
name conflicts, that is, the problem of two or more classes having instance
variables or methods with the same name. The conflict may be between a
class and its superclass or between the superclasses of a class. The name con­
flict problem between a class and its superclass may also be seen in simple
inheritance and is solved by giving priorities to the classes. To solve the con­
flict problems in multiple inheritance, either all instance variables or method
names of superclasses must be distinct, or a priority order for the superclasses
should be specified.

14

Traditionally encapsulation of procedures, macros and libraries was used to
enhance the reusability of software. Currently, object-oriented techniques
provide further capabilities for reusability through the encapsulation of pro­
grams and data. In this way objects refine the idea of a library or a package.

Reusability can be enhanced in many ways:

1. Instantiation . Multiple objects can be statically or dynamically created
from either an object class description or from a prototypical object.

2. Class inheritance. The key idea of class inheritance is to provide a sim­
ple powerful mechanism for defining new classes that inherit properties
from existing classes. The internal structure (instance variables) and
the implementation of operations (methods) may be shared between
object classes in this way.

3. Overloading and polymorphism.The realizations of outwardly similar
object classes may be transparently altered, thus permitting greater
software independence. Polymorphism enhances software reusability
by making it possible to implement generic software that will work not
only for a range of existing objects but also for objects to be added
later.

4. Parameterization. Whereas the mechanism of class inheritance achieves
software reusability by factoring out common properties of classes in
parent classes, generic classes do so by partially describing a class
and parameterizing the unknowns. These parameters are typically the
classes of objects that instances of generic classes will manipulate.

For an elaborate discussion of these reusability concepts, see [32].

2.3.5 Reusability

2.3.6 Overloading and Polymorphism

Another important feature of object orientation is operator overloading. Op­
erator overloading describes the notion of using the same operator symbol
to denote distinct operations on different data types (e.g. using minus sign

15

for both arithmetic subtraction and set difference). The meaning of the op­
erator in this way is overloaded and can be resolved only on the basis of its
operand type(s). In interpreting a message, an object-oriented language first
binds the message head to an object class, then binds the rest of the message
to a method for that class. Overloading follows from the fact that distinct
methods can be given the same name in two different classes [32].

The advantages of overloading become apparent if we take, for instance,
an application where the printout of different objects, each with their own
format, is requested via a print message. Then, new objects, each with their
own print method, can simply be appended on with no further need for pro­
gram modification. Polymorphism may or may not impose run-time overhead
depending on whether dynamic binding is permitted by the programming lan­
guage. If all objects are statically bound to variables, we can determine the
methods to be executed at compile-time. In this case polymorphism is just
syntactic sugar. On the other hand if variables can be dynamically bound to
instances of different object classes, some form of run-time method lookup is
necessary.

2.3.7 Concurrency

Programming languages had attacked the concurrency problem using:

• Active entities (processes) communicate indirectly through shared pas­
sive objects.

• Active entries communicate directly with one another by message pass­
ing.

When the first approach is adopted, shared memory could be structured
as a collection of passive objects., Then the process itself can be viewed as
an active object also. This approach needs synchronized access to shared
objects. One problem with this approach is that it cannot be extended to
a distributed environment without employing some form of hidden message
passing [32].

With the second approach, any two objects can communicate, and objects
become active in response to a communication. Explicit synchronization
is not required because message passing packages both communication and
synchronization [32].

16

Homogeneity in this context comes from the fact that everything is an ob­
ject. Classes and even messages can be objects themselves and this notion of
homogeneity makes for a consistent view of the environment.

2.3.8 Homogeneity

2.3.9 Dynamic Binding

Generally, conventional languages perform early binding. For example code is
bound to a name at compilation and a name to an address at link time. Late
binding provides flexibility at the expense of efficiency in contrast to early
binding. Early binding should be applied in a stable environment where the
bindings will not change. Late binding is applied in unstable environments.

Operator overloading and generic functions are only suitable if the data
•is homogeneous and thus the types of the operations can be determined at
compile time. Dynamic binding is necessary when dealing with heterogeneous
data. The basic approach used in dynamic binding is polymorphism which is
similar to operator overloading where the procedure invoked is fixed at com­
pile time. In polymorphism, the same operator performs different operations
depending on its operands and the operation is determined at run-time. In
object-oriented systems messages support polymorphism and dynamic bind­
ing. The same message may elicit a different response depending on the
receiver.

2.3.10 Interactive Interfaces

In the most general sense, objects are pieces of compiled code that are ma­
nipulated by a particular application to perform a task. It follows that each
object has a view for the user to see and if necessary, interact with the object
through it. This leads to various window, menu, icon, etc. configurations on
the screen that are formatted with respect to user specifications and object
requirements [42]. These windows then act as communication media between
the user and the application, controlling the object. This input-output tech­
nique is indeed independent from object oriented programming and can also
be used for multiple tasks running concurrently on a particular machine,
or, under window managers that support multiple window environments and
detect events for generating standard inputs to applications.

17

Object-oriented programming is a programming style in which operations
are grouped together with structured objects. Descriptions of operations and
structure are collected together in classes which share operations and struc­
tural descriptions with their superclasses. Object-oriented programming sup­
ports the object-oriented paradigm by providing linguistic, semantic, execu­
tion, and environmental support. However, clear definitions of these supports
have not been made yet and object languages differ even in fundamentals. A
classification based on inheritance has been proposed in [48].

A language is called object-based if it provides linguistic support for ob­
jects having the following properties:

Object: An object has a set of operations and a state that re­
members the effect of the operations. Objects communicate by
sending each other messages to perform operations.

Object-oriented programming is sometimes defined broadly so that any
language or style of programming in which objects have a state and applicable
operations is said to be object-oriented.

An alternative way of defining the notion ’’object-oriented” which more
directly emphasizes software methodology is by the form of their modules
and module management mechanisms [48] :

1. The modular building blocks include:
objects with operations and a state that persists between calls on op­
erations;
classes which specify the interface of collections of objects with common
behavior.

2. Module management is facilitated by the fact that:
objects are first-class values that can be managed by computation
within the language.
Inheritance allows classes to be specified in a modular, incremental
fashion.

2.4 Object-Oriented Programming La^nguages

There is yet another issue of whether message-passing or class inheritance
characterizes object-oriented languages. Since object-oriented programming

18

models computing at the level of message exchanging among a collection
of objects, rather than at the level of execution of expressions and state­
ments, message-passing appears to be the characterizing feature. Object-
oriented systems emphasize communication among objects rather than se­
quential statement execution, and messages are the basic mechanism for com­
munication. However, any form of message-passing appears to be compatible
with object-oriented programming and the precise nature of the communica­
tion mechanism is not central to the definition of object-oriented program­
ming. On the other hand, the requirement that objects have classes with
inheritance is explicit and definitive. Consequently, object-oriented program­
ming is prescriptive in its methodology for classifying objects but is permissive
in its methodology for communication [48].

2.4.1 Historical Perspective of Object-Oriented Lan­
guages

SIMULA has been the language which brought about most of the ideas
of object- oriented programming. Then, the first substantial interactive,
display-based implementation was the Smalltalk language [7], which is re­
sponsible for the visibility of the object-oriented paradigm in programming
languages. Although Smalltalk has found limited commercial use due to its
lack of speed, it has inspired the emergence of other object-oriented languages
each of which potentially introduced new concepts and approaches to object-
orientation. There are lisp-based extensions to Smalltalk such as Flavors, or
Loops, which have gained acceptance. Similar extensions proposed for lan­
guages such as Prolog, or functional languages, reemphasize the flexibility
and portability of the approach. Other systems, such as Actors, or Concur­
rent Prolog are based on the concept of processes communicating through
messages. Some languages strive to add object-oriented tools to existing
programming languages, such as. Objective C,C-t--^.

Object-oriented programming can be considered either revolutionary or
evolutionary, depending on the degree to which access to conventional pro­
gramming techniques is retained [27]. Pure object- oriented languages such
as Smalltalk-80 represent the revolutionary approach and provide the advan­
tage of conceptual simplicity; the break between the past is clean and crisp.
The evolutionary approach adds object-oriented concepts on top of conven­
tional languages. Languages such as Objective-C, C -f -F lavors and the like
do not offer the conceptual consistency of Smalltalk-80 but their advantage

19

is the fact that they can often be used for production programming, where
pure languages like Smalltalk are usually unacceptable.

2.4.2 Examples of Some Object-Oriented Languages

There axe many object-oriented programming languages but they are not
very distributed mainly due to performance reasons. Some are based on the
existing languages such as Loops, Flavors which are based on Lisp, Objective-
C and C-1-+, while some are designed as a completely new language such as
Smalltalk and Hybrid. Among these Smalltalk is the most well known and
has influenced the prototype a lot.

2.5 Object Oriented Databases

A database system is a collection of stored data together with their descrip­
tion (the database) and a hardware/software system for reliable and secure
management , modiflcation and retrieval. In conventional approaches it is
usually impossible to represent all interesting semantics within a database.
The remainder has to be captured by the application programs using the
database and this is referred to as the semantic gap within the database
management system [5].

Object oriented databases are based on a data model that allows an entity
in the environment to be modeled by exactly one object of the database.
The objects are unique entities in the database, with their own identity and
existence, and can be referred to regardless of their attribute values. This
concept of object identity inherently supports the referential integrity [5].
This is a major advantage over record- based data models in which objects
, represented as records can be referred to only in terms of their attribute
values.

Objects are described by their behavior and can only be accessed and
manipulated in terms of predeflned operations relevant to the class that the
object belongs to. As long as the semantics of the operations remains the
same the database can be both physically and logically reorganized without
affecting the existing application programs. This provides a very high degree
of data abstraction and data independence [6].

20

Object-oriented systems first evolved as programming language systems, and
as such, their data models completely ignore many important database is­
sues, such as deletions of persistent objects, dynamic changes to the database
schema, and predicate-based query capabilities [2]. Although they enforce the
object-oriented paradigm on live computational objects, they neglect to en­
force it on the long-term storage representation of those objects. The way
they treat persistence is by storing a program that consists of logically dis­
tinct objects, is by merging the representations of those objects into single
string for long-term file storage. When retrieving the file’s contents they
parse the string and reconstruct the objects it describes. This means that
they typically do file input and output during the start and end of a session
and the intermediate states of the database are transient.

Object oriented programming language systems also lack concepts that
are important to applications, such as composite objects and aggregate ob­
jects for defining and manipulating complex collections of related objects.
Further, They do not include version control, which most application sys­
tems in the CAD/CAM and OIS domains require. Consequently, it may be
said that object oriented databases differ from their programming language
counterparts in the following fundamental ways [34].

• persistence.

• unique naming.

• sharing.

• transactions.

• versions.

2.5.1 Object Oriented Databases versus Object Ori­
ented Programming Languages

Objects that are created by a process persist beyond the lifetime of that
process. The database system assigns all objects a unique identifier that is
guaranteed to remain unique even across multiple processes. Any number
of applications can share the objects that reside in the persistent memory
space. In the process of using these objects a given process can define the
boundaries of transactions that are guaranteed to be atomic and resilient and
that preserve some set of correctness criteria.

2 1

2,5.2 Object Oriented Databases versus Traditional Databases

Object-oriented database management systems , extending the concepts of
their underlying object-oriented programming environments, axe powerful
and semantically rich tools when compared with their counterparts from
existing commercieJ systems. This is mainly due to the fact that object-
orientation provides many importEuit concepts such as data abstraction amd
encapsulation, inheritamce smd in general conceptual simplicity in approach­
ing and realizing a complex software project. Some of the shortcomings of
commercial database systems could be given as in the following paragraphs.

Most existing database systems supply only a fixed set of data types-
integer, real, string, etc., and maybe a few speciEdized data types such as
date or money. However, they do not provide any facilities to define new
types or define operations on existing types. The abstract data types can
only be virtually implemented by going outside the databгLse system to an
application progreunming language [16].

Database systems often impose artificial limitations on the modeled en­
vironment, which Eire not easily evolvable without substantial progrEun 2ind
structure modification. Some examples are setting limits on field lengths,
number of fields in a record, etc. which are due to the implementation arti­
facts creeping into the data model [6].

Data structuring capabilities of current database systems have been opti­
mized to support flat structures, and the possible complexities and variations
that occur in reEil data can not be supported efficiently. Records of a given
type must be identical in structure, and changing the structure often requires
the reorgEuiization of existing databeise.

Whenever data structures in a database system can not support the ac-
tuEd structure of information in the real-world, then the form of the real-
world information gets over-simplified in the database scheme, or it must be
encoded into available data structures. If the structure of the real-world is
over-simplified, the utility and reliability of the data is compromised. When
information is encoded, such as flattening a set vsJued field into several tuples,
application programs must deal with the encoding.

An important point where object-oriented approach and traditional ap­
proaches differ is Data Dictionary concept. In a conventionEd databsise man­
agement system, the data dictionEury/directory is used to control access to the

22

database, ensure data integrity and supervise the distribution of data. In the
past, the data dictionary was a collection of static record structures designed
and built after a study of the problem to be modeled. It was fixed throughout
the life of database applications. Dictionaries were viewed as static tools for
the control of data and information resources [24].

Especially for CAD/CAM and knowledge representation applications, dic­
tionaries are required to be dynamic and active in the design and management
of databases. Database design, dictionary definition and data acquisition
must be integrated. This brings two features for the dictionary:

• the need for more dynamic structures capable of evolving over time and
with changing requirements

• a closer integration between data and metadata

Traditional database management systems make a clear distinction between
data (the database) and the metadata (the data dictionary/directory). To

■ make full use of the knowledge, database and data dictionary functions must
be integrated. This idea will be developed into expert database systems or
knowledge base systems. Expert database systems support data, knowledge
and application programming within one integrated framework [16].

The purpose of the data dictionary is to enforce the structure of new data
instances and keep track of existing ones. There are some problems with
current dictionary organizations. One deficiency is the lack of an active or
dynamic schema, that is, a data dictionary that can be referenced, accessed
and modified during database processing. The need for a dynamic schema is
motivated by the following characteristics of a domain:

• the structure of the data is defined as the data is generated,

• the structure of the data is riot uniform across data objects,

• there exist many differences of data with many different formats.

The desired functionality includes schema viewing, schema modification and
consistency checking among schema items. For these reasons existing data
dictionary facilities are not sufficient.

An object-oriented dictionary facility uses an object-oriented organization
to represent and describe a data dictionary schema. Objects are used to

23

represent classes and instances of schema structures. All schema related
operations are implemented as methods [24].

Dictionary facilities have been static since building and managing a database
schema requires an enormous bookkeeping effort to maintain consistency. By
building a schema description as an object-oriented hierarchy, a data struc­
ture management facility to serve as an assistant for automatically describ­
ing data representations and transparently maintaining them is provided.
Schema descriptions are maintained as object properties and procedures for
adding, modifying or deleting dictionary objects are represented as methods
associated with the schema object. These procedures maintain the consis­
tency of the schema and database objects when schema modifications are
made.

Conventional systems pose problems when working in the temporal di­
mension. Although historical access is common in manual systems, it is
usually not provided in automated database systems. Temporal extensions
of data models have been researched and are still being researched, but no
elegant solutions have apparently come into commercial use yet [24].

Another major problem in the database world is that, data manipula­
tion languages are not computationally complete which in turn necessitates
an interface to a general purpose programming language. Thus, one lan­
guage must be embedded in the other. This problem is referred to as the
impedance mismatch problem [4]. Impedance mismatch implies redundancy
in data modeling issues and an implementation dependent interface between
the languages, which might in the most extreme case even destroy identity.

Finally, object-oriented database management approach strives to bring
solutions to these problems by the way they facilitate extensible typing mech­
anisms, the way they model the world, by providing entity identity using
surrogates, easily incorporating version mechanisms, and by removing the
impedance mismatch problem implicitly.

2.5.3 Making Object Oriented Database Systems

It has been proposed that [16] a combination of object oriented language capa­
bilities with the storage management functions of a traditional data manage­
ment system would result in a system that offers reductions in application
development efforts. Also the extensible data-typing facility of the system

24

would facilitate storing information not suited to normalized relations, and
that an object-oriented language can be complete enough to handle database
design, database access, and applications. There have been many approaches
to building object-oriented database management systems in the past few
years [12], [4], [6], [15], [38] that realize the fundamental aspects of object-
orientation and brought up many interesting questions and research directions
which will be further elaborated and discussed later in this thesis, as well as
their impact on the design of our own prototype database management sys­
tem.

The power of an object-oriented DBMS lies in the data modeling concepts
realized in the implementation. The data model should support the actual
structure of information in the real world in an easily comprehensible and
efficient manner.

2.5.4 Existing Object-Oriented Database Management
Systems

A lot of research has been done on object-oriented database management
systems and currently, there axe several prototypes of which GemStone, Iris
and Orion are the most well known. Iris is iniplemented on top a relational
database system and maps object-oriented concepts to relations and tuples.
Orion is designed to support multiple inheritance, composite objects, schema
evolution and version management. GemStone has recently become commer­
cial. It is implemented on top of Smalltalk. It supports simple inheritance and
provides an indexing mechanism which they are currently trying to improve.
The prototype developed as part of this thesis has been greatly influenced by
GemStone.

2.5.5 Language Issues on 0 - 0 DBMSs

It is an important issue to deflne the language for handling the database
management tasks. Some of the approaches are presented below:

The first approach is to use a special purpose database language for spec­
ifying operations. TAXIS system [37] uses this approach. An operation
written in the database language is compiled into some internal form, stored
in the database and later interpreted. It has the advantage that the language

25

can be tailored to the DBMS, but has the disadvantage that a new language
should be designed and implemented and there will be two separate languages
with their own constructs.

The second approach is to use an existing language and its implementation
for defining and implementing database operations. Advantages are obvious
in that no effort is needed to learn or implement a brand new language.
However the difficulty lies in the fact that it may not be possible to find
such a language that provides constructs to reference, and manipulate sets
of data in a database. This leads to the actual design of ones own language
having the necessary computational and database constructs. Indeed this has
been our own preference in the design of the prototype database management
system at Bilkent.

A third approach is to use a subset of an existing programming language,
but to write a compiler which compiles operation bodies written in this subset,
into a form which can be interpreted by a database management system.
Indeed this is like the first approach, except that instead of designing a new
language an existing one is used.

2.5.6 Performance Issues in 0 - 0 DBMSs

Performance of an object-oriented database system is a complex issue, since
it is pretty much dependent on the nature of the environment being modeled.
Typical business applications where structures and processes are clear and
well defined may respond to conventional database approaches better than
object-oriented ones. Yet, this is indeed not very surprising, because the
unrivaled research efforts, and technology investments that typically address
this type of applications ever since the emergence of database management
systems have resulted in almost ideal performance results. Thus we must
actually consider non-standard applications, that are not easy to model with
traditional approaches, as our target domain, to be able to speak of high per­
formance object-oriented DBMSs. It may be hoped too that object-oriented
DBMSs will achieve better performance ratings as the studies on better sec­
ondary storage management techniques, query processing, and associative
access techniques continue [24].

In many non-standard applications (e.g., CAD systems) conventional DBMSs
fall short of providing satisfactory results. This is due to :

26

• In conventional DBMSs, accessing arbitrary, single fields induces a lot
of overhead.

• Use of direct pointers are not supported.(indirections by key values)

• Classical query optimization techniques do not necessarily fit into these
environments.

The reasons object-oriented DBMSs have better performance in such ap­
plications are:

• Arbitrary connectivities between objects are supported and the database
has an execution model which models behavior.

• Objects can be accessed directly (by identity), and local address map­
pings and caching can be used to achieve high performance.

• Complex entities can be represented more directly, with less encoding.

Object oriented database management systems, thus, not only meet per­
formance needs, but also increase functionality. Better version and configu­
ration management can be provided and more behavioral semantics of design
entities can be incorporated into the database.

2.5.7 Schema Evolution

In order for object-oriented systems to become vehicles for rapid prototyping,
ease of maintenance, and ease of modification, a well-defined and consistent
methodology must be developed. Another consideration in designing a class
modification methodology is how to bring existing objects in line with the new
definition. One approach suggests screening, to defer modifying the persistent
store; filter or correct values before they are used. Another approach does a
reorganization after a schema update.

1. changes to the contents of a node (a class)

(a) changes to an instance variable

(b) changes to a method

2. changes to an edge

27

(a) Make a class a superclass of another class

(b) Remove a class from the superclass list of a class

(c) Change the order of superclasses of a class

3. changes to a node

(a) Add a new class

(b) Delete a class

(c) Change the name of a class

2.5.8 Indexing

Indexing is a technique used in database management systems to provide
alternate access paths to objects, when the existing access strategies would
involve a search over a large volume of data. Object oriented database man­
agement systems, too, need indexing when they are used in certain data
intensive application domains. The nonnormalized nature of objects intro-

■ duce some difficulties and also accessing an object by its value is somewhat
contradictory to the philosophy of object-oriented identity notion, for this is
the reason why indexing is of little published research area and all existing
publication comes from the design of commercial products like GemStone
[14].

2.5.8.1 Language issues

There are two basic considerations: when to invoke auxiliary access paths for
associative searching and whether to index on an object’s structure or pro­
tocol. One approach is to provide a special class for handling indexes. This
approach reduces physical data independence and the user has to perform
index maintenance. Another approach is to consider every expression as a
candidate for indexed access. A better approach is to denote certain state­
ments as candidates for indexed access or to have a sublanguage to make use
of indexes. Adding an index handling sublanguage to an existing language
may cause an impedance mismatch problem and will complicate the com­
piler. The sublanguage may be procedural or declarative. The other major
issue regarding languages is whether indexes are based on the instance vari­
ables, that is the structure of the objects or the responses to messages, that

28

is the protocol. Indexing on structure violates the privacy of an object while
indexing on protocol introduces problems when the protocol changes.

2.5.8.2 Index structure

Indexing could be provided only on the immediate instance variables of an
object or on the instance variables and their instance variables. If an index
is provided on paths with multiple links that is multiple instance variables, a
single index could be provided for the whole path or several indexes could be
provided, one for each link. The sequence of links is called a path expression.
With a single index for each path, there are fewer indexes to maintain and
fewer indirections to be made during associative access. Indexing by links
allows sharing of indexes. Some other considerations are

• The type of the objects to be indexed- Indexing is generally applied to
collection or set objects. The objects constituting the elements of the
collection or set to be indexed should be of a certain type. They could
be required to be an instance of a class. An alternative to using a class
as a type is the use of kinds. A kind is 9. class and all its subclasses.

• Manipulation of undefined values along the index path

• Supporting identity indexes or equality indexes. An identity index sup­
ports searching a collection on the identity of some subobject without
reference to an object’s internal state. It does not support range queries.
An equality index supports look-up on the basis of the value or inter­
nal state of objects and range queries. In a path expression, all links
except the last one must be identity indexes and the last one could be
an identity or equality index.

• The comparison operators supported during range indexes

• Indexing on classes or collections. Indexing on classes presents some au­
thorization problems and also applications which do not use the index
are subject to the index-related overhead for indexed instances they
use. However, it is easier to trace changes to an object which affect
the index on that class. Each subclass may maintain its own index or
the index on a class may include its subclasses. As an object may be a
member of several collections, if class indexes are supported and queries
against collections are made, there will be a test for collection member­
ship in addition to the index access. Indexing on collections allows the

29

possibility that instances of subclasses be included in a collection that
is indexed. A collection of all instances of a class may be created and
indexed to implement indexing on classes. A third approach which is
the combination of the other two approaches , maintains a single index
per class but only adds members of a certain collection to that class.

30

3. AN EXPERIMENTAL
OBJECT-ORIENTED DBMS PROTOTYPE

3.1 An Overview of the Prototype

There has been on-going research on object-oriented databases at Bilkent
University during the past year, and an experimental prototype has been
developed to gain a real feeling for the object-oriented paradigm with the
special connotations it makes to databases and to gain an insight on the
implementation issues. One of the design goals was to build the core of a
full object-oriented database management system that future researchers can
build upon their own enhancements and extensions, as well as to be able to
set forth research directions for future study at Bilkent University [18].

A computationally complete language has been designed and implemented.
This language covers the data definition, data manipulation, and computa­
tion aspects of the prototype. One of the design goals was to provide a unified
language performing all the database and programming tasks and solving the
impedance mismatch problem [18] [31] [29].

The designed object-oriented database management system prototype
consists of four major modules which are object memory and schema evo­
lution; message passing ; secondary storage management, indexing and the
user interface. The user interface is the highest level module. It is built
on top of the message passing module which is in turn built on the object
memory and schema evolution module. At the lowest level is the secondary
storage management module. The way the modules interact is given in figure
3.1.

The developed prototype is a single-user system and thus does not support
concurrent access to objects and authorization control. It supports basic

31

Figure 3.1: The four main modules of the prototype.

object-oriented concepts such as classes, inheritance, message passing and
class hierarchy and object identity. The system provides simple inheritance
in which each class may have a single superclass and the class hierarchy is in
the form of a tree and has its own command language which includes both
data definition and data manipulation statements. Type theory inheritance,
external interface inheritance, code sharing and reusability are supported but
polymorphism is not supported since generic operations are not allowed.

This chapter explains the four modules of the prototype in their most
general aspects, and the next chapter presents the secondary storage man­
agement module.

3.2 Main Subsystems of the Prototype

3.2.1 Object Memory and Schema Evolution

Object memory handles the representation, access and manipulation of the
objects in the system [31]. Each object is associated with a unique surrogate
called an object-oriented pointer (oop). Object-oriented pointers are used to

32

oop
class pop

size
field 0 '

field 1

field n

Figure 3.2: The format of an allocated object

identify objects independently of their values. The message passing module
and the object memory communicate about objects using object-oriented
pointers. An oop is a 32 bit positive even number allowing approximately 2̂ °
objects to be referenced. Object memory supports primitive type objects,
string objects, class objects, collection objects and instance objects. The
primitive type objects are integers and characters. To provide efficiency, the
values of the primitive type objects are encoded in their oops.

Object memory uses an object table which maps the oops of the objects
to their physical locations in the memory. All references to an object are
made through the object table. Thus, the oops of the objects are in fact
indices into the object table. This indirection provides the benefit of moving
the objects easily in the memory. Object memory is implemented as a hash
table in which oops are used to provide direct access.

Objects are represented as contiguous series of words. Each word is used
to store the value of an instance variable. The actual data of the object are
preceded by a header information which includes the oop of the object, the
oop of the class to which the object belongs and the size of the allocated
space for the object. The format of an allocated object is shown in Figure
3.2. The fields of an object are accessed by zero-relative integer indices.

Clas,scs are themselves objects. The representation of a class object is
different from the representation of an instance object. It contains informa­
tion necessary to construct and use its instances. This information includes
the name and oop of the class, oop of its superclass, the number of its in­
stances, the names and definitions of its instance variables, the names of its

33

class oop
class name
super oop
instance count
instance variable count
ptr to variable definitions
ptr to method definitions
ptr to instance variable
domains
ptr to the first instance
ptr to the place in the
hierarchy tree______________________

Figure 3.3: The format of a class object

Obi e c t

Figure 3.4: The initial class hierarchy and the system defined classes

messages and methods, the domains of the instance variables, and pointers
to its instances. The format of a class object is shown in Figure 3.3.

Classes form a hierarchy, that is', each class has only one superclass except
for the root class which is the class Object. The hierarchy is implemented as
a tree. There axe five basic system defined classes as shown in Figure 3.4.
These arc the class Object, the class CLASS, the Collection class, the class
of Primitive Type and Method Context class. The class Object is the root
of the hierarchy. The user defined classes are instances of the class Class and
they are inserted into the hierarchy when they are created. The information
stored in the nodes of the tree includes the oop and name of the class, a
pointer to its superclass, a pointer to its subclass list and a pointer to the

34

When a new instance of a class is created, a chunk of memory is allocated.
This new instance will also be the instance of the superclasses in the hierar­
chy. Since every class has its own private representation, a separate chunk is
allocated for each class in the superclass chain.

The object memory provides the following fundamental functions:

• Determine an object’s size, class and implementation

• Access and change the value of an object’s instance variable

• Access a class object

• Create a new object

One of the important requirements of database applications is the schema
evolution, that is the ability to change the database schema dynamically. In
object-oriented databases, there can be changes to the class definitions or to
the structure of the class hierarchy. The types of changes include creation
and deletion of a class, alteration of inheritance between classes, addition and
deletion of instance variables and methods. In the proposed system, only a
few of these changes are supported such as adding or deleting a class which
is a leaf node in the class hierarchy, adding or deleting instances of a class
and adding or deleting an instance variable.

next sibling in the subclass list of its superclass.

3.2.2 Message Passing

The message passing module is built on top of the object memory and schema
evolution module and forms the basis for the user interface module. It in­
cludes the definition and support of the designed command language and
error handling in addition to message passing. It consists of five submodules
which are the lexical analyzer, parser, code generator, executor module and
the query processor [29].

3.2.2.1 The Command Language

The command language of the object-oriented database management sys­
tem prototype is designed to provide unification for both the data definition

35

and data manipulation language aspects to solve the impedance mismatch
problem. The language can be used both interactively, that is, command by
command or in the batch mode, that is, in the form of methods.

The commands can be classified into two major groups: interactive mode
statements and batch mode statements. The interactive mode statements
can be further classified as follows:

1. Definition statements- These are for defining a new class, method or
instance

2. Schema evolution statements- These are for modifying the class hierar­
chy, and class definitions.

3. Query statements- These are for accessing and manipulating objects.
They include statements for retrieving instances and class information,
index manipulation, object duplication, equality checks and method
manipulation.

The batch mode statements may only be used in methods and provide it­
eration, conditional execution, declarations, assignments and message calls.
There are two types of message calls. These are the system calls which are
implemented as C function calls and actual message calls which are executed
by the executor module.

3.2.2.2 Method Handling and Message Passing

A method is used to access' and manipulate objects and is invoked using
the corresponding message. A method is created using a method definition
statement and is formed of a header and a body. The header contains the
method name, the corresponding message name, the name of the class to
which the method belongs and a list of optional or mandatory arguments
of any system defined type or of any class. The method body is formed of
a group of batch mode or interactive mode statements. The method and
message name may be the same. All methods are persistent and the code for
a method and its compiled form are kept in separate data files.

Methods are accessed through a method definition table. Each class object
has its own method definition table. Each entry of the table corresponds to
a method defined for the class and contains the following information:

36

• the method name

• the message name corresponding to the method

• the number of arguments

• a pointer to the list of arguments

• the name of the file that contains the method

The lexical analyzer, parser and code generator form the compiler for
the command language. Every time a new method is created or a method is
modified and a compile method statement is executed or each time a message
is invoked and the compiled form of the corresponding method is not available,
these subroutines are invoked. At the end of the code generation phase, the
interactive statement or the method is converted into a set of integer codes
and stored in a file. The executor module takes the generated integer codes
as input and performs the corresponding operations using a structure called
an activation record. During the execution phase, the interactive statements
are considered as methods with no arguments for the class Object.

Each message returns a fixed size and fixed structure block. This block
contains an error flag, a flag indicating whether a value is returned or not,
returned value type, the address of the memory location containing the re­
turned value and for indexed return values the maximum length and the
element type.

Each occurrence of a literal in a method is converted into an index for
the reference or symbol table. Each activation record has its own program
counter, accumulator, condition register, symbol table and reference table.
There is a global expression evaluation stack used by all methods.

Activation records are created whenever a message call is executed. The
previous activation record is pushed on to the activation stack. Whenever a
return from a message invocation is performed, an entry is popped from the
stack and it becomes the current activation record. This solves the parameter
passing and the return address handling problems.

The query processor handles various associative retrieval queries using the
routines provided by the object memory and the indexing modules.

Error handling is performed at all stages. Each time an error occurs, an
error code is generated and the corresponding error message is retrieved from
the system error file and displayed or written to a file.

37

• the method name

• the message name corresponding to the method

• the number of arguments

• a pointer to the list of arguments

• the name of the file that contains the method

The lexical analyzer, parser and code generator form the compiler for
the command language. Every time a new method is created or a method is
modified and a compile method statement is executed or each time a message
is invoked and the compiled form of the corresponding method is not available,
these subroutines are invoked. At the end of the code generation phase, the
interactive statement or the method is converted into a set of integer codes
and stored in a file. The executor module takes the generated integer codes
as input and performs the corresponding operations using a structure called
an activation record. During the execution phase, the interactive statements
axe considered as methods with no arguments for the class Object.

Each message returns a fixed size and fixed structure block. This block
contains an error flag, a flag indicating whether a value is returned or not,
returned value type, the address of the memory location containing the re­
turned value and for indexed return values the maximum length and the
element type.

Each occurrence of a literal in a method is converted into an index for
the reference or symbol table. Each activation record has its own program
counter, accumulator, condition register, symbol table and reference table.
There is a global expression evaluation stack used by all methods.

Activation records are created whenever a message call is executed. The
previous activation record is pushed on to the activation stack. Whenever a
return from a message invocation is performed, an entry is popped from the
stack and it becomes the current activation record. This solves the parameter
passing and the return address handling problems.

The query processor handles various associative retrieval queries using the
routines provided by the object memory and the indexing modules.

Error handling is performed at all stages. Each time an error occurs, an
error code is generated and the corresponding error message is retrieved from
the system error file and displayed or written to a file.

37

Secondary storage management and indexing module is responsible for the
efEcient storage and retrieval of objects in the secondary storage. This module
was implemented as part of this thesis is covered in detail in the next chapter.

3.2.3 Secondary Storage Management and Indexing

3.2.4 The User Interface

The User Interface of the designed prototype is also object-oriented and the
user is navigated by a pop-up menu driven system to the operations he/she
desires to perform. The User Interface provides three different environments
corresponding to three groups of users: (i) developer/maintainer , (ii) domain
specialist, (iii) end-user .

The first environment contains the tools for doing schema changes such
as defining new classes, instance variables, updating existing ones, editing
methods and customized applications in the prototype’s command language.

The second environment contains tools for creating, updating new in­
stances of classes , invoking methods of objects, and doing operational main­
tenance.

The third environment is for running only customized applications and
thus interacting with the database in a controlled manner.

38

4. SECONDARY STORAGE
MANAGEMENT AND INDEXING

Efficient storage and retrieval of objects in secondary storage constitutes an
important and integral part of the prototype implementation. This chapter is
organized as follows. The first section describes the major issues of secondary
storage management in object-oriented databases and states the associated
problems. The second section describes existing approaches to secondary
storage management and to the stated problems. The third section describes
the actual design of the secondary storage management module of the proto­
type and its relationship with the other modules. Implementation details and
some examples are also given in this section. The fourth section describes
the indexing problem in object-oriented databases, existing approaches to its
solution and the design and implementation of the indexing subsystem of the
prototype.

4.1 Statement of the Problem

A database management system must be capable of handling large amounts
of data that is desired to be processed by the application systems using that
environment. Dealing with large amounts of data usually involves storing the
information on on-line, direct access secondary storage devices such as discs,
and making the information available to the application system by managing
the transfer of data between main memory and secondary storage devices.
There are several issues involved in the process of accessing and updating
the permanent store of data that resides on disk to reflect the most recent
state of the database . This section will describe the main issues of sec­
ondary storage management in object-oriented databases, their relationship
with conventional data models, and finally state the functional requirements
of the secondary storage management module of the prototype.

39

Providing support for secondary storage of data is a key issue for any database
management system and the recently emerging commercial object-oriented
database management system products, have introduced new problems and
issues related with secondary storage and permanence. Prior to elaborating
on the main issues of secondary storage management, some characteristics of
objects to be stored and manipulated are presented below, to form a basis for
their problem implications that will be treated in the following subsections.

• Objects do not have uniform structures. For example, different in­
stances of a class may refer to an arbitrary number of other objects, or
the instances may override the inherited instance variable structure.

• Objects can be of varying sizes, which is closely related with the non­
uniformity of structure.

• Objects are organized in an inheritance tree or lattice structure through
classes and subclasses.

• Objects can be grouped together to form composite objects, so that
they can be referred to collectively rather than on an individual basis.

• Instance variables of objects can themselves be objects or collection of
objects.

4.1.1 Main Issues of Secondary Storage Management

4.1.1.1 Data Modeling Related Issues

Conventional database management systems are based on several data mod­
els each with a separate mechanism for organization and manipulation and
these database management systems are limited by the structural limitations
and the modeling power of the underlying data model as a major drawback.
Object-oriented data model has received appraisal by presenting better mod­
eling power and relatively few structural limitations, yet the secondary stor­
age implications of this data model involve many problems especially because
of the need to support abundant pointer usage, extensible typing and schema
evolution.

The specific database influences on an object model may be classified into
three main groups [3] :

40

1. Requirements arising from the long term persistence and sharing of
objects, e.g., evolutionary change to the definitions of objects, types,
and type graphs; version management; concurrency and access control;
and transaction management and recovery;

2. The need for general treatment, not merely of isolated objects, but of
large collections of objects and relationships between them, with power­
ful and efficient retrieval and update facilities, including view mappings;

3. The desirability of increasing the semantic content of databases, so that
more information can reside in usable form in databases rather than
being scattered unintelligibly among programs that access them, and
so that databases can grow into knowledge bases and support inferential
retrieval without requiring another revolution.

The first two of these groups axe for transferring of existing database ideas
to the object world, together with some enhancements. The third group how­
ever stresses the need to add semantics to databases, which was long before
realized but not easily incorporated with conventional database approaches
and was associated more with semantic data models [35] and semantic net­
works [36].

A great amount of research effort combined with the investments in tech­
nology has established high standards for access, maintenance, sharing, pri­
vacy, security and other related database activities for commercial database
management systems. However, activities being modeled have been assumed
to have uniform structure, such as the tuples of a relation, instances of a
segment, or record types. This uniformity is maintained to some extent in
the implementations where variable length records are supported (through
repeating groups or arbitrary number of segment instances). Neither the
class-objects nor the instances of these classes show this structural uniformity
because of occasional overriding of the inherited properties and structures.
Therefore the conventional data models are not suitable for representing ob­
jects [39], and this means that all the classical database problems needs a
retreatment with object-oriented database management systems and addi­
tionally, general solutions to those problems can not be found before negoti­
ations on different approaches within object-oriented data model are made.
Since the secondary storage management is directly related with the data
model, every object-oriented database management system should build its
own storage manager.

41

4.1.1.2 Clustering

Clustering is essentially an efficiency and performance related manner of sec­
ondary storage use which is not unique to object-oriented database manage­
ment systems. Clustering involves grouping entities that have some impor­
tant common properties into a cluster, associating those properties with the
cluster itself, then regarding the cluster as an atomic entity wherever possible
[46]. The aim of any clustering scheme is to organize semantically related data
together, which results in reduced diskhead movement and reduced physical
I/O . For object-oriented database management systems clustering is espe­
cially important because objects are multi-dimensional instead of being flat.
One dimension is the immediate simple type instance variables of an object
instance, another dimension is the instance variables and properties inherted
along the inheritance hierarchy and yet another dimension is the fact that any
instance variable, private or inherited, can be another object (or a reference
to it). Algorithms used for manipulating multi-dimensional data in the main
memory are highly inappropriate for secondary storage since they are usu­
ally implemented using linked structures and pointers, and such indirections
are very expensive in secondary storage as they involve many disk lookups
and transfers. Being disk-based in this sense does not simply mean paging
main memory to disk as it overflows. The database must be intelligent about
staging objects between disk and memory. It should try to group objects
accessed together onto the same disk pages, and try to anticipate which ob­
jects in main memory are likely to be used again soon, and organize its query
processing to minimize disk traffic.

Some possible ways that clustering can be made are the following:

• One chunk ̂ per container can be used for very large objects, since they
tend to be accessed individually and are costly to transfer.

• Storing the chunks of an object together for objects that are accessed
together will enhance performance since objects will get preloaded.

• Storing individual chunks of a class together can be useful for aggregate
queries on all instances of a cla.ss when iterations on class instances are
frequent.

• Storing objects of a collection together can signiflcantly enhance speed
because of the contiguity of these semantically related entities.

^The private memory of an instance object is a contiguous series of words which is called
a chunk.

42

To illustrate some of the conceptucd issues that it is not an easy problem
to find an efficient clustering scheme, consider the following example [24]:

Class : Employee
instance variables Number

Ncime
Dept
Salary

integer
o b je c t;
o b je c t;
integer;

Note that Name (with fields First, Last) and Dept are compound objects.
There are two immediate ways of storing employee objects. One is to de­
compose them into their fields, and represent each field as a binary relation.
Thus we would have one relation storing Employees and their numbers, an­
other storing Employees and their names and so forth. Actually, since Name
is a complex object, a surrogate is stored for each Name in the Employee-
Name relation, and that surrogate is related to the First field and Last field
in two further binary relations. The other way to store objects is to group
all fields of one object together on disk.

When we compare the two representations,· the binary representation is
better for associative access, since all the tuples are likely to be stored in few
disk blocks, and thus can be accessed quite efficiently . However, looking at
all fields of a particular employee is expensive.

In the case of object-based storage, only one block is read to access the
instance variables of a single Employee (if the object size fits into it). However
trying to access other variables through surrogates will require many blocks
to be read. Another problem is having to guarantee that objects that are
referenced by others axe not replicated throughout the database. As is shown
by these examples, it is difficult to say which approach is better than the
other, without the specification the application domain.

4.1.1.3 Dynamic Schema Evolution

In conventional database management systems, the data dictionary/directory
concept is used to control access to the database, ensure data integrity and su­
pervise the distribution of data. Dictionaries, generally built after the design

43

of database schema has been finished, were viewed as static tools for the con­
trol of data and information resources. However, object-oriented database
applications, especially, CAD/CAM and knowledge representation applica­
tions, require capabihties to dynamically define and modify the database
schema, that is, the class definitions and the inheritance structure of the
class lattice. The need for a dynamic schema is motivated by the following
characteristics of a domain [24]: the structure of the data is defined as the
data is generated; the structure of the data is not tmiform across data objects;
there exist many differences of data with many different formats.

The possible ways of changing the schema can be summarized as: addition
or deletion of a new class; updating the position of a class in the class lattice;
modifying a class by adding, deleting or modifying properties, operations, or
constraints defined by that class. These changes have direct effects on in­
stances and users of the instances in the database which must be handled by
the system. The instances of the class that exist in the database are affected
because they are defined by the class. Additionally, instances of the class’s
subclasses may also be affected because of inheritance. Some of the class
definition modifications may render existing instances illegal representations
of the class. Information stored in the instances may be missing, garbled,
or undefined according to the updated definition. For example, if the imple­
mentation defined by the class is changed by rearranging properties, objects
created before the change will be in a non useful form. If interproperty con­
straints are changed, some objects in the database may contain illegal values.
Repositioning a class in the class lattice has the same effect as removing some
of the properties (i.e. those of the former superclass(es)) while adding others
(i.e. those of the new superclasses) [1] [2] . A change in the class definition
may affect the programs that use the objects of that class since the pro­
grams manipulate objects via their interfaces, supplying and receiving values
according to constraints defined by the object’s class. When the interface
defined by the class is changed, errors may occur when a program uses the
object, for example, when a property or operation is no longer defined or
if a value is outside the constraints defined by the class or expected by the
program or when a new name confiict takes place.

The approaches in solving the schema evolution problem can be classified
into two groups: one approach, screening, delays the modification of the
database indefinitely (screening); the other , conversion, changes all instances
of the class to the new class definitions [20]. The screening approach requires
a more intelligent interface, each time a value is to be accessed it is either
filtered or corrected. The screening concept can be seen as a late binding on

44

the representation of objects. The two approaches offer the choice of ,”pay
me now or pay me later” [20].In the screening approach, execution speed
is compromised by screening, and in the conversion approach, much time
can be consumed at the time a class is modified. These approaches can be
combined as well , so that when the running system cannot tolerate the long
term degradation of performance a conversion may be requested, however,
the conversion process may result in some information loss, and historical
data that can be kept by versions (versions will be treated in the following
subsection).

4.1.1.4 Version Management

As a direct consequence of schema evolution comes the version management
problem, which is an important issue especially in design databases. Since
schema is defined only once and it remains the same throughout the life the
database in conventional static databases, there is no issue of dealing with
different versions of the same database at the same time, however, in object-
oriented database management systems, a new version of the database is
created each time a schema change is made , if conversion is not applied to
the existing database to restructure the existing object instances to conform
with the new definition.

An alternative approach has been presented in the previous subsection,
that is, all the instances be converted to the new type version. This approach
could be reasonable when the change applies uniformly to all instances of the
class, both old and new, and/or has a value that must be stored with each
instance [21], [38]. However, as a general approach it might be objected due
to the following reasons:

• It might not be practical. If there axe a large number of objects, the
conversion could be very expensive.

• It might not be possible. If the information held in instances of one class
is significantly different from that held in another class, conversion may
require making guesses for values or discarding values that might be
useful later.

• It might not be desirable. If there axe old programs that must operate
with instances of old type versions, those programs would be inoperative
if the instances they use axe converted.

45

To illustrate some of the conceptual difficulties consider the case where
the class definitions of a class is changed (e.g. type of an instance variable).
This change may be caused by the changing requirements in the environment
and it may as well be the case that only future object instances of that class
will be affected; therefore there would have to be two different representa­
tions for the same object type (this case can be applied to situations where
specialization of the existing class may not be possible or desirable). There­
fore, the storage manager should be intelligent enough to deal with objects
with different versions and storage representations consistently, where late
binding is in effect. In this example, another observation is the fact that a
history of class definitions corresponding to each version must be kept and
manipulated. Another conceptual problem with versions is due to the fact
that versions may have versions, and if an older version can be used to create
another version then a non-lineax, tree-like set of versions would develop since
any version may have more than one distinct successor version, and it is not
conceptually clear which version is the latest one representing the final state
of the database .

4.1.1.5 Extensible Data Typing

It is important to realize that, there are user implemented types that make use
of existing types and primitive types (like integer, char, etc.,) to implement
their own methods and protocols. When it comes to its secondary storage
implications, however, operations should be transparent to the user as if every
type is a primitive type. Storage manager should be able to interact directly
with the type definitions and method implementations to be able to fulfill
this requirement. For example, consider an object with one of its instance
variables being date type; no further encoding or decoding should be needed
by the user as fax as the storage operations axe concerned; this means that, a
general typeless backend must be supported by the storage manager in order
to provide uniform operations to manipulate user defined types.

4.1.1.6 Maintaining Object-Identity

It is important that identity of an object remains unchanged regardless of
the changes in its state both in its internal (main memory) and external
(secondary storage) representation. The concept of object-oriented pointers
in main memory should be further extended to cover secondary storage. The

46

mapping of main memory objects to their secondary storage counterparts
must preserve the identity of the object. This implies'that operations like
retrieving an object or storing an object must be idempotent, that is, if you
store the same object multiple times consecutively, its final effect should be
the same as if the operation has been performed only once. The storage
manager may employ different techniques, like replicating objects, in order
to improve performance, yet, the preservation of object-identity must always
be insured.

4.1.1.7 Indexing

Providing associative access is a key issue in any database management sys­
tems and there are many interesting problems that exist with indexing. In­
dexing problem will be treated in detail at the end of this chapter as a special
section .

4.1.1.8 Secondary Storage Management

Within this historical perspective, object-oriented database management sys­
tems has been a revolutionary approach as it appeared with brand new de­
mands from technology which cannot be easily adopted from existing tech­
niques and which is indeed in conflict with the old. Object-oriented database
management systems have to deal with all the classical problems that exists
in conventional database management systems such as transaction manage­
ment, recovery, concurrency, access, maintenance; and in addition to these
they introduced new problems such as schema evolution and version manage­
ment. Due to these stated differences between the approaches, in designing
object-oriented databases it is necessary to build secondary storage managers
from scratch with their own file management, access structures and services,
which has been the case for the prototype implementation.

4.2 EXISTIN G APPROACHES TO SECO N D AR Y STOR­

AG E M A N A G E M E N T

Object-oriented approach to database management has been investigated
and many prototypes and few commercial applications have been developed.

47

Among these, two general classifications can be made, one is those database
management systems which strive to augment existing object-oriented pro­
gramming systems with notions of persistence and some database concepts
like transaction, concurrency, etc. The other approach has been to design a
database management system with a stronger support for database concepts
while using the object-oriented programming constructs.

The concept of persistent objects has its roots from object-oriented pro­
gramming languages, as some notion of permanence is required in order to
develop a serious application. LOOM [43] , for example is an object-swapping
virtual memory system designed to assist main memory resident Smalltalk-
80 in managing large number of objects. Gemstone [4], [15], [16] adds to
Smalltalk-80 permanent data storage, multiple concurrent users, transactions
and secondary indexes. Flavors [45] and Object-Lisp [44] are other exam­
ples of virtual memory based systems where object permanence is achieved
through copying the entire world to a file. Flavors* and Bigger Talk, are
systems under development at MCC, which attempt to remove objects from
the local environment in which they are created and make them permanent
and sharable. Both BiggerTalk* and Flavors* translate their objects to an
external form.

There have also been efforts to extend existing database management sys­
tems to store objects and their relations. IRIS [6] for example is implemented
on top of a relational database system and maps object-oriented concepts to
relations and tuples. ODDESSY [49] is implemented using Smalltalk-80 in­
corporating the major features of the SDM, the Structural Model and the
Entity-Relationship model and aims at transforming the conceptual model
into normalized relations using rules to generate functional dependencies
which in turn produce third normal form relations, and finally mapping the
logical design onto a specific Relational Database Management System.

There are also efforts to provide storage management tools to be used as
general object servers for the design of object-oriented database management
systems. One such system is ENCORE [38],[10] designed to be used as a back­
end for an object-oriented database system and which is responsible for man­
aging objects on secondary storage, managing transactions, and providing a
persistent and sharable storage. GORDION [39] is a server which provides
permanence and sharing of objects within an object-oriented environment.
It supports concurrency control, manipulation of objects of arbitrary sizes,
history and inquiry, and maintenance. CRM-Complex Record Manager [40]

48

is a storage manager to manipulate complex objects, and further support set-
oriented data structuring capabilities that can be made use of by a relational
database system for supporting non-first-normal-form relations. EXODUS
Storage Object Manager [41] provides support for concurrent and recover­
able operations on arbitrary size storage objects. It also provides primitive
support for versions of storage objects, buffer management, and indexing.

Lastly, ORION [2] one of the most widely known object-oriented database
management systems is implemented in Common LISP providing general
object-oriented concepts with support for version management, storage and
presentation of unstructured multi-media data and dynamic changes to the
database schema.

This section is intended to present some implementation details of existing
object-oriented database management systems with focus on the secondary
storage issues. The design and implementation of the prototype has been
greatly influenced by the systems that are presented in the following subsec­
tions.

4.2.1 Gemstone

Gemstone [15], [16] is an object-oriented database management system which
combines the powerful data type definition and code inheritance proper­
ties of Smalltalk-80 with permanent data storage, multiple concurrent users,
transactions and secondary indexes. GemStone provides an object-oriented
database language called OPAL, which is used for data definition, data ma­
nipulation and general computation.

Figure 4.2.1 shows the major pieces of the GemStone system. The major
pieces of the GemStone system. Stone (the executor) and Gem (the object
manager), correspond to the object memory and the virtual machine of the
standard Smalltalk implementation. Stone provides secondary storage man­
agement, concurrency control, authorization,transactions and recovery. Stone
also manages workspaces for active sessions. Stone uses unique surrogates
called object-oriented pointers (OOPs) to refer to objects, and an object
table to map an OOP to a physical location. This indirection means that ob­
jects can easily be moved in secondary memory. Object table can potentially
have 2̂ ̂ entries. Stone is built upon the underlying VMS file system. The
data model that Stone provides is somewhat simpler than the full GemStone
model, and only provides operators for structural update and access. An

49

Figure 4.1: Major Pieces of GemStone

object may be stored separately from the objects it references, but the OOPs
for the values of an object’s instance variables are grouped together.

All objects in the system reside in a disk-based object space which is
divided into repositories. A repository represents a dismountable partition of
the object space and is implemented as a direct access disk file. Repositories
are divided into disjoint regions called segments for purposes of authorization
and concurrency control. A segment is a chunk of object storage that is owned
by a particular user, who can store objects in it and grant access to other
users. Segments expand to accommodate the objects stored in them.

Repositories may be replicated on disk against media failures. Replication
is used instead of transaction log files. Because repositories of objects are
dismounted, a mechanism must be provided to preserve consistent object
identity when information is taken off-line and later brought back online.

GemStone’s transaction control uses an optimistic approach that gives
read-only transactions priority over read-write transactions when they re­
quire a commit. The approach is based on the assumption that read-only
transactions are more frequent than read-write transactions.

Stone supports five basic storage formats for objects, self identifying (e.g.

50

small integer,character,boolean), byte (e.g. string,date,float), named, in­
dexed and nonsequenceable collections. The byte format is used for classes
whose instances may be considered atomic. The named format supports ac­
cess to the components of an object by unique identifiers, instance variable
names. The indexed format supports access to the components of an object
by number, as in instances of class Array. This format supports insertions of
components into the middle of an object and can grow to accommodate more
components. The non-sequenceable collection (NSC) format is used for col­
lection classes in which instance variables are anonymous. Members of such
collections are not identified by name or by index, but a collection can be
queried for membership, and have members added, removed or enumerated.
Both the indexed and NSC format support dynamic growth of objects, and
are bound in size only by the total number of objects in the system and the
physical limits of secondary storage. When objects in these formats grow
large, their representation changes from a contiguous one to a B-tree which
maintains the members by OOP for NSCs and by offset for indexed object.
The byte format also supports dynamic growth in a manner similar to that
for the indexed format.

Stone has several subcomponents. The transaction manager is shared by
all invocations of the Stone and handles concurrent use of the permanent
database in an optimistic manner. It records accesses to the database for
each session and validates them for consistency when a transaction commits.
The directory manager creates and maintains directories which handle object
histories. The Linker incorporates updates made by a transaction in the
permanent database at commit time, calling for restructuring of directories
as needed. The Linker is called by the Boxer whose job it is to fit objects into
tracks after database changes. The track manager schedules reads and writes
of tracks. The commit manager provides safe writing for groups of tracks
since versions are kept. No garbage collection is needed; garbage collection
for temporary data can be done by discarding the work space at the end of
a session.

Gem sits atop Stone, and elaborates Stone’s storage model into the full
GemStone model. Gem also adds the capabilities of compiling OPAL meth­
ods into bytecodes and executing that code, user authentication, and session
control. The Gem layer contains the virtual image, that is the collection of
OPAL classes, methods and objects that are supplied with every GemStone
system. OPAL is a computationally complete language and can express var­
ious associative searches on a collection.

51

As far as dynamic schema evolution is concerned, GemStone takes on the
conversion approach; when a class is modified, GemStone attempts to coerce
the underlying database to conform to the new definition and thus maintain
a consistent database .

As a feature of GemStone, there is no file handling related language con­
struct in the language, because all objects that the user manipulates are
persistent inherently. GemStone hides from application designers the pag­
ing of objects between secondary and primary memory, and supports objects
larger than the size of the server’s primary memory.

Finally, GemStone is unique among other existing object-oriented database
management systems in that it has an elegant indexing mechanism which will
be elaborated in the Indexing Section in this chapter.

4.2.2 IRIS

IRIS is an object-oriented database management system which is intended to
meet the needs of emerging database applications, including office informa­
tion, and knowledgebased systems, engineering test and measurement, and
hardware and software design [6].

Iris database management system consists of a query processor that im­
plements the Iris object-oriented data model, a storage manager that provides
access paths and concurrency control, backup and recovery, and a collection
of programmatic and interactive interfaces.

The query processor translates Iris queries and operations to an internal
relational algebra format which is then interpreted. Instead of inventing a
totally new formalism, the system relies on the relational algebra. Storage
manager is like a relational storage subsystem. It supports the dynamic cre­
ation and deletion of relations, concurrency control, logging and recovery,
archiving, indexing, and buffer management. Every IRIS schema is mapped
to a relational schema with appropriate constraints, and every IRIS instance
is implemented as a corresponding relational instance. IRIS queries axe trans­
lated into relational select-project-join queries, and IRIS updates become re­
lational transactions.

Iris data model distinguishes literal objects ̂ such as character strings and
numbers, and nonliteral objects ̂ such as persons and departments. Literal

52

objects axe directly representable, whereas nonliteral objects are represented
internally in the database by surrogates. The Object Manager provides oper­
ations for explicitly creating and deleting nonliteral objects, and for assigning
values to their properties. Referential integrity is supported in the current
prototype by allowing objects to be deleted only if they are not being refer­
enced.

Objects eire classified by type. Types are named collections of objects.
Types may overlap; for example a person object may be an instance of the
types Employee, Taxpayer and Manager. Properties of objects axe expressed
in terms of functions which axe defined over types. They axe applicable to the
instances of the types. Therefore types are constraints. Types are organized
in a type structure that supports generalization and specialization. The Iris
type structure is a directed acyclic graph. A given type may have multiple
subtypes and multiple supertypes. The subtypes may be overlapping and
they do not necessaxily partition the supertype. Each object of the subtype
•must belong to all the supertypes.

Properties may be generic; that is, properties defined on different types
may have identical names even though their definitions may differ. The rules
for property selection are not yet finalized. The type Object is the supertype
of all other types. Types axe themselves objects and their relationships to
subtypes, supertypes and instances are expressed as functions in the system.

Object Manager allows the type graph to be changed dynamically , how­
ever, there axe some limitations on the schema update operations. An object
versioning mechanism has been proposed for IRIS, which will also form the
basis for the implementation of concurrency control.

IRIS strives to support extensible typing by providing filters to translate
between character strings and the new type’s internal representation. Also,
to enable defining new operations on the new types it provides a mechanism
to define a syntax, context-sensitive rules (e.g. precedence rules), and a
procedure to execute the operation.

4.2.3 ORION

ORION [1] [2] is an object-oriented database system which is operational at
MCC - Microelectronics and Computer Technology Corporation. It adds per­
sistence and sharability of objects created and manipulated in object-oriented

53

applications. The system supports the basic object-oriented concepts such
as objects, classes, inheritance and methods. The system is being devel­
oped especially for CAD/CAM, artificial intelligence applications and office
information systems with multimedia documents. It supports version con­
trol , storage and presentation of unstructured multimedia data, and dynamic
schema changes. It also supports appropriate access paths and techniques
for query processing, buffer management and concurrency control.

ORION supports the primitive types integer, float, string and boolean
as the class Ptype. These can be used as primitive domains of instance
variables. Collection and set objects are also supported. All user defined
classes are instances of the system defined class Class and it is sufficient to
send a message to the class Class to create a new class. The root class is
Object. The class structure is a lattice structure, so multiple inheritance
with default conflict resolution rules have been defined.

ORION provides automatic access to the set of all instances of a class
and its subclasses by implicitly generating an instance of a special meta class,
namely Set-of class, for each user defined classes. The notion of the Set-of
class is especially important for persistent objects. While a program is ex­
ecuting, objects created by the program can be referenced through symbols
that point to them. A program’s symbol table provides handles for the ob­
jects. However, a newly started program will have no direct references to
instances of classes through its symbol table. Instead, the program can refer
to the special instances of the Set-of class of the required class. Predicate-
based queries are messages to these set objects and return subsets of these
sets. Another motivation for the automatic generation of Set-of classes for
user defined classes is that instance variables often require values that are
sets of objects. Set objects must belong to some class. Without these Set-of
classes, the user would have to either explicitly create a class to capture the
structure and semantics of these objects or treat them as instances of class
Object, losing their semantics.

In the secondary storage, all instances of a class are placed in the same
storage segment. Thus a class is associated with a single segment, and all
its instances reside in that segment. All of this is transparent to the user;
a separate segment for each class is allocated automatically. For clustering
composite objects, however, it could be more advantageous if multiple classes
may be stored in the same segment. The user is required to specify which
classes are to be stored in the same segment.

54

One of the main contributions of ORION has been the elaboration of
many dynamic schema evolution concepts [1] . A complete taxonomy of
schema evolution has been investigated during the development of ORION,
however, a full treatment of this study is outside the scope of this thesis and
only the most important functions are mentioned below. The most important
functions axe to add a new class, add an instance variable to a class, delete a
class and delete an instance variable from a class.

A new class may be defined as a specialization of an existing class or
classes which may be specified as the superclasses of the class. It may redefine
some of the instance variables and methods. If there is a conflict the conflict
resolution rules are applied.

When an instance variable is added to a class, if there is a conflict with an
inherited instance variable, the new variable will override the older definition.
All instances of the class will be modified to include the new variable. If the
class has any subclasses, they will inherit the new instance variable and if
there is a conflict the new variable will be ignored.

Whenever a class is deleted, all of its instances are deleted automatically
but subclasses of the class are not deleted. The deleted class will be removed
from the superclass lists of its subclasses and the subclasses will be assigned
the superclasses of the deleted class as superclasses. Also, the subclasses will
lose the instance variables and methods they inherited from the class. If
these definitions had overridden some other definitions these definitions will
be inherited. If the class to be deleted is the domain of a variable in a class,
the superclass of the deleted class will be taken as the domain of the variable
unless another domain is specified. When an instance of a class is dropped,
all objects that reference it will be referencing a non-existent object. ORION
does not automatically identify references to non-existent objects, because of
the performance overhead.

When an instance variable is deleted from a class, the class may inherit
the instance variable from another superclass if there had been a conflict
involving the variable. All subclasses of the class will be affected if they had
inherited the variable. Methods involving that variable will become invalid.
These methods may be deleted or redefined.

Another schema evolution operation could be the changing of the domain
of an instance variable of a class. The domain of an instance variable is always
a class and the domain of a variable can only be changed to a superclass of

55

the old domain. Thus, the instances of the class undergoing the change are
not affected.

Version Management is also a very important contribution of ORION.
In ORION, there are two types of versions [1] . A transient version can be
updated or deleted by the user who created it and a new transient version
may be created from an existing transient version. The previous transient
version then becomes a working version. A working version is stable and
cannot be updated, it can be deleted by its owner and a transient version can
be derived from a working version. A transient version can be promoted to
a working version either explicitly or implicitly.

Since more than one transient version can be derived from a working ver­
sion, version history is represented in a hierarchy called the version derivation
hierarchy. Dynamic binding of an object with a versioned object is supported.
The user may specify a particular version in the hierarchy as the default ver­
sion. If a default value is not specified, the system selects the version with
the most recent timestamp as the default.

Version handling is quite a performance overhead so versions are only
kept on classes which are specified to be versionable. A version derivation
hierarchy is kept for each instance of a versionable class. A generic object is
used as the data structure for the version derivation hierarchy.

One of the enhancement goals of ORION is to support composite objects.
A composite object is a complex object formed of a set of subobjects that
are treated as units of storage, retrieval and integrity checking. For example,
a vehicle is an object that contains a body object, which has a set of door
objects, and each door has a position object and a color object. A body
object is a part of a vehicle instance, and a set of doors in turn is a part
of a body, and so on. Composite objects add to the integrity features of
an object-oriented data model through the notion of dependent objects. A
dependent object is one whose existence depends on the existence of other
objects and that is owned by exactly one object. For example, the body of a
vehicle is owned by one specific vehicle and cannot be created without that
vehicle. ORION considers a composite object as a unit for clustering related
objects on disk, because it is often likely to access all or most dependent
objects when the root object is accessed.

The components of a composite object should be clustered. A composite
object can be stored in a sequence of linked pages. If the object increases in

56

size, a new page can be added and if the object decreases in size, pages may
be released or compacted. The only problem occurs when two composite ob­
jects exchange parts. They should also exchange storage locations. However,
ORION does not perform this reclustering.

4.2.4 ENCORE

ENCORE is a shared, segmented memory system for an object-oriented
database developed at Brown University [10] [38]. The main focus of this sec­
tion will be on the storage management aspects of ENCORE. The database
system is decomposed into two distinct subsystems. One subsystem is a type­
less backend that is responsible for managing the use of the persistent object
store, and the other piece is responsible for managing the enforcement of the
type system.

The OBject SERVER, known as ObServer, reads and writes chunks of
memory from secondary storage. These chunks are used by the higher level
module to store the state of objects. It also has a primitive notion of trans­
actions which makes it possible to support a variety of shared memory appli­
cations.

The type level is referred to as ENCORE(Extensible and Natural Com­
mon Object REsource), and it is this level that deals with the semantics
of objects through type definitions. The type level communicates with the
server through the UNIX remote procedure call (RPC) mechanism in an
asynchronous fashion.

The server is a resource that manages chunks of memory allocated in a
shared memory space. Here, a chunk is any contiguous string of bytes. The
server allocates space and a UNique IDentifier (UID) for each chunk that it
stores. One of the principal functions of the object server is to maintain a
correspondence between UIDs and chunks of memory.

Each process that wants to communicate with the server must bind a
module called client into its image. It is, therefore, possible for the client and
the server to reside on different machines. When a process needs to request
a service from the server, it makes a call on the client code that hides the
details of the RPC interface. The ENCORE module uses the object server
as a backend. It makes calls directly on its own copy of the client module.

57

The chunks of memory that are managed by the server can be used to
implement class objects as presented by the ENCORE interface. To set some
terminology, consider the case where we have the class Toyota as a subclass of
the class Car, then, an instance x of the class Toyota is also an instance of the
class Car, and there will be a chunk of storage that represents the part of x
that is an instance of Toyota, and a chunk of storage that represents the part
of X that is an instance of Car. The term instance is referred to each chunk
and the term object is referred to the aggregate of all instances that make
up X. Upon object creation, UID allocation is separated from from storage
allocation. This allows an application to request UIDs in anticipation of their
use without reserving space for them in the file. Space is not allocated until
the objects axe actually written.

ENCORE deals with abstract objects that axe instances of classes. These
classes paxticipate in inheritance relationships and allow for the implemen­
tation of an object to be distributed across several class definitions. At the
class level, every object might consist of several instances, one for each class
in which it participates. For example, if Toyota is a subclass of Car, Car is a
subclass of Vehicle, and Vehicle is a subclass of Object, then a given Toyota
will be an instance of all four classes. Since each class has its own representa­
tion, as required by the abstract data type scheme, Toyota object would need
four chunks of storage for its representation. Each of these chunks would be
accessible through the operations of the corresponding class.

As to how these chunks axe held together, a single UID is associated with
each object. When a UID is dereferenced, it leads to a header block for that
object. Conceptually, the header part is part of the chunk for the instance
of the class Object that every object must have. The header for object x
contains some general bookkeeping information, as well as a set of pairs of
the form (t,p) where t is a pointer to a type object, and is a pointer to
the beginning of the chunk that holds the representation for the instance of
t that is a part of x.

Most often, these chunks axe allocated contiguously such that the pointer
p is the offset into that contiguous storage at which the chunk for t begins.
In this case there would be a single UID for the large chunk that contains the
instance chunks. This UID is the one that is used by ENCORE to represent
object identity.

However, it is also possible for the chunks to be noncontiguous. Since p
can be a UID, the chunks can be stored in any physical location. This allows

58

for a partitioning scheme in which instances of diiferent- classes for the same
object can be stored in different storage areas.

In ENCORE the segment provides the clustering mechanism. A seg­
ment contains objects that the object-oriented database management sys­
tem expects a client to access during a transaction, thus eliminating frequent
diskhead motions and single object transfers. Thus a segment clusters a logi­
cally related set of objects into a variable sized single package. Since a client
is expected to access other objects in a transferred segment, greater system
performance results from preloading required objects. A segment is thus the
unit of transfer between client and server and from secondary storage to main
memory. When a client requests an object, the server returns the segment in
which the object resides.

Once a client receives a segment, the objects are individually placed in
an object hash table and the segment is freed. The client has no further use
for the segment structure once it has acquired the objects. The server, then
receives a set of object changes from the client containing a client’s operations
and other necessary information to install the changes in the server’s copy of
the segment. By returning only the final changes to the server in one package
the amount of network traffic and server processing is reduced.

The object server maintains master segments containing the current ver­
sions of all objects resulting from committed object changes. A client obtains
from the server coj>y segments that the client accesses locally. Clients may
share the same copy segments by each having a copy at their location; how­
ever object locks may prohibit specific object accesses.

Whereas segments provide access to objects in groups the unique identifier
(UID) provides individual object access. The segmentation scheme employs
two type of UIDs: external and internal. An external UID provides a user
with a constant reference to a database object. When the server derefer­
ences a valid external UID, there results an internal UID, manipulated by
the system to locate an object physically. Each external UID maps either
directly or indirectly onto one or more internal UIDs. A mapping to multiple
internal UIDs results from replicating objects (discussed below). The server
sequentially allocates external UIDs that are not recycled when objects are
deleted. Deleted objects have external UIDs that map to a tombstone inter­
nal UID. Figure 4.2.4 shows the dereferencing process from an external UID
to an object. The various mappings are maintained in files called the Object
Location Table (OLT) and Duplicate Object Table (DOT). In figure 4.2.4, the

59

External UID

(a) code OLTindex

OLT File

X

‘

DOT File

(0

Figure 4.2: Dereferencing process in ENCORE

code field in the UID structure indicates the UID type, either external or
internal. This information is used both by the client and sever processes.
The OLT maintains external-to-internal UID mapping.

Object replication render it possible to cluster an object in more than one
way where it might be reasonable. This incurs a penalty for update but is
extremely useful for objects that are either seldom updated or read only.

The implementation of replicated objects require the introduction of a
level of indirection between the external UID and the internal UID. Here, an
external UID maps to an index in the Duplicate Object Table (DOT) that
is maintained by the server and provides the internal UIDs with all copies
of a replicated object. When dereferencing an external UID that maps to a
replicated object, the system checks whether a client already has a segment
containing the object. If so, the corresponding UID is returned. Also the
system guarantees that the update of all copies of rephcated object occurs
automatically.

A segment contains a pointer table and a set of objects. Each segment
object is referenced by exactly one entry in the pointer table. Segments are
stored in a Database File (DBF). The DBF structure is similar to that of a
segment: a pointer table and a set of segments. The pointer table allows a

60

SPTE-0

SPl'E-N

num ber of SPTEs

offset size

segmerit-i

segment-J

Segment
Pointer
Table

Segments

OPTE-0

OPTE-N

num ber of OPTEs

offset size OLT’index

object-•i

О
•

object-• J

Object
Pointer
Table

Objects

Figure 4.3: DBF and Segment Structures

reference to an object (or segment) without knowing its exact position. This
makes it possible to move objects (or segments) within a segment (or DBF).
The pointer table comprises one or more ■pointer table blocks, and additional
fixed-size blocks are inserted as a segment acquires more objects. This feature
reduces the frequency of segment expansion each time an object is installed.
Figure 4.2.4 shows the DBF and segment structures.

A DBF contains the number of Segment Pointer Table Entries (SPTEs),
the Segment Pointer Table (SPT), and segments.Each SPTE is composed of
an offset and size. The offset specifies the segment location within a file, and
the size specifies the number of bytes occupied by the segment.

A segment in the secondary storage contains three sections: the number
of Object Pointer Table Entries (OPTEs), an Object Pointer Table (OPT),
and objects. Each OPTE contains an offset,size , and OLTindex, (Object
Location Table Index). The offset and size axe the same as for the DBF.
The OLT index provides a back pointer to the OLT that facilitates object
relocation.

The object structure depends on the user-defined type specification, but
this does not affect the object server since ObServer handles an object as a
string of bytes when installing and retrieving objects.

61

4.3 SECO N D AR Y STO R AG E M A N A G E M E N T OF
TH E P R O TO TYP E

An overview of the object-oriented database management system prototype
has been presented in the previous chapter. The aim of this section is to de­
scribe the secondary storage management subsystem of the prototype which
was implemented as part of the thesis. The implemented version runs at the
Sun Workstations [26] , under the UNIX 4.2.BSD [28] and the programs have
been written in C Language [30].

4.3.1 The Goals and Requirements

The main initiative in designing and implementing the secondary storage
manager has been to obtain a hands-on experience on the database issues
of object-oriented database management approach, while developing an ex­
perimental test bed which will allow future researchers to further extend it
to cover other aspects of database management that have not been included
within the current implementation. It was not one of the design objectives to
build a full fledged object-oriented database management system that would
treat and provide solutions to all of the secondary storage management issues
mentioned previously in this chapter, because of the complexity of designing
such a system from scratch. Therefore, in order to render it a manageable
task, some issues that are associated with a multi-user database management
system - such as concurrency, authorization, locking; and other database is­
sues such as version management, transaction management and recovery have
been deliberately left out. However, future extendability of the current im­
plementation to cover these topics has been taken into consideration.

The secondary storage module is responsible for managing the transfer of
objects between main memory and disk storage while making sure that the
object identity is preserved throughout its internal and external representa­
tion .

The secondary storage subsystem should provide a data management
function compatible with the data model of the main memory. The tech­
niques should allow uniform and efficient performance when dealing with the
storage and retrieval of very small and very large single objects. The many
small objects and the small number of large objects must be handled effi­
ciently in both storage space and access time. Although these issues are

62

easily handled in main memory because of the inherent random access via
address pointers, secondary storage possesses practical limitations on the use
of random access ,therefore, the database must be intelligent about staging
objects between disk and memory. It should try to group objects accessed
together onto the same disk pages (that is, clustering),in order to reduce the
number of indirections and pointer dereferencing, and try to anticipate which
objects in main memory axe likely to be used again soon, and organize its
query processing to minimize disk traffic.

Persistence of objects should be transparent to the user since any object
that the user has access to is implicitly persistent. The user does not need
to specify direct operations on the persistent store of objects, it is rather
the Storage Manager’s responsibility to do address mappings and all the
associated database activities.

Indexing should be provided to provide fast and alternative access paths
to the persistent object store.

The requirements of secondary storage module can be summarized as:

1. Access- Fast random access to objects (and to their chunks) via their
oops should be provided; clustering and preloading of objects to attain
better performance and providing associative access to an object via
value (indexing on value) should be available; the system should also
allow noncontiguous storage of chunks to provide a vertical partitioning
scheme [10].

2. Updates and reorganization- Updates that may change the size of ob­
jects must be tolerated and stability against relocation should be guar­
anteed without having to reorganize the whole database for avoiding
unsatisfactory performance.

3. Extensible typing- Schema updates such as class definition updates,
addition and deletion of instance variables and class evolutions must be
supported in the secondary storage.

63

4.3.2 The Secondary Storage Architecture

4.3.2.1 The Module Structure

The secondary storage module is divided into two distinct subsystems. One
subsystem is the lowest level object server, and the other is the storage man­
ager.

The object server is responsible for providing the operating system like
primitives to read and write byte streams in the secondary storage, without
the notion of any types. It is an essentially typeless backend, implemented by
using low level UNIX file handling primitives [25] [28]. This module provides
all the essential primitive functions to interact with the physical storage, so
future transportability of the prototype to other machines, or integration
of the prototype with other file servers, or operating systems require the
modification of the object server only.

The storage manager is responsible for interacting with the other compo­
nents of the prototype and from the transfer of objects between main memory
and secondary storage. Since the object server has no notion of types, it is the
responsibility of the storage manager to enforce the type system, and inter­
pret and manipulate the byte streams used by the object server. The storage
manager deals with the semantics of objects through the class definitions by
interacting with the object memory module of the prototype.

4.3.2.2 Storage Concepts

All objects in the database axe implicitly ■persistent, and it is not any concern
to the user whether the object being accessed resides in main memory (object
memory), or in a disk file. It is rather the storage manager’s responsibility to
install the object into object memory if the referenced object is not already
installed, and to store it into the secondary storage when the session closes
or memory needs to be compacted. The current implementation installs a
session-specified number of objects into object memory when a session is
opened, and saves the objects to the persistent store when session closes.
However, these initial load and final dump operations axe implemented by
using atomic, single object txansfers, which can be issued at any time the
session is open.

Objects are the basic unit of information stored and manipulated by the

64

storage manager. Since the objects axe represented in the class hierarchy
of the data model, an object may have many components that belong to
different classes with different implementations. For this reason an object x
of the class A cannot be viewed as a single structure, but is indeed a collection
of different structures each belonging to the corresponding class in the super
class chain of A. From here on, the private memory of an object instance
(x) corresponding to a class (j4) will be called a chunk, and the term object
will refer to the aggregate of all chunks that make up x. To illustrate the
representation of an object in the object memory (main memory) consider
the following example [31].

There are three user defined classes with the following class definitions:

CLASS SUPER CLASS INSTANCE VARIABLES

PersonNaune CLASS first.naone :
last.naime :

string
string

TitledName PersonName t i t l e : string

TitledNameWithLetters
TitledName le tte r s string

To create objects that represent person names with titles another class
TitledName is created as a subclass of PersonNames. The instances of the
TitledName class will automatically have instance variables first_name and
last-name and an additional instance variable title to hold the title. Then,
another class, TitledNameWithLetters is created as a subclass of TitledName.
This new class has the additional instance variable letters .

Now, when a new instance of TitledNameWithLetters is created, three
chunks will be allocated (assuming that the superclass of PersonNames is the
class Class). Figure 4.4 shows the allocated chunks for the name ’’Dr.John
Smith,OBE” . In this example it is assumed that all the instance variables
axe string objects and Si, S2, S3, S4 axe the object-oxiented pointexs (oops)
of these objects. C l, C2, C3 axe the oops of the classes and oopl, oop2, oop3
axe the oops of the instances of the classes.

Object Identity is provided by assigning a non-recycled, unique identifier
to each object in the database upon its creation. This identifier is called an
object-oriented pointer (OOP), and will be used in all future references to that

65

Figure 4.4: Allocated chunks for a memory object

object. Indeed, instantiation of an object will result in the creation of many
chunks used to implement the object as specified by the inheritance structure
of the class the object belongs to, and each of these chunks are assigned OOPs
as well. Each of these chunks is accessible through the operations defined on
the corresponding class, and thus can be viewed as an independent abstract
object.

4.3.2.3 Storage Mapping

OOPs are essentially symbolic pointers which axe converted to physical ad­
dresses when accessing the objects. The conversion takes time, but this
mechanism provides location independence and solves the referential integrity
problem found in conventional database management systems. Also, an in­
stance variable of an object can contain an OOP, that is another object as
its value, which results in a multi-dimensional representation of data.

When accessing the secondary storage, the OOP provides individual ac­
cess to any object. The storage manager employs two types of unique identi­
fiers: external OOPs and internal OOPs. An external OOP provides the user
with a constant reference to a database object. When the storage manager
dereferences a valid external OOP, there results an internal OOP, manipu­
lated by the system to locate an object physically. The mapping from external
to internal OOPs is one-to-one, that is, no object replication is allowed in the

66

secondary storage. Deleted objects point to a special OOP when their ex­
ternal OOPs get dereferenced so that the system recognizes them as deleted
objects, and detects dangling references among objects.

4.3.2.4 Storage Structures

The secondary storage is composed of four distinct file structures, namely,
object-file, system-file, method files and index files. The object-file contains
the user defined objects and is implemented as a stream file. The system-file
captures the meta information in the database by storing the class defining
objects, the instance variable definitions and their associations with the user
defined classes, and the class hierarchy. Methods belonging to classes are
stored in a separate text file. Finally, for each index maintained there is a
separate index file, organized as a B-tree.

The Container Structure

When manipulating objects in the secondary storage, efficiency becomes
the principle design criterion. Efficiency is closely related with eliminating
extra physical I/O and OOP dereferencing (which might involve a disk access
itself) by providing a suitable secondary storage organization technique. One
of these techniques, which is adopted by the prototype implementation, is
clustering related groups of data. The container provides this facility. The
container is a directly accessible, variable sized, recursively defined structure.
Each container can be viewed as a segment holding one object with the cur­
rent values of all of its instance variables . The main objective is to hold
together individual chunks of an object contiguously on disk. Since a con­
tainer is the unit of transfer between secondary storage and object memory,
retrieval of the object with the OOP oopl will actually cause all the chunks
that collectively define the object specified by oopl to be retrieved, instead of
retrieving the chunk that oopl maps to alone. It is assumed that retrieving
a chunk into main memory would most likely reference other chunks of the
same object due to inheritance and thus retrieving an object in its entirety
is important for eliminating single chunk disk retrievals, that is, eliminating
extra physical I/O . Also, some OOP dereferencing will be eliminated, since
chunks linked with the super-object-chains of a chunk are immediately avail­
able and no physical address look-up is necessary. These properties conform
well with the efficiency criteria stated above.

67

Figure 4.5: The abstract view o f a variable sized container

Figure 4.6: The abstract view of a variable sized container with external
super-part

6 8

The container has three parts; the header , the data part and the super­
object part. The header carries information about the class the object belongs
(i.e., the oop of the class); a delete flag; and the object’s oop. This oop is used
for recovery from a crash of the Object Location Table, which maps OOPs
to physical addresses, and used for the identification of objects included in
a collection.The data part contains a set of triplets and an overflow-pointer.
The first component of the triplet is a byte which identifies the instance
variable within the class definition of current object’s class; the second byte
is a code for the type of the instance variable and it informs the object-server
about what sort of data to expect as the third component of the tuple. The
third component might be either an atomic value; (like an integer, character),
or an oop, (which means that the value of this instance variable is an object
with the given oop); or a container (the indirection is not necessary so the
value of the instance variable which is an object is immediately accessible);
or a nesting block which contains a collection object followed by the objects
or their oops in the collection, terminated by a pointer to the overflow file.
If new members should be added to the collection they make use of this
pointer. Notice here that, the data part for objects in the same class can be
quite different in size and complexity (it may have several objects, and/or
collections in it); and also note that if the instance variable is of object-
type, then it can belong to any class, since type information (in header) is
always present in the container that contains the object. In this respect
the secondary storage module is less restricted than the main-memory data
model. Finally, the overflow-pointer is used to virtually expand the data part
of the container, to be able to incorporate new instance variables with the
existing objects.The data part in the overflow blocks are accessed as though
the container and the overflow blocks were contiguous in main memory. The
Super-object part contains either the oop of the super object or the container
holding the super-object. If the class of the super object is the class CLASS,
then no more nesting can occur and this is the stopping condition for the
recursive structure. It is complete since every object must have an object in
its super chain, and since the class hierarchy is restricted to be a tree, this
chain of super objects is a linear chain and must stop at the class CLASS.

An abstract view of a container is given in figure 4.5 . The instance
variable values can be atomic or structured, that is, an object itself or a
reference to it. An object, which is indeed a collection of chunks each of
which corresponds to a separate class in the hierarchy/inheritance path of
that object, is stored in its entirety in exactly one container. A container, on
the other hand, may contain more than one object in it, since according to the

69

S I
" s F

o o p l
o o p 2

S3

o op 3

OLT

T i 1 1edNameWi thLetter s
C < le t te r s ,o b j, STRING

"OBE"

TitledName

[< t i t l e , o b j .
STRING

"Dr."
> .^]

Figure 4.7: Container for TitledNameWithLetters object

context, a subset of an object’s hierarchy path can be treated and accessed as
a less specialized object, or an instance variable’s value may be a collection
of instances of a class, etc. This definition of a container actually implies a
nested structure for containers. Figure 4.6 shows a container which represents
the same object as in figure 4.5, however, the super object resides in another
container and is accessible by indirection, then, it is only necessary to store its
OOP which can be used to access the container holding the super object. To
give a more concrete example consider the object memory representation of
the example of figure 4.4. A possible container representation of the ” Dr. John
Smith,OBE” is given in figure 4.7.

A formal definition of a container is given in Appendix A, it can be seen
that the container can be shown as a regular expression and indeed it is
stored physically with special tokens delimiting the container’s header, values,
nesting blocks, subcontainers and overflow pointers. The storage of system
tokens with each object involves some storage overhead, but brings flexibility,
and better clustering possibilities.

Object File

Object-file is the file where all of the user defined objects axe stored as
a single file stream which is logically partitioned into containers. There is
also an overflow file which is similar in structure to the object file. The
overflow file serves as a temporary storage for objects that have undergone
some kind of a schema evolution; like the addition of a new instance variable.

70

change in the type of an instance variable,etc.,; or for objects with collection
type instance variables; when a new object is added to the collection. The
purpose of the overflow file is to defer the re-organization of the database
after a schema modification.

The prototype uses unique surrogates (OOPs) to refer to objects, and for
the secondary storage, an Object Location File is maintained by the Storage
Manager to map OOPs to their physical locations. The physical address is
a relative byte-offset from the beginning of the object-file. Each time a new
object is stored into the database it goes through a registration process, and
the OOP is registered into the Object Location File with its relative byte-
offset. We actually see the object-file as a big array and access objects with
their unique offset addresses. Using this technique provides us flexibility in
storage allocation with no limitation on block sizes. It also makes it possible
to use low-level Unix primitives as a typeless backend. This approach, how­
ever, leaves all the buffer management to the Unix file system, and clearly
overlooks the associated performance related issues.

System Files

The Object Memory Module keeps several tables while providing primitive
functions in the development and the operation of the whole system [31].
These tables are the object table (OT), the instance variable definition table
(IVDT),method definition table (MDT), and instance access table (lAT). The
tables and their functions have been given in [31]. These tables are active
during the session and for smooth operation of the system they have to be
stored while closing the session and restored when a new session starts. The
storage manager flushes the contents of these tables to the system file at the
end of a session. When starting a new session this file is read and the tables
get initialized by the storage manager.

Method Files

For each method definition in classes, there is a method file in the sec­
ondary storage where the code implementing the method is kept. Their
management is quite simple in that they are either read and compiled, or
overwritten with the updated code to reflect the most recent status of the
database.

Index Files

The system provides a B-tree based indexing and each separate index

71

component is stored in a special file. The indexing problem will be explained
in detail later in this chapter.

4.3.2.5 Clustering

The storage manager has two views for clustering. One is the contiguous
storage of the chunks of an object together in the same container. The
other view is storing the objects that the members of a collection together in
the same container, and similarly storing the object that is the value of an
instance variable inside the container of the referencing object. Both views
are based on the assumption that when an object is referenced then it is
very likely that the inherited instance variables will also be needed, which
means that other chunks in the hierarchical implementation of the object
will need to be retrieved. Therefore, preloading these chunks contributes
to higher performance by eliminating expensive pending single chunk disk
transfers. As to the collection objects and structured instance variables, the
assumption is that, the semantics of the operations that has required the
logical grouping of these objects will tend to access them and process them
together.

4.3.2.6 Dynamic Schema Evolution

The storage manager allows a restricted set of schema evolution functions,
such as, addition, deletion, or modification of an instance variable and ad­
dition of a new class. Such schema updates can be handled through the
use of the overflow file. When a new instance variable is introduced, the
overflow-pointer of the data-part is instantiated to a pointer which enables
the object-server to go and find the implementation of that instance variable
in the overflow file. Deletion of an instance variable can be achieved by simply
setting type component of the instance variable triplet to ’deleted’ .

4.3.2.7 An Example

Consider figure 4.8 with the class definitions for Person, Student, UnivStudent

and Employee. The figure also shows the object memory allocation of the
object Ul, which is a university student at M.E.T.U., as a 5th year student
with student id = ” 36932” and name = ” ALI” . Please note that the string

72

CLASS

CLASS

Person (Super:DserDefinedClasses)
name : s tr in g

Student (Super: Person)
year : in te g e r
id # : s tr in g

CLASS Univ_Student (Super:Student)
u n iv e r s ity : s tr in g

CLASS Employee (Super .’ Person)
sa la ry : r e a l

UserDefinedClasses

Person

Figure 4.8: Class definitions and allocated chunks for a memory object

73

Figure 4.9: Secondary Storage representation of a memory object

objects have been shown as primitive data types for the sake of simplicity.
The U1 object can be most ideally represented in the secondary storage as
is shown in figure 4.9. It is considered ideal because, it conforms with the
clustering conventions of the prototype.

Now consider the container organizations in figure 4.11 representing the
the object memory of figure 4.10. First thing to notice is the non-clustered
chunks, U1 IS located in a container different from SI and PI and is holding
a reference to the container of SI and PI via the Object Location Table.
Another point to mention is the Employee object El with 300,000 and same
identity with the Person object ” ALI” . This situation could have occurred
when Ali finishes / leaves university and becomes an Employee. Identity of
PI Person object remains unchanged, and depending on the context, we can
view him as University Student, Student or Employee. Note that the chunk
associated with PI is stored only in one container and the other references
to PI are via the indirection through the Object Location Table.

74

UserDefinedClasses

Person

Figure 4.10: Allocated chunks for a memory object

75

Figure 4.11: Class definitions and allocated chunks for a memory object

76

4.3.3 Implementation of the Storage Manager

4.3.3.1 Functional Specifications

The Storage Manager is responsible for the storage, retrieval and update of
objects that reside in the object-file, while maintaining the integrity between
the main memory data model and its mapping to the secondary storage.
The server is responsible for registering new objects into the object database
by assigning them unique identification tickets (byte-offsets) . One of the
principeil functions of the server is to maintain the correspondence between
the surrogates of the objects and the chunks of memory.

The Storage Manager also guarantees that an object is stored in exactly
one container of the object-database, and that all the future references to
that object will be directed to this container. The way to guarantee this is
by using the registration mechanism whenever a save request is made and
if the object is already registered then new save requests will be handled as
update requests. This will preserve object identity in the database.

Storage Manager is also responsible for the initialization of the tables
used by the Object Memory, and the class hierarchy. The initialization is
done while a session is opened by utilizing the system-file where the meta
information about the database is encoded. The system-file should also be
brought up-to-date when closing the session by the Storage Manager.

4.3.3.2 Interactions with other Modules

The Storage Manager provides simple protocols to its clients. These protocols
are associated with retrieval, storage and update of objects in the secondary
storage. The server responds to the requests of its clients by actually perform­
ing the action rather than returning a block and distributing the task with the
client. The disadvantage of this approach is that, it makes the Storage Man­
ager dependent on the object-memory module since it directly employs the
object-memory routines in handling the request. Actually, the Storage Man­
ager grabs global control over the whole system while handling the request
and clearly violates the module boundaries. However, by compromising on
this loss of independence, we eliminate a huge number of inter-module mes­
sage exchanges , and a complex protocol. The reason for this compromise is
that the object-file is not a flat file of fixed-size records, but instead it is a

77

complex stream that needs to be decoded properly. All the client does, is to
send a request to the Storage Manager, and then wait to get the work done.
If all goes well, the main memory and the secondary storage gets updated
according to the desire of the client, otherwise, an error condition will be
reported to the client.

An excunple request to the Storage Manager could be a retrieval request
for an object with a supplied oop. The Storage Manager then maps this
oop to a physical disk address and starts decoding the stream making use of
the Object Memory primitives and invoking the protocols for installing the
object into the main-memory. While installing the object, the server accesses
and updates the necessary system tables utilizing the existing protocols. Af­
ter a success report to the client, the object becomes available for internal
processing in main-memory.

The finest granularity of the data that the Storage Manager operates
on is an object. This level of granularity brings about a side-effect for the
object protocols . Accessing an individual chunk of an object has the side-
effect of bringing all the chunks of that object. Indeed, this constraint is
imposed on the secondary storage by the object model of the main memory.
In the object-memory, each chunk has a super-object pointer that must be
instantiated to an instance of its super class unless its super class is the
system-defined CLASS class. By induction, a connected chain of chunks
must exist for each object. If this object model would be extended to handle
dangling super-object references, then Storage Manager’s granularity can be
reduced to a chunk. However, the current granularity level is in conformity
with the clustering objectives of our secondary storage module, and bringing
all chunks of an object into object-memory in a single request, will save us
from very likely physical I/O requests related with the same object.

Another side-effect of the Storage Manager’s request handling is the fol­
lowing: when a retrieval request is issued, passing an oop to the server, all the
objects that are referenced by that object will also be automatically installed
into the object-memory This side-effect, however is optional and the client
may request the server not to cascade the retrieve operation to instance vari­
ables of type object. In the default case, however, when the Storage Manager
sees an instance variable whose value is an object, if any, it will generate a re­
cursive request to install that object in the object-memory, before it proceeds
on to the next instance variable.

78

The external interface of the Storage Manager is composed of the following
functions:

SaveUserDefinedClasses() : Saves all class objects along with their linked
structures (instance variable definition lists) to a special system file.
This is usually performed while closing the session, or after updating a
class-definition.

ReadU serD efinedClasses() : At the start of a session, all user defined
classes with their definitions are read from the system file where this
information is stored. Also, all of the system tables will be initialized
and the class hierarchy tree is generated.

SaveO bject (oop) : Saves the object with the given surrogate (oop) in
the object file. While doing this, main memory functions are extensively
used. This is a recursive function which stores the chunk with the given
oop to disk storage and then recursively calls a SaveObject request
to save its parent object, unless the parent is of CLASS class. An
algorithm for this routine is given in the figure 4.12 . Since this function
applies to new objects only, it does not require any overflow handling.

R ew riteO b ject(oop) : This function updates the disk copy of an object
with the surrogate oop in-place , also, if the object is resized than this
function will issue overflow handling requests.

R etrieveO bject(oop) : This routine is used to bring an object from sec­
ondary storage to the object-memory. This function is also recursive in
nature, and will install other objects in the super-object chain of the
object whose surrogate is given in oop. As a side-effect of this function,
objects that are referenced via an object-type instance variable will be
installed in main memory. The algorithm for this routine is given in
figure 4.13 .

4.3.3.3 The protocols of the Storage Manager

4.4 IN D EXIN G

The index handler is one of the most important modules of the secondary
storage subsystem. The need for indexing arises in database management

79

i f is .re g iste re d (oop)
return; /* already saved * /

e lse

SaveObject (oop)

begin

reg ister (oop) ; / * meike am. entry in the OLT * /

fo r each instance variable IV of oop

i f simple_type (IV)
w r ite .tr ip le t (IV, type, value)

i f complex.type (IV) / * IV is another object * /
i f is_registered (valu e.of (IV))

w r ite .tr ip le t (IV, type, value)

e lse
w rite_trip let (IV, type,
SaveObject(valu e .of (IV)))

i f is_co llectio n _o b ject (value_of (IV))

fo r each member mem.oop in the collectio n

i f is .re g istere d (mem.oop)
write.stream (mem_oop)

else
SaveObject (mem_oop)

write.streaim (n u ll, end_collection)

Super.oop = Get_Super_Oop (oop)

i f Super_oop = Class CLASS /♦ terminating condition ♦/
return;

i f is_registered (Super.oop)
write.stream (super.token, Super.oop)

else
write_stream (super_token, SaveObject(Super.oop))

end

Figure 4.12: Save Algorithm
80

Get_Physical_address of (oop)

In sta ll_o b je c t(oop) ; / * in the object memory ♦ /
/ * use object memory routines * /

For each tr ip le t with instance variable (IVs)

re a d .tr ip le t (IV, IV_Type, value)

i f IV is simple
set_value_of (IV , oop, value)

i f IV is object_type
retrieve (value_of (IV))

i f IV is Collection Type
in s ta ll.o b je c t (value)

while (not (end_collection))

retrieve_and_install (member.object)

Read.stream (super.oop)

i f Not null then

retrieve (super_oop)

Retrieve (oop)

begin

else
return

end

Figure 4.13: Retrieve Algorithm

81

systems from the desire to provide efficient associative accesses to objects.
In the prototype DBMS , the language does not support direct access to an
object when we know the value of an instance variable and want to access that
object (or set of objects). Also in the data model, when an object’s instance
variable has an object as its value we can only access that object from the
owner object. References from one object to another are unidirectional. A
navigation in the reverse direction is possible only by an exhaustive search on
the target class, which may be too cumbersome. Providing two way links in
the data model would induce a lot of overhead,too, since multiple references
to an object may exist, and keeping the reverse paths of each link would
be impractical for all objects. Still, it is desirable to provide a mechanism
to facilitate alternate access paths under such cases, where those paths are
requested by the application.

4.4.1 Design Considerations

Indexing can be provided on the immediate instance variables of an object or
on the inherited instance variables or on the instance variables that belong
to the objects referenced by the indexed object. Indexing is performed on
classes, which means that all instances of that class axe indexed; thus the
methods updating the value of an instance variable in an indexed class can
provide easier index handling services. An index is created by specifying a
pair of the form

< class Jndex-path, instance-variable Jndex-path >

where, the first component, class-index-path, specifies the class on which
the index is to be built, and the second component, instance-variable-index-path,
specifies the actual instance variable providing the key for the index set.
One thing to notice here is the path expression construct for both of the
components. The formal definitions of these path expressions are presented
below, yet, informally the classJndex.path contains in its first component
the target class, whose objects will be returned by indexed access, followed
by zero or more classes seperated by dots, and the last component be­
ing the class that contains the instance variable being indexed by the in-
stance.variableJndex.path. The instance_VciriableJndex_path has in its last
component the instance variable being indexed and the whole path shows the
way to access that instance variable from the object which is an instance of
the class being indexed (and whose oop will be associated with the value of

82

this instcince vaxiable).

A class Jndex_path is a string of the form

Ax.A2>..An where A,· G {user defined classes} and

Ai is a subclass of Aj+i for i = l..n — 1 and there does not exist any i
such that Ai = CLASS class and the indexed instance variable is among the
instance variables of A„.

An instance variable index path is a string of the form

V1.V2.....Vn where Vi € {instance variables of the Class of Vi_i} for i = 2..n.
If n = 1 then V is called a simple index path.

Indexing a path A 1 .A2.... A„ on the instance variable path V will asso­
ciate the oops of the objects found in class Ai with the value of V in the
corresponding object, i.e., given a value for V, all oops of objects in class Ai
associated with that value of V are returned.

If V is a simple index path, that is, it is an immediate instance variable of
class An then this is a one-level index. The index handler supports multilevel
indexing, too. A multilevel index means that we build an index on the in­
stance variable (Vn) which is referenced by the object via an oop as the value
of its local instance variable (Vj). A multilevel index is specified by providing
a path with the instance variable component of the index specification. To
make the indexing mechanisms clearer consider the following examples:

Example :

Consider the following class definitions:

Class Person Class Agent Class Vehicle

neune :: string naime : strin g brand : string
age ;; integer manager: Person mahe : integer
car ;; Vehicle . boughtFrom : Agent

Building an index on the instance variable name in Person

83

< Person^ name >

is an example of a one-level index. Since name is an immediate instance
variable of Person, this is a valid index specification, and what it does is, it
associates the value of its name instance variable with the oop of each object.
These value-oop pairs are inserted into a B-tree keyed on the value. Thus,
when a value is specified we directly find the oop or set of oops whose name
instance variables have that value.

Now consider a one-level index specified by the index expression:

< Student.Per son, name >

where class Student is a subclass of class Person, with the following class
definitions :

Class Student

Idno : integer
year : integer

With this index specification the Student objects are indexed over the
instance variable, name, which every student object inherits from the class
Person. There will be one entry in the B-tree associating each distinct name
in the class Person, with a set of oops of the Student objects with this name.

There is one thing to notice here, those Person objects who are not Stu­
dents will not be entered into the B-tree since we can not associate any
Student objects with them.

The last example illustrates a more complicated multilevel indexing. Con­
sider the

< Person, car.boughtFrom.manager.name >

index specification. Given the name of a person who is the manager of
a cax-selling agent all the oops of person objects who have bought cars from
this agent are associated.

84

4.4.2 Implementation

Each index specification is independently represented by a B-tree. Supporting
a one-level index is straightforward, since we have the value immediately
available and the value of the indexed instance variable with the associated
oop are simply inserted into the B-tree. The index maintenance is relatively
easy since we are confined to a single class in detecting any state changes of
the object.

Multilevel indexes have been designed by a sequence of index components,
one for each link along the path. Indeed each intermediate link indexes the
path in reverse-direction by identity. Then at the terminal class, a second
index is used for value based access. An advantage of this form is that it allows
sharing between path indexes where two paths have a common portion.

4.5 Problem Areas and Directions for Future Research

Performance is one of the most important properties of any product, very few
people tolerate poor performance in return for increased functionality. Still,
performance is a problem common to most existing object-oriented systems.
The performance problem of the object oriented systems is essentially due to
the fact that they are interpreted in nature, rather than compiled. There is
another performance related bottleneck in object-oriented database systems.
Since objects can exist independently from one another and can be arbitrarily
related to other objects, we have a case of nonfiat views of objects, and the
biggest problem of the secondary storage techniques have been to handle this
type of data. The concept of normalization in the relational model has been
applauded to bring a formalism to eliminate this kind of structuring. In
one respect, object-orientation can be more advantageous over the relational
model; in the object-oriented model there is no need for most of the joins
used in relational systems, as these joins often serve to recompose entities
that were decomposed for data normalization. In the object-oriented model
entities axe not decomposed in the first place, and most of the joins are
replaced by path-tracing.

The most valuable contribution to object-oriented data modeling will be
the founding of a theoretical ground for explaining it and bringing standard­
ization to it. Actually the power of the relational model, which has been the

85

field of utmost research for years, comes from the fact that it has a solid the­
ory behind it and it is understood what constitutes a well-designed relational
database schema.

Other problem areas of the object-oriented database management systems
are schema evolution, version management and manipulation of composite
and dependent objects.

One problem encountered in the design of the secondary storage module
implementation of the prototype is that it is very important to be able to do
good clustering, yet, with any arbitrary choice of clustering, there is still the
problem that retrieval time for objects are not uniform. The retrieval time
is dependent on many factors, from the temporal order of instantiations of
objects to their inter-referencing characteristics. This fact complicates the
development of a performance model for the secondary storage.

The object-oriented database management system prototype developed
and implemented at Bilkent University supports the basic object-oriented
concepts such as object identity, classes, inheritance and message passing
but there are some open problems, which could not be handled within the
scope of the thesis and are left aside for future research.

The implemented prototype is a single-user system so it may be extended
to support multiple users. In order to do this, the transaction concept, au­
thorization control, concurrency control and data integrity checks should be
incorporated within the prototype.

The system does not support versions. To be able to do version manage­
ment some storage structures need modification.

The system allows basic schema evolution functions such as adding a new
class to the system, adding a new instance to a class, deleting an existing
class and deleting an instance of a class. The system may be extended to
support all schema evolution functions.

Another open problem area for object-oriented database management sys­
tems is indexing. There are many different ways of approaching the indexing
issue and a careful evaluation of these approaches can result in good perfor­
mance and query processing facilities.

86

5. CONCLUSION

Although existing record-oriented database management systems fulfill many
of the requirements of traditional database applications, they seem inappro­
priate and incapable of providing facilities well-suited to applications in office
information systems, design engineering databases, and artificial intelligence
systems. This fact has led to the emergence of a trend in information man­
agement from record-based orientation to object-based orientation, which is
essentially an approach that provides mechanisms to model the environment
in a natural way that is closer to the human understanding and perception.

Object-oriented design allows a designer to introduce a property in its
most general form by defining it on a general type and later refine the prop­
erty definition for more specialized subtypes . This approach, which is known
as stepwise refinement by specialization results in reduced application devel­
opment efforts.

The major problems with object-oriented systems are related with the
lack o f theory in the field and with non-unified approaches to describing the
paraxiigm. There is no commonly accepted description of what an object is
and what its properties should be. Every approach has undertaken a different
approach and there is no justification mechanism or basis to compare them.

Performance appears to be the fundamental problem with most object-
oriented programming languages and database management systems. The
performance problem is related with the late-binding and polymorphism
prop>erties of languages that needs run-time support and with clustering in
databases. Another reason for relatively poor performance of object oriented
systems is that the commercially available products axe new and very few in
number, and performance related areas have not been the fields of adequate
research. Other problem areas of the object-oriented database management
systems are schema evolution, version management and manipulation of com­
posite and dependent objects.

87

The implementation efforts of the prototype has led to a good understand­
ing of these problems and justification of others’ design preferences. Some of
the initial design preferences of the prototype had to be changed during the
implementation as the gained insight increased.

The object-oriented database management system prototype developed
and implemented at Bilkent University supports the basic object-oriented
concepts such as object identity, classes, inheritance and message passing.
It supports the storage of variable sized data objects by introducing the
container concept, and uses a first-fit strategy in allocating the containers
and currently no garbage collection is done in the secondary storage.

The implemented prototype is a single-user system so it may be extended
to support multiple users. In order to do this, the transaction concept, au­
thorization control, concurrency control and data integrity checks should be
incorporated within the prototype.

The system does not support versions. To be able to do version manage­
ment some storage structures should be modified.

The system allows basic schema evolution functions such as adding a new
class to the system, adding a new instance to a class, deleting an existing
class and deleting an instance of a class. The system may be extended to
support all schema evolution functions.

Another open problem area for object-oriented database management sys­
tems is indexing. There axe many different ways of approaching the indexing
issue, and a careful evaluation of these approaches can result in good per­
formance and query processing facilities. The prototype supports multi-level
indexing, and provides language support for associative retrieval.

Finally, the problems that have been observed in object-oriented database
systems do not seem to be unsolvable ones, and they are there mostly be­
cause research in object-oriented systems is new. The advantages of object-
orientation are so promising for todays’ highly intelligent and data-intensive
applications that no further discussion is necessary to explain why it is one
of the popular research areas.

88

A. APPENDIX

<object> BOO<object.body>EOQ I <oop.type><OOP>

<object_body> : :* <00P><cla33,type><obj.ins.vax_li3t><3uper_list>

<obj_in3.var_li3t> : :* B0D<in3.var.li3t>E0D<0verf low_ptr>

<3uper_list> SUPER<object>E.O.SUPER

<in3.var_list> null | <in3.var_nam0Xtypa.valu0_pairXin3_var.list>

<typ0_valu_pair> : :* <int0g0r_typ0><int_valu0>
<r0al_typ0><r_valu0>
<bool0anXb_valu0>
<3har0dXnull>
<daf aultXnull>
<d0riv0dXnull>
<oop_typ0><OOP>
<n03t0d_typ0>BEGIM_NEST<coll0Ction_obj0ct>

<n03t0d_obj_li3t>END_NEST<NEST_ptr>
I <string_typ0><3tring>

<00P> ::=a legal intagar

<ovarflow_ptr> byta(off3at)

<intagar_typa> -1
<raal_typa> -2
<boolaan>
<sharad> :
<dafault>
<darivad>
<oop_type>

:» -3
3 -4

» -5
» -6

-7
<ne3ted_typa> -8
<3tring_typa> int>*0

89

<collection _object> : := -C\"{o}}bject>
<n ested _object_list> : := null I < o b jectX n ested _o b j_list>
<nest_ptr> : := byte o ffse t

90

REFERENCES

[1] Banerjee, J., H.J. Kim, W.Kim, and H.F. Korth, Schema Evolution
in Object-Oriented Persistent Databases, Proc.of the 6th Advanced
Database Symposium (Tokyo,Japan,Aug.) Information Processing Soci­
ety of Japan’s Special Interest Group on Database Systems, 1986, pp.23-
31.

[2] Banerjee, J. et ah. Data Model Issues for Object-Oriented Applications,
ACM Transactions on Office Information Systems, Vol.5, No.l, Jan.1987,
pp. 3-26.

[3] Beech, D., Groundwork for an Object Database Model, Research Direc­
tions in Object-Oriented Programming, ed. B. Shriver, and P. Wegner,
MIT Press Series in Computer Systems, 1987, pp. 317-354.

[4] Copeland, G., and D. Maier, Making Smalltalk a Database System, Proc.
ACM / SIGMOD International Conference on the Management of Data,
1985.

[5] Date, C.J., An Introduction to Database Systems, Addison Wesley, Vol.2,
1983, pp. 181-210.

[6] Fishman, D.H. et aJ., Iris: An Object-Oriented Database Management
System, ACM Transactions on Office Information Systems, Vol.5, No.l,
Jan. 1987, pp. 48-69.

[7] Goldberg, A., and D. Robson, Smalltalk-80:The Language and Its Im­
plementation, Addison-Wesley, 1983.

[8] Hailpern, B., and V. Nguyen, A Model for Object-Based Inheritance,
Research Directions in Object-Oriented Programming, ed. B. Shriver,
and P. Wegner, MIT Press Series in Computer Systems, 1987, pp. 147-
164.

91

[9] Hammer, M. and D. McLeod, Database Description with SDM:A Se­
mantic Database Models ACM Transactions on Database Systems, Vol.
6, No. 3, Sept. 1981, pp. 351-386.

[10] Hornick, M.F., and S.B.Zdonik, A Shared, Segmented Memory System
for an Object-Oriented Database, ACM Transactions on Office Informa­
tion Systems, Vol. 5, No. 1, Jan. 1987, pp. 70-95.

[11] Khoshafian, S.N., and G.P. Copeland, Object Identity, ACM OOP-
SLA’86 Proceedings, Sept. 1986.

[12] Laff, M.R.,and B. Hailpern, SW2-An Object-Based Programming En­
vironment, Proc. of the 4th ACM SIGACT-SIGMOD Symposium on
Principles of Database Systems, 1985, pp. 1-11.

[13] Lyngbaek, P.,and V. Vianu, Mapping a Semantic Database Model to the
Relational Model ACM 1987.

[14] Maier, D., and J. Stein, Indexing in an Object-Oriented DBMS, Proc. of
the Workshop on Object-Oriented Database Systems,Sept. 1986.

[15] Maier, D., A. Otis, and A. Purdy, Object-oriented Database Development
at Servio Logic, Database Engineering, IEEE, Vol.8, No.4 ,Dec. 1985.

[16] Maier, D., J. Stein, A. Otis, and A. Purdy, Development of an Object-
Oriented DBMS, ACM Conference on Object-Oriented Programming
Systems,Languages and Applications, 1986.

[17] Nierstrasz, O.M., What is the ’Object’ in Object-Oriented Pro­
gramming?, Objects and Things,ed.D.Tsichritzis,Centre Universitaire
D ’Informatique, Université de Genève, March 1987, pp. 1-13.

[18] Ozelçi, S., N. Kesim, M. Karaorman, E. Arkun, An Experimental Object-
Oriented Database Management System Prototype, To appear in The
Third International Symposium on Computer and Information Sciences
in Çeşme.

[19] Pascoe, G.A., Elements of Object-Oriented Programming, Byte, August
1986, pp. 139-144.

[20] Penney, D.J., and J. Stein, Class Modification in the GemStone Object-
Oriented DBMS, ACM OOPSLA’87 Proceedings, 1987.

[21] Skaxra, A.H., and S.B. Zdonik, Type Evolution in an Object-Oriented
Database, Research Directions in Object-Oriented Programming, ed. B.

92

Shriver, and P. Wegner, MIT Press Series in Computer Systems, 1987,
pp. 393-415.

[22] Stefik, M., and D.G. Bobrow, Object-Oriented Programming:Themes and
Variations, AI Magazine, Jan. 1986, pp. 40-62.

[23] Synder, A., Inheritance and The Development of Encapsulated Software
Components, Research Directions in Object-Oriented P rogram m ing ̂ed.
B. Shriver, and P. Wegner, MIT Press Series in Computer Systems, 1987,
pp. 164-188.

[24] Zaniolo, C., et al., Object-Oriented Database Systems and Knowledge
Systems, 1st International Workshop on Expert Database Systems, 1985,
pp.1-17.

[25] Christian, K., The Unix O perating System,John Wiley and Sons,
1983.

[26] Com m ands R eference Manual, Sun Microsystems Inc., 1986.

[27] Cox, Brad J., O bject-oriented Program m ing A n Evolutionary
A pproach , Adddison-Wesley, 1986.

[28] G etting Started with Unix: B eginner’s Guide, Sun Microsystems
Inc., 1986.

[29] Ozelçi, M.S., Message Passing in an Object-Oriented Database Manage­
ment System, M.S. Thesis, Bilkent University, Ankara, July 1988.

[30] Kelley, A., I. Pohl, A B ook on C,The Benjamin / Cummings Publishing
Company Inc., 1984.

[31] Kesim, N., An Object Memory for an Object-Oriented Database Man­
agement System, M.S. Thesis, Bilkent University, Ankara, July 1988.

[32] Nierstrasz, O.M.,A Survey of Object-oriented Concepts, A ctive O bject
Environments,ed. D.Tsichritzis,Centre Universitaire D ’Informatique,
Université de Genève, July 1988.

[33] Zdonik, S.Ъ.,Maintaining Consistency in a Database with Changing
Types,ACM SIGPLAN Notices 21:10, Oct 1986, pp.120-127.

[34] Zdonik, S.B., Why Properties are Objects or Some Refinements of ’is-a’,
ACM/IEEE Joint Computer Conference, 1986, pp.41-47.

93

[35] Hammer, M.M.,McLeod, P.J.,T'Ae Semantic Data Model: A modelling
Mechanism for Database Applications, Proceedings of the ACM SIG-
MOD International conference on the Management of Data, 1978

[36] Brachman, R.J.,D7i the Epistemological Status of Semantic Networks:
Representation and Use of Knowledge by Computer, Academic Press,
1979

[37] Mylopoulos, J.et.al.,A Language Facility for Designing Database In­
tensive Applications, ACM Transactions on Databases (5:2)June 1980,
pp. 185-207.

[38] Skarra, H.A.,Zdonik S.B.,An Object Server for an Object-oriented
DBMS, Proceedings of the International Workshop on Object-oriented
Database Systems, Sept 23-26, 1986 Pacific Grove, pp. 196-204.

[39] Ege, A.,Ellis, L.A.,Design and Implementation of GORDION, an Object
Base Management System, Proc.of the Third International Conference
on Data Engineering, Feb 3-5 1987 L.A.,USA pp.226-234.

[40] Deppish, U.,et.al.,A Storage System for Complex OJyecia,Proceedings of
the International Workshop on Object-oriented Database Systems, Sept
23-26, 1986 Pacific Grove, pp.183-194.

[41] Carey, M.,et.al., The Architecture of the EXODUS Extensible DBMS,
Proceedings of the International Workshop on Object-oriented Database
Systems, Sept 23-26, 1986 Pacific Grove, pp.52-65.

[42] Ozgiig, B., Thoughts on User Interface Design for Multiwindow Envi­
ronments, SERC Report, Bilkent University, CIS-8703

[43] Kaehler T.,Krasner, G., LOOM-Large Object-oriented Memory for
Smalltalk-80 Systems, Smalltalk-80,Bits of History, Words of Advice,
G.Krassner,Ed., Addison Wesley 1983, pp.251-270.

[44] ObjectLisp User Manual, LMI, Cambridge MA, March 1985.

[45] Reference Guide to Symbolics-Lisp, Symbolics, Cambridge, MA, 1985.

[46] Ossher,H., A Mechanism for Specifying the Structure of Large, Layered
Systems,Yiese2u:ch. Directions in Object-Oriented Programming, ed. B.
Shriver, and P. Wegner, MIT Press Series in Computer Systems, 1987,
pp. 218-251

94

[47] Dahl,01e-Johan, Object Oriented Specification,Kesearch. Directions in
Object-Oriented Programming, ed. B. Shriver, and P. Wegner, MIT
Press Series in Computer Systems, 1987, pp. 561-576

[48] Wegner, P., The Object-Oriented Classification Paradigm,Research Di­
rections in Object-Oriented Programming, ed. B. Shriver, and P. Weg­
ner, MIT Press Series in Computer Systems, 1987, pp. 478-559.

[49] Diederich, J., ODDESSY: An Object-Oriented Database Design System,
Proc.of the Third International Conference on Data Engineering, Feb 3-5
1987 L.A.,USA pp. 235-245.

95

