
TO01

A THESIS
Si3foriiitt©d To Tha 0®p®rtm^sit Of Oomm̂ ti&ir

E n e m e e r s i ig f e d '·
iB forrrsa t ion Sciencs

id The Instityt© O f £.ilgil A, r; .tI-i ··. iJ BoiBnmm
fii-f ̂1 l̂ii·•fi ̂i· -u* w,<>· « .W V * i.v i <i,.r 2 5«

m

In Partial pylf O f The B#c^yir?!̂ m0r̂ t·® ■% - ·»
For Th^ 0®'C?if̂ 'B Of
IVIastar Of Scisnes

A' ^ ̂ -.„-«I S

/V'i, /1 t?
-««h V ‘ :̂ * :· ; v,.

^ ».'f /jj'-i .v̂ .<]P\

'.¿ ‘· M sm/ « O *i » 4<r ’w- t >

DESIGN AND IMPLEMENTATION OF A TOOL
FOR TEACHING PROGRAMMING

A THESIS

SUBMITTED TO THE DEPARTMENT OF COMPUTER

ENGINEERING AND

INFORMATION SCIENCES

AND THE INSTITUTE OF ENGINEERING AND SCIENCES

OF BILKENT UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF
MASTER OF SCIENCE

By
Mesut Goktepe

September 1988

q a
'=К .̂6

- τ η
S4f

' m s

I certify that I have read this thesis and that in my
opinion it is fully adequate, in scope and in quality, as
a thesis for the degree of Master of Science.

Assoc. Prof. Dr. Bülent Ozgüç (Principal Advisor)

I certify that I have read this thesis and that in my
opinion it is fully adequate, in scope and in quality, as
a thesis for the degree of Master of Science.

Prof. Dr. Mehmet Baray

I certify that I have read this thesis and that in my
opinion it is fully adequate, in scope and in quality, as
a thesis for the degree of Master of Science.

Approved for the Institute of Engineering and Sciences:

Prof. Dr. Mehmet Baray, Director of Institute of Engineering and Sciences

11

ABSTRACT

DESIGN A N D IM PLEM EN TATIO N OF A T O O L FOR
TEAC H IN G P R O G R A M M IN G

Mesut Göktepe

M.S. in Computer Engineering and
Information Sciences

Supervisor: Assoc. Prof. Dr. Bülent Özgüç
September 1988

In this thesis, a survey on computer applications for teaching program­
ming and some graphical programming tools together with their underlying
environments has been carried out and a graphical Pascal teaching tool is
designed and implemented.

Graphical programming tools provide the user the ability to solve the
problems through the use of icons and symbols allowing very little text. Here,
a Pascal teaching tool is presented in a very user friendly environment to teach
programming through the use of flowcharts in a visual manner.

Keywords: graphical programming, user interface, window manager

111

ÖZET

b i l g i s a y a r p r o g r a m l a m a EĞ İTİM İ İÇİN BİR
YAZILIM

Mesut Göktepe
Bilgisayar Mühendisliği ve Enformatik Bilimleri Yüksek Lisans

Tez Yöneticisi: Assoc. Prof. Dr. Bülent Özgüç
Eylül 1988

Bu tezde bilgisayar programlama öğretimi için uygulamalar, bazı grafiksel
programlama sistemleri ve uygulandığı ortamlar araştırılmış, ve grafiksel bir
Pascal programlama öğretim sistemi tasarlanıp uygulaması yapılmıştır.

Grafiksel programlama sistemleri kullanıcıya imge ve semboller yoluyla
çok az yazı kullanarak problem çözme olasılığı sağlar. Burada, bir Pascal
programlama sistemi dost bir etkileşim ortamı içinde akış diagramları kulla­
narak görsel olarak programlamayı öğretmek amacıyla sunulmuştur.

Anahtar kelimeler: grafiksel programlama, etkileşim sistemleri, pencere
yönetim sistemi

IV

ACKNOWLEDGEMENT

I would like to acknowledge first the help and cooperation of my supervi­
sors Assoc. Prof. Dr. Bülent Özgüç and Prof. Dr. Mehmet Baray without
whom this work could not have been completed. I would like to thank Ahmet
Coşar, Aydın Kaya, and Murat Karaorman for their patient suggestions and
comments. I also wish to thank Emine Oskargil for her moral support during
the preparation of this thesis. Attila Gürsoy and Özgür Ulusoy have also
been very helpful by their remarks and suggestions.

TABLE OF CONTENTS

1 INTRODUCTION 1

1.1 Computer Based Teaching For Program m ing......................... 2

1.2 Graphical Programming vs. Textual Programming............... 3

1.3 Survey of Graphical Program m ing... 5

1.3.1 Systems that are Based on Conventional Programming
Languages... 5

1.3.2 Systems Implementing Programming Languages which
axe Completely New and Based Completely on Graph­
ics (with very little tex t)... 8

1.4 Some Graphical Programming Systems..................................... 9

1.4.1 P E C A N .. 9

1.4.2 IconLisp.. 10

1.4.3 P I C T ... 11

1.4.4 Hi Visual.. 13

1.4.5 ’A Tool for Teaching Programming’ 14

2 UNDERLYING ELEMENTS AND ENVIRONMENT FOR
THE DESIGN AND IMPLEMENTATION OF A TOOL FOR
TEACHING PROGRAM M ING 17

2.1 User Interface... 17

vi

2.2 Object Oriented Approach... 19

2.3 Environm ent.. 21

2.4 Tools For User Interface.. 22

2.5 A Notification Based S y s te m .. 24

2.5.1 The Notifier... 24

2.5.2 Relationships Between the Notifier, Objects, and the
Application... 27

3 DESIGN OF A TOOL FOR TEACHING PROG RAM M ING 28

3.1 Naming Conventions.. 28

3.2 Screen Design of the T o o l ... 28

3.3 Other Screen Layout Elements Displayed by Flowchart Han­
dling O perations.. 31

3.4 Items of the Flowchart M e n u .. 34

3.4.1 Flowchart sym bols... 34

3.4.2 Flowchart Handling Operations..................................... 35

3.5 Flowchart Design M ethodologies.. 37

4 IMPLEMENTATION OF A TOOL FOR TEACHING PRO­
GR AM M IN G 42

4.1 Data Structures... 42

4.2 Basic Routines Used for Implementation.................................. 46

4.3 Low Level Operation Of The Tool ... 52

4.3.1 Code Generation in Low L e v e l 53

4.3.2 Code Execution in Low L eve l.. 53

4.4 Unimplemented Features... 55

vii

5 CONCLUSION 57

A USER’S M ANUAL 59

A .l Generation of a Flowchart... 59

A. 1.1 Creating a New Flowchart.. 59

A. 1.2 Editing a F low chart.. 63

A. 1.3 Redisplaying a F low chart... 66

A. 1.4 Saving a Flowchart to a File on the Disk.............. 66

A.1.5 Loading a Flowchart from a File on the D i s k 66

A. 1.6 Erasing a Flowchart from the Screen............................ 67

A.2 Code Generation.. 67

A.2.1 Creating the Flowchart for Main Body of a Program . 67

A.2.2 Creating Flowcharts for Subprograms of a Program . 67

A.2.3 Generating the Pascal Code Corresponding to a Flowchart 71

A.3 Execution of the Pascal Code for a Flowchart......................... 77

A.3.1 Stepwise Execution of the C ode... 79

A.3.2 At Each Step Highlighting the Corresponding Flowchart
B o x .. 81

A.3.3 At Each Step Displaying the Values of Simple Vari­
ables of the Currently Executing R ou tin e 85

A.4 Leaving the T o o l .. 85

A.5 Miscellaneous .. 85

Vlll

LIST OF FIGURES

1.1 Hierarchical classification of graphical programming tools. . . 6

1.2 A snapshot of the screen... 14

2.1 Class hierarchy of a window manager system............................ 23

2.2 Control structure of a notifier based system.............................. 26

3.1 Screen layout of the tool... 29

3.2 Flowchart drawing area... 30

3.3 Flowchart menu.. 30

3.4 Panels.. 31

3.5 Text edit window... 32

3.6 File name window.. 32

3.7 Scale window.. 32

3.8 Declaration window... 33

3.9 Code display window... 33

3.10 Step window... 34

3.11 Connection of arcs... 38

3.12 if-then-else... 38

3.13 while-do...........................■.. 38

ix

3.14 repeat-until... 39

3.15 for... 39

3.16 staxt/stop/procedure-staxt/return... 40

3.17 subroutine call.. 40

3.18 output/display... 40

3.19 process... 40

3.20 disk i /o .. 40

3.21 Only one entry and one exit point... 41

4.1 Structure for box coordinates... 43

4.2 Structure for box pins.. 43

4.3 Box structure... 44

4.4 Text structure... 45

4.5 Box pointers.. 46

4.6 Array of sub-flowcharts ... 47

4.7 Flowchart stack... 47

4.8 Low Level Operation of the Tool... 54

A .l Picking and placing boxes.. 60

A.2 Filling in the boxes... 61

A.3 Connection of boxes... 62

A.4 Moving a box... 64

A.5 Scaling a box... 65

A.6 Main flowchart.. 68

A.7 Sub-flowchart... 69

X

A.8 Generating the Pascal code.. 72

A.9 A file name for the Pascal source code.. 73

A.10 Declaring data types in the main body...................................... 74

A. 11 Declaring data types in the main body...................................... 75

A. 12 Declaring data types of the sub-flowchart of the previous figure. 76

A.13 Displaying the Pascal source code... 78

A. 14 Execution of the code.. 79

A.15 Erroneous code and error messages... 80

A.16 ’STEP’ping.. 81

A. 17 End of ’STEP’ping while printing values of simple variables. . 82

A.18 ’STEP’ping in a main flowchart... 83

A.19 ’STEP’ping in a sub-flowchart... 84

XI

1. INTRODUCTION

Since the beginning of Computer Science, the main trend on the development
of systems has been in the direction of how computer systems can be designed
to accommodate the user needs in an easy, fast, and the most natural fashion.
The most common approach concerning the human-computer interaction has
been in the field of programming languages. Many programming languages
are developed to build better user interfaces to simplify the computer use,
teach computer programming and increase the programmer productivity.

As the problem domain to be solved on the computer increases, inade­
quacies of common sequential, procedural, text based programming languages
arise. A radical departure from current programming styles becomes a ne­
cessity. In order to make the programming more accessible, new, improved
programming languages have been created with the capabilities of handling
specific types of problems. For example, object oriented languages deal with
the problem with objects and various actions that can be performed on that
object. Generally common programming languages and environments are
quite difficult to use because they are not friendly and very adaptable to
users, especially for ones new in computer programming. This lack of adap­
tation exists both at the representation level -in the graphical layout seen by
the user- and at the conceptual level -in the computational model-. Graphi­
cal programming systems based on interactive computer graphics have been
working on the former problem. Research in the functional programming
(Lisp) and logic progreimming (Prolog) environments have been attempting
to find remedies for the latter problem. Artificial Intelligence research has
been doing extreme work on techniques for communicating with computer
in a natural language. Currently, a great deal of work on expert systems
has been attempting to simplify the humein-computer interaction by making
deductions within the given application domains. Graphical programming
systems are the most user friendly tools for programming environments, es­
pecially ones used for teaching progreunming.

In the following sections, topics related to computer based teaching for
’programming’ and major systems which support programming with graphics
are surveyed to exemplify the various approaches of graphical programming.
Then follows the discussion of our ’Pascal teaching tool’ in comparison with
the related systems to explain the matter in detail. Finally, a particular at­
tention is paid to ’Design and Implementation of a tool for teaching program­
ming’ describing its usage, components, user interface, higher programming
constructs applied, implementation environment, and low level implementa­
tion details. A list of its unimplemented features are given at the end.

1.1 Computer Based Teaching For Programming

The way one is to follow for programming with a classical textual language
goes through a number of steps. Once the problem to be solved by a computer
is ancilyzed in detail, the most important step, selection of an algorithm and
derivation of the flowchart for the algorithm comes next. These steps may
lead to an efficient and correct program for solving the problem. An algorithm
gives the logical steps of a program in textual form so that a program can be
generated from it. The flowchart presents the same information graphically.
The structure of a program is derived by dividing the problem into logically
complete blocks - subproblems- and analyzing each separately. After defining
the structure, the code for the program can be written easily, ideally through
a structured language. Now comes the time for running the program and
weiiting for the results. If the results seem incorrect, it is required to figure
out where the ’bugs’ are , then modify the program and rerun again.

Pascal facilitates writing structured programs, programs that are rela­
tively easy to read, understand, manipulate, and maintain. It is currently
one of the most widely used language for teaching programming. Its popu­
larity is due to the fact that the syntax is relatively easy to learn.

The goal of structured programming is to organize and discipline the
program design and coding process in order to prevent most logic errors and
to detect ones that remain. Structured programming concentrates on one of
the most error-prone factors of programming, the logic. It has three major
characteristics: top-down design, modular programming, structured coding.

In top-down design, first the program is specified in the broadest outline
and then, the structure is gradually refined to fill in the details. In each step

a given task is broken down into a number of subtasks until the subtasks are
simple enough to be coded with a highly reliable process of programming.
Modular progrzimming is the process of dividing a program into logical parts
called modules and then successively programming each part. Here, size of
the modules must not be too large and each module must be independent from
others. Structured coding is a method of writing programs with a high degree
of structure providing for understandable programs for testing, maintenance
and manipulation. Any proper program -a program with one entry and one
exit point and no infinite loops or unreachable code- can be accomplished
only by the logic structures of sequence of two or more operations, selection
of one or two operations, and iteration of an operation while a condition is
true.

Pascal is a structured language facilitating the mentioned characteristics
of structured programming. It has BEGIN-END blocks, PROCEDURES,
and FUNCTIONS providing constructs for modular programming. Pascal
executes the code from top to bottom in sequence, enabling the sequential
processing. REPEAT-UNTIL, WHILE-DO, and FOR statements allow iter­
ation over a number of operations. IF-THEN-ELSE, and CASE statements
facilitate a selection mechanism for structured programming [9].

This is the way how one commonly programs the computer through a tex­
tual language. The use of pictures in programming is also another method­
ology for programming which differs from the classical textual programming.

A sketch of the graphical approach for programming can be outlined as
follows: First, selection of images that visually represent the data structures
and variables needed. Next, drawing the desired algorithm as a logically
structured, multidimensional picture. Last, watching the program run and
the results being generated. If the program is not doing what is expected,
identifying where and when the error(s) occur, visually.

1.2 Graphical Programming vs. Textual Programming

In general, programming environments can be classified as textual -Pascal,
Cobol, Lisp etc.- and graphical, graphiccil environments can further being
divided as visual or iconic, according to the degree to which they employ
text cis opposed to graphics. These categories are not disjoint, however.

Some of the features of images that make them potentially powerful and

3

useful tools in the computational environment are :

• First, images provide a natural supplement to other means of commu­
nication. People gather information at a higher rate by discovering
graphical relationships in pictures than by reading ordinary text.

• Images are often easily learned, retcuned, and recalled as single units of
information, since the human mind is strongly visually oriented.

• Images may possess a universality that natural languages and their
associated programming languages do not. For example, standardized
signs in many applications can be understood by people who speak
many languages, such as traffic signs.

• The rapidly falling cost of graphics-related hardware with their increas­
ing performance show that images are becoming more and more suitable
for human-machine communication.

• When one programs in a textual language, one is forced to learn its
syntax. On the other hand in programming with graphics, pictures
keep associated syntax and semantic rules allowing them to represent
language elements.

• Text can be thought of as a one dimensional stream of characters [14].
Indentation and bold-facing of keywords are often applied in text to
help making text multi-dimensional. Pictures, on the other hand, in­
herently provide two or three dimensions. In addition, other properties
of pictures such as shape, size, color, texture, direction, etc. provide
further information.

• Pictures are used to illustrate abstract ideas and make them simple to
think about. All well-drawn pictures provide good metaphors, using
text alone forces the reader to come up with his own mental image.

While all of the above are certainly advantages of graphical programming,
there axe some disadvantages. One can eu'gue, for example, that eis a pro­
gramming language becomes more friendly and easy to use, it also becomes
more specialized and its domain decreases [15]. As the level of program­
ming increases, the domain for which programs can be written decreases.
For example, in a menu based system, the user has very few options (limited
domain) but it is certainly very easy to use.

1.3 Survey of Graphical Programming

Graphical progreimming can be defined as any kind of visual interaction be­
tween a computer and a human in order to complete some programming
tcisk. This interaction, however, does not only involve manipulation of text
or programs written in a linear string of characters, but rather, of pictures
or symbols of two- dimensional objects such as graphs, maps, flowcharts, etc.
Thus, two-dimensional picture or pictures are used to represent the program.

Recently, many graphical tools have been developed to provide the pro­
grammer and the user the ability to solve the problems through the use of
icons and symbols allowing a little text.

In reality, the divisions among the various tools are not as discrete as Fig­
ure 1.1 indicates. In general, the various systems that implement a graphical
programming environment can be divided into two major groups:

1.3.1 Systems that are Based on Conventional Pro­
gramming Languages

These tools implement a graphical programming ’layer’ on top of conven­
tional programming languages like Pascal or Lisp. So, underlying graphics
environment is a textual programming language. The visibility of this textual
language to the user depends on the particular tool. Some tools merely offer
graphics as another way to view a fundamentally textual program. Other
tools give more flexibility to the user by allowing him/her to completely cre­
ate and debug a program graphically. The tools which are based on conven­
tional programming languages can be further subdivided into the following
categories:

Tools which Show Control Flow/Program Structure Graphically

• ’Flowcharts’

The most common method of showing control flow of a program is by a
flowchart. Flowcharts were originally developed as a tool for assembly
language programming, which allows completely unstructured control
transfers. While flowcharts do allow a graphical representation of the
control mechanism, the disciplined control constructs, scoping, and data

Figure 1.1: Hierarchical classification of graphical programming tools.

structures of present-day programming languages render them obsolete
aa a graphical programming tool. Even with such features though,
flowchcurts cannot be used to display data structures of programs. They
also need to be modified to allow common control constructs such as
for loops, while loops, repeat/until loops, etc. Also the diagr<mis still
axe mostly text.

• ’Nassi-Shneiderman diagrams’

Nassi-Shneiderman diagrams allow the structure of a program to be
displayed graphically. These types of diagrams when combined with
syntax-directed editors provide a systematic (top-down) method for
building programs. While these types of programs are useful for show­
ing program structure, they do not show expressions, procedure calls,
types, and data graphically. The diagrams still are mostly text.

• ’Pascal Blox Methodology’

The Pascal Blox Methodology [16] developed by Glinert represents pro­
gram structure by using ’jigsaw’-like blocks in an interconnected fash­
ion. Each jigsaw piece represents a particular construct in the language.
The pieces axe designed in such a way that the only way to combine
the various types of structures is according to the syntax rules of the
language. Thus, the user creates entire program in a manner analogous
to constructing jigsaw puzzles.

Systems which Show the Data Structures in the Language Graph­
ically

Surprisingly, there has been very little work on ways to display data struc­
tures graphically. One of the reasons for this is that data is usually very
complex compared to control flow. Another reason for this is that data is
often represented at many different levels of abstraction. Thus, it is difficult
for the computer to determine what exactly a given data structure repre­
sents. For example, a graph may be represented by an adjacency matrix.
But, unless told explicitly, the computer has no idea that the adjacency ma­
trix represents a graph. For this reason, it can not represent this information
graphicedly.

Tools which Show the Actual Operations in the Language Graphi­
cally

IconLisp, in addition to representing data structures graphically, allows the
actual operations to be performed graphically. So, the user uses a mouse
attached to the computer to ’drag’ an icon of an input list on top of an icon
of a function. The computer computes the output list and represents the
list by creating a new icon for the output list. Thus, the actual operation of
applying a function to some input is done graphically. Again, this is simple
in the case of Lisp because of the functional nature of the language. Such a
technique would be difficult with Pascal since the language is procedural.

All of the tools described above are based on conventional programming
languages like Pascal and Lisp.

1.3.2 Systems Implementing Programming Languages
which are Completely New and Based Completely
on Graphics (with very little text)

’Iconic Programming’

Some tools allow complete programs to be written by symbols called Icons.
By putting these icons together, a runnable program is created. Once the
program is created, it can be run directly without being converted to another
textual language. The method of creating programs is so free of text that
according to the creators the keyboard is never used! However, even though
this may seem nice at first, one can imagine how cumbersome the process of
creating programs may get if the mouse is used for everything.

’Data Flow Languages’

In a dataflow graph, the flow of data and control coincide. These languages
allow the user to create dataflow graphs on the screen and then specify inputs
which are fed to this graph to produce a set of outputs. An advantage of
these types of languages is that they are well suited for program animation.
The user can watch the ’dataflow’ from one module to another. The simple
structure of dataflow graphs encourages modular design and can be used at

8

all levels of system description. Such diagrams are also useful in identifying
potentieJ units which can be executed in parallel. However, one problem this
scheme shares with flowcharts is that the lack of high level control constructs
usually lead to messy diagrams.

1.4 Some Graphical Programming Systems

1.4.1 PECAN

The PECAN [17] family of programs are program development systems devel­
oped at Brown University. PECAN provides users with a rich programming
and run-time environment that allows graphical views of the user program,
its semantics, and its execution. In PECAN, for example, users for the most
part indicate the sequence of actions they wish to perform by pointing with
a mouse to entries in fixed or pop-up menus. The built-in editor recognizes
Pascal syntaoc and thus can immediately highlight erroneous statements. At
run-time, users can follow the computer’s progress through the program with
each statement being highlighted as it is executed. The system was devel­
oped to run on APOLLO workstations. The main objective of the system
is to provide a graphical programming environment for the novice and expe­
rienced programmers. PECAN contains many of the best features of other
similar systems. These include:

• immediate feedback of syntax and semantic errors while the user is
editing the source program (syntax-directed editor), •

• an undo facility whereby the user can undo and redo any action back
to the beginning of the session,

• structured templates for building the program,

• the flexibility to type text at any time instead of using templates,

• the use of on-screen and pop-up menus as an alternative to typing most
commands,

• a multiple window display to make effective use of the screen,

• incremental semantics that allows the program to be compiled eis it is
edited,

• a framework that handles a variety of (algebraic) programming lan­
guages with the same commemds.

The PECAN system differs from other program development systems in
its use of multiple views of user programs. One such view is a syntax-directed
editor. This view displays the user program with a format for automatic
indentation and boldfacing of Pascal keywords. Another view displays the
program as a Nassi- Shneiderman diagram. A third view shows a module
inter-connection diagram showing how the program is organized. Others
are control flow diagram, expression tree etc. Those several views may be
displayed simultaneously, each in its own window.

In addition to the different program views, PECAN allows the user pro­
gram to be compiled incrementally. The user can also view the symbol tables,
data types, expression trees, and the control-flow graph of the program in
separate windows.

According to the classification discussed earlier, PECAN fits into the cat­
egory of programming environments which are based on conventional pro­
gramming languages. This is due to the fact that the entire system is bcised
on Pascal. In general, PECAN is a complete development system for Pascal
programs. Actually, the system is modular enough to allow other languages
to be supported. One of the drawbacks of the system, though, is that the
actual data structures cannot be rendered graphically. Also, the user can­
not create the program graphically; he/she must create the textual Pascal
program first, and then may choose to view it in different ways.

1.4.2 IconLisp

IconLisp [18] is a system designed to offer an iconic extension to the standard
programming in Lisp. The system consists of a row of pull-down menus,
a palette of tools on the lefthand side of the screen, and a working space
which occupies the rest of the screen. The user with an input device such
£is a mouse can then use the menus and palette of tools to create lists and
thus create programs (lists and programs are the same thing in Lisp). The
IconLisp system was still in the design phase and thus had not been actually
implemented on a computer. Nevertheless, the designed version of the system
will be used to talk about its capabilities.

The IconLisp system implements iconic programming in the following way:

10

The user clicks on and drags objects on the screen to create and modify lists.
For example, once an initial list is created, the user selects the list and clicks
on the CDR icon in the palette area to produce the CDR (all except the
first part) of the list. This action produces a new icon on the screen which
contains the CDR of the list and which can be used in a further computation.

In order to implement iconic programming, the IconLisp system, for each
list (function), keeps track of three components: the physical component,
the logical component, and the name. The physical component is the actual
picture/icon to represent the list. The logical component is the actual text
of the list. The name component is used to label the icon and is normally
the same as the function neune. By using these three components, users
can create arbitrary functions and assign icons to them. With these icons,
the user can execute programs by creating the data lists and then dragging
them on top of the appropriate function icons in the user workspace. Also
different buttons on the mouse represent different actions. The first mouse
button selects a function/list and opens a window which contains its textual
definition. The second mouse button evaluates (calls the EVAL function in
Lisp) the selected list.

The IconLisp system can be classified among those systems which are
based on conventional programming languages, in this case Lisp. The system
not only allows programs to be displayed graphically, but the data structures
are also displayed graphically. Even the operations are done by graphical
manipulation. Of course, this is very simple to do because of the functional
nature of Lisp. Also, since programs and data axe in the same format (lists) in
Lisp, graphic representation is very easy. The IconLisp system is nice in that
programs, data structures, and operations are all represented graphically.
However, underlying this graphic layer, the user still needs to deal with the
text of the Lisp functions and data. Also the system is nice in design but
has not been actually implemented to demonstrate the practicality of such
an approach.

1.4.3 PICT

PICT [19] is a system developed by Glinert and Tanimoto at the University
of Washington. The system was primarily designed to aid in program imple­
mentation rather than algorithm design and selection. The system, however,
does not allow general programming, it serves as an experimental prototype

11

capable of supporting small, but nontrivial programs.

Each of the systems previously described provide many of the features
which axe important to graphical programming. However, all of them suffer
from the following two problems:

• users have to use one of the standard programming languages to code
their programs, and

• the display is monochrome; color graphics is not used. PICT solves
these two problems.

The PICT system provides a new type of algorithmic programming envi­
ronment in which computer graphics plays a centred role. With PICT, users
do not write computer programs using letters, digits, and punctuation marks;
in fact, users never use the keyboard. The user uses the mouse and a color
display terminal to create his/her program. The program creation is not free
form, but rather like constructing jigsaw puzzles. Graphics, color, sound,
and animation are used to make the program appear as multidimensional
and concrete as possible. With the PICT system, programs, subprograms,
peirameters, data structures, variables and program operations are all repre­
sented by icons of various sorts. The control structure is represented by paths
that are followed by the system to show the current execution stage. Also,
the syntax of the user’s program is checked continuously during program con­
struction, thus eliminating the need for syntax checking before executing the
program.

PICT provides all tools users need to compose, edit, and run their pro­
grams integrated within a simple, consistent command structure. Users com­
municate with the PICT system by pointing to icons in a menu tree; PICT
responds by altering its display in an appropriate manner or, if the user has
made an error, by displaying a help message.

Unlike PECAN, PICT is not based on a textual language. The language is
completely iconic and needs no text information at all. Thus, in the classifica­
tion scheme, PICT falls in the category of tools which implement completely
new and graphical programming languages. Specifically, PICT is em example
of an iconic programming language.

PICT has the advantage over other systems in that it is completely graph­
ical. In fact, one can even claim it is too graphical. According to a survey

12

conducted by the developers, many experienced programmers thought that
such a system would be too cumbersome to work with. On the other hand,
most beginners rezdly appreciated using the system and actually enjoyed us­
ing the system to create programs.

1.4.4 HiVisual

Hi Visual (Hiroshima Visual) [20] is a graphical programming system devel­
oped at the Hiroshima University in Japan. In HiVisual, programming is
carried out by simply arranging icons on the screen. The system features
icon-based programming, visualization of data flow, interactive programming
capability, and animation of program execution.

HiVisual, like PICT, supports iconic programming. In PICT, however,
the control of program flow is visually specified on the basis of its flowchart­
like representation. In contrast, the representation of programs in HiVisual is
based essentially on the flow of data. Icons are regarded as functional modules
which have inputs and outputs, and the program is constructed by specifying
the connection between the inputs and outputs of the various function icons.
In order to display different levels of abstraction, the actual definition of a
module may be hidden from the user.

In addition, HiVisual provides an interactive programming environment
in the following way: When the user selects an icon and puts it at a suitable
place on the display, the system activates the icon to execute the associated
function and returns an iconic representation of the resultant data. This icon
is displayed next to the activated icon. After this, programming proceeds by
referring to the output and connecting another icon to it. Once a program is
completed, the progreim itself can be defined as a new icon and be used later
to make a higher level program.

HiVisual also allows simple data types such as records to be displayed
graphically. Although text is used to display the individual fields, the fact
that the structure of the data is displayed graphically can be helpful. HiVi­
sual, like PICT, is not based on any conventional textual language. So, in
the classification scheme, it falls in the category of tools that implement com­
pletely new graphiccil programming languages. Unlike PICT, it uses the data
flow model to display programs graphically. Because it uses the data flow
diagrams, HiVisual shares the advantages and disadvantages of this diagram­
ming method: although data can be represented graphically, control flow is

13

not obvious from the diagram.

1.4.5 ’A Tool for Teaching Programming’

Our programming teaching system implements a graphical programming layer
on top of the Pascal programming language. The tool is primarily meant to
be used as a learning aid to students new to the Pascal language, but can
also be used as an aid to write PASCAL programs in a top-down, graphical
fashion using flowchart symbols.

The tool provides the user with a means to draw a program’s flowchart
in a window through a menu of icons and commands, then displays the cor­
responding Pascal code of the flowchart through the directives from the user
with the help of a pointing device, a mouse. A snapshot of the screen while
the tool is running is shown in Figure 1.2.

14

Flowchart elements are picked from a menu containing flowchart symbols
eis icons and axe drawn on the graphic screen. The text information of each
symbol is filled in by selection of a text entry command from the menu.

A text window can display the Pciscal code corresponding to a flowchart
in a graphics window. A single menu contains both the flowchart symbols
and commands to operate on a flowchcirt as well as to accomplish the task
of Pascal code generation and execution. Although explicit editing of the
Pascal code that is generated from a flowchart is not permitted, editing of
the flowchart itself is possible by means of appropriate commands. Therefore,
each flowchart symbol on the screen can be identified for further operations.
Once a flowchart is edited, the corresponding Pascal code also changes ac­
cordingly.

Both the graphic portion of the screen (which is the window containing the
flowchart) and the text portion (which is the window containing the Pascal
code) are scrollable. Therefore, the whole Pascal code corresponding to the
flowchart can be displayed part by part by scrolling. This is true for the
flowchart itself as well. Exit from the tool is provided by means of a button
on the panel of the window in which the flowchart resides.

Once the code is generated, it can be executed step by step, as if using a
debugger. During stepwise execution, values of the simple variables concerned
are displayed and related flowchart elements of the code are highlighted.

Our teaching tool for programming fits into the category of programming
environments which are based on conventional programming languages. This
is because, the tool is based on a strategy for teaching Paiscal programming
through flowcharts [21]. A general comparison of the tool with the existing
systems can be listed as:

• The tool is a flowchart based system for teaching Peiscal programming.

• Both graphics and text involve in the tool. That is, in spite of graphical
representation of programs through flowcharts, the user still needs to
deal with the text of the flowchart boxes.

• Graphiczd part of the tool represents only the control flow of programs,
since it applies flowcharts. •

• The actual data structures can not be rendered graphically. They are
entered to the program by the user through a declaration window by

15

typing in the identifiers of listed data types of Pascal, during the code
generation.

• The tool applies a restricted domain of Pascal language, e.g., it does
not support ’go to’ statement, and Pascal ’Functions’ .

• During the execution of the tool multiple windows and on-screen/pop_up
selection mechanisms are applied for effective use of screen and simplic­
ity for users.

In order to satisfy user needs in a simple way, we have to present the
application in such a friendly manner that the user need not spend too much
time in learning the system itself, but instead play with it while learning
programming in Pascal. This is accomplished best by means of user-friendly
tools.

16

2. UNDERLYING ELEMENTS AND
ENVIRONMENT FOR THE DESIGN AND

IMPLEMENTATION OF A TOOL FOR
TEACHING PROGRAM M ING

2.1 User Interface

As sophistication of computer systems increase with technology, the require­
ment for computers to remain friendly, comprehensible, and effective to con­
tinue to appeal to users also increases. A crucial factor in all three of these
attributes is the quality of communication between the user and the machine.

User interface is the part of a program that determines how the user and
the computer communicate. The design of interactive user interfaces is very
important for the performance of the application. Not only are bad user
interfaces difficult to learn, but they make programs difficult to use even in
the hands of experienced users. For the naive user, graphical interfaces have
been introduced that represent a significant improvement over traditional
command languages as a means of realizing the full potential of a computer.
As ein example, iconic interfaces present command and system information in
a nonverbal manner i.e., in the form of icons by which the learning curve can
be reduced in both time and effort. Thus, it improves user performance while
reducing errors. The reason for upgrading the user interface and thus per­
formance in this manner follows the argument that communicating through
images is the most natureJ way of communication. Furthermore, images Ccin
be easily recognized and learned, and thus may be better than their lexical
equivalents [1].

Generally, any graphical user interface is composed of two parts, the pre­
sentation part and the interaction part. The presentation or layout part

17

defines what pictures are on the screen i.e., placing graphics and images on
various parts of the screen. The interactions or behaviour part determines
how these pictures change with user actions i.e., transforming an object on
the screen. Models of user interface can be considered to fall into two broad
categories : linguistic models, and spatial models. Linguistic models view
the interface as a dialogue between user and computer, and focus on issues
that occur within the syntax, semantic, and lexical levels of the dialogue.
Spatial models include interactive graphics or direct manipulation models. A
well designed user interface normally incorporates both linguistic and spatial
components [2].

User interface components [3] naturally can be grouped into four :

• User’s Model

This is a conceptual model acting as a framework for the development
of strategies for operating the program. It enables the user to have a
broad understanding of what the program is doing. The use of familiar
concepts makes the user’s model more intuitive and easier to learn. It
is difficult to gain acceptance for a program that presents the user with
unfamiliar objects that behave in highly unexpected ways.

• Command Language

Once the model is understood by the user, user needs commands to
manipulate it, a system of which forms a command language. Principal
issues of command languages are command modes, selection sequence,
a command abort mechanism and error handling. Command modes
are the states in which a given operation by the user is interpreted
differently by the program. Selection sequence is the order to manip­
ulate a command. Command abort mechanism is necessaxy to disable
a currently working command. An error handling mechanism is how a
program must respond to incorrect input.

• Feedback

Feedback is a component of the user interface through which the com­
puter assists the user in operating the program. Some forms of feedback
are provided only for naive users, and ignored by experienced users. Ac­
knowledgement of reception of commands, explanatory messages, indi­
cation of selected objects, echoing of typed cheuracters axe some forms
of feedback that help the user to be informed about the correct receipt
of his commands.

18

• Information Display

This component shows the user the state of the information he is ma­
nipulating. By means of well chosen symbols and graphics, the user can
be given confirmation that his model is correct. For a more effective
utilization of the screen for information display, the way menus, win­
dows, informative icons or graphics Eire handled, together with selection
mechanisms, must be taken care of properly. A device independent user
interface that functions with a wide variety of devices is the most fea­
sible design issue for a user interface, since it provides for applications
to be portable from one hardware configuration to another. On the
other hand, such a design is quite difficult and the results might not be
equally satisfactory for all classes of devices.

2.2 Object Oriented Approach

During the implementation phase of our Pascal teaching tool the object ori­
ented programming paradigm is made use of.

The object paradigm provides a natural mechemism for representing a
system at several levels of abstractions from a very low level concept, such
as a number, to a very high level concept, such as an office information
system. Graphical applications, data base applications, and user interface
designs are the main areas where object oriented programming techniques
have been widely used recently. The innovative work of Kay and Goldberg at
Xerox corporation in developing objects for the Smalltalk language obviously
contributed much towards the advancement of these techniques [11,12,13]. A
few other languages have such capabilities. Objects in C are a recent addition
that this project makes use of mostly as an extension to the toolkit on which
the code is built [5].

Object oriented programming differs from the traditional control oriented
programming in that all conceptual entities are modelled with a single con­
cept, an object. An object is an entity with attributes and having relation­
ships with other objects.

Temperature range, size, danger level, color can be the attributes of an
object representing a temperature gauge. The identity of an alarm object
could be the value of a relationship. Methods are a kind of procedure in
which the behaviour of zm object is embodied. The method for a temperature

19

gauge could be the display of a temperature dial by graphics routines.

A message is the specification of an operation to be performed on an
object, similzu: to a procedure call. Messages provide for objects to commu­
nicate with other objects to request information or some form of behaviour
from them, for exaimple a temperature gauge can be requested to display itself
by messages from other objects. A method for an object is a function that
implements the response when a message is sent to that object. An object
reacts to a message by executing its corresponding method, which is a piece
of code manipulating or returning the state of the object.

Objects can be represented in a class hierarchy inheriting properties down
the hierarchy. Therefore different classes of objects can be defined, each ob­
ject being an instance of a class. A class describes the form of its insteinces and
operations applicable to its instances. Objects of the similar type axe grouped
into the same class. An object differs from other instances of the same class
by the values of its attributes and relationships, but all the instances do have
the same methods of the class. Lower down the class hierarchy, a class can
also have subclasses as well as objects (instances of the class). All subclasses
of a class inherit the properties of its superclass and additionally have its
local properties [6,7].

An object oriented system for the construction of a window based user
interface consists of a set of objects and actions for the interface. Objects
present a functional interface and are manipulated by passing their unique
identifier to their гıssociated functions.

In an object oriented window manager system each element of the window
manager belongs to a basic class object. Window is a subclass of object class
having frame as an object and subwindow as a subclciss. TTY, canvas, panel
and text are the objects of subwindow. Additionally, text, button, message,
choice and slider are the objects of panel items subclass belonging to object
class. Also, menu, scrollbar, and icon are objects of object class [5].

While developing our object oriented education tool, we have used the
window memager’s own objects in addition to the objects designed specifically
for our application.

Each entity in the application is designed as an object. At the top every
object belongs to a basic class, OBJECT, that has subclasses GRAPHIC-
OBJECT CL.\SS, and T E X T OBJECT CLASS. GRAPHIC OBJECT CLASS

20

has subclasses, say, DECISION-BOX, PROCESS-BOX, START-STOP-RETURN-
BOX, DUMMY-BOX, etc.

Instances of TEXT-OBJECT-CLASS that are the Pascal code segments
corresponding to each graphic object, axe created during the code genera­
tion for each graphic object. For example, each DECISION-BOX created at
different times and places, while running the tool generates one instance for
that class, that is an object for DECISION-BOX, and so do all the other
graphic symbols. The following sections discuss the environment on which
these objects act and how they act.

2.3 Environment

The Pascal Teaching Tool is designed on SUN 3_50 Workstations running
under 4.2 BSD UNIX ̂ Operating System and using SunView^ (SUN Vi-
sual/Integrated Environment for Windows) window manager system in C
language. Sun Workstations are fast devices with a high resolution screen
for graphical applications. A mouse is used as a pointing device and a key­
board for text entry. A matrix printer is used as the output device [8].

Graphics architecture for the application is based on raster graphics. In
raster graphics every visible picture element on the screen is called a pixel
and has a corresponding storage location in memory. In workstations, dis­
play rasters are stored in dedicated regions of memory called frame buffers
or video memory. A high speed frame buffer offers flexibility for the display
of arbitrary objects, including variable width characters, foreign alphabets,
mathematical symbols, lines, curves, shaded regions, and photographic im­
ages.

A frame buffer is generally organized by plane used for monochorome ap­
plications, mapping one bit of memory to one pixel. Also a frame buffer may
feature additional raster operation hardware to speed up raster operations
[8].

A window manager system such as Sun View is used in implementation be­
cause of its interactive user interface constructs. SunView defines the relation­
ships among the many possibilities of a workstation with multiple windows,
running multiple processes. SunView manages and controls the interaction

^UNIX is the trademark of AT&T Bell Laboratories.
^SunView is the trademark of SUN Microsystems Inc.

21

of the varied processes within the appropriate window [5].

From the system’s point of view, the tool is an interactive application
running according to user directives from many input sources. It waits for
input from mouse, keyboard, or disk. The output goes to any one of the out­
put devices such as graphics screen, disk, or matrix printer according to the
selection of user. The environment in which the editor runs is a notification
based window manager system. In a notification based system the notifier
acts as the controlling entity within a user process, reading UNIX input from
the kernel and formatting it into higher level events, that it distributes to
the different SunView objects. The tool uses the objects of SunView which
provide a means for easy development of advanced user interfaces.

2.4 Tools For User Interface

In current user friendly systems, the hardware environment for applications
generally consists of a high resolution bit addressable screen, a small point­
ing device called a mouse, and multitasking capabilities. On a single screen,
multiple overlapped windows can be concurrently active and each window
can contain multiple specieil purpose subwindows, each of which can have an
active process. A wide vciriety of subwindow types provides for easy devel­
opment of user interfaces. In such a system, management of the common
interface functions is provided by a notifier/selection service, a window man­
ager, and a broadcast service. The notifier and selection service are the
runtime systems distributing input to the appropriate windows. The window
manager manages the overlapping windows. The broadcast service makes it
possible to activate task and exchange data between applications running in
separate windows in the same or in different processes [4].

Such a notifier based system running in a multiple window environment
contains various objects -tools- and actions for the user interface. An ob­
ject is a software entitj ̂ providing a functional interface and is manipulated
by passing its unique identifier, called a handle, to its associated functions.
Classes of these objects cire defined in a hierarchy and can contain subclasses
that may inherit common behaviour from their superclass. For a window
manager system [5] this class hierarchy can be represented as in Figure 2.1.

• WINDOWS

22

Figure 2.1: Class hierarchy of a window manager system.

Windows refer to a visible component of the display that the user per­
ceives as a single entity -tool- and manipulates as a unit.

— Frames
Frames are windows containing nonoverlapping subwindows within
their borders with the purpose of bringing different types of sub­
windows together into a common framework, providing them to
be operated on as a single unit.

— Subwindows
Subwindows axe windows never existing independently and always
owned by a frame.

♦ Panel
A panel is a subwindow containing panel items of buttons,
message items, choice items, text items, or sliders. Buttons are
simple activation confirmation items, message items provide
an output eirea, choice items are to select among a number
of items, text items present a type-in area, and sliders are to
provide a continuous range of values.

* Text
Text is a subwindow with capabilities for editing text.

23

* Canvas
A canvas is a subwindow into which programs csin draw.

♦ T T Y
A TTY is a system subwindow in which programs cem be run
and commands can be given.

• PANEL ITEMS

Panel items are panel components facilitating a particular interaction
between the user and the application by button, message, slider, and
choice items.

• SCROLLBARS

Scrollbars are lower class objects and dependent elements that may be
attached to a subwindow to control the display of the specified portion
of the window by sending appropriate locational messages. Another
name used for scrollbars is the elevator.

• MENUS

Menus axe special purpose subwindows allowing the user to choose from
a list of actions.

• ICONS

Icons are small images symbolizing an application or its state.

These tools support the design of the style of user interfaces where the
user typically uses a mouse to select and manipulate objects on the screen
[5,10].

A window is activated when a user points to it say for input, and the
window generates an event. Therefore events and their notification becomes
a significant part of such a system.

2.5 A Notification Based System

2.5.1 The Notifier

Having a multiplicity of independent input sources, control of flow has to be
taken away from the application, i.e.,' without performing input and output

24

explicitly, the application must register interest, describing the routines it
wishes to be called when certain input/output events occur. A notifier is
an example of this approach. Thus, notification based systems have some
characteristics rather opposite to those of conventional sequential program­
ming systems. In a notification based system, the main control loop of the
application does not reside in the application itself but it is managed by the
concurrent notifier that is the controlling entity for user processes.

In the conventional style of interactive programming, the main control
loop resides in the application. An editor, for example, will read a character,
take some action based on the character, then read the next character, and
so on. When a character is received that represents the user’s request to
quit, the program exits. Notification based systems invert this ’straight line’
control structure. The notifier reads events and ’notifies’ or ’calls out’ to a
procedure that the application has previously registered with the notifier for
those events.

Thus, the duty of the notifier is to sense the events and activate the proce­
dures of the applications -described as callback procedures- already specified
for the events. An event is almost anything that is prescribed. The functions
to be activated by the occurrence of an event for an application are registered
with the notifier. This registration process is provided through specification
of callback procedures for events [5,10].

The control structure of a notifier based program is given in Figure 2.2.

Without a centralized notifier, the application itself would have to carry
the duty of detection and dispatching of events to its components as in the
case of conventional interactive programming. For programmers who are not
used to a notification based system, this callback style of programming takes
some getting used to. Its big advantage is that it takes over the burden of
managing a complex, event-driven environment. In SunView, an application
typically has many objects. In the absence of a centralized notifier, each
application must be responsible for detecting and dispatching events to all
the objects in the process. With a centralized notifier, each component of an
application receives only the events the user has directed towards it and each
function receives only the events related to itself.

Therefore, in a notification based system, the programmer creates the
required functions and object definitions for the application, then registers
such definitions with the notifier, based on the occurrence of a class of events.

25

Figure 2.2: Control structure of a notifier based system.

26

The control is then passed to the notifier/selection mechanism and if an event
from the prescribed class should occur, the selection service activates the
necessary tools [4,5].

2.5.2 Relationships Between the Notifier, Objects, and
the Application

It is not necessary for the user (programmer here) to interact with the notifier
directly in the application. SunView has a two-tiered scheme in which the
packages that support the various objects -panels, canvases, scrollbars, etc.-
interact with the notifier directly, registering their own callback procedures.
The application, in turn, registers its own callback procedures with the ob­
ject. Typically, when writing a SunView application the programmer first
creates the various windows and other objects needed for his/her interface,
and registers his/her callback procedures with the objects. Then he/she pass
control to the notifier. The work is done in the various callback procedures.
There is one distinction between the ’event procedures’ for the canvases and
the ’notify procedures’ for the panel items. They are all callback procedures,
but they have different purposes. The canvas’s event procedure does not do
much work -basically it calls out to the application’s event procedure each
time an event is received. The application sees every event and is free to
interpret the events however it likes.

The notify procedure for panels, on the other hand, does quite a bit of
processing. It determines which item should receive the event, and places its
own interpretation on events such as, the middle mouse button is ignored, or
left mouse button down over an item is interpreted as a ’tentative’ selection
of the item, etc. It does not call back to the notify procedure for the item
until it receives a left mouse button up over the item. So panel item notify
procedures are not so much concerned with the event which caused them to
be called, but with the fact that the button was selected, or a new choice
made, etc.

Within the context of the issues related to user interface and its tools, the
design and implementation of ’a tool for teaching programming’ is discussed
in the following sections.

27

3. DESIGN OF A TOOL FOR TEACHING
PROGRAM M ING

3.1 Naming Conventions

In the following sections, when describing our Pascal teaching tool, it will be
mentioned as ’the tool’ in short.

Flowchart symbols consist of two main types of elements; box and arc.
A box is a flowchart symbol representing an action or process in the chart
and may contain textual information inside. Some examples of boxes are
start/stop box, decision box, input box, output box, etc. An arc is the
flowchart element providing a path for connecting the boxes of a flowchart
with an arrow tip indicating the flow direction.

Pins are the connection points of boxes to connect them to other boxes
via arcs. The pin at which an arc path begins is called the beginning pin
of the arc and the pin where the arc path ends indicated by an arrow tip is
named ending pin of the arc. Arcs can be connected to other arcs through
the use of dummy boxes.

If a flowchart has some sub-routines to reference by a ’call subroutine box’ ,
flowcharts of those sub-routines are named as sub-flowcharts and generated
by means of ’proc body On’ menu item. The owner flowchart -calling one- is
named as main flowchart, on the other hand.

3.2 Screen Design of the Tool

As Figure 3.1 shows, there are three main areas on the screen layout of the
tool : A drawing area, a flowchart menu, and information panels. Design

28

of all these areas are supported by the user interface tools of the window
manager on which the tool is written. In the following section main parts
of the tool’s screen layout with window manager’s constructs used for their
implementation is presented.

• Flowchart drawing area

This area is a ’canvas’ used for drawing flowchart elements on and
writing text in during flowchart generation. Its size is larger than the
frame surrounding it and it can be scrolled by means of ’scrollbars’
attached to left and upper sides of the frame around (Figure 3.2).

Drawing symbols on the screen as well as text entry from keyboard
are controlled by the selections from flowchart menu through mouse
buttons. Activation of scrollbars are also provided by mouse buttons
for scrolling the drawing area. •

• Flowchart Menu

29

Flowchart menu is implemented using ’menu’ element of the window
manager to present a selection mechanism for flowchart symbols and
operations to handle the tool. Menu items to select among are com­
posed of ’icons’ depicting the flowchart symbols and operations. The
menu is displayed by pressing right mouse button inside the drawing
area or left mouse button on the frame covering the drawing area and
panels (Figure 3.3).

Releasing the button on one of the items -which becomes dark- chooses
that item to operate. Some menu items are ’pull right menu items’

delete
box

load

Mowcharl

< >

o
delete
arc

d1splay
code

o

II

o

scale

O

clear
all

re
d1splay

all

c b

text
edit

save
Flowcharl

SELECT

Figure 3.3; Flowchart menu.

30

I [Qui t] [[jurip] Procedure
Hint : Draw the flowchart for PROCEDURE body.

Figure 3.4: Panels.

displaying another menu, when mouse is pulled right over them. For
example ’display code On/OfF’ and ’procedure body On/OfF’ items are
pull right menu items indicated by a right arrow nearby, and present a
deeper selection mechanism.

InFormation panels

— Panel 1
First information panel is used for displaying the name of the cur­
rently working flowchaxt/sub-flowchart appearing on the drawing
area. Since a flowchart symbolically represents a routine and can
contain sub-flowcharts for sub-routines of the routine, a message
giving the name of the working routine/flowchart is displayed to
user near the ’Procedure name :’ message. Name of the initial
flowchart is ’main’ by default, and its sub- flowcharts which are
named by the user can be displayed by choosing ’procedure body
On’ menu item. Returning back to the main flowchart is possible
by activation of ’procedure body Off’ item.
The panel also contains two buttons, one for exiting from the tool,
and other for dumping the screen image to disk for hard copy from
the laser printer (Figure 3.4).

— Panel 2
This panel guides the user about what to do next after selection
of a menu item. The action to be taken is announced for the user
near the word ’Hint :’ (Figure 3.4).

3.3 other Screen Layout Elements Displayed by Flowchart
Handling Operations

• Text edit window

This is a ’text subwindow’ appearing each time a new symbol is drawn
or by selection of the ’text edit’ menu item. It is used for editing textual
informations of flowchart boxes (Figure 3.5).

31

Figure 3.5: Text edit window.

O O
File name for Flowchart/Pascal code : pl.f̂ * •

Figure 3.6: File name window.

• File name window

This window contains a ’panel text item’ to read a file name required for
some operations like ’flowchart save/load’, and ’code generate’ (Figure
3.6).

• Scale window

This window consists of two ’panel slider items’ to enlarge or shrink a
flowchart box on the drawing area. It appears after selection of ’scale’
menu item and its sliders are operated on by left mouse button and
size of the flowchart box changes with the amount of percentage value
of the activated sliders (Figure 3.7).

• Declaration window

This window contains a number of ’panel text items’ near the messages
listing the Pascal data types to get the corresponding identifiers of
data types from the user, during Pascal code generation. In addition
to declaration of variables/types in the main flowchart, declaration of
local variables/types for each sub-flowchart is asked from the user too.
Declaration window and its related flowchart appears for main and each
sub-flowchart, after ’code generate On’ item of menu is chosen (Figure
3.8).

• Code display window

¿N j Enlarge % [26]

Shrink % [1] 1 100

Figure 3.7: Scale window.

32

Q O
const ^
type :
char :
int :
real :
others :

Proc name: main

Figure 3.8: Declaration window.

PASCAL CODE

fWn fTOvN~i roin
progra· Ba1n(1nput, output);
var

cnt: Integer;
begin

cnt : - 1;
Uhlle cnt < H do begin

If cnt > 0 then begin
ur1te1n(l / cnt);
cnt : ■ cnt ♦ 1

end else begin
url te

end
end;

beg
urlteln('error')

urlteln(cnt)

Figure 3.9: Code display window.

This window contains a ’panel’ and a ’canvas’ , canvas displaying the
Pascal code corresponding to the flowchart residing in the drawing area,
when the ’code generate On’ operation is completed. The panel consists
of four buttons to remove the window from the screen, to scroll the
Pascal code up and down, and to print the Pascal code from the printer
(Figure 3.9).

• Step window

Step window is used during the stepwise execution of the generated
Pascal code. It contains a ’panel button’ to continue execution until
the next box and display step window again by suspending execution
(Figure 3.10).

33

Figure 3.10: Step window.

3.4 Items of the Flowchart Menu

Items of the flowchart menu can be analyzed in two categories: flowchart
symbols and flowchart handling operations as shown in Figure 3.3.

3.4.1 Flowchart symbols

• Dummy box

Dummy box has no effect as a flowchart box, but only serves for the
connection of two or three arcs with each other.

• Decision box

Decision box is used to carry out a conditional branch operation ac­
cording to the textual expression residing inside the box. If/then/else,
while/do, and repeat/until constructs of Pascal are represented through
the use of decision box on the flowchart, since these three constructs do
not have distinct flowchart symbols for each. They are differentiated
by their connection to other boxes and to the dummy box from the de­
cision box. For making a connection from the decision box to another,
the first arc beginning at the decision box shows the ’False’ exit, next
one the ’True’ , by default. False and True exit points can be changed
by deleting those arcs and redrawing in reverse creation order again.

• Output box

Output box is used for printing values for a list of variables/constants
delimited by commas from the printer.

• Arc symbol

Arc symbol connects the boxes of a flowchart through a path at the
connection points of boxes named pins. •

• Cali subroutine bo.x

34

This box appears on the flowchart where a reference to a predefined
sub-flowchart representing a sub-routine is required. As a textual in­
formation it contains the name of the sub-routine to be called with its
parameters in parenthesis.

• Start/Stop/Return box

This box symbolizes the starting/stopping element of a flowchart ac­
cording to ’start’/ ’stop’ string contained in the box respectively. If this
symbol is a starting element of a sub-flowchart it must contain the name
of the sub-routine with its parameters and their data types separated by
commas enclosed in parenthesis as textual information. Return from a
sub-flowchart is symbolized again by this symbol with a ’return’ string
in it.

• Process box

This box represents an assignment operation with an arithmetic, logic,
or string expression.

• Display box

This box is the same as the output box except that this prints the values
of data listed in its text string onto the screen.

• Disk i/o box

This box is used for input/output operations from a disk file. The file
type is always ’text file’ of Pascal. Operation type (i/o), a file name,
and list of variables are written as its textual information.

• Input box

In order to get some values of variables from the user, the input box
is used. Its textual part contains a list of variables to read the values
from the standard input device -screen-.

• For box

This box is used for incremental/decremental iterations over a range
of boxes. Its textual pcurt consists of the name of the index for the
iteration with its starting and ending values.

3.4.2 Flowchart Handling Operations

• text edit

35

This operation is used for filling in the textual part of a box or editing
previously filled one.

• delete box

In order to delete a specific box from the flowchart together with its
textual part, this operation is applied. To have the operation in effect,
all the arcs beginning or ending at that box must be deleted before.

• delete arc

This operation deletes an arc whose beginning pin is pointed by the
mouse and clicked over, after ’delete arc’ operation is chosen.

• move operation

Selection of this operation moves the box pointed by the mouse accord­
ingly with the movement of the mouse, from one location to another.

• scale operation

Scale operation changes the size of a selected box. It enlarges or shrinks
the box according to user directives controlled by the scale window.

• clear all operation

It clears the whole drawing area together with all of the data structures
allocated for the flowchart and its sub-flowcharts. After this operation,
generation of a new flowchart is possible.

• save flowchart operation

User can save the flowchart residing on the drawing area together with
its sub-flowcharts to a disk file named by the user.

• load flowchart operation

A previously saved flowchart can be loaded from a disk file named by
the user and displayed on the drawing area.

• Display code On/Off operation

’Display code On’ operation creates the Pascal code of the flowchart
residing on the drawing area and lists in the code display window.

’Display code Off’ operation removes the display window with the Pas­
cal code from the disk, to be regenerated later, when required. •

• Procedure body On/Off operation

36

’Procedure body On’ is used to create/display a sub-flowchart of a
flowchart. If the name of the sub-flowchart requested from the user
is a new one, drawing area is cleared to generate it. If it already exists
it is displayed to the user for editing.

’Procedure body Off’ operation is used to return to the main flowchart
of a sub-flowchart while editing the sub-flowchart.

The name of the edited sub-flowchart is displayed on top of the drawing
area near the message ’Procedure name :’ .

• execute code operation

This operation has to be applied to start stepwise execution of Pascal
code for the flowchart, after the code generation operation.

• Redisplay all operation

In order to redraw the whole flowchart on the drawing area, i.e., re­
freshing the drawing area, this operation has to be activated.

• SELECT operation

Select operation selects a flowchart box from the drawing area to be
used by other operations such as scale, delete box, etc.

3.5 Flowchart Design Methodologies

Since flowcharts are first developed for unstructured languages like assembly
or Fortran language, a flowchart can not support all the constructs such as
repeat-until, while-do, etc. of a structured language such as Pascal. In order
to implement almost all constructs of Pascal in our Pascal teaching tool, a
number of flowchart design methodologies are developed to represent some of
the Pascal constructs which do not have corresponding single box symbols.
For example, since there is no distinct symbols for if-then-else, while-do, and
repeat-until constructs of Pascal, they are represented by the use of decision
box. Differentiation of these constructs are provided by connection to dummy
box and other boxes from the decision box. •

• connection of arcs through dummy boxes (Figure 3.11).

• if-then-else (Figure 3.12).

• while-do (Figure 3.13).

37

Figure 3.11: Connection of arcs.

Figure 3.13: while-do.

38

Figure 3.14: repeat-until.

Figure 3.15: for.

• repeat-until (Figure 3.14).

• for (Figure 3.15).

• start/stop/procedure-start/return (Figure 3.16).

• subroutine -procedure- call (Figure 3.17).

• output/display (Figure 3.18).

• process (Figure 3.19).

• disk i/o (Figure 3.20).

• only one entry and one exit point for each flowchart/sub-flowchart (Fig­
ure 3.21).

39

^ start ^

C * g ^ ^ return ^

Figure 3.16: start/stop/procedure-start/return.

sun(a,b)

Figure 3.17: subroutine call.

CD
Figure 3.18: output/display.

Figure 3.19: process.

Figure 3.20: disk i/o.

40

^start ^

E O

e
S U B (X , y)

Ĉo „

/ SUB (a, b: l\
i nteger) I

^ r e t u r n ^

Figure 3.21: Only one entry and one exit point.

41

4. IMPLEMENTATION OF A TOOL FOR
TEACHING PROGRAM M ING

4.1 Data Structures

There are a number of data structures employed during the implementation
of the tool. The flowchart on the drawing area is kept in memory as a
list of structures containing information about the location of the box, its
connection points, its text string, connections to other boxes, and connection
paths. Also some additional structures keep the pointers to sub-flowcharts in
the application. The data structures keeping those kind of information are
described below.

• A structure for list of coordinates of a box.
Keeps the locations of the corner points of a box drawn on the screen
(Figure 4.1).

struct coords
{ int x;

int y;
struct coords *next_coord;

} ;

• A structure for list of connection points -pins- of a box.
Keeps the locations of the pins of a box (Figure 4.2).

struct pins
{ int x;

int y;

42

coords coords
X value X value
y value y value

pointer to next coord p o in tg llJ U ^ ^

Figure 4.1: Structure for box coordinates,

p in s pins

Figure 4.2: Structure for box pins.

short active;
struct pins *next_pin;

} ;

• A structure for list of boxes of a flowchart.
Keeps the id, type, coordinates, pins, textual information, and box
pointers of a flowchart’s boxes in a list (Figure 4.3).

struct box
{ int box_id;

char box.type;
char *code_ptr;
struct pins *box_pins;
struct coords *box_coord;
struct btext *box_text;
struct box *connect_to[2];
struct coords *arc[2];
struct box *connect_back[3];
struct box *next;
struct box ^previous;

• A structure for textual information of a box.
Keeps the starting coordinate for text in a box, length of box to fit the
text in it, and text string itself for the box (Figure 4.4).

43

box

box 1

box 2

box 1

box 2

box 3

box

box

Figure 4.3: Box structure.

44

btext
X coord for beginning location of text

y coord for beginning location of text

line length for text fittin g
inside the box string

pointer to text for the box n _______________ 1

Figure 4.4: Text structure.

struct btext
{ int x;

int y;
int line_len;
char *text.entered;

} ;

• first-box.
Keeps the address of the first created box for the fiowchart (Figure
4.0-a).

struct box *first_box;

• last-box.
Keeps the address of the last created box (Figure 4.5-b).

struct box *last_box;

• current-box.
Keeps the address of the currently selected box to operate on (Figure
4.5-c).

struct box *current_box;

• A structure for list of sub-flowcharts of a flowchart.
Keeps the information about the name, its caller’s name, and box point­
ers of sub-flowcharts in an array (Figure 4.6).

struct proc_list_type
{

45

fir s t box

pointer to box box

last box

pointer to box box

current box

pointer to box box

Figure 4.5: Box pointers.

char *proc_neime;
char ^belonging;
struct box *current_box;
struct box *first_box;
struct box *last_box;

} proc.list [10];

• A structure for stacking owner flowcharts during creation/editing of
sub-flowcharts.
Keeps the name of sub-flowchart and its owner -main/calling one-, and
pointer to the boxes of the main flowchart (Figure 4.7).

struct proc_stack_type

char *proc_naime;
struct box »current_box;
struct box *first_box;
struct box »last_box;
char »return.to;

)· proc_stack [10] ;

4.2 Basic Routines Used for Implementation

• Default-draw-box routine

For each kind of flowchart box, one specific ’default-draw-box’ routine
exists in the program. These routines are activated when placing a box

46

sub-flowchart 0

sub-flowchart 1

sub-flowchart 9

prcx:_list
pointer to name of
the sub-flowchart

pointer to name of
the main flowchart

pointer to current box
of sub-flowchart

pointer to firs t box
of sub-flowchart

pointer to last box
of sub-flowchart

string

string

Figure 4.6: Array of sub-flowcharts

stack-location 0

stack-location 1

proc-stack
jpointer to name of
the sub-flowchart

pointer to current box
of main flowchart

pointer to first box
of main flowchart

pointer to last box
of main flowchart

pointer to name of
main flowchart

- r
string

string

stack location 9

Figure 4.7: Flowchart stack.

47

onto drawing area. The routine for the chosen box type then allocates
a ’box’ structure, fills in the appropriate fields of the box such as id,
type, pointer to previously created box, some textual information as
location, length of one line of text, then nullifies the empty pointers.
The figure of the box is drawn by this routine with its predefined size
and pin location information at the cursor position. At the same time,
locational information for the box structure is filled in by allocating the
necessary structures. Then follows the execution of text edit routine to
fill in the textual information field of the box structure.

• Text-edit/Write-to-box routines

’Text-edit’ routine displays a text window for the user to type in the
textual information for a box or to edit existing text. After text editing
is completed, ’write-to-box’ routine is called to display the text inside
the box on the drawing area by fitting the text string to the box size.
The text is divided into lines each line fitting to the borders of the figure
of the box. The text string is also inserted to a structure pointed by
the textual information field of the box structure.

• Select-box routine

Purpose of this routine is the identification of a particular box on the
flowchart, pointed by the mouse. When select operation is chosen from
the menu and mouse button is clicked near the pins of a box, ’select-
box’ routine is activated. It searches through the list of boxes beginning
from the first box to the last box to catch the box, where one of the
pin coordinates of it is the closest to the cursor position. A half cm
threshold length is applied when comparing the distance between the
box pins and the mouse position. If one is found, that box is selected as
the current box and its nearest pin is identified. The box is emphasized
by highlighting the pins of the box. If no such box is found close as the
threshold distance, then previous current box does not change.

• Move-box routine

This routine becomes active in a coordinated way with ’canvas- event-
procedure’ after ’move’ item from the menu is chosen. By pressing left
mouse button near a box, ’select-box’ routine is called to identify the
box to be moved. While left button is down, according to the movement
of the mouse, through canvas- event-procedure, the coordinate values
of the box are changed clearing the old figure and redrawing it at the
new location at the same time . Therefore the figure is perceived by
the user as if it is moving.

48

• Enlarge/Shrink routines

Before scaling the size of a box, first a box must be selected by ’select’
menu item. Choosing ’scale’ menu item creates a window containing
two sliders, one for enlarging, other for shrinking of boxes. When the
enlarge slider is activated, it calls ’enlaxge-routine’ to get the value of the
slider. ’Shrink-routine’ is activated alike by shrink slider. Slider values
are used for the percentage enlarging/shrinkingof the box. Then x and
y offset values from old coordinates to new coordinates are calculated.
Coordinate values of the box and its pins are updated according to x
and y offsets, then old figure is erased, and redrawn with the new size.

• Canvas-event-procedure

’Canvas-event-procedure’ controls whole operations occurring inside the
drawing area and follows the behaviour of the mouse. Events generated
by mouse buttons and mouse movement are all processed in this routine.
All of the operations requiring coordinates of the cursor are processed
here, such as default-draw-box, move, select, arc-draw/arc-delete oper­
ations.

• Arc-draw/arrow routines

Activation of these routines comes into action when an arc will be
drawn or deleted on the flowchart. Creation and deletion of arcs are
controlled by ’canvas-event-proc’ . When creating an arc, first pressing
the left button near a box, the closest non active -unused- pin of the
nearest box is marked as the beginning pin of the arc. An arc is drawn
from the beginning pin to the point where the mouse is pointing at, as
the mouse moves. Releasing the button puts the arc permanently, the
coordinates of the arc are recorded into a coordinate list pointed by the
arc[] field of the box structure for that nearest box. Pressing the left
button continues the arc path from the last position where it left to
the current position of the mouse as the mouse moves. Releasing the
button adds the coordinate of the arc to the list pointed by arc[]. After
repeating these steps , pressing the middle button selects the ending pin
for attaching the path to the connection box. If ending pin is already
active, then the path is cleared, otherwise arc path is connected to
ending pin and its activation flag is set together with that of starting
pin. An arrow tip is drawn at the ending pin in the direction of the arc
using ’arrow’ routine.

Deletion of an arc is provided again first selecting the nearest pin as
a beginning pin for an arc by ’select-box’ routine. Then the arc is

49

removed from the screen and from the box structure where it is kept
in a list pointed by arc[] field. Beginning and ending pins are made
inactive and axrow tip at the ending pin is removed.

• Procedure-body-On/Procedure-body-Off routines

’Procedure-body-On’ routine is used for generation of sub- flowcharts
of a flowchart. It is activated from the menu and the name of the
sub-flowchart is asked from the user. To generate a sub-flowchart for a
flowchart, first-box, last-box, and current-box pointers -which provide
access to the list of boxes- of the main flowchart are pushed onto the
’proc-stack’ with the names of the sub-flowchart and main flowchart.
After that, drawing area is cleared and initialized to generate the sub­
flowchart -its name is displayed near the ’Procedure name message.
After completion of the sub-flowchart, activation of ’procedure-body-
OfF’ routine returns back to the main flowchart. If the sub-flowchart is
not empty, that is, contains some boxes, it is added to the ’proc-list’
array recording its name, pointers to its first/last/current boxes, and
name of the calling flowchart. If the sub-flowchart is empty, it is not
recorded to be used for sub-flowchart editing and code generation in
the ’proc-list’ array, so, simply deleted. The drawing area is cleared
and the main flowchart that it belongs is loaded onto the drawing area
from the ’proc-stack’ by popping the stack, and displayed being ready
for editing at the state where it is left.

• Code-generate-On/Code-display routines

’Code-generate-On’ routine generates the Pascal code for the flowchart
by selection from the menu. Code-generate-On routine, first, requests a
file name from the user to write the generated Pascal statements on. For
each box in the flowchart one or more Pascal statements are generated.
For example, output box generates a ’writeln’ statement, start box
generates statements for ’program heading’, ’declaration’ sentences, and
a ’begin’ . Also some of the boxes are grouped into one Pascal statement
such as decision box and a dummy box with different connections to
other boxes generate if-then-else/while- do/repeat-until statements.

The corresponding PasceJ statements of each box is appended to their
box structures at the time of first anгdysis of the flowchart during code
generation described above. This first pass over the flowchart produces
and prepares the Pascal statements to write to a disk file. In order to
complete the code generation phase, the second pass over the flowchart
picks the statement(s) for each box from box structures and combine

50

them in the file named by the user at the beginning.

At the time of code generation for a flowchart, sub-flowcharts corre­
spond to Pascal ’Procedures’. All sub-flowcharts are processed after
start box of the main flowchart generating ’Procedures’ , since proce­
dures are written before the main body in Pascal.

After completion of the code generation for all sub-flowcharts and main
flowchart, the Pascal code is displayed to the user from a window by
using ’Code-display’ routine. This routine reads the Pascal statements
line by line from the file and prints them on a canvas inside the display
window, just created. It displays only a portion of the code fitting to
the canvas size. ’Down routine’ activated by the ’down’ button of the
window displays next canvas-size portion of the code and ’up’ button
displays previous canvas-size portion by ’up routine’ , if so many lines
of the code exist.

Before displaying the Pascal code, it is processed through a Pascal
beautifier of the Unix named ’pxb’ , to make the code more clear and
understandable.

• Execute-code routine

As its execution will be described in more detail in the next section, the
Pascal code will be executed stepwise, each step corresponding to one
box of the flowchart. At each step the values of the simple variables
will be printed and the executing flowchart box will be highlighted.

For the execution phase, Pascal source code is converted to object code
by calling the Pascal compiler ’pc’ of the system inside ’execute-code’
routine. Execution of the Pascal object code simultaneously with the
executing tool itself is performed by a system call to the Pascal object
code to execute it in background. During the stepwise execution of the
code communication between the tool and the Pascal code is provided
by message passing over a temporary file.

During the compilation of Pascal source code, if Pascal compiler gener­
ates some errors resulting from the user’s incorrect flowchart design or
syntax of the text strings inside the boxes, execution of the tool contin­
ues by displaying the error messages at the display window by calling
’code-display’ routine for the error file containing error messages of the
compiler. •

• Flowchart-save/flowchart-load routines

51

These two routines used for putting/getting the flowcharts prepared
to/from the disk for using them later.

’Flowchart-save’ routine saves the values of the flelds of all box struc­
tures in the box structure list of the flowchart, orderly, and those of the
sub-flowcharts recorded in the ’proc- list’ array of sub-flowcharts.

While writing pointer values of boxes, box-ids of the boxes that are
pointed to are recorded instead of addresses. For some fields of the
boxes containing a list of elements, such as list of coordinates, each
element is written in order and terminated by a delimiter to identify
the end of the list.

’Flowchart load’ routine reads the data on the disk for a flowchart in
the order it is written. While reading the data, it allocates the box
structures and structures for their fields and fills in them with these
data values, just read. Since pointer fields for box structures are read
as boxJds, they are replaced by box addresses by searching through the
box jd s in the box list and writing the addresses found for the boxJds
instead. All sub- flowcharts are read in the same way and recorded to
’proc-list’ , array.

4.3 Low Level Operation Of The Tool

How the generation and the execution of Pascal code happens is slightly dif­
ferent than a user perceives it. When the Pascal code is generated for a
flowchart, the user sees a pure Pascal program displayed in the display win­
dow corresponding to the flowchart on the drawing area. When this code is
executed, the user follows the execution steps from the flowchart. But, in
fact, the executing code is not the pure Pascal code that the user sees at the
display window, but another one having the additional facilities to commu­
nicate with the executing tool. While code generation phase is working, two
Pascal source files are generated, one for the pure Pascal code to display, an­
other conteiining some additional transparent code for each Pascal statement.
This transparent code before each statement -when executed- provides the
communication between the tool and the executing Pascal code to highlight
the flowchart boxes corresponding to each executing Pascal statement.

52

4.3.1 Code Generation in Low Level

In code generation phase two Pascal files are created first, one for ’pure code’ ,
the other for ’transparent code’ . Through the ’code generate On’ routine, the
flowchart is analyzed and during the analysis for each box of the flowchart a
set of Pascal statements are placed to the box structures of boxes. When the
analysis is completed, code for each box is written to two files, but, for the
transparent code file some additional Pascal code is also appended.

For the ’start box’ , declaration of an External C routine is added to the
transparent code, that is, procedure ’talk_to_parent (int_adr dnteger);’ . This
is the C routine linked to the Pascal code during compilation time. This
routine provides the communication of the executing Pascal program with
the tool. As will be described below, this routine is to be called with an
integer parameter which is the box address in a flowchart to be highlighted.

For each executable Pascal statement written to the pure code file and
transparent codefile, em additional statement ’talk-to-parent (<box address>);’
is written to transparent code file. This is the call to that C routine with
a parameter being the box address of the box that generates that Pascal
statement.

Also another statement for transparent code file is appended to print the
values of simple variables in the flowchart, that is, ’writeln (’* simple vars
*’ , <list of simple variables>);’ . For main flowchart only simple variables in
the main flowchart, and for sub-flowcharts only local variables are processed.
Therefore, execution of this transparent code will display the values for the
variables in the executing flowchart.

4.3.2 Code Execution in Low Level

Code execution is provided by the ’execute-code’ routine. In this routine
Pascal object code for the transparent Pascal source file is generated by Unix
system call to the Pascal compiler ’pc’ , and the object code generated is
executed by a system call to the name of the object.

During the code execution phase, two processes execute simultaneously;
the tool itself being the parent process in fore-ground, and the ’transpar­
ent Pascal object’ being the child process executing in back-ground. At this
moment the tool displays the flowchart/sub-flowchart highlighting its boxes,

53

Figure 4.8: Low Level Operation of the Tool.

identified by the simultaneously executing Pascal code. Communication be­
tween the two processes for passing the address of the box from child to parent
is provided over a temporary file ’talk.dat’ . Child process writes the box id to
’talk.dat’ file by executing a call to ’talk_to_parent’ routine for highlighting.
Parent process reads the boxdd from ’talk.dat’ and highlights that box on
the flowchart (Figure 4.8). These statements as mentioned, are appended to
transparent code file during code generation and boxid is the parameter of
’talk-to-parent’ routine specifying the boxes. The routine simply does the
following:

back :
I f ’ ta lk .d a t ’ f i l e does not ex ist then

54

else

{ create ’talk.dat’ file
write box_id coming as the parajneter to ’talk.dat’
/* box.id is the address of the box corresponding

to the Pascal statement to be executed */
}
{ wait a little

go back.
}

The parent process communicates with the Pascal code by reading that
box id to be highlighted as follows :

back :
If ’talk.dat’ exist AND box id inside exists then

{ read box id for highlighting
highlight the box on the flowchart
remove the ’talk.dat’ from the disk
go back

}
else { wait a little

go back
}

Note that at the beginning of code execution phase ’talk.dat’ file does not
exist in the system.

4.4 Unimplemented Features

• An ’UNDO’ facility for the tool does not exist during its execution. It
is not implemented, because the user can ’undo’ any operation him­
self through the operations presented in the tool. For example, draw
box/delete box, draw arc/delete arc, edit text operations etc.

• No syntax-directed check for flowchart boxes are made during the con­
struction of flowcharts. Incorrect text strings for boxes generates syntat-
ically incorrect Pascal statements and these errors are reported by the
Pascal compiler, during the code execution phase to inform the user.

55

• No semantic check for the complete flowcharts are made before the
code generation phase. Pascal beautifier reports the errors for incor­
rect/incomplete flowcharts during the code generation phase to inform
the user.

56

5. CONCLUSION

Graphical programming has many advantages over conventional program­
ming with text. Programming through pictures is much more natural and
thus very easy to learn. Graphics systems provide an environment which is
much more comfortable and user friendly for program development and thus
can increase user productivity.

Our tool for teaching programming is an example of systems which are
based on conventional programming languages and is written on top of the
Pascal language. It requires the user to represent his problem in the form
of a flowchart to generate the corresponding Pascal code. Execution of the
code is also visualized from the flowchart step by step, showing the values for
variables involved in the flowchart.

Thus the tool presents the control flow of a program by means of flowcharts.
It creates an environment for the user to gain programming logic, and rela­
tions between the control structures of the flowchart and Pascal language,
also to visualize the program execution steps graphically.

Since the tool implements flowcharts as the graphical representation of
programs, it carries all the advantages and disadvantages brought into action
by use of flowcharts. First difficulty comes from the fact that a flowchart
could not represent all the constructs of a structured programming language.
For example, different sorts of iteration/loop/selection mechanisms of a struc­
tured language might only be represented by a decision symbol with different
connection methods to other symbols, sometimes causing semantically incor­
rect flowcharts. For our system the reason for the choice of an unstructured
tool to represent a structured environment is that, flowcharts are very fa­
miliar charts and are used almost by every one since the first apperance of
assembly and high level programming languages.

For the future work, the design of a powerful graphical tool satisfying the

57

requirements of structured programming languages and use in programming
environments may be worth studying. In this way semantic errors coming
from the graphical representation of program steps can be removed totally,
since every construct of a language is represented by a unique symbol. The
second issue might be the application of a syntax directed editor for textual
parts of such a tool during text entry to reduce translation errors coming
from the code generation phase.

Also by the invention of new graphical tools for structured languages,
two-fold editing of both graphical part and program code would be possible.
In such a case, modification of graphical part, lets the program code to be
modified automatically (as in our tool), and also editing of the source code
changes the graphical part automatically. This new approach might also
allow development of special purpose debugging tools for such a graphical
environment.

Although our tool and many other systems implement programming with
the graphical aids much work still needs to be done in this field. A lot of
work, for example, still needs to be done in the area of representations of
data types and data structures graphically. Computer programs are complex
and abstract objects, and determining what form pictures with a minimal
text representing them should take, is a complex task.

58

A. USER’S M ANUAL

A .l Generation of a Flowchart

A . 1.1 Creating a New Flowchart

All the symbols and operations for flowchart creation are provided through
a flowchart menu. It is displayed on the screen by a pressing the left mouse
button from the border of the flowchart window or pressing the right button
inside the drawing area of the flowchart window. The steps to go through for
generation of a flowchart are box selection, box placement, filling the boxes
in with textual information, and connection of boxes by arcs. Then follows
the further editing/saving/loading operations for the flowchart, if necessary. •

• Picking and placing boxes

Flowchart boxes are picked from the flowchart menu by pointing with
the mouse. Depressing the right mouse button inside the drawing area,
causes the flowchart menu to appear. Release of the button on one of
the boxes selects that symbol to be placed on the screen. Clicking the
left button inside the flowchart window places the selected box to the
location where the mouse is pointing to (Figure A.l).

• Filling in the boxes

As soon as a box is placed on the drawing area, a small text entry
window appears on the screen, waiting for the user to All in textual
data of the box. When the text is typed into the window, clicking the
’OK’ button residing on top of the text entry window causes that text
to be written line by line within the boundary of the current symbol.
Text window then disappears (Figure A.2).

59

 ̂ [Dunp~) Procadura name : main

Hint : Draw the box by LEFT button click Inside canvas

I

o

delete
box

load

'lowcharl

❖

o
delete
arc

display
code
0rt/0<f

a

o

jroceduri

body

1Í

o

scale

execute

code

O

clear
all

re
display

all

I
text
edit

save
Flowchart

Figure A.l: Picking and placing boxes.

60

mainf Cj'ulF) [Dump) Procedure

[Hint : Draw the box by LEFT button click Inside canvas

roin
start

Figure A.2: Filling in the boxes.

61

❖
o
delete
arc

d1splay
coda
on/off

C:i

o

body

I
o

o

o
scale

execute
code

clear
all

re
d1splay

all

Figure A.3: Connection of boxes.

► Connection of boxes

Connection of flowchart boxes placed on the screen first requires the
selection of arc symbol from the flowchart menu. Pressing the left mouse
button near to a box selects the nearest pin of the box as the beginning
pin of the arc in drawing area. As the mouse is moved on the drawing
area, a horizontal or vertical path is drawn from the beginning pin to
the cursor position dynamically. Releasing the button places the path
to the drawing area permanently. After that, pressing the left button
continues drawing the path from where it is left. Afterwards, clicking
the middle button near a box causes the nearest pin to be the ending
pin of the arc, and an arrow tip appears at the ending pin indicating the
flow direction. An arc is drawn horizontally, if the movement of mouse
in X direction is larger than that in y direction. It is drawn vertically,
if vice versa. Since only horizontal and vertical arcs are possible, these
arcs are called to be Manhattan (Figure A.3).

text
edit

save
lowchan

SELECT

62

Once we want to create a new flowchart or continue to work on a previ­
ously created one, a need for the operations to change some parts also arises.
These operations should facilitate the identiflcation of a box to operate on,
sizing/movement/text editing/box deletion operations defined on the selected
box, and arc deletion operation. No explicit insertion is required, since the
tool always works in insertion mode.

• Selecting a box

Identification -selection- of a box on the drawing area is made possi­
ble by the ’SELECT’ item from the flowchart menu. After choosing
’SELECT’ item, clicking the left mouse button near the pins of a box
selects the box to operate on and the box is highlighted. If there are
nearby boxes, once the button is clicked the box having the nearest pin
to the cursor position is selected.

• Deleting arcs

After choosing ’delete arc’ item from the flowchart menu, clicking the
left button near the beginning pin of an arc deletes the arc.

• Deleting a box

In order to delete a box from a flowchart together with its textual infor­
mation, all the arcs beginning or ending at that box must be removed
first. Next, the box to be deleted must be identified by ’SELECT’ oper­
ation. Now, the box can be removed from the drawing area immediately
by choosing the ’delete box’ item from the menu.

• Moving a box

In order to move a box from its current position to another location,
first, ’move box’ item must be chosen from the flowchart menu. Af­
ter that, as in the ’SELECT’ operation pressing the left mouse button
near one of its pins selects the box to be moved, and moving the mouse
while the button is down moves the box with its text by the moving
cursor. Releasing the button places the box permanently to that po­
sition. While moving the box, arcs attached to it changes according
to position of the box, causing the vertical and horizontal arcs being
damaged and inclined. This arcs can be made Manhattan (horizontal
and vertical, only) by deleting those arcs and redrawing (Figure A.4).

A .1.2 Editing a Flowchart

63

Figure A.4: Moving a box.

64

• Scaling a box

Size of the boxes can be changed by choosing the ’scale’ item from the
flowchart menu, after ’SELECT’ing a box to be scaled. Then, imme­
diately appears a scale window containing two sliders for percentage
enlargement and percentage shrinking. Sliders are activated by mov­
ing the mouse over them, while the left mouse button is down. As
soon as the button is released, the size of the box changes according to
percentage of slider values (Figure A.5).

• Changing the text within a box

In order to edit the textual information contained in a box, first the
box must be ’SELECT’ed. Then choosing ’text edit’ item of the menu,
a text entry window appears containing the textual information of the
box -if full-, or empty -if no text-. The characters can be deleted and
new ones can be added inside the text entry window. When ’OK’ button
of the window is clicked, edited text in the text entry window will go

65

into the box and fit its borders.

A. 1.3 Redisplaying a Flowchart

Clicking the left mouse button on the ’redisplay all’ item of the menu first
clears the drawing area and the whole flowchart is immediately redisplayed,
i.e., drawing area is refreshed.

A .1.4 Saving a Flowchart to a File on the Disk

While drawing and editing a flowchart or when one is finished, it can be saved
onto a disk file together with its sub-flowcharts to be used later.

• Entering a file name to store the flowchart

When the ’save flowchart’ item is selected to store a flowchart on the
disk, a text entry window will appear immediately asking file name for
saving the flowchart. After typing in the file name and clicking the
’OK’ button on the text entry window, the flowchart on the drawing
area and its sub-flowcharts are written to disk with the file name just
read. If the file name already exists , it is overwritten. The work on
the flowchart residing on the drawing area can still continue.

A .1.5 Loading a Flowchart from a File on the Disk

A previously saved flowchart with its sub-flowcharts can be loaded from disk
to operate on, if recjuired. •

• Entering a file name to get the previously saved flowchart from disk

After ’load flowchart’ item of the menu is activated, a text entry window
is displayed asking a file name to get the previously saved flowchart from
disk. When the file name is entered and ’OK’ button is pressed, the
existing flowcheirt on the drawing area is cleared, and the new flowchart
from the disk is displayed there -if exist-. If no such file exists, the
operations can continue on the existing flowchart.

66

A flowchart residing in the drawing area can be removed totally with its
related sub-flowcharts by ’clear all’ menu item. The drawing area is cleared,
but it is not deleted from the disk, if saved before.

A . 1.6 Erasing a Flowchart from the Screen

A .2 Code Generation

When it is finished with the flowchart, its corresponding Pascal source code
can be generated/displayed/printed.

A .2.1 Creating the Flowchart for Main Body of a Pro­
gram

When the tool starts running or a flowchart is loaded from the disk, it is ini­
tially ready to display the main body of the program that it is symbolizing.
The name of the current flowchart -for initial case main flowchart, named
’main’- is displayed near ’procedure name:’ message. If the main body con­
tains no references to any sub-flowcharts, i.e. no ’call subroutine’ box exists,
it is finished and the corresponding Pascal code can be generated (Figure
A.6).

A .2.2 Creating Flowcharts for Subprograms of a Pro­
gram

If the main body would reference -call- some sub-routines -indicated by ’call
subroutine’ box-, their flowcharts should be created by choosing ’proc body
On’ menu item. With ’proc body On’, a text entry window immediately
appears asking the name of the sub-flowchart. When name entry for the sub­
flowchart is completed by pressing ’OK’ button, the drawing area is cleared
to create the sub-flowchart or it displays its existing flowchart when one is
already created before. If this sub-flowchart also has some references to sub­
subroutines, the same procedure applies again. For going up to one step, to
the flowchart of calling routine -main- after completing the sub-flowchart, the
’proc body Off’ item of the menu should be chosen (Figure A.7).

67

FLOWCHART 1
f QuiT^ [Pimp ̂ Procedure name : main

: z _]
Hint : Click LEFT button near the starting pin of the arc

...M

a(1)

T
^

delete
box

load

Ploecharl

o
o
delete
arc

d1splay
code
on/off

o

II

o

scale

Off

o
clear
all

re
d1splay

all

C±3

text
edit

save
Floecharl

SELECT

Figure A.6: Main flowchart.

68

f l o w c h a r t
(Qu1~t~) f Dump] Procedure name : a

Hint : Draw the flowchart for PROCEDURE body.

3

(W ^

c n
r̂eturn ^

0 - ❖
«

--1-- O

delate delete
box arc

load d1splay

flowchart code
on/off

C P

o

1Î
o

6ca1a

o
clear
all

re
display

all

CÎD

text
edi t

save
flowchart

SELECT

Figure A.7: Sub-flowchart.

69·

If a routine has a sub-subroutine and that sub-subroutine also has its
sub-sub-subroutine, each deeper one is created by going down through ’proc
body On’ item and drawing the flowchart of the routine. After the deepest
routine, going back to the first calling routine is provided by clicking ’pi'oc
body Off’ item that manj- times of ’Proc body On’ . That is;

-main begin
-prod begin

proc2 begin
-proc3 begin
I

-end proc3.

-end proc2.

-end prod.

-end main.

If one routine has multiple sub-routines, however, first create one of them
by ’proc body On’, then return back to itself by ’proc bodj' ̂Off’ , then generate
next subroutine by ’proc body On’ and go back by ’proc body Off"’ , and so
on. That is;

-main begin
-prod begin
I
I
-end p r o d .
-proc2 begin
I
I
-end proc2.
-proc3 begin

70

-end proc

-end main.

Each time the name of the working flowchart/sub-flowchart is displayed
on the top of the drawing area near the ’Procedure name:’ message.

A .2.3 Generating the Pascal Code Corresponding to a
Flowchart

The activation of ’display code On’ item starts a series of operations to gen­
erate and display the Pascal source code corresponding to the flowchart on
the drawing area (Figure A.8). These operations are giving a file name to
write the Pascal source code, declaring the data types of the flowchart and
sub- flowcharts, displajdng the code etc. •

• Entering a file name to write the Pascal source code on the disk

After code generation is started, a text entry window appears to get
the file name for writing the Pascal source code of the flowchart. Text
entry is completed by clicking on the ’OK’ button (Figure A.9).

• Declaring data types in the main body of the flowchart

After the previous step, the declaration window immediately appears to
get the types of the variables used in the main flowchart. Declaration
is completed by clicking the ’OK’ button on the declaration window
(Figure A .10).

• Declaring data types in the sub-flowcharts

For eacli sub-flowchart, the tool asks for the declaration of its variables
in the same way above. While the variables of each subroutine are being
declared, the corresponding sub-flowchar’t is displayed at the same time
with its name appearing near the ’Procedure name:’ message (Figure
A.11, A .12).

71

FLOWCHART

Figure A.8: Generating the Pascal code.

72

Figure A.9: A file name for the Pascal source code.

73

Figure A. 10: Declaring data types in the main body.

74

 ̂Qu'Tr) (Procedure name : main

Hint : WAIT ... until the Pascal code appears I

CD

DECLARE
f OK ̂Proc name: main

const :
type :
char :
int : i▲
real :
others :

Figure A. 11: Declaring data types in the main body.

75

[Qui t) [Dump) Procedure name : a

lears I
[Proc name: a

const : ^
type :
char :
Int :
real :
others :

c n

X
/̂return ^

Figure A. 12: Declaring data types of the sub-flowchart of the previous figure.

76

• Generating the code

Completion of declarations starts generation of Pascal code and writes
the Pascal statements corresponding to the flowchart on a disk file name
of which was just read.

• Displaying the Pascal source code on a display window page by page

After the source code is written to disk, a code display window appears
to display Pascal source code of the flowchart. If the code is too long
it can be scrolled up and down through the use of ’UP’ and ’DOWN’
buttons of the code display window (Figure A.13-a,b).

• Printing the Pascal source code from the printer

If wanted by the user, listing of the source Pascal code can be printed
from the matrix printer connected to the system by activating ’PRINT’
button.

• Removing the code display window

Once the code is generated and displayed in the code display window,
the window can be destroyed in two ways. If the ’code generate Off’
item is used from the flowchart menu, the code display window is per­
manently destroyed and next selection of the ’code display On’ item
causes the Pascal code of the flowchart to be generated from the begin­
ning again. However, by the use of ’QUIT’ button of the code display
window, only the window will disappear temporarily. When the ’code
generate On’ item is used, the window will appear again and the Pascal
code previously generated will be displayed. Therefore, the code will
not be generated again, reducing manual operations like declarations
and consume user’s time.

A.3 Execution of the Pascal Code for a Flowchart

Through the selection of the ’execute code’ item of the flowchart menu, the
Pascal source code corresponding to the flowchart on the drawing area will
start to execute step by step under the user control, highlighting the flowchart
box corresponding to the executing Pascal statement, and displaying the
values of simple variables for each executing routine. When a subroutine
is called during the execution , calling flowchart disappears and the sub-

77

FLOWCHART
' Quit") [Dump) Procedure name : main

Hint : WAIT ... until the Pascal code appears I PASCAL CODE
|fw n prowT) rPP~~l fTOiNTi

progra· «a1n(1nput, output);
var

1; Integer;
begin

for 1 ; - 1 to H do begin
writeln<'i-', i)

end
end.

Figure A. 13: Displaying the Pascal source code.

78

FLOWCHART
(Qu'i~r) [Dump^ Procedure name : main

Hint : WAIT ... until the Pascal code appears I PASCAL CODE

(i>

delete
box

load
floycharl

o
o
delete
arc

display
code
en/off

l :^

o

procedure

body

I QLlTH r~uPn [PRINt)
progra· iaa1n(1nput, output);
van

cnt: Integer;
begin

cnt ; ■ 1;
whi1e cnt < 4 do begin

If cnt > 0 then begin
ur1teln<l / cnt);
cnt :· cnt ♦ 1

end else begin
end

end.

____— ig...
wrlteln('error')
end;
writeln(cnt)

it
scale

O

clear
all

re
display

all

text
edit

save
Flowchart

SELECT

Figure A. 14: Execution of the code.

flowchart appears while execution continues over it. Returning from the sub­
flowchart causes the calling program to be redisplayed and continue execution
(Figure A.14).

When the ’execute code’ item is activated, if Pascal source code to be
executed contains some compilation time errors, code execution does not
start. Instead, in a display window, error messages of the Pascal compiler is
displayed to the user to give some references to Pascal source code. According
to the messages, it is required by the user to correct syntax/semantics errors
of the flowchart, and redo the whole operation again (Figure A.15-a,b).

A .3.1 Stepwise Execution of the Code

After the execution of the code starts from the first box -start box-, a small
window containing a ’STEP’ button appears and execution suspends waiting

79

80

simple vans * cnt-
simple vars * cnt-

Figure A.16; ’STEP’ping.

the user to click on the ’STEP’ button to continue execution at the next
flowchart box. Each executing box waits for ’STEP’ping, and operation works
in the same way until the last flowchart box -stop box- is encountered. Thus,
the flowchart and its sub-flowcharts are traced through their bo.xes step by
step under the user control (Figure A.16, A .17, A .18, A.19).

A .3.2 At Each Step Highlighting the Corresponding
Flowchart Box

While stepping through the symbols of the flowchart, each executing flowchart
box is highlighted to show execution steps. During the subroutine calls, the
sub-flowchart is displayed and execution continuous over it until a return to
the calling routine is reached. When execution comes to the last symbol -stop
box-, ’STEP’ping the last box completes the execution of the code.

81

* simple vars * cnt-
3.33333333333333e-01
* simple vans * cnt-
* simple vars * cnt-

4

Figure A.17: End of ’STEP’ping while printing values of simple variables.

82

FLOWCHART
Procedura nama : main

... until 'STEP' window appaars to run stapwlsa.
(QUiT] [bOWN) (UP)
progra· «aln(input, output);
var

1: integer;

Eroccdure a(J: integer);
egin

writelnOf J)end; { a)■
begin

1 : - 1;4(1);writeln(i)
end.

Figure A. 18: ’STEP’ping in a main flowchart.

83

'Fl owchart
p̂ lu it] [bump j Procedure name ; a

.Hint : WAIT... until 'STEP* window appears to run stepwise. PASCAL CODE

RUN PASC

[Quit) [1)ÖWN] () [^f^lNTj

progpa· ■â1n(1nput, output);
var

1: Integer;

Erocedure a(j; Integer);
eg1n

wrltelnd, J)
end; { a T

begin
1 ; - 1 ;
a(1) ;wrlteln(l)

end.

^return ^

= J

1 -® vars I-
^ vars * 1-
® vars * 1-

1 1

Figure A. 19: ’STEP’ping in a sub-flowchart.

84

A .3.3 At Each Step Displaying the Values of Simple
Variables of the Currently Executing Routine

While stepping through the boxes of the flowchart, at each step the values
of simple variables of the executing routine are displayed to the user. These
are the ’char’ , ’integer’, and ’real’ type variables.

A .4 Leaving the Tool

After it is finished with the tool, the user can leave it by clicking the left
mouse button on the ’QUIT’ button over the drawing area.

A .5 Miscellaneous

There exists some help tools and additional facilities of the tool, besides those
listed above (Figure 3.1). •

• HINT

For each item chosen from the menu, a help message describing what
to do next for correct action guiding the user, appears on top of the
drawing area.

• Procedure Name

During flowchart creation/editing/codegeneration/code execution phases,
the name of the working flowchart/sub-flowchart whose chart appears
on the screen is placed near the ’Procedure name:’ message on top of
the drawing area.

• DUMP

The ’DUMP’ button dumps the image of the whole screen to a disk file
in a specific format for a laser printer output.

• SCROLLABLE drawing area

The drawing area of the tool is not restricted by the screen or window
size and can be scrolled left/right and up/down through the scrollbars
attached to left and upper sides of the frame surrounding the drawing

S5

area. The scrollbars are activated by the buttons of the mouse to scroll
the drawing area.

86

REFERENCES

[1] Lodding, Kenneth N. Iconic Interfacing. IEEE CG&A, March/April,
11-20(1983).

[2] Sibert, John L., Hurley, William D., Bleser, Teresa W. An Object Ori­
ented User Interface Management System. ACM Siggraph ’86 20(4), 259-
268(Aug 18-22).

[3] Newman, William N., Sproull, Robert F. Principles o f Interactive
C om puter Graphics. McGraw-Hill, Tokyo(1981).

[4] Özgüç, Bülent H. Thoughts On User Interface Design For Multiwindow
Environment. Second International Symposium on Computer and Infor­
mation Sciences, Istanbul. 477-488(1987).

[5] Sun Microsystems Inc. SunView^^ Program m er’s Guide. (1982-86).

[6] Banerjee, Jay., Chou, Hong-Tar., Garza, Jorge F., Kim, Won., Woelk,
Darrel., Ballou, Nat., Kim, Hyoung-Joo. Data Model Issues for Object
Oriented Applications. MCC Technical Report. (November 12, 1986).

[7] Wisskirchen, Peter. Towards Object Oriented Graphics Standards. Corn-
put. & Graphics 10(2), 183-187(1986).

[8] Sun Microsystems, Inc. Sun-3 Architecture. A Sun Technical Report.
(1985-86).

[9] Tassel, Dennie Van. Program Style, Design, Efficiency, D ebug­
ging, and Testing. Prentice-Hall, Inc., Englewood Cliffs(1978).

[10] Densmore, Owen M., Rosenthal, David S. H. A User-Interface Toolkit
in Object Oriented POSTSCRIPT, Computer Graphics Forum 6, 171-
180(1987).

[11] Diederich, J., Milton, J. Experimental Prototyping in Smalltalk, IEEE
SOFTWARE, 50-64(May 1987).

87

[12] Tesler, L. The Smalltalk Environment, Byte, 90-147(Aug 1981).

[13] Goldberg, A., Robson, D. SmaIltalk-80: The Language and Its
Implementation. Addison- Wesley, Reading, Massachusets(1983).

[14] Reader, G. A survey of Current Graphical Programming techniques,
Computer 18(8), ll-25(Aug. 1985).

[15] ZlofF, M. M. Classification of visual programming languages, IEEE Com­
puter Society Workshop on Visual Languages, 232-235(1984).

[16] Glinert, E. P. Towards ’Second Generation’ Interactive Graphical Pro­
gramming Environments, IEEE Workshop on Visual Languages 61-
70(1986).

[17] Reiss S. P. PECAN: Program Development Systems that Support Multi­
ple Views, IEEE Transactions on Software Environments SE-11(3), 276-
285(Mar. 1985).

[18] Catteneo, G., Guercio, A., Levialdi, S., Tortora, G., IconLisp: An exam­
ple of a Visual Programming Language, IEEE Computer Society Work­
shop on Visual Languges, 22-25(1986).

[19] Glinert, S. P., Tanimoto, S. L., PICT: An Interactive Graphical Pro­
gramming Environment, Computer 17(11), 7-25(Nov. 1984).

[20] Yoshimoto, L, Monden, N., Hirakawa, M., Tanaka, M., Ichikawa, T.
Interactive Iconic Programming Facility in Hi- Visual, IEEE Computer
Society Workshop on Visual Languages, 34-41(1986).

[21] Goktepe, M., Ozgiig, B., Baray, M., Design and Implementation of a
Tool for Teaching Programming, Computers and Education, (in print,
1988).

88

