

MESSAGE PASSING IN AN OBJECT-ORIENTED
DATABASE MANAGEMENT SYSTEM

A THESIS

SUBMITTED TO THE DEPARTMENT OF COMPUTER

ENGINEERING AND

INFORMATION SCIENCES

AND THE INSTITUTE OF ENGINEERING AND SCIENCES

OF BILKENT UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF
MASTER OF SCIENCE

By
Sibel M . Ozelgi

July 1988 tarafiodan k |irjIa a M § tir,

Ci A.

.03.
Огѣ

I certify that I have read this thesis and that in my
opinion it is fully adequate, in scope and in quality, as
a thesis for the degree of Master of Science.

Pro^Dr.Erol Ar^n(Principal Advisor)

I certify that I have read this thesis and that in my
opinion it is fully adequate, in scope and in quality, as
a thesis for the degree of Master of Science.

Assist.Prof.EfrlAltay Güvenir

I certify that I have read this thesis and that in my
opinion it is fully adequate, in scope and in quality, as
a thesis for the degi’ee of Master of Science.

ikUE ikkc'l
Assist.Prof.Dr.Ugur Halıcı

Approved for the Institute of Engineering and Sciences:

Prof. Dr. Mehmet Baray, Director of Instit«fe of Engineering and Sciences

11

ABSTRACT

M E SSA G E PASSING IN A N O B JE C T -O R IE N TE D
D A TA B A SE M A N A G E M E N T SY ST E M

Sibel M . Ozelgi

M .S. in Computer Engineering and
Information Sciences

Supervisor: Prof.Dr.Erol Arkun
July 1988

In this thesis, a focused survey on object-oriented database management
systems and on object-orientation in general was carried out and a single-
user object-oriented database management system prototype was designed
and implemented. A command language was defined and a message passing
scheme was proposed and implemented. A compiler for the language was
developed.

The developed language is computationally complete and aims at solving
the impedance mismatch problem. It contains both data definition and data
manipulation statements. The statements can be used interactively or in the
form of methods. After compilation, the statements are translated into inte­
ger codes and these codes are used to perform the necessary operations.Since
the developed prototype is a single-user system, the message passing passing
scheme does not provide any concurrency control mechanisms and stacks are
used to implement message passing and argument handling.

Keywords : object-oriented database management systems, object, class,
instance, method, message, message passing, inheritance, class hierarchy, ob­
ject identity, data abstraction.

Ill

ÖZET

NESNESEL BİR V E R İ T A B A N I SİSTEM İN D E M ESAJ
Y O L L A M A

Sibel M . Özelçi
Bilgisayar Mühendisliği ve Enformatik Bilimleri Yüksek Lisans

Tez Yöneticisi: Prof.Dr.Erol Arkun
Temmuz 1988

Bu tez çalışmasında nesnesel yaklaşım ve nesnesel veri tabam sistemleri
üzerinde bir araştırma yapılmıştır. Ayrıca tek kullanıcılı bir nesnesel veri
tabanı sistemi prototipi için bir dil geliştirilmiş ve bir mesaj yollama yöntemi
önerilmiş ve uygulanmıştır. Geliştirilen dil için bir derleyici yazılmıştır.

Geliştirilen dil hesapsal açıdan tamdır ve empedans uyumsuzluğu prob­
lemini çözmeyi amaçlamaktadır. Veri tanımlama ve veri kullanımı için ko­
mutlar içerir. Komutlar doğrudan doğruya veya metodlar halinde kullanılabilirler.
Derleme sırasında komutlar bazı kodlara çevrilirler ve bu kodlar daha sonra
gerekli işlemleri yapmak üzere kullanılırlar. Geliştirilen sistem tek kullanıhcıh
olduğundan önerilen mesaj yollama yöntemi verilere aynı anda erişimden
doğan problemleri çözümleyecek mekanizmalar içermemektedir. Mesaj yol­
lama ve parametre gönderme yiğit kullanılarak gerçekleştirilmiştir.

Anahtar kelimeler : nesnesel veri tabanı sistemleri, nesne, sınıf, eleman,
metod, mesaj, mesaj yollama, aktarım, sınıf hiyerarşisi, nesne kimliği, veri
soyutlaması.

IV

ACKNOWLEDGEMENT

I gratefully acknowledge the valuable help and advice of my supervisor
Professor Erol Arkun without which this thesis could not have been com­
pleted and Dr. Nierstrasz for his helpful remarks. I would also like to thank
Nihan Kesim and Murat Karaorman with whom we worked together on the
project of developing an object-oriented database management system pro­
totype for their help and cooperation and all the other research assistants
at Bilkent University who assisted in the preparation of this thesis. I would
especially like to thank Levent Alkışlar and Oğuz Gülseren for their support
and assistance. I would also like to acknowledge the help and support of
my parents and the valuable contribution of Bilkent University and the de­
partment of Computer Engineering and Information Science in providing the
facilities needed for the completion of the thesis.

TABLE OF CONTENTS

1 Introduction 1

2 The Object-Oriented Approach 5

2.1 The Basic Concepts in Object-Orientation............................... 5

2.1.1 Objects and C lasses .. 5

2.1.2 Messages and Methods... 9

2.1.3 Inheritance and the Class Lattice.................................. 11

2.1.4 Object T y p e s .. 15

2.1.5 Object Identity... 16

2.2 Extensions to the Basic Model .. 22

2.2.1 Schema E v o lu tion ... 22

2.2.2 Composite O bjects... 24

2.2.3 Indexing... 26

2.2.4 Temporal Aspects and Version Management................ 27

2.3 Basic Properties of the Object-Oriented A p p ro a ch 30

2.3.1 Information Hiding... 30

2.3.2 Data Abstraction.. 31

2.3.3 Data Independence... 32

v i

2.3.4 H om ogeneity.. 32

2.3.5 Message P a ss in g .. 32

2.3.6 Dynamic Binding.. 33

2.3’.7 Inheritance.. 33

2.3.8 Polymorphism and Overloading..................................... 34

2.3.9 R eusability... 35

2.3.10 Interactive Interfaces.. 35

2.3.11 C oncurrency.. 35

2.4 Application Areas of the Object-Oriented A p p ro a ch 36

2.4.1 Programming Languages.. 36

2.4.2 Database Management Systems..................................... 36

2.4.3 Knowledge Representation... 37

2.4.4 CAD/CAM System s.. 37

2.4.5 Office Information S ystem s.. 37

2.5 Object-Oriented Programming Languages and Some Examples 38

2.5.1 Sm alltalk.. 38

2.5.2 Small w o r ld ... 44

2.6 Object-Oriented Database Management Systems and Some Ex­
amples ... 46

2.6.1 GemStone.. 46

2.6.2 O R IO N ... 49

2.6.3 I F O .. 54

2.7 Conventional versus Object-Oriented Database Management
System s.. 58

vn

2.8 Advantages and Disadvantages of the Object-Oriented Approach 61

3 The Object-Oriented Database Management System Proto­
type 63

3.1 An O verv iew .. 63

3.2 The Modules of the S ystem .. 66

3.2.1 Object Memory and Schema Evolution......................... 66

3.2.2 Message P assin g 69

3.2.3 Secondary Storage Management and Indexing............ 71

3.2.4 The User Interface... 75

3.3 The Necessary Structures... 75

3.3.1 Class Definition Object ... 76

3.3.2 Method Definition Table.. 80

3.3.3 Instance Access T a b le ... 81

3.3.4 Object T a b le .. 81

3.3.5 Class Hierarchy Object 81

4 The Command Language 84

4.1 Data Definition Language... 86

4.2 Data Manipulation Statem ents.. 90

4.3 Some Examples... 115

5 The Message Passing Scheme 122

5.1 The Lexical Analyzer.. 123

5.2 The P a r s e r ... 124

5.3 ’ The Code Generator.. 130

viii

5.4 The Executor M o d u le ... 130

5.5 The Query Processor.. 136

6 Open Problems and Future Extensions 137

7 Conclusion 140

A List of Basic Routines 142

A .l The Lexical Analyzer.. 142

A.2 The Parser .. 142

IX

LIST OF FIGURES

2.1 Some example class definitions, message calls and method def­
initions in Sm alltalk... 40

2.2 The graphical representation of IFO objects, object reps . . . 55

2.3 An example fragment r e p .. 55

2.4 The representation of specialization and generalization (IS-A)
relationships .. 56

2.5 An extended object rep ... 57

3.1 The four major modules of the p ro to ty p e 66

3.2 The format of an allocated object 67

3.3 The format of a class object 68

3.4 The initial class hierarchy and the system defined classes 68

3.5 The abstract view of a variable sized con ta in er......................... 73

3.6 The abstract view of a variable sized container with external
super-part 74

3.7 A cleiss definition o b je c t ... 77

3.8 Storing an object as contiguous blocks of memory in a linked
l i s t ... 79

3.9 The storage representation of an instance object 80

3.10 The object t a b l e ... 81

X

3.11 The format of a class hierarchy o b je c t 82

3.12 An example class hierarchy and its internal representation . . 83

4.1 The organization of the three classes.. 116

4.2 The result of executing the new statement.............................. 119

4.3 The result of executing the define statement........................... 119

5.1 The internal representation of production r u le s 127

5.2 An example for the internal representation of productions . . 128

5.3 An error entry ... 129

5.4 The record structure of the error f i l e 129

5.5 The internal representation of an example m e th o d 133

5.6 The internal representation of an if statement........................ 134

5.7 The internal representation of a while statement 135

XI

1. INTRODUCTION

Conventional methods such as relational database management sys­
tems and programming languages lack a suitable problem solving approach
to various data intensive applications such as CAD/CAM applications, office
information systems, knowledge base systems, expert systems and knowledge
representation. Database systems, programming languages and artificial in­
telligence already have overlaps in some areas. Databases require better in­
tegrated application program interfaces, expert systems must deal with large
collections of base facts and programming languages need richer ways to
model their data. As a result of all these needs object-oriented programming
environments were developed and this approach was extended to other fields.
Since then the approach has gained a great deal of importance and popu­
larity. The basic characteristic of object-orientation is that data are active
and procedures are passive unlike in traditional data processing methods. In
other words, instead of data being sent to procedures, objects which represent
real world entities are asked to perform operations on themselves. Every real
world entity is modelled as an object.

The basic concept in object-orientation is the object which captures both
the state and the behaviour of an entity. The behaviour is represented using
methods and messages. Methods are performed when objects are invoked by
messages. Messages specify which operation to perform on an object while
a method specifies how the operation will be performed. Similar objects
constitute a class while the elements of a class constitute its instances. The
definitions related to the instances of a class appear only in the corresponding
class definition thus eliminating the redundant specification of the informa­
tion for each instance. The classes in a system can be organized in a class
hierarchy or class lattice. A class can be defined as the subclass of another
class inheriting the implementation and interface of its superclass. This is
known as inheritance. A subclass may modify the definitions it inherits or
may add new definitions to them. The class and inheritance concepts increase

modularization and reduce duplication. Building a hierarchy of objects and
inheritance also facilitates top-down design.

In object-orientation, each object is referenced using a value independent
and physical location independent surrogate. Surrogates provide data and
location independence but unless some kind of indexing is used, one has to
perform a sequential search when associative or value-based access is required.
The surrogate of an object, that is, its identity remains the same regardless of
changes in the object. Objects reference their components by identity and not
by value. Therefore data integrity and referential integrity are automatically
satisfied and data duplication is reduced.

There is no general definition of an object-oriented system. One approach
is to define an object-oriented system as a system which supports data encap­
sulation and inheritance. Another definition is introduced considering that
these two requirements are quite restrictive. This definition states that an
object-oriented system is a system that supports data encapsulation and not
necessarily inheritance.

Informally, an object-oriented database management system can be de­
fined as follows: a system which is based on a data model that allows the
representation of an entity, whatever its complexity and structure, by ex­
actly one object of the database. No decomposition into simpler concepts
is necessary. As entities may be composed of subentities which are entities
themselves, an object-oriented data model must allow recursively composed
objects.

Although record-based models have been successfully applied to a vari­
ety of data problems, they have serious limitations. Fundamental problems
include the fact that in these models most relationships between data must
be represented using record and pointer structures and thus force different
kinds of relationships to be represented in the same way. Also, record entries
must be from fixed sets of possible values, thus making it difficult to repre­
sent situations in which two or more entity types participate in a given role
of a relationship. Finally, relational models rely on symbolic identifiers to
represent data objects and in that way they add another level of indirection.
The problems related to conventional database systems can be solved by com­
bining object-oriented concepts and the storage management functions of a
traditional database management system.

Conventional record-oriented database management systems reduce ap­
plication development time and improve data sharing among applications.
However they axe subject to the limitations of a finite set of data types
and the need to normalize data. In contrast, object-oriented systems offer
flexible abstract data-typing facilities and the ability to encapsulate data
and operations with the message metaphor. In addition, they reduce appli­
cation development efforts. Object-oriented database management systems
support more direct modelling and require less encoding compared to other
data models and they capture more information semantics. Also, one can
easily represent models which can not be represented using normalized re­
lations, thus keeping the semantic gap as small as possible and representing
most of the problem semantics in the database itself. Another point is that,
object-oriented systems aim at solving the impedance mismatch problem seen
in conventional database systems in which there are separate languages for
data definition and data manipulation by providing a unified language sup­
porting both functions. Lastly, object-oriented database systems allow nested
(non-first normal form or NINF) relations, can capture the temporal aspect
of the data and can handle multiple versions.

The major advantages of the object-oriented approach are versatility, flex­
ibility, reusability, implementation independence and increased programmer
productivity. Also, since duplication and redundancy are reduced data in­
tegrity is automatically satisfied. The main disadvantages are the relatively
poor performance and the complexity of implementing such a system. This
is due to the lack of a theoretical model and other basic standards for object-
oriented systems. In addition, object-oriented systems require a new and
different approach to problem-solving.

The main problem areas of the object-oriented approach and object-
oriented database management systems are version control, manipulation of
composite or dependent objects, schema evolution and handling conflicts in
the case of multiple inheritance. The use of object identity requires a sequen­
tial search during associative access unless some kind of mapping or indexing
is provided, thus degrading system performance. Index handling in object-
oriented database management systems is a very important research area.
Another problem associated with the object identity concept is the preserva­
tion of object identity consistency. Other open problems related to object-
oriented database management systems include garbage collection, storage
management and especially the storage of variable-size or very large objects
and clustering. Also, there is a great demand for a theoretical model and
some standards for the object-oriented approach.

The developed object-oriented database management system prototype
consists of four major modules which are object memory and schema evolu­
tion; message passing; secondary storage management, indexing and the user
interface. Object memory handles the representation, access and manipula­
tion of the objects in the system. The schema evolution module supports
some basic modifications to the class hierarchy. The message passing module
is built on top of the object memory and schema evolution module and forms
the basis for the user interface module. It includes the definition and support
of the designed command language and error handling in addition to mes­
sage passing. It consists of five submodules which are the lexical analyzer,
parser, code generator, executor module and query processor. The designed
language aims at solving the impedance mismatch problem. The secondary
storage management and indexing module handles persistent objects by stor­
ing and retrieving them from secondary storage files and the indexing facility
provides B-tree structures for efficient execution of value-based queries. The
user interface module is also object-oriented and supports three types of users,
namely, the developer/maintainer, the domain specialist and the end-user.

The prototype has been implemented on Sun workstations running un­
der Berkeley Unix ̂ 4.2 and the C programming language. The system is
single-user and all objects are persistent and passive. Simple inheritance is
supported resulting in a class lattice in the form of a tree. Authorization,
concurrent access to data,composite objects and versions are not supported.

In this thesis, a focused survey on object-orientation and object-oriented
database management systems is presented and the design and implementa­
tion of a single-user object-oriented database management system prototype
is described with an emphasis on the message passing module. A command
language is defined and a message passing scheme is proposed and imple­
mented.

The thesis begins with a general introduction of the object-oriented ap­
proach. After the basic concepts, properties and application areas of the ap­
proach are introduced, the limitations of conventional database management
systems and the advantages introduced by object-oriented databases are ex­
plained. Following a survey on some available object-oriented programming
languages and database management systems, the developed object-oriented
database management system prototype is presented. After a detailed de­
scription of the language developed and the message passing scheme applied,
some open problems and future extensions to the system are listed.

^Unix is a trademark of AT&T Bell Laboratories

2. THE OBJECT-ORIENTED APPROACH

2.1 THE BASIC CONCEPTS IN OBJECT-ORIENTATION

Object management refers to a set of run time issues such as object
naming, persistence, concurrency, distribution, version control, security etc.
Objects reside in a workspace which may be local and private or distributed
and shared. Persistence methods must deal with local failures to resolve
inconsistency problems [42].

2.1.1 OBJECTS AND CLASSES

In object-oriented programming, all conceptual entities are modelled
as ohjectslbf)]. Programs are based on objects which are record-like data
structures.An integer, string, aircraft or a submarine is an object. Objects
are entities that combine the properties of procedures and data since they
perform computations and save local state. The uniform use of objects in
object-oriented systems contrasts with the use of separate procedures and
data in conventional systems.

Each object is considered to have two parts: the ■private part and the
public interface part[Q]. The public interface part is used to communicate with
other objects; and the private part specifies the internal implementation of
the object. The private part can only be accessed through the public interface
part. These two parts, together, capture both the state and the behaviour
of the entity. The state of the object is represented using a collection of
instance variables. Each instance variable is an object and therefore has its
own private memory. A primitive object such as an integer or character
has no instance variables. It only has a value which itself is an object. A
default value may be specified for instance variables. In that case, such an

instance variable is called a default value variable. If the value for such an
instance variable is not specified for an object, the associated default value
will be taken as the value. A derived instance variable is one whose value is
dependent on other information that is contained in the state of the object.
It is not possible to set the value of a derived instance variable. The value of
a derived instance variable is computed using a derivation function.

It is often desirable not to require that an instance variable’s value belongs
to a particular class, that is, not to bind the possible values of an instance
variable to any single class. This means that, two different instances of the
same class may reference objects from two different classes through the same
instance variable. However, for the purpose of preserving data integrity,
it is desirable to bind the domain, that is, the data type of an instance
variable to a specific class and therefore implicitly to all subclasses of the class.
Some object-oriented systems such as Smalltalk and GemStone are typeless
allowing instance variables to take any value while others such as Hybrid and
the developed object-oriented database management system prototype are
strongly-typed requiring that each instance variable must be assigned to a
domain from which it may take values.

Before creating an object, it must be described. After it has been de­
scribed, this description can be used to create a whole set of objects. Such
an object description is called a class and any object created using this de­
scription is called an instance of the class. Thus, objects with similar im­
plementations and interfaces constitute a class; and the members of a class
constitute its instances. Classes are used as [7]:

• generators of new objects

• descriptions of the representation of their instances

• descriptions of the message protocols of their instances

• a means for implementing differential programming

• repositories for methods for receiving messages

• a way of dynamically updating many objects at the same time

• set of all instances of a class

The class provides all the information necessary to construct and use ob­
jects of a particular kind, its instances. It is sufficient to know the messages

defined for a class and their input and output arguments, to create an instance
of that class. Each instance of a class has its own copy of instance variables.
Each class of objects is associated with a particular set of procedure-like oper­
ations called methods·, and methods are performed when objects are invoked
by messages.

A class may be associated with some class variables. The value of a class
variable is shared by all instances of a class. Class variables and default value
variables reduce storage and specification of objects.

Each instance has a single class while a class may have any number of
instances. Allowing an object to belong to more than one class results in
lower performance and a large increase in system complexity. This is because
the structure of an instance object is variable; since it can belong to a number
of classes, its instance variables cannot be determined beforehand and the
identifiers for all classes to which an instance belongs must be stored with
each instance. Only by examining the content of an instance object and
determining the classes to which it belongs, it will be possible to determine
its instance variables and methods.

The class concept reduces storage and duplication. It also provides con­
ceptual simplicity.

There are two approaches to instantiation. In static instantiation, the
object is instantiated at compile time and the object remains in the system
through program execution. Dynamic binding requires run time support for
allocation and for explicit deallocation or garbage collection [43].

Classes are used to describe the common properties of related objects,
its instances. This class-instance approach has some complications resulting
from the interaction of message look-up with the role of classes, which gives
rise to the need of metaclasses and the use of classes for several different
functions. One of the problems is the need to create a separate class for
each object that has a distinct message protocol. If classes are treated as ob­
jects, to allow different classes to understand different initialization messages,
each class itself must be an instance of a different class, namely, a metaclass.
Another problem is that when designing a class the user must move to the
abstract level of the class, write a class definition and then instantiate it and
test it. To solve these problems associated with classes and metaclasses, •pro­
totypes are used [7]. A prototype is a standard example instance and new

objects are created by copying and modifying prototypes instead of instan­
tiating classes. Also, prototypes are useful to avoid a proliferation of object
classes in systems where objects evolve rapidly and display more differences
than similarities (analogy and deviation). The difference between prototyping
and instantiation is seen in terms of applicable inheritance mechanisms.

In the prototype model, an object consists of state and behaviour as in
the class model. The state of an object is represented by a set of named fields.
There are two components of an object’s behaviour. The first component is
a method dictionary and the second is a protocol that describes the set of
messages the object declares that it can understand, the protocols required
of the arguments to the messages and the protocols of the results returned
by the messages. There may be severed methods for receiving a given mes­
sage. Similarly, one can send messages to an object asking it for information,
asking it to change its state or asking it to change its behaviour. The only
way to make a new object is to make a complete copy of an existing object
including the state and the behaviour. Once the copy is made there is no
relation between the original and the copy. Creating new objects by copy­
ing eliminates the need for metaclasses. The model handles object creation,
manipulation and representation. The problems with this model are;

• There is no classification of objects, either by message protocol or by
representation

• There is no way of updating a whole group of objects at a time

Constraints are used to express the inheritance relations among objects.
There are two messages available for creating new objects: copy and descen­
dant. The copy method makes a complete copy of the receiver and returns it.
The second method makes a copy of the receiver and also creates a descendant
relationship between the two objects.

The class and prototype model can be integrated and used to eliminate
the need for metaclasses.

There are various ways an object can be stored in secondary storage. The
two basic approaches are [56]:

• decomposing an object into its fields and representing each field as a
binary relation

• storing objects by grouping all the fields of one object together on disk

8

The binary relation representation is better for associative access. It is not
very good if all fields of an object is to be accessed.

For the object-based storage scheme, it is easy to access all fields for an
object but associative access has lots of problems:

• many disk blocks must be read even with indexing

• data can be clustered only on one field

• redundancy and update problems

In the hybrid organization, binary relations axe used on disk to speed
associative access, with an object-based representation used in main memory
to aid manipulations on single objects.

2.1.2 MESSAGES AND METHODS

A message is a request for an object to access, modify, or return part of
its private part. It is like an indirect procedure or function call. Objects
provide methods as a part of their definition. Messages completely define
the semantics of an object. Methods describe how to carry out the necessary
operations and a message specifies which method is desired but not how
that operation is performed. The set of messages to which an object can
respond is called its interface. Methods are not visible from outside the
object. Objects communicate with one another through messages. A crucial
property of an object is that its private memory can be manipulated only by
its own operations and the messages are the only way to invoke an object’s
operations.

When a message is sent to an object, a message look-up is performed to
determine the method associated with that message [50]. Generally, the mes­
sage look-up starts from the class of the object which received the message.
If the associated method is found, it is executed and the search is complete.
If it is not found, the search continues in the superclass of that class. This
look-up procedure searches the class lattice or hierarchy until the method is
found or the root class is reached, in which case an error occurs. Pseudo
variables [45] used in message calls as the receiver alter this message look-up
procedure. In some object-oriented systems, the message itself is an object
that the receiver processes as it wishes.

Pseudo variables are similar to other variables syntactically, but they are
different semantically in that they cannot be assigned a new value during
any particular invocation of a method. Two important pseudo variables are
3c//and super. They both refer to the object that received the message cur­
rently being processed. They differ in the way message look-up is performed.
When self is sent a message, the message look-up algorithm is identical to
the way a look-up is performed when the message is sent externally, starting
in the object’s class. When super is sent a message, the look-up is performed
starting in the superclass of the class in which the method that is currently
executing is found. This pseudo variable gives objects a controlled way of
accessing superclass methods. The self call allows the implementation of re­
cursive methods and the super call is used to make incremental additions to
an inherited method. The new behaviour added to the method may precede,
follow or surround the call to super. An example from Smalltalk is:

initialize

super initialize
X <— y <— 0.

In the example, the initialization method for a class uses the initialize method
of its superclass and also initializes the variables x and y to zero. The
operator is an assignment operator.

Message passing can be implemented as function calls or in a concurrent
system as remote procedure calls [50]. Methods are equivalent to functions
when there are no other methods associated with the message selector. An­
other implementation technique is based on actors [3] which are persistent,
message passing processes [38]. In this approach, objects are in a way imple­
mented on top of actors.

Messages and methods add data abstraction and polymorphism to the
object-oriented model. A system is said to support data abstraction when
it has a mechanism for bundling together all operations on a data type.
The purpose of data abstraction is to change the underlying implementation
without changing other parts [45]. Object-oriented systems support this idea
since a class defines all the messages and methods, that is operations, that
apply to its instances. Polymorphism refers to the capability of different
classes of objects to respond to the same protocol.

In concurrent environments message passing could be either synchronous

10

or aynchronous [38]. In asynchronous message passing, the message is put
on a queue and the sender is free to work on another task. In synchronous
message passing, the sender is blocked until the message is delivered. In some
systems the sender is blocked until the receiver sends a response. The problem
with asynchronous message passing is infinite size buffers while synchronous
message passing limits the amount of concurrency through blocking.

2.1.3 INHERITANCE AND THE CLASS LATTICE

A typical application may create and reference a large number of objects. If
every object is to carry its own instance variable names and its own methods,
the amount of information to be specified and stored can become unmanage­
ably large. The class concept provides modularization and conceptual sim­
plicity as well as reducing duplication, since all the messages, methods and
instance variables shared by the instances only appear in the corresponding
class definition. Another such tool is inheritance, in which a class can be
defined as a subclass of another class inheriting the implementation and defi­
nition of its superclass. Thus, all classes in the system form a class hierarchy:
a directed acyclic graph in which an edge between two nodes represents the
IS-A relationship, that is, the child node is a specialization of the parent node
and the parent node is a generalization of the child node [6]. The parent node
is called the superclass of the child and the child node is called the subclass of
the parent. Classes participate in the inheritance hierarchy directly whereas
instances participate indirectly through their classes. A class needs to in­
herit properties only from its immediate superclass. So, by induction, a class
inherits properties from every class in its superclass chain. A subclass may
modify the definitions and implementations it inherits from its superclasses or
may add new ones. Methods or definitions are overridden if a new method is
provided for the old method’s selector or a variable is redefined. Adding new
behaviour to existing methods is usually done through the pseudo variable
super.

Inheritance enables programmers to create new classes of objects by spec­
ifying the differences between a new class and an existing class. Thus a large
amount of code can be reused through the sharing of behaviour between ob­
jects. Inheritance also facilitates top-down design. The inheritance and the
class concepts avoid the specification and storage of some redundant infor­
mation. They also provide information hiding. In a way, inheritance is a
conceptual structuring mechanism.

11

There axe many forms of inheritance depending on what is inherited and
when and how the inheritance takes place. The related issues are [42]

• Does inheritance occur dynamically or statically?

• Are classes or instances clients of inheritance?

• What properties can be inherited?

• Which inherited properties are visible to the client?

• Can inherited properties be overwritten or suppr<;ssed?

• How are conflicts resolved?

Class inheritance reflects the similarity between object classes and is static
inheritance. In partial inheritance, some properties are inherited and others
are suppressed. It is convenient for code sharing but may create a messy
hierarchy.

In dynamic inheritance [42], objects alter their behaviour in the course of
normal interactions between objects. Dynamic inheritance occurs within the
object model as opposed to schema evolution. It can be classified as follows:

• part inheritance- An object explicitly changes its behaviour by accept­
ing new parts from other objects. It is the exchange of values between
objects. An object that modifies an instance also changes its behaviour,
though limited by the object’s class. If one considers instance variables
and methods as values, an object may dynamically inherit new instance
variables and methods from other objects.

• scope inheritance- It occurs indirectly through changes in the environ­
ment. An object’s behaviour is determined by its environment and
acquaintances. The behaviour of an object changes when its environ­
ment changes.

Dynamic inheritance is possible with systems supporting prototypes.

Inheritance can be considered in four categories [47].

• Type theory inheritance is related to the similarity of the data struc­
ture between a subclass and a superclass. The structure of a subclass
contains all the instance variables of its superclass and may include its
own instance variables.

12

• External interface inheritance is the similarity of the externally visible
interface provided by a class and its superclass. The class is able to
provide all the external interface of its superclass and may specialize
its superclass by providing its own interface as well.

• Code sharing and reusability is related to the property that if a sub­
class redefines the methods of its superclass, it can use the methods as
provided by its superclass but can build upon them its own methods.
Thus more complex routines can be built out of simpler ones by reusing
but not duplicating the code.

• Polymorphism is related to operator overloading and allows a concrete
operation to inherit its definition and properties from a generic opera­
tion.

There are two types of inheritance, namely simple inheritance and mul­
tiple inheritance [6] [50]. In simple inheritance, a class may have only one
superclass forming a class hierarchy restricted to being a tree while in multiple
inheritance, a class may have more than one superclass inheriting the defini­
tion and properties of all its superclasses and forming a lattice structure as
the class hierarchy. Multiple inheritance simplifies data modelling and often
requires fewer classes to be specified than with simple inheritance. However
it introduces name conflicts, that is, the problem of two or more classes hav­
ing instance variables or methods with the same name. The conflict may be
between a class and its superclass or between the superclasses of a class. The
name conflict problem between a class and its superclass may also be seen
in simple inheritance and is solved by giving priority to the class. To solve
the conflict problems in multiple inheritance, a conflict resolution scheme
must be used. Either all instance variable or method names of superclasses
must be distinct or a priority order for the superclasses should be specified.
The default conflict resolution scheme provided by most systems chooses the
property of the first superclass in the list of immediate superclasses when a
conflict occurs. The problem with this approach is that the scheme depends
on the permutation of the superclasses of a class. To overcome this problem,
some systems allow users to explicitly change the permutation at any time.

There are two basic problems related to inheritance relationships between
objects, that is, IS-A relationships. These are [57];

1. the confusion between the inheritance of behaviour and the inheritance
of representation.

13

2. the lack of any requirements for semantic relationships between a named
operation on a type and a replaced operation with the same name on
a subtype.

To distinguish between inheritance of behaviour and inheritance of repre­
sentation, some other relationships can be introduced [57].

• The behaves-like relation. If a class B behaves-like a class A, B must
have at least the behaviour of A. B may add new behaviour (properties,
operations and constraints) but all A ’s behaviour must be supported
by B. This relation does not have the side-effect of creating instances of
superclasses which is seen in IS-A relations. The behaves-like relation
could be implemented using IS-A relations by adding a new class which
specifies the behaviour to be shared but has a null representation and
which cannot be instantiated as a superclass of the two related classes.
This requires schema evolution, the dynamic modificaton of the class
lattice, and is troublesome. The behaves-like relation allows the user
to retain the old structure while achieving the desired behaviour.

• The subsumes relation. The aim in this relation is for a subclass to
access the representation of its subtypes. Subsumes guarantees that
a subclass has at least the specification of its superclasses but it adds
the ability for the subclass to access any state that is available in the
superclass instance. This in a way loses some of the data abstraction
seen in object-oriented systems.

Another problem with object-oriented systems is that operation refine­
ment or operation redefinition is not based on any semantic properties of the
operations involved. The aim of the IS-A relation is to induce a subclass re­
lationship among the classes but with operation refinement one may end up
with two classes related by an IS-A relationship but with completely different
behaviour.

An approach to adding some semantics to the operation refinement prob­
lem is to allow an operation Opi on B to refine another operation 0p2 on a
superclass A if and only if Opi behaves-like 0p2· B inherits all operations
defined on A that are not refined by an object in B. In order for an operation
to be a subtype of another operation type, it must have at least the behaviour
of its supertype [57].

The refines relation is used to relate operation types. If B behaves-like A

14

and an operation 0p2 on B refines an operation 0p\ on. A then an invocation
of Opi on B will cause 0p2 to be invoked. Opi on A may only be refined
once on a given subclass of A. Property refinement is also possible.

The discussion up to now was based on the class model. The prototype
model also supports inheritance through some independent inheritance con­
straints. These are [57]:

• inherits-field-name3(0bj ect\,Ohj ect ̂)

• inherits-behaviour(Obj ecti,Obj ecÎ2)

• inherits-protocol(Obj ectx,Obj ect2)

A descendant constraint is defined to be the conjunction of the three in­
heritance constraints. These constraints can be used to support multiple
inheritance but the name conflict problem still exists as in the class model.

2.1.4 OBJECT TYPES

An object type [42] is the same as an object class but when using typed objects
whether they are manipulated in a consistent way must be checked statically.
With static type checking there is no need to protect objects from unex­
pected messages. In object-oriented systems, with polymorphic operations
and dynamic binding, some types may be equivalent or included in other
types. The declared types of variables and arguments serve as specifications
for valid bindings and invocations. One type conforms to another if some
subset of its interface is identical to that of the second, that is, the first is a
subtype of the second. They are equivalent if they conform to one another.

The difference between object classes and types can be interpreted as
viewing the second as specifications. In the presence of dynamic binding,
it is generally impossible to statically determine the class of a variable, but
with the appropriate type rules, type checking can be performed. If dynamic
binding is not supported then an object type will uniquely determine an
object class. Type information can be useful for generic classes.

Class hierarchies are not the same as type hierarchies but they may over­
lap. Two classes may be equivalent as types, though neither inherits anything
from the other.

15

2.1.5 OBJECT IDENTITY

Identity [28] is a property of an object that distinguishes it from other objects.
Object identity provides the ability to distinguish objects from one another
regardless of their content, location or addressability and the ability to share
objects. This supports the modelling of arbitrarily complex and dynamic
objects using versions which is a very important necessity in programming
languages and database systems.

Consistency can be defined in terms of object identity. A consistent sys­
tem must have the following two properties [28]:

a) Unique identifier assumption. No two distinct objects may have the same
identifiers, that is, the identifier functionally determines the type and
the value of an object.

b) No dangling identifier assumption. For each identifier in the system there
is an object with that identifier.

The dangling identifier problem may be seen when an object is deleted. In
most systems, a reference count representing the number of references to an
object is kept for each object [28]. This reference count is updated whenever
a reference to the associated object is added or removed. When the reference
count of an object goes down to zero, the object is no longer referenced so
it may be removed and garbage collection is applied. This is important for
preserving the consistency of the system by avoiding dangling identities. This
property is especially essential for temporal data.

W E A K SUPPORT OF ID EN TITY VS STRONG SUPPORT OF
ID E N TITY

There are basically two dimensions involved in the support of identity. These
are the representation dimension and the temporal dimension [28].

The representation dimension distinguishes languages based on whether
they represent the identity of an object by its value, by a user-defined name or
built into the language. Using values to distinguish objects provides a weak
support of identity whereas built-in support of identity provides strong iden­
tity. A language providing a strong support of identity in the representation
dimension must maintain its representation of identity during updates, use

16

identity in the semantics of its operators and provide operators to manipulate
identity.

The temporal dimension distinguishes languages based on whether they
preserve their representation of identity within a single program or trans­
action, between transactions or between structural reorganizations such as
schema reorganization. If a language preserves the identities during only a
single program or transaction, that language is said to support weak identity.
The strongest support of identity in the temporal dimension is the preserva­
tion of identities through structural reorganizations. A language supporting
stronger identity in the temporal dimension requires more robust implemen­
tation techniques to preserve its representation of identity.

Strong identity in the representation dimension is important for both tem­
porary and persistent objects. Strong identity in the temporal dimension is
important for persistent objects. For hybrid languages, which merge pro­
gramming languages and database functionality, a strong identity in both
dimensions is important as a result of the need for a uniform treatment of all
objects because their status may change between temporary and persistent.

ID E N TITY IN PROG RAM M ING LANGUAGES

Most general-purpose programming languages are built based on temporal
objects and a file system which is not part of the language is used to support
persistent objects. In most languages weak identity is supported for temporal
data.

Programming languages differ in the way they support identity in the rep­
resentation dimension. Most languages use variable names as identities [28].
The actual binding of a variable to its name could be static, that is, at compile
time or dynamic, that is, at run time. This approach confuses addressability
and identity. Addressability is external to the object and provides a way of
accessing an object within a specific environment and thus is environment
dependent whereas identity is internal to an object and provides a way to
represent an object uniquely and independently of how it is accessed. There
are other limitations to this approach. One important problem is that a sin­
gle object may be accessed in different ways and bound to different variables
without a way of finding out whether they refer to the same object or not.
To solve this problem operators for manipulating identity must be added to
the language.

17

ID E N TITY IN DATABASE LANGUAGES

Database languages must support strong identity in both the temporal and
representation dimensions [28].

In relational database systems, a subset of attributes that uniquely de­
termine a tuple, that is, an identifier key is used to represent the identity of
an object. The identifier key is unique for all objects in the relation. Using
identifier keys to represent object identity mixes the concepts of value and
identity and thus introduces many problems. These problems can be listed
as follows:

• Identifier keys are not allowed to change even though they are user-
defined descriptive data. If an identifier key is allowed to be modified,
this will cause integrity problems, discontinuity in identity and update
problems in all objects that refer to it.

• Identifier keys cannot provide identity for every object in the relational
model. Each attribute or subset of attributes cannot have identity.

• The choice of which subset of attributes to use as an identifier key may
change.

• The use of identifier keys causes joins to be used in retrievals instead of
path expressions. Path expressions [34] [36] which are used in object-
oriented systems are much simpler.

With built-in object identity no joins are needed during retrievals. How­
ever using path expressions requires unique attribute names since nested
names are used. Also, one may have some ambiguous paths. On the other
hand, with built-in identity the insertion and deletion anomalies seen in re­
lational systems and the need to normalize data are eliminated.

Using the notion of built-in identity in the language, the system may
support strong identity in both the representation and temporal dimension.
Strong support of identity in the temporal dimension is very important for
representing the temporal aspects of the data since a single retrieval may
involve multiple versions of an object. This requires the database system to
provide a continuous and consistent notion of identity throughout the life of
an object independently of its data or structure which may be modified. This
value and structure independent identity can be used to link versions of an
object and thus to support a temporal data model.

18

In some cases, the physical description of an object may not be stored in
a single location and may be partitioned or replicated. Some reasons for this
can be listed as follows [28]:

1. Some parts of the object may be shared by other objects as a conse­
quence of the class hierarchy and inheritance. If each part is duplicated
for each object, this will cause redundancy and some consistency prob­
lems.

2. For data recovery issues, some parts of the object may be replicated.
In order to obtain maximum recoverability, the copies should be stored
on separate media.

3. Some parts of the object may be physically partitioned based on the
frequency of use together in order to improve performance.

4. In a temporal data model that supports versions, the most recent ver­
sion may be kept separately from the other versions for faster access.

Using a value and location independent surrogate [14] [53] as object identity
provides a way to relate the separately stored replicates or parts of an object.

PR O G R AM M IN G LANGUAGE AND DATABASE SYSTEM H Y­
BRIDS

Database systems and programming languages support different typing, com­
putation and identity aspects. The data types supported in databases differ
from those supported by programming languages. Programming languages
are rich in manipulation capability while database systems include search
and simple update capabilities. Most application programming languages
are procedural whereas data manipulation languages are declarative as be­
ing declarative provides more opportunities for using indices and planning
secondary storage access. Database systems support a stronger notion of
identity compared to programming languages. These important differences
introduce the impedance mismatch problem [28] [56] especially at the inter­
face between the two systems. Much of the meta information in either system
is reflected back at the interface and it must be defined redundantly in both
languages. In addition, transformations must be defined whenever data or
operations need to pass through the interface.

19

The solution to the impedance mismatch problem is unifying database
systems and programming languages, that is, merging programming and
database languages into a hybrid environment which includes a language
with unified typing and computation [28] [56]. The aim is to obtain a lan­
guage with a uniform treatment of types, computation and identity. Data
instances of any type should be capable of being temporary or persistent.
Any computation should apply uniformly to either temporary or persistent
data, although computations which result in state changes of shared persis­
tent data should be enveloped by a transaction. All types should employ the
same notion of identity. One approach is to make programming language
data types persistent. In these languages the file system is extended to sup­
port the same data types as in the language and type checking is done when
file objects are imported into the system. A second approach is to combine
programming and database language data types and database transactions.

OBJECT ID EN TITY OPERATORS

Systems which support the concept of object identity must provide some op­
erators for dealing with object identity. These include operators for checking
if two objects are equal or identical, copying operators for deep-copy and
shallow-copy of objects and an assignment operator. Shallow-copy and deep-
copy operators indicate the degree of copying vs. sharing [20] [28] [31] [36].

Two objects are identical if they reference identical objects and they both
have the same identity, that is, if they are actually the same object. One
can differentiate between two types of equality, namely, shallow-equality and
deep-equality. Two objects are shallow-equal if their values are identical.
While checking if two objects are shallow-equal, the values of the compo­
nents of the object are considered. On the other hand, when checking for
deep-equality objects are recursively traversed comparing equality of corre­
sponding components. Two atomic objects are deep-equal if they have the
same value. Shallow-equality and deep-equality are the same for atomic ob­
jects. Two non-atomic objects are deep-equal if their corresponding compo­
nents are deep-equal. Two identical objects are deep-equal and shallow-equal
and two shallow-equal objects axe at the same time deep-equal.

When an object is assigned to another one, the two objects will share the
same object. The shallow copy of an object is a new object which shares
the values of the other object whereas the deep copy of an object is a new
object with its own identity and its subobjects are new objects with their

20

own identity but having the same values as those of the other object. After
a shallow-copy operation, the two objects become shallow-equal whereas the
deep-copy operator generates a new object which is deep-equal to the other
object.

IM PLEM ENTING OBJECT ID EN TITY

There are many ways of implementing object identity and they can be com­
pared depending on the amount of value, structure and location independence
they provide [28]. Data independence means that the. identity of an object
remains unchanged no matter what changes are made in its value and struc­
ture. On the other hand, location independence means that the identity of
an object does not change even if the physical location of the object changes.
Location independence is especially important in supporting load balancing
in a distributed system. Some of the major implementation techniques can
be listed as follows :

• Identity through physical address- The physical address could be the
real or virtual address of the object. It is fully data independent unless
changes in the data cause the object to be moved in the address space
due to size problems, but using the physical address as the identity does
not allow an object to be moved so there is no location independence.
However if the virtual address is used, pages may be moved within a
virtual address space providing some location independence. Object
sharing among multiple programs is limited.

• Identity through indirection. The use of an object-oriented pointer
(oop) to identify objects as in object-oriented systems is a way of sup­
porting identity through indirection since the oop is an index into an
object table which provides a mapping from oops to physical addresses.
An indirect physical address or indirect virtual address can be used
to identify objects. They provide full data independence, allow object
sharing among multiple programs and by allowing objects to be moved
within a physical or virtual address space they provide some location
independence.

• Identity through structured identifier. This approach provides full data
independence and allows objects to be moved within one disk or server.
Sharing of objects is also supported. A part of the structured identifier
used to identify an object describes the location of the object.

21

• Identity through identifier keys. It provides full location independence
but is value and structure dependent since they consist of values, they
are unique only within a specific relation and they are applied only to
tuples.

• Identity through tuple identifiers- This approach provides full location
and value independence but is structure dependent since tuple identi­
fiers are only unique within a relation and they are applied to tuples.
Tuple identifiers are system generated identifiers which are unique for
all tuples within a single relation and have no relationship to physical
location.

• Identity through surrogates. Surrogates are system-generated, globally
unique identifiers, completely independent of physical location. They
provide full location independence and if surrogates are generated for
each object, full data independence is also obtained. However if a
unique surrogate is generated for each tuple then value independence
is obtained but full structure independence is not supported.

2.2 EXTENSIONS TO THE BASIC MODEL

The basic extensions that should be added to the model and which are espe­
cially necessary for artificial intelligence, knowledge representation, CAD/CAM
and office information system applications are schema evolution [5] [6], com­
posite objects [6] [50], version management [6] [10] and indexing [34] [35] [36].

2.2.1 SCHEMA EVOLUTION

Schema evolution is the ability to dynamically make changes to the class
definitions and the structure of the class lattice [6]. Most systems support
only a few changes to the schema and class definitions without requiring
system shutdown. The operations that should be supported in an object-
oriented system can be listed as follows [6] [5]:

1. changes to the contents of a node (a class)

(a) changes to an instance variable

i. Add a new instance variable to a class

22

ii. Drop an existing instance variable from a class
iii. Change the name of an instance variable of a class
iv. Change the domain of an instance variable of a class
V. Change the inheritance (parent) of an instance variable

vi. Change the default value of an instance variable
vii. Manipulate the value of a class variable

A. Add a class variable
B. Delete a class variable
C. Change a class variable

(b) changes to a method

i. Add a new method to a class
ii. Delete an existing method from a class

iii. Change the name of a method of a class
iv. Change the code for a method of a class
V. Change the inheritance (parent) of a method

2. changes to an edge

(a) Make a class a superclass of another class

(b) Remove a class from the superclass list of a class

(c) Change the order of superclasses of a class

3. changes to a node

(a) Add a new class

(b) Delete a class

(c) Change the name of a class

There are some properties that the class lattice must have. These are
known as the invariants of schema evolution [6]. The class lattice is a rooted
and connected directed acyclic graph. It has only one root. In the case of
simple inheritance, the class hierarchy is a tree. All instance variables and
methods of a class, whether locally defined or inherited, must have distinct
names. All instance variables and methods of a class have distinct origin.
A class must inherit all instance variables and methods from each of its
superclasses. If an instance variable V2 of a class is inherited from an instance
variable Vi of its superclass, then the domain of V2 must either be the same
as that of Vi or a subclass of Vi. Any changes to the class definitions and

23

to the class lattice must preserve these invariants which ensure that changes
to the schema do not leave the database in an inconsistent state. When
applying schema change operations some rules are needed [6]. These are
conflict resolution rules, property propagation rules and lattice manipulation
rules [6].

An important problem related to schema evolution is the problem of meth­
ods becoming inoperable as a result of schema change operations. Another
problem is seen when the structure of a class which has some instances is
modified. One approach is to modify all instances to reflect these changes
immediately after the change is made in the class definition. A second ap­
proach is just to modify the class definition and modify the instances when­
ever they are referenced. The first approach is cumbersome and an overhead.
However, the second approach is very difficult to implement and may cause
inconsistencies. It also requires a way of keeping track of which instances
have been modified and which have not [43].

It is difiicult to decide whether schema evolution is actually a practical
problem or a theoretical problem. One approach to schema evolution is to let
the user specify all the operations required to perform the necessary change
in the schema and for preserving consistency and eliminating conflicts. Ev­
erything is left to the user and the system just carries out the operations
specified by the user. If the operations specified by the user cause some con­
sistency problems or some conflicts, the operations are not performed and an
error occurs. In this case, schema evolution is a practical problem. However,
if the system is required to resolve all conflicts cind preserve consistency while
making the necessary changes, schema evolution becomes a more theoretical
and difficult problem.

2.2.2 COMPOSITE OBJECTS

Many applications require the ability to define and manipulate a set of objects
aa a single logical entity. A composite object is an object with a hierarchy of
exclusive component objects considered as a unit of storage, retrieval and in­
tegrity. The hierarchy of classes to which the object belong forms a composite
object hierarchy [6].

The basic object-oriented data model does not support composite objects;
an object references but does not own other objects. A composite object cap­
tures the IS-PART-OF relationship between a parent class and its component

24

classes while a class hierarchy represents the IS-A relationship between a su­
perclass and its subclasses.

Composite objects introduce the concept of dependent objects [6] [50]which
add to the integrity features of an object-oriented data model. A dependent
object is one whose existence depends on the existence of other objects and
is owned by a single object. Since a dependent object cannot be created
before its owner exists, the composite object hierarchy must be developed in
a top-down fashion, that is, the root object of the hierarchy must be created
first and then the children. When an object of a composite object is deleted
all its dependent objects must also be deleted.

An object may contain references to both dependent objects and inde­
pendent objects or to only dependent or independent objects. Such a general
collection of objects is called an aggregate object. A composite object is, in
fact, a special kind of aggregate object.

When a composite object is instantiated all its parts are also instantiated.
The instantiation process is recursive so composite objects can be used as
parts. The automatic instantiation of all parts brings the restriction that a
composite object cannot be a part of itself. An alternative is to instantiate
parts on demand [50].

The composite object concept supports performance improvements through
the clustering of related objects on disk. All components of a composite ob­
ject should be clustered together since whenever the root is accessed, most
probably the other component objects will also be accessed.

Composite objects increase information hiding and data encapsulation
through the property of value propagation [6] which refers to the sharing of
the value of an instance variable between instance objects. In contrast, in­
heritance is the sharing of the name of an instance variable between instance
objects. Values can be propagated only if an object has an instance variable
which has the same name as some instance variable of a higher level object.
Value propagation to a lower-level object takes place from the lowest-level
object containing an appropriate value and is not automatic and must be
specified in the definition of the composite object schema. Once value prop­
agation is specified, it takes precedence over inheritance.

25

2.2.3 INDEXING

In object-oriented database managenent systems, system defined surrogates
are used to identify objects. However, since these surrogates are value and
location independent, in order to access the data by value a search has to be
performed. To avoid this sequential search, an indexing mechanism must be
added to the system [34] [35] [36].

There are some problems associated with value-based access [34]:

• Language issues. There are two basic considerations: when to invoke
auxiliary access paths for associative searching and whether to index
on an object’s structure or protocol. One approach is to provide a spe­
cial class for handling indexes. This approach reduces physical data
independence and the user has to perform index maintenance. Another
approach is to consider every expression as a candidate for indexed ac­
cess. A better approach is to denote certain statements as candidates
for indexed access or to have a sublanguage to make use of indexes.
Adding an index handling sublanguage to an existing language may
cause an impedance mismatch problem and will complicate the com­
piler. The sublanguage may be procedural or declarative. The other
major issue regarding languages is whether indexes are based on the
instance variables, that is the structure of the objects or the responses
to messages, that is the protocol. Indexing on structure violates the
privacy of an object while indexing on protocol introduces problems
when the protocol changes.

• Index structure. Indexing could be provided only on the immediate
instance variables of an object or on the instance variables and their
instance variables. If an index is provided on paths with multiple links
that is multiple instance variables, a single index could be provided for
the whole path or several indexes could be provided, one for each link.
The sequence of links is called a path expression [34] [35] [36]. With
a single index for each path, there are fewer indexes to maintain and
fewer indirections to be made during associative access. Indexing by
links allows sharing of indexes. Some other considerations are

— The type of the objects to be indexed. Indexing is generally applied
to collection or set objects. The objects constituting the elements
of the collection or set to be indexed should be of a certain type.
They could be required to be an instance of a class. An alternative

26

to using a class as a type is the use of kinds.'A kind is a class and
all its subclasses.

— Manipulation of undefined values along the index path
— Supporting identity indexes or equality indexes- An identity index

supports searching a collection on the identity of some subobject
without reference to an object’s internal state. It does not support
range queries. An equality index supports look-up on the basis of
the value or internal state of objects and range queries [36]. In
a path expression, all links except the last one must be identity
indexes and the last one could be an identity or equality index.

— The comparison operators supported during range indexes

• Indexing on classes or collections. Indexing on classes presents some au­
thorization problems and also applications which do not use the index
are subject to the index-related overhead for indexed instances they
use. However, it is easier to trace changes to an object which affect
the index on that class. Each subclass may maintain its own index or
the index on a class may include its subclasses. As an object may be a
member of several collections, if class indexes are supported and queries
against collections are made, there will be a test for collection member­
ship in addition to the index access. Indexing on collections allows the
possibility that instances of subclasses be included in a collection that
is indexed. A collection of all instances of a class may be created and
indexed to implement indexing on classes. A third approach which is
the combination of the other two approaches , maintains a single index
per class but only adds members of a certain collection to that class.

2.2.4 TEMPORAL ASPECTS AND VERSION MAN­
AGEMENT

Most conventional databases represent the state of an enterprise at a single
moment of time. Although the contents of the database change as new infor­
mation is added, these changes are viewed as modifications to the state with
the old data being deleted from the database. The current contents of the
database are regarded as a snapshot of the problem [49]. Versions are vari­
ations of the same object that are related by the history of their derivation
[6].

A lot of research has been done on representing time in databases. The

27

database management systems which represent the progression of states of a
problem over time are temporal databases. Changes in the data are viewed as
additions to the information in the database or as versions of the data. Tem­
poral databases are generalizations of conventional, that is, static databases.

TEM PORAL ASPECTS

There are two major approaches used to incorporate time in relational database
systems. One is to extend the semantics of the relational model to incorpo­
rate time directly. The other is to represent time as additional attributes
[49].

There axe three different notions of time. Valid time is the time the data
becomes valid. Transaction time is the time the data is entered into the
database. The third aspect is user-defined time [49].

Static databases are databases which model the dynamic real world as a
snapshot at a particular point in time. As changes are made, past states of
the database are discarded. An approach is to regard a relation as a sequence
of static relations indexed by transaction time. The user can get a snapshot
of the relation as of some time in the past, which is in fact a static relation,
and make queries upon the static relation by moving along the time axis and
selecting the relation. The operation of selecting a static relation is called
rollback and such a database is known as a static rollback database. Changes
to a static relation may only be made to the most recent static state. Each
modification creates a new static relation. Historical databases represent valid
time. They support historical queries which may utilize queries from the past.
They are represented as a series of static relations indexed by valid time and
the semantics represent the reality more than the update history. While a
static rollback database views tuples as being valid at some time as of that
time and a historical database views tuples as being valid at some moment
as of now, a temporal database management system makes it possible to view
tuples as being valid at some time relative to some other moment. In temporal
databases both valid time and transaction time axe represented. A temporal
relation may be considered as a sequence of historical states each of which is
a historical relation. The rollback operation on a temporal relation selects a
particular historical state, on which a historical query may be performed.

User defined time is necessary when additional temporal information for
which valid time and transaction time are insufficient, has to be stored. It is

28

application dependent and since it is not interpreted by the database man­
agement system it is the easiest to support. Only an iriternal representation
and input and output functions are necessary. An example for user defined
time is the effective date of some information. Transaction time is application
independent, easy to implement and can be automated by the system on the
other hand,valid time is application dependent and it is difficult for a sys­
tem to automate it. Since transaction time is system generated and cannot
be modified by users, it provides high integrity. Valid time must be modifi­
able by users when a discrepancy is discovered between the real world and
its database model. Storing transaction time is also useful for synchronizing
concurrent transactions [12].

VERSION M AN AG EM EN T

Version management is especially important for CAD/CAM and office in­
formation system applications and is actually an important requirement for
object-oriented systems.

There are basically two ways of creating versions [6] [10]. One approach
is the linear generation and storage of objects. This is the case if only one
version can be generated from an older version. The most current version
is the newest version which is at the same time the most correct and most
complete version. Another approach is to store the versions in a hierarchy.
In this case, more than one version may be generated from an older version
and it is quite difficult to determine the most current version by just looking
at the hierarchy.

There are two ways to bind an object with another versioned object [6].
In static binding, the reference to the object includes the full name of the
object, the object identifier and the version number. In dynamic binding,
the reference only needs to specify the object identifier and may leave the
version number unspecified. The system selects the default version number.
In some systems the default version is the most recent version but approaches
are needed for versions in the form of a hierarchy.

29

2.3 BASIC PROPERTIES OF THE OBJECT ORI­
ENTED APPROACH

The basic notions in the object-oriented approach are [38] [42] [45]:

• information hiding

• data abstraction

• data independence

• homogeneity

• message passing

• dynamic binding

• inheritance

• polymorphism and overloading

• reusability

• interactive interfaces

• concurrency

Two other important properties are multiple inheritance and automatic
storage management. Multiple inheritance allows a class to have more than
one superclass thus providing more code sharing but increasing the complex­
ity of the system through the conflicts that may occur between the multiple
superclasses.

Automatic storage management techniques such as reference counting and
garbage collection allow users to ignore details related to the release of an
object’s storage. As a result, application code becomes cleaner and the system
becomes more reliable.

2.3.1 INFORMATION HIDING

Information hiding [38] provides reliability and modifiability by reducing in­
terdependencies among software components. The state of a software module

30

is contained in private variables, visible only from within the scope of the
module. Only a localized set of procedures directly manipulates the data.
In addition, since the internal state variables of a module are not directly
accessed, a carefully designed module interface may permit the internal data
structures and procedures to be changed without affecting the implementa­
tion of other system modules. Object-orientation provides information hiding
since an object captures both the state and the behaviour of an entity.

2.3.2 DATA ABSTRACTION

Data abstraction [38] [42] [45] [50] [56] is a way of using information hiding.
An abstract type consists of an internal representation and a set of proce­
dures used to access and manipulate the data. Since objects capture both
the state and the behaviour of an entity, an object-oriented system directly
supports data abstraction. In other words, the behaviour of an object rather
than its implementation is of interest and the actual implementation is hid­
den. The class concept provides data abstraction and the message concept
provides procedural abstraction. The two concepts together result in infor­
mation hiding.

Each class of objects defines an interface that is the only way that other
objects can manipulate objects which are instances of that class. If this
is also true for subclasses and superclasses, that is, if even the subclasses
and superclasses can only communicate using the messages specified in the
interface, full data abstraction is attained and the class can be modified
without affecting the other classes as long as the interface does not change.

Operator overloading and generic functions provide data abstraction. Op­
erator overloading permits a program to use multiple operators with the same
name. The distinction between operators can be determined at compile time
depending on the type and number of operands. Generic functions permit the
definition of a module to be used with different data types. A generic func­
tion can be considered as a procedural template that can be parameterized
with actual types during compilation of programs.

Through data abstraction, it is possible to decompose a large system
into smaller, encapsulated subsystems that can be more easily developed,
maintained and that eire more portable. Data abstraction may be used to
provide [42]

31

• multiple object instantiation

• behavioural sharing through various inheritance mechanisms

• verification of correct object usage through strong-typing

• structuring of resources in concurrent applications

Thus, data abstraction aids the system in supporting reusability, object types
and concurrency.

2.3.3 DATA INDEPENDENCE

Data independence [38] [45] [56] is related to the fact that objects communi­
cate using message passing. An object sends a message and the other selects
the method to perform the operation. This property states that objects have
control over their own state and existence and is important for ensuring the
reliability and the modifiability of the system by reducing the interdependen­
cies between objects. Another form of independence is the ability to add new
types at run time.

2.3.4 HOMOGENEITY

Homogeneity [38] is related to the fact that everything is an object. The
degree of homogeneity supported in a system depends on whether classes are
objects and whether there is a differentiation between user and system defined
classes and between active and passive objects. Most systems support passive
objects. Active objects [43] [52] are objects that can perform automatic
actions. In other words, they may be triggered.

2.3.5 MESSAGE PASSING

The basic property of object-oriented systems is the use of the object-message
paradigm instead of the traditional data-procedure paradigm. In the data-
procedure paradigm supported by most conventional programming languages,
active procedures act on the passive data that is passed to them. In strongly-
typed languages, there would be different functions to perform the same
operation on different types of data while late-binding languages support

32

generic functions in which the data type determines the operation at run-time.
Generic operations are primitives restricted to a small class of data types such
as numbers or they are functions defined in terms of such primitives [38] [56].

In object-oriented systems instead of passing data to procedures, objects
are asked to perform operations on themselves using messages, that is, data
are active and operations are passive.

2.3.6 DYNAMIC BINDING

Generally, conventional languages perform early binding. For example code is
bound to a name at compilation and a name to an address at link time. Late
binding provides flexibility at the expense of efficiency in contrast to early
binding. Early binding should be applied in a stable environment where the
bindings will not change. Late binding is applied in unstable environments
(451 156].

Operator overloading and generic functions are only suitable if the data
is homogeneous and thus the types of the operations can be determined at
compile time. Dynamic binding is necessary when dealing with heterogeneous
data. The basic approach used in dynamic binding is polymorphism which is
similar to operator overloading where the procedure invoked is fixed at com­
pile time. In polymorphism, the same operator performs different operations
depending on its operands and the operation is determined at run-time. In
object-oriented systems messages support polymorphism and dynamic bind­
ing. The same message may elicit a different response depending on the
receiver.

2.3.7 INHERITANCE

Inheritance [38] [45] [50] allows the creation of classes and objects that are
specializations of other objects. The subclass inherits instance variables, class
variables and methods from its superclass. It may add its own instance vari­
ables, class variables and methods to its definition. It may also override the
variables or methods it inherits. Methods are overridden when a new method
for an inherited selector is added to the class definition. Some languages sup­
port the addition of new behaviour to existing methods.

33

Inheritance and the class hierarchy result in clustering by specifying shared
information only once in a superclass. The overriding or redefinition of meth­
ods and instance variables during inheritance enables the user to design the
schema by first specifying the ideal structure of the problem and then speci­
fying the actual structure as being analogous to the ideal structure but with
some deviations which are explicitly specified. The class hierarchy also facil­
itates top-down design and thus provides localization of information. Data
abstraction and inheritance simplify the specification of complex structures.

2.3.8 POLYMORPHISM AND OVERLOADING

A polymorphic function is one that can be applied uniformly to a variety of
objects [42] [45] [50] [56]. There are two ways polymorphism can occur:

• Same operation maintains its behaviour transparently for different ar­
gument types.

• Two operations share the same name but have completely different
behaviour (adhoc polymorphism or overloading of operation names).

Class inheritance is closely related to polymorphism. Polymorphism enhances
software reusability. It may or may not impose a run time overhead depending
on whether dynamic binding is supported. With statically bound variables,
the method can be detected at compile time while with dynamically bound
variables a run time method look-up must be performed.

While object classes factor common properties of classes in parent classes,
generic object classes do so by partially describing a class and parameterizing
the unknowns. These parameters are the classes of objects that instances of
generic classes will manipulate. There are two types of generic objects [42]:

• homogeneous container objects- They operate on any kind of object.

• tool objects- They can only operate on certain object classes.

Depending on the nature of the parameters, it may or may not be possible to
compile generic classes before the parameters axe bound. If parameters have
to be statically bound, generic classes behave like macros.

34

2.3.9 REUSABILITY

Instantiation, class inheritance, overloading, polymorphism and parameteri­
zation enhance reusability.

2.3.10 INTERACTIVE INTERFACES

Most object-oriented systems are suitable for and provide an either menu or
mouse driven iconic graphical user interface. In fact, sometimes the name
object-oriented is used for systems providing such interfaces [56].

2.3.11 CONCURRENCY

There are two approaches to concurrency and communication [38] [42] [43]:

• active entities (processes) communicate indirectly through shared pas­
sive objects

• active entities communicate directly with one another by message pass­
ing

In the approach based on shared passive objects, the shared memory is
structured as a collection of passive objects and a process is a special kind of
active Process object. Operations are performed on the passive objects ac­
cording to their interface. A mechanism is required for active objects to syn­
chronize their accesses to shared objects. This approach is not homogeneous
since there is an important difference between active and passive objects. It
is not possible to directly interact with active objects. Two active objects can
only communicate through a passive intermediary.Hidden message passing is
required to extend this approach to a distributed environment.

In the message passing approach, any object can communicate with any
other object. Objects become active in response to a communication. Threads
of control are determined implicitly by message passing whereas in the first
approach each thread of control was localized in an explicit process ob­
ject.Explicit synchronization is not needed since message packages both com­
munication and synchronization but a style of message passing must be used.

35

With message passing, strong-typing means that a message passing expres­
sion is type-correct if the message being sent is guaranteed to be valid for the
recipient. The untyped view can be supported if all objects can handle any
message sent to them.

2.4 APPLICATION AREAS OF THE OBJECT-ORIENTED
APPROACH

The major application areas of the object-oriented approach are program­
ming languages, database management systems, knowledge representation,
CAD/CAM systems and office information systems. Each of these applica­
tion areas make use of different aspects of object-orientation [56].

2.4.1 PROGRAMMING LANGUAGES

In object-oriented programming languages, every object has a set of oper­
ators which are used to operate upon and change the state of an object.
This provides data encapsulation. Another concept seen in object-oriented
programming languages is operator overloading. Operator overloading is us­
ing the same operator symbol to denote distinct operations on different data
types. The meaning of an operator is thus overloaded and can be resolved
on the bcLsis of the operand types. When interpreting a message, an object-
oriented language first binds the head to an object class, then binds the rest
of the message to a method of that class. Overloading appears if distinct
methods are given the same name in different classes.

There is a fairness problem when operators have two or more operands.
Then one operator must be selected as the message receiver that controls
the overloading, while the others ,that is, the message arguments are rele­
gated to appendices of the method. Late binding of methods means that no
recompilation is needed favoring flexibility at the expense of speed.

2.4.2 DATABASE MANAGEMENT SYSTEMS

In object-oriented database management systems an object-based approach
is used as opposed to the value-based paradigm used in the conventional

36

database management systems. In relational system's, the information is
stored in terms of tuples and relations. Tuples can only be distinguished
on the basis of their values. In object-oriented systems a hidden permanent
unique identifier is assigned to each entity record. An entity occurrence can
refer to another using the latter’s identifier. This policy provides a simple
means of supporting relationships between entities and referential integrity
constraints. The object-oriented approach also provides better support for
managing time and changes in databases. Any changes in an entity are au­
tomatically seen by entities referring to it providing referential transparency.
Another advantage is related to version management. Old versions of an ob­
ject can be archived and later retrieved using their unique identifier and a
timestamp or version number.

2.4.3 KNOWLEDGE REPRESENTATION

Frames are capable of storing both specific and general knowledge and of
accommodating both descriptive and prescriptive computation. In a frame
system, the properties of both specific objects and generic objects (classes) are
described by their slots which may contain references to other frames defining
their relationship, actual values or procedural attachements to compute them.
Generic classes are classified using the IS-A relationship and the membership
of an instance object in a class object is described using the AS-A relationship.
The capability of unifying the treatment of data and metadata as seen in
frame systems represents an important strength of object-oriented systems.

2.4.4 CAD/CAM SYSTEMS

CAD/CAM systems require unifying the treatment of data and metadata
since schema level information has to be frequently manipulated as regular
data. They require versions and multiple design transaction support.

2.4.5 OFFICE INFORMATION SYSTEMS

The object-oriented approach is very suitable for office information system
applications since the approach can easily support menu and icon based in­
terfaces and multimedia document management. The approach is also quite

37

suitable for distributed applications.

2.5 OBJECT-ORIENTED PROGRAMMING LANGUAGES
AND SOME EXAMPLES

Object-oriented programming environments support reusability and provide
tools for designing, selecting and reusing objects and managing an evolving
software base. Object-oriented techniques in programming languages enhance
reusability, maintenance and robustness through extendible type systems and
ease the development of concurrent and distributed applications.

The object-oriented approach is very suitable for many problem areas
in programming languages. It is extensively used for simulation programs,
systems programming, graphics and artificial intelligence. It is also used for
the theory of frames and their implementation in knowledge representation
languages. Some object-oriented languages were developed from scratch while
others are extensions to existing languages especially Lisp. Some of the most
important object-oriented programming languages are Simula [50], Smalltalk
[12] [13] [16] [20] [23], C-f-f [13], Objective-C [13], Loops [50], Flavors [50],
Hybrid [29] [39] [40] [41] [43] and Actors [3].

Objects are a uniform programming element for computing and saving
state. This makes them ideal for simulation problems where it is necessary
to represent collections of things that interact. They have also been used for
applications in systems programming since many things with states such as
processes, directories and files must be represented. Augmented by annota­
tion mechanisms they have also become important in the current tools for
knowledge engineering.

As object-oriented languages have become more widespread, a lot of work
has been done for developing standards so that objects could be used as a
portable base for program and knowledge bases.

2.5.1 SMALLTALK

Smalltalk is an integrated programming language and programming environ­
ment. One of the most important components of Smalltalk is the virtual
machine which consists of all system defined and user defined classes and

38

operations. Everything in the system is considered to be an object and this
homogeneity supports consistency. All constants and contents of variables
are objects. However, message selectors, comments and punctuation symbols
are not considered as objects. Everything that is not an object is a message
selector. The message tells an object what to do and the command carried by
the message is known as the selector. A message is, in fact, a message selector
with its operands. All operations are performed using messages, that is, by
specifying an object, sending it a message and getting back another object as
the result. Control structures and arithmetic operators are also implemented
as messages. Objects with similar structure and behaviour are grouped into
classes. The classes axe organized in a hierarchy and simple inheritance is
supported. Smalltalk also supports metaclasses. When an object receives
a message, the system checks if the corresponding method appears in the
object’s class definition. If there is no such method in the object’s class defi­
nition, the superclasses of that class are searched. Figure 2.1 shows examples
of class definitions, message calls and method definitions in Smalltalk.

Smalltalk only supports temporary objects. It provides automatic garbage
collection so the lifetime of an object is determined by the system and not
by the user. When an object is no longer referenced, its memory is reclaimed
for reuse. This approach is based on a kind of reference count mechanism.
Having automatic garbage collection eliminates the dangling pointer problem
in which invalid object identifiers produced by freeing some objects remain
in the system and are later accessed. It also eliminates the problem of not
having enough memory during the execution of a long-running program be­
cause unnecessary objects have not been freed. However, automatic garbage
collection has some efficiency problems. Especially in combination with ex­
tensive use of dynamically bound messaging, it can cause costs in machine
resources making Smalltalk unsuitable for performance-critical applications.

Smalltalk supports the object identity concept. In Smalltalk, objects are
not directly identified by their memory address but they are identified by
an offset into a table of object descriptors. One field of the entry specifies
the memory address of the object. This hides memory management from
the user making address handling the job of the system and allowing it to
move objects in the memory. The value of a smallinteger is used as its own
identifier so it does not occupy a slot in the object table. The object identifier
is 16 bits, one bit is used as a flag and the remaining 15 bits are used as the
value of a primitive type or the identifier of an object. The flag bit is used to
signal that the identifier is not that of a smallinteger but an offset into the
object table.

39

a) Object subclass; T^Person

instance variables: ’name address’ .

b) Person subclass: Student

instance variables: ’college class major’.

c) person <— Person new.

d) person name: ’John’ .

e) personList add: newName before: currentName.

f) name: aName name <— aName.

g) name jname.

h) person birthDate month.

Figure 2.1: Some example class definitions, message calls and method defini­
tions in Smalltalk

40

There is only one type, namely the object, so there is no need for declaring
data types and arguments. Thus Smalltalk is typeless.

There are three major operations that can be performed in Smalltalk
which are

• declaring object names and assigning them values

• sending messages

• defining new classes and methods

Actually, Smalltalk provides a browser for reading, changing and compiling
methods so no commands are necessary for these operations.

In a message call, the receiver appears to the left of the message selector
which is in turn followed by the arguments. A method may have some local
variables. Such local variables are specified within vertical bars. If a variable
appears in a method, it can be of six types [16]:

• an instance variable in the class of objects for which the method is
defined

• an argument of the message

• a temporary variable local to the method

• a class variable

• a pool variable

• a global variable

Class variables are shared by all instances of the related class and its sub­
classes, pool variables are valid across designated classes and global variables
are shared by all classes. Class, pool and global variables are not used often,
so there is a restricted type of lexical scoping. This strict information hiding
eliminates some scoping related problems and names need not be modified
to avoid naming conflicts. Temporary variables exist for the message’s exe­
cution life. Class and global variables are used for longer term storage and
are not in the local memory of instances of the class. Variable names and
message names can easily be overloaded.

41

A value is returned as the result of each method. The returned value
is always an object. The returned value may be significant or may merely
inform the sender that a requested action is complete. If the object to be
returned from a method is not specified, the object that received the message
is returned. The result of one message can be used as the object that receives
another message or as an argument in another message. Thus messages can
be concatenated.

There are basically four types of messages in Smalltalk [23].

1. Unary messages. A unary message is a message with no arguments
so it is composed of two parts: the name of the object to receive the
message and the name of the message. An example is the following
message which retrieves the value of the age instance variable for an
employee object.

employee age

2. Keyword message expressions. They may have as many arguments as
there are parts in the keyword. The selector of a keyword message is
composed of one or more keywords, one preceding each argument. A
keyword part is a simple identifier followed by a colon. An argument
is needed whenever a message selector is followed by a colon. Some
examples are

aPerson name; personname
aArray at: 1 put:5

The first example sets the name of a given person and the second ex­
ample places 5 as the first element of the array. The selectors in the
examples are name: and at:put:. Some other examples of keyword mes­
sage selectors are ifTrue:, ifFalse:, ifTrue:ifFalse and add:before:. Both
the receiver and the arguments can be variable names, constants or
other expressions.

3. Binary messages. They are like keyword messages with a single argu­
ment. The selector of a binary message is always one or two characters
from a designated set of special characters. For example

3 - f 4
total < = max

are binary messages. Binary messages are generally used for arithmetic
operations and comparisons.

42

4. The assignment operator. It is used to store values into variables and
is handled as a message. An example of an assignment message is as
follows:

sum ·(— 3 + 4

Since message expressions can be nested to arbitrary levels, precedence rules
are provided and can be overridden using paranthesis. Messages without ar­
guments are executed first. They take precedence over adjacent messages
that are operators (- f , x , / , = , > etc.). Operator messages are executed be­
fore adjacent messages whose names contain colons. Two messages without
arguments are evaluated left to right. This is also true for operators.

When a method needs to invoke a method defined in its class, it will
specify the receiver to be self. Using self message ceills, recursive methods
can be implemented. The super message call, that is a message call in which
the receiver is super, allows a subclass to make some incremental changes to
the method it inherits from its superclass.

Smalltalk control structures are handled using the object-message paradigm.
The message selectors related to control structures are ifTrue:, ifFalse:, ifTrue:
ifFalse:, ifFalse: ifTrue: and do:. The do: selector can be sent to collections
of various types and it iterates through the members of the collection.

Expressions are usually evaluated immediately. However, expressions can
be stored for later execution by enclosing them in brackets and thus creating
a block construct. A block is an object that represents a sequence of instruc­
tions whose execution is deferred until the block is sent a message to evaluate
itself. There is a system defined class called Block and all created blocks are
instances of this class. Most control structures are implemented as messages
to objects that take blocks as arguments. An example of such an if construct
is as follows:

(index < = limit) ifTrue: [total <— total -|- (list at: index)]

In most languages, the execution of a block can be deferred no longer than
the lifetime of the enclosing scope. In Smalltalk, blocks are allocated from
the heap and are disposed of by the garbage collector. Any block and its
context, that is, the environment in which it was originally created can be
held indefinitely and executed any time just by sending it a message. This
is independent of the message that created the block. The block is given a

43

reference to the caller’s context when the block is created and this context
persists as long as a reference to it exists in the system. Thus, a block can
access the context of the calling method that created it including its local
variables and arguments even when the value message is invoked by another
object.

Smalltalk source code and methods are compiled into an intermediate
form, called bytecodes, which is then interpreted. The compilation is done
incrementally as new classes, messages and methods are defined. The imple­
mentation of message passing is based on bytecodes and the system defined
class. Context. The compiled form of a method corresponds to an instance of
the class Context. The symbolic references in the method are translated into
indexes of structures similar to symbol tables. Each method context has its
own structures, one correspoxiding to temporary variables, one corresponding
to message and class references and a third on for class and global variable
references. The context associated with the method being executed is known
as the current context and when a message call is executed, the context as­
sociated with the method corresponding to the message becomes the current
context and the other context is pushed on to a stack. When a return from
a method is executed, the context on top of the stack becomes the current
context. Blocks are executed in a similar fashion.

2.5.2 SMALLWORLD

Small world [31] is a programming environment in which the real world is
represented using objects that have properties. A property represents a fact
about the corresponding real world entity. Smallworld actions (programs),
which operate on objects consider all of the relevant facts (all properties)
concerning the objects they manipulate. It is not a programming language
but a system where application programs can be developed. It is more than
a database since it provides actions for manipulating objects. All of the facts
related to the objects to be manipulated are stored with these objects.

Classes and superclasses are supported. Smallworld minimizes the differ­
ences between classes and non-class objects resulting in a simpler and more
consistent system.

Each Smallworld object belongs to some class and each class is an object.
The class of an object is specified as one of its properties. The classes are
organized in a tree. Classes can have any number of properties and may

44

define methods defining the actions that apply to all members of that class.

A method, which implements some action, applies either to an object or
to a class of objects. A method that applies to a single object is called simple
while a method that applies to all objects in a class is said to be inherited. A
simple method is represented as a property of the object that it acts upon.
On the other hand, an inherited method is represented as a property of the
class of objects that it acts upon. Objects that do not have a method for
an action, inherit the method from their class. A method is executed in an
environment with three string variables initialized: verb which is the name
of the action being requested, subject which is the name of the object being
acted upon and parameters which are the arguments being passed to the
action.

When an action is requested on an object, the corresponding method is
first searched in the object, then in the class of the object and finally in the
class UNIVERSE. One of the functions of UNIVERSE is to define a set of
methods and objects to serve as default definitions for actions. The objects
that belong to the class UNIVERSE represent concepts that do not fit the
normal object/class structure of Smallworld.

Smallworld allows the users to organize the physical storage of objects
into separate databases called libraries.

Smallworld was influenced by Smalltalk but there are some differences.
Smallworld and Smalltalk differ in their concept of an object. Smalltalk
structure is homogeneous since every object is a refinement or instance of
another object. On the other hand, Smallworld is heterogeneous. Each object
is an independent unit. Each object is a collection of properties and can define
its own methods for implementing actions. Objects are grouped into classes
for organization and sharing of properties and methods. Another difference
is their view of the object-oriented paradigm. In Smalltalk, every operation
is treated as an object or method manipulation. Smallworld allows both
object-oriented operations and operations from different environments. A
final difference is the reliance on sophisticated display technology. Smalltalk,
as opposed to Smallworld , depends on bit-mapped displays and pointing
devices.

45

2.6 OBJECT-ORIENTED DATABASE MANAGEMENT
SYSTEMS AND SOME EXAMPLES

An object-oriented database management system is a system that provides
database-like support for objects, that is, encapsulated data and operations.

Object-oriented database management systems differ from object-oriented
programming languages in that they support [57]:

• persistence

• unique naming (object identifiers)

• sharing

• transactions

GemStone [12] [34] [35] [36] [46] is the only commercial object-oriented
database management system. However, there is a lot of researda being done
and many prototypes have been proposed. Some examples are ORION [5]
[6] [10], IRIS [18] [33] which is implemented on top of a relational database
management system, EFDM [30] and RDM [37]. IFO [1] [2] is a semantic data
model aiming at providing a formal definition of semantic and object-oriented
data models.

2.6.1 GEMSTONE

The goal in GemStone [12] [34] [35] [36] [46] is to merge object-oriented pro­
gramming language technology with database technology. It combines the
data type definition and code inheritance of Smalltalk-80 with permanent
data storage, multiple concurrent users, transactions and secondary indexes.
It supports set calculus, path syntax, time, concurrency, authorization, recov­
ery, replication and directories. It provides a flexible data model, an object-
oriented, disk-based storage management system with an object-oriented lan­
guage OPAL. OPAL is the language for data definition, data manipulation
and computation functions of GemStone. It provides built-in identity for all
temporary and persistent objects. It solves the impedance mismatch problem
and provides unification by combining Smalltalk-80 and a set data type with
predicate calculus. The basic idea is to combine programming and database
language data types and database transactions.

46

The user interface of GemStone provides an interactive interface for def­
inition of new data types and execution of queries in OPAL, a procedural
interface to conventional languages and a windowing package on which to
build user interfaces for applications.

GemStone supports the basic concepts of object-orientation: objects,
classes, messages, methods and simple inheritence.

Objects may be atomic (integers, characters etc.) or structured. All
structured objects are represented using instance variables, each of which
has an object as its value. There are three types of instance variables:

• named instance variables - They are similar to attribute names in rela­
tions

• indexed instance variables - They are similar to arrays and are consec­
utively numbered starting with 1.

• anonymous instance variables - They are used to form collections where
only membership is important and order is unimportant.

A class defining object is used to specify the common information for the
instances of a class and all instances reference this object that can be the
value of an instance variable in any of its instances.

All objects in the system reside in a disk-based object space which is
divided into repositories. A repository represents a dismountable partition of
the object space and is implemented as a direct access disk file. Repositories
are divided into disjoint regions called segments for purposes of authorization
and concurrency control. A segment is a chunk of object storage that is owned
by a particular user, who can store objects in it and grant access to other
users. Segments expand to accommodate the objects stored in them.

Repositories may be replicated on disk against media failures. Replication
is used instead of transaction log files. Because repositories of objects are
dismounted, a mechanism must be provided to preserve consistent object
identity when information is taken off-line and later brought back online.

GemStone’s transaction control uses an optimistic approach that gives
read-only transactions priority over read-write transactions when they re­
quire a commit. The approach is based on the assumption that read-only
transactions are more frequent than read-write transactions.

47

GemStone has two main parts, the executor and the object manager.
The executor is responsible for session control. It handles communications
between GemStone and host software: receiving blocks of code, returning
results and error messages. It maintains a compiler and interpreter for each
user. The interpreter is an abstract stack machine that executes compiled
methods consisting of sequences of bytecodes. It dispatches bytecodes, per­
forms stack manipulations and some primitive methods and makes calls to the
Object Manager. The compiler executes calculus expressions into procedural
form.

The Object Manager performs operations related to the storage and ac­
cess of objects. It handles operations related to concurrency and secondary
storage management: transaction control, authorization, data replication, re­
covery and directory management. In addition, it provides access to different
versions of the data.Each user session has its own object manager with a
private object space. Sessions have shared access to the permanent database
through transactions.

Since GemStone objects retain history, they grow with time so it is not
very suitable to use a fixed block of memory to store objects. Objects axe
implemented based on associations. An element is represented as an element
name and a table of associations. The associations are pairs of transaction
times and object pointers, each representing that the element acquired the
object as its value at the time given by the transaction time. Objects are
broken into elements and associations, which are organized into a linked list
under header for the object. A directory may be interposed between the
object header and the participating elements. Such a directory is useful
when an object has a long history or it represents a set whose elements will
be accessed associatively. Between objects, pointers to elements are usually
physical pointers since most of the data is tree structured. Thus, physical
access paths parallel logical access path where objects are not shared. When
an object is an element of more than one set, one logical path is chosen as
the basis for the physical access path and other references to the object use
a global object-oriented pointer (GOOP). The GOOP is resolved through a
global object table to get the primary logical path to the object, from which
its physical access path can be deduced.

The Object Manager has several subcomponents. The transaction man­
ager is shared by all invocations of the Object Manager and handles con­
current use of the permanent database in an optimistic manner. It records
accesses to the database for each session and validates them for consistency

48

when a transaction commits.The directory manager creates and maintains
directories which handle object histories. The Linker incorporates updates
made by a transaction in the permanent database at commit time, calling
for restructuring of directories as needed. The Linker is called by the Boxer
whose job it is to fit objects into tracks after database changes. The track
manager schedules reads and writes of tracks. The commit manager provides
safe writing for groups of tracks since versions are kept, no garbage collection
is needed. Garbage collection for temporary data can be done by discarding
the work space at the end of a session.

2.6.2 ORION

ORION [5] [6] [10] is an object-oriented database system prototype being
developed at MCC. It adds persistence and sharability of objects created
and manipulated in object-oriented applications. The system supports the
basic object-oriented concepts such as objects, classes, inheritance and meth­
ods. The system is being developed especially for CAD/CAM, artificial in­
telligence applications and office information systems with multimedia doc­
uments. There are two basic requirements for ORION which are advanced
functionality and high performance. It supports version control and change
notification, storage and presentation of unstructured multimedia data, and
dynamic changes to the database schema. For high performance, it supports
appropriate access paths and techniques for query processing, buffer manage­
ment and concurrency control.

Due to the requirements of these application areas, the basic model has
been enhanced to support schema evolution, composite objects and version
management.

In ORION, the state of an object is represented using instance variables.
The values of an instance variable can be restricted to belong to a certain
class. However, typeless instance variables are also supported. The behaviour
of the object is captured using messages. To reduce redundant storage and
specification of objects, shared-value and default-value instance variables are
introduced into the model. A value is specified for both type of variables.
For a shared-value variable of a class, all instances of the class take on the
specified value. These are identical to the class variables described in the
previous sections. For a default-value variable, those instances of a class
whose value for the instance variable is not specified take on the specified

49

default value. ORION also supports classes of objects. Each object raust
belong to a single class.

In ORION, classes and instances axe viewed as objects. This is mainly
for the uniform handling of messages. Messages are sent to objects and most
often to instance objects. To create an instance of a class, a message is sent
to the corresponding class object.

ORION was first designed to support simple inheritance but was extended
to support multiple inheritance allowing a class to have any number of su­
perclasses. It supports the default conflict resolution scheme in which the
property of the first superclass in the immediate superclass list of the class is
chosen. Users are allowed to explicitly change the order of the superclasses.
ORION, bcLsically, provides three ways in which a user can override the de­
fault conflict resolution scheme:

1. The user may explicitly inherit one instance variable or method from
among several conflicting ones.

2. The user may explicitly inherit one or more instance variables or meth­
ods that have the same name and rename them with the new class
definition. ORION ensures that all names inherited or defined within
a class are distinct.

3. If conflicting instance variables have default values that are set objects,
then one or more of these variables may be inherited under the same
name and the default value is another set object which is the union of
the inherited default values.

ORION supports the primitive types integer, float, string and boolean
as the class Ptype. These can be used as primitive domains of instance
variables. Collection and set objects are also supported. All user defined
classes are instances of the system defined class Class and it is sufficient to
send a message to the class Class to create a new class. The root class is
Object.

For each user defined class and for the class Ptype and its subclasses,
ORION implicitly defines a Set-of class as a subclass of the Set class [6].
These Set-of classes form a lattice parallel to the class lattice. The Set-of
class of a user defined class has two special instances: the set of all instances
of the class and the set of all instances of the class and its subclasses. The
notion of the Set-of class is especially important for persistent objects. While

50

a program is executing, objects created by the program can be referenced
through symbols that point to them. A program’s symbol table provides
handles for the objects. However, a newly started program will have no
direct references to instances of classes through its symbol table. Instead, the
program can refer to the special instances of the Set-of class of the required
class. Predicate-based queries are messages to these set objects and return
subsets of these sets. Another motivation for the automatic generation of Set-
of classes for user defined classes is that instance variables often require values
that are sets of objects. Set objects must belong to some class. Without these
Set-of classes, the user would have to either explicitly create a class to capture
the structure and semantics of these objects or treat them as instances of class
Object, losing their semantics.

In ORION, all instances of a class are placed in the same storage seg­
ment. A separate segment for each class is allocated automatically. In some
cases, especially when dealing with composite objects, multiple classes may
be stored in the same segment. The user is required to specify which classes
are to be stored in the same segment.

One of the extensions ORION has introduced is schema evolution [5]
[6]. ORION supports all the schema evolution operations specified in the
previous sections. The most important functions are to add a new class, add
an instance variable to a class, delete a class and delete an instance variable
from a class.

A new class may be defined as a specialization of an existing class or
classes which may be specified as the superclasses of the class. It may redefine
some of the instance variables and methods. If there is a conflict the conflict
resolution rules previously described are applied.

When an instance variable is added to a class, if there is a conflict with an
inherited instance variable, the new variable will override the older definition.
All instances of the class will be modified to include the new variable. If the
class has any subclasses, they will inherit the new instance variable and if
there is a conflict the new variable will be ignored.

Whenever a class is deleted, all its instances are deleted automatically
but subclasses of the class are not deleted. The deleted class will be removed
from the superclass lists of its subclasses and the subclasses will be assigned
the superclasses of the deleted class as superclasses. Also, the subclasses will
lose the instance variables and methods they inherited from the class. If

51

these definitions had overridden some other definitions these definitions will
be inherited. If the class to be deleted is the domain of a variable in a class,
the superclass of the deleted class will be taken as the domain of the variable
unless another domain is specified. When an instance of a class is dropped,
all objects that reference it will be referencing a non-existent object. ORION
does not automatically identify references to non-existent objects, because of
the performance overhead.

When an instance variable is deleted from a class, the class may inherit
the instance variable from another superclass if there had been a conflict
involving the variable. All subclasses of the class will be affected if they had
inherited the variable. Methods involving that variable will become invalid.
These methods may be deleted or redefined.

Another schema evolution operation could be the changing of the domain
of an instance variable of a class. The domain of an instance variable is always
a class and the domain of a variable can only be changed to a superclass of
the old domain. Thus, the instances of the class undergoing the change are
not affected.

ORION supports composite objects and dependent objects [6]. A com­
posite object consists of a root object connected to multiple dependent objects.
Each dependent object can be a simple object with no dependent objects, a
set of objects or the root of a hierarchical structure. In a composite ob­
ject, the same instance object cannot be referenced more than once so the
definition of a composite object is a strict hierarchy of composite objects.
All instance objects within a composite object can be referenced by instance
objects that do not belong to the composite object.

The instances that constitute a composite object belong to classes and
these classes can be organized into a hierachy called a composite object schema
and a non-root class in this hierarchy is called a component class. Each non­
leaf class in the hierarchy has some instance variables that serve as composite
links. These variables are composite instance variables. If an instance object
is referenced through a composite link, it must be the only composite link
to the object but the object may be referenced using other instance vari­
ables. Composite links axe inherited along the class hierarchy. A composite
instance variable may be changed to a non-composite instance variable but
the inverse conversion is not allowed since an object can be referenced only
by a single composite link and the inverse conversion would require some kind
of a reference count mechanism.

52

A composite object schema is created through composite instance vari­
ables which have component classes as their domains. An instance object
may be made a part of a composite object only at its creation time. The
integrity constraint for composite objects is that any instance object within
a composite object cannot be referenced through more than one composite
link. Instance objects of a composite object do not contain the identifier of
the composite object to which they belong. An instance object which is a de­
pendent object cannot have independent existance. Therefore, if any instance
object within a composite object is deleted, it causes a recursive deletion of
instances that depend on it. A dependent object remains a dependent object
throughout its lifetime unless the related composite link is converted into a
non-composite link. The only way in which a composite link can be severed
is either by the deletion of a dependent object or by making it a part of some
other composite object.

The components of a composite object should be clustered. A composite
object can be stored in a sequence of linked pages. If the object increases in
size, a new page can be added and if the object decreases in size, pages may
be released or compacted. The only problem occurs when two composite ob­
jects exchange parts. They should also exchange storage locations. However,
ORION does not perform this reclustering.

In ORION, there are two types of versions [6] [10]. A transient version can
be updated or deleted by the user who created it and a new transient version
may be created from an existing transient version. The previous transient
version then becomes a working version. A working version is stable and
cannot be updated, it can be deleted by its owner and a transient version can
be derived from a working version. A transient version can be promoted to
a working version either explicitly or implicitly.

Since more than one transient version can be derived from a working ver­
sion, version history is represented in a hierarchy called the version derivation
hierarchy. Dynamic binding of an object with a versioned object is supported.
The user may specify a particular version in the hierarchy as the default ver­
sion. If a default value is not specified, the system selects the version with
the most recent timestamp as the default.

Version handling is quite a performance overhead so versions are only
kept on classes which are specified to be versionahle. A version derivation
hierarchy is kept for each instance of a versionable class. A generic object is
used as the data structure for the version derivation hierarchy.

53

2.6.3 IFO

IFO [1] [2] is a semantic data model that provides mechanisms for representing
structured objects and functional and IS-A relationships between them.

Although IFO is a semantic data model, a brief description of the model
is included in the thesis because object-oriented data models and semantic
data models are very closely related and IFO aims at providing a theoretical
investigation of semantic data modelling issues. It provides a good model
for developing object-oriented database schemas. There are four basic issues
related to semantic data models. These can be listed as follows [1]:

• Semantic data models are object-based, that is data about objects and
relationships between them are represented directly rather than using
symbolic identifiers.

• Many relationships between data objects are functional.

• The system must be capable of representing IS-A relationships, that is,
it must support subtypes.

• The model should include a mechanism for constructing new object
types out of old ones.

One of the most important features of IFO is that IFO schemas and in­
stances are unambiguously and rigorously defined. There is a convenient and
simple method for graphically representing an IFO schema. In the graphical
representation each distinct data type has a distinct representation. Another
feature is that functions can be defined to depend on other functions.

In IFO objects are modelled using object reps (object representations).
There are two atomic object reps which are printable objects corresponding
to objects that are alphanumeric strings and abstract objects corresponding to
objects that have no underlying structure. Similarly, there are two construc­
tors for forming non-atomic object reps. The first is the *-vertex constructor
which forms a set of objects of a given structure type. The second construc­
tor which is the X-vertex (cartesian product operator) which forms ordered
n-tuples of instances of the children of that vertex. Figure 2.2 gives some
examples of the graphical representation of IFO objects. Squares are used to
represent printable objects eind circles represent abstract objects. Therefore,
the first example corresponds to a printable object ’name’, the second to an

54

o □

p e o p l e

0

6

C A R

P E R S O N N A M E P E R S O N M A K E LICEN CE
PLA TE

Figure 2.2: The graphical representation of IFO objects, object reps

ST U D E N T -S E T

Figure 2.3: An exaraple fragment rep

abstract object ’person’, the last two examples correspond to *-vertex and
X-vertex constructors.

Fragment reps (fragment representations) are used to represent functional
relationships. Functions are relationships between pairs of sets of objects
so only *-vertices can participate in functional relationships. The function
must be onto and it may be optionally specified as being total or one-to-one.
Nesting of functions to arbitrary levels is supported. Figure 2.3 shows the
fragment rep corresponding to the function GR which maps a set of students
to a set of grades.

The IFO model supports IS-A relationships, that is, subtypes. The basic
characteristic of IS-A relationships is the top-down inheritance. In other
words, the structure and properties of the superclass are inherited by the
subclass. However, IFO supports two kinds of IS-A relationship, namely,
specialization and generalization. For example, the fact that a student is a
person is specialization whereas saying that cars and planes are vehicles is
generalization. In specialization, the inheritance is from top to bottom. A
student is also an instance of the person object and it has the same structure
as a person object. On the other hand, in generalization the structure is
inherited from bottom upwards. A vehicle is either a car or a plane and
a vehicle object may have the structure of either a car or a plane. Figure
2.4 shows the representation of specialization and generalization edges in

55

PERSON VEHICLE

Figure 2.4: The representation of specialization and generalization (IS-A)
relationships

IFO. The first example shows specialization edges representing the fact that
EMPLOYEE and STUDENT objects are specializations of the PERSON
object and they have the same structure. The second example represents the
generalization relationships between CAR, PLANE and VEHICLE objects.
The VEHICLE object is the generalization of CAR and PLANE objects. The
node at the head of two or more generalization edges is disjoint if the vertices
at the tails of the generalization edges are disjoint. A node at the head of
two or more specialization edges is labelled covers if the object set of this
vertex is equal to the union of the object sets of the vertices at the tails of
these specialization edges.

An object rep is a directed tree in which each printable vertex and each
abstract vertex has no children, each ^-vertex has exactly one child and each
X-vertex has one or more children ordered from left to right [2]. Therefore,
the leaves of the tree are always printable or abstract vertices. A structured
object rep is an object rep with a specification of the structure types associated
with each abstract type. Extended object reps are obtained if generalization
relationships are replaced by -{--vertices. Each +-vertex has two or more
children where the subtrees below distinct children are different and where
each root of the subtrees is not a +-vertex. It acts like a union operator.
Figure 2.5 shows an extended object rep. A structuring assignment for an
object rep is a mapping which assigns an extended object rep to each abstract
vertex.

A fragment rep is a directed tree R = (V,E) where E is the disjoint union
of object edges, Eq., and fragment edges, Ep, (V,Eo) is a forest of object
reps, the head and tail of each fragment edge is a *-vertex and the tail of
each fragment edge is either the root of R or the child by an object edge

56

VEHICLE

Figure 2.5: An extended object rep

of the head of a different fragment edge. A structured fragment rep can be
defined similarly to structured object reps.

An IFO schema is a forest of fragment and object reps which has any num­
ber of specialization and generalization edges and can be represented using
an IFO graph which obeys some restrictions. From the IFO graph, the object
definition graph is obtained by reversing the object ajid specialization edges
and taking the union of these with the generalization edges [2]. If the edge
(p,q) is in the object definition graph, then vertex p must be defined before
vertex q. There should be no directed cycles in the object definition graph.
The restrictions which must be satisfied by the IFO graph corresponding to
an IFO schema can be listed as follows:

• There should be no directed cycles of IS-A edges in an IFO schema.

• A given type cannot be a subtype via specialization of two fundamen­
tally different types.

• Generalizations result in a set of objects of the generalized type. Gen­
eralization edge heads cannot occur in object reps which are the range
of some fragment rep. This is because the members of a generalized
type must be determined by the constituent subtypes and should not
be affected by the behaviour of some function.

If the object structure type of an abstract vertex is not determined by IS-A
edges then only unstructured abstract objects can be used to populate it. If
two abstract vertices are not explicitly related by IS-A relationships then the
set of objects associated with them must be disjoint.

When building a system, the user may start by specifying the printable

57

and abstract types and then the fragment and IS-A relationships may be
added. While specialization edges may be used to resti;ict the possible set of
objects associated with a vertex, generalization edges should be used to create
new object sets out of existing ones. For a good design, the head and tail
vertices of each generalization edge and the head vertex of each specialization
edge should be a primary vertex. A ■primary vertex of an IFO graph is the
object-child of a ^-vertex which is the root of a maximal fragment rep.

A calculus-based language has been designed for users to perform various
operations on an IFO schema.

2.7 CONVENTIONAL VERSUS OBJECT-ORIENTED
DATABASE MANAGEMENT SYSTEMS

Current database systems implement an abstract data type like a relation
rather than support natural and easy modelling of real world entities. They
hide the complexities of file systems and indexing techniques and provide a
degree of physical data independence. The future of database systems will
be knowledge management systems with more support for data semantics,
inferencing and general purpose programming.

Current systems are limited in both data modelling and programming
interfaces [12] [36].

a) Type definition facility- Most database systems supply a fixed set of op­
erations. They do not allow the definition of new types or the addition
of operations. The constructors are also limited. The operations for
higher-level types are induced by the type constructors and can not be
extended. There is no distinction between type definition and data def­
inition causing some redundancy. The aim in 0 -0 DBMS is to support
arbitrary levels of data structuring, to allow definitions of operations on
types and to uniformly separate type definition from type instantiation.

b) Artificial Restrictions. In conventional systems there are some restric­
tions imposed by the implementation which must be satisfied by legal
database schemes .Some examples are limits on field length, number of
fields in a record etc. 0 -0 DBMS try to avoid implementation depen­
dent limits on the sizes of database schemes and data items. The size
of data items should only be limited by the secondary storage capacity.

58

c) Structural Limitations- The data modelling capabilities of current database
systems do not support the complexities and variations seen in real-
world problems. There are also restrictions on how the data structur­
ing operations may be applied. Dynamic modification of schemas is
not always supported and if supported usually requires database re­
structuring. In 0 -0 systems variations in structured objects, having
arbitrary data items as values, schema evolution without restructuring
are supported .

d) Modelling power- In conventional DBMS real-world problems are encoded
into available data structures and they are usually over-simplified, thus
the utility and reliability of the data are compromised. When informa­
tion is encoded, application programs must deal with the encoding and
extra integrity constraints are needed to ensure legal encodings. A data
model provides entity identity if the data representing any entity can be
referenced directly as a unit and the entity may explicitly appear in mul­
tiple places in a database without any pointer or other indirection mech­
anism visible to users. Lack of entity identity leads to inconvenience
in modelling and application of constraints. Entity identity also allows
easier sharing of data between data items. Object-based models pro­
vide entity identity through object identity. Commercial databases do
not support a hierarchy of types where as 0 -0 systems support classes,
inheritence and a clciss lattice structure. Another problem with cur­
rent systems is that update commands are machine-oriented. Changes
in the state of the real world involves updates to several database ob­
jects. Being able to model real-world changes is a powerful capability
for a database system. It can help in choosing implementations for
data structures and reduce the overhead in integrity checking, since
updates can be made to preserve constraints. Applications become eas­
ier to write. 0 -0 DBMS provide powerful data modelling capabilities
through flexible data structuring.

e) Access to past states of a database. A temporal extension to a data model
provides historical access for users and an error recovery mechanism. A
temporal data model replaces deletions by maintaining object history.
Most systems keep a history in the form of checkpoints and recovery
logs for error recovery. However, they do not support user access to
history. A temporal data model provides both historical access and
error recovery. A goal of 0 -0 system is to support version management.

f) Separation of languages. In most programming languages, persistent and
temporary data is treated differently. The persistent data is stored in

59

files. However files support fewer data structures, so the data to be
stored has to be encoded. In databases, data manipulation languages
do not support arbitrary computations on database entities, requiring
an interface to a general-purpose progrcimming language. One language
must be embedded in other. The problem associated with having two
languages is impedance mismatch [12] [50] [56]. The mismatch can be
conceptual or structural. The conceptual mismatch occurs if the two
languages support different programming paradigms, one being declar­
ative and the other procedural whereas the structural mismatch occurs
if the two languages support different data types. 0 -0 systems aim at
providing a single language for data manipulation, general computation
and system commands.

g) The problems related to the data dictionary [56]. In a database manage­
ment system, the data dictionary/directory is used to control access
to the database, ensure data integrity and supervise the distribution
of data. In the past, the data dictionary was a collection of static
record structures designed and built after a study of the problem to
be modelled. It was fixed throughout the life of database applications.
Dictionaries were viewed as static tools for the control of data and
information resources. Especially for CAD/CAM and knowledge rep­
resentation applications, dictionaries are required to be dynamic and
active in the design and management of databases. Database design,
dictionary definition and data acquisition must be integrated. This
brings two features for the dictionary [56]:

• the need for more dynamic structures capable of evolving over time
and with changing requirements

• a closer integration between data and metadata

An object-oriented dictionary facility uses an object-oriented organi­
zation to represent and describe a data dictionary schema. Objects
are used to represent classes and instances of schema structures. All
schema related operations axe implemented as methods and schema de­
scriptions are maintained as object properties. The methods maintain
the consistency of the schema and database objects when the schema
is modified.

60

2.8 ADVANTAGES AND DISADVANTAGES OF THE
OBJECT-ORIENTED APPROACH

Object-oriented systems provide major advantages in the production and
maintenance of software: shorter development times and a high degree of
code sharing. They support versatility, flexibility and a high degree of porta­
bility [45]. The problem can be decomposed into subproblems. Systems can
be modelled easily since all conceptual entities are modelled using a single
concept, that is, objects. These advantages make object-oriented systems an
important tool for building complex systems.

One of the most important ideas behind object-orientation is the fact
that it crosses a threshold of perception [45]. Working with objects and
messages is like working at the human cognition level and provides a high
level of abstraction. The body of information and action can be realized as a
single unit. This is similar to human perception. Humanbeings perceive the
world as being made up of objects and the brain arranges the information
into chunks. By using object-orientation, the same idea can be used to solve
various problems. Designing a system in terms of objects makes the system
easier to understand. The ease of understanding does not actually come
from the details of how a procedure is constructed but from not having to
consider the other parts of the system. This, in turn, is a result of the data
encapsulation and abstraction supported by object-oriented systems. Good
design and clean code are also results of using object-oriented systems.

The object-message paradigm and encapsulation tend to promote a more
modular system since each message represents a module. Modules are easier
to create and understand. In addition, there is a tendency for each message
to be a coherent unit. Problems of interfacing modules, which are generally
associated with bottom-up development, are absent when working with ob­
jects and messages. Method creation can be considered as being bottom-up
whereas class creation is top-down. One reason interfacing problems are min­
imal is that objects are generally passed as arguments in messages and their
instance variables do not explicitly appear. Consequently, changes in the
structure of an object have no effect on most messages in which the object
appears. The support of typeless object variables and dynamic binding add
to this property.

Due to the existance of predefined classes and messages, new classes and
messages can be defined using them thus eliminating unnecessary details. In

61

addition, objects can be arguments to messages and since objects are a set
of variables, they reduce the number of arguments and hence result in more
readable code.

Structural changes can be made to parts of an object-oriented system
without the need of extensive compilation and linking. Most changes occur
at a high conceptual level and can be translated directly into objects and
messages.

Information hiding and data abstraction increase reliability and separate
procedural and representational specification from implementation. Dynamic
binding increases fiexibility by permitting the addition of new classes of ob­
jects, that is, new data types without having to modify existing code. In­
heritance together with dynamic binding permits code to be reused. This
introduces the advantage of reducing overall code and increasing program­
mer productivity. Inheritance enhances code factoring which means that code
to perform a particular task is found in only one place and this eases the task
of software maintenance.

One of the most important disadvantages of object-oriented systems is
the run-time cost of supporting dynamic binding [45]. A message call costs
more than a function call. Actually, messages perform more operations than
a function call. Therefore, in some applications the functionality provided
by message passing can make the application run faster due to the fact that
a message can perform the operations that require multiple function calls.
Implementation of object-oriented systems is more complex than comparable
conventional systems, since the semantic gap between these languages and the
hardware is greater. Therefore, more software simulation is needed. Another
possible problem with object-oriented systems is that a user must learn a
completely new and different approach and an extensive class library. As a
result, object-oriented systems are more dependent on good documentation
and development tools.

62

3. THE OBJECT-ORIENTED DATABASE
MANAGEMENT SYSTEM PROTOTYPE

3.1 AN OVERVIEW

The object-oriented database management system prototype developed at
Bilkent University supports most of the basic concepts of object-orientation.
The supported concepts are the concept of an object, object identity, classes,
methods, messages and inheritance. As to the extensions, only indexing is
supported. The system was implemented using the C programming language
[25] [26] and Sun workstations [51] [19] [17] [15] [11] [55] running Berkeley
Unix 4.2 BSD [9].

A computationally complete language has been designed and implemented.
It serves the data definition, data manipulation and computation aspects of
the prototype. The aim is to provide a unified language performing all the
operations and solving the impedance mismatch problem. Methods are gen­
erally written using the command language. A compiler recognizing the lan­
guage has been implemented. Methods or commands entered in this language
are first compiled into a set of integer codes and then executed. The language
is strongly-typed and supports the primitive data types integer and character
in addition to supporting collections, sets, arrays and strings. Also, the name
of a class in the system is a valid type allowing data types and their related
operations to be added to the system at run time. Such newly added classes
are treated as any other system defined class. Complex type definitions are
not directly allowed but all kinds of objects and types can be defined using
class definitions and inheritance.

The system is based on the class model. The objects in the system axe
grouped into classes and each object belongs to a single class while a class
may have many instances.

63

Everything in the system is considered as an object. Therefore classes are
also objects. Thus, the system is homogeneous in its treatment of objects. A
class defines the instance variables representing the state of its instances and
the messages that represent their protocol. Methods are used to specify how
the required operations axe to be performed. A class definition can define
some class variables or shared values as they axe called in the prototype, to
represent values shared by all instances of the class. A default value can be
specified for each instance variable. A class can be associated with a list of
keys. If specified, these keys could be used for indexing operations. Since the
language is strongly-typed, a type must be specified for each instance vari­
able and method or message argument. The notion of composite objects or
dependent objects is not supported. All objects are passive and independent.

The system uses value and location independent, system generated, unique
surrogates to represent object identity. There is a unique surrogate corre­
sponding to every object and this surrogate remains unchanged all through
the lifetime of the object. The surrogate is assigned to the object as soon as it
is created through instantiation. The surrogate to be assigned is determined
by a permanent counter. Only for integer and character objects, the value
is encoded into its surrogate. The applied object identity scheme provides
both location and data independence, so it supports strong identity in both
the representation and temporal dimension.

The system always preserves its consistency with respect to object iden­
tifiers. No two distinct objects ever have the same identifier.The dangling
identifier problem is also solved.

Each class in the system is associated with a set of methods and messages.
The methods can either be written in the designed command language or can
be written in C. If a method is written in C, when a message involving the
method is invoked, the method call is translated into a C function call and
executed as a system call. If the method invoked is written in the command
language, it is first compiled and then the resulting set of integer codes is
used to execute the necessary operation. Each instance object may have its
own set of methods in addition to the methods defined in its class object.
This removes the necessity of having a metaclass to support instance objects
with their own methods. The system allows the receiver of a message to be
a pseudo variable. Calls to self and super are supported allowing recursive
methods.

The system allows classes to be specified as being subclasses of previously

64

defined classes. However, a class may have only one superclass. Therefore
simple inheritance is supported and all user and system defined classes form
a tree. A subclass inherits all instance variables, shared values, keys, meth­
ods and messages from its superclass and inductively, from all classes in its
superclass chain. It may redefine and override these inherited properties. It
may make use of an inherited method and do some incremental additions to it
using the message call to super. Type theory inheritance, external interface
inheritance, code sharing and reusability are supported but polymorphism
is not supported since generic operations axe not allowed. Polymorphism in
method and message names is supported.

Each object has its own set of instance variables representing its state. An
object is stored as a contiguous block of memory. If an instance variable is of
a primitive type, since its value is encoded in its surrogate, its value is stored
in the corresponding location. On the other hand, if it is not of a primitive
type its surrogate is stored in the corresponding location and the physical
address of the object is found from the object table which maps the object
identifiers to their corresponding addresses. All objects are treated uniformly,
that is, no distinction is made between very large objects and other objects
or variable sized objects and fixed size objects.

Reference counting and garbage collection are not performed in the sys­
tem. Whenever an object is deleted from the system, a flag is set in the
corresponding entry of the object table which is used to access objects and
which provides a mapping from object identifiers or object-oriented pointers
(oops) as they are called in the prototype, and the memory location of the
object. This flag indicates that the object is deleted and whenever a reference
to that object is made, the system will detect that the object has been deleted
by looking at the object table. All objects and methods are persistent.

A different storage mechanism is used in secondary storage and clustering
is performed. All references in an object are resolved and axe clustered.

The developed prototype being a single-user system does not support con­
current access to objects and authorization control. The notion of a transac­
tion is not supported either.

Some of the basic schema evolution functions such as adding a class and
deleting a class are supported. However, versions are not supported since
the notion of time is not supported by the system. Indexing is provided
on specified key instance variables. Both equality and identity indexes are

65

Figure 3.1: The four major modules of the prototype

supported and indexes are created on classes upon user request. Indexes are
implemented using B-trees.

3.2 THE MODULES OF THE SYSTEM

The object-oriented database management system prototype designed and
implemented at Bilkent University consists of four major modules which are
object memory and schema evolution; message passing ; secondary storage
management, indexing and the user interface [44]. The user interface is the
highest level module. It is built on top of the message passing module which
is in turn built on the object memory and schema evolution module. At the
lowest level is the secondary storage management module. The four modules
are shown in Figure 3.1.

3.2.1 OBJECT MEMORY AND SCHEMA EVOLU­
TION

Object memory [44] [27] handles the representation, access and manipulation
of the objects in the system. Each object is associated with a unique surrogate
called object-oriented “pointer {oop). Object-oriented pointers are used to
identify objects independently of their values. The message passing module

66

oop
class oop

size
field 0
field 1

field n

Figure 3.2: The format of an allocated object

and the object memory communicate about objects using object-oriented
pointers. An oop is a 32 bit positive even number allowing approximately 2̂ °
objects to be referenced. Object memory supports primitive type objects,
string objects, class objects, collection objects and instance objects. The
primitive type objects are integers and characters. To provide efficiency, the
values of the primitive type objects are encoded in their oops.

Object memory uses an object table which maps the oops of the objects
to their physical locations in the memory. All references to an object are
indirected through the object table. Thus, the oops of the objects are in fact
indices into the object table. This indirection provides the benefit of moving
the objects easily in the memory. Object memory is implemented as a hash
table in which oops are used to provide direct access.

Objects are represented as contiguous series of words. Each word is used
to store the value of an instance variable. The actual data of the object are
preceded by a header information which includes the oop of the object, the
oop of the class to which the object belongs and the size of the allocated
space for the object. The format of an allocated object is shown in Figure
3.2. The fields of an object are accessed by zero-relative integer indices.

Classes are themselves objects. The representation of a class object is dif­
ferent from the representation of an instance object. It contains information
necessary to construct and use its instances. This information includes the
name and oop of the class, oop of its superclass, the number of its instances,
the names and definitions of its instance variables, the names of its messages
and methods, the domain of the instance variables, and a pointer to the list
of its instances. The format of a class object is shown in Figure 3.3.

Classes form a hierarchy, that is each class has only one superclass. The
hierarchy is implemented as a tree. There are five basic system defined classes

67

class oop
class name
super oop
instance count
instance variable count
ptr to variable definitions
ptr to method definitions
ptr to instance variable
domains
ptr to the first instance
ptr to the place in the
hierarchy tree

Figure 3.3: The format of a class object

Object

Figure 3.4: The initial class hierarchy and the system defined classes

as shown in Figure 3.4. These are Object class, Class class, Collection class.
Primitive Type class and Method Context class. Object class is the root of
the hierarchy. The user defined classes are instances of the Class class and
they are inserted into the hierarchy when they are created. The information
stored in the nodes of the tree includes the oop and name of the class, a
pointer to its superclass, a pointer to its subclass list and a pointer to the
next sibling in the subclass list of its superclass.

When a new instance of a class is created, a chunk of memory is allocated.
This new instance will also be the instance of the superclasses in the hierar­
chy. Since every class has its own private representation, a separate chunk is
allocated for each class in the superclass chain.

6 8

The object memory provides the following fundamental functions:

• Determine an object’s size, class and implementation

• Access and change the value of an object’s instance variable

• Access a class object

• Create a new object

One of the important requirements of database applications is the schema
evolution, that is the ability to change the database schema dynamically. In
object-oriented databases, there can be changes to the class definitions or to
the structure of the class hierarchy. The types of changes include creation
and deletion of a class, alteration of inheritance between classes, addition and
deletion of instance variables and methods. In the proposed system, only a
few of these changes are supported such as adding or deleting a class which
is a leaf node in the class hierarchy, adding or deleting instances of a class
and adding or deleting an instance variable [44] [27].

The object memory and schema evolution module is approximately 2700
lines long.

3.2.2 MESSAGE PASSING

The message passing module [44] is built on top of the object memory and
schema evolution module and forms the basis for the user interface module.
It includes the definition and support of the designed command language and
error handling in addition to message passing. It consists of five submodules
which are the lexical analyzer, parser, code generator, executor module and
the query processor.

A N OVERVIEW OF THE COM M AND LAN G U AG E

In conventional database management systems, the query language consists
of two independent parts: the data definition language and the data manip­
ulation language. Having two separate languages for the two functions intro­
duces the impedance mismatch problem. One of the aims of object-oriented
database management systems is to provide a single language handling both

69

data definition, and data manipulation, thus providing unification and solving
the impedance mismatch problem.

The command language of the object-oriented database management sys­
tem prototype is designed to provide unification so it captures both the data
definition and data manipulation language aspects. The language can be used
both interactively, that is, command by command or in the batch mode, that
is, in the form of methods [44].

Message calls which are executed by the executor module have the follow­
ing format:

< destination > < message name > [< argument list >]

The argument list field is optional. System defined data types are integers,
characters, arrays, strings, sets and collections. In addition to these, a vari­
able may be declared to be an instance of a class by specifying the class
name.

M ETHOD HANDLING AND MESSAGE PASSING

A method is used to access and manipulate objects and is invoked using
the corresponding message. A method is created using a method definition
statement and is formed of a header and a body. The header contains the
method name, the corresponding message name, the name of the class to
which the method belongs and a list of optional or mandatory arguments
of any system defined type or of any class. The method body is formed of
a group of batch mode or interactive mode statements. The method and
message name may be the same. All methods are persistent and the code for
a method and its compiled form are kept in separate data files [44].

Methods are accessed through a method definition table. Each class object
has its own method definition table.

The lexical analyzer, parser and code generator form the compiler for
the command language. Every time a new method is created or a method is
modified and a compile method statement is executed or each time a message
is invoked and the compiled form of the corresponding method is not available,
these subroutines are invoked. At the end of the code generation phase, the
interactive statement or the method is converted into a set of integer codes

70

and stored in a file. The executor module takes the generated integer codes
as input and performs the corresponding operations using a structure called
an activation record. During the execution phase, the interactive statements
are considered as methods with the necessary arguments for the class Object.

Each message returns a fixed size and fixed structure block. This block
contains an error fiag, a flag indicating whether a value is returned or not,
returned value type, the address of the memory location containing the re­
turned value and for indexed return values the maximum length and the
element type.

Activation records axe created whenever a message call is executed. The
previous activation record is pushed on to the activation stack. Whenever a
return from a message invocation is performed, an entry is popped from the
stack and it becomes the current activation record. This solves the parameter
passing and the return address handling problems.

The query processor handles various associative retrieval queries using the
routines provided by the object memory and the indexing modules.

Error handling is performed at all stages. Each time an error occurs, an
error code is generated and the corresponding error message is retrieved from
the system error file and displayed or written to a file.

3.2.3 SECONDARY STORAGE MANAGEMENT AND
INDEXING

Efficient storage and retrieval of objects in the secondary storage constitutes
an integral and important part of the prototype implementation [44] [24].
The rest of this section describes the necessary requirements and the actual
design preferences.

The secondary storage management and indexing module is approximately
1000 lines.

REQUIREMENTS

The memory system is composed of system defined and user defined persistent
objects and temporary objects that are present only during the session and

71

not accessible to the users. The kernel is composed of the minimum set
of system defined objects that are necessary to initialize the system defined
tables and hierarchy of system classes. User defined objects and classes will
be built upon this kernel and they represent the dynamically changing part of
the memory. The secondary storage module must be responsible for managing
the transfer of objects between main memory and disk while making sure that
the object identity remains unchanged throughout its internal (secondary
storage) and external (main memory) representation. The issue of being able
to propose a uniform method for handling objects of very different sizes is
also very important. The data model presents no problem in this aspect but
secondary storage implications are more critical [44].

Major access problems are incurred due to the nonnormalized nature of
objects and objects being variable-sized. The storage structure and the ad­
dressing mechanism should provide fast access to entire complex objects and
to their components at the same time. This demands efficient ways of clus­
tering the objects and thus eliminating frequent diskhead motions and single
object transfers.

The requirements can be summarized as:

1. Access- Fast random access to objects (and to their chunks) via their
oops should be provided; clustering and preloading of objects during
disk accesses to attain better performance and providing associative
access to an object via value (indexing on value) should be available;

2. Updates and reorganization- Updates that may change the size of ob­
jects must be tolerated and stability against relocation should be guar­
anteed without having to reorganize the whole database in order to
avoid unsatisfactory performance.

3. Extensible typing- Schema updates such as class definition updates,
addition and deletion of instance variables and class evolutions must be
supported in the secondary storage.

STORAGE CONCEPTS AND STRUCTURE

The objects of the main memory data model are mapped to disk objects
(called containers) each of which can be viewed as a segment with proper def­
initions of its class instance variables and super objects [44] [24]. The main
objective is to hold together individual chunks of an object contiguously on

72

Figure 3.5: The abstract view of a variable sized container

disk which also happens to be the clustering preference of the prototype.
It is assumed that retrieving a chunk into main memory would most likely
reference to other chunks of the same object due to inheritance and thus
retrieving a complex object in its entirety is important for eliminating single
chunk disk retrievals. Another partitioning approach such as storing all in­
stances of a class together for clustering would satisfy queries requiring the
search of all objects of a class. It is up to the application to determine which
access pattern would be more suited. However clustering could be achieved
by only one preference and the system’s default is storing the objects with
its super objects. Another clustering scheme is implemented so as to cluster
together collection objects that are values of nested-type instance variables
of an object. Objects are stored in disk as a byte stream using Unix low-level
file services [9] [51] [19] [17] [15] [11] [55].

The secondary storage module is flexible to be able to do certain con­
ceptual level to physical level transformations for efficiency and performance,
yet for this reason the container objects know information about the form of
objects that are contained in them.

An abstract view of a variable sized object container is given in Figure
3.5.

A container is recursively defined as a variable sized segment in disk which
contains an object’s instance variables’ values and either the container of its
super object’s instance or a reference to that container. Resizing a container
is possible in two ways; by reorganization or by using an overflow flle to
keep overflown instance variables. Accessing subcontainers in a container

73

Figure 3.6: The abstract view of a variable sized container with external
super-part

is possible via an oop-to-container-address conversion. However once one is
in the root container one can make use of physical contiguity and skip the
address mapping. If a super object can not be contained in a container due
to multiple referencing or identity assignments, then a slot containing the
oop of that object is used in resolving the reference (Figure 3.6). The storage
manager guarantees that instance values of an object can be found in exactly
one container and other references to that object will be redirected to point
to this container.

IN D EXIN G

In order to provide alternate access paths to objects, based on the values
of their instance variables (i.e. to provide associative access to objects) an
indexing module is implemented [44] [24].

Indexing is performed on classes and automatic index maintanence is pro­
vided by the system. An index is specified by a path name which is a string
of the form Ai...A„ where A,· 6 user defined classes and A,· is a subclass of
A,4-1 for i = l..n — 1 and there does not exist any i such that A,· = CLASS
class and the indexed instance variable is among the instance variables of A„.
Indexing a path Ai...A„ on the instance variable V will associate the oops of
the objects found at class Ai with the value of V in the corresponding super
object.

74

Multi-level indexing is performed by indexing each link along the variable
path rather than maintaining a single index for the whole path. This allows
the query processor to take advantage of more efficient access patterns even
if indexes are not specified.

3.2.4 THE USER INTERFACE

The User Interface of the designed prototype [44] [24] is also object-oriented
and the user is navigated by a pop-up menu driven system to the operations
he/she desires to perform. The User Interface provides three different envi­
ronments corresponding to three groups of users: (i) developer/maintainer ,
(ii) domain specialist, (iii) end-user .

The first environment contains the tools for doing schema changes such
as defining new classes, instance variables, updating existing ones, editing
methods and customized applications in the prototype’s command language.

The second environment contains tools for creating, updating new in­
stances of classes , invoking methods of objects, and doing operational main­
tenance.

The third environment is for running only customized applications and
thus interacting with the database in a controlled manner.

3.3 THE NECESSARY STRUCTURES

This section describes the proposed data model and its associated structures.
Some parts of the proposed system were not implemented. The previous
section described the actual system that was implemented.

The aim of the project was to get an insight on object-oriented systems
and object-oriented databases and design a system which supported the basic
concepts seen in the object-oriented approach. Among those that axe sup­
ported in the system one can list the concept of an object which captures both
the state and the behaviour of an entity, a class, messages, methods, inher­
itance and class hierarchy. Although the system is basically memory-based,
it provides for the storage, access and clustering of objects in the secondary
storage. It also supports an indexing mechanism to avoid the search during

75

value-based access.

The following structures are needed for the storage,access and manipula­
tion of objects.

1. an instance access table for each class

2. Class table

3. Object table

4. a method definition table for each class and for the necessary instances

5. a hierarchy table

3.3.1 CLASS DEFINITION OBJECT

Each entity is stored as an object. Objects with similar internal representa­
tions constitute a class. Every object is an instance of a single class whereas
a class may have any number of instances. The class object defines the prop­
erties and methods shared by its instances.

A class may define instance variables, shared values, default values, keys
and derived variables for its instances. Each instance has its own copy of in­
stance variables. On the other hand, shared values are the properties which
all instances of the class share. Default values are similar to instance vari­
ables but a default value for the variable is provided so that the instances of
the class for which the value of the variable have not been defined take on
the default value for the variable. Keys are the properties on which indexes
can be built. The order of indexing , that is, whether in ascending or de­
scending order will be specified by the user. Indexes are created only when
the user invokes a message for index creation. Derived variables cannot be
assigned a direct value. Their value is a function of the other properties of
the object. The value corresponding to a derived variable is calculated using
the derivation function associated with that value. In the designed system,
the derivation functions are treated as methods and evaluated as message
passing.

The definition of a class is given in a class definition object. Such an
object contains the following information as shown in Figure 3.7:

• class name- the name of the class being defined

76

class name
object identifier

organization type
ptr to instance access table

ptr to the corresponding
hierarchy object

number of search keys
list of search keys

number of instance variables
a list of istance variable

notify ptr
method definition table ptr

number of instances
number of shared variables

list of shared variables

Figure 3.7: A class definition object

• object identifier, the oop of the class being defined, since each class is
also an object it has an oop.

• organization type, the organization of the object, that is, whether it is
stored as a B-tree or linearly.

• pointer to instance access table entry, there is an instance access table
for each class and it provides a linked list of all instances of the class
and domains for the instance variables

• pointer to the corresponding hierarchy object, a pointer to the hierarchy
object which represents the position of the class in the class hierarchy

• number of search keys

• a pointer to the list of search keys. For each entry in the list of search
keys

— the name of the key

— the order of indexing (ascending or descending)

— a flag indicating whether an index has been created on that key
or not

is kept.

• number of instance variables

• a pointer to the list of instance variables, for each instance variable the
following information is stored:

77

— the instance variable name

— derived or not flag

— unique valued or not flag

— if not derived, type

— if derived pointer to formula deflnition method

— if it is an indexed type, the maximum size

— if it is an indexed type, the element type

— default value if specifled

• notify pointer. It could be used to support active objects as a trigger.

• method deflnition table pointer. Each class has its own method defini­
tion table. This table is used to access a method whenever a message
is sent to the class.

• number of instances

• number of shared variables

• a pointer to a list of shared variables. For each shared variable its
type and value is stored. A shared value can either be an integer or a
character, that is of a primitive type.

This representation solves the problem of derived instance variables. A
derived instance variable requires;

• a derived flag

• a formula definition method, that is, the derivation function

• a pointer to the corresponding method

Different approaches have been used for storing the instance variable val­
ues for an instance object

• All definitions could be stored as a linked list. Deleting and adding
instance variables can be handled as additions to and deletions from a
linked list.

78

number of variable defn
defn 1
defn 2

defn n
pir to next block

Figure 3.8: Storing an object as contiguous blocks of memory in a linked list

• Instance variables can be stored as a contiguous block of memory. If new
instance variables are added a new block is linked to the old block. Each
block consists of a count representing the number of instance variable
entries in the block, the instance variable entries and a pointer to the
next block. Deletions will cause wasted space. Such an organization is
shown in Figure 3.8.

• Association lists are used for representing instance variable definitions
in class definitions and for representing instance variables in object
instances. With this approach it is easier to support temporal aspects.
This approach is used in GemStone. Each entry of the association list
contains a time and a value denoting that the object had gained that
value as its property at the specified time [12].

• The properties of an object is stored as instance variable name and
value pairs [22].

In the prototype objects are stored as contiguous words of memory. No
garbage collection is applied.Figure 3.9 illustrates the way an instance object
is stored in memory.

If an object does not define all instance variables of its class, the corre­
sponding entries will be NIL. The storage for all instance variables will be
allocated. If an instance of a class does not define all instance variables of its
class and a query is made on the undefined variables, either an error message
could be generated or the default values corresponding to the variables, if
they exist, could be used.

In the representation used in the prototype, an error can be detected if
there is a null value in the corresponding instance variable entry of the object
representation.

79

object ID
length

class defn
table entry ptr

method table ptr
notify ptr

instance variable 1
instance variable 2

instance variable n

Figure 3.9: The storage representation of an instance object

Instead of allocating storage for all variables, an approach would be to
allocate storage for only the defined instance variables and store pairs in the
object definition. However this representation requires restructuring.

3.3.2 METHOD DEFINITION TABLE

There is a method definition table for each class and if necessary for an object
instance. If an object has some specific methods of its own these methods
will be specified using the method definition pointer in the object definition.
This facility eliminates the need for metaclasses.

All methods are persistent and stored in files so the method definition
table provides a mapping from message or method names to the files. A
method may have any number of arguments and any of the arguments may
be defined to be optional. Arguments can be of any type, primitive, indexed,
collection, set or an instance of a user defined class.

Each entry of the table corresponds to a method defined for the class or
instance and contains the following information:

• method name

• the message name corresponding to the method

• the number of arguments

• a pointer to the list of arguments- For each argument in the list the
name of the argument, its type and if it is an indexed type the maximum

80

oop free flag address

Figure ЗЛО: The object table

length and element type and a flag indicating whether the argument is
optional or not is stored.

• the name of the file that contains the method

The default is to have the same name for both the method and its message
but this can easily be overridden.

3.3.3 INSTANCE ACCESS TABLE

With the given description, this table provides a collection, in fact a set, of all
instances in a class and in a way a domain for each (simple) instance variable.
An instance access table is created for each class.

3.3.4 OBJECT TABLE

It provides a mapping between object identifiers and the physical address of
the object. Direct access using object identifiers is necessary for this table.
In the prototype, hashing is used to perform the direct access on object
identifiers. Figure 3.10 shows the structure of the object table.

3.3.5 CLASS HIERARCHY OBJECT

The prototype supports simple inheritance, that is, a class can have only one
superclass. Thus, the classes are organized into a class hierarchy in the form

81

class class definition superclass next subclhss instance
name table entry ptr subclass link ptr access table

j)tr ptr entry pointer

Figure 3.11: The format of a class hierarchy object

of a tree.

The only kind of conflict that can occur during inheritance, is the conflict
between a class and its superclass. This conflict is resolved by giving priority
to the class over its superclass. Therefore, whenever a conflict occurs the
definition in the class overrides and redefines the definition in its superclass.

The class hierarchy is represented using class hierarchy objects. The for­
mat of a class hierarchy object is given in Figure 3.11. As can be seen from
the figure, a class hierarchy object contains the following information:

• the class name of the object whose position in the class hierarchy is
represented using the class hierarchy object.

• a pointer to the class definition object associated with the class being
considered

• the superclass pointer which contains the oop of the superclass of the
class

• a pointer to the next subclass in the subclass list of the class’s superclass

• a pointer to the first subclass of the class

• a pointer to the instance access table associated with the class

Figure 3.12 provides an example of the representation of the class hierar­
chy using class hierarchy objects. The first figure is the class hierarchy and
the second is the internal representation corresponding to that class hierarchy.

82

class

class NIL NIL
-l·

car - t NIL

Figure 3.12: An example class hieraxchy and its internal representation

83

4. THE COMMAND LANGUAGE

The basic goal is to solve the impedance mismatch problem between database
languages and programming languages by providing a single unified language
capturing the power of both languages. The designed language is compu­
tationally complete and strongly-typed and supports the following from the
computational point of view:

• assignment operator

• relational operators

• aritmetical operators

• logical operators

• conditional constructs (if-then-else)

• looping constructs (while-do)

• declarations (declaration of temporary variables)

• blocking (begin .. end)

• comments

• data types, variables and expressions

• message calls and return statements

The system also supports quite a few database related query statements,
data definition and data manipulation statements. Some examples are state­
ments for defining a new class, defining a new method, defining a new in­
stance, modifying the definition of a class or method, accessing instances
satisfying certain criteria, equality checks and copying objects.

84

The language can be used both interactively, that is, command by com­
mand or in the batch mode, that is, in the form of methods.

The commands can be classified into two major groups: interactive mode
statements and batch mode statements. The interactive mode statements
can be further classified as follows [44]:

1. Definition statements

a. New definitions- One can define a new class, a new method for a
class or a new instance of a class.

b. Redefinition statements- One can redefine an existing class or an
existing method of a class.

2. Schema evolution statements

a. Additions to a class definition- One may add a new instance variable,
key, superclass, subclass, shared variable or method to a class.
Also, one may add an argument to a method of a class.

b. Deletions from a class definition- One may delete an instance vari­
able, key, superclass, subclass, shared variable, method or method
argument from a class.

c. Modifications to a class definition- The user may change the default
value of an instance variable, the search order of a key, the value or
type of a shared variable, the type of an instance variable, the code
or argument of a method. Furthermore, one may specify an in­
stance variable as derived and change the function definition, that
is, the method used to calculate the value of a derived variable.

d. Renaming operations- The user may rename an instance variable,
method, message or method argument.

e. Additional changes to a class definition- In addition to the above
operations, the user is allowed to replace a key of a class, change
the superclass of a class and to make an argument of a method
optional or mandatory.

f. Changes in the class hierarchy- One may rename a class, delete a
class or delete an instance from a class.

3. Query statements- These are for accessing and manipulating objects.
They include statements for retrieving instances and class information,
index manipulation, object duplication, equality checks and method
manipulation.

85

All interactive statements axe treated as message calls to the class Object.

The batch mode statements may only be used in methods and provide
iteration, conditional execution, declarations, assignments and message calls.
There are two types of message calls. These are the system calls which are
implemented as C function calls and actual message calls which are executed
by the executor module and which have the following format:

< destination > < message name > [<argument list >]

The argument list field is optional. System defined data types are integers,
characters, arrays, strings, sets and collections. In addition to these, a vari­
able may be declared to be an instance of a class by specifying the class
name.

In the following sections, the language commands, some system defined
default values and possible errors are explained giving some examples.

4.1 DATA DEFINITION LANGUAGE

The data definition language supports the following operations:

• define a class

• define a method

• define an instance

• Defining a class

define-class < classname >
persistent
temporary

[unique] [with

[superclass < classname > ;]

[< number — o f — subclasses > subclasses

< class — namei > ,..., < class — namck > ;]

[< number — o f — shared — values > shared-values

< type > < variable — name\ > = < value >,

86

< type > < variable — namei > = < value >;]

[< number — o f — instance — variables > properties :

derived 1
[unique] ̂ > < variable — namei > [default < value >],

< type > I

[unique]
derived

< variable — namen > [default < value >];]
< type >

[< number — o f — search — keys > keys :

ascending
descending

< keyi >,

ascending
descending

keyjYi !>]]·

The interface and the methods related to the class must be separately-
defined. No indexes are created during class definition.

Possible error messages are;

• no such superclass

• no such subclasses

• invalid classnames

• same class already exists

• number of instance values must be an integer > = 0

• number of search keys must be an integer > = 0

• in-valid types

• key does not match an instance variable name

• invalid default value

87

define-method < methodname > fo r < classname >

corresponding — to < message — name >

with < number o f arguments > arguments

[optional] < type > < argumenti >,

[optional] < type > < argumentn >;

begin

< method — body >

Defining a method:

end.

Default values:

class name
message-name
number of arguments

OBJECT
method-name
0

Possible error messages :

• invalid method name

• method already exists

• invalid class name

• no such class name

• invalid message name

• message already exists

• number of arguments must be an integer > = 0

• invalid argument name

define-method < methodname > fo r < classname >

corresponding — to < message — name >

with < number o f arguments > arguments

[optional] < type > < argument^ >,

[optional] < type > < argumentn >;

begin

< method — body >

Defining a method:

end.

Default values:

class name
message-name
number of arguments

OBJECT
method-name
0

Possible error messages

• invalid method name

• method already exists

• invalid class name

• no such class name

• invalid message name

• message already exists

• number of arguments must be an integer > = 0

• invalid argument name

88

• invalid type specifications

• too few arguments are specified

• Defining a method for a derived instance variable

derived-method < method—name > for [< class—name >] < variable—name >;

begin

< method — body >

end.

* Defining an instance of a class: (receiver : classname)

new < classname > [< variablename >]

(allocates enough storage but assigns only default values)

temporary
persistent

as

define < classname > with

< instance — variablei > = < valuei >,

< instance — variablej > = < valuej >,

temporary
persistent

< variablename >

NULL VALUE PROBLEM- If an instance does not define all instance
variables, if a method accesses the undefined variables and if the variables
have default values the default values will be used, otherwise an error occurs.

Error messages

• invalid class name

• no such class name

89

• invalid instance variable

• class has no such instance variable

• invalid value for instance value

• invalid variable name

4.2 DATA MANIPULATION STATEMENTS

• change class definition completely

• add instance variable

• delete instance variable

• add search key

• delete search key

• change search key

• change name of instance variable

• change superclass

• change default value of a variable

• redefine method

• change message name

• add argument

• delete argument

• change body

• add method to a class

• delete a method from a class

• rename a method

• change the message name corresponding to a method

• change the search key indexing order

90

• rename a class

• add superclass

• delete superclass

• delete a class

• change status of variable (derived or not)

• change formula definition method

• change type of variable

• changes to shared variables

• Change class definition completely:

rede fine-class < classname >
persistent
temporary

[unique\with

superclass < classname >;

[< number — o f — subclasses > subclasses

< class — namei > , < class — namck >;]

[< number — o f — shared — values > shared-values

< type > < variable — namei > = < value >,

< type > < variable — namei > = < value >;]

[< number — o f — instance — variables > properties ;

[unique] < ̂ < variable — namei > [default < value >],
I < type >

derived
[unique] < > < variable — namen > [default < value >];]

< type >

[< number — o f — search — keys > keys

ascending
descending

< keyi > ,

91

ascending
descending

< keym >]].

The formula definition methods must be specified for each derived instance
variable. The interface and methods should also be specified. When a class
is redefined there are two possibilities: Delete all old instances of the class or
give an error message if the class has instances. Default values can come from
the previous class definition. No indexes will be created and indexes created
for the previous class definition will be lost. If the specified class name does
not exist, then the affect will be a new class definition. The error messages
are the same as in define class.

* Adding an instance variable to a class:

add Jo < classname >

< numberofinstancevariables > properties

I derived I
[unique] < > < variable — name\ >

[< type >]

[default < default — value >]

, , ascending , .
[o5 ̂) key],

descending

[unique]
derived

< variable — namei >
< type >

[default < default — value >]

, (ascending , .
S ,) êy]·I descending

The formula definition methods must be specified for each derived instance
variable. New methods and interface may have to be specified.

Error messages are

• invalid class name

• no such class

92

• invalid class names

• too few variable names specified

• number of instance variables must be > = 1 (default is 1)

• invalid type

• invalid default value for type

• Delete instance variable:

delete-from < classname >

[< numberofinstancevariables > properties]

< variablenamei > , < variablenamej > .

If indexing is available on one of the variables, it will also delete the index
tree and delete the variable from the search key list

Error messages

• invalid classname

• invalid variable name

• no such class

• no such variables must be > = 1

• Add search key:

add-to < classname >

< number-of search-keys > keys

ascending
descending

< variablenamei >,

ascending
descending

< variablenamei >

93

No index is created. Variables should already be defined in the class and
not as keys.

Error messages

• invalid classname

• invalid variable name

• no such class

• no such variables in class

• variable already a key

• number of search keys must be > = 1 (default 1).

• Delete a search key:

delete.from < classname >

< number o f sear chkeys > keys

< variablenamei > ,.., < variablenamei > .

If an index was created, it will be deleted.

Error messages

• invalid classname

• invalid variblename

• no such class

• no such variable name in class

• variable name not a search key for class

• number of keys must be > = 1 (default 1).

• Change search key:

replace-in < classname > key < keyname\ >

94

, ascending
with < ̂key < keynamc2 > .

descending

Keyname^ must be a key in class name and keyname2 must not. It will
be implemented as a

delete-from < classname > keykeynamei.

, ascending
add-to < classname > key ·{ ̂keyname2 .

descending

Error messages are similar to those add-to and delete_from

• invalid classname

• invalid variable name

• no such class

• no such instance variables in class

• keyname^ not a key in class

• keyname2 already a key in class

• Rename an instance variable

rename-in < classname > property < variablel >

as < variable2 > .

If variablel is a search key, then variable2 will be a search key.

Error messages

• invalid classname

invalid variable name

• no such class

95

• variablel not an instance variable in class

• variable2 already exists in class

• Change default value of a variable

change-in < classname > default-of < variable >

to < default-value > .

Error messages

• invalid class name

• invalid variable name

• no such class

• no such variable in class

• invalid default value for type of variable

• Change superclass:

change-superclass-of < classname > to < superclass >

The necessary inheritance problems should be solved.

Error messages

• invalid classnames

• no such classes

• class na,me must not be the same as superclass

* Change the search key indexing order

change-in < classname > search-order-of < variable > to

ascending
descending

96

If indexing is available for the variable, it will no'longer be valid. The
new indexing will not be created.

Error messages

• invalid class name

• invalid variable name

• no such class

• no such variable in class

• variable is not a search key for class

• Add superclass

addJo < classname > superclass < superclass > .

Necessary inheritence problems should be handled. Error messages are
the same as for change superclass.

• Delete superclass

delete-from < classname > superclass < superclass > .

Error messages are the same as for change superclass. The necessary
inheritence problems should be handled.

• Add shared variable

add-to < classname > shared < type > < variablename >

withvalue < value > .

Shared variables can only be of a simple type.

Error messages

• invalid class name

97

• invalid type

• invalid variablename

• no such class

• variable edready exists in class

• invalid value for specified type

• Delete shared value:

delete-from < classname > shared < variablename >

Error messages

• invalid classname

• invalid variable name

• no such class

• no such variable in class

• variable name not a shared variable in class

• Change value of shared variable:

change-in < classname > shared < variablename >

valueas < new-value > .

Error messages

• invalid classname

• invalid variablename

• no such class

• no such variable in class

• not a shared variable in class

98

• invalid value for shared variable

Change type of shared value:

changc-in < classname > shared < variablename >

typeas < newtype > .

Error messages are the same as for change value of shared variable.

* Change type of variable:

change-in < classname > property < variablename >

typeas < newtype > .

Error messages

• invalid classname

• invalid variablename

• invalid type

• no such class

• no such variable in class

• variable not a simple instance variable

• Change derived instance variable to simple variable:

change-in < classname > derived < variable — name >

to < type > [withde fault-value < value >].

Error messages

• invalid classname

• invalid variable name

99

• invalid type

• invalid value for type

• no such class

• no such variable in class

• variable not derived

• Change simple instance variable to derived:

change-in < classname > property < variable-name >

toderived.

The function definition method must be specified.

Error messages

• invalid class name

• invalid variable name

• invalid type

• invalid value for type

• no such class

• no such variable in class

• variable not derived

• Change formula definition method:

change-in < classname > function fo r derived

< variable-name >

begin

< method — body >

100

end.

Error messages

• invalid classname

• invalid variable-name

• no such class

• no such variable in class

• not derived variable for class

• Add method to class:

add-to < class-name > method < method-name >

[correspondingto < message-name >][with

< numherof arguments > arguments

[optional] < type > < variablei > ,

[optional] < type > < variablen > ;]

begin

< method — body >

end.

Error messages

invalid class-name

• invalid method-name

invalid message-name

101

• invalid variable_aame

• no such class

• method already exists in class

• message already exists in class [default for message_name is the method-name
itself]

• number of arguments must be > = 0

• too few arguments are specified

• invalid type

• Delete a method from a class:

delete-from < class-name > method < method-name > .

Error messages

• invalid class_name

• invalid method-name

• no such class

• no such method as in class

• Rename a method;

rename-in < class-name > method < method-1 > as

< method-2 > .

Error messages

• invalid class_name

• invalid method-name

• no such class

102

• no such method as method_l in class

• method_2 already exists in class

• Change the message name corresponding to a method

renameJn < classjname > message < message-1 >

as < message-2 > .

Error messages

• invalid class_name

• invalid message-name

• no such class

• no such message as message.l in class

• message_2 already exists in the specified class

• Add an argument to method:

add-to < class-name > method < method-name >

[optional]argument < argument-name >

o f type < type > .

Error messages

• invalid class-name

• invalid method-name

• invalid argument-name

• invalid type

• no such class

• no such method in class

103

• argument already exists for method

• Rename an argument to a method:

rename-in < class-name > method < method-name >

argument < argument-name-1 > as < argument-name >

Error messages

• invalid class_name / method_name / argument .names

• no such class

• no such method in class

• no such argument as argument _1 in method

• argument-2 already exists for method

• Change type of argument of a method:

change-in < class-name > method < method-name >

argument < argument-name > typeto < type > .

Error messages

• invalid classJiame / methodmame / argument mame / type

• no such class

• no such method in class

• no such argument for method

• Make argument optional / mandatory

make < class-name > method < method-name >

optional
argument < argument-name >

mandatory

Error messages

104

• invalid class_name / method_name / argument _name

• no such dass

• no such method for class

• no such argument for method

• Delete an argument:

delete-from < class-name > method < method-name >

argument < argument-name > .

Error messages are the same as those for making an argument optional
or mandatory.

* Redefine a method:

redefine < method-name > [for < class-name >]

[correspondingto < message-name >]

[with < number o f arguments > arguments

[optional] < type > < argument-1 >,

[optional] < type > < argument-n > ;]

begin

< method — body >

end.

Error messages

• invalid method-name / class-name / message-name / argument-name
/ type

• no such class

105

• no such method for class (the effect will be the same as a define state­
ment)

• message already exists

• number of arguments must be > = 0

• too few arguments are specified

• Recode a method

change-in < class-name > method < method-name >

codeas

begin

< method — body >

end.

Error messages

• invalid class-name / method-name

• no such class

• no such method in class

* Rename a class:

rename < class-name-1 > as < class-name-2 >

Error messages

• invalid class_name_l / class_name_2

• class_name_l does not exist

• class_name-2 already exists

106

* Delete a class:

delete < class-name > .

Error messages

• invalid class_name

• no such class

• Delete an instance of a class:

rem ove-from < class-name > < instanceoop >

Error messages

• invalid class-name

• no such class

• no such object in class

• Checking the existance of an object:

exists
< instanceoop >

< classoop >

It returns true if object exists, false otherwise.

* Get the value of a property of an object:

retrieve < object > < property-name >

Error messages

• no such object

• invalid property-name

107

• no such property in object’s class

• Set the value of the property of an object:

set < object > < property.name > to < value >

Error messages

• no such object

• invalid property-name

• no such property in object’s class

• invalid value for property type

• property not primitive (ie. derived or is another object)

• Retrieve the property names of an object:

retrieve < object > properties.

Error message

• no such object

• List all objects belonging to a class:

retrieve < class.name > members.

retrieve < class.name > membervalues.

The first statement retrieves the oops of the instances of the class while
the second also retrieves the values. Error message

invalid / no such class-name

108

Get the class of an object:

class < object >

Error message

no such object

* T ;List all property .value pairs of an object:

retrieve < object > information.

Error message

no such object

Copy an object to a file:

save < object > [in < filenam e >].

Error message

• no such object

Copying a property

copy .property < object.l > < property .1 > to

< object-2 >
se lf

< property.2 > .

Error messages

• no such objects

• invalid propertyJiames

109

• no such properties in objects

• property_1 cannot be the same as property_2

• property-1 type does not match property_2 type

• Make an instance object the member of another class

make-instance < oop > < class-name > .

Error messages

• no such object

• no such class

• Display the code for a method:

display < object > method < method-name >

Error messages

• no such object

• invalid method-name

• no such method for object

• Copying a method:

copy-method < object-1 > < method-1 > to

< object-2 >
self

< method-2 > .

Error messages are similar to those in copying a property.

* Find the oop of a class

find-id < class-name > .

Error message

no

• no such class

Retrieve the superclass of a class:

superclass < class-name >

Error message

invalid / no such class

* Retrieve the subclasses of a class:

subclass < class-name >

Error message

invalid / no such class

* Display all information about an object

status < object >

Error message

invalid / no such class

* Determining if two objects are identical:

identical < object-1 > < object.2 >

It returns true if the two objects are identical, false otherwise.

Error message

• no such objects

111

* Equality of objects:

equal < object A > < object-2 >

It returns true if the two objects are equal, false otherwise

Error message

no such objects

Copying an object (shallow and deep copy):

copy.object < object.l > to < object.2 > .

duplicate-object < object.l > as < object.2 > .

The copy-object statement forms a shallow copy of an object whereas the
duplicate-object statement generates a deep copy of the object.

Error message

• no such object as object_l

* Create index

index < class.name > on < property >

{ascending
> order.

descending

Error messages

• invalid class-name / property

• no such class

• no such property in class
112

• property not search key in class

• order not correct with respect to class definition

• Delete index:

remove-index on < class-name > < property > .

Error messages

• invalid class-name / property

• no such class

• no such property in class

• property not search key in class

• index not available on property in class

• Does index exist:

exists -index < class-name > < property > .

This command returns true if an index on property in class exists and
false otherwise.

Error messages

• invalid classjiame / property

• no such class

• no such property in class

• property not search key for class

• Indexing order:

order-of -index < class-name > < property > .

Error messages

113

• invalid class_name / property

• no such class

• no such property in class

• property not search key in class

• Change index order:

change-index < class-name > < property >

ascending
orderto

descending

Errors are the same as those for the indexing order statement.

* Check if an instance variable is a key

index -allowed < class-name > < instance-variable > .

Error messages

• no such class

• no such instance variable defined for the class

* Accessing instances:

find
retrieve

firs t
next
last
all

< classname > with < condition >

giving < variable > .

Find locates the instance while retrieve will get the values. The < condition >
field can either be a relational, arithmetic or logical expression or a query.

* Return statement

114

return-value < variable-name >

return-object < object-oriented-pointer >

* Statements related to method manipulation

create < class-name > < method-name > .

modify < class-name > < method-name > .

compile < class-name > < method-name > .

execute < class-name > < method-name >

[with < argument-list >].

* Temporary Variable Declarations:

< simple — type > < variable-list > .

< indexed — type > < variable — name > < size >

o f < element — type > .

Other constructs supported are assignment statements, if statements and
while statements. Begin..End blocks are used to group related statements.

4.3 SOME EXAMPLES

Considering the following relation scheme in a relational database, the key
for aJl three relations is NAME and SURNAME.

115

CLASS

P E R S O N

E M P L O Y E E S T U D E N T

Figure 4.1: The organization of the three classes

PERSON (NAME, SURNAME, AGE)
EMPLOYEE (NAME, SURNAME, COMPANY, SALARY)
STUDENT (NAME, SURNAME, COLLEGE, DEPARTMENT,
Y E A R)

With this representation there are a lot of inconsistency and redundancy
problems. It is very easy to represent such a relation scheme using the classes
and instances of object-oriented database management systems. There will
be three classes, namely, PERSON, EMPLOYEE and STUDENT with PER­
SON being the superclass of the other two classes as shown in Figure 4.1. The
PERSON class will have three instance variables which are NAME, SUR­
NAME and AGE. The EMPLOYEE class will inherit NAME, SURNAME
and AGE from the PERSON class and will have the additional instance vari­
ables COMPANY and SALARY. The STUDENT class will inherit the three
instance variables defined for PERSON and will add the instance variables
COLLEGE, DEPARTMENT and YEAR. The following statements must be
executed to create these three classes.

define_class PERSON with

3 properties

string NAME [10],
string SURNAME [10],
integer AGE.

define.class EMPLOYEE with

116

superclass PERSON
2 properties

string COMPANY [15],
integer SALARY.

define_class STUDENT with

superclass PERSON
3 properties

string COLLEGE [20],
string DEPARTMENT [5],
integer YEAR;

key-

ascending DEPARTMENT.

For the PERSON class, the superclass is not specified so it is created as a
subclass of the system-defined class Class. The DEPARTMENT instance
variable is specified as a key for the STUDENT class but the B-tree is not
automatically created.

A student may transfer to another department and at the end of each
year he will pass if he is successful. The two methods to carry out these
operations could be defined as follows:

define_method PASS for STUDENT
begin

integer temp,
self retrieve-year year,
year := year + 1.
self set-year year.

end.

define-method TRANSFER for STUDENT

with argument

string NEW-DEPT [5];

begin

117

self set-major NEW .DEPT.

end.

The first method has no arguments but a temporary variable. The tem­
porary variable is needed since some operations on an instance variable are
performed. It makes use of two messages of which one returns the value of the
YEAR instance variable of the object and the other setting the value of the
same instance variable. These will be implemented using the system-defined
retrieve and set statements.

define_method retrieve-year for STUDENT

with 1 arguments

integer temp.year;

begin

temp-year := retrieve self YEAR.

end.

The second method has a single mandatory argument and it is implemented
as another message call with the selector set-major which sets the DEPART­
MENT instance variable of the receiver object to the value specified as the
argument. The methods sey-major and set-year can be implemented similar
to the retrieve-year method. Since a message name has not been specified
both will be invoked using the method name. The instance variables of the
object receiving a message will be retrieved or modified.

There are two ways of creating an instance of a class. The new statement
creates a new instance of a class but no values are assigned to the instance
variables whereas the define statement creates a new instance and also sets
the values of the specified instance variables. Figure 4.2 shows the result
of executing the following new statement and Figure 4.3 shows the result of
executing the given define statement.

new STUDENT STUDENTl.

define STUDENT with

118

student object n P i
i

t
1//

P i NIL
NIL NIL
NIL NIL
NIL

person object

Figure 4.2: The result of executing the new statement

student object

P i
NIL
NIL

STi —
NIL
NIL

person object

- ► STi
Ayse

Figure 4.3: The result of executing the define statement

NAME = ~Ayse~
YEAR = 1

as STUDENTl.

As explained in the previous section, there are many modifications that
can be done to a class definition. One can add new instance variables, shared
values, keys and methods to a class and may also delete existing ones. In
addition to these some changes can be made to the definition of a method.
To add an instance variable STATUS to the class PERSON it is sufficient to
execute the following statement:

add-to PERSON 1 properties

integer STATUS default 0.

If an instance variable GPA is added to the class STUDENT, a derived in­
stance variable STANDING whose value depends on the GPA value could be
defined.

add-to STUDENT 1 properties

integer GPA default 0.

119

add-to STUDENT 1 properties

derived STANDING.

derived_method CALCULATE_STANDING for STUDENT STAND­
ING;
begin

integer temp.
integer result.
self retrieve-gpa temp.
if (temp < 3) true result := 1
else result := 0.
self set-standing result.

end.

The system supports value-based queries as in other database manage­
ment systems. Such queries are expressed using the find or retrieve state­
ments. An example is

find all STUDENT with (STANDING = 0).

which locates all instances of the class STUDENT with the STANDING
instance variable equal to 1. If an index on the STANDING field is available,
the requested values can easily be found. Otherwise all instances of the class
STUDENT will be searched sequentially. Another example is

retrieve all STUDENT with (NAME = ~Ayse~).

In this case, since the instance variable name is inherited from the class PER­
SON, the search will start in the PERSON class. After all the instances of
the class PERSON with the specified NAME value are located, the instances
of the STUDENT class will be searched to find the ones having that person
as their superclass instance. An index could be created from the NAME
instance variable to the STUDENT instances. If such an index is created,
there is no need for the sequential search. An index can be created using the
following statement

120

index STUDENT on NAME in ascending order.\

The specified instance variable must already be defined as a key for the
relatedclass. The index-allowed statement can be used to determine if an
index on a specified instance variable can be created or not.

121

5. THE MESSAGE PASSING SCHEME

Methods are accessed through a method definition table. Each class object
has its own method definition table. Each entry of the table corresponds to
a method defined for the class and contains the following information:

• the method name

• the message name corresponding to the method

• the number of arguments

• a pointer to the list of arguments

• the name of the file that contains the method

The message passing module consists of five basic modules: the lexical
analyser, parser, code generator, query processor and the executor module.
The lexical analyzer, parser and code generator form the compiler for the
command language. Every time a new method is created or a method is
modified and a compile method statement is executed or each time a message
is invoked and the compiled form of the corresponding method is not available,
these subroutines are invoked. At the end of the code generation phase, the
interactive statement or the method is converted into a set of integer codes
and stored in a file. The executor module takes the generated integer codes as
input and performs the corresponding operations using a structure called an
activation record. During the execution phase, the interactive statements are
considered as methods with the necessary arguments for the class Object. The
query processor handles various associative retrieval queries using the routines
provided by the object memory and the indexing modules. Currently, the
lexical analyzer and parser have been implemented completely.

Each message returns a fixed size and fixed structure block. This block
contains an error flag, a flag indicating whether a value is returned or not,

122

returned value type, the address of the memory location containing the re­
turned value and for indexed return values the maximum length and the
element type.

Methods are stored in data files with an extension ’.cl’ denoting command
language. The output of the lexical analysis phase, that is the tokens of the
input method are stored in a file with the same name but extension ’.tok’
representing token. The parser takes files of tokens as input and if the pro­
gram represented by the tokens is syntactically correct the intermediate code
corresponding to the token is generated and stored in a file with extension
’ .inf. The code generator generates the actual code corresponding to the
intermediate code. The actual code is stored in a file with extension ’ .com’
which is the input for the executor module or the query processor.

5.1 THE LEXICAL ANALYZER

The lexical emalyzer submodule can be used to recognize any set of tokens. It
is implemented as a deterministic finite state automaton [4] [21] [32]. It takes
as input the transition diagram and a set of final states in the transition
diagram. The token identifiers corresponding to tokens are also given as
input and they are embedded in the transition diagram. The initial state the
system will be in is also dependent on the transition diagram and should be
determined at run time.

The transition diagram should be input in the following form:

< initial state > < input symbol > < next state >

This represents that once in the initial state, if the read symbol matches the
input symbol, the system will move to the state denoted by the next state
field. If the initial state field contains a final state, the next state on an empty
input gives the token identifier of the recognized token.

At the beginning of the program, the transition diagram and final states
are read into memory. The transition diagram is stored in an array structure.
The array structure contains an entry for each possible state. Each entry is a
pointer to a list of input symbol- next state pairs for each valid combination.

The lexical analyzer performs no error checking. If an input token is not a
reserved symbol or keyword then it is checked to see if it is an identifier name

123

or a constant, if it starts with a letter, it is considered to be an identifier
name. On the other hand if it starts with a digit or a minus it is considered
to be a numerical constant. In the designed language, string or character
constants are delimited by Therefore, a token starting with a is
given a token identifier indicating that it is a string or character constant. In
the language, is used to indicate comments. All comments are ignored.

The program handling the lexical analysis function is approximately 500
lines and is written in C.

5.2 THE PARSER

The parser is used to analyze both methods and interactive statements and
to generate the associated intermediate code.

The parser submodule implements a deterministic pushdown automaton.
The implemented pushdown automaton [4] [21] [32] can be defined as follows:
The pushdown automaton is formed of a finite state control and a pushdown
store, in fact, a stack. There is a single state and the pushdown automata
accepts by empty state. The terminal tokens of the language form the input
symbols whereas the nonterminal tokens form the stack symbols. Initially,
the start symbol of the grammar corresponding to the language is placed in
the stack. Depending on the input character and the character on top of the
stack, the production to be applied is selected from among the productions
which have the stack symbol as their left-hand side element and the right-
hand side tokens of the selected production are pushed on to the stack. If
the stack is empty when all input symbols have been processed, the input is
a valid expression in the language.

In order to be able to implement a deterministic pushdown automaton the
grammar should be unambiguous. In this way, the production to be applied
can be detected just by looking at the next input token, thus eliminating
the need for backtracking. In order to obtain an unambiguous grammar, left
factoring must be applied and left recursion must be eliminated [4] [21] [32].

Left factoring is applied by replacing two productions of the form A —)·
BC and A BD by A — BA/ and Af C and At —> D. When eliminating
left recursion, the productions A —> AB and A — C are replaced by A —>
CA/ and Af BAf and Af e [4] [21] [32].

124

After applying left factoring and eliminating left recursion unambiguous
leftmost derivation can be applied.

Most syntax checking must be done during the parsing phase. Other than
spelling checks, a string constant may exceed the maximum string length, a
variable name may exceed the maximum variable name length or a numeric
constant may exceed the system limits. Boundary and index checking should
be performed.

Error handling is a difEcult task. Typical errors are:

• the insertion of an extraneous character or token

• the deletion of a required character or token

• the replacement of a correct character or token by an incorrect character
or token

• the transposition of two adjacent characters or token

These are syntactic errors. There are also semantic errors that can be de­
tected at compile time. These are errors of declaration and scope. They
include undeclared or multiply declared identifiers and type incompatability
in various operations. Some other errors can be detected at run time or at
compile time. This is the case for range checking, exceeding system limits
and exceeding the declared array or string bounds.

When an error occurs, it is up to the syntax analyzer to decide what action
to take. A token might be missing or misspelled or the user might have put
some extra characters or tokens and the sought token might be further along
in the string.

Some approaches to error handling in the syntax analysis phase are [4]:

• The syntax analyzer will stop parsing the input when it detects an error.
This is the simplest approach to implement but is not user-friendly.

• Panic mode- When an error occurs, all input symbols cire discarded
until a synchronizing character, usually a statement delimeter, such as
a semicolon is encountered. The parser then deletes stack entries until it
finds an entry such that it can continue parsing given the synchronizing
token as the input. This approach is simple and can never result in an
infinite loop.

125

• Minimum Hamming Distance Method. A program is said to have k er­
rors if the minimum number of error transformations that will map any
valid program into the program with k errors is k. The minimum Ham­
ming distance is the least number of insertions, deletions and symbol
modifications necessary to transform one string into another. Although
the approach is quite complex a simple heuristic based on the assump­
tion that most spelling errors result from one application of an error
transformation such as inserting an extra character, deleting a charac­
ter, modifying a character or transposing two adjacent characters has
been developed. The strategy is to check whether any keyword can be
transformed into the erroneous string by a single error transformation.
For example, one can eliminate as candidates words whose length differ
from that of the erroneous string by more than one.

The implemented parser is approximately 3500 lines long and written
in C. It takes as input a list of tokens in a file with extension ’.tok’ and
produces the corresponding intermediate code if the tokens correspond to a
valid program. The intermediate code is stored in a file with extension ’ .int’ .
The parser also takes as input the unambiguous productions for the language
and a list of nonterminals. Therefore, similar to the lexical analyzer it can
be used for any language.

The productions of the language are read from an input file and then
stored in the structure shown in Figure 5.1. The map array provides a map­
ping from nonterminal tokens to an identifier which is used as an index into
the production array. The production array has an entry corresponding to
each nonterminal token. This entry is a pointer to a list of productions. Each
member of the production list corresponds to a production with the associ­
ated nonterminal token as its left-hand side and contains a pointer to a list
of tokens. This list of tokens represents the right-hand side of the production
and contains an entry for each token. An example can be seen in Figure 5.2
which shows a list of productions and their internal implementation.

Error messages and the intermediate codes to be generated are embedded
in the production rules and are also input at the beginning of the syntax
analysis phase. Each input production must have the following format:

<left-hand side token> I <storage-flag> <intermediate-code>
<list of right-hand side tokens> $

126

Figure 5.1: The internal representation of production rules

When a production is being applied, the corresponding intermediate code is
stored. However if the intermediate code field of the production is zero no
intermediate code is generated for that production. The storage fiag is related
to multivalued tokens such as variables, numerical constants or character or
string constants. If the flag is 0 only the intermediate code corresponding to
the production is stored if specified. If the flag is 1 then the actual values
corresponding to the multivalued tokens are stored together with the specified
intermediate code.

The list of right-hand side tokens is formed of members which represent
each token and the corresponding error messages. Each member has the
following format:

<token value> <error-condition-l> <error-code-l>

<error-condition-n> <error-code-n>

The error condition may be token missing or misspelled and the corresponding

127

MAP_ARRAY

S aA 1

S ^ bB ,
S -> a J
A ^ 1
B -> A1 k
B — S

s 1

A 2

B 3

P R O D U C T IO N -A R R A Y

1
2
3

Figure 5.2: An example for the internal representation of productions

128

line token error
count value code

Figure 5.3: An error entry

error error
code description

Figure 5.4: The record structure of the error file

error code determines the error message to be generated.

In the productions a differentiation should be made between single valued
tokens and multivalued tokens. Multivalued tokens starting with ’A’ denote
variable names, a as the first character denotes arithmetic constants and
a denotes a token which may be a character or string constant.

The error-handling approach used, applies the minimum Hamming dis­
tance heuristic and tries to detect all syntactic errors and declaration related
errors. The minimum Hamming distance heuristic is applied when a keyword
is expected but not found or when no production to be applied can be found
for the input string. As an incorrect method or interactive statement is being
parsed a list of the errors that are detected is maintained and after the input
has been processed an error report is generated using an error file to deter­
mine the actual error messages. Figure 5.3 shows the internal representation
of an erroneous token and Figure 5.4 shows the format of the error file.

All temporary variables are stored in a symbol table. The symbol table
maintains the name of the variable, its type, if it is an indexed type its
maximum size and element type and a usage flag representing whether the
variable is an identifier or constant etc. for each variable. The symbol table
is stored in a file with extension ’ .sym’ if the input is syntactically correct.
Symbol tables are only generated for methods and no symbol table is created

129

for an interactive statement.

When a token is input and the production to be applied is sought, first
the productions starting with a terminal value are checked. If a match is not
found the nonterminal productions and then the multivalued productions are
checked. If there is still no match, the productions are tried again checking
for the minimum Hamming distance criteria.

5.3 THE CODE GENERATOR

It takes as input the intermediate code generated by the parser module and
generates the actual code. Unlike the first two mudules, this module is lan­
guage specific.

The actual code is a set of integer codes representing some primitive
operations. The primitive operations include system calls for C function
calls, message calls, branching to an address, conditional checks, relational
operators, arithmetic operators, logical operators and assignments. During
the translation phase, constructs like while statements in the language are
converted into a sequence of primitive operations

5.4 THE EXECUTOR MODULE

The executor module is the most important submodule of the message passing
module. It handles the actual message passing operation. It takes as input
the code obtained after the compilation of a method or interactive statement
and performs the operations required.

Initially, message passing was going to be implemented as C function calls
and the language of the system was going to be C and all methods were going
to be written in C. Since this would result in an unreliable system, a command
language was developed and a message passing scheme was proposed.

For uniformity, at the execution level each method returns a fixed size
and fixed structure block which contains the following information:

• an error flag

• a flag indicating whether a value is returned or not

130

• returned value type

• the maximum size of an indexed type

• the element type of an indexed type

• a pointer to the returned value

The basic structure for the executor module is the activation record. Each
method is represented using an activation record and message passing is also
implemented using activation records. Since interactive commands are also
treated like methods, they are also associated with an activation record during
the execution phase.

An activation record contains the following information:

• the class name of the method (this is needed for message calls with self
or super as destination classes)

• a pointer to the return block

• the name of the file containing the method

• the program counter

• the condition register

• branching address stack- It is used to implement branching and looping.
Being a stack it supports nested loops.

• the accumulator

• symbol table pointer- The symbol table contains the name, type, max­
imum length, element type, usage flag and address of temporary vari­
ables.

• reference table pointer- This table holds the message names, class and
instance variable names used in the method.

• argument count

• a pointer to the list of arguments- Each node of the list contains the
address of the argument and an index identifying the argument. Thus,
all arguments are sent call by reference.

131

Each occurrence of a literal in a method is converted into an index for the ref­
erence or symbol table. Each activation record has its own program counter,
accumulator, condition register, symbol table and reference table. There is a
global expression evaluation stack used by all methods.

Activation records are created whenever a message call is executed. The
previous activation record is pushed on to the activation stack. Whenever a
return from a message invocation is performed, an entry is popped from the
stack and it becomes the current activation record. This solves the parameter
passing and the return address handling problems.

The activation record and other related structures corresponding to the
following method segment are shown in Figure 5.5.

begin

integer temp,
self retrieve-year temp,
temp := temp -|- 1.
self set-year temp.

end.

The internal representation of if and while statements are given in Figure
5.6 and Figure 5.7 respectively. They correspond to the following program
segments, for the if statement:

if (temp < 4) true temp := temp -f- 1
else temp := 0.

and for the while statement

while ((temp > 0) and (temp < 4))
begin

temp := temp -f- 1.
i := i -b 1.

end.

In the system, all operations are performed by defining classes and their
interface and invoking messages. All interactive statements are also treated

132

PC

begin
calLmessage
retrieve-year

self
(1)
add
(1)

(1)
call-message

set-year
self
i l l
end

Sym bol Table

temp integer

Figure 5.5: The internal representation of an example method

133

PC

cond
less than

(1)
4

end cond
if true

add
(1)
1

- (1)
end true
if false
assign

0
- (1)
end false

Sym bol Table

temp integer

Figure 5.6: The internal representation of an statement

134

loop
cond
and
cond

greater than

start loop

i l l
0

end cond
cond

less than
(1)

end cond
end cond

if true
add
i l l

i l l
add
i?!
J2L

end loop
end true

4---- return to the beginning

Sym bol Table

temp integer
i integer

Figure 5.7: The internal representation of a while statement

135

as messages. When a message is invoked, first of all the method definition
table of the receiver class is checked. If the table does not contain an entry
corresponding to the message, the search is continued in the superclass of
the class. If no corresponding entry can be found in the hierarchy, an error
message is generated indicating that either the message name is misspelled
or such a message does not exist in the system. Once an entry corresponding
to the message is found in a method definition table the specified arguments
and the required arguments are checked. If there is no error, the method
associated with the message and the file of the name containing the message
are obtained from the table. If the compiled form of the method exists,
that is, there is a file with the specified name and with extension ’ .com’,
the executor module will generate the activation record corresponding to the
method and perform the specified operations. Otherwise, the method will
first be compiled and then executed.

Within the activation record, the code to be executed will be input from
the associated file with extension ’ .com’. The program counter determines
which statement is to be executed. The execution is performed sequentially
unless a branch or a message or system call is executed. System calls, that
is, C function calls are usually used to reference the functions provided by
the object memory and schema evolution module.

5.5 THE QUERY PROCESSOR

The query processor handles various associative retrieval queries using the
routines provided by the object memory and the indexing modules. It is in
a way embedded in the executor module.

Associative queries are usually performed on collections. When an asso­
ciative query is requested, the query processor will check if there is a related
index. If there is the routines provided by the index manager will be used to
perform the necessary query. If a related index does not exist, a sequential
search will be performed using the functions provided by the object memory
and schema evolution module.

136

6. OPEN PROBLEMS AND FUTURE
EXTENSIONS

The problems related to the object-oriented approach in general can be listed
as follows [56]:

• Performance- The problem with most object-oriented systems is related
to the fact that they are rather slow. The systems could be made faster
by using compilation instead of interpretation. Also, dynamic binding
and full overloading may have to be resolved at run time. This causes
some additional overhead.

• Overloading- In most systems, the operation type is determined by the
first operand even when there axe multiple arguments. This causes an
unfairness problem. Overloading should be over all arguments rather
than only the first one.

• Higher order- Everything is first-order. Defining a flexible system al­
lowing functional types as arguments to a function is the problem. The
problem becomes even more complex if polymorphic types (parameter­
ized types) are allowed.

• Parameterized types- A type inference mechanism is used to infer most
general types of arguments to functions at compile time. This gives run
time efficiency by eliminating the need for run time type checking. The
problem appears for partially ordered types.

Little has been done to define formal semantics of object-oriented models
of computation.

Some problems related to object-oriented database management systems
are [43]:

137

• No standard data model for object-oriented database management sys­
tems

• No standard guidelines for designing them

• No standard query language

• Should queries on attributes which is against the concept of encapsula­
tion be allowed?

• Should they be considered as repositories for persistent objects or as
providing a complete picture of executing applications?

• Should active objects be viewed as executing within the database or
should running applications be viewed as being explicitly outside the
database?

The problems related to the evolution of the software base [43]:

• Providing tools to maintain global consistency- When changes are made
to the software base, the changes must be properly distributed. The
management of evolution is especially important for inheritance and
subtyping. As long as the interface to an object class is not modified,
its realization may be modified. When the interface changes, there is
the problem of invalidated references between object classes.

• Assuring that the right object is in the software base_ Whenever a
referenced object cannot be found in the software base, either a new
object has to be added to the software base or an existing object has
to be modified.

Other problem areas of the object-oriented approach and object-oriented
database management systems are version control, manipulation of composite
or dependent objects, schema evolution and handling conflicts in the case of
multiple inheritance. The use of object identity requires a sequential search
during associative access unless some kind of mapping or indexing is pro­
vided, thus degrading system performance. Index handling in object-oriented
database management systems is a very important research area. Another
problem associated with the object identity concept is the preservation of
object identity consistency. Some other open problems related to object-
oriented database management systems are garbage collection, storage man­
agement and especially the storage of variable-size or very large objects and

138

clustering. Also, there is a great demand for a theoretical model and some
standards for the object-oriented approach.

The object-oriented database management system prototype developed
and implemented at Bilkent University supports the basic object-oriented
concepts such as object identity, classes, inheritance and message passing
but there are some open problems.

The implemented prototype is a single-user system so it may be extended
to support multiple users. This requires the addition of the transaction con­
cept, authorization control, concurrency control and data integrity checks.

The system does not support versions. In order to be able represent
the temporal aspects of the data, the basic storage scheme used for object
instances has to be modified. Instead of a value, a value and time pair must
be stored for each instance variable. Versions introduce an overhead from the
storage point of view but they eliminate the need for garbage collection since
all data is kept in the form of versions.

The system allows basic schema evolution functions such as adding a new
class to the system, adding a new instance to a class, deleting an existing
class and deleting an instance of a class. The system may be extended to
support all schema evolution functions.

Some other open problem areas for object-oriented database management
systems are indexing, version management and composite object handling.
A composite object is a complex object formed of a set of subobjects that are
treated as units of storage, retrieval and integrity checking. The existance of
the subobjects depends on the existance of the principle object. Composite
objects represent the IS-PART-OF relationship between objects. The index­
ing problem is introduced by the use of a location and value independent
surrogate to reference an object. The problem arises during the value-based
access of objects.

139

7. CONCLUSION

A combination of the object-oriented language capabilities with the storage
management functions of a conventional database management system re­
sults in reduced application development efforts. The flexible data modelling
capabilities allow the representation of information not suited for normalized
relations. Also, an object-oriented language is complete enough to handle
database design, access and applications.

The major advantages of the object-oriented approach are versatility, flex­
ibility, reusability, implementation independence and increased programmer
productivity. Also, since duplication and redundancy are reduced data in­
tegrity is automatically satisfied. The main disadvantages are the relatively
poor performance and the complexity of implementing such a system. This
is due to the lack of a theoretical model and other basic standards for object-
oriented systems. In addition, object-oriented systems require a new and
different approach to problem-solving.

The main problem areas of the object-oriented approach and object-
oriented database management systems are version control, manipulation of
composite or dependent objects, schema evolution and handling conflicts in
the case of multiple inheritance. Unless some kind of indexing or mapping is
provided, the use of object identity requires a sequential search during value-
based access and this degrades system performance. A very important re­
search area related to object-oriented database management systems is index
handling. The preservation of object identity consistency is another problem
associated with the object identity concept. Garbage collection, storage man­
agement and especially the storage of variable-size or very large objects and
clustering are some other open problems related to object-oriented database
management systems. Also, there is a great demand for a theoretical model
and some standards for the object-oriented approach.

140

The basic object-oriented concepts such as object identity, classes, inher­
itance and message passing are supported by the object-oriented database
management system prototype developed and implemented at Bilkent Uni­
versity. There are some open problems such as schema evolution and multiple
inheritance but the main aim is to gain an insight on the subject and provide
a basis for future research.

The implemented prototype is a .single-user system so it may be extended
to support multiple users. This requires the addition of the transaction con­
cept, authorization control, concurrency control and data integrity checks.
The system does not support versions. The model could be extended to
capture the temporal aspects of the data. Another extension could be the
addition of composite objects and dependent objects to the model. Currently,
the system only supports passive objects. Active objects are also an inter­
esting research area. The support of all schema evolution functions could be
added to the system. Work could also be done to support multiple inheritance
instead of simple inheritance and efficient techniques.

The object-oriented approach has its advantages and problem areas but
especially for data-intensive applications, it is a very promising and hot re­
search area.

141

A. LIST OF BASIC ROUTINES

A.l THE LEXICAL ANALYZER

printfile(filename)
punctuation(input-chr)
delimeter(input-chr)
arithrnetic-operator(input-chr)
relationaLoperator(input-chr)
assignment (char 1 ,char2)
character(input-chr)
digit(input-chr)
parse_method(input-file,output-file)
create_parse_array ()
create_finaLstates()
reached_final_state(current-state)
findjQext_state(current-state,input-char)
parse-string(input-str)

A.2 THE PARSER

initialize_parse_stack(top,full,empty)
push_token(top,value,full,empty)
pop_token(top,full,empty)
stack-top(top)
terminal_stack_top(top)
keyword-stack_top(top)
variable-stack-top(top)
const ant -stack-top(top)

142

string_stack_top(top)
display _stack(top)
initialize_temp_stack(top,full,empty)
push_temp_stack(top,value,full,empty)
pop_temp_stack(top,full,empty)
display _temp_stack(top)
create_map_array()
compare(stringl,string2)
copy(stringl ,string2)
length(str)
token dd(str)
initialize_production_array()
alloc_token()
alloc_production()
attach_next_production(map-array-index)
attach Jntermediate_codeJd(map-index, value)
attach_token_storage_flag(map-index,value)
attach_token(map-index,str)
attach_error_condition(map-index,value)
attach_error_code(map-index,value)
read_error_values(index)
create_production_axray()
display _production_array()
character(input-char)
digit(input-char)
check_variable_name(str)
check_numeric_constant(str)
check_string_constant(str)
check_terminaLtoken(input-token)
find_error_code(input-token)
store_error(mode,error-count,input-token,error-no)
find_token_value(index)
data-type(token-ptr)
indexed_data_type(token-ptr)
allocate-symboLtable_entry()
add-production_to_symboLtable(production-ptr)
store_production(pr-index,token-ptr)
add_variable_to-symbol_table(input-token)
store_correspondence(input-token,stack-ptr)
convert-to-integer(str)

143

read-token(input-file,input-token)
match_string(stringl ,string2)
ordered_string_matching(stringl,string2)
minimum_hamming_distance(stringl,string2)
try_minimum_hamming_distance()
process_terminal_stack_top(top,input-token,error-count)
multivalued-token(input-token)
sear ch_terminaLproductions(mode,in-token,pr-index)
search_nonterminaLproductions(mode,in-token,pr-index)
search_terminal_multivalued_productions(mode,in-token,pr-index)

search_nonterminal_multivalued_productions(mode,in-token,pr-index)

search_approximate-terminaLproductions(mode,in-token,pr-index)

search_appproximate_nonterminal_productions(mode,in-token,pr-index)

find_next_production(in-token,flag)
push-production(new-production)
sear ch_other_stack_entries(top,in-token,error-count,replace-flag)
process_nonterminal_stack_top(top,in-token,error-count)
process_token(in-token,error-count)
display _error_message(mode,error-no,error-message)
show_errors(mode,error-count,fllename)
display _correspondence()
display-symboLtable(symbol-count)
display_parse_tree()
copy-production(token-ptr)
initialize_tokenJist()
display-tokenJist(token-list-ptr)
append-token Jist(head,tail,token-ptr)
delete_token_list(head,token-ptr)
find_nonterminaLtoken(head)
find_associated_production(token-ptr)
find_corresponding_entry(str)
replace_corresponding_tokens(token-ptr)
generateJntermediate_code()
store_intermediate-code(filenajne)
store-symboLtable(synibol-count,fllename)
parse_method(axgument-count,arguments)

read_token(input-file,input-token)
match_string(stringl ,string2)
ordered_string_matching(stringl,string2)
minimum_hamniing_distance(stringl,string2)
try_minimum_hamming-distance()
process_terminal_stack_top(top,input-token,error-count)
multivalued_token(input-token)
sear ch_terminaLproductions(mode,in-token,pr-index)
search_nonterminaLproductions(mode,in-token,pr-index)
search_terminal_multivalued_productions(mode,in-token,pr-index)

search_nonterminal_multivalued_productions(mode,in-token,pr-index)

search_approximate_terminaLproductions(mode,in-token,pr-index)

search_appproximate_nonterminaLproductions(mode,in-token,pr-index)

find-next-production(in-token,flag)
push_production(new-production)
sear ch_other_stack_entries(top,in-token,error-count,replace-flag)
process_nonterminal-stack_top(top,in-token,error-count)
process-token(in-token,error-count)
display_error_message(mode,error-no,error-message)
show_errors(mode,error-count,fllename)
display _correspondence()
display-symboLtable(symbol-count)
display_parse_tree()
copy-production(token-ptr)
initialize_tokenJist()
display _token_list(token-list-ptr)
append-token Jist(head,tail,token-ptr)
delete_token_list(head,token-ptr)
find-nonterminaLtoken(head)
find_associated_production(token-ptr)
find_corresponding_entry(str)
replace_corresponding_tokens(token-ptr)
generate Jntermediate_code()
store Jntermediate-code(filename)
store_symboLtable(symbol-count,fllename)
parse_metliod(axgument-count,arguments)

read_token(input-file,input-token)
match _string(stringl,string2)
ordered_string_matching(stringl,string2)
minimum_hamming_distance(stringl,string2)
try_minimum_hamming_distance()
process_terminal-stack_top(top,input-token,error-count)
multivalued-token(input-token)
seaxch_terminaLproductions(mode,in-token,pr-index)
search_nonterminaLproductions(mode,in-token,pr-index)
search_terminal_multivalued_productions(mode,in-token,pr-index)

search_nonterminal_multivalued_productions(mode,in-token,pr-index)

search_approximate_terminal_productions(mode,in-token,pr-index)

seaxch_appproximate_nonterminal_productions(mode,in-token,pr-index)

find_next-production(in-token,flag)
push-production(new-production)
sear ch_other_stack_entries(top,in-token,error-count,replace-flag)
process_nonterminaJ_stack_top(top,in-token,error-count)
process -token(in- token,error- count)
display_error_message(mode,error-no,error-message)
show _errors(mode,error-count,filename)
display _correspondence()
display-symboLtable(symbol-count)
display _parse_tree()
copy-production(token-ptr)
initialize_tokenJist()
display-token-list(token-list-ptr)
append-token Jist(head,tail,token-ptr)
delete_token-list(head,token-ptr)
find_nonterminaLtoken(head)
find-associated-production(token-ptr)
flnd-corresponding-entry(str)
replace_corresponding_tokens(token-ptr)
generateJntermediate_code()
store Jntermediate-code(fllename)
store_symboLtable(symbol-count,fllename)
parse_method(argument-count,arguments)

144

REFERENCES

[1] Abiteboul, S., and R. Hull, IFO: A Formal Semantic Database Model,
Proceedings of the Third ACM SIGACT-SIGMOD Symposium on Prin­
ciples of Database Systems, 1984, pp. 119-132.

[2] Abiteboul, S., and R. Hull, IFO: A Formal Semantic Database Model,
Technical Report T-84-304, University of Southern California, April
1984.

[3] Agha, G.,A Message Passing Paradigm for Object Management,
Database Engineering, vol.8, no.4, December 1985, pp. 311-318.

[4] Aho, A.V., J.D. Ullman,Principles o f Com piler Design,Addison
Wesley, 1977.

[5] Banerjee, J.,H.J. Kim, W. Kim, and H.F. Korth, Schema Evolution
in Object-Oriented Persistent Databases, Proc.of the 6th Advanced
Database Symposium (Tokyo,Japan,Aug.) Information Processing Soci­
ety of Japan’s Special Interest Group on Database Systems, 1986, pp.23-
31.

[6] Banerjee, J. et al.. Data Model Issues for Object-Oriented Applications,
ACM Transactions on Office Information Systems, vol.5, no.l, Jan.1987,
p p .3 - 2 6 .

[7] Borning, A.H., Classes Versus Prototypes in Object-Oriented Languages,

[8] Buneman, P., and M. Atkinson, Inheritance and Persistence in Database
Programming Languages, Proceeding of the ACM SIGMOD Interna­
tional Conference on Management of Data, 1986.

[9] Christian, K., T he Unix O perating System,John Wiley and Sons,
!983.

[10] Chou, H.T. and W. Kim,A unifying Framework for Version Control
in a CAD Environment, Proc. International Conference on Very Large
Databases, Kyoto, Japan, 1986.

145

[11] Com m ands Reference Manual, Sun Microsystems Inc., 1986.

[12] Copeland, G., and D. Maier, Making Smalltalk a Database System ̂
Proc.ACM SIGACT / SIGMOD International Conference on the Man­
agement of Data, 1985.

[13] Cox, Brad J., O bject-oriented Program m ing A n Evolutionary
A pproach , Adddison-Wesley, 1986.

[14] Date, C.J., A n Introduction to Database Systems,Fourth Edition,
vol.l and vol. 2, Addison Wesley, 1986.

[15] D ebugging Tools for the Sun W orkstation, Sun Microsystems Inc.,
1986.

[16] Diederich, J., and J. Milton, Experimental Prototyping in Smalltalk ̂
IEEE Software, May 1987, pp.50-64.

[17] E diting Text Files on the Sun W orkstation, Sun Microsystems
Inc., 1986.

[18] Fishman, D.H., et ah, IRIS: An Object-Oriented Database Management
System^ ACM Transactions on Office Information Systems, vol.5, no.l,
January 1987, pp.48-69.

[19] G etting Started with Unix: B eginner’s Guide, Sun Microsystems
Inc., 1986.

[20] Goldberg, A., and D. Robson, Sm alltalk-80:The Language and Its
Im plem entation, Addison-Wesley, 1983.

[21] Hopcroft, J.E., J.D. Ullman, Formal Languages and Their R elation
to A utom ata, Addison Wesley, 1977.

[22] Hornick, M.F., and S.B. Zdonik, A Shared, Segmented Memory System
for an Object-Oriented Database, ACM Transactions on Office Informa­
tion Systems, vol.5, no.l, January 1987, pp.70-95.

[23] Kaehler, T., and D. Patterson, A Small Taste of Smalltalk, Byte, August
1 9 8 6 , p p .1 4 5 - 1 5 9 .

[24] Karaorman, M., Secondary Storage Management in an Object-Oriented
Database Management System, M.S. Thesis, Bilkent University, Ankara,
July 1988.

146

[25] Kelley, A., I. Pohl, A B ook on C,The Benjamin / Cummings Publishing
Company Inc., 1984.

[26] Kernighan, B.W.,D.M. Ritchie,The C Program m ing
Language,Prentice Hall,1978.

[27] Kesim, N., An Object Memory for an Object-Oriented Database Man­
agement System, M.S. Thesis, Bilkent University, Ankara, July 1988.

[28] Khoshafian, S.N., and G.P. Copeland, Object Identity, ACM OOP-
SLA’86 Proceedings, Sept.1986.

[29] Konstantas, D., O.M. Nierstrasz and M. Papathomas,Ara Implementa­
tion of Hybrid, a Concurrent Object-Oriented Language,Actvve O bject
Environm ents, ed. D. Tsichritzis, Centre Universitaire D’Informatique,
Université de Genève, June 1988.

[30] Kulgarni, K.G., and M.P. Atkinson, EFDM: Extended Functional Data
Model, The Computer Journal, vol.29, no.l, 1986, pp.38-46.

[31] LaiF, M.R. and B. Hailpern, SW2-An Object-based Programming En­
vironment, Proc, of the 4th ACM SIGACT-SIGMOD Symposium on
Principles of Database Systems, 1985, pp.1-11.

[32] Lewis, H. R., C.H. Papadimitriou,Elements o f the T heory o f C om ­
putation, Prentice Hall, 1981.

[33] Lyngbaeg, P, and V. Vianu, Mapping a Semantic Database Model to the
Relational Model, ACM SIGMOD International Conference on Manage­
ment of Data , 1987, pp.132-142.

[34] Maier, D., and J. Stein, Indexing in an Object-Oriented DBMS, Proc. of
the Workshop on Object-Oriented Database Systems, September 1986.

[35] Maier, D., A. Otis, and A. Purdy, Object-oriented Database Develop­
ment at Servio Logic, Database Engineering, IEEE, vol.8, no.4, Decem­
ber 1985.

[36] Maier, D., J. Stein, A. Otis, and A. Purdy, Development of an Object-
Oriented DBMS, ACM Conference on Object-Oriented Programming
Systems,Languages and Applications, 1986.

[37] Manola, F., and U. Dayal, PDM: An Object-Oriented Data Model,
Database Engineering, vol.8, no.4, December 1985.

147

[38] Nierstrasz, O.M., What is the ’Object’ in Object-Oriented Program­
ming? ̂ O b jects and Things, ed. D.Tsichritzis,Centre Universitaire
D ’Informatique, Université de Genève, March 1987, pp.1-13.

[39] Nierstrasz, O.yi.^Hybrid - A Language for Programming with Active
Objects, O b jects and Things,ed. D. Tsichritzis,Centre Universitaire
D ’Informatique, Université de Genève,March 1987,pp.15-42.

[40] Nierstrasz, O.M.,, Triggering Active Objects,Objects and Things, ed. D.
Tsichritzis, Centre Universitaire D ’Informatique, Université de Genève,
March 1987,pp.43-78.

[41] Nierstrasz,O.M.,il Tour of Hybrid, Technical Report, Centre Universi­
taire D ’Informatique, Université de Genève.

[42] Nierstrasz, O.M.,il Survey of Object-oriented Concepts, A ctive O bject
Environments,ed. D.Tsichritzis,Centre Universitaire D ’Informatique,
Université de Genève, July 1988.

[43] Nierstrasz, O.M., Active Objects in Hybrid, OOPSLA ’87 proceedings.

[44] Ozelçi, S.M., N. Kesim, M. Karaorman, E. Arkun, An Experimental
Object-oriented Database Management System Prototype, to appear in
the Proc, of the Third International Symposium on Computer and In­
formation Sciences, October 1988, Çeşme, Turkey.

[45] Pascoe, G.A., Elements of Object-Oriented Programming, Byte, August
1986, pp.139-144.

[46] Penney, D.J., and J. Stein, Class Modification in the GemStone Object-
Oriented DBMS, Technical Report, Servio Logic Corporation.

[47] Shriver, B., and P. Wegner, editors. Research D irections in
O bject-O rien ted Program m ing, MIT Press Series in Computer Sys­
tems, 1987.

[48] Smith, J.M., and D.C.P. Smith, Database Architectures: Aggregation and
Generalizations, ACM Trans. Database Systems, vol.6, no.l, pp.160-173,
1977.

[49] Snodgrass, R., A Temporal Query Language,Teàixàcvl Report TR 85-
013, University of North Carolina, Chapel Hill, May 1985.

[50] Stefik, M.,and D.G. Bobrow, Object-Oriented Programming:Themes and
Variations, AI Magazine, January 1986, pp.40-62.

148

[51] Sun System Overview, Sun Microsystems Inc., 1986.

[52] Tsichritzis, D., et.al., KNOs: Knowledge Acquisition, Dissemination and
Manipulation Objects, ACM Transactions on Office Information Sys­
tems, VOİ.5, no.l, January 1 9 8 7 , pp.9 6 -1 1 2 .

[53] Ullman, J.D.,Principles o f Database Systems,Computer Science
Press, 1982.

[54] Ullman, J.D., Database Theory: Past and Future, Proceedings of the
Sixth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems , 1987, pp.1-10.

[55] U N IX Interface R eference Manual, Sun Microsystems Inc., 1986.

[56] Zaniolo C. et al., Object-Oriented Database Systems and Knowledge Sys­
tems, 1st International Workshop on Expert Database Systems, 1985,
p p .1 - 1 7 .

[57] Zdonik, S.B., Why Properties are Objects or Some Refinements of ’is-a’,
ACM/IEEE Joint Computer Conference, 1986, pp.41-47.

149

