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ABSTRACT

M E SSA G E  PASSING IN A N  O B JE C T -O R IE N TE D  
D A TA B A SE  M A N A G E M E N T  SY ST E M

Sibel M . Ozelgi

M .S. in Computer Engineering and 
Information Sciences 

Supervisor: Prof.Dr.Erol Arkun 
July 1988

In this thesis, a focused survey on object-oriented database management 
systems and on object-orientation in general was carried out and a single- 
user object-oriented database management system prototype was designed 
and implemented. A command language was defined and a message passing 
scheme was proposed and implemented. A compiler for the language was 
developed.

The developed language is computationally complete and aims at solving 
the impedance mismatch problem. It contains both data definition and data 
manipulation statements. The statements can be used interactively or in the 
form of methods. After compilation, the statements are translated into inte­
ger codes and these codes are used to perform the necessary operations.Since 
the developed prototype is a single-user system, the message passing passing 
scheme does not provide any concurrency control mechanisms and stacks are 
used to implement message passing and argument handling.

Keywords : object-oriented database management systems, object, class, 
instance, method, message, message passing, inheritance, class hierarchy, ob­
ject identity, data abstraction.
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ÖZET

NESNESEL BİR  V E R İ T A B A N I SİSTEM İN D E M ESAJ
Y O L L A M A

Sibel M . Özelçi
Bilgisayar Mühendisliği ve Enformatik Bilimleri Yüksek Lisans 

Tez Yöneticisi: Prof.Dr.Erol Arkun 
Temmuz 1988

Bu tez çalışmasında nesnesel yaklaşım ve nesnesel veri tabam sistemleri 
üzerinde bir araştırma yapılmıştır. Ayrıca tek kullanıcılı bir nesnesel veri 
tabanı sistemi prototipi için bir dil geliştirilmiş ve bir mesaj yollama yöntemi 
önerilmiş ve uygulanmıştır. Geliştirilen dil için bir derleyici yazılmıştır.

Geliştirilen dil hesapsal açıdan tamdır ve empedans uyumsuzluğu prob­
lemini çözmeyi amaçlamaktadır. Veri tanımlama ve veri kullanımı için ko­
mutlar içerir. Komutlar doğrudan doğruya veya metodlar halinde kullanılabilirler. 
Derleme sırasında komutlar bazı kodlara çevrilirler ve bu kodlar daha sonra 
gerekli işlemleri yapmak üzere kullanılırlar. Geliştirilen sistem tek kullanıhcıh 
olduğundan önerilen mesaj yollama yöntemi verilere aynı anda erişimden 
doğan problemleri çözümleyecek mekanizmalar içermemektedir. Mesaj yol­
lama ve parametre gönderme yiğit kullanılarak gerçekleştirilmiştir.

Anahtar kelimeler : nesnesel veri tabanı sistemleri, nesne, sınıf, eleman, 
metod, mesaj, mesaj yollama, aktarım, sınıf hiyerarşisi, nesne kimliği, veri 
soyutlaması.
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1. INTRODUCTION

Conventional methods such as relational database management sys­
tems and programming languages lack a suitable problem solving approach 
to various data intensive applications such as CAD/CAM applications, office 
information systems, knowledge base systems, expert systems and knowledge 
representation. Database systems, programming languages and artificial in­
telligence already have overlaps in some areas. Databases require better in­
tegrated application program interfaces, expert systems must deal with large 
collections of base facts and programming languages need richer ways to 
model their data. As a result of all these needs object-oriented programming 
environments were developed and this approach was extended to other fields. 
Since then the approach has gained a great deal of importance and popu­
larity. The basic characteristic of object-orientation is that data are active 
and procedures are passive unlike in traditional data processing methods. In 
other words, instead of data being sent to procedures, objects which represent 
real world entities are asked to perform operations on themselves. Every real 
world entity is modelled as an object.

The basic concept in object-orientation is the object which captures both 
the state and the behaviour of an entity. The behaviour is represented using 
methods and messages. Methods are performed when objects are invoked by 
messages. Messages specify which operation to perform on an object while 
a method specifies how the operation will be performed. Similar objects 
constitute a class while the elements of a class constitute its instances. The 
definitions related to the instances of a class appear only in the corresponding 
class definition thus eliminating the redundant specification of the informa­
tion for each instance. The classes in a system can be organized in a class 
hierarchy or class lattice. A class can be defined as the subclass of another 
class inheriting the implementation and interface of its superclass. This is 
known as inheritance. A subclass may modify the definitions it inherits or 
may add new definitions to them. The class and inheritance concepts increase



modularization and reduce duplication. Building a hierarchy of objects and 
inheritance also facilitates top-down design.

In object-orientation, each object is referenced using a value independent 
and physical location independent surrogate. Surrogates provide data and 
location independence but unless some kind of indexing is used, one has to 
perform a sequential search when associative or value-based access is required. 
The surrogate of an object, that is, its identity remains the same regardless of 
changes in the object. Objects reference their components by identity and not 
by value. Therefore data integrity and referential integrity are automatically 
satisfied and data duplication is reduced.

There is no general definition of an object-oriented system. One approach 
is to define an object-oriented system as a system which supports data encap­
sulation and inheritance. Another definition is introduced considering that 
these two requirements are quite restrictive. This definition states that an 
object-oriented system is a system that supports data encapsulation and not 
necessarily inheritance.

Informally, an object-oriented database management system can be de­
fined as follows: a system which is based on a data model that allows the 
representation of an entity, whatever its complexity and structure, by ex­
actly one object of the database. No decomposition into simpler concepts 
is necessary. As entities may be composed of subentities which are entities 
themselves, an object-oriented data model must allow recursively composed 
objects.

Although record-based models have been successfully applied to a vari­
ety of data problems, they have serious limitations. Fundamental problems 
include the fact that in these models most relationships between data must 
be represented using record and pointer structures and thus force different 
kinds of relationships to be represented in the same way. Also, record entries 
must be from fixed sets of possible values, thus making it difficult to repre­
sent situations in which two or more entity types participate in a given role 
of a relationship. Finally, relational models rely on symbolic identifiers to 
represent data objects and in that way they add another level of indirection. 
The problems related to conventional database systems can be solved by com­
bining object-oriented concepts and the storage management functions of a 
traditional database management system.



Conventional record-oriented database management systems reduce ap­
plication development time and improve data sharing among applications. 
However they axe subject to the limitations of a finite set of data types 
and the need to normalize data. In contrast, object-oriented systems offer 
flexible abstract data-typing facilities and the ability to encapsulate data 
and operations with the message metaphor. In addition, they reduce appli­
cation development efforts. Object-oriented database management systems 
support more direct modelling and require less encoding compared to other 
data models and they capture more information semantics. Also, one can 
easily represent models which can not be represented using normalized re­
lations, thus keeping the semantic gap as small as possible and representing 
most of the problem semantics in the database itself. Another point is that, 
object-oriented systems aim at solving the impedance mismatch problem seen 
in conventional database systems in which there are separate languages for 
data definition and data manipulation by providing a unified language sup­
porting both functions. Lastly, object-oriented database systems allow nested 
(non-first normal form or NINF) relations, can capture the temporal aspect 
of the data and can handle multiple versions.

The major advantages of the object-oriented approach are versatility, flex­
ibility, reusability, implementation independence and increased programmer 
productivity. Also, since duplication and redundancy are reduced data in­
tegrity is automatically satisfied. The main disadvantages are the relatively 
poor performance and the complexity of implementing such a system. This 
is due to the lack of a theoretical model and other basic standards for object- 
oriented systems. In addition, object-oriented systems require a new and 
different approach to problem-solving.

The main problem areas of the object-oriented approach and object- 
oriented database management systems are version control, manipulation of 
composite or dependent objects, schema evolution and handling conflicts in 
the case of multiple inheritance. The use of object identity requires a sequen­
tial search during associative access unless some kind of mapping or indexing 
is provided, thus degrading system performance. Index handling in object- 
oriented database management systems is a very important research area. 
Another problem associated with the object identity concept is the preserva­
tion of object identity consistency. Other open problems related to object- 
oriented database management systems include garbage collection, storage 
management and especially the storage of variable-size or very large objects 
and clustering. Also, there is a great demand for a theoretical model and 
some standards for the object-oriented approach.



The developed object-oriented database management system prototype 
consists of four major modules which are object memory and schema evolu­
tion; message passing; secondary storage management, indexing and the user 
interface. Object memory handles the representation, access and manipula­
tion of the objects in the system. The schema evolution module supports 
some basic modifications to the class hierarchy. The message passing module 
is built on top of the object memory and schema evolution module and forms 
the basis for the user interface module. It includes the definition and support 
of the designed command language and error handling in addition to mes­
sage passing. It consists of five submodules which are the lexical analyzer, 
parser, code generator, executor module and query processor. The designed 
language aims at solving the impedance mismatch problem. The secondary 
storage management and indexing module handles persistent objects by stor­
ing and retrieving them from secondary storage files and the indexing facility 
provides B-tree structures for efficient execution of value-based queries. The 
user interface module is also object-oriented and supports three types of users, 
namely, the developer/maintainer, the domain specialist and the end-user.

The prototype has been implemented on Sun workstations running un­
der Berkeley Unix  ̂ 4.2 and the C programming language. The system is 
single-user and all objects are persistent and passive. Simple inheritance is 
supported resulting in a class lattice in the form of a tree. Authorization, 
concurrent access to data,composite objects and versions are not supported.

In this thesis, a focused survey on object-orientation and object-oriented 
database management systems is presented and the design and implementa­
tion of a single-user object-oriented database management system prototype 
is described with an emphasis on the message passing module. A command 
language is defined and a message passing scheme is proposed and imple­
mented.

The thesis begins with a general introduction of the object-oriented ap­
proach. After the basic concepts, properties and application areas of the ap­
proach are introduced, the limitations of conventional database management 
systems and the advantages introduced by object-oriented databases are ex­
plained. Following a survey on some available object-oriented programming 
languages and database management systems, the developed object-oriented 
database management system prototype is presented. After a detailed de­
scription of the language developed and the message passing scheme applied, 
some open problems and future extensions to the system are listed.

^Unix is a trademark of AT&T Bell Laboratories



2. THE OBJECT-ORIENTED APPROACH

2.1 THE BASIC CONCEPTS IN OBJECT-ORIENTATION

Object management refers to a set of run time issues such as object 
naming, persistence, concurrency, distribution, version control, security etc.
Objects reside in a workspace which may be local and private or distributed 
and shared. Persistence methods must deal with local failures to resolve 
inconsistency problems [42].

2.1.1 OBJECTS AND CLASSES

In object-oriented programming, all conceptual entities are modelled 
as ohjectslbf)]. Programs are based on objects which are record-like data 
structures.An integer, string, aircraft or a submarine is an object. Objects 
are entities that combine the properties of procedures and data since they 
perform computations and save local state. The uniform use of objects in 
object-oriented systems contrasts with the use of separate procedures and 
data in conventional systems.

Each object is considered to have two parts: the ■private part and the 
public interface part[Q]. The public interface part is used to communicate with 
other objects; and the private part specifies the internal implementation of 
the object. The private part can only be accessed through the public interface 
part. These two parts, together, capture both the state and the behaviour 
of the entity. The state of the object is represented using a collection of 
instance variables. Each instance variable is an object and therefore has its 
own private memory. A primitive object such as an integer or character 
has no instance variables. It only has a value which itself is an object. A 
default value may be specified for instance variables. In that case, such an



instance variable is called a default value variable. If the value for such an 
instance variable is not specified for an object, the associated default value 
will be taken as the value. A derived instance variable is one whose value is 
dependent on other information that is contained in the state of the object. 
It is not possible to set the value of a derived instance variable. The value of 
a derived instance variable is computed using a derivation function.

It is often desirable not to require that an instance variable’s value belongs 
to a particular class, that is, not to bind the possible values of an instance 
variable to any single class. This means that, two different instances of the 
same class may reference objects from two different classes through the same 
instance variable. However, for the purpose of preserving data integrity, 
it is desirable to bind the domain, that is, the data type of an instance 
variable to a specific class and therefore implicitly to all subclasses of the class. 
Some object-oriented systems such as Smalltalk and GemStone are typeless 
allowing instance variables to take any value while others such as Hybrid and 
the developed object-oriented database management system prototype are 
strongly-typed requiring that each instance variable must be assigned to a 
domain from which it may take values.

Before creating an object, it must be described. After it has been de­
scribed, this description can be used to create a whole set of objects. Such 
an object description is called a class and any object created using this de­
scription is called an instance of the class. Thus, objects with similar im­
plementations and interfaces constitute a class; and the members of a class 
constitute its instances. Classes are used as [7]:

• generators of new objects

• descriptions of the representation of their instances

• descriptions of the message protocols of their instances

• a means for implementing differential programming

• repositories for methods for receiving messages

• a way of dynamically updating many objects at the same time

• set of all instances of a class

The class provides all the information necessary to construct and use ob­
jects of a particular kind, its instances. It is sufficient to know the messages



defined for a class and their input and output arguments, to create an instance 
of that class. Each instance of a class has its own copy of instance variables. 
Each class of objects is associated with a particular set of procedure-like oper­
ations called methods·, and methods are performed when objects are invoked 
by messages.

A class may be associated with some class variables. The value of a class 
variable is shared by all instances of a class. Class variables and default value 
variables reduce storage and specification of objects.

Each instance has a single class while a class may have any number of 
instances. Allowing an object to belong to more than one class results in 
lower performance and a large increase in system complexity. This is because 
the structure of an instance object is variable; since it can belong to a number 
of classes, its instance variables cannot be determined beforehand and the 
identifiers for all classes to which an instance belongs must be stored with 
each instance. Only by examining the content of an instance object and 
determining the classes to which it belongs, it will be possible to determine 
its instance variables and methods.

The class concept reduces storage and duplication. It also provides con­
ceptual simplicity.

There are two approaches to instantiation. In static instantiation, the 
object is instantiated at compile time and the object remains in the system 
through program execution. Dynamic binding requires run time support for 
allocation and for explicit deallocation or garbage collection [43].

Classes are used to describe the common properties of related objects, 
its instances. This class-instance approach has some complications resulting 
from the interaction of message look-up with the role of classes, which gives 
rise to the need of metaclasses and the use of classes for several different 
functions. One of the problems is the need to create a separate class for 
each object that has a distinct message protocol. If classes are treated as ob­
jects, to allow different classes to understand different initialization messages, 
each class itself must be an instance of a different class, namely, a metaclass. 
Another problem is that when designing a class the user must move to the 
abstract level of the class, write a class definition and then instantiate it and 
test it. To solve these problems associated with classes and metaclasses, •pro­
totypes are used [7]. A prototype is a standard example instance and new



objects are created by copying and modifying prototypes instead of instan­
tiating classes. Also, prototypes are useful to avoid a proliferation of object 
classes in systems where objects evolve rapidly and display more differences 
than similarities (analogy and deviation). The difference between prototyping 
and instantiation is seen in terms of applicable inheritance mechanisms.

In the prototype model, an object consists of state and behaviour as in 
the class model. The state of an object is represented by a set of named fields. 
There are two components of an object’s behaviour. The first component is 
a method dictionary and the second is a protocol that describes the set of 
messages the object declares that it can understand, the protocols required 
of the arguments to the messages and the protocols of the results returned 
by the messages. There may be severed methods for receiving a given mes­
sage. Similarly, one can send messages to an object asking it for information, 
asking it to change its state or asking it to change its behaviour. The only 
way to make a new object is to make a complete copy of an existing object 
including the state and the behaviour. Once the copy is made there is no 
relation between the original and the copy. Creating new objects by copy­
ing eliminates the need for metaclasses. The model handles object creation, 
manipulation and representation. The problems with this model are;

• There is no classification of objects, either by message protocol or by 
representation

• There is no way of updating a whole group of objects at a time

Constraints are used to express the inheritance relations among objects. 
There are two messages available for creating new objects: copy and descen­
dant. The copy method makes a complete copy of the receiver and returns it. 
The second method makes a copy of the receiver and also creates a descendant 
relationship between the two objects.

The class and prototype model can be integrated and used to eliminate 
the need for metaclasses.

There are various ways an object can be stored in secondary storage. The 
two basic approaches are [56]:

• decomposing an object into its fields and representing each field as a 
binary relation

• storing objects by grouping all the fields of one object together on disk

8



The binary relation representation is better for associative access. It is not 
very good if all fields of an object is to be accessed.

For the object-based storage scheme, it is easy to access all fields for an 
object but associative access has lots of problems:

• many disk blocks must be read even with indexing

• data can be clustered only on one field

• redundancy and update problems

In the hybrid organization, binary relations axe used on disk to speed 
associative access, with an object-based representation used in main memory 
to aid manipulations on single objects.

2.1.2 MESSAGES AND METHODS

A message is a request for an object to access, modify, or return part of 
its private part. It is like an indirect procedure or function call. Objects 
provide methods as a part of their definition. Messages completely define 
the semantics of an object. Methods describe how to carry out the necessary 
operations and a message specifies which method is desired but not how 
that operation is performed. The set of messages to which an object can 
respond is called its interface. Methods are not visible from outside the 
object. Objects communicate with one another through messages. A crucial 
property of an object is that its private memory can be manipulated only by 
its own operations and the messages are the only way to invoke an object’s 
operations.

When a message is sent to an object, a message look-up is performed to 
determine the method associated with that message [50]. Generally, the mes­
sage look-up starts from the class of the object which received the message. 
If the associated method is found, it is executed and the search is complete. 
If it is not found, the search continues in the superclass of that class. This 
look-up procedure searches the class lattice or hierarchy until the method is 
found or the root class is reached, in which case an error occurs. Pseudo 
variables [45] used in message calls as the receiver alter this message look-up 
procedure. In some object-oriented systems, the message itself is an object 
that the receiver processes as it wishes.



Pseudo variables are similar to other variables syntactically, but they are 
different semantically in that they cannot be assigned a new value during 
any particular invocation of a method. Two important pseudo variables are 
3c//and super. They both refer to the object that received the message cur­
rently being processed. They differ in the way message look-up is performed. 
When self is sent a message, the message look-up algorithm is identical to 
the way a look-up is performed when the message is sent externally, starting 
in the object’s class. When super is sent a message, the look-up is performed 
starting in the superclass of the class in which the method that is currently 
executing is found. This pseudo variable gives objects a controlled way of 
accessing superclass methods. The self call allows the implementation of re­
cursive methods and the super call is used to make incremental additions to 
an inherited method. The new behaviour added to the method may precede, 
follow or surround the call to super. An example from Smalltalk is:

initialize

super initialize 
X <— y <— 0.

In the example, the initialization method for a class uses the initialize method 
of its superclass and also initializes the variables x and y to zero. The 
operator is an assignment operator.

Message passing can be implemented as function calls or in a concurrent 
system as remote procedure calls [50]. Methods are equivalent to functions 
when there are no other methods associated with the message selector. An­
other implementation technique is based on actors [3] which are persistent, 
message passing processes [38]. In this approach, objects are in a way imple­
mented on top of actors.

Messages and methods add data abstraction and polymorphism to the 
object-oriented model. A system is said to support data abstraction when 
it has a mechanism for bundling together all operations on a data type. 
The purpose of data abstraction is to change the underlying implementation 
without changing other parts [45]. Object-oriented systems support this idea 
since a class defines all the messages and methods, that is operations, that 
apply to its instances. Polymorphism refers to the capability of different 
classes of objects to respond to the same protocol.

In concurrent environments message passing could be either synchronous
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or aynchronous [38]. In asynchronous message passing, the message is put 
on a queue and the sender is free to work on another task. In synchronous 
message passing, the sender is blocked until the message is delivered. In some 
systems the sender is blocked until the receiver sends a response. The problem 
with asynchronous message passing is infinite size buffers while synchronous 
message passing limits the amount of concurrency through blocking.

2.1.3 INHERITANCE AND THE CLASS LATTICE

A typical application may create and reference a large number of objects. If 
every object is to carry its own instance variable names and its own methods, 
the amount of information to be specified and stored can become unmanage­
ably large. The class concept provides modularization and conceptual sim­
plicity as well as reducing duplication, since all the messages, methods and 
instance variables shared by the instances only appear in the corresponding 
class definition. Another such tool is inheritance, in which a class can be 
defined as a subclass of another class inheriting the implementation and defi­
nition of its superclass. Thus, all classes in the system form a class hierarchy: 
a directed acyclic graph in which an edge between two nodes represents the 
IS-A relationship, that is, the child node is a specialization of the parent node 
and the parent node is a generalization of the child node [6]. The parent node 
is called the superclass of the child and the child node is called the subclass of 
the parent. Classes participate in the inheritance hierarchy directly whereas 
instances participate indirectly through their classes. A class needs to in­
herit properties only from its immediate superclass. So, by induction, a class 
inherits properties from every class in its superclass chain. A subclass may 
modify the definitions and implementations it inherits from its superclasses or 
may add new ones. Methods or definitions are overridden if a new method is 
provided for the old method’s selector or a variable is redefined. Adding new 
behaviour to existing methods is usually done through the pseudo variable 
super.

Inheritance enables programmers to create new classes of objects by spec­
ifying the differences between a new class and an existing class. Thus a large 
amount of code can be reused through the sharing of behaviour between ob­
jects. Inheritance also facilitates top-down design. The inheritance and the 
class concepts avoid the specification and storage of some redundant infor­
mation. They also provide information hiding. In a way, inheritance is a 
conceptual structuring mechanism.
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There axe many forms of inheritance depending on what is inherited and 
when and how the inheritance takes place. The related issues are [42]

• Does inheritance occur dynamically or statically?

• Are classes or instances clients of inheritance?

• What properties can be inherited?

• Which inherited properties are visible to the client?

• Can inherited properties be overwritten or suppr<;ssed?

• How are conflicts resolved?

Class inheritance reflects the similarity between object classes and is static 
inheritance. In partial inheritance, some properties are inherited and others 
are suppressed. It is convenient for code sharing but may create a messy 
hierarchy.

In dynamic inheritance [42], objects alter their behaviour in the course of 
normal interactions between objects. Dynamic inheritance occurs within the 
object model as opposed to schema evolution. It can be classified as follows:

• part inheritance- An object explicitly changes its behaviour by accept­
ing new parts from other objects. It is the exchange of values between 
objects. An object that modifies an instance also changes its behaviour, 
though limited by the object’s class. If one considers instance variables 
and methods as values, an object may dynamically inherit new instance 
variables and methods from other objects.

• scope inheritance- It occurs indirectly through changes in the environ­
ment. An object’s behaviour is determined by its environment and 
acquaintances. The behaviour of an object changes when its environ­
ment changes.

Dynamic inheritance is possible with systems supporting prototypes.

Inheritance can be considered in four categories [47].

• Type theory inheritance is related to the similarity of the data struc­
ture between a subclass and a superclass. The structure of a subclass 
contains all the instance variables of its superclass and may include its 
own instance variables.
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• External interface inheritance is the similarity of the externally visible 
interface provided by a class and its superclass. The class is able to 
provide all the external interface of its superclass and may specialize 
its superclass by providing its own interface as well.

• Code sharing and reusability is related to the property that if a sub­
class redefines the methods of its superclass, it can use the methods as 
provided by its superclass but can build upon them its own methods. 
Thus more complex routines can be built out of simpler ones by reusing 
but not duplicating the code.

• Polymorphism is related to operator overloading and allows a concrete 
operation to inherit its definition and properties from a generic opera­
tion.

There are two types of inheritance, namely simple inheritance and mul­
tiple inheritance [6] [50]. In simple inheritance, a class may have only one 
superclass forming a class hierarchy restricted to being a tree while in multiple 
inheritance, a class may have more than one superclass inheriting the defini­
tion and properties of all its superclasses and forming a lattice structure as 
the class hierarchy. Multiple inheritance simplifies data modelling and often 
requires fewer classes to be specified than with simple inheritance. However 
it introduces name conflicts, that is, the problem of two or more classes hav­
ing instance variables or methods with the same name. The conflict may be 
between a class and its superclass or between the superclasses of a class. The 
name conflict problem between a class and its superclass may also be seen 
in simple inheritance and is solved by giving priority to the class. To solve 
the conflict problems in multiple inheritance, a conflict resolution scheme 
must be used. Either all instance variable or method names of superclasses 
must be distinct or a priority order for the superclasses should be specified. 
The default conflict resolution scheme provided by most systems chooses the 
property of the first superclass in the list of immediate superclasses when a 
conflict occurs. The problem with this approach is that the scheme depends 
on the permutation of the superclasses of a class. To overcome this problem, 
some systems allow users to explicitly change the permutation at any time.

There are two basic problems related to inheritance relationships between 
objects, that is, IS-A relationships. These are [57];

1. the confusion between the inheritance of behaviour and the inheritance 
of representation.
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2. the lack of any requirements for semantic relationships between a named 
operation on a type and a replaced operation with the same name on 
a subtype.

To distinguish between inheritance of behaviour and inheritance of repre­
sentation, some other relationships can be introduced [57].

• The behaves-like relation. If a class B behaves-like a class A, B must 
have at least the behaviour of A. B may add new behaviour (properties, 
operations and constraints) but all A ’s behaviour must be supported 
by B. This relation does not have the side-effect of creating instances of 
superclasses which is seen in IS-A relations. The behaves-like relation 
could be implemented using IS-A relations by adding a new class which 
specifies the behaviour to be shared but has a null representation and 
which cannot be instantiated as a superclass of the two related classes. 
This requires schema evolution, the dynamic modificaton of the class 
lattice, and is troublesome. The behaves-like relation allows the user 
to retain the old structure while achieving the desired behaviour.

• The subsumes relation. The aim in this relation is for a subclass to 
access the representation of its subtypes. Subsumes guarantees that 
a subclass has at least the specification of its superclasses but it adds 
the ability for the subclass to access any state that is available in the 
superclass instance. This in a way loses some of the data abstraction 
seen in object-oriented systems.

Another problem with object-oriented systems is that operation refine­
ment or operation redefinition is not based on any semantic properties of the 
operations involved. The aim of the IS-A relation is to induce a subclass re­
lationship among the classes but with operation refinement one may end up 
with two classes related by an IS-A relationship but with completely different 
behaviour.

An approach to adding some semantics to the operation refinement prob­
lem is to allow an operation Opi on B to refine another operation 0p2 on a 
superclass A if and only if Opi behaves-like 0p2· B inherits all operations 
defined on A that are not refined by an object in B. In order for an operation 
to be a subtype of another operation type, it must have at least the behaviour 
of its supertype [57].

The refines relation is used to relate operation types. If B behaves-like A
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and an operation 0p2 on B refines an operation 0p\ on. A then an invocation 
of Opi on B will cause 0p2 to be invoked. Opi on A may only be refined 
once on a given subclass of A. Property refinement is also possible.

The discussion up to now was based on the class model. The prototype 
model also supports inheritance through some independent inheritance con­
straints. These are [57]:

• inherits-field-name3(0bj ect\,Ohj ect  ̂)

• inherits-behaviour(Obj ecti,Obj ecÎ2 )

• inherits-protocol(Obj ectx,Obj ect2 )

A descendant constraint is defined to be the conjunction of the three in­
heritance constraints. These constraints can be used to support multiple 
inheritance but the name conflict problem still exists as in the class model.

2.1.4 OBJECT TYPES

An object type [42] is the same as an object class but when using typed objects 
whether they are manipulated in a consistent way must be checked statically. 
With static type checking there is no need to protect objects from unex­
pected messages. In object-oriented systems, with polymorphic operations 
and dynamic binding, some types may be equivalent or included in other 
types. The declared types of variables and arguments serve as specifications 
for valid bindings and invocations. One type conforms to another if some 
subset of its interface is identical to that of the second, that is, the first is a 
subtype of the second. They are equivalent if they conform to one another.

The difference between object classes and types can be interpreted as 
viewing the second as specifications. In the presence of dynamic binding, 
it is generally impossible to statically determine the class of a variable, but 
with the appropriate type rules, type checking can be performed. If dynamic 
binding is not supported then an object type will uniquely determine an 
object class. Type information can be useful for generic classes.

Class hierarchies are not the same as type hierarchies but they may over­
lap. Two classes may be equivalent as types, though neither inherits anything 
from the other.
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2.1.5 OBJECT IDENTITY

Identity [28] is a property of an object that distinguishes it from other objects. 
Object identity provides the ability to distinguish objects from one another 
regardless of their content, location or addressability and the ability to share 
objects. This supports the modelling of arbitrarily complex and dynamic 
objects using versions which is a very important necessity in programming 
languages and database systems.

Consistency can be defined in terms of object identity. A consistent sys­
tem must have the following two properties [28]:

a) Unique identifier assumption. No two distinct objects may have the same
identifiers, that is, the identifier functionally determines the type and 
the value of an object.

b ) No dangling identifier assumption. For each identifier in the system there
is an object with that identifier.

The dangling identifier problem may be seen when an object is deleted. In 
most systems, a reference count representing the number of references to an 
object is kept for each object [28]. This reference count is updated whenever 
a reference to the associated object is added or removed. When the reference 
count of an object goes down to zero, the object is no longer referenced so 
it may be removed and garbage collection is applied. This is important for 
preserving the consistency of the system by avoiding dangling identities. This 
property is especially essential for temporal data.

W E A K  SUPPORT OF ID EN TITY VS STRONG SUPPORT OF 
ID E N TITY

There are basically two dimensions involved in the support of identity. These 
are the representation dimension and the temporal dimension [28].

The representation dimension distinguishes languages based on whether 
they represent the identity of an object by its value, by a user-defined name or 
built into the language. Using values to distinguish objects provides a weak 
support of identity whereas built-in support of identity provides strong iden­
tity. A language providing a strong support of identity in the representation 
dimension must maintain its representation of identity during updates, use
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identity in the semantics of its operators and provide operators to manipulate 
identity.

The temporal dimension distinguishes languages based on whether they 
preserve their representation of identity within a single program or trans­
action, between transactions or between structural reorganizations such as 
schema reorganization. If a language preserves the identities during only a 
single program or transaction, that language is said to support weak identity. 
The strongest support of identity in the temporal dimension is the preserva­
tion of identities through structural reorganizations. A language supporting 
stronger identity in the temporal dimension requires more robust implemen­
tation techniques to preserve its representation of identity.

Strong identity in the representation dimension is important for both tem­
porary and persistent objects. Strong identity in the temporal dimension is 
important for persistent objects. For hybrid languages, which merge pro­
gramming languages and database functionality, a strong identity in both 
dimensions is important as a result of the need for a uniform treatment of all 
objects because their status may change between temporary and persistent.

ID E N TITY IN PROG RAM M ING LANGUAGES

Most general-purpose programming languages are built based on temporal 
objects and a file system which is not part of the language is used to support 
persistent objects. In most languages weak identity is supported for temporal 
data.

Programming languages differ in the way they support identity in the rep­
resentation dimension. Most languages use variable names as identities [28]. 
The actual binding of a variable to its name could be static, that is, at compile 
time or dynamic, that is, at run time. This approach confuses addressability 
and identity. Addressability is external to the object and provides a way of 
accessing an object within a specific environment and thus is environment 
dependent whereas identity is internal to an object and provides a way to 
represent an object uniquely and independently of how it is accessed. There 
are other limitations to this approach. One important problem is that a sin­
gle object may be accessed in different ways and bound to different variables 
without a way of finding out whether they refer to the same object or not. 
To solve this problem operators for manipulating identity must be added to 
the language.
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ID E N TITY IN DATABASE LANGUAGES

Database languages must support strong identity in both the temporal and 
representation dimensions [28].

In relational database systems, a subset of attributes that uniquely de­
termine a tuple, that is, an identifier key is used to represent the identity of 
an object. The identifier key is unique for all objects in the relation. Using 
identifier keys to represent object identity mixes the concepts of value and 
identity and thus introduces many problems. These problems can be listed 
as follows:

• Identifier keys are not allowed to change even though they are user- 
defined descriptive data. If an identifier key is allowed to be modified, 
this will cause integrity problems, discontinuity in identity and update 
problems in all objects that refer to it.

• Identifier keys cannot provide identity for every object in the relational 
model. Each attribute or subset of attributes cannot have identity.

• The choice of which subset of attributes to use as an identifier key may 
change.

• The use of identifier keys causes joins to be used in retrievals instead of 
path expressions. Path expressions [34] [36] which are used in object- 
oriented systems are much simpler.

With built-in object identity no joins are needed during retrievals. How­
ever using path expressions requires unique attribute names since nested 
names are used. Also, one may have some ambiguous paths. On the other 
hand, with built-in identity the insertion and deletion anomalies seen in re­
lational systems and the need to normalize data are eliminated.

Using the notion of built-in identity in the language, the system may 
support strong identity in both the representation and temporal dimension. 
Strong support of identity in the temporal dimension is very important for 
representing the temporal aspects of the data since a single retrieval may 
involve multiple versions of an object. This requires the database system to 
provide a continuous and consistent notion of identity throughout the life of 
an object independently of its data or structure which may be modified. This 
value and structure independent identity can be used to link versions of an 
object and thus to support a temporal data model.
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In some cases, the physical description of an object may not be stored in 
a single location and may be partitioned or replicated. Some reasons for this 
can be listed as follows [28]:

1. Some parts of the object may be shared by other objects as a conse­
quence of the class hierarchy and inheritance. If each part is duplicated 
for each object, this will cause redundancy and some consistency prob­
lems.

2. For data recovery issues, some parts of the object may be replicated. 
In order to obtain maximum recoverability, the copies should be stored 
on separate media.

3. Some parts of the object may be physically partitioned based on the 
frequency of use together in order to improve performance.

4. In a temporal data model that supports versions, the most recent ver­
sion may be kept separately from the other versions for faster access.

Using a value and location independent surrogate [14] [53] as object identity 
provides a way to relate the separately stored replicates or parts of an object.

PR O G R AM M IN G  LANGUAGE AND DATABASE SYSTEM  H Y­
BRIDS

Database systems and programming languages support different typing, com­
putation and identity aspects. The data types supported in databases differ 
from those supported by programming languages. Programming languages 
are rich in manipulation capability while database systems include search 
and simple update capabilities. Most application programming languages 
are procedural whereas data manipulation languages are declarative as be­
ing declarative provides more opportunities for using indices and planning 
secondary storage access. Database systems support a stronger notion of 
identity compared to programming languages. These important differences 
introduce the impedance mismatch problem [28] [56] especially at the inter­
face between the two systems. Much of the meta information in either system 
is reflected back at the interface and it must be defined redundantly in both 
languages. In addition, transformations must be defined whenever data or 
operations need to pass through the interface.
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The solution to the impedance mismatch problem is unifying database 
systems and programming languages, that is, merging programming and 
database languages into a hybrid environment which includes a language 
with unified typing and computation [28] [56]. The aim is to obtain a lan­
guage with a uniform treatment of types, computation and identity. Data 
instances of any type should be capable of being temporary or persistent. 
Any computation should apply uniformly to either temporary or persistent 
data, although computations which result in state changes of shared persis­
tent data should be enveloped by a transaction. All types should employ the 
same notion of identity. One approach is to make programming language 
data types persistent. In these languages the file system is extended to sup­
port the same data types as in the language and type checking is done when 
file objects are imported into the system. A second approach is to combine 
programming and database language data types and database transactions.

OBJECT ID EN TITY OPERATORS

Systems which support the concept of object identity must provide some op­
erators for dealing with object identity. These include operators for checking 
if two objects are equal or identical, copying operators for deep-copy and 
shallow-copy of objects and an assignment operator. Shallow-copy and deep- 
copy operators indicate the degree of copying vs. sharing [20] [28] [31] [36].

Two objects are identical if they reference identical objects and they both 
have the same identity, that is, if they are actually the same object. One 
can differentiate between two types of equality, namely, shallow-equality and 
deep-equality. Two objects are shallow-equal if their values are identical. 
While checking if two objects are shallow-equal, the values of the compo­
nents of the object are considered. On the other hand, when checking for 
deep-equality objects are recursively traversed comparing equality of corre­
sponding components. Two atomic objects are deep-equal if they have the 
same value. Shallow-equality and deep-equality are the same for atomic ob­
jects. Two non-atomic objects are deep-equal if their corresponding compo­
nents are deep-equal. Two identical objects are deep-equal and shallow-equal 
and two shallow-equal objects axe at the same time deep-equal.

When an object is assigned to another one, the two objects will share the 
same object. The shallow copy of an object is a new object which shares 
the values of the other object whereas the deep copy of an object is a new 
object with its own identity and its subobjects are new objects with their
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own identity but having the same values as those of the other object. After 
a shallow-copy operation, the two objects become shallow-equal whereas the 
deep-copy operator generates a new object which is deep-equal to the other 
object.

IM PLEM ENTING OBJECT ID EN TITY

There are many ways of implementing object identity and they can be com­
pared depending on the amount of value, structure and location independence 
they provide [28]. Data independence means that the. identity of an object 
remains unchanged no matter what changes are made in its value and struc­
ture. On the other hand, location independence means that the identity of 
an object does not change even if the physical location of the object changes. 
Location independence is especially important in supporting load balancing 
in a distributed system. Some of the major implementation techniques can 
be listed as follows :

• Identity through physical address- The physical address could be the 
real or virtual address of the object. It is fully data independent unless 
changes in the data cause the object to be moved in the address space 
due to size problems, but using the physical address as the identity does 
not allow an object to be moved so there is no location independence. 
However if the virtual address is used, pages may be moved within a 
virtual address space providing some location independence. Object 
sharing among multiple programs is limited.

• Identity through indirection. The use of an object-oriented pointer 
(oop) to identify objects as in object-oriented systems is a way of sup­
porting identity through indirection since the oop is an index into an 
object table which provides a mapping from oops to physical addresses. 
An indirect physical address or indirect virtual address can be used 
to identify objects. They provide full data independence, allow object 
sharing among multiple programs and by allowing objects to be moved 
within a physical or virtual address space they provide some location 
independence.

• Identity through structured identifier. This approach provides full data 
independence and allows objects to be moved within one disk or server. 
Sharing of objects is also supported. A part of the structured identifier 
used to identify an object describes the location of the object.
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• Identity through identifier keys. It provides full location independence 
but is value and structure dependent since they consist of values, they 
are unique only within a specific relation and they are applied only to 
tuples.

• Identity through tuple identifiers- This approach provides full location 
and value independence but is structure dependent since tuple identi­
fiers are only unique within a relation and they are applied to tuples. 
Tuple identifiers are system generated identifiers which are unique for 
all tuples within a single relation and have no relationship to physical 
location.

• Identity through surrogates. Surrogates are system-generated, globally 
unique identifiers, completely independent of physical location. They 
provide full location independence and if surrogates are generated for 
each object, full data independence is also obtained. However if a 
unique surrogate is generated for each tuple then value independence 
is obtained but full structure independence is not supported.

2.2 EXTENSIONS TO THE BASIC MODEL

The basic extensions that should be added to the model and which are espe­
cially necessary for artificial intelligence, knowledge representation, CAD/CAM 
and office information system applications are schema evolution [5] [6], com­
posite objects [6] [50], version management [6] [10] and indexing [34] [35] [36].

2.2.1 SCHEMA EVOLUTION

Schema evolution is the ability to dynamically make changes to the class 
definitions and the structure of the class lattice [6]. Most systems support 
only a few changes to the schema and class definitions without requiring 
system shutdown. The operations that should be supported in an object- 
oriented system can be listed as follows [6] [5]:

1. changes to the contents of a node (a class)

(a) changes to an instance variable

i. Add a new instance variable to a class
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ii. Drop an existing instance variable from a class
iii. Change the name of an instance variable of a class
iv. Change the domain of an instance variable of a class
V. Change the inheritance (parent) of an instance variable

vi. Change the default value of an instance variable
vii. Manipulate the value of a class variable

A. Add a class variable
B. Delete a class variable
C. Change a class variable

(b) changes to a method

i. Add a new method to a class
ii. Delete an existing method from a class

iii. Change the name of a method of a class
iv. Change the code for a method of a class
V. Change the inheritance (parent) of a method

2. changes to an edge

(a) Make a class a superclass of another class

(b) Remove a class from the superclass list of a class

(c) Change the order of superclasses of a class

3. changes to a node

(a) Add a new class

(b) Delete a class

(c) Change the name of a class

There are some properties that the class lattice must have. These are 
known as the invariants of schema evolution [6]. The class lattice is a rooted 
and connected directed acyclic graph. It has only one root. In the case of 
simple inheritance, the class hierarchy is a tree. All instance variables and 
methods of a class, whether locally defined or inherited, must have distinct 
names. All instance variables and methods of a class have distinct origin. 
A class must inherit all instance variables and methods from each of its 
superclasses. If an instance variable V2 of a class is inherited from an instance 
variable Vi of its superclass, then the domain of V2 must either be the same 
as that of Vi or a subclass of Vi. Any changes to the class definitions and
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to the class lattice must preserve these invariants which ensure that changes 
to the schema do not leave the database in an inconsistent state. When 
applying schema change operations some rules are needed [6]. These are 
conflict resolution rules, property propagation rules and lattice manipulation 
rules [6].

An important problem related to schema evolution is the problem of meth­
ods becoming inoperable as a result of schema change operations. Another 
problem is seen when the structure of a class which has some instances is 
modified. One approach is to modify all instances to reflect these changes 
immediately after the change is made in the class definition. A second ap­
proach is just to modify the class definition and modify the instances when­
ever they are referenced. The first approach is cumbersome and an overhead. 
However, the second approach is very difficult to implement and may cause 
inconsistencies. It also requires a way of keeping track of which instances 
have been modified and which have not [43].

It is difiicult to decide whether schema evolution is actually a practical 
problem or a theoretical problem. One approach to schema evolution is to let 
the user specify all the operations required to perform the necessary change 
in the schema and for preserving consistency and eliminating conflicts. Ev­
erything is left to the user and the system just carries out the operations 
specified by the user. If the operations specified by the user cause some con­
sistency problems or some conflicts, the operations are not performed and an 
error occurs. In this case, schema evolution is a practical problem. However, 
if the system is required to resolve all conflicts cind preserve consistency while 
making the necessary changes, schema evolution becomes a more theoretical 
and difficult problem.

2.2.2 COMPOSITE OBJECTS

Many applications require the ability to define and manipulate a set of objects 
aa a single logical entity. A composite object is an object with a hierarchy of 
exclusive component objects considered as a unit of storage, retrieval and in­
tegrity. The hierarchy of classes to which the object belong forms a composite 
object hierarchy [6].

The basic object-oriented data model does not support composite objects; 
an object references but does not own other objects. A composite object cap­
tures the IS-PART-OF relationship between a parent class and its component
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classes while a class hierarchy represents the IS-A relationship between a su­
perclass and its subclasses.

Composite objects introduce the concept of dependent objects [6] [50]which 
add to the integrity features of an object-oriented data model. A dependent 
object is one whose existence depends on the existence of other objects and 
is owned by a single object. Since a dependent object cannot be created 
before its owner exists, the composite object hierarchy must be developed in 
a top-down fashion, that is, the root object of the hierarchy must be created 
first and then the children. When an object of a composite object is deleted 
all its dependent objects must also be deleted.

An object may contain references to both dependent objects and inde­
pendent objects or to only dependent or independent objects. Such a general 
collection of objects is called an aggregate object. A composite object is, in 
fact, a special kind of aggregate object.

When a composite object is instantiated all its parts are also instantiated. 
The instantiation process is recursive so composite objects can be used as 
parts. The automatic instantiation of all parts brings the restriction that a 
composite object cannot be a part of itself. An alternative is to instantiate 
parts on demand [50].

The composite object concept supports performance improvements through 
the clustering of related objects on disk. All components of a composite ob­
ject should be clustered together since whenever the root is accessed, most 
probably the other component objects will also be accessed.

Composite objects increase information hiding and data encapsulation 
through the property of value propagation [6] which refers to the sharing of 
the value of an instance variable between instance objects. In contrast, in­
heritance is the sharing of the name of an instance variable between instance 
objects. Values can be propagated only if an object has an instance variable 
which has the same name as some instance variable of a higher level object. 
Value propagation to a lower-level object takes place from the lowest-level 
object containing an appropriate value and is not automatic and must be 
specified in the definition of the composite object schema. Once value prop­
agation is specified, it takes precedence over inheritance.

25



2.2.3 INDEXING

In object-oriented database managenent systems, system defined surrogates 
are used to identify objects. However, since these surrogates are value and 
location independent, in order to access the data by value a search has to be 
performed. To avoid this sequential search, an indexing mechanism must be 
added to the system [34] [35] [36].

There are some problems associated with value-based access [34]:

• Language issues. There are two basic considerations: when to invoke 
auxiliary access paths for associative searching and whether to index 
on an object’s structure or protocol. One approach is to provide a spe­
cial class for handling indexes. This approach reduces physical data 
independence and the user has to perform index maintenance. Another 
approach is to consider every expression as a candidate for indexed ac­
cess. A better approach is to denote certain statements as candidates 
for indexed access or to have a sublanguage to make use of indexes. 
Adding an index handling sublanguage to an existing language may 
cause an impedance mismatch problem and will complicate the com­
piler. The sublanguage may be procedural or declarative. The other 
major issue regarding languages is whether indexes are based on the 
instance variables, that is the structure of the objects or the responses 
to messages, that is the protocol. Indexing on structure violates the 
privacy of an object while indexing on protocol introduces problems 
when the protocol changes.

• Index structure. Indexing could be provided only on the immediate 
instance variables of an object or on the instance variables and their 
instance variables. If an index is provided on paths with multiple links 
that is multiple instance variables, a single index could be provided for 
the whole path or several indexes could be provided, one for each link. 
The sequence of links is called a path expression [34] [35] [36]. With 
a single index for each path, there are fewer indexes to maintain and 
fewer indirections to be made during associative access. Indexing by 
links allows sharing of indexes. Some other considerations are

— The type of the objects to be indexed. Indexing is generally applied 
to collection or set objects. The objects constituting the elements 
of the collection or set to be indexed should be of a certain type. 
They could be required to be an instance of a class. An alternative
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to using a class as a type is the use of kinds.'A kind is a class and 
all its subclasses.

— Manipulation of undefined values along the index path
— Supporting identity indexes or equality indexes- An identity index 

supports searching a collection on the identity of some subobject 
without reference to an object’s internal state. It does not support 
range queries. An equality index supports look-up on the basis of 
the value or internal state of objects and range queries [36]. In 
a path expression, all links except the last one must be identity 
indexes and the last one could be an identity or equality index.

— The comparison operators supported during range indexes

• Indexing on classes or collections. Indexing on classes presents some au­
thorization problems and also applications which do not use the index 
are subject to the index-related overhead for indexed instances they 
use. However, it is easier to trace changes to an object which affect 
the index on that class. Each subclass may maintain its own index or 
the index on a class may include its subclasses. As an object may be a 
member of several collections, if class indexes are supported and queries 
against collections are made, there will be a test for collection member­
ship in addition to the index access. Indexing on collections allows the 
possibility that instances of subclasses be included in a collection that 
is indexed. A collection of all instances of a class may be created and 
indexed to implement indexing on classes. A third approach which is 
the combination of the other two approaches , maintains a single index 
per class but only adds members of a certain collection to that class.

2.2.4 TEMPORAL ASPECTS AND VERSION MAN­
AGEMENT

Most conventional databases represent the state of an enterprise at a single 
moment of time. Although the contents of the database change as new infor­
mation is added, these changes are viewed as modifications to the state with 
the old data being deleted from the database. The current contents of the 
database are regarded as a snapshot of the problem [49]. Versions are vari­
ations of the same object that are related by the history of their derivation 
[6].

A lot of research has been done on representing time in databases. The
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database management systems which represent the progression of states of a 
problem over time are temporal databases. Changes in the data are viewed as 
additions to the information in the database or as versions of the data. Tem­
poral databases are generalizations of conventional, that is, static databases.

TEM PORAL ASPECTS

There are two major approaches used to incorporate time in relational database 
systems. One is to extend the semantics of the relational model to incorpo­
rate time directly. The other is to represent time as additional attributes 
[49].

There axe three different notions of time. Valid time is the time the data 
becomes valid. Transaction time is the time the data is entered into the 
database. The third aspect is user-defined time [49].

Static databases are databases which model the dynamic real world as a 
snapshot at a particular point in time. As changes are made, past states of 
the database are discarded. An approach is to regard a relation as a sequence 
of static relations indexed by transaction time. The user can get a snapshot 
of the relation as of some time in the past, which is in fact a static relation, 
and make queries upon the static relation by moving along the time axis and 
selecting the relation. The operation of selecting a static relation is called 
rollback and such a database is known as a static rollback database. Changes 
to a static relation may only be made to the most recent static state. Each 
modification creates a new static relation. Historical databases represent valid 
time. They support historical queries which may utilize queries from the past. 
They are represented as a series of static relations indexed by valid time and 
the semantics represent the reality more than the update history. While a 
static rollback database views tuples as being valid at some time as of that 
time and a historical database views tuples as being valid at some moment 
as of now, a temporal database management system makes it possible to view 
tuples as being valid at some time relative to some other moment. In temporal 
databases both valid time and transaction time axe represented. A temporal 
relation may be considered as a sequence of historical states each of which is 
a historical relation. The rollback operation on a temporal relation selects a 
particular historical state, on which a historical query may be performed.

User defined time is necessary when additional temporal information for 
which valid time and transaction time are insufficient, has to be stored. It is
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application dependent and since it is not interpreted by the database man­
agement system it is the easiest to support. Only an iriternal representation 
and input and output functions are necessary. An example for user defined 
time is the effective date of some information. Transaction time is application 
independent, easy to implement and can be automated by the system on the 
other hand,valid time is application dependent and it is difficult for a sys­
tem to automate it. Since transaction time is system generated and cannot 
be modified by users, it provides high integrity. Valid time must be modifi­
able by users when a discrepancy is discovered between the real world and 
its database model. Storing transaction time is also useful for synchronizing 
concurrent transactions [12].

VERSION M AN AG EM EN T

Version management is especially important for CAD/CAM and office in­
formation system applications and is actually an important requirement for 
object-oriented systems.

There are basically two ways of creating versions [6] [10]. One approach 
is the linear generation and storage of objects. This is the case if only one 
version can be generated from an older version. The most current version 
is the newest version which is at the same time the most correct and most 
complete version. Another approach is to store the versions in a hierarchy. 
In this case, more than one version may be generated from an older version 
and it is quite difficult to determine the most current version by just looking 
at the hierarchy.

There are two ways to bind an object with another versioned object [6]. 
In static binding, the reference to the object includes the full name of the 
object, the object identifier and the version number. In dynamic binding, 
the reference only needs to specify the object identifier and may leave the 
version number unspecified. The system selects the default version number. 
In some systems the default version is the most recent version but approaches 
are needed for versions in the form of a hierarchy.
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2.3 BASIC PROPERTIES OF THE OBJECT ORI­
ENTED APPROACH

The basic notions in the object-oriented approach are [38] [42] [45]:

• information hiding

• data abstraction

• data independence

• homogeneity

• message passing

• dynamic binding

• inheritance

• polymorphism and overloading

• reusability

• interactive interfaces

• concurrency

Two other important properties are multiple inheritance and automatic 
storage management. Multiple inheritance allows a class to have more than 
one superclass thus providing more code sharing but increasing the complex­
ity of the system through the conflicts that may occur between the multiple 
superclasses.

Automatic storage management techniques such as reference counting and 
garbage collection allow users to ignore details related to the release of an 
object’s storage. As a result, application code becomes cleaner and the system 
becomes more reliable.

2.3.1 INFORMATION HIDING

Information hiding [38] provides reliability and modifiability by reducing in­
terdependencies among software components. The state of a software module
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is contained in private variables, visible only from within the scope of the 
module. Only a localized set of procedures directly manipulates the data. 
In addition, since the internal state variables of a module are not directly 
accessed, a carefully designed module interface may permit the internal data 
structures and procedures to be changed without affecting the implementa­
tion of other system modules. Object-orientation provides information hiding 
since an object captures both the state and the behaviour of an entity.

2.3.2 DATA ABSTRACTION

Data abstraction [38] [42] [45] [50] [56] is a way of using information hiding. 
An abstract type consists of an internal representation and a set of proce­
dures used to access and manipulate the data. Since objects capture both 
the state and the behaviour of an entity, an object-oriented system directly 
supports data abstraction. In other words, the behaviour of an object rather 
than its implementation is of interest and the actual implementation is hid­
den. The class concept provides data abstraction and the message concept 
provides procedural abstraction. The two concepts together result in infor­
mation hiding.

Each class of objects defines an interface that is the only way that other 
objects can manipulate objects which are instances of that class. If this 
is also true for subclasses and superclasses, that is, if even the subclasses 
and superclasses can only communicate using the messages specified in the 
interface, full data abstraction is attained and the class can be modified 
without affecting the other classes as long as the interface does not change.

Operator overloading and generic functions provide data abstraction. Op­
erator overloading permits a program to use multiple operators with the same 
name. The distinction between operators can be determined at compile time 
depending on the type and number of operands. Generic functions permit the 
definition of a module to be used with different data types. A generic func­
tion can be considered as a procedural template that can be parameterized 
with actual types during compilation of programs.

Through data abstraction, it is possible to decompose a large system 
into smaller, encapsulated subsystems that can be more easily developed, 
maintained and that eire more portable. Data abstraction may be used to 
provide [42]
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• multiple object instantiation

• behavioural sharing through various inheritance mechanisms

• verification of correct object usage through strong-typing

• structuring of resources in concurrent applications

Thus, data abstraction aids the system in supporting reusability, object types 
and concurrency.

2.3.3 DATA INDEPENDENCE

Data independence [38] [45] [56] is related to the fact that objects communi­
cate using message passing. An object sends a message and the other selects 
the method to perform the operation. This property states that objects have 
control over their own state and existence and is important for ensuring the 
reliability and the modifiability of the system by reducing the interdependen­
cies between objects. Another form of independence is the ability to add new 
types at run time.

2.3.4 HOMOGENEITY

Homogeneity [38] is related to the fact that everything is an object. The 
degree of homogeneity supported in a system depends on whether classes are 
objects and whether there is a differentiation between user and system defined 
classes and between active and passive objects. Most systems support passive 
objects. Active objects [43] [52] are objects that can perform automatic 
actions. In other words, they may be triggered.

2.3.5 MESSAGE PASSING

The basic property of object-oriented systems is the use of the object-message 
paradigm instead of the traditional data-procedure paradigm. In the data- 
procedure paradigm supported by most conventional programming languages, 
active procedures act on the passive data that is passed to them. In strongly- 
typed languages, there would be different functions to perform the same 
operation on different types of data while late-binding languages support
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generic functions in which the data type determines the operation at run-time. 
Generic operations are primitives restricted to a small class of data types such 
as numbers or they are functions defined in terms of such primitives [38] [56].

In object-oriented systems instead of passing data to procedures, objects 
are asked to perform operations on themselves using messages, that is, data 
are active and operations are passive.

2.3.6 DYNAMIC BINDING

Generally, conventional languages perform early binding. For example code is 
bound to a name at compilation and a name to an address at link time. Late 
binding provides flexibility at the expense of efficiency in contrast to early 
binding. Early binding should be applied in a stable environment where the 
bindings will not change. Late binding is applied in unstable environments 
(451 156].

Operator overloading and generic functions are only suitable if the data 
is homogeneous and thus the types of the operations can be determined at 
compile time. Dynamic binding is necessary when dealing with heterogeneous 
data. The basic approach used in dynamic binding is polymorphism which is 
similar to operator overloading where the procedure invoked is fixed at com­
pile time. In polymorphism, the same operator performs different operations 
depending on its operands and the operation is determined at run-time. In 
object-oriented systems messages support polymorphism and dynamic bind­
ing. The same message may elicit a different response depending on the 
receiver.

2.3.7 INHERITANCE

Inheritance [38] [45] [50] allows the creation of classes and objects that are 
specializations of other objects. The subclass inherits instance variables, class 
variables and methods from its superclass. It may add its own instance vari­
ables, class variables and methods to its definition. It may also override the 
variables or methods it inherits. Methods are overridden when a new method 
for an inherited selector is added to the class definition. Some languages sup­
port the addition of new behaviour to existing methods.
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Inheritance and the class hierarchy result in clustering by specifying shared 
information only once in a superclass. The overriding or redefinition of meth­
ods and instance variables during inheritance enables the user to design the 
schema by first specifying the ideal structure of the problem and then speci­
fying the actual structure as being analogous to the ideal structure but with 
some deviations which are explicitly specified. The class hierarchy also facil­
itates top-down design and thus provides localization of information. Data 
abstraction and inheritance simplify the specification of complex structures.

2.3.8 POLYMORPHISM AND OVERLOADING

A polymorphic function is one that can be applied uniformly to a variety of 
objects [42] [45] [50] [56]. There are two ways polymorphism can occur:

• Same operation maintains its behaviour transparently for different ar­
gument types.

• Two operations share the same name but have completely different 
behaviour (adhoc polymorphism or overloading of operation names).

Class inheritance is closely related to polymorphism. Polymorphism enhances 
software reusability. It may or may not impose a run time overhead depending 
on whether dynamic binding is supported. With statically bound variables, 
the method can be detected at compile time while with dynamically bound 
variables a run time method look-up must be performed.

While object classes factor common properties of classes in parent classes, 
generic object classes do so by partially describing a class and parameterizing 
the unknowns. These parameters are the classes of objects that instances of 
generic classes will manipulate. There are two types of generic objects [42]:

• homogeneous container objects- They operate on any kind of object.

• tool objects- They can only operate on certain object classes.

Depending on the nature of the parameters, it may or may not be possible to 
compile generic classes before the parameters axe bound. If parameters have 
to be statically bound, generic classes behave like macros.
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2.3.9 REUSABILITY

Instantiation, class inheritance, overloading, polymorphism and parameteri­
zation enhance reusability.

2.3.10 INTERACTIVE INTERFACES

Most object-oriented systems are suitable for and provide an either menu or 
mouse driven iconic graphical user interface. In fact, sometimes the name 
object-oriented is used for systems providing such interfaces [56].

2.3.11 CONCURRENCY

There are two approaches to concurrency and communication [38] [42] [43]:

• active entities (processes) communicate indirectly through shared pas­
sive objects

• active entities communicate directly with one another by message pass­
ing

In the approach based on shared passive objects, the shared memory is 
structured as a collection of passive objects and a process is a special kind of 
active Process object. Operations are performed on the passive objects ac­
cording to their interface. A mechanism is required for active objects to syn­
chronize their accesses to shared objects. This approach is not homogeneous 
since there is an important difference between active and passive objects. It 
is not possible to directly interact with active objects. Two active objects can 
only communicate through a passive intermediary.Hidden message passing is 
required to extend this approach to a distributed environment.

In the message passing approach, any object can communicate with any 
other object. Objects become active in response to a communication. Threads 
of control are determined implicitly by message passing whereas in the first 
approach each thread of control was localized in an explicit process ob­
ject.Explicit synchronization is not needed since message packages both com­
munication and synchronization but a style of message passing must be used.
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With message passing, strong-typing means that a message passing expres­
sion is type-correct if the message being sent is guaranteed to be valid for the 
recipient. The untyped view can be supported if all objects can handle any 
message sent to them.

2.4 APPLICATION AREAS OF THE OBJECT-ORIENTED 
APPROACH

The major application areas of the object-oriented approach are program­
ming languages, database management systems, knowledge representation, 
CAD/CAM  systems and office information systems. Each of these applica­
tion areas make use of different aspects of object-orientation [56].

2.4.1 PROGRAMMING LANGUAGES

In object-oriented programming languages, every object has a set of oper­
ators which are used to operate upon and change the state of an object.
This provides data encapsulation. Another concept seen in object-oriented 
programming languages is operator overloading. Operator overloading is us­
ing the same operator symbol to denote distinct operations on different data 
types. The meaning of an operator is thus overloaded and can be resolved 
on the bcLsis of the operand types. When interpreting a message, an object- 
oriented language first binds the head to an object class, then binds the rest 
of the message to a method of that class. Overloading appears if distinct 
methods are given the same name in different classes.

There is a fairness problem when operators have two or more operands.
Then one operator must be selected as the message receiver that controls 
the overloading, while the others ,that is, the message arguments are rele­
gated to appendices of the method. Late binding of methods means that no 
recompilation is needed favoring flexibility at the expense of speed.

2.4.2 DATABASE MANAGEMENT SYSTEMS

In object-oriented database management systems an object-based approach 
is used as opposed to the value-based paradigm used in the conventional
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database management systems. In relational system's, the information is 
stored in terms of tuples and relations. Tuples can only be distinguished 
on the basis of their values. In object-oriented systems a hidden permanent 
unique identifier is assigned to each entity record. An entity occurrence can 
refer to another using the latter’s identifier. This policy provides a simple 
means of supporting relationships between entities and referential integrity 
constraints. The object-oriented approach also provides better support for 
managing time and changes in databases. Any changes in an entity are au­
tomatically seen by entities referring to it providing referential transparency. 
Another advantage is related to version management. Old versions of an ob­
ject can be archived and later retrieved using their unique identifier and a 
timestamp or version number.

2.4.3 KNOWLEDGE REPRESENTATION

Frames are capable of storing both specific and general knowledge and of 
accommodating both descriptive and prescriptive computation. In a frame 
system, the properties of both specific objects and generic objects (classes) are 
described by their slots which may contain references to other frames defining 
their relationship, actual values or procedural attachements to compute them. 
Generic classes are classified using the IS-A relationship and the membership 
of an instance object in a class object is described using the AS-A relationship. 
The capability of unifying the treatment of data and metadata as seen in 
frame systems represents an important strength of object-oriented systems.

2.4.4 CAD/CAM SYSTEMS

CAD/CAM systems require unifying the treatment of data and metadata 
since schema level information has to be frequently manipulated as regular 
data. They require versions and multiple design transaction support.

2.4.5 OFFICE INFORMATION SYSTEMS

The object-oriented approach is very suitable for office information system 
applications since the approach can easily support menu and icon based in­
terfaces and multimedia document management. The approach is also quite

37



suitable for distributed applications.

2.5 OBJECT-ORIENTED PROGRAMMING LANGUAGES 
AND SOME EXAMPLES

Object-oriented programming environments support reusability and provide 
tools for designing, selecting and reusing objects and managing an evolving 
software base. Object-oriented techniques in programming languages enhance 
reusability, maintenance and robustness through extendible type systems and 
ease the development of concurrent and distributed applications.

The object-oriented approach is very suitable for many problem areas 
in programming languages. It is extensively used for simulation programs, 
systems programming, graphics and artificial intelligence. It is also used for 
the theory of frames and their implementation in knowledge representation 
languages. Some object-oriented languages were developed from scratch while 
others are extensions to existing languages especially Lisp. Some of the most 
important object-oriented programming languages are Simula [50], Smalltalk 
[12] [13] [16] [20] [23], C-f-f [13], Objective-C [13], Loops [50], Flavors [50],
Hybrid [29] [39] [40] [41] [43] and Actors [3].

Objects are a uniform programming element for computing and saving 
state. This makes them ideal for simulation problems where it is necessary 
to represent collections of things that interact. They have also been used for 
applications in systems programming since many things with states such as 
processes, directories and files must be represented. Augmented by annota­
tion mechanisms they have also become important in the current tools for 
knowledge engineering.

As object-oriented languages have become more widespread, a lot of work 
has been done for developing standards so that objects could be used as a 
portable base for program and knowledge bases.

2.5.1 SMALLTALK

Smalltalk is an integrated programming language and programming environ­
ment. One of the most important components of Smalltalk is the virtual 
machine which consists of all system defined and user defined classes and
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operations. Everything in the system is considered to be an object and this 
homogeneity supports consistency. All constants and contents of variables 
are objects. However, message selectors, comments and punctuation symbols 
are not considered as objects. Everything that is not an object is a message 
selector. The message tells an object what to do and the command carried by 
the message is known as the selector. A message is, in fact, a message selector 
with its operands. All operations are performed using messages, that is, by 
specifying an object, sending it a message and getting back another object as 
the result. Control structures and arithmetic operators are also implemented 
as messages. Objects with similar structure and behaviour are grouped into 
classes. The classes axe organized in a hierarchy and simple inheritance is 
supported. Smalltalk also supports metaclasses. When an object receives 
a message, the system checks if the corresponding method appears in the 
object’s class definition. If there is no such method in the object’s class defi­
nition, the superclasses of that class are searched. Figure 2.1 shows examples 
of class definitions, message calls and method definitions in Smalltalk.

Smalltalk only supports temporary objects. It provides automatic garbage 
collection so the lifetime of an object is determined by the system and not 
by the user. When an object is no longer referenced, its memory is reclaimed 
for reuse. This approach is based on a kind of reference count mechanism. 
Having automatic garbage collection eliminates the dangling pointer problem 
in which invalid object identifiers produced by freeing some objects remain 
in the system and are later accessed. It also eliminates the problem of not 
having enough memory during the execution of a long-running program be­
cause unnecessary objects have not been freed. However, automatic garbage 
collection has some efficiency problems. Especially in combination with ex­
tensive use of dynamically bound messaging, it can cause costs in machine 
resources making Smalltalk unsuitable for performance-critical applications.

Smalltalk supports the object identity concept. In Smalltalk, objects are 
not directly identified by their memory address but they are identified by 
an offset into a table of object descriptors. One field of the entry specifies 
the memory address of the object. This hides memory management from 
the user making address handling the job of the system and allowing it to 
move objects in the memory. The value of a smallinteger is used as its own 
identifier so it does not occupy a slot in the object table. The object identifier 
is 16 bits, one bit is used as a flag and the remaining 15 bits are used as the 
value of a primitive type or the identifier of an object. The flag bit is used to 
signal that the identifier is not that of a smallinteger but an offset into the 
object table.
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a) Object subclass; T^Person

instance variables: ’name address’ .

b) Person subclass: Student

instance variables: ’college class major’.

c) person <— Person new.

d) person name: ’John’ .

e) personList add: newName before: currentName.

f) name: aName name <— aName.

g) name jname.

h) person birthDate month.

Figure 2.1: Some example class definitions, message calls and method defini­
tions in Smalltalk
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There is only one type, namely the object, so there is no need for declaring 
data types and arguments. Thus Smalltalk is typeless.

There are three major operations that can be performed in Smalltalk 
which are

• declaring object names and assigning them values

• sending messages

• defining new classes and methods

Actually, Smalltalk provides a browser for reading, changing and compiling 
methods so no commands are necessary for these operations.

In a message call, the receiver appears to the left of the message selector 
which is in turn followed by the arguments. A method may have some local 
variables. Such local variables are specified within vertical bars. If a variable 
appears in a method, it can be of six types [16]:

• an instance variable in the class of objects for which the method is 
defined

• an argument of the message

• a temporary variable local to the method

• a class variable

• a pool variable

• a global variable

Class variables are shared by all instances of the related class and its sub­
classes, pool variables are valid across designated classes and global variables 
are shared by all classes. Class, pool and global variables are not used often, 
so there is a restricted type of lexical scoping. This strict information hiding 
eliminates some scoping related problems and names need not be modified 
to avoid naming conflicts. Temporary variables exist for the message’s exe­
cution life. Class and global variables are used for longer term storage and 
are not in the local memory of instances of the class. Variable names and 
message names can easily be overloaded.
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A value is returned as the result of each method. The returned value 
is always an object. The returned value may be significant or may merely 
inform the sender that a requested action is complete. If the object to be 
returned from a method is not specified, the object that received the message 
is returned. The result of one message can be used as the object that receives 
another message or as an argument in another message. Thus messages can 
be concatenated.

There are basically four types of messages in Smalltalk [23].

1. Unary messages. A unary message is a message with no arguments 
so it is composed of two parts: the name of the object to receive the 
message and the name of the message. An example is the following 
message which retrieves the value of the age instance variable for an 
employee object.

employee age

2. Keyword message expressions. They may have as many arguments as 
there are parts in the keyword. The selector of a keyword message is 
composed of one or more keywords, one preceding each argument. A 
keyword part is a simple identifier followed by a colon. An argument 
is needed whenever a message selector is followed by a colon. Some 
examples are

aPerson name; personname
aArray at: 1 put:5

The first example sets the name of a given person and the second ex­
ample places 5 as the first element of the array. The selectors in the 
examples are name: and at:put:. Some other examples of keyword mes­
sage selectors are ifTrue:, ifFalse:, ifTrue:ifFalse and add:before:. Both 
the receiver and the arguments can be variable names, constants or 
other expressions.

3. Binary messages. They are like keyword messages with a single argu­
ment. The selector of a binary message is always one or two characters 
from a designated set of special characters. For example

3 - f 4
total < =  max

are binary messages. Binary messages are generally used for arithmetic 
operations and comparisons.
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4. The assignment operator. It is used to store values into variables and 
is handled as a message. An example of an assignment message is as 
follows:

sum ·(— 3 +  4

Since message expressions can be nested to arbitrary levels, precedence rules 
are provided and can be overridden using paranthesis. Messages without ar­
guments are executed first. They take precedence over adjacent messages 
that are operators ( - f , x , / , = , >  etc.). Operator messages are executed be­
fore adjacent messages whose names contain colons. Two messages without 
arguments are evaluated left to right. This is also true for operators.

When a method needs to invoke a method defined in its class, it will 
specify the receiver to be self. Using self message ceills, recursive methods 
can be implemented. The super message call, that is a message call in which 
the receiver is super, allows a subclass to make some incremental changes to 
the method it inherits from its superclass.

Smalltalk control structures are handled using the object-message paradigm. 
The message selectors related to control structures are ifTrue:, ifFalse:, ifTrue: 
ifFalse:, ifFalse: ifTrue: and do:. The do: selector can be sent to collections 
of various types and it iterates through the members of the collection.

Expressions are usually evaluated immediately. However, expressions can 
be stored for later execution by enclosing them in brackets and thus creating 
a block construct. A block is an object that represents a sequence of instruc­
tions whose execution is deferred until the block is sent a message to evaluate 
itself. There is a system defined class called Block and all created blocks are 
instances of this class. Most control structures are implemented as messages 
to objects that take blocks as arguments. An example of such an if construct 
is as follows:

(index < =  limit) ifTrue: [ total <— total -|- (list at: index)]

In most languages, the execution of a block can be deferred no longer than 
the lifetime of the enclosing scope. In Smalltalk, blocks are allocated from 
the heap and are disposed of by the garbage collector. Any block and its 
context, that is, the environment in which it was originally created can be 
held indefinitely and executed any time just by sending it a message. This 
is independent of the message that created the block. The block is given a
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reference to the caller’s context when the block is created and this context 
persists as long as a reference to it exists in the system. Thus, a block can 
access the context of the calling method that created it including its local 
variables and arguments even when the value message is invoked by another 
object.

Smalltalk source code and methods are compiled into an intermediate 
form, called bytecodes, which is then interpreted. The compilation is done 
incrementally as new classes, messages and methods are defined. The imple­
mentation of message passing is based on bytecodes and the system defined 
class. Context. The compiled form of a method corresponds to an instance of 
the class Context. The symbolic references in the method are translated into 
indexes of structures similar to symbol tables. Each method context has its 
own structures, one correspoxiding to temporary variables, one corresponding 
to message and class references and a third on for class and global variable 
references. The context associated with the method being executed is known 
as the current context and when a message call is executed, the context as­
sociated with the method corresponding to the message becomes the current 
context and the other context is pushed on to a stack. When a return from 
a method is executed, the context on top of the stack becomes the current 
context. Blocks are executed in a similar fashion.

2.5.2 SMALLWORLD

Small world [31] is a programming environment in which the real world is 
represented using objects that have properties. A property represents a fact 
about the corresponding real world entity. Smallworld actions (programs), 
which operate on objects consider all of the relevant facts (all properties) 
concerning the objects they manipulate. It is not a programming language 
but a system where application programs can be developed. It is more than 
a database since it provides actions for manipulating objects. All of the facts 
related to the objects to be manipulated are stored with these objects.

Classes and superclasses are supported. Smallworld minimizes the differ­
ences between classes and non-class objects resulting in a simpler and more 
consistent system.

Each Smallworld object belongs to some class and each class is an object. 
The class of an object is specified as one of its properties. The classes are 
organized in a tree. Classes can have any number of properties and may
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define methods defining the actions that apply to all members of that class.

A method, which implements some action, applies either to an object or 
to a class of objects. A method that applies to a single object is called simple 
while a method that applies to all objects in a class is said to be inherited. A 
simple method is represented as a property of the object that it acts upon. 
On the other hand, an inherited method is represented as a property of the 
class of objects that it acts upon. Objects that do not have a method for 
an action, inherit the method from their class. A method is executed in an 
environment with three string variables initialized: verb which is the name 
of the action being requested, subject which is the name of the object being 
acted upon and parameters which are the arguments being passed to the 
action.

When an action is requested on an object, the corresponding method is 
first searched in the object, then in the class of the object and finally in the 
class UNIVERSE. One of the functions of UNIVERSE is to define a set of 
methods and objects to serve as default definitions for actions. The objects 
that belong to the class UNIVERSE represent concepts that do not fit the 
normal object/class structure of Smallworld.

Smallworld allows the users to organize the physical storage of objects 
into separate databases called libraries.

Smallworld was influenced by Smalltalk but there are some differences. 
Smallworld and Smalltalk differ in their concept of an object. Smalltalk 
structure is homogeneous since every object is a refinement or instance of 
another object. On the other hand, Smallworld is heterogeneous. Each object 
is an independent unit. Each object is a collection of properties and can define 
its own methods for implementing actions. Objects are grouped into classes 
for organization and sharing of properties and methods. Another difference 
is their view of the object-oriented paradigm. In Smalltalk, every operation 
is treated as an object or method manipulation. Smallworld allows both 
object-oriented operations and operations from different environments. A 
final difference is the reliance on sophisticated display technology. Smalltalk, 
as opposed to Smallworld , depends on bit-mapped displays and pointing 
devices.
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2.6 OBJECT-ORIENTED DATABASE MANAGEMENT 
SYSTEMS AND SOME EXAMPLES

An object-oriented database management system is a system that provides 
database-like support for objects, that is, encapsulated data and operations.

Object-oriented database management systems differ from object-oriented 
programming languages in that they support [57]:

• persistence

• unique naming (object identifiers)

• sharing

• transactions

GemStone [12] [34] [35] [36] [46] is the only commercial object-oriented 
database management system. However, there is a lot of researda being done 
and many prototypes have been proposed. Some examples are ORION [5]
[6] [10], IRIS [18] [33] which is implemented on top of a relational database 
management system, EFDM [30] and RDM [37]. IFO [1] [2] is a semantic data 
model aiming at providing a formal definition of semantic and object-oriented 
data models.

2.6.1 GEMSTONE

The goal in GemStone [12] [34] [35] [36] [46] is to merge object-oriented pro­
gramming language technology with database technology. It combines the 
data type definition and code inheritance of Smalltalk-80 with permanent 
data storage, multiple concurrent users, transactions and secondary indexes. 
It supports set calculus, path syntax, time, concurrency, authorization, recov­
ery, replication and directories. It provides a flexible data model, an object- 
oriented, disk-based storage management system with an object-oriented lan­
guage OPAL. OPAL is the language for data definition, data manipulation 
and computation functions of GemStone. It provides built-in identity for all 
temporary and persistent objects. It solves the impedance mismatch problem 
and provides unification by combining Smalltalk-80 and a set data type with 
predicate calculus. The basic idea is to combine programming and database 
language data types and database transactions.
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The user interface of GemStone provides an interactive interface for def­
inition of new data types and execution of queries in OPAL, a procedural 
interface to conventional languages and a windowing package on which to 
build user interfaces for applications.

GemStone supports the basic concepts of object-orientation: objects, 
classes, messages, methods and simple inheritence.

Objects may be atomic (integers, characters etc.) or structured. All 
structured objects are represented using instance variables, each of which 
has an object as its value. There are three types of instance variables:

• named instance variables - They are similar to attribute names in rela­
tions

• indexed instance variables - They are similar to arrays and are consec­
utively numbered starting with 1.

• anonymous instance variables - They are used to form collections where 
only membership is important and order is unimportant.

A class defining object is used to specify the common information for the 
instances of a class and all instances reference this object that can be the 
value of an instance variable in any of its instances.

All objects in the system reside in a disk-based object space which is 
divided into repositories. A repository represents a dismountable partition of 
the object space and is implemented as a direct access disk file. Repositories 
are divided into disjoint regions called segments for purposes of authorization 
and concurrency control. A segment is a chunk of object storage that is owned 
by a particular user, who can store objects in it and grant access to other 
users. Segments expand to accommodate the objects stored in them.

Repositories may be replicated on disk against media failures. Replication 
is used instead of transaction log files. Because repositories of objects are 
dismounted, a mechanism must be provided to preserve consistent object 
identity when information is taken off-line and later brought back online.

GemStone’s transaction control uses an optimistic approach that gives 
read-only transactions priority over read-write transactions when they re­
quire a commit. The approach is based on the assumption that read-only 
transactions are more frequent than read-write transactions.
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GemStone has two main parts, the executor and the object manager. 
The executor is responsible for session control. It handles communications 
between GemStone and host software: receiving blocks of code, returning 
results and error messages. It maintains a compiler and interpreter for each 
user. The interpreter is an abstract stack machine that executes compiled 
methods consisting of sequences of bytecodes. It dispatches bytecodes, per­
forms stack manipulations and some primitive methods and makes calls to the 
Object Manager. The compiler executes calculus expressions into procedural 
form.

The Object Manager performs operations related to the storage and ac­
cess of objects. It handles operations related to concurrency and secondary 
storage management: transaction control, authorization, data replication, re­
covery and directory management. In addition, it provides access to different 
versions of the data.Each user session has its own object manager with a 
private object space. Sessions have shared access to the permanent database 
through transactions.

Since GemStone objects retain history, they grow with time so it is not 
very suitable to use a fixed block of memory to store objects. Objects axe 
implemented based on associations. An element is represented as an element 
name and a table of associations. The associations are pairs of transaction 
times and object pointers, each representing that the element acquired the 
object as its value at the time given by the transaction time. Objects are 
broken into elements and associations, which are organized into a linked list 
under header for the object. A directory may be interposed between the 
object header and the participating elements. Such a directory is useful 
when an object has a long history or it represents a set whose elements will 
be accessed associatively. Between objects, pointers to elements are usually 
physical pointers since most of the data is tree structured. Thus, physical 
access paths parallel logical access path where objects are not shared. When 
an object is an element of more than one set, one logical path is chosen as 
the basis for the physical access path and other references to the object use 
a global object-oriented pointer (GOOP). The GOOP is resolved through a 
global object table to get the primary logical path to the object, from which 
its physical access path can be deduced.

The Object Manager has several subcomponents. The transaction man­
ager is shared by all invocations of the Object Manager and handles con­
current use of the permanent database in an optimistic manner. It records 
accesses to the database for each session and validates them for consistency
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when a transaction commits.The directory manager creates and maintains 
directories which handle object histories. The Linker incorporates updates 
made by a transaction in the permanent database at commit time, calling 
for restructuring of directories as needed. The Linker is called by the Boxer 
whose job it is to fit objects into tracks after database changes. The track 
manager schedules reads and writes of tracks. The commit manager provides 
safe writing for groups of tracks since versions are kept, no garbage collection 
is needed. Garbage collection for temporary data can be done by discarding 
the work space at the end of a session.

2.6.2 ORION

ORION [5] [6] [10] is an object-oriented database system prototype being 
developed at MCC. It adds persistence and sharability of objects created 
and manipulated in object-oriented applications. The system supports the 
basic object-oriented concepts such as objects, classes, inheritance and meth­
ods. The system is being developed especially for CAD/CAM, artificial in­
telligence applications and office information systems with multimedia doc­
uments. There are two basic requirements for ORION which are advanced 
functionality and high performance. It supports version control and change 
notification, storage and presentation of unstructured multimedia data, and 
dynamic changes to the database schema. For high performance, it supports 
appropriate access paths and techniques for query processing, buffer manage­
ment and concurrency control.

Due to the requirements of these application areas, the basic model has 
been enhanced to support schema evolution, composite objects and version 
management.

In ORION, the state of an object is represented using instance variables. 
The values of an instance variable can be restricted to belong to a certain 
class. However, typeless instance variables are also supported. The behaviour 
of the object is captured using messages. To reduce redundant storage and 
specification of objects, shared-value and default-value instance variables are 
introduced into the model. A value is specified for both type of variables. 
For a shared-value variable of a class, all instances of the class take on the 
specified value. These are identical to the class variables described in the 
previous sections. For a default-value variable, those instances of a class 
whose value for the instance variable is not specified take on the specified
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default value. ORION also supports classes of objects. Each object raust 
belong to a single class.

In ORION, classes and instances axe viewed as objects. This is mainly 
for the uniform handling of messages. Messages are sent to objects and most 
often to instance objects. To create an instance of a class, a message is sent 
to the corresponding class object.

ORION was first designed to support simple inheritance but was extended 
to support multiple inheritance allowing a class to have any number of su­
perclasses. It supports the default conflict resolution scheme in which the 
property of the first superclass in the immediate superclass list of the class is 
chosen. Users are allowed to explicitly change the order of the superclasses. 
ORION, bcLsically, provides three ways in which a user can override the de­
fault conflict resolution scheme:

1. The user may explicitly inherit one instance variable or method from 
among several conflicting ones.

2. The user may explicitly inherit one or more instance variables or meth­
ods that have the same name and rename them with the new class 
definition. ORION ensures that all names inherited or defined within 
a class are distinct.

3. If conflicting instance variables have default values that are set objects, 
then one or more of these variables may be inherited under the same 
name and the default value is another set object which is the union of 
the inherited default values.

ORION supports the primitive types integer, float, string and boolean 
as the class Ptype. These can be used as primitive domains of instance 
variables. Collection and set objects are also supported. All user defined 
classes are instances of the system defined class Class and it is sufficient to 
send a message to the class Class to create a new class. The root class is 
Object.

For each user defined class and for the class Ptype and its subclasses, 
ORION implicitly defines a Set-of class as a subclass of the Set class [6]. 
These Set-of classes form a lattice parallel to the class lattice. The Set-of 
class of a user defined class has two special instances: the set of all instances 
of the class and the set of all instances of the class and its subclasses. The 
notion of the Set-of class is especially important for persistent objects. While
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a program is executing, objects created by the program can be referenced 
through symbols that point to them. A program’s symbol table provides 
handles for the objects. However, a newly started program will have no 
direct references to instances of classes through its symbol table. Instead, the 
program can refer to the special instances of the Set-of class of the required 
class. Predicate-based queries are messages to these set objects and return 
subsets of these sets. Another motivation for the automatic generation of Set- 
of classes for user defined classes is that instance variables often require values 
that are sets of objects. Set objects must belong to some class. Without these 
Set-of classes, the user would have to either explicitly create a class to capture 
the structure and semantics of these objects or treat them as instances of class 
Object, losing their semantics.

In ORION, all instances of a class are placed in the same storage seg­
ment. A separate segment for each class is allocated automatically. In some 
cases, especially when dealing with composite objects, multiple classes may 
be stored in the same segment. The user is required to specify which classes 
are to be stored in the same segment.

One of the extensions ORION has introduced is schema evolution [5] 
[6]. ORION supports all the schema evolution operations specified in the 
previous sections. The most important functions are to add a new class, add 
an instance variable to a class, delete a class and delete an instance variable 
from a class.

A new class may be defined as a specialization of an existing class or 
classes which may be specified as the superclasses of the class. It may redefine 
some of the instance variables and methods. If there is a conflict the conflict 
resolution rules previously described are applied.

When an instance variable is added to a class, if there is a conflict with an 
inherited instance variable, the new variable will override the older definition. 
All instances of the class will be modified to include the new variable. If the 
class has any subclasses, they will inherit the new instance variable and if 
there is a conflict the new variable will be ignored.

Whenever a class is deleted, all its instances are deleted automatically 
but subclasses of the class are not deleted. The deleted class will be removed 
from the superclass lists of its subclasses and the subclasses will be assigned 
the superclasses of the deleted class as superclasses. Also, the subclasses will 
lose the instance variables and methods they inherited from the class. If

51



these definitions had overridden some other definitions these definitions will 
be inherited. If the class to be deleted is the domain of a variable in a class, 
the superclass of the deleted class will be taken as the domain of the variable 
unless another domain is specified. When an instance of a class is dropped, 
all objects that reference it will be referencing a non-existent object. ORION 
does not automatically identify references to non-existent objects, because of 
the performance overhead.

When an instance variable is deleted from a class, the class may inherit 
the instance variable from another superclass if there had been a conflict 
involving the variable. All subclasses of the class will be affected if they had 
inherited the variable. Methods involving that variable will become invalid. 
These methods may be deleted or redefined.

Another schema evolution operation could be the changing of the domain 
of an instance variable of a class. The domain of an instance variable is always 
a class and the domain of a variable can only be changed to a superclass of 
the old domain. Thus, the instances of the class undergoing the change are 
not affected.

ORION supports composite objects and dependent objects [6]. A com­
posite object consists of a root object connected to multiple dependent objects. 
Each dependent object can be a simple object with no dependent objects, a 
set of objects or the root of a hierarchical structure. In a composite ob­
ject, the same instance object cannot be referenced more than once so the 
definition of a composite object is a strict hierarchy of composite objects. 
All instance objects within a composite object can be referenced by instance 
objects that do not belong to the composite object.

The instances that constitute a composite object belong to classes and 
these classes can be organized into a hierachy called a composite object schema 
and a non-root class in this hierarchy is called a component class. Each non­
leaf class in the hierarchy has some instance variables that serve as composite 
links. These variables are composite instance variables. If an instance object 
is referenced through a composite link, it must be the only composite link 
to the object but the object may be referenced using other instance vari­
ables. Composite links axe inherited along the class hierarchy. A composite 
instance variable may be changed to a non-composite instance variable but 
the inverse conversion is not allowed since an object can be referenced only 
by a single composite link and the inverse conversion would require some kind 
of a reference count mechanism.
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A composite object schema is created through composite instance vari­
ables which have component classes as their domains. An instance object 
may be made a part of a composite object only at its creation time. The 
integrity constraint for composite objects is that any instance object within 
a composite object cannot be referenced through more than one composite 
link. Instance objects of a composite object do not contain the identifier of 
the composite object to which they belong. An instance object which is a de­
pendent object cannot have independent existance. Therefore, if any instance 
object within a composite object is deleted, it causes a recursive deletion of 
instances that depend on it. A dependent object remains a dependent object 
throughout its lifetime unless the related composite link is converted into a 
non-composite link. The only way in which a composite link can be severed 
is either by the deletion of a dependent object or by making it a part of some 
other composite object.

The components of a composite object should be clustered. A composite 
object can be stored in a sequence of linked pages. If the object increases in 
size, a new page can be added and if the object decreases in size, pages may 
be released or compacted. The only problem occurs when two composite ob­
jects exchange parts. They should also exchange storage locations. However, 
ORION does not perform this reclustering.

In ORION, there are two types of versions [6] [10]. A transient version can 
be updated or deleted by the user who created it and a new transient version 
may be created from an existing transient version. The previous transient 
version then becomes a working version. A working version is stable and 
cannot be updated, it can be deleted by its owner and a transient version can 
be derived from a working version. A transient version can be promoted to 
a working version either explicitly or implicitly.

Since more than one transient version can be derived from a working ver­
sion, version history is represented in a hierarchy called the version derivation 
hierarchy. Dynamic binding of an object with a versioned object is supported. 
The user may specify a particular version in the hierarchy as the default ver­
sion. If a default value is not specified, the system selects the version with 
the most recent timestamp as the default.

Version handling is quite a performance overhead so versions are only 
kept on classes which are specified to be versionahle. A version derivation 
hierarchy is kept for each instance of a versionable class. A generic object is 
used as the data structure for the version derivation hierarchy.
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2.6.3 IFO

IFO [1] [2] is a semantic data model that provides mechanisms for representing 
structured objects and functional and IS-A relationships between them.

Although IFO is a semantic data model, a brief description of the model 
is included in the thesis because object-oriented data models and semantic 
data models are very closely related and IFO aims at providing a theoretical 
investigation of semantic data modelling issues. It provides a good model 
for developing object-oriented database schemas. There are four basic issues 
related to semantic data models. These can be listed as follows [1]:

• Semantic data models are object-based, that is data about objects and 
relationships between them are represented directly rather than using 
symbolic identifiers.

• Many relationships between data objects are functional.

• The system must be capable of representing IS-A relationships, that is, 
it must support subtypes.

• The model should include a mechanism for constructing new object 
types out of old ones.

One of the most important features of IFO is that IFO schemas and in­
stances are unambiguously and rigorously defined. There is a convenient and 
simple method for graphically representing an IFO schema. In the graphical 
representation each distinct data type has a distinct representation. Another 
feature is that functions can be defined to depend on other functions.

In IFO objects are modelled using object reps (object representations). 
There are two atomic object reps which are printable objects corresponding 
to objects that are alphanumeric strings and abstract objects corresponding to 
objects that have no underlying structure. Similarly, there are two construc­
tors for forming non-atomic object reps. The first is the *-vertex constructor 
which forms a set of objects of a given structure type. The second construc­
tor which is the X-vertex (cartesian product operator) which forms ordered 
n-tuples of instances of the children of that vertex. Figure 2.2 gives some 
examples of the graphical representation of IFO objects. Squares are used to 
represent printable objects eind circles represent abstract objects. Therefore, 
the first example corresponds to a printable object ’name’, the second to an
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Figure 2.2: The graphical representation of IFO objects, object reps
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Figure 2.3: An exaraple fragment rep

abstract object ’person’, the last two examples correspond to *-vertex and 
X-vertex constructors.

Fragment reps (fragment representations) are used to represent functional 
relationships. Functions are relationships between pairs of sets of objects 
so only *-vertices can participate in functional relationships. The function 
must be onto and it may be optionally specified as being total or one-to-one. 
Nesting of functions to arbitrary levels is supported. Figure 2.3 shows the 
fragment rep corresponding to the function GR which maps a set of students 
to a set of grades.

The IFO model supports IS-A relationships, that is, subtypes. The basic 
characteristic of IS-A relationships is the top-down inheritance. In other 
words, the structure and properties of the superclass are inherited by the 
subclass. However, IFO supports two kinds of IS-A relationship, namely, 
specialization and generalization. For example, the fact that a student is a 
person is specialization whereas saying that cars and planes are vehicles is 
generalization. In specialization, the inheritance is from top to bottom. A 
student is also an instance of the person object and it has the same structure 
as a person object. On the other hand, in generalization the structure is 
inherited from bottom upwards. A vehicle is either a car or a plane and 
a vehicle object may have the structure of either a car or a plane. Figure 
2.4 shows the representation of specialization and generalization edges in

55



PERSON VEHICLE

Figure 2.4: The representation of specialization and generalization (IS-A) 
relationships

IFO. The first example shows specialization edges representing the fact that 
EMPLOYEE and STUDENT objects are specializations of the PERSON 
object and they have the same structure. The second example represents the 
generalization relationships between CAR, PLANE and VEHICLE objects. 
The VEHICLE object is the generalization of CAR and PLANE objects. The 
node at the head of two or more generalization edges is disjoint if the vertices 
at the tails of the generalization edges are disjoint. A node at the head of 
two or more specialization edges is labelled covers if the object set of this 
vertex is equal to the union of the object sets of the vertices at the tails of 
these specialization edges.

An object rep is a directed tree in which each printable vertex and each 
abstract vertex has no children, each ^-vertex has exactly one child and each 
X-vertex has one or more children ordered from left to right [2]. Therefore, 
the leaves of the tree are always printable or abstract vertices. A structured 
object rep is an object rep with a specification of the structure types associated 
with each abstract type. Extended object reps are obtained if generalization 
relationships are replaced by -{--vertices. Each +-vertex has two or more 
children where the subtrees below distinct children are different and where 
each root of the subtrees is not a +-vertex. It acts like a union operator. 
Figure 2.5 shows an extended object rep. A structuring assignment for an 
object rep is a mapping which assigns an extended object rep to each abstract 
vertex.

A fragment rep is a directed tree R =  (V,E) where E is the disjoint union 
of object edges, Eq., and fragment edges, Ep, (V,Eo) is a forest of object 
reps, the head and tail of each fragment edge is a *-vertex and the tail of 
each fragment edge is either the root of R or the child by an object edge
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VEHICLE

Figure 2.5: An extended object rep

of the head of a different fragment edge. A structured fragment rep can be 
defined similarly to structured object reps.

An IFO schema is a forest of fragment and object reps which has any num­
ber of specialization and generalization edges and can be represented using 
an IFO graph which obeys some restrictions. From the IFO graph, the object 
definition graph is obtained by reversing the object ajid specialization edges 
and taking the union of these with the generalization edges [2]. If the edge 
(p,q) is in the object definition graph, then vertex p must be defined before 
vertex q. There should be no directed cycles in the object definition graph. 
The restrictions which must be satisfied by the IFO graph corresponding to 
an IFO schema can be listed as follows:

• There should be no directed cycles of IS-A edges in an IFO schema.

• A given type cannot be a subtype via specialization of two fundamen­
tally different types.

• Generalizations result in a set of objects of the generalized type. Gen­
eralization edge heads cannot occur in object reps which are the range 
of some fragment rep. This is because the members of a generalized 
type must be determined by the constituent subtypes and should not 
be affected by the behaviour of some function.

If the object structure type of an abstract vertex is not determined by IS-A 
edges then only unstructured abstract objects can be used to populate it. If 
two abstract vertices are not explicitly related by IS-A relationships then the 
set of objects associated with them must be disjoint.

When building a system, the user may start by specifying the printable
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and abstract types and then the fragment and IS-A relationships may be 
added. While specialization edges may be used to resti;ict the possible set of 
objects associated with a vertex, generalization edges should be used to create 
new object sets out of existing ones. For a good design, the head and tail 
vertices of each generalization edge and the head vertex of each specialization 
edge should be a primary vertex. A ■primary vertex of an IFO graph is the 
object-child of a ^-vertex which is the root of a maximal fragment rep.

A calculus-based language has been designed for users to perform various 
operations on an IFO schema.

2.7 CONVENTIONAL VERSUS OBJECT-ORIENTED 
DATABASE MANAGEMENT SYSTEMS

Current database systems implement an abstract data type like a relation 
rather than support natural and easy modelling of real world entities. They 
hide the complexities of file systems and indexing techniques and provide a 
degree of physical data independence. The future of database systems will 
be knowledge management systems with more support for data semantics, 
inferencing and general purpose programming.

Current systems are limited in both data modelling and programming 
interfaces [12] [36].

a) Type definition facility- Most database systems supply a fixed set of op­
erations. They do not allow the definition of new types or the addition 
of operations. The constructors are also limited. The operations for 
higher-level types are induced by the type constructors and can not be 
extended. There is no distinction between type definition and data def­
inition causing some redundancy. The aim in 0 -0  DBMS is to support 
arbitrary levels of data structuring, to allow definitions of operations on 
types and to uniformly separate type definition from type instantiation.

b) Artificial Restrictions. In conventional systems there are some restric­
tions imposed by the implementation which must be satisfied by legal 
database schemes .Some examples are limits on field length, number of 
fields in a record etc. 0 -0  DBMS try to avoid implementation depen­
dent limits on the sizes of database schemes and data items. The size 
of data items should only be limited by the secondary storage capacity.
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c) Structural Limitations- The data modelling capabilities of current database
systems do not support the complexities and variations seen in real- 
world problems. There are also restrictions on how the data structur­
ing operations may be applied. Dynamic modification of schemas is 
not always supported and if supported usually requires database re­
structuring. In 0 -0  systems variations in structured objects, having 
arbitrary data items as values, schema evolution without restructuring 
are supported .

d) Modelling power- In conventional DBMS real-world problems are encoded
into available data structures and they are usually over-simplified, thus 
the utility and reliability of the data are compromised. When informa­
tion is encoded, application programs must deal with the encoding and 
extra integrity constraints are needed to ensure legal encodings. A data 
model provides entity identity if the data representing any entity can be 
referenced directly as a unit and the entity may explicitly appear in mul­
tiple places in a database without any pointer or other indirection mech­
anism visible to users. Lack of entity identity leads to inconvenience 
in modelling and application of constraints. Entity identity also allows 
easier sharing of data between data items. Object-based models pro­
vide entity identity through object identity. Commercial databases do 
not support a hierarchy of types where as 0 -0  systems support classes, 
inheritence and a clciss lattice structure. Another problem with cur­
rent systems is that update commands are machine-oriented. Changes 
in the state of the real world involves updates to several database ob­
jects. Being able to model real-world changes is a powerful capability 
for a database system. It can help in choosing implementations for 
data structures and reduce the overhead in integrity checking, since 
updates can be made to preserve constraints. Applications become eas­
ier to write. 0 -0  DBMS provide powerful data modelling capabilities 
through flexible data structuring.

e) Access to past states of a database. A temporal extension to a data model
provides historical access for users and an error recovery mechanism. A 
temporal data model replaces deletions by maintaining object history. 
Most systems keep a history in the form of checkpoints and recovery 
logs for error recovery. However, they do not support user access to 
history. A temporal data model provides both historical access and 
error recovery. A goal of 0 -0  system is to support version management.

f )  Separation of languages. In most programming languages, persistent and
temporary data is treated differently. The persistent data is stored in
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files. However files support fewer data structures, so the data to be 
stored has to be encoded. In databases, data manipulation languages 
do not support arbitrary computations on database entities, requiring 
an interface to a general-purpose progrcimming language. One language 
must be embedded in other. The problem associated with having two 
languages is impedance mismatch [12] [50] [56]. The mismatch can be 
conceptual or structural. The conceptual mismatch occurs if the two 
languages support different programming paradigms, one being declar­
ative and the other procedural whereas the structural mismatch occurs 
if the two languages support different data types. 0 -0  systems aim at 
providing a single language for data manipulation, general computation 
and system commands.

g) The problems related to the data dictionary [56]. In a database manage­
ment system, the data dictionary/directory is used to control access 
to the database, ensure data integrity and supervise the distribution 
of data. In the past, the data dictionary was a collection of static 
record structures designed and built after a study of the problem to 
be modelled. It was fixed throughout the life of database applications. 
Dictionaries were viewed as static tools for the control of data and 
information resources. Especially for CAD/CAM and knowledge rep­
resentation applications, dictionaries are required to be dynamic and 
active in the design and management of databases. Database design, 
dictionary definition and data acquisition must be integrated. This 
brings two features for the dictionary [56]:

• the need for more dynamic structures capable of evolving over time 
and with changing requirements

• a closer integration between data and metadata

An object-oriented dictionary facility uses an object-oriented organi­
zation to represent and describe a data dictionary schema. Objects 
are used to represent classes and instances of schema structures. All 
schema related operations axe implemented as methods and schema de­
scriptions are maintained as object properties. The methods maintain 
the consistency of the schema and database objects when the schema 
is modified.
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2.8 ADVANTAGES AND DISADVANTAGES OF THE 
OBJECT-ORIENTED APPROACH

Object-oriented systems provide major advantages in the production and 
maintenance of software: shorter development times and a high degree of 
code sharing. They support versatility, flexibility and a high degree of porta­
bility [45]. The problem can be decomposed into subproblems. Systems can 
be modelled easily since all conceptual entities are modelled using a single 
concept, that is, objects. These advantages make object-oriented systems an 
important tool for building complex systems.

One of the most important ideas behind object-orientation is the fact 
that it crosses a threshold of perception [45]. Working with objects and 
messages is like working at the human cognition level and provides a high 
level of abstraction. The body of information and action can be realized as a 
single unit. This is similar to human perception. Humanbeings perceive the 
world as being made up of objects and the brain arranges the information 
into chunks. By using object-orientation, the same idea can be used to solve 
various problems. Designing a system in terms of objects makes the system 
easier to understand. The ease of understanding does not actually come 
from the details of how a procedure is constructed but from not having to 
consider the other parts of the system. This, in turn, is a result of the data 
encapsulation and abstraction supported by object-oriented systems. Good 
design and clean code are also results of using object-oriented systems.

The object-message paradigm and encapsulation tend to promote a more 
modular system since each message represents a module. Modules are easier 
to create and understand. In addition, there is a tendency for each message 
to be a coherent unit. Problems of interfacing modules, which are generally 
associated with bottom-up development, are absent when working with ob­
jects and messages. Method creation can be considered as being bottom-up 
whereas class creation is top-down. One reason interfacing problems are min­
imal is that objects are generally passed as arguments in messages and their 
instance variables do not explicitly appear. Consequently, changes in the 
structure of an object have no effect on most messages in which the object 
appears. The support of typeless object variables and dynamic binding add 
to this property.

Due to the existance of predefined classes and messages, new classes and 
messages can be defined using them thus eliminating unnecessary details. In
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addition, objects can be arguments to messages and since objects are a set 
of variables, they reduce the number of arguments and hence result in more 
readable code.

Structural changes can be made to parts of an object-oriented system 
without the need of extensive compilation and linking. Most changes occur 
at a high conceptual level and can be translated directly into objects and 
messages.

Information hiding and data abstraction increase reliability and separate 
procedural and representational specification from implementation. Dynamic 
binding increases fiexibility by permitting the addition of new classes of ob­
jects, that is, new data types without having to modify existing code. In­
heritance together with dynamic binding permits code to be reused. This 
introduces the advantage of reducing overall code and increasing program­
mer productivity. Inheritance enhances code factoring which means that code 
to perform a particular task is found in only one place and this eases the task 
of software maintenance.

One of the most important disadvantages of object-oriented systems is 
the run-time cost of supporting dynamic binding [45]. A message call costs 
more than a function call. Actually, messages perform more operations than 
a function call. Therefore, in some applications the functionality provided 
by message passing can make the application run faster due to the fact that 
a message can perform the operations that require multiple function calls. 
Implementation of object-oriented systems is more complex than comparable 
conventional systems, since the semantic gap between these languages and the 
hardware is greater. Therefore, more software simulation is needed. Another 
possible problem with object-oriented systems is that a user must learn a 
completely new and different approach and an extensive class library. As a 
result, object-oriented systems are more dependent on good documentation 
and development tools.
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3. THE OBJECT-ORIENTED DATABASE 
MANAGEMENT SYSTEM PROTOTYPE

3.1 AN OVERVIEW

The object-oriented database management system prototype developed at 
Bilkent University supports most of the basic concepts of object-orientation. 
The supported concepts are the concept of an object, object identity, classes, 
methods, messages and inheritance. As to the extensions, only indexing is 
supported. The system was implemented using the C programming language 
[25] [26] and Sun workstations [51] [19] [17] [15] [11] [55] running Berkeley 
Unix 4.2 BSD [9].

A computationally complete language has been designed and implemented. 
It serves the data definition, data manipulation and computation aspects of 
the prototype. The aim is to provide a unified language performing all the 
operations and solving the impedance mismatch problem. Methods are gen­
erally written using the command language. A compiler recognizing the lan­
guage has been implemented. Methods or commands entered in this language 
are first compiled into a set of integer codes and then executed. The language 
is strongly-typed and supports the primitive data types integer and character 
in addition to supporting collections, sets, arrays and strings. Also, the name 
of a class in the system is a valid type allowing data types and their related 
operations to be added to the system at run time. Such newly added classes 
are treated as any other system defined class. Complex type definitions are 
not directly allowed but all kinds of objects and types can be defined using 
class definitions and inheritance.

The system is based on the class model. The objects in the system axe 
grouped into classes and each object belongs to a single class while a class 
may have many instances.
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Everything in the system is considered as an object. Therefore classes are 
also objects. Thus, the system is homogeneous in its treatment of objects. A 
class defines the instance variables representing the state of its instances and 
the messages that represent their protocol. Methods are used to specify how 
the required operations axe to be performed. A class definition can define 
some class variables or shared values as they axe called in the prototype, to 
represent values shared by all instances of the class. A default value can be 
specified for each instance variable. A class can be associated with a list of 
keys. If specified, these keys could be used for indexing operations. Since the 
language is strongly-typed, a type must be specified for each instance vari­
able and method or message argument. The notion of composite objects or 
dependent objects is not supported. All objects are passive and independent.

The system uses value and location independent, system generated, unique 
surrogates to represent object identity. There is a unique surrogate corre­
sponding to every object and this surrogate remains unchanged all through 
the lifetime of the object. The surrogate is assigned to the object as soon as it 
is created through instantiation. The surrogate to be assigned is determined 
by a permanent counter. Only for integer and character objects, the value 
is encoded into its surrogate. The applied object identity scheme provides 
both location and data independence, so it supports strong identity in both 
the representation and temporal dimension.

The system always preserves its consistency with respect to object iden­
tifiers. No two distinct objects ever have the same identifier.The dangling 
identifier problem is also solved.

Each class in the system is associated with a set of methods and messages. 
The methods can either be written in the designed command language or can 
be written in C. If a method is written in C, when a message involving the 
method is invoked, the method call is translated into a C function call and 
executed as a system call. If the method invoked is written in the command 
language, it is first compiled and then the resulting set of integer codes is 
used to execute the necessary operation. Each instance object may have its 
own set of methods in addition to the methods defined in its class object. 
This removes the necessity of having a metaclass to support instance objects 
with their own methods. The system allows the receiver of a message to be 
a pseudo variable. Calls to self and super are supported allowing recursive 
methods.

The system allows classes to be specified as being subclasses of previously
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defined classes. However, a class may have only one superclass. Therefore 
simple inheritance is supported and all user and system defined classes form 
a tree. A subclass inherits all instance variables, shared values, keys, meth­
ods and messages from its superclass and inductively, from all classes in its 
superclass chain. It may redefine and override these inherited properties. It 
may make use of an inherited method and do some incremental additions to it 
using the message call to super. Type theory inheritance, external interface 
inheritance, code sharing and reusability are supported but polymorphism 
is not supported since generic operations axe not allowed. Polymorphism in 
method and message names is supported.

Each object has its own set of instance variables representing its state. An 
object is stored as a contiguous block of memory. If an instance variable is of 
a primitive type, since its value is encoded in its surrogate, its value is stored 
in the corresponding location. On the other hand, if it is not of a primitive 
type its surrogate is stored in the corresponding location and the physical 
address of the object is found from the object table which maps the object 
identifiers to their corresponding addresses. All objects are treated uniformly, 
that is, no distinction is made between very large objects and other objects 
or variable sized objects and fixed size objects.

Reference counting and garbage collection are not performed in the sys­
tem. Whenever an object is deleted from the system, a flag is set in the 
corresponding entry of the object table which is used to access objects and 
which provides a mapping from object identifiers or object-oriented pointers 
(oops) as they are called in the prototype, and the memory location of the 
object. This flag indicates that the object is deleted and whenever a reference 
to that object is made, the system will detect that the object has been deleted 
by looking at the object table. All objects and methods are persistent.

A different storage mechanism is used in secondary storage and clustering 
is performed. All references in an object are resolved and axe clustered.

The developed prototype being a single-user system does not support con­
current access to objects and authorization control. The notion of a transac­
tion is not supported either.

Some of the basic schema evolution functions such as adding a class and 
deleting a class are supported. However, versions are not supported since 
the notion of time is not supported by the system. Indexing is provided 
on specified key instance variables. Both equality and identity indexes are
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Figure 3.1: The four major modules of the prototype

supported and indexes are created on classes upon user request. Indexes are 
implemented using B-trees.

3.2 THE MODULES OF THE SYSTEM

The object-oriented database management system prototype designed and 
implemented at Bilkent University consists of four major modules which are 
object memory and schema evolution; message passing ; secondary storage 
management, indexing and the user interface [44]. The user interface is the 
highest level module. It is built on top of the message passing module which 
is in turn built on the object memory and schema evolution module. At the 
lowest level is the secondary storage management module. The four modules 
are shown in Figure 3.1.

3.2.1 OBJECT MEMORY AND SCHEMA EVOLU­
TION

Object memory [44] [27] handles the representation, access and manipulation 
of the objects in the system. Each object is associated with a unique surrogate 
called object-oriented “pointer {oop). Object-oriented pointers are used to 
identify objects independently of their values. The message passing module
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oop
class oop 

size 
field 0 
field 1

field n

Figure 3.2: The format of an allocated object

and the object memory communicate about objects using object-oriented 
pointers. An oop is a 32 bit positive even number allowing approximately 2̂ ° 
objects to be referenced. Object memory supports primitive type objects, 
string objects, class objects, collection objects and instance objects. The 
primitive type objects are integers and characters. To provide efficiency, the 
values of the primitive type objects are encoded in their oops.

Object memory uses an object table which maps the oops of the objects 
to their physical locations in the memory. All references to an object are 
indirected through the object table. Thus, the oops of the objects are in fact 
indices into the object table. This indirection provides the benefit of moving 
the objects easily in the memory. Object memory is implemented as a hash 
table in which oops are used to provide direct access.

Objects are represented as contiguous series of words. Each word is used 
to store the value of an instance variable. The actual data of the object are 
preceded by a header information which includes the oop of the object, the 
oop of the class to which the object belongs and the size of the allocated 
space for the object. The format of an allocated object is shown in Figure 
3.2. The fields of an object are accessed by zero-relative integer indices.

Classes are themselves objects. The representation of a class object is dif­
ferent from the representation of an instance object. It contains information 
necessary to construct and use its instances. This information includes the 
name and oop of the class, oop of its superclass, the number of its instances, 
the names and definitions of its instance variables, the names of its messages 
and methods, the domain of the instance variables, and a pointer to the list 
of its instances. The format of a class object is shown in Figure 3.3.

Classes form a hierarchy, that is each class has only one superclass. The 
hierarchy is implemented as a tree. There are five basic system defined classes
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class oop
class name
super oop
instance count
instance variable count
ptr to variable definitions 
ptr to method definitions
ptr to instance variable 
domains
ptr to the first instance 
ptr to the place in the 
hierarchy tree

Figure 3.3: The format of a class object

Object

Figure 3.4: The initial class hierarchy and the system defined classes

as shown in Figure 3.4. These are Object class, Class class, Collection class. 
Primitive Type class and Method Context class. Object class is the root of 
the hierarchy. The user defined classes are instances of the Class class and 
they are inserted into the hierarchy when they are created. The information 
stored in the nodes of the tree includes the oop and name of the class, a 
pointer to its superclass, a pointer to its subclass list and a pointer to the 
next sibling in the subclass list of its superclass.

When a new instance of a class is created, a chunk of memory is allocated. 
This new instance will also be the instance of the superclasses in the hierar­
chy. Since every class has its own private representation, a separate chunk is 
allocated for each class in the superclass chain.
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The object memory provides the following fundamental functions:

• Determine an object’s size, class and implementation

• Access and change the value of an object’s instance variable

• Access a class object

• Create a new object

One of the important requirements of database applications is the schema 
evolution, that is the ability to change the database schema dynamically. In 
object-oriented databases, there can be changes to the class definitions or to 
the structure of the class hierarchy. The types of changes include creation 
and deletion of a class, alteration of inheritance between classes, addition and 
deletion of instance variables and methods. In the proposed system, only a 
few of these changes are supported such as adding or deleting a class which 
is a leaf node in the class hierarchy, adding or deleting instances of a class 
and adding or deleting an instance variable [44] [27].

The object memory and schema evolution module is approximately 2700 
lines long.

3.2.2 MESSAGE PASSING

The message passing module [44] is built on top of the object memory and 
schema evolution module and forms the basis for the user interface module. 
It includes the definition and support of the designed command language and 
error handling in addition to message passing. It consists of five submodules 
which are the lexical analyzer, parser, code generator, executor module and 
the query processor.

A N  OVERVIEW  OF THE COM M AND LAN G U AG E

In conventional database management systems, the query language consists 
of two independent parts: the data definition language and the data manip­
ulation language. Having two separate languages for the two functions intro­
duces the impedance mismatch problem. One of the aims of object-oriented 
database management systems is to provide a single language handling both
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data definition, and data manipulation, thus providing unification and solving 
the impedance mismatch problem.

The command language of the object-oriented database management sys­
tem prototype is designed to provide unification so it captures both the data 
definition and data manipulation language aspects. The language can be used 
both interactively, that is, command by command or in the batch mode, that 
is, in the form of methods [44].

Message calls which are executed by the executor module have the follow­
ing format:

< destination > <  message name > [ < argument list > ]

The argument list field is optional. System defined data types are integers, 
characters, arrays, strings, sets and collections. In addition to these, a vari­
able may be declared to be an instance of a class by specifying the class 
name.

M ETHOD HANDLING AND MESSAGE PASSING

A method is used to access and manipulate objects and is invoked using 
the corresponding message. A method is created using a method definition 
statement and is formed of a header and a body. The header contains the 
method name, the corresponding message name, the name of the class to 
which the method belongs and a list of optional or mandatory arguments 
of any system defined type or of any class. The method body is formed of 
a group of batch mode or interactive mode statements. The method and 
message name may be the same. All methods are persistent and the code for 
a method and its compiled form are kept in separate data files [44].

Methods are accessed through a method definition table. Each class object 
has its own method definition table.

The lexical analyzer, parser and code generator form the compiler for 
the command language. Every time a new method is created or a method is 
modified and a compile method statement is executed or each time a message 
is invoked and the compiled form of the corresponding method is not available, 
these subroutines are invoked. At the end of the code generation phase, the 
interactive statement or the method is converted into a set of integer codes
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and stored in a file. The executor module takes the generated integer codes 
as input and performs the corresponding operations using a structure called 
an activation record. During the execution phase, the interactive statements 
are considered as methods with the necessary arguments for the class Object.

Each message returns a fixed size and fixed structure block. This block 
contains an error fiag, a flag indicating whether a value is returned or not, 
returned value type, the address of the memory location containing the re­
turned value and for indexed return values the maximum length and the 
element type.

Activation records axe created whenever a message call is executed. The 
previous activation record is pushed on to the activation stack. Whenever a 
return from a message invocation is performed, an entry is popped from the 
stack and it becomes the current activation record. This solves the parameter 
passing and the return address handling problems.

The query processor handles various associative retrieval queries using the 
routines provided by the object memory and the indexing modules.

Error handling is performed at all stages. Each time an error occurs, an 
error code is generated and the corresponding error message is retrieved from 
the system error file and displayed or written to a file.

3.2.3 SECONDARY STORAGE MANAGEMENT AND 
INDEXING

Efficient storage and retrieval of objects in the secondary storage constitutes 
an integral and important part of the prototype implementation [44] [24]. 
The rest of this section describes the necessary requirements and the actual 
design preferences.

The secondary storage management and indexing module is approximately 
1000 lines.

REQUIREMENTS

The memory system is composed of system defined and user defined persistent 
objects and temporary objects that are present only during the session and
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not accessible to the users. The kernel is composed of the minimum set 
of system defined objects that are necessary to initialize the system defined 
tables and hierarchy of system classes. User defined objects and classes will 
be built upon this kernel and they represent the dynamically changing part of 
the memory. The secondary storage module must be responsible for managing 
the transfer of objects between main memory and disk while making sure that 
the object identity remains unchanged throughout its internal (secondary 
storage) and external (main memory) representation. The issue of being able 
to propose a uniform method for handling objects of very different sizes is 
also very important. The data model presents no problem in this aspect but 
secondary storage implications are more critical [44].

Major access problems are incurred due to the nonnormalized nature of 
objects and objects being variable-sized. The storage structure and the ad­
dressing mechanism should provide fast access to entire complex objects and 
to their components at the same time. This demands efficient ways of clus­
tering the objects and thus eliminating frequent diskhead motions and single 
object transfers.

The requirements can be summarized as:

1. Access- Fast random access to objects (and to their chunks) via their 
oops should be provided; clustering and preloading of objects during 
disk accesses to attain better performance and providing associative 
access to an object via value (indexing on value) should be available;

2. Updates and reorganization- Updates that may change the size of ob­
jects must be tolerated and stability against relocation should be guar­
anteed without having to reorganize the whole database in order to 
avoid unsatisfactory performance.

3. Extensible typing- Schema updates such as class definition updates, 
addition and deletion of instance variables and class evolutions must be 
supported in the secondary storage.

STORAGE CONCEPTS AND STRUCTURE

The objects of the main memory data model are mapped to disk objects 
(called containers) each of which can be viewed as a segment with proper def­
initions of its class instance variables and super objects [44] [24]. The main 
objective is to hold together individual chunks of an object contiguously on
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Figure 3.5: The abstract view of a variable sized container

disk which also happens to be the clustering preference of the prototype. 
It is assumed that retrieving a chunk into main memory would most likely 
reference to other chunks of the same object due to inheritance and thus 
retrieving a complex object in its entirety is important for eliminating single 
chunk disk retrievals. Another partitioning approach such as storing all in­
stances of a class together for clustering would satisfy queries requiring the 
search of all objects of a class. It is up to the application to determine which 
access pattern would be more suited. However clustering could be achieved 
by only one preference and the system’s default is storing the objects with 
its super objects. Another clustering scheme is implemented so as to cluster 
together collection objects that are values of nested-type instance variables 
of an object. Objects are stored in disk as a byte stream using Unix low-level 
file services [9] [51] [19] [17] [15] [11] [55].

The secondary storage module is flexible to be able to do certain con­
ceptual level to physical level transformations for efficiency and performance, 
yet for this reason the container objects know information about the form of 
objects that are contained in them.

An abstract view of a variable sized object container is given in Figure 
3.5.

A container is recursively defined as a variable sized segment in disk which 
contains an object’s instance variables’ values and either the container of its 
super object’s instance or a reference to that container. Resizing a container 
is possible in two ways; by reorganization or by using an overflow flle to 
keep overflown instance variables. Accessing subcontainers in a container
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Figure 3.6: The abstract view of a variable sized container with external 
super-part

is possible via an oop-to-container-address conversion. However once one is 
in the root container one can make use of physical contiguity and skip the 
address mapping. If a super object can not be contained in a container due 
to multiple referencing or identity assignments, then a slot containing the 
oop of that object is used in resolving the reference (Figure 3.6). The storage 
manager guarantees that instance values of an object can be found in exactly 
one container and other references to that object will be redirected to point 
to this container.

IN D EXIN G

In order to provide alternate access paths to objects, based on the values 
of their instance variables (i.e. to provide associative access to objects) an 
indexing module is implemented [44] [24].

Indexing is performed on classes and automatic index maintanence is pro­
vided by the system. An index is specified by a path name which is a string 
of the form Ai...A„ where A,· 6 user defined classes and A,· is a subclass of 
A,4-1 for i =  l..n — 1 and there does not exist any i such that A,· =  CLASS 
class and the indexed instance variable is among the instance variables of A„. 
Indexing a path Ai...A„ on the instance variable V will associate the oops of 
the objects found at class Ai with the value of V in the corresponding super 
object.
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Multi-level indexing is performed by indexing each link along the variable 
path rather than maintaining a single index for the whole path. This allows 
the query processor to take advantage of more efficient access patterns even 
if indexes are not specified.

3.2.4 THE USER INTERFACE

The User Interface of the designed prototype [44] [24] is also object-oriented 
and the user is navigated by a pop-up menu driven system to the operations 
he/she desires to perform. The User Interface provides three different envi­
ronments corresponding to three groups of users: (i) developer/maintainer , 
(ii) domain specialist, (iii) end-user .

The first environment contains the tools for doing schema changes such 
as defining new classes, instance variables, updating existing ones, editing 
methods and customized applications in the prototype’s command language.

The second environment contains tools for creating, updating new in­
stances of classes , invoking methods of objects, and doing operational main­
tenance.

The third environment is for running only customized applications and 
thus interacting with the database in a controlled manner.

3.3 THE NECESSARY STRUCTURES

This section describes the proposed data model and its associated structures. 
Some parts of the proposed system were not implemented. The previous 
section described the actual system that was implemented.

The aim of the project was to get an insight on object-oriented systems 
and object-oriented databases and design a system which supported the basic 
concepts seen in the object-oriented approach. Among those that axe sup­
ported in the system one can list the concept of an object which captures both 
the state and the behaviour of an entity, a class, messages, methods, inher­
itance and class hierarchy. Although the system is basically memory-based, 
it provides for the storage, access and clustering of objects in the secondary 
storage. It also supports an indexing mechanism to avoid the search during
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value-based access.

The following structures are needed for the storage,access and manipula­
tion of objects.

1. an instance access table for each class

2. Class table

3. Object table

4. a method definition table for each class and for the necessary instances

5. a hierarchy table

3.3.1 CLASS DEFINITION OBJECT

Each entity is stored as an object. Objects with similar internal representa­
tions constitute a class. Every object is an instance of a single class whereas 
a class may have any number of instances. The class object defines the prop­
erties and methods shared by its instances.

A class may define instance variables, shared values, default values, keys 
and derived variables for its instances. Each instance has its own copy of in­
stance variables. On the other hand, shared values are the properties which 
all instances of the class share. Default values are similar to instance vari­
ables but a default value for the variable is provided so that the instances of 
the class for which the value of the variable have not been defined take on 
the default value for the variable. Keys are the properties on which indexes 
can be built. The order of indexing , that is, whether in ascending or de­
scending order will be specified by the user. Indexes are created only when 
the user invokes a message for index creation. Derived variables cannot be 
assigned a direct value. Their value is a function of the other properties of 
the object. The value corresponding to a derived variable is calculated using 
the derivation function associated with that value. In the designed system, 
the derivation functions are treated as methods and evaluated as message 
passing.

The definition of a class is given in a class definition object. Such an 
object contains the following information as shown in Figure 3.7:

• class name- the name of the class being defined
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class name
object identifier

organization type
ptr to instance access table

ptr to the corresponding 
hierarchy object

number of search keys
list of search keys

number of instance variables 
a list of istance variable

notify ptr
method definition table ptr 

number of instances
number of shared variables 

list of shared variables

Figure 3.7: A class definition object

• object identifier, the oop of the class being defined, since each class is 
also an object it has an oop.

• organization type, the organization of the object, that is, whether it is 
stored as a B-tree or linearly.

• pointer to instance access table entry, there is an instance access table 
for each class and it provides a linked list of all instances of the class 
and domains for the instance variables

• pointer to the corresponding hierarchy object, a pointer to the hierarchy 
object which represents the position of the class in the class hierarchy

• number of search keys

• a pointer to the list of search keys. For each entry in the list of search 
keys

— the name of the key

— the order of indexing (ascending or descending)

— a flag indicating whether an index has been created on that key 
or not

is kept.

• number of instance variables

• a pointer to the list of instance variables, for each instance variable the 
following information is stored:
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— the instance variable name

— derived or not flag

— unique valued or not flag

— if not derived, type

— if derived pointer to formula deflnition method

— if it is an indexed type, the maximum size

— if it is an indexed type, the element type

— default value if specifled

• notify pointer. It could be used to support active objects as a trigger.

• method deflnition table pointer. Each class has its own method defini­
tion table. This table is used to access a method whenever a message 
is sent to the class.

• number of instances

• number of shared variables

• a pointer to a list of shared variables. For each shared variable its 
type and value is stored. A shared value can either be an integer or a 
character, that is of a primitive type.

This representation solves the problem of derived instance variables. A 
derived instance variable requires;

• a derived flag

• a formula definition method, that is, the derivation function

• a pointer to the corresponding method

Different approaches have been used for storing the instance variable val­
ues for an instance object

• All definitions could be stored as a linked list. Deleting and adding 
instance variables can be handled as additions to and deletions from a 
linked list.
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defn n
pir to next block

Figure 3.8: Storing an object as contiguous blocks of memory in a linked list

• Instance variables can be stored as a contiguous block of memory. If new 
instance variables are added a new block is linked to the old block. Each 
block consists of a count representing the number of instance variable 
entries in the block, the instance variable entries and a pointer to the 
next block. Deletions will cause wasted space. Such an organization is 
shown in Figure 3.8.

• Association lists are used for representing instance variable definitions 
in class definitions and for representing instance variables in object 
instances. With this approach it is easier to support temporal aspects. 
This approach is used in GemStone. Each entry of the association list 
contains a time and a value denoting that the object had gained that 
value as its property at the specified time [12].

• The properties of an object is stored as instance variable name and 
value pairs [22].

In the prototype objects are stored as contiguous words of memory. No 
garbage collection is applied.Figure 3.9 illustrates the way an instance object 
is stored in memory.

If an object does not define all instance variables of its class, the corre­
sponding entries will be NIL. The storage for all instance variables will be 
allocated. If an instance of a class does not define all instance variables of its 
class and a query is made on the undefined variables, either an error message 
could be generated or the default values corresponding to the variables, if 
they exist, could be used.

In the representation used in the prototype, an error can be detected if 
there is a null value in the corresponding instance variable entry of the object 
representation.
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notify ptr

instance variable 1 
instance variable 2

instance variable n

Figure 3.9: The storage representation of an instance object

Instead of allocating storage for all variables, an approach would be to 
allocate storage for only the defined instance variables and store pairs in the 
object definition. However this representation requires restructuring.

3.3.2 METHOD DEFINITION TABLE

There is a method definition table for each class and if necessary for an object 
instance. If an object has some specific methods of its own these methods 
will be specified using the method definition pointer in the object definition. 
This facility eliminates the need for metaclasses.

All methods are persistent and stored in files so the method definition 
table provides a mapping from message or method names to the files. A 
method may have any number of arguments and any of the arguments may 
be defined to be optional. Arguments can be of any type, primitive, indexed, 
collection, set or an instance of a user defined class.

Each entry of the table corresponds to a method defined for the class or 
instance and contains the following information:

• method name

• the message name corresponding to the method

• the number of arguments

• a pointer to the list of arguments- For each argument in the list the 
name of the argument, its type and if it is an indexed type the maximum
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oop free flag address

Figure ЗЛО: The object table

length and element type and a flag indicating whether the argument is 
optional or not is stored.

• the name of the file that contains the method

The default is to have the same name for both the method and its message 
but this can easily be overridden.

3.3.3 INSTANCE ACCESS TABLE

With the given description, this table provides a collection, in fact a set, of all 
instances in a class and in a way a domain for each (simple) instance variable. 
An instance access table is created for each class.

3.3.4 OBJECT TABLE

It provides a mapping between object identifiers and the physical address of 
the object. Direct access using object identifiers is necessary for this table. 
In the prototype, hashing is used to perform the direct access on object 
identifiers. Figure 3.10 shows the structure of the object table.

3.3.5 CLASS HIERARCHY OBJECT

The prototype supports simple inheritance, that is, a class can have only one 
superclass. Thus, the classes are organized into a class hierarchy in the form
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class class definition superclass next subclhss instance
name table entry ptr subclass link ptr access table

j)tr ptr entry pointer

Figure 3.11: The format of a class hierarchy object

of a tree.

The only kind of conflict that can occur during inheritance, is the conflict 
between a class and its superclass. This conflict is resolved by giving priority 
to the class over its superclass. Therefore, whenever a conflict occurs the 
definition in the class overrides and redefines the definition in its superclass.

The class hierarchy is represented using class hierarchy objects. The for­
mat of a class hierarchy object is given in Figure 3.11. As can be seen from 
the figure, a class hierarchy object contains the following information:

• the class name of the object whose position in the class hierarchy is 
represented using the class hierarchy object.

• a pointer to the class definition object associated with the class being 
considered

• the superclass pointer which contains the oop of the superclass of the 
class

• a pointer to the next subclass in the subclass list of the class’s superclass

• a pointer to the first subclass of the class

• a pointer to the instance access table associated with the class

Figure 3.12 provides an example of the representation of the class hierar­
chy using class hierarchy objects. The first figure is the class hierarchy and 
the second is the internal representation corresponding to that class hierarchy.
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class NIL NIL
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Figure 3.12: An example class hieraxchy and its internal representation
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4. THE COMMAND LANGUAGE

The basic goal is to solve the impedance mismatch problem between database 
languages and programming languages by providing a single unified language 
capturing the power of both languages. The designed language is compu­
tationally complete and strongly-typed and supports the following from the 
computational point of view:

• assignment operator

• relational operators

• aritmetical operators

• logical operators

• conditional constructs ( if-then-else )

• looping constructs ( while-do )

• declarations (declaration of temporary variables)

• blocking (begin .. end)

• comments

• data types, variables and expressions

• message calls and return statements

The system also supports quite a few database related query statements, 
data definition and data manipulation statements. Some examples are state­
ments for defining a new class, defining a new method, defining a new in­
stance, modifying the definition of a class or method, accessing instances 
satisfying certain criteria, equality checks and copying objects.
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The language can be used both interactively, that is, command by com­
mand or in the batch mode, that is, in the form of methods.

The commands can be classified into two major groups: interactive mode 
statements and batch mode statements. The interactive mode statements 
can be further classified as follows [44]:

1. Definition statements

a. New definitions- One can define a new class, a new method for a
class or a new instance of a class.

b. Redefinition statements- One can redefine an existing class or an
existing method of a class.

2. Schema evolution statements

a. Additions to a class definition- One may add a new instance variable,
key, superclass, subclass, shared variable or method to a class. 
Also, one may add an argument to a method of a class.

b. Deletions from a class definition- One may delete an instance vari­
able, key, superclass, subclass, shared variable, method or method 
argument from a class.

c. Modifications to a class definition- The user may change the default
value of an instance variable, the search order of a key, the value or 
type of a shared variable, the type of an instance variable, the code 
or argument of a method. Furthermore, one may specify an in­
stance variable as derived and change the function definition, that 
is, the method used to calculate the value of a derived variable.

d. Renaming operations- The user may rename an instance variable,
method, message or method argument.

e. Additional changes to a class definition- In addition to the above
operations, the user is allowed to replace a key of a class, change 
the superclass of a class and to make an argument of a method 
optional or mandatory.

f. Changes in the class hierarchy- One may rename a class, delete a
class or delete an instance from a class.

3. Query statements- These are for accessing and manipulating objects. 
They include statements for retrieving instances and class information, 
index manipulation, object duplication, equality checks and method 
manipulation.

85



All interactive statements axe treated as message calls to the class Object.

The batch mode statements may only be used in methods and provide 
iteration, conditional execution, declarations, assignments and message calls. 
There are two types of message calls. These are the system calls which are 
implemented as C function calls and actual message calls which are executed 
by the executor module and which have the following format:

<  destination > <  message name > [ <argument list > ]

The argument list field is optional. System defined data types are integers, 
characters, arrays, strings, sets and collections. In addition to these, a vari­
able may be declared to be an instance of a class by specifying the class 
name.

In the following sections, the language commands, some system defined 
default values and possible errors are explained giving some examples.

4.1 DATA DEFINITION LANGUAGE

The data definition language supports the following operations:

• define a class

• define a method

• define an instance

• Defining a class

define-class <  classname >
persistent
temporary

[unique] [with

[superclass < classname > ;]

[< number — o f  — subclasses > subclasses

< class — namei > ,..., < class — namck > ;]

[< number — o f  — shared — values > shared-values

< type > <  variable — name\ > = <  value >,
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< type > <  variable — namei > = <  value >; ]

[< number — o f  — instance — variables > properties :

derived 1
[unique]  ̂ > < variable — namei > [default < value >],

< type > I

[unique]
derived

< variable — namen > [default < value >];]
< type >

[< number — o f  — search — keys > keys : 

ascending
descending

< keyi >,

ascending
descending

keyjYi !>]]·

The interface and the methods related to the class must be separately- 
defined. No indexes are created during class definition.

Possible error messages are;

• no such superclass

• no such subclasses

• invalid classnames

• same class already exists

• number of instance values must be an integer > =  0

• number of search keys must be an integer > =  0

• in-valid types

• key does not match an instance variable name

• invalid default value
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define-method < methodname > fo r  < classname >

corresponding — to <  message — name > 

with < number o f  arguments > arguments 

[optional] < type > <  argumenti >,

[optional] < type > <  argumentn >; 

begin

< method — body >

Defining a method:

end.

Default values:

class name 
message-name 
number of arguments

OBJECT
method-name
0

Possible error messages :

• invalid method name

• method already exists

• invalid class name

• no such class name

• invalid message name

• message already exists

• number of arguments must be an integer > =  0

• invalid argument name



define-method < methodname > fo r  < classname >

corresponding — to < message — name >  

with < number o f  arguments > arguments 

[optional] < type > <  argument^ >,

[optional] < type > <  argumentn >; 

begin

< method — body >

Defining a method:

end.

Default values:

class name 
message-name 
number of arguments

OBJECT
method-name
0

Possible error messages

• invalid method name

• method already exists

• invalid class name

• no such class name

• invalid message name

• message already exists

• number of arguments must be an integer > =  0

• invalid argument name
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• invalid type specifications

• too few arguments are specified

• Defining a method for a derived instance variable

derived-method < method—name > for [<  class—name >] < variable—name >;

begin

< method — body >  

end.

* Defining an instance of a class: (receiver : classname)

new < classname >  [< variablename >]

(allocates enough storage but assigns only default values)

temporary
persistent

as

define < classname > with

< instance — variablei > = <  valuei >,

<  instance — variablej > = <  valuej >, 

temporary
persistent

< variablename >

NULL VALUE PROBLEM- If an instance does not define all instance 
variables, if a method accesses the undefined variables and if the variables 
have default values the default values will be used, otherwise an error occurs.

Error messages

• invalid class name

• no such class name
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• invalid instance variable

• class has no such instance variable

• invalid value for instance value

• invalid variable name

4.2 DATA MANIPULATION STATEMENTS

• change class definition completely

• add instance variable

• delete instance variable

• add search key

• delete search key

• change search key

• change name of instance variable

• change superclass

• change default value of a variable

• redefine method

• change message name

• add argument

• delete argument

• change body

• add method to a class

• delete a method from a class

• rename a method

• change the message name corresponding to a method

• change the search key indexing order
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• rename a class

• add superclass

• delete superclass

• delete a class

• change status of variable (derived or not)

• change formula definition method

• change type of variable

• changes to shared variables

• Change class definition completely:

rede fine-class < classname >
persistent
temporary

[unique\with

superclass < classname >;

[< number — o f  — subclasses > subclasses

< class — namei > , <  class — namck >; ]

[< number — o f  — shared — values > shared-values

< type > <  variable — namei > = <  value >,

< type > <  variable — namei > = <  value >; ]

[< number — o f  — instance — variables > properties ;

[unique] <  ̂ < variable — namei > [default < value >],
I < type >

derived
[unique] < > < variable — namen > [default < value >];]

< type >

[< number — o f  — search — keys > keys 

ascending
descending

< keyi > ,
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ascending
descending

< keym >]].

The formula definition methods must be specified for each derived instance 
variable. The interface and methods should also be specified. When a class 
is redefined there are two possibilities: Delete all old instances of the class or 
give an error message if the class has instances. Default values can come from 
the previous class definition. No indexes will be created and indexes created 
for the previous class definition will be lost. If the specified class name does 
not exist, then the affect will be a new class definition. The error messages 
are the same as in define class.

* Adding an instance variable to a class:

add Jo < classname >

< numberofinstancevariables > properties 

I derived I
[unique] < > < variable — name\ >

[ < type > ]

[default < default — value >]

, , ascending , .
[o5  ̂ ) key],

descending

[unique]
derived

< variable — namei >
< type >

[default < default — value >] 

, ( ascending , .
S , ) êy]·I descending

The formula definition methods must be specified for each derived instance 
variable. New methods and interface may have to be specified.

Error messages are

• invalid class name

• no such class
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• invalid class names

• too few variable names specified

• number of instance variables must be > =  1 (default is 1)

• invalid type

• invalid default value for type

• Delete instance variable:

delete-from < classname >

[< numberofinstancevariables > properties]

< variablenamei > , <  variablenamej > .

If indexing is available on one of the variables, it will also delete the index 
tree and delete the variable from the search key list

Error messages

• invalid classname

• invalid variable name

• no such class

• no such variables must be > =  1

• Add search key:

add-to < classname >

< number-of search-keys > keys 

ascending
descending

< variablenamei >,

ascending
descending

< variablenamei >
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No index is created. Variables should already be defined in the class and 
not as keys.

Error messages

• invalid classname

• invalid variable name

• no such class

• no such variables in class

• variable already a key

• number of search keys must be > =  1 (default 1).

• Delete a search key:

delete.from < classname >

< number o f  sear chkeys > keys 

< variablenamei > ,.., < variablenamei > .

If an index was created, it will be deleted.

Error messages

• invalid classname

• invalid variblename

• no such class

• no such variable name in class

• variable name not a search key for class

• number of keys must be > =  1 (default 1).

• Change search key:

replace-in < classname > key < keyname\ >
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, ascending
with <  ̂key < keynamc2 > .

descending

Keyname^ must be a key in class name and keyname2 must not. It will 
be implemented as a

delete-from < classname > keykeynamei.

, ascending
add-to < classname > key ·{  ̂keyname2 .

descending

Error messages are similar to those add-to and delete_from

• invalid classname

• invalid variable name

• no such class

• no such instance variables in class

• keyname^ not a key in class

• keyname2 already a key in class

• Rename an instance variable

rename-in < classname > property < variablel > 

as < variable2 > .

If variablel is a search key, then variable2 will be a search key. 

Error messages

• invalid classname

invalid variable name

• no such class
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• variablel not an instance variable in class

• variable2 already exists in class

• Change default value of a variable

change-in < classname > default-of < variable >  

to < default-value > .

Error messages

• invalid class name

• invalid variable name

• no such class

• no such variable in class

• invalid default value for type of variable

• Change superclass:

change-superclass-of < classname > to < superclass >

The necessary inheritance problems should be solved. 

Error messages

• invalid classnames

• no such classes

• class na,me must not be the same as superclass

* Change the search key indexing order

change-in < classname > search-order-of < variable > to

ascending 
descending
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If indexing is available for the variable, it will no'longer be valid. The 
new indexing will not be created.

Error messages

• invalid class name

• invalid variable name

• no such class

• no such variable in class

• variable is not a search key for class

• Add superclass

addJo < classname > superclass < superclass > .

Necessary inheritence problems should be handled. Error messages are 
the same as for change superclass.

• Delete superclass

delete-from < classname > superclass < superclass > .

Error messages are the same as for change superclass. The necessary 
inheritence problems should be handled.

• Add shared variable

add-to < classname > shared < type > <  variablename > 

withvalue < value > .

Shared variables can only be of a simple type.

Error messages

• invalid class name
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• invalid type

• invalid variablename

• no such class

• variable edready exists in class

• invalid value for specified type

• Delete shared value:

delete-from  < classname > shared < variablename >

Error messages

• invalid classname

• invalid variable name

• no such class

• no such variable in class

• variable name not a shared variable in class

• Change value of shared variable:

change-in < classname > shared < variablename > 

valueas < new-value > .

Error messages

• invalid classname

• invalid variablename

• no such class

• no such variable in class

• not a shared variable in class
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• invalid value for shared variable

Change type of shared value:

changc-in < classname > shared < variablename >  

typeas < newtype > .

Error messages are the same as for change value of shared variable. 

* Change type of variable:

change-in < classname > property < variablename >  

typeas < newtype > .

Error messages

• invalid classname

• invalid variablename

• invalid type

• no such class

• no such variable in class

• variable not a simple instance variable

• Change derived instance variable to simple variable:

change-in < classname > derived < variable — name >  

to <  type > [withde fault-value < value >].

Error messages

• invalid classname

• invalid variable name
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• invalid type

• invalid value for type

• no such class

• no such variable in class

• variable not derived

• Change simple instance variable to derived:

change-in < classname > property < variable-name >

toderived.

The function definition method must be specified.

Error messages

• invalid class name

• invalid variable name

• invalid type

• invalid value for type

• no such class

• no such variable in class

• variable not derived

• Change formula definition method:

change-in < classname > function fo r  derived

< variable-name >

begin

<  method — body >
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end.

Error messages

• invalid classname

• invalid variable-name

• no such class

• no such variable in class

• not derived variable for class

• Add method to class:

add-to < class-name > method < method-name >

[correspondingto < message-name >][with 

< numherof arguments > arguments 

[optional] < type > <  variablei > ,

[optional] < type > <  variablen > ;] 

begin

< method — body >

end.

Error messages

invalid class-name

• invalid method-name

invalid message-name
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• invalid variable_aame

• no such class

• method already exists in class

• message already exists in class [default for message_name is the method-name 
itself]

• number of arguments must be > =  0

• too few arguments are specified

• invalid type

• Delete a method from a class:

delete-from < class-name > method < method-name >  .

Error messages

• invalid class_name

• invalid method-name

• no such class

• no such method as in class

• Rename a method;

rename-in < class-name > method < method-1 > as

< method-2 > .

Error messages

• invalid class_name

• invalid method-name

• no such class
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• no such method as method_l in class

• method_2 already exists in class

• Change the message name corresponding to a method

renameJn < classjname >  message < message-1 >  

as <  message-2 > .

Error messages

• invalid class_name

• invalid message-name

• no such class

• no such message as message.l in class

• message_2 already exists in the specified class

• Add an argument to method:

add-to < class-name > method < method-name >

[optional]argument < argument-name >  

o f  type < type > .

Error messages

• invalid class-name

• invalid method-name

• invalid argument-name

• invalid type

• no such class

• no such method in class
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• argument already exists for method

• Rename an argument to a method:

rename-in < class-name > method < method-name > 

argument <  argument-name-1 > as < argument-name >

Error messages

• invalid class_name /  method_name /  argument .names

• no such class

• no such method in class

• no such argument as argument _1 in method

• argument-2 already exists for method

• Change type of argument of a method:

change-in < class-name > method < method-name >  

argument < argument-name > typeto < type > .

Error messages

• invalid classJiame /  methodmame /  argument mame /  type

• no such class

• no such method in class

• no such argument for method

• Make argument optional /  mandatory

make <  class-name > method < method-name >

optional
argument < argument-name >

mandatory

Error messages
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• invalid class_name /  method_name /  argument _name

• no such dass

• no such method for class

• no such argument for method

• Delete an argument:

delete-from  < class-name > method < method-name > 

argument < argument-name > .

Error messages are the same as those for making an argument optional 
or mandatory.

* Redefine a method:

redefine < method-name > [for < class-name >]

[correspondingto < message-name >]

[with < number o f  arguments > arguments 

[optional] < type > <  argument-1 >,

[optional] < type > <  argument-n > ;] 

begin

< method — body >  

end.

Error messages

• invalid method-name /  class-name /  message-name /  argument-name 
/  type

• no such class
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• no such method for class (the effect will be the same as a define state­
ment)

• message already exists

• number of arguments must be > =  0

• too few arguments are specified

• Recode a method

change-in < class-name > method < method-name >

codeas

begin

< method — body >

end.

Error messages

• invalid class-name /  method-name

• no such class

• no such method in class

* Rename a class:

rename < class-name-1 > as < class-name-2 >

Error messages

• invalid class_name_l /  class_name_2

• class_name_l does not exist

• class_name-2 already exists

106



*  Delete a class:

delete < class-name > .

Error messages

• invalid class_name

• no such class

• Delete an instance of a class:

rem ove-from  < class-name > <  instanceoop > 

Error messages

• invalid class-name

• no such class

• no such object in class

• Checking the existance of an object:

exists
< instanceoop >  

< classoop >

It returns true if object exists, false otherwise.

* Get the value of a property of an object:

retrieve < object > <  property-name >

Error messages

• no such object

• invalid property-name
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• no such property in object’s class

• Set the value of the property of an object:

set < object > <  property.name > to < value >  

Error messages

• no such object

• invalid property-name

• no such property in object’s class

• invalid value for property type

• property not primitive (ie. derived or is another object)

• Retrieve the property names of an object:

retrieve < object > properties.

Error message

• no such object

• List all objects belonging to a class:

retrieve < class.name > members.

retrieve <  class.name > membervalues.

The first statement retrieves the oops of the instances of the class while 
the second also retrieves the values. Error message

invalid /  no such class-name
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Get the class of an object:

class < object >

Error message

no such object

*  T ;List all property .value pairs of an object:

retrieve <  object > information.

Error message

no such object

Copy an object to a file:

save < object > [in < filenam e >].

Error message

• no such object

Copying a property

copy .property < object.l > <  property .1 > to 

< object-2 >
se lf

< property.2 > .

Error messages

• no such objects

• invalid propertyJiames
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• no such properties in objects

• property_1 cannot be the same as property_2

• property-1 type does not match property_2 type

• Make an instance object the member of another class

make-instance < oop > <  class-name > . 

Error messages

• no such object

• no such class

• Display the code for a method:

display < object > method < method-name > 

Error messages

• no such object

• invalid method-name

• no such method for object

• Copying a method:

copy-method < object-1 > <  method-1 > to

< object-2 >  
self

< method-2 > .

Error messages are similar to those in copying a property. 

* Find the oop of a class

find-id < class-name > .

Error message
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•  no such class

Retrieve the superclass of a class:

superclass < class-name >

Error message

invalid /  no such class

* Retrieve the subclasses of a class:

subclass < class-name >

Error message

invalid /  no such class

* Display all information about an object

status < object >

Error message

invalid /  no such class

* Determining if two objects are identical:

identical < object-1 > <  object.2 >

It returns true if the two objects are identical, false otherwise. 

Error message

• no such objects
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*  Equality of objects:

equal < object A > <  object-2 >

It returns true if the two objects are equal, false otherwise 

Error message

no such objects

Copying an object (shallow and deep copy):

copy.object < object.l > to < object.2 > .

duplicate-object < object.l > as < object.2 > .

The copy-object statement forms a shallow copy of an object whereas the 
duplicate-object statement generates a deep copy of the object.

Error message

• no such object as object_l

* Create index

index < class.name > on < property >

{ascending
> order.

descending

Error messages

• invalid class-name /  property 

• no such class 

• no such property in class
112



• property not search key in class

• order not correct with respect to class definition

• Delete index:

remove-index on < class-name > <  property > .

Error messages

• invalid class-name /  property

• no such class

• no such property in class

• property not search key in class

• index not available on property in class

• Does index exist:

exists -index < class-name > <  property > .

This command returns true if an index on property in class exists and 
false otherwise.

Error messages

• invalid classjiame /  property

• no such class

• no such property in class

• property not search key for class

• Indexing order:

order-of -index < class-name > <  property > .

Error messages
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• invalid class_name /  property

• no such class

• no such property in class

• property not search key in class

• Change index order:

change-index < class-name > <  property >

ascending
orderto

descending

Errors are the same as those for the indexing order statement.

* Check if an instance variable is a key

index -allowed < class-name > <  instance-variable > . 

Error messages

• no such class

• no such instance variable defined for the class

* Accessing instances:

find
retrieve

firs t
next
last
all

< classname > with < condition >

giving < variable > .

Find locates the instance while retrieve will get the values. The < condition > 
field can either be a relational, arithmetic or logical expression or a query.

* Return statement
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return-value < variable-name >

return-object < object-oriented-pointer >

* Statements related to method manipulation

create <  class-name > <  method-name > .

modify < class-name > <  method-name > .

compile < class-name > <  method-name > .

execute < class-name > <  method-name >

[with < argument-list >].

* Temporary Variable Declarations:

< simple — type > <  variable-list > .

< indexed — type > <  variable — name > <  size >  

o f  < element — type > .

Other constructs supported are assignment statements, if statements and 
while statements. Begin..End blocks are used to group related statements.

4.3 SOME EXAMPLES

Considering the following relation scheme in a relational database, the key 
for aJl three relations is NAME and SURNAME.
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CLASS

P E R S O N

E M P L O Y E E S T U D E N T

Figure 4.1: The organization of the three classes

PERSON ( NAME, SURNAME, AGE )
EMPLOYEE ( NAME, SURNAME, COMPANY, SALARY ) 
STUDENT ( NAME, SURNAME, COLLEGE, DEPARTMENT, 
Y E A R )

With this representation there are a lot of inconsistency and redundancy 
problems. It is very easy to represent such a relation scheme using the classes 
and instances of object-oriented database management systems. There will 
be three classes, namely, PERSON, EMPLOYEE and STUDENT with PER­
SON being the superclass of the other two classes as shown in Figure 4.1. The 
PERSON class will have three instance variables which are NAME, SUR­
NAME and AGE. The EMPLOYEE class will inherit NAME, SURNAME 
and AGE from the PERSON class and will have the additional instance vari­
ables COMPANY and SALARY. The STUDENT class will inherit the three 
instance variables defined for PERSON and will add the instance variables 
COLLEGE, DEPARTMENT and YEAR. The following statements must be 
executed to create these three classes.

define_class PERSON with

3 properties

string NAME [10], 
string SURNAME [10], 
integer AGE.

define.class EMPLOYEE with
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superclass PERSON
2 properties

string COMPANY [15], 
integer SALARY.

define_class STUDENT with

superclass PERSON
3 properties

string COLLEGE [20], 
string DEPARTMENT [5], 
integer YEAR;

key-

ascending DEPARTMENT.

For the PERSON class, the superclass is not specified so it is created as a 
subclass of the system-defined class Class. The DEPARTMENT instance 
variable is specified as a key for the STUDENT class but the B-tree is not 
automatically created.

A student may transfer to another department and at the end of each 
year he will pass if he is successful. The two methods to carry out these 
operations could be defined as follows:

define_method PASS for STUDENT 
begin

integer temp, 
self retrieve-year year, 
year :=  year +  1. 
self set-year year.

end.

define-method TRANSFER for STUDENT

with argument

string NEW-DEPT [5];

begin
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self set-major NEW .DEPT.

end.

The first method has no arguments but a temporary variable. The tem­
porary variable is needed since some operations on an instance variable are 
performed. It makes use of two messages of which one returns the value of the 
YEAR instance variable of the object and the other setting the value of the 
same instance variable. These will be implemented using the system-defined 
retrieve and set statements.

define_method retrieve-year for STUDENT

with 1 arguments

integer temp.year;

begin

temp-year :=  retrieve self YEAR.

end.

The second method has a single mandatory argument and it is implemented 
as another message call with the selector set-major which sets the DEPART­
MENT instance variable of the receiver object to the value specified as the 
argument. The methods sey-major and set-year can be implemented similar 
to the retrieve-year method. Since a message name has not been specified 
both will be invoked using the method name. The instance variables of the 
object receiving a message will be retrieved or modified.

There are two ways of creating an instance of a class. The new statement 
creates a new instance of a class but no values are assigned to the instance 
variables whereas the define statement creates a new instance and also sets 
the values of the specified instance variables. Figure 4.2 shows the result 
of executing the following new statement and Figure 4.3 shows the result of 
executing the given define statement.

new STUDENT STUDENTl. 

define STUDENT with
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student object n P i
i

t
1//

P i NIL
NIL NIL
NIL NIL
NIL

person object

Figure 4.2: The result of executing the new statement

student object

P i
NIL
NIL

STi —
NIL
NIL

person object

- ►  STi
Ayse

Figure 4.3: The result of executing the define statement

NAME =  ~Ayse~
YEAR =  1

as STUDENTl.

As explained in the previous section, there are many modifications that 
can be done to a class definition. One can add new instance variables, shared 
values, keys and methods to a class and may also delete existing ones. In 
addition to these some changes can be made to the definition of a method. 
To add an instance variable STATUS to the class PERSON it is sufficient to 
execute the following statement:

add-to PERSON 1 properties 

integer STATUS default 0.

If an instance variable GPA is added to the class STUDENT, a derived in­
stance variable STANDING whose value depends on the GPA value could be 
defined.

add-to STUDENT 1 properties 

integer GPA default 0.
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add-to STUDENT 1 properties 

derived STANDING.

derived_method CALCULATE_STANDING for STUDENT STAND­
ING; 
begin

integer temp.
integer result.
self retrieve-gpa temp.
if (temp < 3) true result :=  1
else result :=  0.
self set-standing result.

end.

The system supports value-based queries as in other database manage­
ment systems. Such queries are expressed using the find or retrieve state­
ments. An example is

find all STUDENT with (STANDING =  0).

which locates all instances of the class STUDENT with the STANDING 
instance variable equal to 1. If an index on the STANDING field is available, 
the requested values can easily be found. Otherwise all instances of the class 
STUDENT will be searched sequentially. Another example is

retrieve all STUDENT with (NAME =  ~Ayse~).

In this case, since the instance variable name is inherited from the class PER­
SON, the search will start in the PERSON class. After all the instances of 
the class PERSON with the specified NAME value are located, the instances 
of the STUDENT class will be searched to find the ones having that person 
as their superclass instance. An index could be created from the NAME 
instance variable to the STUDENT instances. If such an index is created, 
there is no need for the sequential search. An index can be created using the 
following statement
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index STUDENT on NAME in ascending order.\

The specified instance variable must already be defined as a key for the 
relatedclass. The index-allowed statement can be used to determine if an 
index on a specified instance variable can be created or not.
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5. THE MESSAGE PASSING SCHEME

Methods are accessed through a method definition table. Each class object 
has its own method definition table. Each entry of the table corresponds to 
a method defined for the class and contains the following information:

• the method name

• the message name corresponding to the method

• the number of arguments

• a pointer to the list of arguments

• the name of the file that contains the method

The message passing module consists of five basic modules: the lexical 
analyser, parser, code generator, query processor and the executor module. 
The lexical analyzer, parser and code generator form the compiler for the 
command language. Every time a new method is created or a method is 
modified and a compile method statement is executed or each time a message 
is invoked and the compiled form of the corresponding method is not available, 
these subroutines are invoked. At the end of the code generation phase, the 
interactive statement or the method is converted into a set of integer codes 
and stored in a file. The executor module takes the generated integer codes as 
input and performs the corresponding operations using a structure called an 
activation record. During the execution phase, the interactive statements are 
considered as methods with the necessary arguments for the class Object. The 
query processor handles various associative retrieval queries using the routines 
provided by the object memory and the indexing modules. Currently, the 
lexical analyzer and parser have been implemented completely.

Each message returns a fixed size and fixed structure block. This block 
contains an error flag, a flag indicating whether a value is returned or not,
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returned value type, the address of the memory location containing the re­
turned value and for indexed return values the maximum length and the 
element type.

Methods are stored in data files with an extension ’.cl’ denoting command 
language. The output of the lexical analysis phase, that is the tokens of the 
input method are stored in a file with the same name but extension ’.tok’ 
representing token. The parser takes files of tokens as input and if the pro­
gram represented by the tokens is syntactically correct the intermediate code 
corresponding to the token is generated and stored in a file with extension 
’ .inf. The code generator generates the actual code corresponding to the 
intermediate code. The actual code is stored in a file with extension ’ .com’ 
which is the input for the executor module or the query processor.

5.1 THE LEXICAL ANALYZER

The lexical emalyzer submodule can be used to recognize any set of tokens. It 
is implemented as a deterministic finite state automaton [4] [21] [32]. It takes 
as input the transition diagram and a set of final states in the transition 
diagram. The token identifiers corresponding to tokens are also given as 
input and they are embedded in the transition diagram. The initial state the 
system will be in is also dependent on the transition diagram and should be 
determined at run time.

The transition diagram should be input in the following form:

<  initial state > < input symbol > < next state >

This represents that once in the initial state, if the read symbol matches the 
input symbol, the system will move to the state denoted by the next state 
field. If the initial state field contains a final state, the next state on an empty 
input gives the token identifier of the recognized token.

At the beginning of the program, the transition diagram and final states 
are read into memory. The transition diagram is stored in an array structure. 
The array structure contains an entry for each possible state. Each entry is a 
pointer to a list of input symbol- next state pairs for each valid combination.

The lexical analyzer performs no error checking. If an input token is not a 
reserved symbol or keyword then it is checked to see if it is an identifier name
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or a constant, if it starts with a letter, it is considered to be an identifier 
name. On the other hand if it starts with a digit or a minus it is considered 
to be a numerical constant. In the designed language, string or character 
constants are delimited by Therefore, a token starting with a is
given a token identifier indicating that it is a string or character constant. In 
the language, is used to indicate comments. All comments are ignored.

The program handling the lexical analysis function is approximately 500 
lines and is written in C.

5.2 THE PARSER

The parser is used to analyze both methods and interactive statements and 
to generate the associated intermediate code.

The parser submodule implements a deterministic pushdown automaton. 
The implemented pushdown automaton [4] [21] [32] can be defined as follows: 
The pushdown automaton is formed of a finite state control and a pushdown 
store, in fact, a stack. There is a single state and the pushdown automata 
accepts by empty state. The terminal tokens of the language form the input 
symbols whereas the nonterminal tokens form the stack symbols. Initially, 
the start symbol of the grammar corresponding to the language is placed in 
the stack. Depending on the input character and the character on top of the 
stack, the production to be applied is selected from among the productions 
which have the stack symbol as their left-hand side element and the right- 
hand side tokens of the selected production are pushed on to the stack. If 
the stack is empty when all input symbols have been processed, the input is 
a valid expression in the language.

In order to be able to implement a deterministic pushdown automaton the 
grammar should be unambiguous. In this way, the production to be applied 
can be detected just by looking at the next input token, thus eliminating 
the need for backtracking. In order to obtain an unambiguous grammar, left 
factoring must be applied and left recursion must be eliminated [4] [21] [32].

Left factoring is applied by replacing two productions of the form A —)· 
BC and A BD by A — BA/  and Af C and At —> D. When eliminating 
left recursion, the productions A —> AB and A — C are replaced by A —> 
CA/ and Af BAf and Af e [4] [21] [32].

124



After applying left factoring and eliminating left recursion unambiguous 
leftmost derivation can be applied.

Most syntax checking must be done during the parsing phase. Other than 
spelling checks, a string constant may exceed the maximum string length, a 
variable name may exceed the maximum variable name length or a numeric 
constant may exceed the system limits. Boundary and index checking should 
be performed.

Error handling is a difEcult task. Typical errors are:

• the insertion of an extraneous character or token

• the deletion of a required character or token

• the replacement of a correct character or token by an incorrect character 
or token

• the transposition of two adjacent characters or token

These are syntactic errors. There are also semantic errors that can be de­
tected at compile time. These are errors of declaration and scope. They 
include undeclared or multiply declared identifiers and type incompatability 
in various operations. Some other errors can be detected at run time or at 
compile time. This is the case for range checking, exceeding system limits 
and exceeding the declared array or string bounds.

When an error occurs, it is up to the syntax analyzer to decide what action 
to take. A token might be missing or misspelled or the user might have put 
some extra characters or tokens and the sought token might be further along 
in the string.

Some approaches to error handling in the syntax analysis phase are [4]:

• The syntax analyzer will stop parsing the input when it detects an error. 
This is the simplest approach to implement but is not user-friendly.

• Panic mode- When an error occurs, all input symbols cire discarded 
until a synchronizing character, usually a statement delimeter, such as 
a semicolon is encountered. The parser then deletes stack entries until it 
finds an entry such that it can continue parsing given the synchronizing 
token as the input. This approach is simple and can never result in an 
infinite loop.
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• Minimum Hamming Distance Method. A program is said to have k er­
rors if the minimum number of error transformations that will map any 
valid program into the program with k errors is k. The minimum Ham­
ming distance is the least number of insertions, deletions and symbol 
modifications necessary to transform one string into another. Although 
the approach is quite complex a simple heuristic based on the assump­
tion that most spelling errors result from one application of an error 
transformation such as inserting an extra character, deleting a charac­
ter, modifying a character or transposing two adjacent characters has 
been developed. The strategy is to check whether any keyword can be 
transformed into the erroneous string by a single error transformation. 
For example, one can eliminate as candidates words whose length differ 
from that of the erroneous string by more than one.

The implemented parser is approximately 3500 lines long and written 
in C. It takes as input a list of tokens in a file with extension ’.tok’ and 
produces the corresponding intermediate code if the tokens correspond to a 
valid program. The intermediate code is stored in a file with extension ’ .int’ . 
The parser also takes as input the unambiguous productions for the language 
and a list of nonterminals. Therefore, similar to the lexical analyzer it can 
be used for any language.

The productions of the language are read from an input file and then 
stored in the structure shown in Figure 5.1. The map array provides a map­
ping from nonterminal tokens to an identifier which is used as an index into 
the production array. The production array has an entry corresponding to 
each nonterminal token. This entry is a pointer to a list of productions. Each 
member of the production list corresponds to a production with the associ­
ated nonterminal token as its left-hand side and contains a pointer to a list 
of tokens. This list of tokens represents the right-hand side of the production 
and contains an entry for each token. An example can be seen in Figure 5.2 
which shows a list of productions and their internal implementation.

Error messages and the intermediate codes to be generated are embedded 
in the production rules and are also input at the beginning of the syntax 
analysis phase. Each input production must have the following format:

<left-hand side token> I <storage-flag> <intermediate-code> 
<list of right-hand side tokens> $
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Figure 5.1: The internal representation of production rules

When a production is being applied, the corresponding intermediate code is 
stored. However if the intermediate code field of the production is zero no 
intermediate code is generated for that production. The storage fiag is related 
to multivalued tokens such as variables, numerical constants or character or 
string constants. If the flag is 0 only the intermediate code corresponding to 
the production is stored if specified. If the flag is 1 then the actual values 
corresponding to the multivalued tokens are stored together with the specified 
intermediate code.

The list of right-hand side tokens is formed of members which represent 
each token and the corresponding error messages. Each member has the 
following format:

<token value> <error-condition-l> <error-code-l>

<error-condition-n> <error-code-n>

The error condition may be token missing or misspelled and the corresponding
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MAP_ARRAY

S aA 1

S ^  bB ,
S -> a J
A  ^  1
B -> A1 k
B — S

s 1

A 2

B 3

P R O D U C T IO N -A R R A Y

1
2
3

Figure 5.2: An example for the internal representation of productions
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line token error
count value code

Figure 5.3: An error entry

error error
code description

Figure 5.4: The record structure of the error file

error code determines the error message to be generated.

In the productions a differentiation should be made between single valued 
tokens and multivalued tokens. Multivalued tokens starting with ’A’ denote 
variable names, a as the first character denotes arithmetic constants and 
a denotes a token which may be a character or string constant.

The error-handling approach used, applies the minimum Hamming dis­
tance heuristic and tries to detect all syntactic errors and declaration related 
errors. The minimum Hamming distance heuristic is applied when a keyword 
is expected but not found or when no production to be applied can be found 
for the input string. As an incorrect method or interactive statement is being 
parsed a list of the errors that are detected is maintained and after the input 
has been processed an error report is generated using an error file to deter­
mine the actual error messages. Figure 5.3 shows the internal representation 
of an erroneous token and Figure 5.4 shows the format of the error file.

All temporary variables are stored in a symbol table. The symbol table 
maintains the name of the variable, its type, if it is an indexed type its 
maximum size and element type and a usage flag representing whether the 
variable is an identifier or constant etc. for each variable. The symbol table 
is stored in a file with extension ’ .sym’ if the input is syntactically correct. 
Symbol tables are only generated for methods and no symbol table is created
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for an interactive statement.

When a token is input and the production to be applied is sought, first 
the productions starting with a terminal value are checked. If a match is not 
found the nonterminal productions and then the multivalued productions are 
checked. If there is still no match, the productions are tried again checking 
for the minimum Hamming distance criteria.

5.3 THE CODE GENERATOR

It takes as input the intermediate code generated by the parser module and 
generates the actual code. Unlike the first two mudules, this module is lan­
guage specific.

The actual code is a set of integer codes representing some primitive 
operations. The primitive operations include system calls for C function 
calls, message calls, branching to an address, conditional checks, relational 
operators, arithmetic operators, logical operators and assignments. During 
the translation phase, constructs like while statements in the language are 
converted into a sequence of primitive operations

5.4 THE EXECUTOR MODULE

The executor module is the most important submodule of the message passing 
module. It handles the actual message passing operation. It takes as input 
the code obtained after the compilation of a method or interactive statement 
and performs the operations required.

Initially, message passing was going to be implemented as C function calls 
and the language of the system was going to be C and all methods were going 
to be written in C. Since this would result in an unreliable system, a command 
language was developed and a message passing scheme was proposed.

For uniformity, at the execution level each method returns a fixed size 
and fixed structure block which contains the following information:

• an error flag

• a flag indicating whether a value is returned or not
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• returned value type

• the maximum size of an indexed type

• the element type of an indexed type

• a pointer to the returned value

The basic structure for the executor module is the activation record. Each 
method is represented using an activation record and message passing is also 
implemented using activation records. Since interactive commands are also 
treated like methods, they are also associated with an activation record during 
the execution phase.

An activation record contains the following information:

• the class name of the method (this is needed for message calls with self 
or super as destination classes)

• a pointer to the return block

• the name of the file containing the method

• the program counter

• the condition register

• branching address stack- It is used to implement branching and looping. 
Being a stack it supports nested loops.

• the accumulator

• symbol table pointer- The symbol table contains the name, type, max­
imum length, element type, usage flag and address of temporary vari­
ables.

• reference table pointer- This table holds the message names, class and 
instance variable names used in the method.

• argument count

• a pointer to the list of arguments- Each node of the list contains the 
address of the argument and an index identifying the argument. Thus, 
all arguments are sent call by reference.
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Each occurrence of a literal in a method is converted into an index for the ref­
erence or symbol table. Each activation record has its own program counter, 
accumulator, condition register, symbol table and reference table. There is a 
global expression evaluation stack used by all methods.

Activation records are created whenever a message call is executed. The 
previous activation record is pushed on to the activation stack. Whenever a 
return from a message invocation is performed, an entry is popped from the 
stack and it becomes the current activation record. This solves the parameter 
passing and the return address handling problems.

The activation record and other related structures corresponding to the 
following method segment are shown in Figure 5.5.

begin

integer temp, 
self retrieve-year temp, 
temp := temp -|- 1. 
self set-year temp.

end.

The internal representation of if and while statements are given in Figure 
5.6 and Figure 5.7 respectively. They correspond to the following program 
segments, for the if statement:

if (temp < 4) true temp := temp -f- 1 
else temp :=  0.

and for the while statement

while ((temp > 0) and (temp < 4)) 
begin

temp :=  temp -f- 1.
i :=  i -b 1.

end.

In the system, all operations are performed by defining classes and their 
interface and invoking messages. All interactive statements are also treated
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PC

begin
calLmessage
retrieve-year

self
(1)
add
(1)

( 1)
call-message

set-year
self
i l l
end

Sym bol Table

temp integer

Figure 5.5: The internal representation of an example method
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cond 
less than 

( 1)
4

end cond 
if true 

add 
( 1)
1

-  (1) 
end true 
if false 
assign 

0
- (1)
end false

Sym bol Table

temp integer

Figure 5.6: The internal representation of an statement
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loop
cond
and
cond

greater than

start loop

i l l
0

end cond
cond

less than
( 1)

end cond
end cond

if true
add
i l l

i l l
add
i?!
J2L

end loop
end true

4---- return to  the beginning

Sym bol Table

temp integer
i integer

Figure 5.7: The internal representation of a while statement
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as messages. When a message is invoked, first of all the method definition 
table of the receiver class is checked. If the table does not contain an entry 
corresponding to the message, the search is continued in the superclass of 
the class. If no corresponding entry can be found in the hierarchy, an error 
message is generated indicating that either the message name is misspelled 
or such a message does not exist in the system. Once an entry corresponding 
to the message is found in a method definition table the specified arguments 
and the required arguments are checked. If there is no error, the method 
associated with the message and the file of the name containing the message 
are obtained from the table. If the compiled form of the method exists, 
that is, there is a file with the specified name and with extension ’ .com’, 
the executor module will generate the activation record corresponding to the 
method and perform the specified operations. Otherwise, the method will 
first be compiled and then executed.

Within the activation record, the code to be executed will be input from 
the associated file with extension ’ .com’. The program counter determines 
which statement is to be executed. The execution is performed sequentially 
unless a branch or a message or system call is executed. System calls, that 
is, C function calls are usually used to reference the functions provided by 
the object memory and schema evolution module.

5.5 THE QUERY PROCESSOR

The query processor handles various associative retrieval queries using the 
routines provided by the object memory and the indexing modules. It is in 
a way embedded in the executor module.

Associative queries are usually performed on collections. When an asso­
ciative query is requested, the query processor will check if there is a related 
index. If there is the routines provided by the index manager will be used to 
perform the necessary query. If a related index does not exist, a sequential 
search will be performed using the functions provided by the object memory 
and schema evolution module.
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6. OPEN PROBLEMS AND FUTURE 
EXTENSIONS

The problems related to the object-oriented approach in general can be listed 
as follows [56]:

• Performance- The problem with most object-oriented systems is related 
to the fact that they are rather slow. The systems could be made faster 
by using compilation instead of interpretation. Also, dynamic binding 
and full overloading may have to be resolved at run time. This causes 
some additional overhead.

• Overloading- In most systems, the operation type is determined by the 
first operand even when there axe multiple arguments. This causes an 
unfairness problem. Overloading should be over all arguments rather 
than only the first one.

• Higher order- Everything is first-order. Defining a flexible system al­
lowing functional types as arguments to a function is the problem. The 
problem becomes even more complex if polymorphic types (parameter­
ized types) are allowed.

• Parameterized types- A type inference mechanism is used to infer most 
general types of arguments to functions at compile time. This gives run 
time efficiency by eliminating the need for run time type checking. The 
problem appears for partially ordered types.

Little has been done to define formal semantics of object-oriented models 
of computation.

Some problems related to object-oriented database management systems 
are [43]:
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• No standard data model for object-oriented database management sys­
tems

• No standard guidelines for designing them

• No standard query language

• Should queries on attributes which is against the concept of encapsula­
tion be allowed?

• Should they be considered as repositories for persistent objects or as 
providing a complete picture of executing applications?

• Should active objects be viewed as executing within the database or 
should running applications be viewed as being explicitly outside the 
database?

The problems related to the evolution of the software base [43]:

• Providing tools to maintain global consistency- When changes are made 
to the software base, the changes must be properly distributed. The 
management of evolution is especially important for inheritance and 
subtyping. As long as the interface to an object class is not modified, 
its realization may be modified. When the interface changes, there is 
the problem of invalidated references between object classes.

• Assuring that the right object is in the software base_ Whenever a 
referenced object cannot be found in the software base, either a new 
object has to be added to the software base or an existing object has 
to be modified.

Other problem areas of the object-oriented approach and object-oriented 
database management systems are version control, manipulation of composite 
or dependent objects, schema evolution and handling conflicts in the case of 
multiple inheritance. The use of object identity requires a sequential search 
during associative access unless some kind of mapping or indexing is pro­
vided, thus degrading system performance. Index handling in object-oriented 
database management systems is a very important research area. Another 
problem associated with the object identity concept is the preservation of 
object identity consistency. Some other open problems related to object- 
oriented database management systems are garbage collection, storage man­
agement and especially the storage of variable-size or very large objects and
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clustering. Also, there is a great demand for a theoretical model and some 
standards for the object-oriented approach.

The object-oriented database management system prototype developed 
and implemented at Bilkent University supports the basic object-oriented 
concepts such as object identity, classes, inheritance and message passing 
but there are some open problems.

The implemented prototype is a single-user system so it may be extended 
to support multiple users. This requires the addition of the transaction con­
cept, authorization control, concurrency control and data integrity checks.

The system does not support versions. In order to be able represent 
the temporal aspects of the data, the basic storage scheme used for object 
instances has to be modified. Instead of a value, a value and time pair must 
be stored for each instance variable. Versions introduce an overhead from the 
storage point of view but they eliminate the need for garbage collection since 
all data is kept in the form of versions.

The system allows basic schema evolution functions such as adding a new 
class to the system, adding a new instance to a class, deleting an existing 
class and deleting an instance of a class. The system may be extended to 
support all schema evolution functions.

Some other open problem areas for object-oriented database management 
systems are indexing, version management and composite object handling. 
A composite object is a complex object formed of a set of subobjects that are 
treated as units of storage, retrieval and integrity checking. The existance of 
the subobjects depends on the existance of the principle object. Composite 
objects represent the IS-PART-OF relationship between objects. The index­
ing problem is introduced by the use of a location and value independent 
surrogate to reference an object. The problem arises during the value-based 
access of objects.
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7. CONCLUSION

A combination of the object-oriented language capabilities with the storage 
management functions of a conventional database management system re­
sults in reduced application development efforts. The flexible data modelling 
capabilities allow the representation of information not suited for normalized 
relations. Also, an object-oriented language is complete enough to handle 
database design, access and applications.

The major advantages of the object-oriented approach are versatility, flex­
ibility, reusability, implementation independence and increased programmer 
productivity. Also, since duplication and redundancy are reduced data in­
tegrity is automatically satisfied. The main disadvantages are the relatively 
poor performance and the complexity of implementing such a system. This 
is due to the lack of a theoretical model and other basic standards for object- 
oriented systems. In addition, object-oriented systems require a new and 
different approach to problem-solving.

The main problem areas of the object-oriented approach and object- 
oriented database management systems are version control, manipulation of 
composite or dependent objects, schema evolution and handling conflicts in 
the case of multiple inheritance. Unless some kind of indexing or mapping is 
provided, the use of object identity requires a sequential search during value- 
based access and this degrades system performance. A very important re­
search area related to object-oriented database management systems is index 
handling. The preservation of object identity consistency is another problem 
associated with the object identity concept. Garbage collection, storage man­
agement and especially the storage of variable-size or very large objects and 
clustering are some other open problems related to object-oriented database 
management systems. Also, there is a great demand for a theoretical model 
and some standards for the object-oriented approach.
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The basic object-oriented concepts such as object identity, classes, inher­
itance and message passing are supported by the object-oriented database 
management system prototype developed and implemented at Bilkent Uni­
versity. There are some open problems such as schema evolution and multiple 
inheritance but the main aim is to gain an insight on the subject and provide 
a basis for future research.

The implemented prototype is a .single-user system so it may be extended 
to support multiple users. This requires the addition of the transaction con­
cept, authorization control, concurrency control and data integrity checks. 
The system does not support versions. The model could be extended to 
capture the temporal aspects of the data. Another extension could be the 
addition of composite objects and dependent objects to the model. Currently, 
the system only supports passive objects. Active objects are also an inter­
esting research area. The support of all schema evolution functions could be 
added to the system. Work could also be done to support multiple inheritance 
instead of simple inheritance and efficient techniques.

The object-oriented approach has its advantages and problem areas but 
especially for data-intensive applications, it is a very promising and hot re­
search area.
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A. LIST OF BASIC ROUTINES

A.l THE LEXICAL ANALYZER

printfile(filename)
punctuation(input-chr)
delimeter(input-chr)
arithrnetic-operator(input-chr)
relationaLoperator(input-chr)
assignment (char 1 ,char2)
character(input-chr)
digit(input-chr)
parse_method(input-file,output-file) 
create_parse_array () 
create_finaLstates() 
reached_final_state(current-state) 
findjQext_state(current-state,input-char) 
parse-string(input-str)

A.2 THE PARSER

initialize_parse_stack(top,full,empty)
push_token(top,value,full,empty)
pop_token(top,full,empty)
stack-top(top)
terminal_stack_top(top)
keyword-stack_top(top)
variable-stack-top(top)
const ant -stack-top(top)
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string_stack_top(top) 
display _stack(top)
initialize_temp_stack(top,full,empty)
push_temp_stack(top,value,full,empty)
pop_temp_stack(top,full,empty)
display _temp_stack(top)
create_map_array()
compare(stringl,string2)
copy(stringl ,string2)
length(str)
token dd(str)
initialize_production_array()
alloc_token()
alloc_production()
attach_next_production(map-array-index)
attach Jntermediate_codeJd(map-index, value)
attach_token_storage_flag(map-index,value)
attach_token(map-index,str)
attach_error_condition(map-index,value)
attach_error_code(map-index,value)
read_error_values(index)
create_production_axray()
display _production_array()
character(input-char)
digit(input-char)
check_variable_name(str)
check_numeric_constant(str)
check_string_constant(str)
check_terminaLtoken(input-token)
find_error_code(input-token)
store_error(mode,error-count,input-token,error-no)
find_token_value(index)
data-type(token-ptr)
indexed_data_type(token-ptr)
allocate-symboLtable_entry()
add-production_to_symboLtable(production-ptr)
store_production(pr-index,token-ptr)
add_variable_to-symbol_table(input-token)
store_correspondence(input-token,stack-ptr)
convert-to-integer(str)
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read-token(input-file,input-token)
match_string(stringl ,string2)
ordered_string_matching(stringl,string2)
minimum_hamming_distance(stringl,string2)
try_minimum_hamming_distance()
process_terminal_stack_top(top,input-token,error-count)
multivalued-token(input-token)
sear ch_terminaLproductions(mode,in-token,pr-index)
search_nonterminaLproductions(mode,in-token,pr-index)
search_terminal_multivalued_productions(mode,in-token,pr-index)

search_nonterminal_multivalued_productions(mode,in-token,pr-index)

search_approximate-terminaLproductions(mode,in-token,pr-index)

search_appproximate_nonterminal_productions(mode,in-token,pr-index)

find_next_production(in-token,flag)
push-production(new-production)
sear ch_other_stack_entries(top,in-token,error-count,replace-flag)
process_nonterminal_stack_top(top,in-token,error-count)
process_token(in-token,error-count)
display _error_message(mode,error-no,error-message)
show_errors(mode,error-count,fllename)
display _correspondence()
display-symboLtable(symbol-count)
display_parse_tree()
copy-production(token-ptr)
initialize_tokenJist()
display-tokenJist(token-list-ptr)
append-token Jist(head,tail,token-ptr)
delete_token_list(head,token-ptr)
find_nonterminaLtoken(head)
find_associated_production(token-ptr)
find_corresponding_entry(str)
replace_corresponding_tokens(token-ptr)
generateJntermediate_code()
store_intermediate-code(filenajne)
store-symboLtable(synibol-count,fllename)
parse_method(axgument-count,arguments)



read_token(input-file,input-token)
match_string(stringl ,string2)
ordered_string_matching(stringl,string2)
minimum_hamniing_distance(stringl,string2)
try_minimum_hamming-distance()
process_terminal_stack_top(top,input-token,error-count)
multivalued_token(input-token)
sear ch_terminaLproductions(mode,in-token,pr-index)
search_nonterminaLproductions(mode,in-token,pr-index)
search_terminal_multivalued_productions(mode,in-token,pr-index)

search_nonterminal_multivalued_productions(mode,in-token,pr-index)

search_approximate_terminaLproductions(mode,in-token,pr-index)

search_appproximate_nonterminaLproductions(mode,in-token,pr-index)

find-next-production(in-token,flag)
push_production(new-production)
sear ch_other_stack_entries(top,in-token,error-count,replace-flag)
process_nonterminal-stack_top(top,in-token,error-count)
process-token(in-token,error-count)
display_error_message(mode,error-no,error-message)
show_errors(mode,error-count,fllename)
display _correspondence( )
display-symboLtable(symbol-count)
display_parse_tree()
copy-production(token-ptr)
initialize_tokenJist()
display _token_list(token-list-ptr)
append-token Jist(head,tail,token-ptr)
delete_token_list(head,token-ptr)
find-nonterminaLtoken(head)
find_associated_production(token-ptr)
find_corresponding_entry(str)
replace_corresponding_tokens(token-ptr)
generate Jntermediate_code()
store Jntermediate-code(filename)
store_symboLtable(symbol-count,fllename)
parse_metliod(axgument-count,arguments)



read_token(input-file,input-token)
match _string(stringl,string2)
ordered_string_matching(stringl,string2)
minimum_hamming_distance(stringl,string2)
try_minimum_hamming_distance()
process_terminal-stack_top(top,input-token,error-count)
multivalued-token(input-token)
seaxch_terminaLproductions(mode,in-token,pr-index)
search_nonterminaLproductions(mode,in-token,pr-index)
search_terminal_multivalued_productions(mode,in-token,pr-index)

search_nonterminal_multivalued_productions(mode,in-token,pr-index)

search_approximate_terminal_productions(mode,in-token,pr-index)

seaxch_appproximate_nonterminal_productions(mode,in-token,pr-index)

find_next-production(in-token,flag)
push-production(new-production)
sear ch_other_stack_entries(top,in-token,error-count,replace-flag)
process_nonterminaJ_stack_top(top,in-token,error-count)
process -token(in- token,error- count)
display_error_message(mode,error-no,error-message)
show _errors(mode,error-count,filename)
display _correspondence()
display-symboLtable(symbol-count)
display _parse_tree()
copy-production(token-ptr)
initialize_tokenJist()
display-token-list(token-list-ptr)
append-token Jist(head,tail,token-ptr)
delete_token-list(head,token-ptr)
find_nonterminaLtoken(head)
find-associated-production(token-ptr)
flnd-corresponding-entry(str)
replace_corresponding_tokens(token-ptr)
generateJntermediate_code()
store Jntermediate-code(fllename)
store_symboLtable(symbol-count,fllename)
parse_method(argument-count,arguments)
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