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This thesis proves the existence of competitive equilibrium in an overlap­

ping generations model (OLG) with production. In the proof, existence of 

equilibrium in the classical Arrow-Debreu Model is essential, and the work 

is similar in spirit to that-presented in Balasko, Cass and Shell [2], except 

some tricks used in the proof. The assumptions do not deviate from standard 

assumptions, so the model can be taken as a first step in developing more 

general models.
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Bu tez bir üretimli kesişen nesiller modelinde rekabetçi dengenin varlığım 

ispatlar. İspatta, klasik Arrow-Debreu modelinde denge varlığı esastır, ve 

çalışma Balasko, Cass ve Shell [2] tarafından yapılan çalışmaya, kullanılan 

bazı metodlar hariç benzerdir. Varsayımlar standart varsayımlardan farklı 

değildir, dolayısıyla bu model yeni modeller geliştirmek için ilk adım olarak 

kullanılabilir.
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1 Introduction

The overlapping generations model was firstly introduced by Samuelson [5]. 

The model has a wide area of applications in the literature, and some impor-
-f

tant implications, which cannot be observed in other types of macroeconomic 

models. The existence of equilibrium was established in an overlapping gener­

ations model of pure exchange case by Balasko and Shell [1]. In a subsequent 

paper [2], Balasko,Cass and Shell relaxed some of the restrictive assumptions 

of the model and proved the existence.

The purpose of this thesis is to incorporate production to the model and 

then to prove the existence of competitive equilibrium. Our model differs 

from those papers cited above in that we follow the modern cardinalist ap­

proach. Assumptions of the model are fairly general, and can be seen in 

almost all standard models. Yet, the model is open to further generalization, 

especially by applying the investigations of Arrow, Debreu and Uzzawa as 

discussed in Nikaido [4].

The existence in the Arrow-Debreu Model (henceforth the Basic Model) 

is essential in the proof of existence in our model. We establish the existence 

in the Basic Model, through a proof that is similar to Nikaido’s proof [4]. The 

way of overcoming the difBculties in that proof, is also essential in establishing 

the existence in the OLG model. Restricting the competitive equilibrium 

allocations of the OLG model in some compact sets as in the basic model 

allows us to find the subsequences of sequences of competitive equilibria, 

with limits which are established to be the competitive equilibria of the OLG 

model. This last approach is similar, in spirit, to the method introduced by 

Balasko, Cass and Shell [2].



The plan of the thesis is as follows. The next section establishes the ex­

istence in the basic model, and discusses on the beisic model. Subsection 2.1 

introduces the model, then Subsection 2.2 establishes the existence.To prove 

the existence in the OLG model we need to use the limits of sequences of 

equilibrium allocations. But the discontinuity of the standard ■ competitive 

equilibrium causes difficulties in the proof. So, in Subsection 2.3 we introduce 

an alternative definition of equilibrium namely the compensated equilibrium 

which is continuous in some appropriate sense. And we examine the rela­

tions between those two types of equilibria. Continuity of that new type of 

equilibrium allows us to find limits of the sequences of compensated equilib­

ria. This and the equivalence of competitive and compensated equilibria of 

the basic model under fair conditions allow us to establish the existence of 

competitive equilibrium in the OLG model in Section 3.



2 Existence in the Basic Model

2.1 The Basic Model

Here, we introduce the standard Arrow-Debreu Model and call it ’’ the Basic 

Model” . We list the standard assumptions of the model and establish the 

existence of competitive equilibrium following Nikaido [4].

In the basic model there are n categories of goods denoted by j  =  1, · · ·, n; 

I consumers denoted by i =  1, · · · , / ;  m producers denoted by к =  1, · · · ,m. 

Each consumer i has a preference field (AT,·, where X{ is his consumption 

set in R^, a,· =  (af) 6 R”', is the initial holding of consumer i, the jth 

component, aj, stands for the amount of the jth good initially held by him. 

Each producer к has a production technology set Yk- Each producer decides 

to produce ук from the technology set Yk. Then the sum

У = У к (1)
A;=:l

is the corresponding aggregate production.Hence, the aggregate technology 

set of the economy can be written as the vectorial sum of the Tt’s:

(2)
k = \

The aggregate supply vectors available in the economy can be represented 

by the following set

{a} + Y (3)

where

a = Y^ai 
1=1

(4)



is the aggregate initial holding.

Turning our attention to the demand side of allocation, an allocation 

of consumption is affected by choosing a menu of consumption Xi from the 

consumption set X{ for each i =  1, · · ·, /. Then the sum

= (5)
i=l

is the corresponding aggregate demand vector.

It should be noted that the initial holding may consist not only of finished 

consumption goods, which are ready for distribution among consumers, but 

also of semi-finished goods as well as fixed capital stocks, land and labor. 

And some of the components of an aggregate demand vector may be negative. 

These components correspond to the positive supplies of such goods as labor 

in the individual consumers’ menus of consumption, which may serve as 

inputs in production.

An allocation of production and consumption means the choice of an 

(/ -h m)-tuple

of

(®1) ' ■ ■ ) ' ' ' 1 i/l> ‘ ‘ ‘ ) Vky ■ ■ ' 5 2/m)

Xi G Xi (f — 1) ■ ■ ■ ) 0 )

(6)

(7)

J/fc € Tfc =

Such an allocation will be called a "feasible allocation” if
I m

^  X,· < a -1- ^  yk 
z=l '̂=l

(8)

(9)



The following assumptions complete the basic model:
\

(C.l)The consumption set X{ is a closed convex set in for each consumer i. 

(C.2)Each Xi has a lower bound Ci which satisfies

Xi > Ci for all' Xi Ç Xi ( 1 0 )

relative to the semi-order based on the component-wise comparison among 

vectors.

(C.3)Each preference field (X,·, ^¿) satisfies the following:

Vx, y Ç: Xi ·. X y y  \x {I — \)y >- y (11)

for each A G (0,1]

(C.4)Each preference relation, is continuous in the sense that the sets 

{xi I Xi € Xi,Xi ^ a;o} and {x,· | Xj 6 Xi,Xo b  ^i} are closed subsets of Xi 

for each Xo G Xi·

(C.5)Each consumer i has an initial holding a,·, which is a vector of R^. 

(P.l)Each technology set Yf. is a subset of i?" containing the origin of i?". 

(P.2)ifc is convex and closed in

(P.3)The aggregate technology set Y = J2T=i satisfies Y  fl R\ =  {0} 

(Arrow-Hahn) where is the nonnegative orthant of i?” .

(P.4)y n ( - E )  =  {0}

(C-P)There are Im constants «¿j > 0(f =  1, · · · , / ;  A: =  1, · · · ,m) satisfying 

ZlLi îk =  1,(^ =  1,···)^«) with aik standing for the relative share of con­

sumer i in the profit TTjt which is ouk'̂ k·

Those assumption are standard in many models, and the interpretation 

of those assumptions can be found in Nikaido [4], Arrow-Hahn [3], or in any



mathematical economics reference. The definition of is in the following 

standard manner:

X >̂  ?/ iff X ^ and y ^ X 

Definition 1 An (l-hm-l·!)-tuple

(x i, * · · , X/, yi, · · · , p) ( 1 2 )

of menus of consumption X{ 6 Xi{i = 1 ,· · · , / ) ;  production processes 6 

Yk̂  (/: =  1, · · · ,m) and an n-dimensional price vector p > 0 is called a com­

petitive equilibrium of the basic model and p is referred to as an equilibrium 

price vector if the following conditions (i)-(iii) are fulfilled:

(i) The maximum profit of each producer under p. That is

'^k{p) = P-Vk = max{p.y) (13)
over all y G Yk{k =  1, · · ·, m)

(a) The optimum preference of each consumer subject to budget constraint 

under p. That is, for each i =  1 , · · · , / , x̂ · is a most preferable menu of 

consumption among all x in X{ fulfilling the budget constraint
m

p .x  <  pM i +  Oiik-T^k{p) (14)
Jt=l

(Hi) The balance of aggregate supply and demand. That is
l l m

Y ^ X i < Y , a i ^ Y ^ y k  (15)
i=l i=l k=l

with equality holding in the jth component relation of the above inequality if 

the corresponding price p̂  is positive.



T heorem  1 (Arrow and Debreu,1954) If each'· consumer i has a positive 

initial holding a,· in the sense that there is a commodity bundle bi in X( 
fulfilling ^

a,· > bi '! (16)

and if he has no satiation point, then there exists a competitive equilibrium.

2.2 Proof of Theorem 1

2.2.1 Boundedness o f  Com petitive Equilibrium A llocations

The main cause of difficulties in the proof of the theorem is that consump­

tion and technology sets need not be bounded, and this does not ensure 

the existence of most preferable menus of consumption and most profitable 

processes. To overcome such difficulties, we will restrict the competitive 

equilibrium allocations to some bounded subsets of Xj and Yk for each 

i =  1,- ■ , l , j  =  1, - ■ · ,m. Let (xi, · · ·, x;,yi, · · · ,ym,p) be a competitive equi­

librium, if there exists any, then it satisfies (iii) of Definition 1 and therefore 

must satisfy the condition

(a +  ^  Xi) e (a -h y  -  A ) n i?:;, (17)
*:=! «=1

where X  =  E|=i A,·, F  =  « = E L i a,·. Now let us define

Xi =  {xi I Xi € Ai, (a +  y  -  ^  A , -  x,·) fl 77̂  7̂  0} (18)
ŝ i

(i =  1, · · · , / )

Yk =  {vk I j/fc £ Yk, +  Vk +  '^ Y t — X ) ^ R f 7̂  0} (19)
t̂ k



{k =

The following lemma states how we will overcome the difficulty of unbound­

edness of Xi and Yk{i =  1, - ■ ■ ,l,k  =  1, - · ■ ,m)

Lem m a 1 Assume that all the assumptions hold, then

(i) Xi ^  0, tildeYk 7̂  0 for any i, k.

(ii) ■ ■ ■ ,xi,yi,· ■ ·, ymiV) Competitive equilibrium, then Xi G Xi, yk G 

Yk for i =  1, - ■ ■ ,l,k =  1, - ■ · ,m.

(Hi) Xi,Yk are convex subsets of Xi,Yk, respectively, for any i,k.

(iv) Xi,Yk bounded for any i,k.

Proof: (i) Trivially, we have bi G Xi and 0 G Tt for each i and k. So, 

Xi ^ (l\,Yk ^   ̂ for any i-,k.

(ii) Since (¿ 1, · · · · · · ,ym,p) satisfies the condition (iii) in Definition 1,

inclusion of Xi in Xi and of in in Yk are clear from the definitions of Xi and 

Yk for each i,k.

(iii) They are convex, because they are obtained by the combined operations 

of taking linear combinations of convex sets and letting them intersect with 

i?” , which is a convex set. By the definitions, they are subsets of Xi,Yk, 

respectively.

(iv) To show that Xi, Yk are bounded, it suffices to show that if l+m  sequences 

{xV} in Xi{i =  1, · · ·, /) and {yl}  in Yk{k =  1, · · ·, m) satisfy

» +  (» =  1.2,···)
A:=l i=l

(20)



then they must be bounded. First, we will prove the boundedness of {j/jt}· 

Suppose the contrary, without loss of generality, assume

llTTly— — "|“00

where fiy = 1| || over all =  1, · · · ,m. (20) implies that

m I

■ ¿=1 i=l

(2 1 )

( 22)

By the assumption of the lower boundedness of Xi, (22) reduces to
m

Y ^ y l > c - a  (23)
fc=i

where c =  Cj. Since /zm„_H.+oo/iv =  +oo, we have that, > 0 for large 

V and that is a convex set including 0 by (P.1),(P.2) and including yl, 

therefore we have that

- ■ y i  -  - ■ » :  +  (1 -  - ) . 0  € n  (t  =  1, ■ · ■ ,m )
fly l̂ v

Dividing (23) by fiy, we obtain

¿1  f̂ v ~ liv
0 as V —>■ +00

On the other hand, the definition of ¡Xy ensures, for large v,

{k =  l , - - - ,m )^ | | < i
iiv

(24)

(25)

(26)

which implies the inclusion of ^  in the unit ball. Hence, the compactness

of the unit ball enables us to assume, without loss of generality, that the m 

sequences {yl ] {k  =  1, · · · ,m) are convergent, with the corresponding limits

limy^+ooVl =  vl 

9

(27)



Since yj: is closed for each k, belongs to (fc =  1, · · ·, m), respectively. 

Now (25) reduces to

k=l

Obviously, yl e  Y, so (28) entails
m

J ^ y l e Y o R i .
k=l

By virtue of (P.3), this yields
m

k=l

On the other hand, we observe that we have, for each t,
771 —  1

2/? =  o + -.- +  o + i / ? e r ,

because 0 G Yk{k =  1, · · · ,m), while (30) implies

-!»f =  o +  J ]si2 e r
k̂ t

and (32) implies

y? e ( -y )

Hence (31),(33) together yield

y ° £ Y f \ { - Y )  =

(28)

(29)

(30)

(31)

(32)

(33)

(34)

which, by virtue of (P.4), implies = 0(i =  1, · · · ,m). Therefore we must 

have y  ̂ =  0{k =  1, · · · ,m) in (27), so that

limy-,+oomaxk || —  |1= 0 (35)
¡J-v

10



But (35) contradicts

1 =  max y±
Hv

over k =  1, · · · ,m (36)

which is implied by the definition of This completes the proof of the 

boundedness of The boundedness of the I sequences

{x'i]{i =  1, · · · , / )  can be seen immediately. Using the assumed lower­

boundedness of Xi with lower-bounds Ci{i =  1, · · · , / )  in (C.2) as well as 

the boundedness of {yl ]  , we can establish the boundedness of {x"}  for each 

s =  1, · · ·, / by

c , < x l < a  +  Y ^ y l - Y ^ X i < a + Y ^ y l - J ^ d
i ŝ kz=l î s

(37)
k=l i ŝ k=l

Since the above argument can apply to arbitrary sequences {x"}  in {yl }  

in Yk satisfying (20), the proof is thereby complete. This method of proof is 

due to Arrow and Debreu (1954), Q.E.D.

2.2.2 Supply and Demand Functions

To overcome the difficulties that occur in the proof, we will search for the 

competitive equilibrium allocations not in the original sets Xi-,Yki but in­

stead, in some compact sets by virtue of Lemma 1.

Lemma 1 is a very important step in the proof of existence. That is, this 

lemma enables us to lock allocations (xi, · · ·, x/, yi, · · ·, y^) associated with 

competitive equilibria in the bounded sets Xi,Yk, although the existence of 

competitive equilibria themselves have not yet been established. To define 

the supply and demand functions, first we choose a sufficiently large cube

=  {a: U j < Xj < Vj{j =  1, · · ·, n)} (38)

11



such that 0 ,6,· 6 E, Yk C E°{i =  1, - ■ · ,l·, k =  1, · · ·, m) where E° denotes 

the interior of E. Now we obtain l+m  nonempty convex sets XiC\E, YkC\E{i =  

1, · · · , / ; / :  =  !,·■■) 1 )̂· By letting the consumers and producers pursue their 

best satisfaction on the narrowed ranges of choice Xi fl E, Yk D E, we define 

individual demand and supply functions on the set of all semi-positive price 

vectors.

Individual Supply Functions: The supply function of producer k

and his profit function Trk{p) are defined for all p > 0 by

= {Vk I P-Uk =  maxp.y over all y eYkC] E}, (39)

7Tjt(p) =  max{p.y) over all p € Efe H E {k — 1, - · ■ ,m) (40)

Remember that D jE is a nonempty compact set, and since the continuous 

function p.y is defined on these compact sets, the definitions of 'ifc(p) and 

7Tfc(p) make sense.

Lem m a 2 "̂ k is o- set valued mapping with ^¿(p) being nonempty compact 

convex subset ofYkC\ E.

Proof: Since Yk C\ E is a. nonempty compact set, and p.y is a continuous 

function on that set, p.y attains its maximum for some pt G TI- H E. So, 

i'A..(p) is nonempty for any p > 0. Since YkDE is compact, it is bounded, so 

is '^kip) CYkC\E. Now take any sequence {p") in '^k{p) such that i f  if.  

Then for each u > 1, we have p.if =  max{p.y) over all y eYkC\E. Since p.y 

is a continuous function and p" ^  i f ,  we obtain that p.if =  max{p.y) over

12



all y € E. So t/° € that is, is also closed. Hence, ^¿(p) is
compact.

Now take any y ,̂y'  ̂ 6 ^fc(p), and any A € [0,1]. Define y° =  A.?/̂  +  (l —A).?/ .̂ 

We have th|at p.y  ̂ =  p.p  ̂ =  Tnaxy^Y^nE{p-y)· Then, trivially, we have

p.y° =  p.{X.y^ +  (1 -  ^)-y^) =  Ap.p̂  +  (1 -  A)p.p2

=  X.maXy^Y^nE{p-y) +  (1 ~ A).max,jeK,^n£:(p.p) 

=  maXy^Y^nsip-y)

So, y° € ’i'fc(p). Hence, ^t(p) is convex for any p > 0, QED.

On the other hand, 7r;t(p) is a numerical-valued function satisfying 7r^(p) >

0 for all p >  0. This is clear from the inclusion of 0 in YkC\E by (P.l) and (40).

Individual Demand Functions: The demand function $j(p) of consumer

1 is defined for all p > 0 by

$^(p) =  [χ¡ I Xj £ XiO E, Xi^iX for all x ^ Xif\ E

subject to p.x < p.a' +  OiikT̂ kip)} (41)

(1 =  1, · · · , / )

Lemma 3 $,■ is a set valued mapping with î(p) being nonempty compact 

convex subset of Xi H E.

Proof: From Lemmas 1,2 in Appendix, non-emptiness, compactness and con­

vexity of $t(p) is obvious. QED.

13



The Aggregate Excess Supply Function: The aggregate supply function 

'i'(p)) the aggregate demand function $(p), and the aggregate excess supply 
function x{p) are defined by

'P(p) = a + ^
fc=l

(42)

i=l
(43)

x{p) =  ^(p) -  ^(p) (44)

Walras Law: In the following lines of the proof, we will refer to a very im­

portant identity, called the Walras Law, which connects $(p) to ’i(p ). Let 

X G $(p) and y G ^(p), and let

x = Ŷ Xi·, Xi e $.(p) (z = 1, · · ·, 0
¿=1

(45)

y =  a + ' ^ y k ,  ykS'Sk(p)
k=l

(46)

be their decompositions. Then, since x,· satisfies the budget constraint, we 

have

p .X i <  p.Ui 4- OLikT^k{p) (i =  1, · · ·»0 (47)
k=\

And, since pk G L̂fc(p), we have that

■^k{p)=P-yk {k = l , - - - , m) (48)

14



So, summing up (47) and (48) over all i, k and remembering that =

1 for all A: =  1, · · ·, m we obtain

i=i •'1 ,=i
j ' l m

i <  E p -«' +  E E  OiikT̂ kip)
i=l 1=1 k=l

I 771 I
=  P-{J^a')+ Y,Y,oiikTk{p)

i=l k=l 2=1
771

=  P-a + E^fc(p)
k=l

m

=  P-a + EP-P*
k=zl

771

=  P-(a + E y * )
k-=l

Hence p.x <  p.y for all x G $(p),p G ^(p)> or expressed in terms of the 

excess supply function x{p)

p.u > 0  Vu G x(p) (49)

From the economic point of view, the Walras Law states that the sole ori­

gin of effective demand is the spending of income.These laws play a central 

part in letting the Walrasian system admit a competitive equilibrium. In 

the following we will define another type of equilibrium, and establish the 

connection between this new type of equilibrium and the competitive equi­

librium.

15



2.2.3 Equilibrium  Solution o f x{p)

It is in order to introduce another type of equilibrium solution and its relation 

to the competitive equilibrium of Definition 1.

Definition 2 A triplet {x,y,p) of an aggregate demand vector x, an ag­

gregate supply vector y, and a semi-positive price vector p is said to be an 

equilibrium solution of the aggregate supply and demand functions ^(p), #(p)

if,

X e  $(p),y e ^(p), (50)

y > x . (51)

The price vector p is termed an equilibrium price vector of the aggregate sup­

ply and demand functions ^(p),$(p).

It is obvious that an equilibrium price vector of ^ (p),$(p) is characterized 

in terms of the aggregate excess supply function x(p) as such a price vector 

p that

x(p) n K  ^ 0 (52)

The following theorem establishes the link between the two types of equilib­

rium solutions.

Theorem  2 (i) If an { I m  + l)-tuple ( i i ,  · · · · · · ,i/^,p) of Xi G

Xi,yk ^ y k ,P ^ ^  0, competitive equilibrium of the basic model then

Xi G $.(p)(i =  I , · · · , / )

16
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Vk € '$k{p){k =  1, · · · ,m) 

and the triplet {x,y,p),  where

i
x  =  2^  X i

i=l

(54)

(55)

y =  a +Y ^y k
k=l

(56)

is an equilibrium of the aggregate supply and demand functions ^ (p),$(p). 

(a) If a triplet (x,y,p) is an equilibrium o /^ (p ),$ (p ), then any (/ +  m +  

l)-tuple ( i i ,  · · · · · · ,y„ ,p)  obtained by performing the decomposition

(53)-(56) is a competitive equilibrium of the basic model.

Proof: (i)Since (xi, · · · ,x/,px, · · · ,ym,p) is a competitive equilibrium, condi­

tion (51) follows from (iii) in Definition 1. From (ii) in Definition 1, x,· is 

one of the most preferable menus of A',· subject to the budget constraint of 

consumer i, and yk is one of the most profitable processes in Yk for producer

k. Also, by Lemma l(ii) and by (38), x,· 6 A,· C\ E, yk ^ Yk E. Then yk 

maximizes p.y over YkC\E, because it does even over Yk by (i) in Definition

l . Similarly, x,· is a most preferable element of Ai fl FI subject to the budget 

constraint, because it is even a most preferable element of A,· subject to the 

same budget constraint by (ii) in Definition 1. Hence, x,· £ ^¿(p), yk G ^fc(p), 

which proves condition (50). So, ( x , y , p )  is an equilibrium of the aggregate 

supply and demand functions ^(p),$(p).

(ii)Assume that (x,y,p)  is an equilibrium solution of the corresponding ag­

gregate supply and demand functions. Moreover, assume that the (/-|-m-f 1)- 

tuple (xi, ■ · ·, X;, pi, · · ·, Pm>p) is obtained by performing the decomposition
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(53)-(56). (51) implies that

Xi £ Xi (i =  1, · · ·, /), (57)

Vk^Yk (A: =  l , - - - ,m ) , (58)

by the definitions of X,·, Now we have to establish (i)-(iii) of Definition 1. 

Proof of (i): S u p p o s e > p.yk for some yu G Yk- This yk may be such that 

Vk ^ Y k ^  E, but for any Zk on the segment with end points yk, yk, we have 

p.Zk > p.yk as long as Zk ^  yk- Clearly, Zk G Yk by the convexity of Yk. On 

the other hand, yk must be an interior point of E by (38) and (58). Hence 

we can take Zk so close to yk that zt G D E. This contradicts yk G ^k{p)· 

This proves (i).

Proof of (ii): Suppose
771

Xi  Xi ,  P .X i ^ P.(^i T  ̂ ] (^ik^kjp^,
k=l

for some Xi G Xi. Then, (C.3) ensures

Wi Xi

for any Wi on the segment with and points x,·, Xj so long as Wi ^  Xi. Moreover, 

Wi belongs to Xi by the convexity of Xi and fulfills the budget constraint. 

Since Xi must be an interior point of E by (38) and (57), we can take Wi so 

close to Xi that Wi G Xi H E. This contradicts x,· 6 ^i{p)· This completes 

the proof of (ii).

Proof of (iii): Condition (51) ensures that
I m

Y^Xi < a +  Y^ yk.
i=l fc=l
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It remains to be shown that

=  Vj i f  pj >  0.

It can be seen that, under (51), (59) is equivalent to

(59)

p.x = p.y. (60)

Thus it suffices to prove (60). To prove (60), we have only to show that 

equality holds in the budget constraint in (ii) for any consumer i. We first 

observe that for each consumer i, there is some u,· 6 X{ satisfying

V; y ;  X; (61)

because of the insatiability of consumer z, which is assumed in Theorem 1 
explicitly. Hence, (61) and (C.3) entail

^i (62)

for any Xi on the segment with end points v,·, x,· whenever Xi x,·. Now 

suppose that strict inequality holds in the budget constraint of some con­

sumer i. Then we can take the above x,· so close to x,· that x,· can satisfy the 

budget constraint. In such a situation (62) contradicts (ii), since x,· is a most 

preferable element of Xi subject to the budget constraint, QED.

Now we have transformed the competitive equilibria of the basic model 

to equilibrium solutions of the corresponding aggregate supply and demand 

functions. In the following lines, existence of equilibrium solutions of the 

aggregate supply and demand functions will be established, so it is in order
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to formulate a powerful existence theorem in a rather simple way by means 

of an excess supply function.

2.2.4 A  Fixed Point Theorem

Theorem  3 (Gale,1955; Nikaido,1956; Debreu,1959). Put =  {p | p > 

0, Pj =  1} and let T be a compact convex subset of Suppose that 

there is a given set-valued mapping x : Pn —>· 2*" ( which will be called an ex­

cess supply function). It is assumed that the mapping satisfies the following 

conditions (i),(ii):

(i) x  : Pn 2̂  is a closed mapping that carries each point of Pn to a 

nonempty convex subset ofT.

(ii) The Walras Law holds, i.e..

p.u >  0 for u G x(p). 

Then there is some p in Pn such that

x{p) n ^  0

(63)

(64)

Proof: The proof will be worked out by constructing a suitable mapping, and 

applying Kakutani’s fixed point theorem to it. One can refer to Nikaido [4] 

to sketch an extensive proof of Kakutani’s famous fixed point theorem. To 

this end, first define a single-valued mapping

e :T X P n - ^  P n

by the formulas

9{u,p) = (i9,(u,p)), u = (ui) eT,  p = (pi) e Pn, (65)
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. Pi +  max(-u,-,0) _ ,
=  r -4-V" m (̂  =  1> · · ·, ^)J. r /  ̂TTlQiXy ^ji (66)

Then, by constructing the Cartesian product of 9 with the mapping x, which 

can be viewed as a mapping

f  = X x 9 : T  x P n ^

/(w.p) =  x(p) X {^(ii,p)}·

(67)

(68)

We will show that all the conditions of Kakutani’s fixed point theorem are 

fulfilled by / .  This will be done in steps (i)-(iii):

(i) Both r  and P„ are compact convex sets in i?". Hence F x is a compact 

convex set in P" x P" by Theorem 1 in the Appendix.

(ii) x(p) is by assumption a convex subset of F for each p, while {^(u, p)} is a 

special convex subset, consisting of one element, of for each (u, p) G F x P„. 

W'hence, for each (u,p) G F x P„ the image f {u,p)  defined by (68) is a convex 

subset of F X P„.

(iii) To prove the closedness of / ,  it suffices to show, in the light of Theorem 4 

in Appendix, that the component mappings x, 9 are closed. The closedness of 

X ,  viewed as mapping on F x P„ is an immediate consequence of the assumed 

closedness of x,  as a mapping on Pn. On the other hand, 9 is obviously 

closed, since it is a single-valued continuous mapping from F x P„ to P„. 

Therefore, by virtue of Kakutani’s fixed point theorem, /  has a fixed point 

(u,p) so that

(u,p) G f{u,p). (69)
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Relation (69) can be reduced, by using (66),(68), to the relations for the 
component mappings

u e  x{p), (70)

p =  6{u,p). (71)

The theorem will have been proved if it is seen that u >  0, using (66), we 

rewrite (71) to obtain

_  Pi +  max{—Ui,0)
Pi =  ---- ^ ^ ----- (i =  1, · · · ,n).1 + Ej=i max(-(u)j,0)

(72)

{p.u)Y^max{—Uj,0) =  u,·, 0)
i=i !=1

Multiplying the ¿th equation by u,· in (72), and summing over all i, we have,

(73)

Note that tmax{t^0) =  (maa;(i,0))^, so we can reduce (73) to
n n

—{p.u) ^  max{-Uj,  0) =  ^ (m o x (-U i, 0))^. (74)
j = l 2 = 1

VVe observe that p.u > 0 in (74), and > 0. Hence the

right-hand side of (74) must be non-positive, so that

max[—Ui) =  0 (z =  1, · · ·, n). (75)

Equation (75) implies —u,· < max(—u,·, 0) =  0 for all i, whence Ui > 0  for all 

i. This establishes that u > 0, and the proof is complete, QED.
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2.2.5 P roo f o f  the Existence

Now, the general idea of the method of proof is to apply Theorem 3 to the 
excess supply function (64).

Lem m a 4 (i) kip) is a continuous function on Pn-

(ii) ^k ■ Pn 2^ is a closed mapping whose image set '^k{p) is convex for 

any p e  Pn-

Proof: We will prove (i) and (ii) together. Let p,p^ 6 Pn,yk,Vk ^ E-> Vl ^ 

ŷk(p’') (u = 1,2, · · ·), and p" —>■ p, yl yk as V ^  +oo. Then we have, by 

definition, for V =  1, 2, · · ■,

y l eY kf \E , (76)

7Tfc(p") =  > p''-y for each ?/ G Tt H E, (77)

so by virtue the closedness of Li fl E in E and the continuity of the inner 

product, in the limit (76) and (77) become

y k e Y k i l E (78)

P-Vk ^ P-y for each y £ Yk 0 E. (79)

Relations (78) and (79) mean that yk maximizes p.y over y G Yk C\ E, 

with p.yk being the corresponding maximum T̂ k{p)· This establishes that 

lim„_+oo TrA:(p’') =  7T)t(p), yk 6 '^k{p), proving the continuity of TTkip) and the 

closedness of ' k̂- The convexity of 'i'fc(p) has already been established in the 

Lemma (2), QED.
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Lem m a 5 $,· : —v 2^ is a closed mapping whose image <5t(p) is a convex

set for each p £ Pn-

Proof: Let p,p" G Pn,Xi,X{ € E,x^ G (v =  1,2,···), and p" —>■ p,

x  ̂ —> Xi as V —)■ + 00. To prove the closedness, we have to show that 

Xi e  $t(p)·

Since Xi r\ E is closed, first note that Xi belongs to Xi n £', and satisfies the 

budget constraint under p, because of the continuity of the inner product. 

Now, it remains to be shown that x G X* D E, with x satisfying the budget 

constraint, implies that

Xi h i  X.

Now define

E{p) =  P-(a.· -  bi) +  {i =  1,···,  1).

(80)

(81)
fc=l

Notice that, since ai > bi by the assumption in Theorem 1, we have p.(ai — bi) >  0, 

so 7,(p) > 0 for any semi-positive p. Now, we define

W ) (u = l , 2,···) (82)
max{Ii{p''),p''.{x — bi))

Since X satisfies the budget constraint, we have that p.{x — bi) <  I  — i(p) ior 

any semi-positive p. So, we have

1 >  A„ > 0,

M p)

If we let

max(Ii(p),p.(x — bi)) ’

x̂  = (1 -  Â )bi + Â x (u = 1,2,···), 
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by the convexity of X,· D E  containing k,x ,  and by (82),(84) we have

x '^ e X iO E  (v = l,2 ,· ·· ) , (86)

lim x" = X .V-r-\-00

(87)

( 88)

Since Xi e  $i(p") implies that x·" is a most preferable element of Xi n E 

subject to the budget constraint under from (86) and (87) we have

Xihix'^ (u = l,2 ,···) . 

Then, by the continuity of ^¿, (89) becomes

X i  X .

(89)

(90)

This proves the closedness of $,·. Convexity of $,(p) has already been estab­

lished in the Lemma 3, QED.

From Lemma 4 and Lemma 5, we have that ^  2^ is a closed

mapping whose image set ’Ffc(p) is convex for any p E Pn, : Pn ^  2^ is a 

closed mapping whose image set ^¿(p) is a convex set. Now, in the light of 

Theorem 2, it suffices to see that the corresponding excess supply function 

x(p) has an equilibrium price vector p for which X{p)  fl ^  0. To this 

end, it will be shown that this x(p) satisfies all the conditions of Theorem 3. 

$,·, are set-valued mappings whose image sets are subsets of the cube E 

chosen by (38). Define
m I

r  =  {a} +  (E p - '^ -p E )  -  (e  +  '^^^T^ (91)
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Now, the excess supply function x{p) can be regarded as a mapping whose 

image sets are subsets of F ,which is a compact convex subset of by 
Appendix, Theorem 2.10.

We shall show that the mapping x : P„ —> 2*̂  satisfies the conditions (i) and 
(ii) of Theorem 3;

(i)Note that all of : Pn E are closed mappings by Lemma 4 and

Lemma 5. In addition, a constant mapping $o : Pn —> {a } defined by 

^o(p) ~  ® P £ .fn is naturally closed. The mapping x  can therefore

be thought of as the composite of two mappings, i.e., the Cartesian product

X n  X n (92)
t=l A:=l

of the / +  m +  1 closed mappings followed by the single-valued

mapping

m /
(x q ? ̂ 1 ? * * * ) ̂ /j J/l j * ‘ ' 5 ̂ m )   ̂^ 0  “l· ^   ̂l / k  ^  ^

k=l t=l
(93)

from the Cartesian product {a } x x · · · x to F. Hence y is closed by 

virtue of Appendix, Theorem 4.5(i) and Theorem 4.6(i). On the other hand, 

from the convexity of the image sets of $o, 'Lit ensured in Lemmas 4 and 

5 follows the corresponding property of x by Appendix Theorem 2.10. This 

verifies (i).

(ii)Previously it has been verified that the Walras Law holds for x(p). Thus, 

applying Theorem 3 to x(p), we can guarantee the existence of equilibrium 

price vector of ^(p), $(p)· In turn, by virtue of Theorem 2, this implies the 

existence of competitive equilibrium of the basic model.Q.E.D.
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2.3 On Tl^e Basic Model

In the proof of the existence in our main model, the essential tool is the 

existence in the^basic model. However, the uncompensated (competitive)

equilibrium defined in Definition 1 sometimes fails to be continuous. Toi
overcome this difficulty, we introduce another type of equilibrium, namely 

the compensated equilibrium, and the interrelations between the two types 

of equilibrium. An uncompensated (competitive) equilibrium has the usual 

meaning in the economic literature: a set of prices and production and con­

sumption allocation such that each firm maximizes profits at the given prices, 

each household chooses one of the most preferable menus from the consump­

tion set at the given prices and with the income implied by those prices and 

initial holdings of assets and profit shares, aggregate consumption is feasible 

in the sense of not exceeding the sum of aggregate production and initial en­

dowments. It is. convenient to introduce another type of equilibrium, which 

we call a compensated equilibrium. This differs from the competitive equi­

librium in the assumptions about the consumer behavior. Formally,

Definition 3 An {l-\-m-\-l)-tu'ple ( i i ,  · · · ,x ;,y i, · · · ,ym,p) of menus of con­

sumption Xi e  Xi{i -  1, · · ·, /), production processes pk E Yk(k =  1, · · ·, m), 

and an n-dimensional price vector p > Q  is called a compensated equilibrium 

of the basic model and the p is referred to as a compensated equilibrium price 

vector if the following conditions (i)-(iii) are fulfilled:

(i)  The maximum profit of each producer under p. That is, T̂ k{p) =  P-Vk — 

max{p.y)overally 6 Yk{k =  1, · ■ ·, m)

(ii) Minimum cost of consumption for each consumer under p. That is, x,·
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minimizes p.Xi subject to =  1, · · ·, /)

(iii) p.Xi =  p.Ui +  Er=i OiikT̂ kip), i =  1, · · ·, /

(iv) Market clearing condition, i.e. X i < a  +  YJk=i Vk

Let us define

M-(p) =  p-fli + X) a,fcjTt(p). (94)
k=l

Lem m a Q If x, is a preferred vector subject to a budget constraint, p.x, <  

Mi, Xi G Xi, then Xi minimizes p.Xi subject to the constraint Xi ,̂·

Proof: Suppose the conclusion is false. Then there exists x\ Xi, for which 

p.x] <  p.Xi. By local nonsatiation, there exists xf arbitrarily close to x\, for 

which xf ' î xj, and therefore xf ,̂· x,'. By choosing xf close enough to xj 

we can guarantee p.xf < p.Xi < Mi[p), which contradicts the hypothesis that 

Xi is preferred in the budget constraint.

Lem m a 7 If x,· minimizes p.Xi subject to the constraint x,· ,̂· x° and if 

p .X i  > p.x] for some x] G X i ,  then Xi is preferred in the budget constraint,

p .X i  <  p .X i .

Proof: Consider any x] G Xi for which p.x'· < x,·. Let

x,-(a) =  (1 — Oi)x'i +  a x ·; then 

pxi{a) =  (1 — oi)px] +  apxi for 0 < a < 1.
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If X i { a )  hi Xo fheii hypothesis, px,· < pxi(a). Hence, x9 >-,· x,(a) and, 

therefore, Xi(Q:) G {xj | x° hi Xi}· Since this last set is closed, it contains 

lirtia—o Xi(o;) =  x'i- Since x,· h,· x?, x,· hi x\ for any x\ for which px'· < pxi. 
This completes the proof, QEE|.

' I
i

It is evident from those Lemmas 6 and 7 that there is a close relationship 

between the two kinds of equilibria. In one direction the relation is very 

simple.

T heorem  4 / / ( x i ,  · · ·, X;,pi, · · · ,y„i,p) is a competitive equilibrium, then 

(xi, · · ·, X(, yi, · · ·, ym,p) is a compensated equilibrium.

Proof: Definition l(i),(iii) are identical with Definition 3(i),(iv). Lemma 6 

asserts that a consumption vector that is a most preferable menu subject 

to a budget constraint also minimizes the cost of consumption among the 

vectors those are preferred to or indifferent with that consumption vector, so 

that Definition l(ii) implies Definition 3(ii). Finally, suppose that Definition 

3(iii) does not hold. From Definition l(ii), pxi < Mj(p). But then, by the 

local nonsatiation assumption of the consumer i we can choose x'· arbitrarily 

close to X,· such that x'· )*-,· x,· and px'· < M,(p, which is a contradiction to 

the assumption that x,· is a most preferable element in the budget constraint. 

This completes the proof, QED.

To obtain a partial converse of Theorem 4, first note that, for any i € 

{1, ·■ ·,/} , if M{{p) >  0 then, Mi{p) > pb{ obviously, since a,· > bi by the

29



assumption in Theorem 1. The existence of such a vector, like in the 

consumption set is important in obtaining the partial converse of Theorem 4 

by using Lemma 7. Arrow-Hahn establishes the existence of such a vector in 

more general situation, but with some different framework in [3] pp.108-109.

T h e o re m s  If (xi,· ■ ■ ,xi,yi,· ■ ■ ,yjn,p) is a compensated equilibrium and 

Mi(p) >  0, all i, then (xi, · · ·, x;, · · ·, ym,p) is a competitive equilibrium.

Proof: Definition SfiLfiv) are identical with Definition 1( i),(iii). If Mi{p) > 

0,  then by Definition 3(iii), px,· =  M,(p) > pbi, as just remarked. By Lemma 

7, it follows from Definition 3(ii) that x,· is a most preferable element subject 

to the budget constraint px,· < M,(p). This completes the proof, QED.

In particular, there is a possibility that the uncompensated demand functions 

are discontinuous. Consider the following example: Suppose there are two 

goods in the economy, and an individual has an initial stock of good 1, but 

none of good2 and no share of any firm. Hold the price of good 2 constant, 

and let pi approach zero. The budget constraint requires that

Pi.x  ̂ < pi.x  ̂+ P 2 - x ^  < Pi-a:
So that for Pi > 0,x^ < x .̂ On the other hand, when pi =  0, the set of 

commodity vectors compatible with the budget constraint is the set of all 

pairs (x\0), and the chosen value of x̂  may be considerably larger than x .̂ 

This discussion lightens the difficulty that arises in the proof. The following 

lemma provides a powerful tool in overcoming this difficulty.
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Definition 4 The compensated demand correspondence of consumer i, $, (p, x°) 

is defined as

$t(p, x°) =  {x'i 1 x'i minimizes p.Xi subject fo  x,· € Xi,Xi h  a:”} (95)
■’1

Lem m a 8 $,(p, x°) is upper semi-continuous in p for fixed x°.

Proof: Let {p"} be a sequence with p" p; suppose x'· € $ ,(p",x°) and 

—>■ X,·. Then Xi >ii x°, all v, and by the continuity of preferences, x,· X,· x°. 

Take any x( hi Then, by definition of $,(p’',x°), p’ x̂)' <  p’ x̂i- In the 

limit, pxj <  px(, QED.
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3 Overlapping Generations Model

3.1 The OLG Model with Production

Our model is an infinite horizon overlapping generations model. In each 

period t, (t =  1,2, · ·’·) there is a finite number, n, of completely perishable, 

nonstorable, physical commodities. Each consumer h, {h =  0 ,1 ,2 ,···) is 

born at period t =  h and lives only two periods during t =  h and t = 

h +  1. However, in each period i, there are two generations of consumers, 

old generation who was born at the beginning of period (i — 1) and young 

generation who is born at the beginning of period t.

There is a firm in the economy which is owned by the old generation in each 

period t. At the end of period i, the ownership of the firm is transferred to 

the young consumer of that period without cost.

Each consumer h has his consumption set, formally as:

H  = x ;+ ‘ =  (xi+‘ ·*, ■ ■ ■, xi+'·") e  for /. =  0 (96)

XI = (x i.x i« )  =  ( x i ' ' . ' - . x i '" . x r ' ' ‘. - - - . x r ' · “) e X t  X X t '  (97)
for h > 1 where Xĵ ;, X̂ '^̂  are closed convex sets in i2" for each h >  0, and 

there exist lower bounds c ,̂ of X^, X̂ '^̂  , respectively, such that

> cl for all xl 6 XI, s =  h,h +  1 (98)

relative to the semi-order based on the component-wise comparison among 

vectors. Define X q =  X q for h=0 and Xh =  X^ x for h > 1. Each

consumer h has a preference field {Xh,'^h) such that

Vxfc, Vh € Xh : Xh ^h Vh ^  A.xa -f- (1 -  X)yh >~h y for each A G (0,1] (99)
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Each preference relation is continuous. Each consumer h has an initial 

holding Wh such that

m  · ■ ■, € Rl^. for A = O', ( 100 )

and

Wh = {w l  =  {wi\  · · ·, · · . ,  e R \ x

for h >  l.For each consumer h, there is a commodity bundle in Xh fulfilling 

Wh > bfi and he has no satiation point.

At each period t, the firm has a technology set Yt{t =  1,2, · · ·), which is a 

subset of i?" containing the origin of i?” . YJ is convex and closed in i?". VVe 

also have that

Y t n R l  =  {0} and Y; n {-Yt) =  {0}. ( 1 0 1 )

Since the,firm belongs to the old consumer and ownership of the firm trans­

fers to the other consumer at the end of that period without any cost, as 

stated the profit of the firm is transferred to the old consumer in each pe­

riod. There exists a futures market in the model such that each consumer h 

can bargain for the commodities of future periods.

Consumption sequences are denoted by x =  (xq, x:, · · ·, x/,, · · ·), price se­

quences are denoted by p =  · ' '  iPS ' ’ production sequences

are denoted by ?/ =  (y ,̂ · · ·, y‘ , · · ·) such that Xh € Xh for each h > 0  and

> 0 for each i >  1, and E Yt for each i >  1. 7r‘ (p) is the maximum 

profit that the firm attains under the given price sequence p in period t, that

IS,
7t\p) =  max{pKy) over all y ^Yt, 
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and Yt{p) is the supply function of the firm in period t, given the price 

sequence p,

yt(p) =  {y‘ I 7t‘(p) = pKy\ i/ € Yt). (103)

Xh{p) represents the ordinary lifetime consumption profiles for consumer h 

in his budget constraint, given the price sequence p, that is,

Xh{p) -  Wh I  ̂ and x'̂  y  Xh subject to Xh 6 Bh{p)} (104)

where

Bo{p) = {a;o I 3:0 € Xo,p^-xl < p -̂w] + 7r̂ (p̂ )}, for /1 = 0 (105)
and

Bhijp') — {X'h I  ̂ Xhj

P h -^ h  +  <  p ’''X\^h +  +  7r'"‘ +^(p'‘ + ^)J10 6 )

for h > 1.

Xh{p,Xh) represents the compensated lifetime consumption profiles for con­

sumer h given the price sequence p. That is

Xh{p,Xh) =  argmin^ -̂^ î^p.Xh (107)

It is now time to define the competitive equilibrium for the overlapping gen­

erations model.

Definition 5 The triplet of sequences {x,jj,p) of consumption, production 

and price vectors, respectively, is called a competitive equilibrium of the OLG
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model if the following conditions (i)-(iii) are fulfilled:

(i)The maximum profit in each period under pK That is,

7t(p ‘ ) =  = max{p\y) over all xj G Yt{t =  1,2, · · ·), (t08)

or in other words y* G Yt{p)· (ii)The optimum preference of each consumer 

subject to budget constraint under pK That is, Xh  ̂ Xh{p) for given price 
sequence p.

(in) The balance of aggregate supply and demand in each period t. That is.

¿ i- i  + + f  for t >  I (109)

with equality holding in the jth component relation of the above inequality if 

the corresponding component of p*, namely p*̂ , is positive.

Theorem  6 Under the assumptions stated above, there exists a competitive 

equilibrium of the OLG model.

3.2 Proof of the Theorem

The proof of this Existence Theorem is similar in spirit to that presented 

in Balasko, Cass, and Shell [2]. Firstly, existence of the suitably defined 

competitive equilibria in the suitably truncated economies are established. 

Then, it is shown that the limit of those competitive equilibria yields the 

competitive equilibria of the OLG model.
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Definition 6 The initial holdings and the tastes of the consumers born up 

through period t and the technology sets of the firm up through period t is 

called the t-truncated economy, and it is denoted by In addition, the 

triplet of sequences (x,y,p) is a t-equilibrium if the following conditions are 

satisfied:

(i) 7T®(p) =  =  max{jp\y) over all y E Ys s = 1,2,· ·· ,t

(il) Xh ^ ĥî p'jy h O5 I5 2, * * * , i

(Hi) x^_i +  + 2/̂ , =  1,2, ■ · ·, i holding equality in the jth

component if the corresponding price pj > 0.

Notice that if (x,y,p) =  {{xo,· ■ · ,Xt,· ■ ·  · , y \ - ■ •),{p\·'' is
a t-equilibrium then any (x’,y’,p’) satisfying

x'f̂  = Xh ioT h — 0, ■ ■ ■ ,t 

y'* = y* for s =  1,· · · 

p'* =  for s =  1, · · ·, i -h 1

( 1 1 0 )

( 1 1 1 )

( 1 1 2 )

is also a t-equilibrium.That is, the components (xt+i, Xi+2, · · •))(2/‘ "*’\ ’ ·)>

(p‘ '^ ,̂p‘+ ,̂ · · ·) are completely indeterminate at a t-equilibrium.

Lem m a 9 There exists a t-equilibrium (x(i), y (i),p (i)) of the t-truncated 

economy If, for each i >  1.

Proof: Completing the system of the t-truncated economy I* by x\'̂  ̂ < 

-l· yt+i where Xi =  (x5,Xf·^ )̂ 6 Xt{p) and yt+i € ĥ ‘ (p‘ ) and holding
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equality at the jth component if > 0, exhibits all the standard as­

sumptions of the basic model. So there exists a competitive equilibrium 

of the economy, then by completing the rest of sequences by suitable mem­

bers this competitive equilibrium obviously yields a t-equilibrium of QED.

Lem m a 10 If t' > t and is a t ’-equilibrium off*' then

(x[t'),y{t'),p{t')) is a t-equilibrium off* , too.

Proof: This is obvious from the definition of t-equilibrium of f*, QED.

If {x{t),y{t),p{t)) is a t-equilibrium of f*, then in fact, the first (i -h 1) 

elements of the sequence {x (i)}, i.e., {x(i)o, x(i)i, · · · ,x{t)t}, and the first t 

elements of the sequence {j/(i)}, i.e., {j/(i)^, · · ·, can be restricted to

some compact sets as it was done in the proof of the existence in the basic- 

model. In addition, it is easy to see that, those compact sets are independent 

of truncation t.

Now, since for all i >  1, there exists a ¿-equilibrium, and for any t* > t, 

any ¿'-equilibrium is also a t-equilibrium, we can conclude that, for any given 

r there exists a subsequence {¿„} C {¿} such that

limy^

=  (x i , . . - ,x ; ,y i * , - - - , i / - )  (113)

= (x*(t ) ,? / ( t )). (114)
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Since this is true for any r > 1, letting r oo, and using Cantor’s diago- 

nalization procedure, we can find a subsequence {t,,} C {t }  so that

77—+-00 (115)

Lemma 11 For every r > 1, there exists p*{r) such that (a:*,y^p*(r)) is a 
T-equilibrium of , where x* and y* are as in (Ilf) .

Proof: Given arbitrary r > 1, consider a subsequence { i„ }  C {t}  with corre­

sponding ¿„-equilibria {(a:(i„),y(i„),p(i„))} such that lim„^«,(a:(i„), y(t„)) =  

(x*,y*). Because every ¿„-equilibrium has the property that Xh € X/i(p(t„)) 

for h =  Q, thus p{tr,y > 0, it follows that we can normalize p(t„) so that

T+i II—=  1. (116)

So, without loss of generality, we can assume that the first (r 1) elements 

of p(t„) converge to (p^*,p^*, · · ■ ,P̂ '̂ *̂) > 0 as p —> 00. Now, by filling out 

the rest of the sequence by appropriate members, let us set

p*(r) =  (p *,p * ,· · · ,pr.T-t-l* „T+2 ·)· (117)

In order to verify that (i*, y*, P*(t)) is a r-equilibrium, we will employ a stan­

dard maneuver, which basically involves switching back and forth between 

the budget-constrained utility maximization problem and its preference-constrained 

budget minimization where the preference-constraint is x̂ . h/i ^1·

We know that, for every ¿„ > r, the ¿„-equilibrium (^(¿r;), î/(¿„),p(¿„)) is 

also a T-equilibrium, so is a competitive equilibrium of From the pre­

vious discussions, we know that, this competitive equilibrium of yields a
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compensated equilibrium of Moreover, we knoŵ , that compensated life­

time consumption profiles are upper semi-continuous. Thus, going to limit as 

Tj —> oo, (x*,j/*,p*(r)) is also a compensated equilibrium of Now invoking 

the assumption that Wh >  0, it can be easily seen that, at the given price se­

quence p*(r), every consumer h born up through periold r must have positive 

income, so by Theorem 5, (a;*, j/*,p*(r)) yields a competitive equilibrium of 

which, in fact, yields a r-equilibrium, QED.

Lemma 12 There exist nonnegative, finite constants 0 < < oo for t > I

with the property that if [x*,y*,p*[T)) is a r-equilibrium of , then p*{r) 

can be normalized so that || ||= 1 and || p*(r)‘+̂  ||< K* for I < t  < t .

Proof: For any r > 1, we can obtain a r-equilibrium of the specific form 

(a;*,j/*,p*(r)), as stated above. Since x* € X o{p*{t)), we know that p*(r)^ > 

0, or II P*{tY ||> 0. So, in order to prove the lemma, it suffices to show that 

there exists bounds 10 such that, for every 1 < i < r, the price sequence 

p*(r) satisfies

p *( t ) · «  II / II ||< k >. (118)

Suppose, in contrary that, (119) is not true, that is, for some 1 < i < r, 

there are sequences of r-equilibria {{x*,y*,p^{r))} such that.

lim ||p” (r)‘+̂  11/ ||p’’ (r)^ 11= 00.rj—̂OO (119)

Sincep” (r) > 0, we can again normalizep” (r) so that |1 (p’’ (r)\  · · · ,p"'(r)'^+^)) 

1, and, without loss of generality, assume that the first (r -|-1) elements of
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p^(r) converge to > 0 as 7; approaches to 00. But

this leads to the following inconsistency: On the one hand, we know that 

every price sequence p°° =  · · ·) yields a r-equilibrium

(rc*, y*,p°°), so that p̂ °° > 0. On the other hand, given the sequence {p’’ (t )}, 

we know that, for every 0 < i f  < 00, there exists t]k < 00 such that

p” (t)M I>0, ||pW M | < 1 and

llp”W ‘+‘ II /  iIp ’ It ) ' ||> k .

( 120)

( 1 2 1 )

or 1 > i f  II p^{tY ||> 0, for T] > T]K, so that p °̂° =  0. Hence, we conclude 

that the requisite bounds must in fact exist, QED.

The remainder of the argument is now almost routine. Above lemmas 

11,12 guarantee that for every r > 1 there exists a r-equilibrium of the 

specific form (x*, ?/*,p*(r)), and p*{r) is restricted to the bounded subset.of 

conceivable price sequences

j3· =  {p Ip > 0,11 p 11= land ||p‘+‘ ||< K ‘ ] ( 12 2 )

Hence we can choose a subsequence of periods {i« }  C {¿7,} with the corre­

sponding ¿„-equilibria {(x*, such that

/¿m„_oo(p*(i«)) =p* e  /3* (123)

Finally, employing standard maneuver, it follows that for every u >  1, (x*, y*, p*) 

is a t-equilibrium and, therefore that, by definition (x*,j/*,p*) is also a com­

petitive equilibrium of the OLG model, Q.E.D.
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4 Conclusion \

In the proof of the basic model, restricting the competitive allocations to some 

compact sets, the tricks used by Balasko, Cass and Shell [2] are essential·. The
-r ♦

assumptions are fairly general, and can be easily interpreted by any reader 

who is familiar with mathematical economics.

This model can be taken as a first step in developing the OLG models 

with production. Its setup facilitates easy understanding and removes the 

profound complexities in discussion.

The transfer of the ownership of the firm in the model can be understood 

as bequest. Adding more firms to the model carries no more complication 

either into the model or into the proof. A model with more than one consumer 

brings the question of transfers of the ownerships of firms in the model. A 

given sequence of coefficients, those stand for bequest, is a way of developing 

the model without further work in the proof. The same proof is valid for this 

model, too. But the more interesting view is adding a stocks market to the 

model, dropping the futures market assumption, and examining the existence 

of equilibrium and its efficiency. For this line of further research, our model 

may serve as a suitable first step. Existence of futures market improves the 

efficiency comparing to Samuelson’s OLG model [5]. But stocks market may 

play a similar role as futures market or money in improving the efficiency 

of the equilibrium. Efficiency of equilibrium, in our model, is another issue 

requiring further research.

There are many examples of modifications to the basic model in the lit­

erature. Using the same arguments, it is possible to generalize our model 

further.
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Appendix

T heorem  1 If X{ is a convex (closed) (open) (compact) subset of RP·' {i =  

1, · · ·, 5), then O i-i Xi is a convex (closed) (open) (compact) subset 

(respectively).

Theorem  2 If Xi are convex (compact) subsets of {i =  their

linear combination Is also convex (compact).

Theorem  3 Let X  be a nonempty compact convex set in RP, and f  : X  ^  

2^ be a set valued mapping which satisfies

(a) for each x E X , the image set f (x )  is a nonempty convex subset of X ;  

and

(b) f  is a closed mapping, 

then f  has a fixed point.

Theorem  4 Let / ‘ (i =  1, · · ·, 5) be the set valued mapping.

(i) If f '  are closed then their Cartesian product is also closed.

(ii) Suppose that the image sets of p  are compact. Then if the / '  are u.s.c, 

their Cartesian product is also u.s.c.

Theorem  5 Let f  : X  ^  2^, and g : Y  ^  2^ be the set valued mappings, 

then

(i) Suppose that a compact subset M of Y exists such that Ux^xf{x) =  

f { X )  C M.  Then if f  and g are closed, their composite mapping is also 

closed.

(ii) If f  and g are u.s.c., their composite mapping is also u.s.c.
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Lem m a 1 Let (X , h ) ¿e a preference field, and M  C X . I f h  continuous 

and M  is compact, M  contains at a most(least) preferable element and the 

totality of all most(least) preferable elements is a compact set.

Lem m a 2 Let (X, be a convex preference field and M  be a convex subset 

of X . Then most preferable elements in M , if any, form a convex subset of 

M .

Proofs of those theorems ajid lemmas above axe available in Nikaido [4] as 

well as in many mathematical economics references.

43



Reference's

[1] Balasko Y., K.Shell, ’’The Overlapping-Generations Model I: The Case 

of Pure Exchange without Money” , JET, vol. 23, pp. 281-306, 1980

[2] Bala^ko Y., Dy Cass, K. Shell, ’’Existence of Competitive-Equilibrium in 

a General Overlapping-Generations Model” , JET, vol. 23, pp. 307-322, 

1980 September 1989.

[3] Arrow K.J., F.H. Hahn, ’’General Competitive Equilibrium Analysis” , 

Amsterdam: North-Holland, 1988

[4] Nikaido H.,’’ Convex Structures and Economic Theory” , New York: Aca­

demic Press, 1968

[5] Samuelson P.A.,” An Exact Consumption-Loan Model of Interest with 

or without the Social Contrivance of Money” , Journal of Political Eco­

nomics, vol. 66, pp. 467-482, 1958

44


