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ABSTRACT

ANALYSIS OF MULTIMEDIAN PROBLEMS ON TIME 
DEPENDENT NETWORKS

F. Sibel Salman 
M.S. in Industrial Engineering 

Advisor: Assoc. Prof. Barbaros Q . Tansel 
July, 1994

Time dependency arises in transportation and computer-communication net­
works due to factors such as time varying demand, traffic intensity, and road 
conditions. This necessitates a locational decision to be based on an analysis 
involving a time horizon. In this study, we analyze multi-median problems with 
linear demand functions on both tree and cyclic networks in a continuous time 
domain. The trajectory of the optimal solution is a piecewise linear concave 
function. We develop an algorithm that constructs the trajectory by solving 
0{q) static problems, where q is the number of linear pieces in the trajectory. 
The properties of the optimal solution over the time horizon are also analyzed 
for various randomly generated problem instances.

Keywords: Dynamic Multimedian Problem, Parametric Analysis, Trajectory 
Construction.



ÖZET

ZAMANA BAĞIMLI SERİMLERDE ÇOK TESİSLİ YER 
SEÇİMİ PROBLEMİNİN ANALİZİ

F. Sibel Salman
Endüstri Mühendisliği, Yüksek Lisans 

Dcimşman: Doç. Dr. Barbaros Ç. Tansel 
Temmuz 1994

Zamanla değişen talep, trafik yoğunluğu, yol durumu gibi faktörler ulaşım ve 
haberleşme serimlerini zamana bağımlı kılabilir. Bu durumda tesis yer seçimi 
kararının bir zaman sürecini içeren analize dayanması gerekir. Bu çalışmada, 
ağaç ve genel serimlerde çok tesisli yer seçimi probleminde talepler zamana 
bağımlı doğrusal fonksiyonlar olarak alınmıştır. Optimal çözümün izdüşümü 
parçalı doğrusal bir fonksiyondur. Parça sayısı q ise, 0{q) statik problem 
çözerek izdüşümü hesaplayan bir algoritma geliştirilip, optimal çözümün değişim 
özellikleri analiz edilmiştir.

Anahtar Sözcükler: Zamana Bağımlı Çok Tesisli Yer Seçimi Problemi, Parametrik 
Analiz, Optimal Çözümün izdüşümü.
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Chapter 1

Introduction

1.1 M otivation

The importance of facility location decisions can be emphasized by the fact that 
over 250 billion dollars is annually spent in the U.S. alone on establishing new 
facilities and modifying them later on. Incorrect decisions are too costly that 
any decision must be well justified after a thorough analysis. In accordance 
with these considerations, a lot of research has focused on facility location and 
theories have been developed for various facility location problems for over 50 
years. An overview of research on facility location can be found in Î7İ and 
[51],[52].

Traditional approaches have considered the location problem as a static 
one and assumed that the location determined according to present conditions 
would sustain its superiority throughout the lifetime of the facility. However, 
tis an examination of changes in number, location, size and product variety 
of plants of a sample of 64 small and medium sized multiplant enterprises 
over 6 years by Healey [34] shows, facilities are subject to various changes 
among which locational changes have high frequency. Facilities operate in a dy­
namic environment influenced by technological innovations, cycles of economy, 
changes in tastes and environmental factors. Demand patterns not only change 
in the long run due to factors like population shifts, changing income levels, 
development of competing products, failing to keep customer satisfaction, but 
also in the short run due to seasonality and promotion campaigns. In addition

1



CHAPTER 1. INTRODUCTION

to demand changes, costs relevant to the location decision like transportation 
costs, labor cost, taxes, rental costs, are subject to changes that can usually 
be successfully predicted by forecasting methods. Thus, the dynamics of the 
problem have to be incorporated into a location decision to prevent a myopic 
decision that could cause the locations to be unattractive by time. As different 
locations become optimal at different times, the initial locations may fall to be 
suboptimal by time. Then, an analysis involving an appropriate time horizon, 
such as the forecasted life-time of the facility, is required. The decision of ei­
ther relocating the facilities throughout the time horizon, following the path of 
the optimal locations, or choosing permanent locations at the beginning of the 
time horizon which will be close to the optimal locations should be made. This 
decision depends on the tradeoffs between the costs of relocating the facilities, 
including non-monetary terms like the resistance of the organizations, and the 
savings from operating costs as a result of the relocations. If costs appear to 
overweigh, permanent locations would be chosen and it is worthwhile to try 
to turn the locations into favorable ones by promotional activities. In some 
cases, relocations can easily be justified, as in the case of mobile or portable 
service facilities where the optimal locations could be followed. Thus, knowing 
exactly what locations will be best in what time intervals is an asset in both 
situations.

Let us consider mobile facilities serving demand centers scattered in a re­
gion over a time horizon, for example, a military base in a war situation in 
coordination with quairters that might change their locations frequently due 
to strategic reasons or a tourism information booth that serves demand which 
shows seasonal variations. It is reasonable then to determine how optimal so­
lutions change in response to the dynamic factors and to follow the optimal 
path.

Another situation in which relocating the facility over time may be preferred 
and easily accomplished is that of determining which machines will perform 
special tasks like control of information routing, storage etc., depending on the 
changing traffic intensity on a computer and communication network. In this 
case, relocations are ignorably incostly and extremely manageable.

Even though relocating the facilities could be too costly and problematic, 
for a decision that considers an appropriate time horizon, knowledge about the
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optimal locations of the facilities throughout the planning horizon would be 
helpful. For example, consider warehouses from which non-durable goods are 
distributed to retail stores in a city. The ”rush-hour” behavior of traffic that 
causes travel times to vary within a day can be fairly well predicted. Obviously, 
relocating warehouses within a day is out of consideration. However, knowing 
the optimal trajectory of the locations throughout the day may be useful in 
choosing a location that would be better off for normal traffic intensity and 
would not be undesired for rush-hour periods.

1.2 Dynamic Location Problem s in th e Literature

Against static facility location problems which depict a single-period or static 
situation, dynamic facility location models which reflect a multiperiod or time 
dependent situation were posed about a quarter century ago.

Dynamic facility location problems raise the question of when to establish 
and if necessary to replace a productive capacity due to changing conditions 
in addition to the classical questions of where and what size.

A dynamic location problem was first studied by Ballou [1] who considered 
multiperiod warehouse location problem with capacity constraints (1968). He 
gave an approximate solution by dynamic programming and later Sweeney and 
Tatham [48] solved the problem to optimality by dynamic programming with 
an extended state space. Wesolowsky [53] examined multiperiod single facility 
location-relocation problem. Relocation of the facility is permitted only at the 
beginning of the periods with the assumption that amount of demand, number 
of demand points, distribution and relocation costs are constant within a period 
but may change between periods. Relocation cost is assumed to be indepen­
dent of the location of the facility before and after relocation, which is actually 
unrealistic. Wesolowsky gave an incomplete dynamic programming algorithm 
that finds the optimal locations in each of the r periods by solving O(r^) static 
problems. Later, Wesolowsky and Truscott [54] extended this model to a multi­
facility location-allocation problem and presented mixed integer programming 
as well as dynamic programming solutions.
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Afterwards, there appeared numerous studies in the literature about dis­
crete time location models with a multiperiod situation where demand varies 
between time periods, usually with an increasing trend. Thus, capacity ex­
pansion was also considered in addition to location and relocation aspects. 
Such problems are discussed in detail in Chapter 4, "Multiperiod Capacitated 
Location Models”, of Discrete Location Theory [42]. A general multiperiod 
capacitated location model whose solution requires the minimization of a non­
linear, concave function over a polyhedron, is presented by Jacobsen in this 
chapter. The solution methods are gradient search algorithms and dynamic 
programming.

Erlenkotter [25] studied uncapacitated dynamic location problems and for­
mulated problems in the private, public and quasi-public sectors, where de­
mands are influenced by prices at various locations so that pricing and loca­
tion decisions are determined simultaneously. He showed that these problems 
may be transformed to the fixed-demand location model of Efroymson and Ray 
which may be solved by available methods. Later, Van Roy and Erlenkotter 
[45] gave a dynamic uncapacitated facility location model that minimizes total 
discounted costs for meeting demand over time with the flexibility of opening 
new facilities and closing existing ones by time. A branch and bound procedure 
which incorporates a dual ascent method is presented and is claimed to be supe­
rior to previous methods. Erlenkotter also gave a continuous time formulation 
in [24] and suggested a discrete-time approximation heuristic solution.

One recent discrete-time model is Dutta and Lim’s [20] multiperiod capacity 
planning model for computer and communication networks. The model allows 
traffic among existing nodes to increase, new nodes to be added to the network 
and its topology to change over time. The model is formulated as an IP and 
a Lagrangian relaxation based solution method is proposed. Shulman [47] 
also gave an algorithm based on Lagrangian relaxation technique for solving 
dynamic capacitated plant location problems with discrete expansion sizes.

Chand [11] examined dynamic location problem from a different aspect 
and addressed the problem of finding decision and forecast horizons for a sin­
gle facility dynamic location problem. He defines a decision horizon to be the 
number of periods for which decisions have to be made now. A forecast horizon 
is defined to be the number of periods of forecast data required to ascertain
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optimality of the initial decisions over the decision horizon and gives a for­
ward procedure to find an optimal initial decision. Bastian and Volkmer [2] 
claimed that Chand’s algorithm is not ’’perfect” in the sense that it does not 
determine an optimal initial decision using only data for the minimum forecast 
horizon. They presented a more general relocation model and a perfect forward 
algorithm to solve it.

Heuristic methods for multiperiod location problems are discussed in Ja­
cobsen [35] and Erlenkotter [27] compares the performance of 7 approximate 
methods for locating new capacity over time to minimize the total discounted 
costs of meeting growing demand at several locations on two real-world prob­
lems.

More information on discrete time dynamic location problems can be found 
in the bibliography prepared by Erlenkotter [23] and a survey paper by Luss 
[40]. A recent study by Hakimi, Labbe and Schmeichel [31] not only reviews 
dynamic location problems but also discusses some interesting modeling as­
pects.

Dynamic facility location models in a continuous time domain are researched 
by Orda and Rom [43], Drezner and Wesolowsky [19], Campbell [10] and Tansel 
180].

Orda and Rom [43] address a single-facility dynamic network location prob­
lem within the context of computer and communication networks. As a mod­
eling convenience, the location space is restricted to the nodes of the network 
and the edge lengths are defined to be positive functions of time. The objective 
function to be minimized consists of the cost of locating the facility at certain 
nodes and the cost of switching the facility, if any occurs, throughout the time 
horizon. General costs are used in the model. The location cost in a time in­
terval in which the facility remains fixed in its location is the integration of the 
instantaneous cost of having the facility at its location over that time interval, 
where instantcineous cost is defined by any performance measure. Switching 
cost depends on the locations before and after the switch as well as the time 
in which it takes place. The cost is assumed to be non-decreasing with the 
duration of switch and goes to infinity in the limiting case of zero duration. It 
is also assumed to be a continuous or piecewise continuous function of time.
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Discrete time version of the model is solved by a shortest path algorithm 
on a network that has as many levels of the original nodes as the number of 
periods, k. Each node in a level is connected to each node in the next level 
with appropriate costs determined by location and switching cost functions at 
this period. A source node with no cost of edges is connected to each node in 
level k-1 with only appropriate location costs.

For the continuous time model they give an algorithm which first computes 
the cost of the optimal locations throughout the planning horizon and then 
calculates the locations. The algorithm is like a limiting shortest path algo­
rithm on a network with levels for each time period. The algorithm stops after 
a finite number of iterations when there is no change in the cost functions 
between iterations. No time bound is given for this exact algorithm.

Drezner and Wesolowsky [19] also investigate facility location when demand 
varies with continuous time in a predictable way. They study single facility 
minisum problem on a planar location space with weights being nonnegative 
time functions. The location of the facility can be changed during the time 
horizon but each relocation incurs a fixed cost. The decision variables are 
time points at which the facility changes location, i.e. breakpoints and the 
location of the facility in each time interval between breakpoints. For the 
special case of rectilinecir distances, linear weights and the restriction that 
only one breakpoint is allowed, the problem is solved using the property that 
the static problem decomposes into two one-dimensional problems, each with a 
solution on a demand point, as well as the monotonicity of the optimal location 
due to linear weights. The algorithm goes as follows. First, the solution for time 
zero is found and the smallest breakpoint b' among the breakpoints of switching 
to a pair of adjacent coordinates is identified. Once the locations before and 
after time point b' are known, F{b), the objective value with these locations and 
a breakpoint at 6, where b is taken as a parameter, is computed. Beginning with 
the time bo, which minimizes F{b) in the interval [0, 6'], the process is repeated 
until the next smallest breakpoint is beyond the time horizon or does not exist. 
Then, among bo's, calculated during the process, the one with minimum F{bo) 
is the optimal breakpoint and F{bo) is the optimal objective value.

When more than one breakpoint is allowed, they propose a heuristic based 
on a univariate search with breakpoints. They initially divide the time horizon
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into k segments. Repeatedly, one-break point problem is solved by keeping all 
but one breakpoint fixed. The procedure stops when no significant changes in 
breakpoints occur.

The authors also give a minimax version of the weight parametric model. 
Two algorithms which find the solution to the problem with k relocations is 
given. Then, a search on k is suggested. The algorithms can be applied to a 
weight parametric p_center problem on a network with the assumption that a 
fixed relocation cost is incurred at breakpoints whatever the number of centers 
that are to be relocated.

Another interesting relocation model in a continuous time domain is given 
by Campbell [10]. The model incorporates locating transportation terminals 
in a service region with an expanding demand. Shipments are sent from ori­
gins to destinations scattered over this region via one or more terminals since 
shipments between terminals are less costly. The tradeoffs between savings in 
transportation costs and terminal relocation and establishment costs determine 
when and where terminals should be added and relocated.

Campbell analyzes the performance of three strategies. One is relocating 
terminals as many times as required by the minimization of only transporta­
tion and terminal establishment costs. The other two are allowing no relo­
cations and relocation of only one existing terminal when a new terminal is 
added. Comparison of the strategies in terms of difference from a lower bound 
suggests that optimal solutions can be reached by limiting the number of re­
locations when relocation costs are low. With high relocation costs, making 
no relocations can be preferred, however the solution may not be very close to 
optimal.

Tansel [50] considers the time dependent version of the single/multi me­
dian problem for which weights or distances are functions of time. Various 
node optimality results are given, a penalty minimization problem is defined 
and solved. The multi-relocation problem is analyzed by transforming the 
problem into a rectilinear path problem on time coordinates. By an intermedi­
ate value optimality theorem, finitely many points on the plane through which 
the optimal path must go are identified. Then, the problem becomes that of 
finding a shortest path on a network whose nodes correspond to the identified 
points.
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Another perspective in the analysis of dynamic facility location problems is 
parametric analysis which involves determining the optimal locations for cer­
tain values of a parameter inherent in the model. While Brandeau and Chiu 
[6] analyzed single-median problems with an Lp-norm based objective function 
with parameterization on p, Erkut and Öncü [21] analyzed single obnoxious 
facility location problem with parametric weights. Erkut and Tansel [22] ad­
dressed and analyzed time dependent single-median problems with parametric 
weights or distances, where the parameter is time. Brandeau and Chiu [9] 
summarized recent results on parametric analysis of a single facility location 
for various location problems.

Brandeau and Chiu [6] analyze the optimal location of a single facility on 
a tree network with the objective of minimizing the sum of weighted ip_norm 
distances from each node to the facility, as the parameter p changes in the 
interval [l,oo). As p increases, the cost becomes more sensitive to distance. 
Thus, parameterization is on customer disutility for travel. For p =  1, we have 
the median problem and for p = oo, the problem becomes unweighted center 
problem. For fixed p, optimality conditions are given using directional deriva­
tives and the trajectory of the optimal location is constructed by a method 
that hinges on the convexity of the objective function. It is shown that the op­
timal trajectory is continuous and need not be monotonie between the median 
and center locations. The method of finding the trajectory fails for a cyclic 
network since the objective function need not be convex anymore. It is also 
shown that nonconvexity can lead to a discontinuous, disconnected trajectory. 
The conditions for having a continuous trajectory of the optimal location to 
single facility parametric location problems are given in a separate note by the 
authors [5].

Erkut and Öncü [21] introduce a parametric version of the weighted l_maximini
problem in a convex polygon, where parameterization on weights (tw*, 1 < ç < oo) 
creates a range of problems with different importance of weights, from ordinary 
weighted one to the unweighted version. Optimal trajectory is constructed for 
two example problems and it is concluded that the trajectory may be discontin­
uous and radically different optimal locations can be found for different values 
of the parameter.

Erkut and Tansel [22] analyze the 1 .median problem on a tree network



with parametric node weights for the cases of weights being linear and nonlin­
ear functions of time. A "connectedness” theorem stating that the trajectory 
of optimal solutions over the time horizon is connected and is in the form of a 
subtree, is given for the general case of nonlinear weights. For the problem with 
linear weights, this subtree reduces to a path between the optimal locations to 
the problems at the end points of the time horizon. Using the half-sum prop­
erty, the trajectory of the optimal solution is constructed in 0 (n) time, n being 
the number of nodes in the tree. The connectedness result also facilitates the 
construction of the optimal trajectory of the problem with nonlinear weights. 
However, the efficiency of the construction method depends on the effort re­
quired to solve nonlinear equations and the total number of breakpoints in the 
trajectory.

Brandeau and Chiu [9] summarize recent results on parametric analysis of 
the optimal location of a single facility on a network or a planar region. The 
parametric problems addressed are cent-dian problem introduced by Halpern 
[32] [33] whose objective function is a linear combination of center and median 
objectives, problems that use an Lp_norm based cost function introduced by 
Shier and Bearing [46], stochastic location problems with parameterization 
on the customer call rate [3], [4], [8], [15], [16] and dynamic facility location 
problems where demands or distances may change over time [19], [21].

With the assumption of unique optimal solution at a fixed value of the 
parameter and continuity of the trajectory of the optimal location, a method 
for determining the trajectory is presented by the authors. For the median 
problem with demands being time functions uniqueness does not hold, thus the 
method presented is not applicable. Although parametric 1 .median problem 
is analyzed by Erkut and Tansel [22] as explained above, there is no study in 
the literature for the parametric multimedian problem.

CHAPTER 1. INTRODUCTION 9

1.3 Scope of the Thesis

In this study we focus on parametric multimedian problems. We examine 
pjnedian and pjnedian with mutual communication problems with weights 
being linear functions of time both on tree and cyclic networks. We assume
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that changes in demand or costs over time are predictable. Since linear re­
gression is frequently used for short and medium term forecasts, it may be 
acceptable to represent future weights as linear functions. For long term fore­
casts, nonlinear demands can be approximated by piecewise linear functions. 
Our analysis for the linear case can easily be extended to the piecewise linear 
case by partitioning the time horizon into intervals each with linear demands.

We construct the trajectory of the optimal solution over the time horizon 
[0,u), by an algorithm that requires the solution of 0{q) static pjnedian prob­
lems, where q is the number of linear pieces in the trajectory. In this study, the 
term ” static problem”, will be taken to mean the relevant problem for a fixed 
value of the parameter time. When we use the term ” trajectori/\ we mean the 
time path of the objective value of the optimal solution to the problem at a 
time point, over the time horizon. By "time horizon”, we mean the continuous 
time interval for which the optimal locations of the facility are intended to be 
determined. The term ” breakpoints” will be used to mean time points at which 
the optimal locations change by at least one location in the trajectory.

We have implemented the algorithm that constructs the optimal trajectory 
and analyzed the behavior of some randomly generated problem instances. 
Trajectories of p_median and pjnedian with mutual communication problems 
were analyzed for special type trees like line, star eis well as arbitrary trees and 
cyclic networks with various edge density factors. In the analysis, the emphasis 
is on tree networks since this study originated to analyze the problems on tree 
networks and then extended to general networks as well.

The general parametric multimedian problem is introduced in Chapter 2. 
Chapter 3 examines the case with linear weights. The algorithm to construct 
the trajectory is also presented in this chapter. Chapter 4 summarizes the 
design of experiments and results from their analysis. Finally, we conclude and 
give future research directions in Chapter 5.



Chapter 2

Multimedian Problems on Time 
Dependent Networks

With the goal of reaching optimal locational decisions, many prescriptive lo­
cation models have been developed for the last three decades. The literature 
is huge and rapidly growing. Yet, among numerous formulations, pjnedian, 
p_center, uncapacitated facility location and quadratic assignment problems are 
considered to be basic model types. Among these problems, we concentrate on 
pjnedian problem and present its time dependent version in this chapter.

2.1 The Clcissical p_Median Problem

For a given value of p, the p.Median Problem is to find locations of p facilities to 
be established and to supply each client from a subset of facilities such that the 
demands of clients cire fully met and the costs incurred are minimized. Facilities 
are uncapacitated in the sense that they can serve any number of clients and 
supply any amount of demand. Nothing is gained from serving a client from 
more than a single facility, so the problem hcis the Single-Assignment Property 
( Dominance Property ). Other assumptions are that demand is fixed and 
independent of server location, a single client is served by a single trip and all 
facilities are identical in the sense that they are operated by one firm or are 
non-competing. With these assumptions finding only the locations of facilities 
suffices. Each client is served by the least costly facility.

11
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A general formulation of the p_median problem by a bipartite network is 
as follows.

Let I denote the set of clients, I =  {1, . . .  ,m}

and J denote the set of potential facility sites, J = {1,... ,n}

The bipartite network Nb = (V,E) = ( I U J,E) has the sets I and J as its 
set of nodes and E as the set of edges. Each arc connects a node in I with a 
node in J.

Let c be a real valued cost vector associated with the edges. If facility j 
cannot supply client i, c,j = oo. Given the data instance m ,n,p and c = {c,j}, 
the p_median problem is.

p_MP : min (
QÇJ.IQNpV

The pjnedian problem was first formalized by Weber (1909). His model 
was a minisum location problem on a plane. The term ” pлnedian” was intro­
duced by Hakimi [30] within the context of network location. Hakimi assumed 
that the cost of serving a client from a facility is proportional to deterministic 
distance between them. His ponedian problem is as follows.

Suppose we are given a network N = (V,E) with node set V = {ui,...,Un} 
and edge set E. Each edge e in E has a positive length /(e). We denote by L the 
set of all points of the network. L is our location space. A point x in L is either 
a node or a point in some edge e =  [vp, u,j such that it divides the edge into two 
subedges [up,x] and [x,u,j satisfying /( [vp,Vq] ) = /( [up,x] ) -1- /( [x,u,| ). The 
length function / induces a distance d on L which assigns a real value d(x, y) 
to every pair of points x,y in L. Here, d{x,y) is the length of a shortest path 
connecting X and y. Note that d defines a distance metric so that it satisfies 
the following properties for all x ,y  £ L.

1) Nonnegativity : d{x,y) > 0 , d(x,y) = 0 iff x = у

2) Symmetry : d(x, y) = d(y, x)

3) Triangle Inequality : c/(x,u) -t- d(u,y) > d(x,y), Vu G L
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Let Wi be a nonnegative weight cissociated with node u,·, i.e. Wi represents 
the demand at node u,. Then, the p_median problem is:

P-M : nnn^E i^ i tî , min{i/(xj,n,) : x j  G ,

where X = { i i ,  3:25 · · · » }  ¡s a set of p points in L , where facilities are to 
be established, i.e. a p_median. Actually, Hakimi differentiated between abso­
lute pjnedians and vertex p_medians. He called the set X  an absolute p-tnedian 
when the points are allowed to be any point in L and a vertex p.median when 
the points are chosen among vertices. Then, he showed by his ” Node Opti­
mality Theorem ” that there exists an absolute p_median whose elements are 
all vertices. Therefore the distinction is unimportant. We refer to the above 
problem as the classical p_median problem and to its optimal solution as a 
p_median.

The p-median problem was discussed in detail by Kariv and Hakimi [36] 
who showed that the problem of finding a p_median of a general network 
is NPJiard. However, they gave a polynomial time algorithm to find the 
P-median when the network is a tree. Generalizations of the p_median prob­
lem are discussed in detail in a survey paper by Tansel et. al. [51] and in the 
2”*̂ Chapter of Discrete Location Theory [42]. At this point we suffice with 
introducing the problem and delay the discussion of the solution methods until 
Chapter 4.

2.2 The p_Median w ith  M utual Communication Prob­
lem

The p.Median with Mutual Communication Problem is to find the location 
of p new facilities which are in interaction with each other and the existing 
n facilities, to minimize the sum of the costs of interaction. The costs of 
interaction are represented as weighted distances between pairs of new and 
existing facilities, and pairs of new facilities. Facilities are distinguishable. 
While existing facilities are distinctly located, new facilities may well be located 
at the same site. An existing facility can be in interaction with more than one 
new facility, therefore the single-assignment property is not applicable in this
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scenario.

The problem was first posed with a planar location space by Francis [28]. 
The solution methods under different distance metrics are discussed in Chapter 
5 ’’Multifacility Location Problems” of Facility Layout and Location by Francis, 
McGinnis and White [29]. The problem on a network is defined by Bearing, 
Francis and Lowe [17] in the presence of distance constraints. The authors 
show that the problem is a convex optimization problem for all data choices 
if and only if the network is a tree. For the case of a general network, there 
exists an optimal solution on the vertices of the network. The problem on a 
network is formulated as follows:

• Suppose our location space L is a network N  = (V,E), where the set of ver­
tices V represents the locations of the existing facilities. The function d{.,.), as 
defined above for the classical p_median problem, denotes the distance between 
two points on the network which is induced by the edge lengths. We represent 
nonnegative weight cissociated with the interaction between the existing facility 
at node u,· and the new facility at location xj by Wji, and that of between the 
new facilities at locations Xj and Xk by Vjk- The problem is:

p_MM : imn Eî=ı Wjid{xj, u.) + E Lj+i Vjkd{xj, i*) j

Here, X  = { Xi,X2, . ■ ■ ,Xp ) denotes p points in L , where new facilities are 
to be located. X is a vector since the new facilities are distinguishable. It is 
possible, for example, to have x,· =  Xj for i j  so that facilities i and j  are 
located at the same point.

The problem on a general network is shown to be NPJiard by Kolen [39], 
while polynomial time algorithms have been given by Picard and Ratliff [44], 
and Kolen [38] on a tree network. Furthermore, Tamir [49] has shown that 
the problem is NP_hard even on a tree, if we restrict the location of each new 
facility to a proper subset of vertices. Although efficient algorithms have been 
presented for the problem on a tree network, there has not been any efforts 
on solving the problem on a general network, with the exception of Chhajed 
and Lowe [13] who gave a polynomial time algorithm when the communication 
between new facilities can be represented by a series-parallel graph. The so­
lution methods will be discussed in Chapter 4 as the experimental studies are
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presented.

2.3 Time Dependent p_Median Problems

Time dependency can arise either by weights or edge lengths being functions 
of time, or both. \V  ̂ first define a general time dependent p_median problem 
with both weights and edge lengths being functions of time. Then, we focus 
on the weight parametric case.

The time dependent p_median problem is to find the locations of p facilities 
to be established so that the costs incurred from supplying changing demands 
of all clients with changing distances to each other over the time horizon [0,u] 
is minimized at all time points in [0,u].

Suppose that node weights ( Wi{t) ), i.e. client demands and edge lengths 
( /(e,t) ) are nonnegative continuous functions of time such that the ratio of a 
subedge length to the entire edge length is constant for t € [0,u]. The length 
function /(.,t) induces a time dependent distance function d{x,y,t) which as­
signs a real value to every pair of points x,t/ in L at a time point t. In accor­
dance with the static case, d{x,y,t) is the length of a shortest path between 
X and y when edge and subedge lengths are fixed at time t. The function 
d{., .,t) satisfies nonnegativity, symmetry and triangle inequality properties of 
a distance function for each fixed t. Thus, d(.,.,t) is a well defined distance 
function. For X  = { xi,X2, . . .  ,Xp }, let f {X, t )  be the cost function defined
as.

f{x,t)  =  wi{t)min{d{xj,vi,t) ·. x, e x }

With these definitions, the time dependent problem at a time point t is ,

p_M(t) : z(t) =  rnin/(X ,t)

If we denote the set of pjnedians that correspond to the optimal objective 
value z(t) at time point t by Xp(t), then the time dependent pjnedian problem 
is to find Xopty the set of all optimal solutions throughout the time horizon [0,u] 
, which is defined as
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^opt = { Np(t), t G (0,u| }

Here, z(t) , Vt 6 [0,u] is the trajectory of the optimal objective value.

Tansel [50] has shown that node optimality holds for the time dependent 
case. The problem can then be restated as

P-M(t) z(t) = mm^/(X’',i)

where X'' denotes the r-th choice of p nodes and q is the number of all 
possible choices of p nodes. Construction of z(t) for t € [0,uj as the pointwise 
minimum of q functions identifies the subset of Xopt with elements that 
consist of vertices only, i.e. =  { Xp(t) H V, t G [0,u] }

We will be focusing on the weight parametric case from now on, with the 
motivation of modeling situations in which demands are time varying in a 
predictable way. The two problems that we examine are Weight Parametric 
P-Median Problem and Weight Parametric p.Median with Mutual Communi­
cation Problem.

The weight parametric p_median problem is the only-weight parametric 
version of the classical p_median problem and represents situations in which 
demand varies predictably by time. The formulation of the problem is as 
follows.

f {X, t )  -  E ”=i w^.(Omin{d(a:j,Ui) : Xj G X}  

p_MP(t) : z(t) =  rm n/(X ,i)

Using the node optimality property, the problem can be restated as.

p_MP(t) : z(t) = min f { X \ t )  = u;,(i)min{d(a:J, v,·) : xJ G A’’’}

Then, the problem is to find the minimum of q functions where, q = .
The definitions of A'p(t), Xopt  ̂Xv and z(t) are still valid.

Weight parametric p_median with mutual communication problem models 
the cases in which there is a time varying traffic among the new facilities in 
addition to the time varying traffic among new and existing facilities. If we
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denote the nonnegative continuous weight between new facility j  and existing 
facility i by Wji(t) and that of between new facilities j  and k by Ujjt(t), then 
the problem is :

f i x ,  t) =  Z U  Wjiii)d{xj, Vi) +  E U  n = i+ i  vjkit)d{xj, Xk)

p.MMP(t) z(t) = min f{X, t )

In this problem, we denote the set of optimal location vectors at time t by 
Xp(t). Xopt is the set of all optimal vector solutions throughout [0,u]. If we 
restate the problem using node optimality property, then the formulation will 
be,

f ( X ’ , t) = T .U  où + ELi+i

p_MMP(t) : z(t) =  ^min f { X ’’,t)

Then, z(t) is the minimum of q functions, where q = n^ and X ,̂ is the subset 
of Xopt that contains all elements that are vectors of p vertices.



Chapter 3

Medians with Linear Weights : 
Trajectory Construction

In this chapter we focus on pjnedian problems with linear weights. As men­
tioned in the Introduction Chapter, short and medium range forecasts usually 
show a linear trend. Furthermore, long range forecasts can adequately be ap­
proximated by piecewise linear functions. Thus, solving the linear weights case 
could facilitate locational decisions in more general time dependent settings.

Within the frame of definitions made in the previous chapter, we define the 
two problems that we will be analyzing in this chapter, p-median problem with 
linear weights and p.median with mutual communication problem with linear 
weights. Development of an eflBcient divide_and_conquer type algorithm to 
construct the trajectory is presented step by step.

3.1 p_Median Problem s w ith  Linear W eights

The formulations of the weight parametric p_median problems were presented 
in the previous chapter. We obtain pjnedian problems with linear weights by 
inserting linear weights into these formulations.

For the p_median problem with linear weights ( p_ML(t) ), we take weights 
as linear functions of the form

18
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w,(t) = a,· + 6,· * t , Vu,· € V and t 6 [0,u] ,

where a,’s and ¿¿’s are given constants which specify a problem instance 
together with n, p and the network structure. We assume a, > 0 and a,+6,u> 0, 
Vi. It follows then, for X  = {xi,X2> · · · ? ^p] Q L, we have

f {X, t )  = Er=i(«i +  6i0niin{if(ij,t;,): Xj e X}

p_ML(t) : rmn f{X, t ) ,  tG[0,u].

Since we know that there exists a choice of p vertices which minimizes 
f {X, t )  at a time point t, we can restrict our solution space to all possible 
choices of p vertices. The set of all choices of p vertices among n vertices is 
finite with cardinality q = Suppose that all possible choices are indexed 
arbitrarily from 1 to q. We denote the set of these indices by Q. With X ’’ 
denoting the r-th choice of node restricted p_medians, we have

f ( X ’̂ jt) = Ar + Br * t, where

Ar = U=iC^iDiX%Vi)

Br = U=ibiD{X%Vi)

with, D{X’’,Vi) =  ^min d{Xj,Vi)

For the pjnedian with mutual communication problem with linear weights 
( p_MML(t) ), we take weights between pairs of new and existing facilities as 
linear functions of the form

u;j,(t) = Uji + bji * t , for {j,i) € h

with h  Q { {j,i) : 1 < j  < p , 1 < i < n }

and weights between pairs of new facilities as

Vjfc(t) = ajk + ^jk * t , for {j, k) G h

with /2 ^  { (i, k) : l < j < k < p } .

In this case, the problem data is specified by the constants Oj,·, bji, {j, i) 6 h  
and ajk, Pjki U,k) € / 2. Assume Oj,· > 0, aj, + 6j,u> 0, max{aj,-,aj, +  6j,u} > 0
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v(i, 0  6 /i  and ajk >  0, Ojk +  0, max{ajfc, ajk +  Pjku} >  0 V{;, k) e  h-
For X  =  ( i i ,X2> · · ·»^p) € X”*, we have

f { X , t ) =  X) {oji +  bjit)d{xj,Vi) +  i^jk +  0jkt)d{xj,Xk)
(j.i)eh U<k)€h

There exists a solution vector on vertices so that we can restrict the solution 
space to all vectors of size p whose elements are vertices. There are q = n’’’ 
such vectors. Suppose that all such vectors are indexed arbitrarily from 1 to 
q. We denote the set of these indices by Q. With X ’̂ denoting the r-th vector, 
we have

f { X \ t )  = Ar + B r * t

pJ^L(t) : min f{X, t ) ,  t6[0,u], where

^ ( j , k ) € l 2 ^ J k d ( X j ,  Xk)

= H{j,i)eh d" H(j,k)eh 0ikd{x^,Xk)·

Then, multimedian network location problems with linear weights can be 
represented as

PL(t) : z(t) =  min /(X ’’,i) = Ar + Br * t.
T&Q

For simplicity of notation, we define

Fr{i) = / U ^ 0 ·  Thus, z(t) =  min F,(t).
l<r<g

With z(t) being the lower envelope (pointwise minimum) of q linear func­
tions over the interval [0,u], we have the following lemma.

Lemma 1 : z(t) is piecewise linear concave function of t with at most q 
pieces.

Let q be the number of pieces of z(t) and Q be the set of i 6 Q for which 
i^(t) is a nondegenerate piece of z(t) in [0,u]. Clearly, | Q | = 9 and q < q. Let 
B  = {¿1, 62, · · · 5 bg-i] be the set of breakpoints of z(t) and B'  be the extended 
set which is the union of set B,  breakpoints, and the end points of the interval
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[0,u]; that is,

B' = {6o , w i t h  ¿>0 = 0 and bg =u. We assume that the 
indexing is done in such a way that bo < bi < 62 < .. .  < < bg.

bj=u (q = 3) 

Figure 3.1. An example to the trajectory, z(t)

In general, the lower envelope of q linear functions can easily be constructed 
in 0{q^) time. It may also be possible to do the same task with better time 
complexity, such as 0{qlogq). This requires knowing the two parameters of 
the linear functions, the intercepts and the slopes. In our case, the parameters 
are /4,·, Bi, Vf G Q. Since q =  or nP, the computation of all A,, B( and 
the construction of the lower envelope z(t) via known methods takes at least 

log (p)) or 0 (nP lognP) time.

We propose, however, a much more efficient method that avoids a pri­
ori computation of the parameters A,, Bi which are exponential in number. 
We construct the lower envelope by solving 0{q) static problems and compute 
only 0(q) of the parameters A,·, Bi on a need basis during the construction pro­
cess. If the static problem can be solved in 0{g{n,p)) time, then the proposed 
method constructs the trajectory of z(t) in 0{qg(n,p)) time. It is evident from 
our computational studies presented in Chapter 4, that q is typically much
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much smaller than q for many instances, (e.g. among the 1350 randomly gen­
erated p_MML(t) problems, maximum q turned out to be 15 for the problem 
with n = 60 and p = 30, where q = 60 °̂ =  2.21e+53.) Therefore, trajectory 
can be constructed in reasonable time for problems of large sizes, even though 
q is extremely large, (e.g. 10 minutes for p_MML(t) problems with n =  100 
and p = 95 and 1 hour for p_ML(t) problems with the same values of n,p on 
tree networks.)

At this point two questions arise. One is, whether q ever equals q or there 
is a bound on q which is significantly smaller than q which also explains the 
immense gap between q and q in our experimental studies. We present two 
bounds on q after discussing our trajectory construction algorithm. However, 
there is still a huge gap between these bounds and realizable values of q in 
practice, the reasons of which remain to be explored. The other question is, 
what the least order of constructing the trajectory could be. To explore the 
answer to the second question, let us define the sets, Z, Zb , and S  as follows.

Z  = { {t,z{i)) : t e  [0,u] }

Zb = { (6.·, : bi 6 B' }and
5 ^  {{t,X{t))  : f{X{t) ,t )  = z(i), iG [0,u]}.

In our context, what we mean by constructing trajectory is finding the sets Z  
and S. Clearly, it suffices to know Zb to generate Z. Observe that finding 
each z(6,·) requires solving a static problem, since z(6,·) is defined as

z(6,·) = m in/(X, 6,·), for 0 < i < q.

Hence, construction of Zb requires solving 9 -f 1 static problems. Knowing 
the solutions to these static problems, i.e. X (6,)’s, is not sufficient to construct 
the set S since a solution X{bi) may not be optimal at any time point different 
than 6,. To find a solution that is optimal between two breakpoints 6,_i and 
bi, a static problem solution is required at a time point t € 6,·). Thus,
the least number of static problems to be solved to construct the trajectory 
is 2q A I- The method we propose in this thesis constructs the trajectory by 
solving at most 4g-2 ( 0(q) ) static problems. Therefore, we may conclude that 
our construction algorithm is a best order algorithm unless there exists a more 
efficient method of identifying optimal solutions at a time point than solving 
a static problem.
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3.2 Trajectory Construction

We start this section by developing some preliminary information that leads 
to an efficient algorithm to construct the trajectory.

3.2.1 Preliminaries

We could construct the trajectory by solving 2^+1 static problems as explained 
above, if we knew the set of breakpoints, B. However, the set B is a priori 
unknown. A breakpoint is identified as the intersection point of two adjacent 
linear pieces of z(t), i.e. the intersection point of Fi{t) and Fj{t), for some i , j  6 
Q. The intersection point of the functions Fi{t) and Fj(t) can be identified

 ̂ = b' ^  whenever 5,· ^  Bj. Let T = { t : t E (0,u) and 3 i , j  G Q 
such that Bi ^  Bj and t = }· With this definition, T  is the set of time
points in (0,u) at which two ( or more ) functions intersect. We call T  the set 
of intersection points. T  has at most q{q — l)/2 elements. Observe that each 
breakpoint is supplied from T; that is, B Q T .

Our trajectory construction algorithm solves static problems at points which 
are those elements of T  that are candidates to be breakpoints. Even though T  
ha5 0{q^) elements, the algorithm correctly selects 0(q) elements as candidates 
thereby eliminating a large number of intersection points from candidacy.

At an intersection point, more than two linear functions may intersect. If 
the objective value induced by intersecting functions happens to be optimal, 
then this point is a breakpoint. We need to find the functions that are optimal 
to the left and right of that breakpoint to correctly identify the solutions in 
[0,u]—.6 . Figure 3.2 depicts the situation.
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Figure 3.2. Alternate solutions at a breakpoint

In Figure 3.2, among all alternate solutions at t = bk, we want the one that 
remains to be optimal at t = 6̂ . + e/2 for t > 6jt and at t = 6* — e/2 for t < 6jt, 
where e is a small positive real number. We should use such an e that there 
should not be any breakpoints in the intervals [6jt — e /2, fejt) and {bk,bk + e /2].

Let £ = min (6,· — 6,_i) and £' = min (t' — t ). Thus, £ and £' 
specify, respectively, the minimum distance between any two distinct members 
of B  and T. Note that B C T  implies 0 < £' < £ <u. Since the breakpoints 
and intersection points are computed only when needed, the sets B  and T  are 
not available at the beginning. Hence, £ and £' are not a priori computable. 
However, it is possible to calculate a lower bound on £ and £' in terms of the 
problem data. The computation of such a lower bound will be given at the end 
of this chapter.

Lem ma 2 : Let LB  be a lower bound such that 0 < LB < £ '< £ .  If we 
choose e from (0,LB),

i) there can be at most one breakpoint, i.e. an element of B, in a time 
interval of length e.

ii) there can be at most one intersection point, i.e. an element of T, in a 
time interval of length e.
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Statement i) follows from LB  < £ and ii) from LB < i'. Using Lemma 2, 
we can easily identify solutions that remain optimal on both sides of a break­
point. To avoid repeating the long expression, we call the solution that remains 
to be optimal to the immediate left (right) of a breakpoint cis ’’left (right) op­
timal solution” and use the term ”left_right optimal solutions” when we refer 
to both of such solutions.

Another lemma that we will be using in our algorithm is a consequence of 
Lemma 1.

Lemma 3 : Let X{1) and X(u) be the optimal solutions to the static prob­
lems at the end points of the interval [/, u]. If f{X{l),u) = f{X{u),u), then 
z(t) = f (X{l) ,t)  for all t G [f, u]· Similarly, if f{X{l),l) = f{X{u),l), then 
z(t) = f{X{u),t) for all t G [I, w].

Proof: The fact that for all AT C V, | X | = p, 

f iX { l ) , l ) < f { X , l )  

f { X ( l ) , u ) < f{ X ,u )

implies, together with linearity of /  in t for fixed X  that 

f { X ( l ) , t ) < f { X , t ) ,  Vi G [/,«].□

We had stated that to construct the trajectory we solve static p_median 
problems at certain intersection points i G T. Let i , j  be distinct indices in Q 
such that t = tij = with B{ ^  Bj and 0 < tij <u. When we solve the
pjnedian problem at an intersection point i,j, we may have one of the following 
possibilities.
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Possibility I  : tij is a breakpoint

Two subcases arise depending on if Fi{tij) = Fj{tij) = z{tij) or not. 

la) X'  and are optim al a t t  =  tij

Figure 3.3. Possibility la

X'  and X^ are optimal at t = tij. Ff(t) is not equal to Fj{t) for t different 
than tij so that is a breakpoint of the optimal trajectory.

Since there can be only one breakpoint in an interval of length e, we know 
that there cannot be any other breakpoints in the interval {tij - £ /2,i,j +  e /2]. 
The solution at t =  tij - e/2 is the left optimal solution at t =  and corre­
spondingly, the solution at t =  tij + e¡2 \s the right optimal solution at t = 
and they are both optimal at t =  tij. Note that the left-right optimal solutions 
may or may not be supplied from ( In Figure 3.3, they are ).
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Ib)A ‘̂ and are not optimal at t =  <,·

Figure 3.4. Possibility Ib

X '  and X^ are not optimal at t = tij. However, there is a breakpoint of 
the optimal trajectory corresponding to optimal solutions at t = tij. Fi{tij) = 
Fj{tij) > z{tij) implies that there exist indices l ,k  with {i , j)  H = 0 so
that the optimal solutions at t = Uj = tik are X ‘, X^. In this case, the solutions 
at t = tij - e/2 and t = Uj + e/2 are the left-right optimal solutions at t = Uj.
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Possibility II : Uj is not a breakpoint

Two subcases arise depending on if there is a breakpoint within an e/2 
neighborhood of or not.

Ila) No breakpoint in the e/2  neighborhood of t{j

Figure 3.5. Possibility Ila

and X'  are not optimal at t =  Neither do we have a breakpoint of 
the optimal trajectory in the interval [i,j - e /2,i,j + e /2].

The optimal solution at t = Uj, namely X^  is optimal both at t = - e/2
and t = tij + e /2. Due to Lemma 3, we can conclude that X ’̂ is optimal in 
the interval - e /2,i,j +  e:/2] and we do not have any breakpoints in this 
interval.
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lib) There is a breakpoint in the e / 2  neighborhood of

and X'  are not optimal at t = t{j. We have X* as the optimal solution. 
However, this solution is not optimal throughout [t,j - e /2,i,y + e /2]. There­
fore, there is a breakpoint either on the left or on the right of Uj but not both 
since we cannot have two breakpoints in an interval of length e (Lemma 2).

Ilbi : There is a breakpoint to the right of

In this subcase the solution X'’ is still optimal at t = t{j - e/2 but another 
solution, X ‘ in Figure 3.6, is optimal at t =  tij -|- e /2. So, there is a breakpoint 
in the interval {tij, tij -f e/2).

Figure 3.6. Possibility Ilbi
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Ilbii : There is a breakpoint to the left of t i j

In this subcase the solution at t =  + e/2 is optimal but another
solution, in Figure 3.7, is optimal at t = tij - e /2. So, there is a breakpoint 
in the interval {tij — e /2, t,j).

Figure 3.7. Possibility Ilbii

In both subcases of Ilb, we have exactly one breakpoint in the interval 
{tij - e /2,t,j + e /2).

In all of the above explained possibilities, we can decompose the problem 
into two by dividing the time interval [0,u] into two subintervals: [/, t,j] and 
[t,j, u].

All of the above possibilities may arise if we are using an e from (0,^). 
However, we will not have Possibility II b) if e is chosen from (0,^') or (0, LB)  
because there cannot be more than one intersection point, i.e. an element of 
r ,  in an interval of length e when e < LB < i  < i'. If we exclude Possibility 
II b) for a moment, then for all of the remaining cases the course of action is 
the same. We find the left solution X~  and f{X~ ,t) at t = — e/2 and the
right solution X'*' and f{X'^,t) at t = tij +e/2 . Then we divide the current 
interval [/,u] into two subintervals and continue with the newly
generated intervals in like manner.
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If we use € G (0,£), we would have Possibility II b). In Possibility II b) i, 
we find the intersection point of Fi{t) and î fc(t), namely Then, we find 
the solution at t = tij + {Uk - = (ilk +  to)/2 to determine the left_right
optimal solution at t = tij. Using Lemma 2 and the fact that {tik - tij) < e/2, 
we can conclude that the solution at t =  {tik + Uj)/2 is optimal in [Lj.iijt]. 
We divide the problem into two corresponding to intervals and [ijit,«].

Similarly, in Possibility II b) ii, we find the breakpoint of P/(t) and Fk{t), 
namely tik, find the solution at t = tik +  (Lj - tik)/2 = [Uj + tik)¡2 and con­
clude that this solution is optimal in the interval [tik, tij]. We divide the problem 
into two as that of finding the trajectory in intervals [/, t/jt] and [<,jjn]·

There only remains the course of action to be taken at the end points of 
the interval [0,u] to be investigated. Let be an optimal solution found at 0 
( or u ). When w'e are solving a static problem at the end points, we have one 
of the three possibilities shown in Figure 3.8.

For t = O : For t = u ;

CASE I

Figure 3.8. Possibilities at end points ( continues on the next page )
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For t = 0 : For t = u

CASED:

CASED !:

0 o+e/2
^  t

Figure 3.8 Continues

As is evident from the figures, we need to compare the objective values of 
solutions at t = 0 and t =  e /2 o r t  = u and t =  u-e/2. If they are the same, 
then the solution at t =  e/2 is the right optimal solution at t = 0 or the solution 
at t = u-e/2 is the left optimal solution at t = u ( Cases I and II ). If they are 
different, we take the course of action that we would take for Possibility Ilb) i 
at t = 0 and Possibility II b) ii at t =  u ( Case I I I ). All three cases are possible 
regardless of how we choose e ( from (0,LB) or (0,£), as there is no bound on 
the length between a breakpoint and an end point of the time interval [0,u] ).
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Based on the above analysis, the proposed algorithm constructs the tra­
jectory of pjnedian problems with linear weights by solving 0{q) static mul­
timedian problems. The algorithm is general in the sense that we could find 
the trajectory of p_ML(t) and p_MML(t) problems both on trees and cyclic 
networks with the algorithm. Furthermore, if we can find a lower bound to the 
length between two adjacent breakpoints and if we have an algorithm to find 
the minimum function at a fixed time point in 0 (r) time ( r is a function of 
the problem input ), we could find the lower envelope of exponentially many 
induced linear functions in 0 (r9) time using this algorithm.

3.2.2 The Algorithm

We will first explain the algorithm on a small example and then give the formal 
statement. Let us consider a p_MML(t) problem on a tree network with n = 9 
existing facilities and p =  4 new facilities to be located over the interval [0,100].

Weights between new facilities, Vjjt(t) =  Ojk + Pjk* t :

j\k 1 2 3 4
1 O+Ot 0”h3t l “l-3t O-hOt
2 0+3t O+Ot 5“t-t 2“h2t
3 l+3t 5+t 0“|“0t 4-bt
4 0-t"0t 2-|-2t 4-1-t O-bOt

h  = { (1,2),(1,3),(2,3),(2,4),(3,4)}

Weights between new and existing facilities, i/;,j(t) = a{j + bij* t :

j\i 1 2 3 4 5 6 7 8 9
1 6 + t O-f-Ot 5-|“2t 3"f-2t 04“0t 0-b4t 0-j“0t 0“|“0t O-bOt
2 O-bOt 3“["t O-bOt 3"f“2t 5"}-t 0-b3t O-bOt O-j-Ot 0“l“0t
3 O-fOt 0“h0t 0“l“0t O-bOt 2H“2t O+Ot 1+t 0-[-3t 2“t*3t
4 O-bOt O-bOt 0H“0t O-bOt O-bOt 2-bt 5+ 2t 0“h0t 3“l“2t

h  = { (1,1),(1,3),(1,4),(1,6),(2,2),(2,4),(2,5),(2,6), 

(3,5),(3,7),(3,8),(3,9),(4,6),(4,7),(4,9)}
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The tree network on which facilities are to be located is as follows with 
numbers on edges denoting edge lengths.

Figure 3.9. Tree structure of the example problem

To find the solution at a particular time point, we solve the static problem 
that arises when we calculate the weights at that time point. We use Kolen’s 
algorithm for p_median with mutual communication problem on tree networks 
[38] to solve the static problems.

The trajectory construction algorithm goes as follows:

As preprocessing, we compute distances and LB, and choose e = 1.0596 * 
10“’̂ from (0,LB).

We find the solutions at t = / = 0 and t =  0 + e/2 : XiO) = (3,4,4,7). Since 
the solutions at t = 0 and t = 0 + e/2 are the same, we can conclude that the 
right optimal solution at t = 0 is AT(0). We compute the time dependent ob­
jective value corresponding to X(0), i.e. F’(A’(0),t) = 137 + 126*t. By X(f), 
we denote the left \  right optimal solution at t.

Then, we find the solutions at t =  u = 100 and t = 100 - e /2. The two 
solutions turn out to be X(IOO) = (6,6,6,7). After calculating F’(A’(100), t) = 
181 -f 103*t, we compute the time point at which the two objective functions, 
^(^^(0),^) and F’(X(100),t) intersect. We denote this point as ( Figure
3.10 )
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Figure 3.10. Example problem, step 1

Next, we concentrate on the interval [0,t/u] = [0,1.913]. Since we already 
know the solution at t =  0, we only find the solution at t = u - e/2 = 1.913 
- e/2 : X(1.91) = (4,4,7,7). F(X(1.91),t) = 147 + lll* t. Then, we find the 
intersection point of F(X(0),t) and F’(X(1.91),i), t/u = 0.667 ( Figure 3.11 ).

Figure 3.11. Example problem, step 2
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Now, we concentrate on the interval [0,0.667]. The solution at t = 0.667 
- e/2 is J>̂ (0.67) = (3,4,7,7). F(X(0.677),i) =  140 + 120*t. The intersection 
point of F(X(0),t) and F(A’(0.67), i) is t;« =  0.500. Next we restrict ourselves 
to the interval [0,0.5]. At t = 0.5 - e/2, we find the solution A (̂0.5) = (3,4,4,7) 
with F(X(0.o),t) = 137 + 126*t. This solution is the same as X(0). Using 
Lemma 3 , we conclude that A"(0) is optimal in [0,0.5] ( Figure 3.12 ).

Next
Step l=0S U tt0.667

Figure 3.12. Example problem, steps 3 and 4

Now, we consider the interval [0.5,0.667]. We compute the solution at 
t =  0.5 + e/2 : (3,4,7,7). This solution is the same as X(0.67), therefore we 
conclude that X(0.67) is optimal in the interval [0.5,0.667].

The next interval is [0.667,1.913]. We find the solution at t = 0.667 + e/2 :
(3.4.7.7) . We find the intersection point of F(X(0.67),i) and F(A’(1.91),t), 

= 0.778.

Our next interval is [0.667,0.778]. We find the solution at t =  0.778 - e/2 :
(3.4.7.7) . This solution is the same as X(0.67), thus we conclude that A"(0.67) 
is optimal also in the interval [0.667,0.778].

Next we process [0.778,1.913] and find that X(1.91) is optimal in this inter­
val. Then, we proceed with the interval [1.913, 100] and find the breakpoint t 
= 4.25. The algorithm goes on like this and stops after processing the interval
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[4.25,100] since no more intersection points are found and the end point of the 
time horizon is reached. The optimal trajectory in the time horizon [0,100] is 
shown in Figure 3.14.

Figure 3.13. Example problem, trajectory

The figure is not accurate as it is not drawn to scale, but it roughly de­
scribes the trajectory which is composed of 4 linear pieces and three breakpoints 
t = 0.5, t = 0.778 and t = 4.25. The solution can be represented on the network 
as follows.

Figure 3.14. Solution on the network ( continues on the next page )
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We can show the flow of control of the algorithm by a binary tree. We first 
find the left_right optimal solutions at t = / and t = u and the corresponding 
objective functions. If the objective functions are the same, we stop concluding 
that these solutions are optimal in [/,u] ( Lemma 3 ). If not, we find their 
intersection point and by splitting the interval [/,u] into two parts (/,<;„] 
and [i/„, u], we branch into two. We choose the left branch and go on depth-first 
until the solutions at t =  / and t = u have the same objective functions. At this 
point, we stop branching and conclude that the solutions X{1) and X(u) are 
optimal in [/, u]. We go on with the right branch of the previous level. Figure 
3.15 depicts the flow tree corresponding to our example.

Opt.Soln. OpLSoln. OpLSoln. Opt.Soln.
is

reached
is

reached
is

reached
is

reached

Figure 3.15. The flow tree of the algorithm

In essence, the algorithm is of divide.and_conquer type and can be coded 
easily by a recursive procedure. We give the pseudo_code of two different forms 
of the algorithm corresponding to the two cases when e is chosen from (0,£) or 
(0, LB). To prevent any possible confusion , we denote e as if it is chosen 
from (0,£) and as ’’clb” if it is chosen from (0, LB). The algorithm is more 
efficient when £lb is used. However, in solving large problems on computer, LB
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may turn out to be very small and may cause numerical instability. Therefore, 
using a larger e like £/ may be necessary. That is why we give the version of 
the algorithm when et is used, even though we neither know £ a priori nor have 
a bound LB' on it such that LB < LB' < £. We first present the algorithm 
using et and then give the simplified one with £¿5.

The Algorithm LOCATEe^

Compute distances and LB', choose St from (0,LB').

Optimumj.tJ <— not found

Optimumjit_ti <— not found 

SOLVE-IN(/,u)

The Recursive Procedure SOLVE-IN 

If Optimum.atJ is not found, then

Find z(/) ( Optimal objective value at t = / )

Find X{1 + et/2) and F{X{1 + e^/2), t) =  A,+ + Bi+ * t.

Calculate z+ = Ai^ + B ^  * 1.

If z+ > 2.(1), then ( There is a breakpoint in the vicinity of / ) 

Find F(X(l),t) = A i - \ - B i * t

Find t i  = B i l - B i  > ( Right optimal solution at t = / )

X(^^) is optimal in [/, tj] ( Possibility II b) i ) 

SOLVEJN(i,,u)

Optimum-atJ found 

If Optimum_at_u is not found, then

Find z(u) ( Optimal objective value at t = u )
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Find X{u — £¿/2) and F{X{u — e //2),<) =  Au_ + B^_ * t. 

Calculate z_ =  A^_ + * u.

If z_ > z(u), then ( There is a breakpoint in the vicinity of u ) 

Find F*(A^(u),t) = Au -h Bu * t

Find <u = g" ( Left optimal solution at u )

X (^ ^ ^ )  is optimal in [i„, u] ( Possibility II b) ii )

SOLVE JN (/,t„)

Optimum^t-u *— found

If = Au_ and Bi^ = 5„_, then ( Same solution at / and u)

X{1 + er/2) is optimal in [/,u]

Else,

Calculate i/u =  _g,~ (The problem is split at i;„)

Optimum^t-/ <— not found

SOLVE

Optimum^t-u <— not found 

SOLVE u)

The pseudo-code of the algorithm using £j[,b is as follows.

The Algorithm  LOCATEe^B

Compute distances cind LB,  choose Elb from (0,LB).

Optimum-at J  <— not found 

Optimum^t-u *— not found 

/.equals.O *— true
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ti_equals.u *— true 

SOLVE_IN(/,u)

The Recursive Procedure SOLVE-IN 

If OptimumjitJ is not found, then 

If /.equals_0, then

Find z(/) ( Optimal objective value at t = / )

Find X{1 + £lb/ 2) and F{X{1 + SLB/2),t) = Ai+ + Bi+ * t. 

Calculate z+ = Ai ,̂ + * /.

If 2+ > z(/), then ( There is a breakpoint in the vicinity of / ) 

Find F{X{l),t) = Ai + B i * t

Fi-xl ^

X ( ^ ^ )  is optimal in [/, i;]

SOLVEJN(i,,u)

Lequals_0 <— false 

Else,

Find X(I + £lb/ 2) and F(X(l  +  £BB/2),t) = Ai+ + Bi+ * t. 

Optimum^tJ <— found 

If Optimum^t.u is not found, then 

If u_equads_u, then

Find z(u) ( Optimal objective value at t = u )

Find X{u — Si b I’F) and F(X(u — eLBl2),i) = Au_ + Bu_ * t.
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Calculate z_ = * u.

If z_ > z(u), then ( There is a breakpoint in the vicinity of u ) 

Find F{X{u),t) = Au + Bu * i

Fin<i

is optimal in [tuiW]

SOLVE JN(/,t„) 

u_equals_u ♦— false 

Else,

Find X{u — £lb/ 2) and F{X{u — 6LBl‘̂ ),t) = A^_ + B„_ * t. 

Optimum_at_u <— found 

If Ai^ = A^_ and Bi ,̂ = jB„_, then 

X{1 + is optimal in [/,u]

Else,

Calculate i^ ~ ·

Optimum^t-/ <— not found 

SOLVEJN(/,t,„)

Optimum^t_u <— not found 

SOLVEJN(<,„,«)
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3.2.3 Time Com plexity of the Algorithm

The time complexity of the algorithm depends on the time required to solve 
the static problems and the number of pieces in the trajectory. The algorithm 
solves static problems which are in linear order of the number of pieces in the 
trajectory.

At each end point of the planning horizon [0,u], we solve two static problems:

At t = 0, we solve one problem for t = 0 and one for t = 0 + e /2.

At t = u, we solve one problem for t = u and one for t = u—e /2.

At an intersection point if we use et, we solve three static problems; at 
t = tij , t =  tij — ef/2 and t = tij +  e</2. If we use eLB·, we solve two static 
problems: one at t = — ez,B/2 and the other one at t = tij + ei,B/2.

Lem ma 4 : For each linear piece of the trajectory, we solve static problems 
at most once at an intersection point that is not a breakpoint of the trajectory. 
This corresponds to Possibility II a) and b).

In Possibility I a) and b), we directly detect a breakpoint of the trajectory, 
so we do not solve any static problems at non-breakpoint time points.

In Possibility II a) and b), once we find the left-right optimal solutions and 
corresponding time dependent functions at an intersection point tij, we find 
the intersection points of this function with the functions that are optimal at 
the end points of the current interval. These intersection points are either the 
end points of this piece or are at other pieces. In this case we may solve static 
problems only once at a non-breakpoint time point for one linear piece of the 
trajectory.

Thus, we can say that we solve at most once static problems at an in­
tersection point that is not a breakpoint of the trajectory. The number of 
static problems solved is only a function of the number of linear pieces in the 
trajectory, q.

Lemma 5 : We solve at most 6g - 5 static problems to find the trajectory 
using 6(, and 4 ^ - 2  static problems using clb-
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Let us explain this result on an example. Consider a problem instance for 
which q = A.

processing: 3 5

Figure 3.16. Points at which static problems are solved

There are 5 i,_,’s for which we solve static problems. We solve 4 more static 
problems at the end points, 0 and u.

It is clecirly seen that in general, we solve at most once static problems at 
a non_breakpoint for each piece that is not adjacent to the end points of [0,u]. 
Actually, in almost all instances we solve these three or two problems for each 
non_adjacent piece since Possibility I b) rarely occurs. For pieces that are ad­
jacent to the end points of the time horizon, we do not solve any problems at 
a non-breakpoint intersection point. If we have q pieces in the trajectory, we 
have 9 - 1 breakpoints and q - 2 non_adjacent pieces. If we denote the number 
of static problems solved at a non.breaJcpoint by k, then we can represent the 
number of static problems that we solve during the trajectory construction eis

k*{q — 2) —1) 4- 4 = k * {2q — 3) A-A
'----- V----- - '-----V----- -

nonJbreakpoints breakpoints endpoints
for g > 1.

When we use £/, k = 3 and for ScBy k = 2. Thus,
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Number of static problems solved = 6q - 5 using S( for g > 1

Number of static problems solved = 4q - 2 using slb for 9 > 1

If 9 = 1, we do not have any breakpoints. We find the single piece in 
the trajectory by only solving 4 static problems at the end points of the time 
horizon using either or elb·

3.3 Bounding T im e Between Adjacent Breakpoints

We present the calculation of LB, a lower bound to the length between two 
adjacent intersection points in this section. As was explained earlier, LB  also 
bounds the length between any two breakpoints of z(t). We derive two bounds 
for each of the problems p_ML(t) and p_MML(t).

Let r ' , r  € T with t ' < t and I' — t — r ' . Let and {k,l} be index 
pairs such that t  — tij and t' =  tkh Observe that t' ^  r implies {i ,j} ^  {¿, /}; 
that is, at least three of the indices are distinct. Figure 3.17 depicts the case 
with j  = /.

Figure 3.17. Length between nearest intersection points
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Now let us analyze (<,j - <*/) to derive a lower bound. Since G (0,u),
from the definitions of Uj and t« we have

tij - hi = B ratios are positive. Hence, the following
term is well defined:

iij ~ tkl —-  {Bj-Bi)(B,-B^)

Since t ' < r , we have {tij - tki) > 0. We may assume without loss of gen­
erality that Bj > Bi and Bi > Bk. ( If not, rename the indices. ) Thus, both 
the numerator and the denominator in the above term are positive. Therefore, 
with integer data ( a,-,6,’s for p_ML(t) and ajt, 6ji, for p_MML(t) ),
minimum value of

{Ai -  Aj){Bi -  Bk) -  (Ak -  Ai){Bj -  Bi) is 1. Hence,

(Bj-Bi)(B,-Bk) ^  (̂ ‘i -  hi) = £'■

Our aim is now to find a lower bound LB  to the LHS in the above inequality, 
i.e. find an LB  such that

LB <

3.3.1 Calculating L B  for the p_ML(t) Problem

For ease of notation let LB = Then, we are looking for,

U B > { B j - B i ) { B , - B k )

For the p_ML(t) problem, the slope Bi is defined as 

= Then,

{Bj -  Bi) =  Er=i biD{Xhvi) - Ei=i biD{X\v,)

= U =,b i[D {Xhvi) -D {X\v ,)]

Let us define for a node vt the minimum and maximum distance between 
this node and all nodes of the network.
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mindisti = min d{vj,vi) = 0 ( minimum occurs when j  = I )

maxdisti =  r n ^  d{vj,vi)

Then, we can bound the term [ D{X\vi)  - D{X\vi)  ] as follows: 

mindisti - maxdisti < [ D{X\vi)  - D[X\v i)  ] < maxdisti - mindisti 

which is equivalent to ( since mindisti =  0 )

- maxdisti < [ D{X^ ,vi) - D{X\vi)  ] < maxdisti.

If bi > 0, then 6;[ D{X^,vi) - D{X\vi)  ] <  bi maxdisti and

if 6/ < 0, then bi[ D{X^,vi) - D{X\vi)  ] < 6/ ( -  maxdisti).

Thus, {Bj — Bi) < JZiLi I bi I maxdisti = U

Note that U is independent of j  and i and is an upper bound for {Bj — B{) 
for all pairs of j  and i. So,

{Bj -  Bi){Bi -  Bu) < U{Bi -  Bk) <U^ = UB.

We have found the upper bound UB that we were looking for :

UB = I I maxdisti)^. Thus,

Another bound which is looser but somehow easier to calculate compared 
to the above bound is UB, which is calculated as follows.

Let bjrange denote the maximum difference between the slopes of all weights 
and md denote the maximum distance between the nodes of the network.

b-range = max 6/ - min 6/KKn KKn

md = max d{vj,vi)...n}  ̂ ·” ’

Then, {Bj — Bi) < n*  bjrange * md = U
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Again, U is independent of i , j .  So,

{Bj -  -  Bk) < U{Bi - B k ) < U ^  = UB

LB = = ^  < £'.UB {n*b^range’nnd)^ —

Note that LB = < = LB(n*b-range-mdy — O 

As a result, we could choose e from the interval (0,̂ ^» ·

3.3.2 Calculating L B  for the p_MML(t) Problem

For the p_MML(t) problem, the slope of the objective function for the r-th 
choice of pjiodes is defined as,

Bt — IZ(j,i)g/j ^j»d(xj,v,·) + 53(j,A:)e/2 ®fc)· Then,

~ Bs) = + H(j,A:)G/2 ®fc)

■ 2Z(j,«)e/i ■ 53(j,fc)G/2

(^r ~  Ba) = hji [ d{xj,Vi) - d[xj,Vi) ]

+ E(j,k)eh^kl ( d(a:;,4) * ]

With the same definitions of mindisti, maxdisti and md for the p_ML(t) 
problem, we have

max (5 r - 5 *) < Eo.oe/, I h  I maxdisU + mdE(i.jt)6/2 \ Pk i \  = U  

Again U is independent of indices r and s. So,

(Bj -  Bi) (B, -  Bk) <U^ = UB and

r R — -L·- —  ̂ < / '
-  UB -  (E(2,.)€/, lb4-»r<ii*‘i+m<iE(,,*)6/2 -  ·

As a result, we could choose e from the interval (0,XB).

Using the second approach for the p_ML(t) problem, we can find another 
bound for the p_MML(t) problem, too.
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Let us define bjrange as the maximum difference between the slopes of 
all weights between pairs of new and existing facilities and ^jrange as the 
maximum difference between the slopes of all «’eights between pairs of new 
facilities.

bjrange = max 6,,· - min 6,,·(i.Oe/, (j.Oe/, ·'

Bjrange = max 3ki - min Bu
(i,kW2

Then, {Bj — Bi) < I /i I *bjrange * md +  | /2 | *lBjrange * md = U

where, 11\ | and | /2 | denote the cardinalities of the sets /1 and /2.

{Bj -  Bi){B, -  Bk) < U{Bi -  Bk) < = iJB a,nd

LB = ^  =UB (\Ii\*b^ange*md-{‘\l2\*P^ange*md)^

Note that LB < LB  so that LB  is a looser bound.

3.4 Bounding Number of P ieces in the Trajectory

At the beginning of the chapter, we had posed the question of whether q ever 
equals q and delayed the answer until this point. Now that we have presented 
a bound on the length between two adjacent breakpoints of the trajectory, we 
may well bound the number of pieces in the trajectory using this bound.

Since the length between two adjacent breakpoints is greater than or equal 
to LBy in an interval of length u we may have at most n/LB  pieces in the 
trajectory. Thus, q < njLB. This bound depends on the data of the problem. 
Examining the problems generated in our experimental studies, we observed 
that this bound still happens to be much larger than q even though it tends to 
be significantly smaller than the bound q cis the size of the problem increases. 
The following table gives some idea about the magnitudes of q, q and u/LB.
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For p-MML(t) problems,

n P observedmax? 9 ulLB
20 10 5 3.2x102® 1.8x10®
100 95 1 1.0x102®“ 1.2x102®

For p_ML(t) problems,

n
20

100

10

50

observed max j

1

1.8x10®
1.0x102®

u/LB
1.4x10®
1.7x1020

Another bound to q in terms of problem data could be found using the idea 
that data ranges could put a limit on the number of distinct linear functions 
Fi{t) = Ai -f- Bi. Let us define the ranges of values that the linear functions 
could take at points 0 and u as

Ajrange = max A,· — min A,· and 
«€<? ie<3

U-range = max (A,· +  nBA — min (A,· + uBi).

If we use integer data, A, ’s and 5 ,’s also turn out to be integral. Then, we 
may have at most Ajrange number of different A,’s and U.range number of 
different A,· + uBi's. Then, there can be at most Ajrange * Ujrange distinct 
linear functions. We can find the exact values of Ajrange and U-range by 
solving a minisum and a maxisum problem at i = 0 and t =u or easily find 
bounds to Ajrange and U-range using a method similar to that of calculating 
LB. Say the exact values are A and U. Then, q is bounded above by A * i7. 
Unfortunately, experiments revealed that A * i/ is a worse bound compared to 
nfLB.  Thus, the question of whether there is a much smaller and realizable 
bound on q is still open to research. Examining the behavior of locational 
changes at breakpoints could somehow give clues about the reasons of having 
such small number of breakpoints.



Chapter 4

Experimental Analysis of Trajectory

Empirical studies may sometimes light up an obscure point and may well lead 
to theories. With the aim of putting a light on the behavior of optimal facility 
locations under a time varying demand pattern, we observed the optimal tra­
jectory of a sample of problem instances. The aim was solely to observe the 
behavior of optimal locations in response to various parameters and special 
network topology, rather than testing a hypothesis statistically.

We constructed and analyzed trajectories of randomly generated P_ML(t) 
and P_MML(t) problems on trees and cyclic networks by implementing the 
algorithm presented in the previous chapter. In this chapter, we first explain 
the static problem solution methods that we have used during implementation. 
Then, we explain the experimental conditions and finally give some interesting 
results extracted from the experimental analysis.

4.1 Static Problem Solution M ethods

As we have explained in the previous chapter, our trajectory construction algo­
rithm solves static problems at potential breakpoints. The efficiency of static 
problem solution methods directly affects the running time of the algorithm. 
For p_median problems on tree networks, polynomial time algorithms which 
exploit the network structure, exist in the literature. However, pjnedian prob­
lems on cyclic networks are shown to be NPJiard and only small size problems

52
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can be solved by various branch and bound methods.

4.1.1 Solving p_Median w ith M utual Communication  
Problem

P-Median with mutual communication problem can be efficiently solved on 
tree  networks. In a forthcoming paper, Tamir [49] gives complexity results 
for the problem. Picard and Ratliff [44] and Kolen [38] showed that the prob­
lem decomposes into n — 1 minimum cut problems based on necessary and 
sufficient optimality conditions, hence an O(np^) algorithm exists. Actually, 
the algorithm can have better time bounds due to more efficient minimum cut 
algorithms. Tamir applies a centroid decomposition to the tree and improves 
the O(np^) complexity bound to O(p^nlogn -h pn + nlogn). An 0(np) al­
gorithm is given by Chhajed and Lowe [14] for a special case of the problem 
where the graph which characterizes the interaction between new facilities is 
series-parallel.

In our implementation we applied the minimum cut based algorithm due 
to Picard et. al. and Kolen. In implementing this algorithm, we used Dinic’s 
maximum flow_minimum cut algorithm which has a time complexity of O(p^m), 
m being the number of edges in the network on which we solve minimum cut 
problem [18]. While there are minimum cut algorithms that have better time 
complexities like Karzanov’s of O(p^) [37], Cheriyan et.al.’s of 0(p^/log2p) 
[12], Dinic’s algorithm is prefered for its ease of application.

There is an optimal solution to the p_median with mutual communication 
problem on vertices of the tree. The minimum cut based algorithm due to 
Picard et. al. and Kolen seeks a solution on vertices which satisfies the neces­
sary and sufficient condition for optimality. The optimality condition is that a 
vertex solution is optimal if and only if moving any subset of new facilities to 
an adjacent vertex cannot reduce the objective value. Based on this condition, 
the following algorithm is developed.

We choose a tip vertex and tentatively place all new facilities at this ver­
tex. We compute the subset of new facilities which when moved to the adjacent
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vertex decreases the objective value the most by solving a minimum cut prob­
lem. We move this subset of new facilities to the adjacent vertex and locate 
the remaining facilities at the tip vertex. We update the weights of the yet 
unlocated facilities by adding the weights of the located ones, trim the edge 
between the tip and the adjacent vertex and repeat the process until all facili­
ties are located. Since we solve at most n - 1 minimum cut problems for each 
edge of the tree, the time complexity of the algorithm that we implemented to 
solve static problems is O(np^m).

In spite of the fact that the problem is efficiently solved on tree networks, 
the general problem on a cyclic network is shown to be A^PJiard by Tamir 
[49]. We are not aware of any study on solving the general problem on a 
cyclic network in the literature, except for a polynomialy solvable special case 
analyzed by Chhajed and Lowe [13]. However, the integer programming for­
mulation of the problem has a quadratic objective function and is very similar 
to the Quadratic Assignment Problem ( QAP ), for which solution approaches 
have been suggested in the literature. There are three groups of exact algo­
rithms for solving QAP: branch_and_bound algorithms, cutting plane methods 
and dynamic programming. Branch^nd.bound codes can solve up to instances 
with n = 15 facilities within reasonable time ( 1 hour ).

The integer programming formulation of the pjnedian with mutual com­
munication problem is as follows.

Min 1/2 E"=i Er=i Ej=i E L i Vjkd{vi, vi)xjiXki ( Quadratic term )
+ E"=i E/=i Ei=i Wjid{vi, vi)xji ( Linear term )

s.t.

Er=ia;i. =  l /  = {!,···,?}

where the decision variables are.

i 1 i
I  0 c

if new facility j  is located at site i
otherwise

For simplicity of notation, let us define.
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Vijki = Vjkd(vi,vi)

Wiji = Wjid(vi, vi)

If we put the linear term into quadratic form, the problem is very similar 
to the QAP, the only differences being that Xj,· = 1 constraints in QAP 
are relaxed in this problem and j, k run from 1 to p.

Lawler (1963) linearized QAP with 0(71“*) binary variables. Beizaraa and 
Sherali (1980) constructed a MIP with binary variables, n^(n — 1)^/2 real 
variables and 2n  ̂ linear constraints. The smallest size linearization known 
so far is due to Kaufman and Broeckx (1978). They have shown that QAP is 
equivalent to a MIP with real and integer variables and 0( rP) constraints. 
The application of their MIP formulation to our problem yields np real and np 
integer variables and 0( np) constraints. The formulation is as follows.

Min 1/2 U =1 E U  ni + E U  E U  E U
S.t.

^1=1  ̂ ~ · 
(Z]/=l

- r j i < { U = k E U n j k i )  ^ i j
a^j.e{0,l} Vi,;
Tji > 0 Vt, j

• ,p}

where the real variables,

Tji =  Xj,(I2fci EH;=\ VijkiXkt) are introduced to maintain linearity.

We solved the above mixed integer program by a branch_and_bound method 
with the software Cplex to get the static problem solutions.

4.1.2 Solving p_Median Problem

While the general problem of finding a pjnedian on a cyclic network is shown 
to be WPJiard by Kariv and Hakimi [36], the p_median problem on a tree 
network is tractable. Matula and Kolde [41] gave an O(n^p^) algorithm, Kariv
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and Hakimi [36] gave an O(n^p^) algorithm for finding a p_median of a tree  
where p > 1. Based on the node optimality property, this algorithm finds an 
optimal solution on the vertices of the tree by dynamic programming.

In our implementation, we used Kariv_Hakimi’s 0(n^p^) algorithm for solv­
ing static p_median problems on a tree. The algorithm consists of two phases. 
In the first phase, the optimal objective value is calculated by traversing the 
rooted tree upward from tips to the root in stages. In the second phase, the 
p_median of the tree is found using the calculations made in the first phase. In 
essence, the algorithm uses the idea that a p_median partitions the tree into 
p connected subtrees. If we know that a facility at a certain vertex v/ serves 
a client at another vertex Vc in the optimal solution, then the clients at the 
vertices on the path connecting v/ and Vc are also served by v/.

The approaches for solving the p_median problem on a general network are 
primal and dual based integer programming. The LP relaxation of the integer 
programming formulation quite frequently gives an integer solution. However, 
integer solutions cannot be guaranteed. Thus, researchers have recently fo­
cused on dual based techniques which proved to be very efficient. One of the 
most efficient techniques available is a modification of Erlenkotter’s DUALOC 
method for uncapacitated facility location problem [26], to solve the pmedian 
problem. The lower bounds generated by solving the dual of a relaxed problem 
are used in a branch_and_bound procedure.

In implementing our trajectory construction algorithm we solved the in­
teger programming problem with the software Cplex , which actually uses a 
branch_and_bound procedure. The integer programming formulation of the 
P-median problem is as follows.

s.i.
t‘=l Z^j=l ^i j  ̂ i j

= 1 i e i

Xij < Vj i  e I

Vj = P

Xij € {0,1} Vi,i

Vj 6 {0,1} Vj
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where,

I  = {1 ,..., n} denotes the set of clients and 

J  — { 1 ,..., n} denotes the set of potential facility sites 

The decision variables are,

yj =
1 if a facility is established at site j  
0 otherwise

{1 if client i is 
0 otherwise

served by facility at site j

and the cost of serving client i by a facility at site j  at a time point to is
Cij = d{vi,Vj) * Wi(to).

Note that minimization of the objective function assures that each demand 
center is served by the closest facility.

4.2 Experim ental Conditions

We have analyzed the behavior of the optimal solution in a time interval for a 
sample of p_median with mutual communication problems with linear weights, 
P-MML(t) and pjnedian problems with linear weights P_ML(t), both on tree 
and cyclic networks.

The network types that we analyzed are line, star, arbitrary trees and cyclic 
networks with 25%, 50% and 75% edge density. For the problem with mut 
ual communication, we investigated three different levels of communication 
between new and existing facilities relative to the communication between new 
facilities. These dif ferent levels are reflected by a factor k that shifts the range 
of the interval in wh ich the weights between new and existing facilities are 
generated from. Thus, k = { 0.5,1,5} corresponds to the situations in which 
the communication between new and exis ting facilities has half, equal and five 
times importance compared t o the communication between new facilities.
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We randomly generated 10 instances for each problem type that is a com­
bination of the above stated 6 network types, three levels of relative communi­
cation for the problem with mutual communication and the following problem 
sizes, n and p.

For P-MML(t) and P_ML(t) on Trees ( Line, Star and Arbitrary ):

n 20

5 10 15
40

5 20 35
60
30 55

80
5 40 75

100

5 50 95

For P_ML(t) on General Networks ( 25%, 50% and 75% Edge Density ):

n 10 20
10 15

30
15 25

40
20 35

For P_MML(t) on General Networks ( 25%, 50% and 75% Edge Density ):

n 10 20

P 2 5 8 5 10

We coded our algorithm in C language and used static problem solution al­
gorithms as subroutines. These subroutines are C codes of Picard and Ratliff, 
and Kolen’s algorithm for pjnedian with mutual communication problem on 
trees, Kariv and Hakimi’s algorithm for p_median problem on trees and MIP 
solutions to the problems on general networks using Cplex Mixed Integer Li­
brary Routines. The programs were run on SPARC Stations under SunOS 
4.1.3.

4.2.1 Generation of Data

We generate integer data. All weights are in the form a A b t and are non­
negative throughout the time horizon [0,u]. The intercept a comes from a 
discrete uniform distribution between 0 and 200, while the slope b comes from 
a discrete uniform distribution between -10 and 10. Thus, we allow increasing 
or decreasing linear weights but avoid nonnegative weights by discarding and 
regenerating weights until we get a weight that is nonnegative throughout the
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time horizon.

For P-MML(t), we multiply intercept and the slope of the randomly gener­
ated weight between new and existing facilities by the factor k to get different 
levels of relative communication as explained above.

Edge lengths are also integral and come from a discrete uniform distribution 
between 1 and 12.

4.2.2 Generation of Network Structure
t

Number of nodes in the'network, n is taken as input. Number of nodes alone 
determines the structure of line and star type trees.

For arbitrary trees, a rooted tree such that each node has a random number 
of children is generated. Number of children of a node comes from a truncated 
normal distribution with mean 2 and variance 1. Negative values are casted 
into 1. We start constructing the tree from the root and add random number 
of children to it. Children generated at a level are kept in a list as the set of 
potential fathers of the next level. If the number of nodes generated does not 
exceed n, we go on to the next level and add children to each potential father 
in the list until n nodes are generated.

To generate a general network, we first generate a tree. We calculate the 
number of edges in the network, m by multiplying a density factor with the 
number of edges in a complete graph. The density factors are 0.25, 0.5 and 
0.75 . If m is greater than n — 1, we add edges to the tree until we reach m 
edges. We choose the next edge to be generated randomly among the potential 
edges.

4.3 R esults o f Experiments

Results from the analysis of trajectory of P_MML(t) and P_ML(t)problems 
which are randomly generated as explained in the previous section, are pre­
sented in this section. We first give results related to the running time of the
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algorithm and the number of pieces in the trajectory for both problems on 
line, star, arbitrary trees and cyclic networks. Then, the analysis of locational 
changes in different network structures is presented.

4.3.1 Run Tim e of the Algorithm

While explaining the time complexity of our trajectory construction algorithm, 
we had discussed that the efficiency of the algorithm depends on the number 
of pieces in the trajectory, q, and the efficiency of the static problem solution 
methods. In the instances that we solved, the number of pieces in the trajec­
tory was extremely low compared to the number of linear functions. We have 
efficient solution algorithms to solve static problems on trees. Therefore, the 
trajectory could be constructed in about 10 minutes for instances of P_MML(t) 
problems with n = 100 and p = 95 and in about 1 hour for that of P_ML(t) 
problems. Run times of the problems on cyclic networks are comparatively high 
since we use branch_and_bound methods for static problem solutions. Thus, we 
could construct the trajectory in about 2 minutes for instances of P_MML(t) 
problems with n =  20 and p =  10 and 3 minutes for that of PAIL(t)problems 
with n =  40 and p = 35.

The average run times of 10 randomly generated instances of the problems 
on line, star, arbitrary trees and cyclic networks can be found on the following 
tables. In solving problems on cyclic networks, Cplex gave erroneous solutions 
in some of the instances. Thus, in the last column of tables for general networks, 
we give the number of instances correctly solved ( denoted by I ) out of samples 
of 10 instances. On these tables the column d denotes the % density of the 
general networks generated.
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n P k LINE STAR ARBITRARY
0.5 0.551 1.083 0.275

5 1 0.930 1.248 0.340
5 2.528 1.275 0.523

0.5 1.733 4.300 0.806
20 10 1 1.748 4.726 0.856

5 12.790 4.713 2.486
0.5 10.975 10.993 1.850

15 1 4.561 10.531 1.758
5 25.435 15.321 4.455

0.5 2.258 2.923 0.596
5 1 5.255 2.788 0.635

5 8.351 2.976 1.178
0.5 31.450 47.171 6.133

40 20 1 33.070 36.855 6.210
5 467.860 33.148 8.951

0.5 72.770 49.185 104.106
35 1 41.396 85.640 93.838

5 212.788 87.883 141.925
0.5 5.215 4.325 1.925

5 1 5.141 4.893 2.406
5 17.388 5.008 3.518

0.5 99.171 66.606 22.611
60 30 1 57.176 50.108 22.063

5 920.126 55.471 138.708
0.5 97.948 401.495 183.126

55 1 106.958 178.371 142.221
5 401.413 162.448 172.766

0.5 5.316 6.791 2.143
5 1 23.518 4.141 4.041

5 37.460 7.350 16.540
0.5 160.599 295.639 209.851

80 40 1 92.825 108.406 50.260
5 579.101 135.509 158.568

0.5 33.518 401.510 252.306
75 1 384.625 321.595 251.586

5 428.575 391.894 270.956
0.5 17.228 10.496 4.613

5 1 22.673 6.835 28.708
5 51.794 12.610 42.146

0.5 10.808 263.066 127.038
100 50 1 664.651 197.413 125.715

5 1290.030 255.176 69.755
0.5 639.791 722.343 729.933

95 1 104.440 706.989 564.923
5 113.375 779.663 583.381

Table 4.1. 
seconds

Average run times for p_MML(t) problems on tree networks in
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GENERAL 
n I p I k i d

NETWORKS 
I Cpu Times | I

0.5
25
50
75

1.118"
2.403"
1.495"

10
10
10

25 1.833" 10
2 1 50 3.156" 10

75 2.180" 10
25 2.183" 10

5 50 2.730" 10
75 2.221" 10
25 5.461" 10

0.5 50 6.086" 10
75 9.183" 10
25 9.591" 10

10 5 1 50 7.918" 10
75 14.946" 10
25 10.975" 10

5 50 32.296" 10
75 38.968" 10
25 16.245" 10

0.5 50 18.126" 10
75 38.223" 10
25 12.461" 10

8 1 50 21.645" 10
75 35.956" 10
25 28.453" 10

5 50 T 30.950" 10
75 3' 44.835" 10

Table 4.2. Average run times for p_MML(t) problems on general networks in 
minutes and seconds, pg 1
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n
GENERAL 
P I I d

NETWORKS 
Cpu Times

0.5
25
50
75

32.280"
25.571"
29.880"

10
10
10

25 33.761" 10
20 5 1 50 30.628" 10

75 T 1.593" 10
25 3' 29.956" 10

5 50 2' 4.303" 10
75 T 40.985" 10
25 T 38.581" 8

0.5 50 2' 21.795" 8
75 T 34.513" 10
25 T 47.866" 10

20 10 1 50 2' 34.269" 8
75 4' 0.365" 10
25 23' 26.811" 5

5 50 92' 27.500" 7
75 126' 44.950" 4

Table 4.3. Average run times for p_MML(t) problems on general networks in 
minutes and seconds, pg 2
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GENERAL NETWORKS
n 1 P 1 d II Cpu Times 1 1

0.25 3.231" 10
2 0.5 4.141" 10

0.75 4.493" 10
0.25 4.436" 10

10 5 0.5 4.340" 10
0.75 6.135" 10
0.25 3.783" 10

8 0.5 3.558" 10
0.75 4.561" 10
0.25 25.560" 10

5 0.5 28.860" 10
0.75 26.641" 10
0.25 27.066" 10

20 10 0.5 26.058" 10
0.75 28.650" 10
0.25 24.165" 10

15 0.5 21.621" 10
0.75 22.525" 10
0.25 1' 13.498" 10

5 0.5 T 9.453" 10
0.75 36.933" 6
0.25 T 20.350" 4

30 15 0.5 T 21.688" 10
0.75 1' 42.601" 10
0.25 T 11.707" 8

25 0.5 T 8.158" 10
0.75 1' 5.168" 10
0.25 T 53.550" 9

5 0.5 T 10.975" 10
0.75 2' 3.433" 6
0.25 4' 22.783" 7

40 20 0.5 5' 38.716" 9
0.75 4' 14.550" 7
0.25 2' 43.806" 9

35 0.5 2' 1.691" 9
0.75 1' 50.835" 9

Table 4.4. Average run times for p_ML(t) problems on general networks in 
minutes and seconds
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n P LINE STAR ARBITRARY
5 2.808" 2.183" 3.996"

20 10 7.226" 4.328" 6.930"
15 7.311" 3.923" 11.076"
5 38.918" 13.075" 15.600"

40 20 2' 21.810" 1' 36.295" 2' 2.056"
35 3' 26.978" T 4.573" T 34.116"
5 1' 57.291" 50.403" 2' 21.468"

60 30 19' 45.734" 2' 45.923" 2' 40.333"
55 13' 8.213" 4' 36.833" 5' 46.268"
5 2' 40.608" T 27.920" T 34.831"

80 40 13' 7.993" 4' 52.123" 30' 48.949"
75 11' 11.926" 12' 16.273" 17' 57.331"
5 3' 29.149" 2' 38.831" 3' 29.883"

100 50 214' 54.400" 74' 20.916" 79' 42.126"
95 111' 3.654" 23' 38.054" 43' 50.705"

Table 4.5. Average run times for p_ML(t) problems on tree networks in minutes 
and seconds

4.3.2 Number of Pieces in th e Trajectory

Compared to the number of linear functions that are candidates to form a piece 
of the trajectory, q, the number of pieces of the trajectory, q is extremely small. 
Among the instances of P_MML(t) problems generated, maximum q turned out 
to be 15 for the problem with n = 60 and p = 30, while for a problem of this 
size q = rF =z 2.21e+53. Among the instances of P_ML(t) problems generated, 
maximum q turned out to be 33 for the problem with n = 100 and p =  50, 
while for a problem of this size q = ( ^  = l.Ole+29.

We observed more pieces in trajectories of P_MML(t) problems compared 
to P_ML(t) problems. This can be explained by the fact that the mutual 
communication between new facilities tends to locate them at the same node. 
This effect, which increases as the number of new facilities increases, is so 
strong that a new facility is rarely located separately. As a result, the facilities 
cannot easily change their locations by time. However, in P_ML(t) problems, 
the medians partition the network into p pieces such that clients within a 
partition are served from the same facility. Both relocation of the facility 
within a partition and a repartitioning of the network can lead to lower costs
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by time.

In instances of P_MML(t) problems with high number of new facilities and 
dense communication between new facilities, all facilities are located at the 
same node. If they change their locations, they move altogether to a new 
node at a breakpoint of the trajectory. As the mutual communication between 
new facilities decreases, facilities tend to be separately located, so that more 
breakpoints are likely to occur. While we observed up to 9 pieces in trajectories 
of P-MML(t) problems with n =  80 , p = 40 and the relative importance factor 
/; = 5, we observed only one piece in the trajectory of the same sized problem 
with k — 0.5 and k = 1. We can see the decrease in number of pieces with 
an increase in p by the example that while we have at most 12 pieces in the 
trajectory of the problem with n = 80 , p = 5 and A; = 5, we observed at 
most 2 pieces when p increased to 75. These properties are valid whatever the 
network structure is, with the exception of problems on star networks whose 
trajectories consist of one piece corresponding to a very robust solution.

The network structure affects the number of pieces in the trajectory. For 
both P_MML(t) and P_ML(t) problems we have more pieces, if the network 
is line type than those of arbitrary or star trees. In all of the 750 P_MML(t) 
problems on star networks we have only one piece in the trajectory. Due to the 
special network topology , in all of the problems all new facilities are located 
at the central node ( the hub ).

For P_ML(t) problems with equal q values, i.e. instances with n =  ni , 
p = Pi and n = ni , p — n — p\ , we do not have similar number of pieces. 
Contrary to intuition, the number of pieces is more for instances with larger p 
even though the number of potential pieces is the same.

The maximum and most frequently observed q in samples of P_MML(t) 
and P_ML(t) problems are given in Tables 4.6, 4.7,4.8, 4.9, 4.10 .

4.3.3 Locational Changes

Changes in the facility locations by time show properties pertinent to the net­
work structure, while there are some properties that are valid no matter what 
the network structure is. We will first state properties that are more general.
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n P k q
LINE

FREQ, q 1 MAX q
ARBITRARY 

FREQ, q 1 MAX q
STAR

FREQ, q 1 MAX q
0.5 3.20 * 10® 1 2 1 3 1 1

5 1 3.20 * 10® 1-2 2 1 3 1 1
5 3.20 ♦ 10® 4-5 5 1 5 1 1

0.5 1.02 *10‘® 1 2 1 1 1 1
20 10 1 1.02+10*^ 1 2 1 1 1 1

5 1.02+10^® 4 8 1 8 1 1
0.5 3.28* 10̂ ® 1 2 1 2 1 1

15 1 3.28 ♦ 10̂ ^ 1 2 1 1 1 1
5 3.28 * 10̂ ^ 5 5 1 5 1 1

0.5 1.02*10® 1-2 2 1 2 1 1
5 1 1.02*10® 2 7 1 2 1 1

5 1.02 * 10® 3-8 9 1 6 1 1
0.5 1.10 * 10®2 1 2 1 1 1 1

40 20 1 1.10* 10®2 1 2 1 1 1 1
5 1.10* 10®2 6-9-10 11 1 5 1 1

0.5 1.18* 10®̂ 1 1 1 1 1 1
35 1 1.18* 10®® 1 1 1 2 1 1

5 1.18* 10®® 1-3 5 1 3 1 1
0.5 7.78 * 10* 1-2 5 1 3 1 1

5 1 7.78 * 10® 2 6 1 6 1 1
5 7.78 * 10® 9 11 1 7 1 1

0.5 2.21 * 10®® 1 2 1 1 1 1
60 30 1 2.21 * 10®® 1 2 1 1 1 1

5 2.21 * 10®® 6-7 15 1 6 1 1
0.5 6.29 * lO®’̂ 1 1 1 2 1 1

55 1 6.29 * 10̂ ^ 1 1 1 2 1 1
5 6.29 * 10̂ ^ 1 4 1 2 1 1

0.5 3.28 * 10̂ 3 3 1 6 1 1
5 1 3.28 * 10̂ 5 7 1 7 1 1

5 3.28 * 10® 7 12 1 7 1 1
0.5 1.33* 10̂ * 1 1 1 1 1 1

80 40 1 1.33 * 10̂ ® 1 1 1 1 1 1
5 1.33* 10̂ ® 6 9 1 8 1 1

0.5 5.40 * 10̂ “·̂ 1 2 1 1 1 1
75 1 5.40 * 10*̂ ® 1 2 1 1 1 1

5 5.40 * lÔ “·® 1 2 1 1 1 1
0.5 1 * 10*0 4 4 1 1 1 1

5 1 1 * 10̂ 0 3-7 10 1 7 1 1
5 1 * 10̂ 0 9 10 1 4 1 1

0.5 1 * 10**̂ 1 2 1 1 1 1
100 50 1 1 * 10̂ 0° 1 2 1 1 1 1

5 1 * 10‘Oo 3 8 1 4 1 1
0.5 1 ♦ lO'oo 1 2 1 1 1 1

95 1 1 * 10’®° 1 2 1 1 1 1
5 1 * 10’®° 1 2 1 1 1 1

Table 4.6. Maximum and most frequently observed q in p.MML(t) problems 
on tree networks
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p_MML(t) ON GENERAL NETWORKS 
i I p I k I d I q I FREQ, q I MAX q 1 I

0.5
25
50
75

100
100
100

1
2
1

1
2
2

10
10
10

25 100 1 2 10
2 1 50 100 1 4 10

75 100 1 3 10
25 100 1 3 10

5 50 100 1 3 10
75 100 1 3 10
25 1*10^ 1 2 10

0.5 50 1*10® 1 1 10
75 1*10® 1 2 10
25 1*10® 1 2 10

10 5 1 50 1*10® 1 2 10
75 1*10® 1 3 10
25 1*10® 1 3 10

5 50 1*10® 2 6 10
75 1*10® 1 4 10
25 1*10® 1 1 10

0.5 50 1*10® 1 1 9
75 1*10® 1 2 10
25 1*10® 1 1 10

8 1 50 1*10® 1 1 10
75 1*10® 2 4 10
25 1*10® 1 3 10

5 50 1*10® 1 2 9
75 1*10® 1-2 6 9

Table 4.7. Maximum and most frequently observed q in p_MML(t) problems 
on general networks, pg 1
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p_MML(t) ON GENERAL NETWORKS
n 1 p 1 k 1 1 1 9 1 FREQ, q 1 MAX q 1 I

25 3.2 ♦ 10̂ 1 2 10
0.5 50 3.2 * 10® 1 2 10

75 3.2 ♦ 10® 1 2 10
25 3.2 ♦ 10® 1 2 10

20 5 1 50 3.2 * 10® 1 2 10
75 3.2 * 10® 1 3 10
25 3.2 * 10® 5 5 10

5 50 3.2 * 10® 1-2 5 10
75 3.2 + 10® 3 4 10
25 1.02*10*^ 1 1 8

0.5 50 1.02 + 10̂ 3 1 1 8
75 1.02*10*3 1 1 10
25 1.02*10*3 1 1 10

20 10 1 50 1.02 * 10*3 1 2 8
75 1.02 * 10*3 1 1 10
25 1.02*10^3 1 4 5

5 50 1.02 * 10*3 3 4 7
75 1.02*10*3 2 5 4

Table 4.8. Maximum and most frequently observed q in p_MML(t) problems 
on general networks, pg 2
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P-ML(t) ON GENERAL NETWORKS
n 1 p 1 d j _  q 1 FREQ, q 1 MAX q 1 I

25 45 1 3 10
2 5 45 1-3 3 10

75 45 2 4 10
25 252 2 5 10

10 5 5 252 3 5 10
75 252 4 5 10
25 45 2 5 10

8 5 45 3 4 10
75 45 4 4 10
25 1.55*10^ 3 7 10

5 50 1.55 * 10̂ 4 5 10
75 1.55 +10“· 2-4 6 10
25 1.85 * 10® 4-7 7 10

20 10 50 1.85 * 10® 4 7 10
75 1.85 * 10® 4 8 10
25 1.55 * lO'· 5-6 7 10

15 50 1.55 * lO'* 4 8 10
75 1.55 ♦ lO'* 4-5-6 8 10
25 1.42*10® 1 5 10

5 50 1.42 * 10® 1 4 10
75 1.42 +10® 1 2 6
25 1.55 * 10® 6 11 4

30 15 50 1.55*10® 7 9 10
75 1.55*10® 7 11 10
25 1.42 * 10® 7 10 8

25 50 1.42 * 10® 6 9 10
75 1.42 * 10® 10 10 10
25 6.58 * 10® 1 5 9

5 50 6.58 * 10® 6 9 10
75 6.58 * 10® 1 4 6
25 1.38*10" 1-9 11 7

40 20 50 1.38*10" 9 12 9
75 1.38*10" 8 12 7
25 6.58 * 10® 8-9 10 9

35 50 6.58 * 10® 9 9 9
75 6.58 * 10® 5-7 8 9

Table 4.9. Maximum and most frequently observed q in p_ML(t) problems on 
general networks
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LINE ARBITRARY STAR
e n P q FREQ, q MAX q FREQ, q MAX q FREQ, q MAX q

5 1.55 ♦ 10'* 4 5 3 7 3 6
20 10 1.85* 10® 5 8 5-6 7 4-5 7

15 1.55 ♦ 10̂ 4-6 8 7 8 4 6
5 6.58 * 10® 5 7 3-4 5 5 5

40 20 1.38* 10” 10 15 10-11 12 9 11
35 6.58 * 10® 8 11 6-7 10 6-8 10
5 5.46 * 10® 5 9 5 9 4 6

60 30 1.18* 10” 16 20 14 17 9 16
55 5.46 * 10® 9 11 7 13 6-8-9-10 12
5 2.40 * 10̂ 5 10 2 8 2-3-5-6-7 7

80 40 1.08* 10̂ 3 9 11 18 25 17 27
75 2.40 * 10̂ 9 12 7-9-11 14 9 11
5 7.53 * 10̂ 6 8 3-4 5 3 6

100 50 1.01* 10̂ ® 23 33 21 30 22 31
95 7.53 * 10̂ 4-6 8 9-10 13 8 _14 1

Table 4.10. Maximum and most frequently observed q in p_ML(t) problems on 
tree networks

and then elaborate them for each network type.

The analysis of facility locations in p-MML(t) problems reveals that facili­
ties tend to be located at central nodes of the network. This tendency is valid for 
star and line networks, thus for cirbitrary trees, which is a compromise between 
the two, as well as general networks. This property is observed very strongly 
for star networks. All facilities are located at the central node throughout the 
time horizon in all of the problem instances generated. The solution is very 
robust to the problem data. Only by manipulating weights in an extraordi­
narily unbalanced way could we find a problem instance in which a facility is 
separated from the others and located at a tip node. Facilities are located at 
central nodes in line networks too. When the number of nodes is small, facili­
ties tend to change location around the central nodes by time. As the number 
of nodes gets higher such as 80, 100, facilities are located at the center of the 
line network and rarely leave their locations. In all of the problem instances on 
line networks no facility is ever located at a tip vertex. However, in p-ML(t) 
problems, the pmedian tends to be as dispersed on the network as possible. 
Thus, a median is frequently located at a tip vertex. Usually, a median at a
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tip vertex serves only the client at this vertex. This property is observed in all 
of the problems on star trees, while it is very rare on line trees ( Figure 4.1 ).

Tiae Intervall [0.000,11.062] [11.062,15.438] [15.438,20.000]

Figure 4.1. An example p_ML(t) problem on a star network

At a breakpoint, more than one new facility may change its location in 
p_MML(t) problems and the p_median may change in more than one element in 
p_ML(t) problems. In p_ML(t) problems, at some breakpoints the partition of 
the network is preserved and the medians are relocated only within a partition. 
But there are also breakpoints at which a totally different picture arises due 
to a repartitioning of the network. In the following examples, one on a line 
network, and the other on a cyclic network, we have both of such breakpoints.

Time Interval: [0.000,3.364] [3.364,9.000] [9.000,20.000]

Figure 4.2. An example p_ML(t) problem on a general network
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i
HPft
0

3

Figure 4.3. An e.xample p_ML(t) problem on a line network
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In p-MML(t) problems, a facility may jump to a non-adjacent vertex at 
a breakpoint. Thus, the "Connectedness Theorem” of Erkut and Tansel [22] 
for parametric single median problem on a tree network does not apply to 
the multimedian problem on tree and general networks when the changes in 
location are analyzed for each facility alone. The following figures are examples 
to this case on line, arbitrary and general networks.

X : 
1

© —i— © f 3

t =3.149 t =10.434f = 13.091

< z > T - 0 i ! ) — 9— @

X·,: 1 = 12.859

© --- i--- 0 1 © ---- ;--- -----------------------------8-----

i = 8.293 t = 8.596 f = 9.182 f =9.577
--------------- -------------------------------------------------------------

0 — r - © T 0 — r - ® - T ® — ;— # — 8----- S h ~ 0 # -

t= 9.754 t= 6,783

0 — -—Q - j © — -— -Q h - & G )—5—®

.r .,: 1=18.1071 =12.63« =8.202 1=4.164
¿c.----- " 'L · : ------

© — i—G t· — r - # - ! - ® — Ï— ® — 8-----

Figure 4.4. An example to discontinuity in individual facility movements in 
a p_MML(t) problem on a line network (There are jumps in the time path of 
facility 3)
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Figure 4.5. An example to discontinuity in individual facility movements in a 
p_MML(t) problem on an arbitrary tree

X  : 
1 t  = 10.209

Figure 4.6. An example to discontinuity in individual facility movements in a 
p_MML(t) problem on a general network
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Furthermore, a facility may return to its previous location by time, i.e. 
backtracking may occur. Thus, monotonicity of the optimal locations is not 
guaranteed. The following example depicts such a situation on a general net­
work, where new facility 2 changes location back and forth between vertices 9 
and 4.

TIm  intervalt (0.000,6.514] (6.514,10.209)

(10.209,11.595] (11.595,12.520]

(12.520,15.296] [15.296,20.000]

Figure 4.7. An example to backtracking in a p_MML(t) problem on a general 
network
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[6514,15̂

Figure 4.7 Continues. Backtracking in the time path of facility 2

From the above analysis, we see that the changes of locations at a break­
point are erratic and a priori unidentifiable in the sense that properties that 
might help us find new locations based on previous ones at a breakpoint, such 
as having the optimal solution change in only one element to an adjacent node, 
do not exist. When such properties exist, they considerably reduce the effort 
to solve parametric problems. For example, in the single median problem with 
weights being continuous functions of time on trees, the time path of the op­
timal location of the facility is connected and monotonie. Using this property, 
Erkut and Teinsel [22] have developed a very efficient algorithm to construct the 
trajectory. Drezner and Wesolowsky [19] also give a polynomial time algorithm 
to the single facility relocation problem on a plane using the monotonicity of 
the optimal location for the special case of rectilinear distances, linear weights 
and the restriction that only one breakpoint is allowed. If we had observed, 
for example, that new facilities move only to adjacent vertices or change lo­
cations in a monotonie way for p_MML(t) problems or that partitions remain 
unchanged or change in a certain pattern at a breakpoint for p_ML(t) problems, 
a large set of location vectors/sets could have been dominated at a breakpoint. 
Thus, we could have easily constructed the trajectory by finding the solution 
at the beginning of the time interval and then finding the time point at which 
the solution changes, by a search on the undominated solutions so that solving 
static problems could have been avoided. Unfortunately, p_median problems 
with linear weights do not seem to have such properties. Therefore, it seems 
that solving static problems to identify each solution at a linear piece of the 
trajectory is unavoidable, which justifies the argument that the trajectory con­
struction algorithm presented is a best order one.



Chapter 5

Conclusion

In this study we have focused on multimedian location problems on time depen­
dent networks. With the aim of facilitating locational decisions under circum­
stances where demand or transportation costs vary over time in a predictable 
way, we have introduced and analyzed pjnedian and p_median with mutual 
communication problems with weights being linear functions of time.

In making a location decision that involves a changing situation over a time 
horizon during which facilities will be operating, knowing the trajectory of the 
optimal solution throughout the time horizon is an asset. We have presented 
an algorithm that efficiently constructs the trajectory of the optimal solution 
for p_median and pjnedian with mutual communication problems with lin­
ear weights on both tree and cyclic networks. The trajectory is a piecewise 
linear concave function. If q is the number of linear pieces in the trajectory, 
the algorithm constructs the trajectory by solving 0{q) static pjnedian prob- 
lems.Thus, the efficiency of the algorithm depends on the efficiency of static 
problem solutions.

The algorithm presented uses a lower bound to the length between break­
points of the trajectory in terms of problem data with the assumption of in­
tegrality. The lower bound calculated in this study also bounds the length 
between intersection points of linear functions whose lower envelope deter­
mines the trajectory. With such a bound the trajectory can be more efficiently 
calculated. We have discussed the algorithm when either of the two bounds 
are used and given time complexity results.

78
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Maybe the most essential merit of the algorithm is that it is general and 
can be applied to areas beyond facility location where the problem of finding 
the lower envelope of exponentially many linear functions arises. If we have a 
lower bound to the length between breakpoints in the lower envelope and an 
algorithm to find the minimum function at a time point in 0(r) time, we could 
find the lower envelope in 0(rq) time, where q is the number of linear pieces 
in the lower envelope, using this algorithm.

We have implemented the algorithm that constructs the optimal trajectory 
and analyzed the behavior of p_median and pjnedian with mutual communi­
cation problems with linear weights on both tree and cyclic networks for some 
randomly generated problem instances. Trajectories were analyzed for special 
tree types like line and star as well as arbitrary trees and cyclic networks with 
a range of edge density. From the experimental studies, it is observed that time 
path of facility locations is neither monotonie nor connected. The number of 
breakpoints is extremely small compared to its upper bound. Facilities do not 
change their locations frequently, especially when there is mutual communica­
tion among them which forces them to be gathered in a central node.

As can be seen from the experimental studies, the trajectory of the optimal 
solution carries a lot of information about the system dynamics. Therefore, the 
trajectory is quite helpful in the decision making process. Knowing the spe­
cial characteristics of the location network may reveal information about the 
tendency of facility locations over time based on a priori experimental studies. 
For example, if our network is a star, for P_MML(t), locating facilities at the 
central node, i.e. the hub, is well justified without solving the problem. The 
trajectory also facilitates relocation decisions. In situations where relocating 
the facility can be easily accomplished, following the path of the optimal lo­
cations would be profitable. In situations where relocating the facility is too 
costly and painful, knowing the optimal pattern could help to keep close to the 
optimal as far as possible. A recent study by Tansel on multifacility relocation 
problem with continuous time domain [50] is an evidence to the decision sup­
port aspect of the trajectory in relocation decisions. Tansel has shown that the 
points at which the necessity to relocate at least one facility arises, are closely 
related to the breakpoints of the trajectory. The breakpoints of the trajectory 
are input to the construction of a phase diagram which is used in the solution 
of the relocation problem.
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Our analysis for the linear case can easily be extended to the piecewise 
linear case by partitioning the time horizon into intervals each with linear 
demands. Thus, nonlinear demands can also be analyzed by approximating 
nonJinear functions with piecewise linear functions. However, there still re­
mains p_median problems with nonJinear weights to be analyzed for future 
work. Another direction for future work is incorporating time dependency to 
other problem elements as time dependent distances or changes in network 
topology by time.
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