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ABSTRACT

ESSAYS ON ENDOGENOUS TIME PREFERENCE and STRATEGIC
INTERACTION

TURAN, Agah Reha

P.D., Department of Economics

Supervisor: Assis. Prof. Dr. Ça¼gr¬Sa¼glam

September 2013

This thesis includes three self contained essays on the existence and qualitative

properties of equilibrium dynamics under endogenous time preference. In the �rst

essay, we reconsider the optimal growth model proposed by Stern (2006). We prove

the almost everywhere di¤erentiability of the value function and uniqueness of the

optimal path, which were left as open questions and show how a small perturbation

to the price of future oriented capital qualitatively changes the equilibrium dynamics.

Almost none of the studies on endogenous time preference consider the strategic inter-

action among the agents. In the second essay, by considering a strategic growth model

with endogenous time preference, we provide the su¢ cient conditions of supermodu-

larity for dynamic games with open-loop strategies and show that the stationary state
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Nash equilibria tend to be symmetric. We numerically show that the initially rich can

pull the poor out of poverty trap even when sustaining a higher level of steady state

capital stock for itself. Lastly, in the third essay, we consider the socially determined

time preference which depends on the level of �sh stock and characterize the basic

�shery model under this setup. We provide existence of collusive and open-loop Nash

equilibria and compare the e¢ ciency and qualitative properties of them.

Keywords: Endogenous Time Preference, Supermodular Games, Lattice Program-

ming, Dynamic Resource Games
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ÖZET

ENDOJEN ZAMAN TERC·IH·I ve STRATEJ·IK ETK·ILEŞ·IM ÜZER·INE
MAKALELER

TURAN, Agah Reha

Doktora, Ekonomi Bölümü

Tez Yöneticisi: Yrd. Doç. Dr. Ça¼gr¬Sa¼glam

September 2013

Bu tez endojen zaman tercihi modellerinde denge dinamiklerinin varl¬¼g¬ve özellik-

lerinin çal¬̧s¬ld¬¼g¬üç ayr¬makale içermektedir. ·Ilk makalede, Stern (2006) taraf¬ndan

ortaya konan optimal büyüme modeli yeniden ele al¬narak, bu makalede cevaplanmak

üzere b¬rak¬lan de¼ger fonksiyonun hemen her yerde türevinin al¬nabilirli¼gi ve optimal

yolun hemen her yerde tek olmas¬hususlar¬ispat edilmi̧stir. Ayr¬ca, gelece¼ge odakl¬

sermayenin �yat¬ndaki küçük de¼gi̧sikliklerin denge dinamikleri üzerindeki niteliksel

etkisi gösterilmi̧stir.
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Zaman tercihinin endojen oldu¼gu çal¬̧smalar¬n hemen hemen hiçbirinde aktörler

aras¬ndaki stratejik etkileşim göz önüne al¬nmamaktad¬r. ·Ikinci makalede, endo-

jen zaman tercihli stratejik büyüme modeli alt¬nda, aktörlerin birbirlerinin strate-

jilerine kendi stratejilerini art¬rarak cevap verdikleri Süpermoduler Oyunlar¬n aç¬k

döngülü bilgi yap¬s¬ alt¬nda yeter şartlar¬ ortaya konmuş, bu oyun yap¬s¬ alt¬nda

başlang¬ç şartlar¬ndaki farkl¬l¬klar¬n uzun dönem içerisinde ortadan kayboldu¼gu is-

patlanm¬̧st¬r. Ayr¬ca, say¬sal olarak, tek baş¬na ele al¬nd¬klar¬nda yoksulluk kapan¬na

tak¬lacak aktörlerin, başlang¬ç koşullar¬aç¬s¬ndan daha zengin bir aktörle stratejik etk-

ileşime girdiklerinde bu kapandan kurtulabildikleri gösterilmi̧stir. Son olarak, üçüncü

makalede mülkiyet haklar¬n¬n tan¬ml¬ olmad¬¼g¬bir ortamda, aktörlerin zaman ter-

cihlerinin ekonomideki kaynaklarla belirlendi¼gi durumda i̧sbirli¼gi dengesinin ve aç¬k

döngülü bilgi yap¬s¬alt¬nda i̧sbirli¼ginin olmad¬¼g¬Nash dengesinin varl¬¼g¬gösterilmi̧s,

bu Nash dengesinin etkinli¼gi ve i̧sbirli¼gi dengesinden niteliksel farkl¬l¬klar¬ incelen-

mi̧stir.

Anahtar Kelimeler: Endojen Zaman Tercihi, Süpermoduler Oyunlar, Latis Pro-

gramlama, Dinamik Kaynak Oyunlar¬
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CHAPTER 1

INTRODUCTION

Poverty trap is a self�perpetuating condition where poverty is its own cause. Many

di¤erent feedback mechanisms from demography to the lack of �nancial development,

from the non-convexities in technology caused by externalities and �xed costs to social

norms are highlighted as the sources of the vicious cycle that an economy is trapped

in. (For an recent survey, see Azariadis and Stachurski, 2005.)

The main message of the poverty trap literature is that a long term performance

of an economy may depend on initial conditions, by suggesting that long run per-

formance of an economy could be much better if its initial condition were better.

(Matsuyama, 2008) Having said that initial conditions are not the only factor be-

hind cross country income di¤erences, in this literature it is demonstrated that the

initially underendowed economies may lag permanently behind the otherwise identi-

cal economies. The dependence on initial conditions are shown by the emergence of

threshold dynamics according to which the economies with low initial capital stock or

income converge to a steady state with low per capita income, while economies with

high initial capital stock or income converge to a steady state with high per capita

income.
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A general tendency in these studies is assuming that an agent�s period utility

is discounted with a constant rate. In this thesis, we depart from this assumption

and study the implications of endogenous time preference on threshold dynamics.

Following the empirically supported assumption (see Lawrence, 1991, and Samwick,

1998) in recent theoretical studies we let the rate of time preference decrease with the

level of wealth, i.e., the rich are more patient than the poor. We assume �rst that an

economy admits a representative household (chapter 2) and study the implications

of the endogenous time preference on equilibrium dynamics. Then we analyze how

the results under representative agent framework would change, if we consider the

con�icting interests of the agents (chapter 3 and 4).

Imperfect ability of people to imagine the future can be ameliorated by spending

resources. These resources range from time and e¤orts that increase the anticipation

of future to goods that support or enforce considering future bene�ts. This idea has

been formally introduced by Becker and Mulligan (1997) in a �nite horizon model

where the discount function depends on allocated resources called "future oriented

capital". Stern (2006) uses this idea under the classic optimal growth model and

provides numerical examples in which multiple steady states and a conditionally sus-

tained growth path may occur.

In chapter two, we extend the analysis provided by Stern (2006). Stern�s e¤ort

to adapt the classical optimal growth framework to include endogenous discounting

provides us a more �exible framework regarding the discounting of time, while main-

taining time consistency. For that reason it is important to provide a comprehensive

analysis of this model.

In a standard optimal growth model with geometric discounting and the usual

concavity assumptions on preferences and technology, the optimal policy correspon-

dence is single valued and the properties of the optimal path are easily found by using

2



the �rst order conditions together with envelope theorem by di¤erentiating the value

function. However, in endogenous discounting models, the objective function includes

multiplication of a discount function which generally destroys the concavity of value

function. Under non-convex technology, Amir, Mirman, and Perkins (1991) were able

to deal with this situation by employing lattice programming techniques. By �nding

a partial order that will turn budget sets into lattice spaces, Stern (2006) utilizes this

technique to show monotonicity and convergence result of any optimal path.

We prove the convergence of the optimal path of future oriented capital and con-

sumption rather than just the optimal path of capital and provide conditions under

which the system does not converge to zero. Moreover, we prove the almost every-

where di¤erentiability of the value function, and the almost everywhere uniqueness

of the optimal path, which were left as open questions in Stern (2006).

The price of the future oriented capital is assumed to be constant in Becker and

Mulligan (1997) and Stern (2006) transferred it into the optimal growth model by

de�ning a parameter, that merely act as a price that converts future oriented capital

stock to the units of consumption and capital goods. Since the resources to increase

appreciation of the future cannot be used in production, any factors related to either

the cost of producing future oriented capital or e¢ ciency in it a¤ect this parameter.

However, the implications of this parameter on the dynamic behavior of the system

are left unexplored.

We show how a small perturbation to the price of future oriented capital qual-

itatively changes the equilibrium dynamics. We demonstrate the occurrence of a

saddle-node bifurcation with respect to the price of future oriented capital stock. By

using the same functional forms and the parameter set as Stern (2006) did while giving

an example to multiple steady states and divergence, we show that only by changing

the value of cost of future oriented capital, one can also obtain global convergence.
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There are cases such that more than one player can and does manipulate the

system for his own bene�t, their interests don�t always coincide and no single player

has an exclusive control over the turn of events (Clemhout & Wan, 1979). In such

cases, one decision maker assumption as a �rst approximation to reality may not be

applicable i.e. the analyses assuming that the agents are isolated may not be robust

to the considerations of strategic interactions among agents in the economy.

In Chapter three, in line with the Erol et. al. (2011) we let the discount factor

be increasing in the stock of wealth and analyze to what extent the strategic comple-

mentarity inherent in agents�strategies can alter the non-convergence results being

found under a single agent optimal growth model.

We adopt the non-cooperative open loop Nash equilibrium concept, in which

players choose their strategies as simple time functions and they are able to com-

mit themselves to time paths as equilibrium strategies. In this setup, agents choose

their strategies simultaneously and face with a single criterion optimization problem

constrained by the strategies of the rival taken as given. We focus on the qualita-

tive properties of the open-loop Nash equilibria and the dynamic implications of the

strategic interaction.

Due to the potential lack of both concavity and the di¤erentiability of the value

functions associated with each agent�s problem, topological arguments cannot be used

while proving the existence of Nash equilibria and characterizing their properties.

Instead, we employ the theory of monotone comparative statics and the supermodular

games based on order and monotonicity properties on lattices (see Topkis, 1998).

In this chapter, we �rst provide the su¢ cient conditions of supermodularity for

dynamic games with open-loop strategies based on two fundamental elements: the

ability to order elements in the strategy space of the agents and the strategic com-

4



plementarity which implies upward sloping best responses. The supermodular game

structure in our model enables us provide the existence and the monotonicity re-

sults on the greatest and the least equilibria. We sharpen these results by showing

the di¤erentiability of the value function and the uniqueness of the best response

correspondences almost everywhere.

The supermodular games are characterized with a speci�c property: as one player

selects higher strategies, the other players do as well. Hence interactions dominated

by complementarities provide agents with an incentive to follow the behavior of the

others. The key feature of our analysis is that under strategic complementarities, the

initial di¤erences tend to vanish and the stationary state Nash equilibria tend to be

symmetric under open-loop strategies. We show that the initially rich can pull the

poor out of poverty trap even when sustaining a higher level of steady state capital

stock for itself.

In chapter four, we consider the hypothesis that while the time preference is one

of the major factors on allocation of the resources, these resources can also a¤ect the

society�s time preference.

There is a new but growing literature considering the dependence of time prefer-

ence to the aggregate variables while studying extinction and exploitation of renewable

resources. However, none of these studies investigate the implications of endogenous

discounting under strategic interaction.

The �shery model has been used as a metaphor for any kind of renewable resource

on which the property rights are not well de�ned. (see Long, 2010, for a comprehensive

survey) In these models, the set of feasible strategies available to the players are

interdependent and in addition, the agents�choices in the current period a¤ect the

payo¤s and their choice sets in the future. We let the socially determined time
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preference depend on the level of resource stock and characterize the basic �shery

model.

By using a discrete time formulation, we study the existence and the e¢ ciency of

the open loop Nash equilibrium (OLNE). We show �rst that unlike constant discount-

ing, we cannot rely on symmetric social planner problem while showing the existence

and the qualitative properties of Nash equilibrium. Instead, we use a topological �xed

point theorem to show existence of OLNE.

We prove that OLNE may result in overexploitation or under exploitation of

the resources relative to e¢ cient solution depending on the return is bounded or

unbounded from below.

The OLNE di¤ers from the collusive equilibria in terms of not only e¢ ciency

but also equilibrium dynamics. We show that open loop information structure can

remove indeterminacy that we may face under collusive equilibrium and be a source

of multiplicity despite the uniqueness we may face under collusive equilibrium.
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CHAPTER 2

SADDLE-NODE BIFURCATION IN OPTIMAL GROWTH MODELS

A LA BECKER-MULLIGAN

Based on the following observations, Becker & Mulligan (1997) formally intro-

duced a �nite horizon model where the discount function depends on allocated re-

sources which they called "future oriented capital".

� People are not all equally patient.

� Many of the di¤erences among people are explainable: Patience seems to be

associated with income, development, and education.

� Heavy discounting of the future is viewed by many people to be inappropriate,

undesirable, or even "irrational".

� People are often aware of their weaknesses and may spend resources to overcome

them. These resources could be time and e¤orts that increase the anticipation

of future or goods that support or enforce considering future bene�ts.

Stern (2006) use this idea under the classic optimal growth model by providing

two interpretations:
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� (A dynasty) The discount factor is the degree of intergenerational altruism: The

future oriented capital stock represents actions that the parent could take in

order to strengthen the relationship with his child.

� (Single individual with an in�nite lifetime) The discount factor represents the

degree to which the individual appreciates future utility when making current

decisions: Education, religion, self-discipline as well as time spent on imagining

future utilities can e¤ect discount factor.

The price of the future oriented capital is assumed to be constant in Becker and

Mulligan (1997). Stern (2006) transferred it into the optimal growth model by de�n-

ing a parameter, that merely act as a price that converts future oriented capital stock

to the units of consumption and capital goods. Since the resources to increase ap-

preciation of the future cannot be used in production, any factors related to either

the cost of producing future oriented capital or e¢ ciency in it a¤ect this parameter.

However, the implications of this parameter on the dynamic behavior of the system

are left unexplored.

We show how a small perturbation to the price of future oriented capital quali-

tatively changes the equilibrium dynamics. In particular, we demonstrate the occur-

rence of a saddle-node bifurcation with respect to the price of future oriented capital

stock. We use the same functional forms and the parameter set as Stern (2006) did

while giving an example for the multiple steady states and divergence and show that,

with the same functional forms, only by changing the value of cost of future oriented

capital, one can also obtain global convergence.

Stern�s e¤ort to adapt the classical optimal growth framework to include endoge-

nous discounting provide us a more �exible framework in regards to the discounting of

time, while maintaining time consistency. For that reason it is important to provide
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a comprehensive analysis of this model. We contribute to this e¤ort by proving the

almost everywhere di¤erentiability of the value function, and the almost everywhere

uniqueness of the optimal path, which were left as open questions in Stern (2006).

The monotonicity and convergence results of any optimal path of capital are avail-

able in Stern (2006). We prove the convergence of the optimal path of future oriented

capital and consumption rather than just the optimal path of capital and provide

conditions under which the system does not converge to zero.

This chapter is organized as follows. The next section introduces the model and

provides the dynamic properties of optimal paths. Section 3 discusses the relation

between the relative cost of future oriented capital and the long run equilibrium.

2.1 The Model

The model di¤ers from the classic optimal growth model by the assumption on dis-

counting. We assume that the discount rate depends on the future oriented capital

stock. The amount of resources allocated to increase the appreciation of the future

in period t will be denoted with the control variable st: The discount on the future in

period t will be a real valued function � of st:We assume that st will cost the planner

an amount �st in terms of current resources. The parameter � merely acts as a price

that converts future oriented capital stock to the units of consumption and capital

goods. Since the resources to increase appreciation of the future cannot be used in

production, it is strictly positive. Any factors related to either the cost of producing

future oriented capital or e¢ ciency in it a¤ect this parameter.
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Formally, the model is stated as follows:

max
fct+1;st+1g1t=0

1X
t=1

 
t�1Y
r=1

�(sr)

!
u(ct); (1)

subject to

8t; ct+1 + xt+1 + �st+1 � f(xt); (2)

8t; ct+1 � 0; xt+1 � 0; st+1 � 0;

x0 � 0; given.

We make the following assumptions regarding the properties of the discount, utility

and the production functions.

Assumption 2.1 u : R+ ! R+ is a continuously di¤erentiable, strictly concave,

strictly increasing function that satis�es u(0) = 0 and the Inada condition u0(0) =1.

Assumption 2.2 f : R+ ! R+is a continuously di¤erentiable, strictly increasing

function that satis�es f(0) = 0: Moreover there exists xm such that f(x) < x for any

x > xm.

Assumption 2.3 � : R+ ! R++ is a continuously di¤erentiable, concave, strictly

increasing function satisfying �(xm
�
) < 1; �(0) = 0 and �0(0) = +1.

Assumption 2.4 � 2 R++.

Stern (2006) assumes the complete depreciation of the future oriented capital

stock. This assumption allows us to represent future oriented capital stock with a

10



control variable instead of additional state variable and remove the additional com-

plexity the latter would bring. This assumption is more in line with the dynastic fam-

ily interpretation than with the in�nitely-lived single individual interpretation where

st can be viewed as a parental investment in the relationship with child. Strictly

increasingness of the discount function assures that the more future oriented capital

stock we allocate the greater current appreciation of the future we have and concavity

of it promises a diminishing return to investment in st.

2.2 Existence of Optimal Paths, Euler Equations

For any level of total capital k;


(k) := f(c; s; x) : c+ �s+ x � f(k); c � 0; s � 0; x � 0g

For any initial level of total capital x0 � 0, we say that (c; s;x) = (x0; c1; s1; x1; :::) is

feasible from x0; if (ct+1; st+1; xt+1) 2 
(xt); for all t:We denote the set of all feasible

sequences from x0;by �(x0) : For a feasible sequence (c; s;x) from x0; we denote the

total discounted utility by

U (c; s;x) :=

1X
t=1

 
t�1Y
r=1

�(sr)

!
u(ct):

We say that (c; s;x) is an optimal path from x0, if (c; s; x) 2 �(x0) and U(c; s; x) �

U(c0; s0; x0) for any (c0; s0;x0) 2 �(x0) : Due to the existence of a maximum level of

sustainable capital stock, any feasible capital path x is bounded from above by a

�nite number A(x0) depending on the initial capital x0. Therefore �(x0) is compact

and the continuous function U attains its maximum on �(x0) at the optimal path.

11



Let the maximum value of U on �(x0) be called V (x0); where V indeed denotes

the value function. Formally

V (x0) := max fU (c; s;x) : (c; s;x) 2 �(x0)g :

The following proposition yields some important properties of the optimal paths.

Proposition 2.1 If (c; s;x) is an optimal path from x0; Then

(i)

ct+1 + �st+1 + xt+1 = f(xt);8t: (3)

Also, if x0 > 0;

(ii)

ct+1 > 0; st+1 > 0; xt+1 > 0; 8t: (4)

and

(iii) (Euler-1)

�u0(ct+1) = �0(st+1)V (xt+1);8t: (5)

(iv) (Euler-2)

u0(ct+1) = �(st+1)f
0(xt+1)u

0(ct+2); 8t: (6)

Proof. (i) Easily follows from the fact that u is increasing.

(ii) First, we will prove that for any t, xt > 0: Assume the contrary. Take the

smallest t such that xt = 0 and call it n: Since x0 > 0; we have xn�1 > 0 for

any value of n. This implies that sn�1 > 0 along the optimal path. Moreover

xn = 0 assures that sn = 0 for an optimal path. Hence cn = fn�1(xn�1): Consider

12



x0 such that x0n = "; c0n = fn�1(xn�1) � 2"; s0n = "; for a su¢ ciently small "; and

xt = x0t; ct = c0t; st = s0t; 8t 6= n:

We have,

U (c0; s0;x0)� U (c; s;x) =

 
n�1Y
r=1

�(sr)

!
(u(cn � 2") + �(

"

�
)V (")� u(cn)):

From Inada Condition on �, for su¢ ciently small "; U (c0; s0;x0) � U (c; s;x) > 0;

which contradicts the optimality of x: Hence, xt > 0, 8t:

Since xt > 0 and �(0) = 0, we have st > 0;8t:

Now, we will prove that ct > 0;8t: Assume the contrary. Clearly zero consumption

path after some period can never be optimal, because xt > 0; 8t: Hence, there exists

n such that cn = 0; cn+1 > 0: Consider s0such that s0n = sn� "
�
; for a su¢ ciently small

"; and st = s0t; 8t 6= n: Let c0n = "; ct = c0t; 8t 6= n; t 6= n+ 1:

Then, we have:

U (c0; s0;x0)� U (c; s;x) =

 
n�1Y
r=1

�(sr)

!h
u(") + �(sn �

"

�
)V (x)� �(sn)V (x)

i
:

From Inada condition on u, along with assumptions on u; f; �; for su¢ ciently small

"; above expression becomes positive, leading to a contradiction.

(iii) Fix any n: For a su¢ ciently small " 2 R; construct (c"; s";x") as follows:

c"n+1 = cn+1 � "; c"t+1 = ct+1 8t 6= n;

s"n+1 = sn+1 +
"
�
; s"t+1 = st+1 8t 6= n;

x"t+1 = xt+1 8t:

Feasibility of (c"; s";x") is a result of (ii). Since (c; s;x) is optimal, we have
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U (c; s;x) � U (c"; s";x") ; 8":

U (c; s;x) =

nX
t=1

 
t�1Y
r=1

�(sr)

!
u(ct) +

1X
t=n+1

 
t�1Y
r=1

�(sr)

!
u(ct)

=

nX
t=1

 
t�1Y
r=1

�(sr)

!
u(ct)

+

"
nY
r=1

�(sr)

#"
u(cn+1) + �(sn+1)

1X
t=n+2

 1Y
r=n+2

�(sr)

!
u(ct)

#

=
nX
t=1

 
t�1Y
r=1

�(sr)

!
u(ct) +

"
nY
r=1

�(sr)

#
[u(cn+1) + �(sn+1)V (xn+1)]

� U (c"; s";x")

=
nX
t=1

 
t�1Y
r=1

�(sr)

!
u(ct) +

"
nY
i=1

�(sr)

# h
u(cn+1 � ") + �(sn+1 +

"

�
)V (xn+1)

i

De�ne $1(") := u(cn+1 � ") + �(sn+1 +
"
�
)V (xn+1): Then,

$1(0) = u(cn+1)+�(sn+1)V (xn+1) � u(cn+1� ")+�(sn+1+
"

�
)V (xn+1) = $1("); 8";

which implies that $0
1(0) = 0: Hence �u

0(cn+1) = �0(sn+1)V (xn+1):

(iv) Similarly, �x any n: For a su¢ ciently small " 2 R; construct (c"; s";x") as

follows:

c"n+1 = cn+1�"; c"n+2 = cn+2+f(xn+1+")�f(xn+1); c"t+1 = ct+1 8t 6= n; n+1;

s"t+1 = st+1 8t;

x"n+1 = xn+1 + "; x"t+1 = xt+1 8t 6= n:

Feasibility of (c"; s";x") is a result of (ii). Since (c; s;x) is optimal, we have

14



U (c; s;x) � U (c"; s";x") ; 8":

U (c; s;x) =

nX
t=1

 
t�1Y
r=1

�(sr)

!
u(ct) +

1X
t=n+3

 
t�1Y
r=1

�(sr)

!
u(ct)

+

 
nY
r=1

�(sir)

!
[u(cn+1) + �(sn+1)u(cn+2)]

� U (c"; s";x") =

nX
t=1

 
t�1Y
r=1

�(sr)

!
u(ct) +

1X
t=n+3

 
t�1Y
r=1

�(sr)

!
u(ct)

+

 
nY
i=1

�(s)

!
[u(cn+1 � ") + �(sn+1)u(cn+2 + f(xn+1 + ")� f(xn+1))]

De�ne $2(") := u(cn+1 � ") + �(sn+1)u(cn+2 + f(xn+1 + ")� f(xn+1)): Then,

$2(0) = u(cn+1) + �(sn+1)u(cn+2) �

u(cn+1 � ") + �(sn+1)u(cn+2 + f(xn+1 + ")� f(xn+1)) = $2("); 8";

which implies that $0
2(0) = 0: Hence u

0(cn+1) = �(sn+1)f
0(xn+1)u

0(cn+2):

Consider 5. Note that u0 and �0 are decreasing functions. By (3), ct+1 = f(xt)�

xt+1� st+1: Given xt and xt+1; u0(f(xt)� xt+1� st+1) increases as we invest more on

future-oriented capital st+1. On the other hand, �
0(st+1) decreases as we do so. Thus,

5 precisely yields the unique st+1; given xt and xt+1. In other words, it allows us to

decide how much to share between today�s consumption ct+1 and the future-oriented

capital st+1, given the path of the capital. Moreover, 6 gives the intertemporal �ow

of the path.
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2.3 Value Function, Bellman Equation, Optimal Policy

We have already de�ned the value function. It�s well de�ned, non-negative, con-

tinuous and strictly increasing. As the recursive structure of the standard optimal

growth models is preserved by our model, the satisfaction of Bellman�s equation is

also straightforward (See Stokey and Lucas, 1989 and Le Van and Dana, 2003):

V (xt) = max
fxt+1g1t=0

fu(f(xt)� xt+1 � �st+1) + �(st+1)V (xt+1)g

The optimal policy correspondance, � : R+ ! R+; is de�ned as follows:

� (k) := arg max
(c;s;x)

8><>: u(c) + �(s)V (x)

j c+ �s+ x 2 
(k)

9>=>; : (7)

Note that, from (3), we can equivalently de�ne the optimal policy correspondence

as

� (k) := arg max
(c;s;x)

8><>: u(c) + �(s)V (x) j c+ �s+ x

= f(k); c � 0; s � 0; x � 0

9>=>; :

The non-emptiness, upper semi continuity and compact valuedness of the optimal

policy correspondence and its equivalance with the optimal path follow easily from

the continuity of the value function by a standard application of the theorem of the

maximum (see Stern, 2006 and Le Van and Dana, 2003).

In a standard optimal growth model with geometric discounting and the usual

concavity assumptions on preferences and technology, the optimal policy correspon-

dence is single valued and the properties of the optimal path is easily found by using

the �rst order conditions together with envelope theorem by di¤erentiating the value
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function. However, in our model, the objective function includes multiplication of

a discount function. This generally destroys the usual concavity argument which is

used in the proof of the di¤erentiability of value function and the uniqueness of the

optimal paths (see Benveniste and Scheinkman, 1979; Araujo, 1991).

At this point, we need to refer to an important theorem in Stern (2006), concerning

the increasingness of the optimal policy correspondence.

Theorem 2.1 (Thm 3.7, Stern 2006) � is increasing, i.e. if k0 � k; (c0; s0; x0) 2

�(k0); (c; s; x) 2 �(k); then s0 + x0 � s+ x and x0 � x:

Indeed, the increasingness of the optimal policy correspondence allows us to claim

the monotonicity of the optimal paths, which is crucial in analyzing the dynamic

properties of the model.

Bringing together the increasingness and the upper semi-continuity of �; we will

prove that the left and right derivatives of the value function exists, using the methods

in Le Van and Dana (2003). Let �(k) := min f�s+ x : (f(k)� x� �s; s; x) 2 �(k)g

and  (k) := max f�s+ x : (f(k)� x� �s; s; x) 2 �(k)g :

Proposition 2.2 (i) Left derivative of V exits at every x0 > 0, precisely V 0
�(x0) =

u0(f(x0)� �(x0))f
0(x0):

(ii)Right derivative of V exists at every x0 > 0; precisely V 0
+(x0) = u0(f(x0) �

 (x0))f
0(x0):

Proof. (i) Take a sequence of initial capitals xn0 converging to x0 from below. For-

mally, xn0 ! x0; x
n
0 < x0: Let (c1; s1; x1) 2 �(x0) be such that �s1 + x1 = �(x0):

Take (cn1 ; s
n
1 ; x

n
1 ) 2 �(xn0 ) for each n: Since x

n
0 < x0; increasingness of � implies that

17



xn1 < x1 and xn1 + sn1 < x1 + s1: By (4), x1 + �s1 < f(x0): Now recall that xn0 ! x0;

hence f(xn0 )! f(x0): Then for all n large enough, we have x1+�s1 < f(xn0 ) < f(x0):

Bringing together all, we have xn1 + �sn1 < x1 + �s1 < f(xn0 ) < f(x0): Particularly,

x1 + �s1 < f(xn0 ) and x
n
1 + �sn1 < f(x0): This means that:

(f(xn0 )� �s1 � x1; s1; x1) 2 
(xn0 ); (8)

(f(x0)� �sn1 � xn1 ; s
n
1 ; x

n
1 ) 2 
(x0): (9)

By (8), we know that (f(xn0 � �s1� x1); s1; x1) is feasible after xn0 but it need not

be optimal. Hence we have:

V (xn0 ) � u(f(xn0 )� �s1 � x1) + �(s1)V (x1): (10)

Also note that:

V (x0) = u(f(x0)� �s1 � x1) + �(s1)V (x1): (11)

Subtracting (10) from (11), and employing the concavity of u; we obtain:

V (x0)� V (xn0 ) � u(f(x0)� �s1 � x1)� u(f(xn0 )� �s1 � x1)

� u0(f(xn0 )� �s1 � x1) [f(x0)� f(xn0 )] :

Therefore:
V (x0)� V (xn0 )

x0 � xn0
� u0(f(xn0 )� �s1 � x1)

f(x0)� f(xn0 )

x0 � xn0
:

Taking the limit as xn0 ! x0 :

lim sup
xn0!x0

V (x0)� V (xn0 )

x0 � xn0
� u0(f(x0)��s1�x1)f 0(x0) = u0(f(x0)��(x0))f 0(x0): (12)
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By (9), similarly, (f(x0)� �sn1 � xn1 ; s
n
1 ; x

n
1 ) is feasible after x0:Hence:

V (x0) � u(f(x0)� �sn1 � xn1 ) + �(sn1 )V (x
n
1 ): (13)

Also:

V (xn0 ) = u(f(xn0 )� �sn1 � xn1 ) + �(sn1 )V (x
n
1 ): (14)

Subtracting (14) from (13), and employing the concavity of u; we obtain:

V (x0)� V (xn0 ) � u(f(x0)� �sn1 � xn1 )� u(f(xn0 )� �sn1 � xn1 )

� u0(f(x0)� �sn1 � xn1 ) [f(x0)� f(xn0 )] :

Therefore:
V (x0)� V (xn0 )

x0 � xn0
� u0(f(x0)� �sn1 � xn1 )

f(x0)� f(xn0 )

x0 � xn0
:

Now recall that � is upper semi-continuous. Then we may assume (cn1 ; s
n
1 ; x

n
1 ) con-

verges to some (c01; s
0
1; x

0
1) 2 �(x0): Taking the limit yields:

lim inf
xn0!x0

V (x0)� V (xn0 )

x0 � xn0
� u0(f(x0)� �s01 � x01)f

0(x0):

Note that, since �s1 + x1 = �(x0); we have �s01 + x01 � �s1 + x1: Then the concavity

of u (u0 is decrasing) implies:

lim inf
xn0!x0

V (x0)� V (xn0 )

x0 � xn0
� u0(f(x0)��s1�x1)f 0(x0) = u0(f(x0)��(x0))f 0(x0): (15)

Conjoining (12) and (15), keeping in mind that lim sup � lim inf; we obtain:

lim sup
xn0!x0

V (x0)� V (xn0 )

x0 � xn0
= lim inf

xn0!x0

V (x0)� V (xn0 )

x0 � xn0
= u0(f(x0)� �(x0))f

0(x0):
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Therefore V 0
�(x0) exists and is equal to u

0(f(x0)� �(x0))f
0(x0):

(ii) Now similarly, take a sequence of initial capitals xn0 converging to x0 from

above. Formally, xn0 ! x0; x
n
0 > x0: Let (c1; s1; x1) 2 �(x0) be such that �s1 + x1 =

 (x0): Take (cn1 ; s
n
1 ; x

n
1 ) 2 �(xn0 ) for each n: Since x0 < xn0 ; increasingness of � implies

that x1 < xn1 and x1 + �s1 < xn1 + �sn1 : By (4), x1 + �s1 < f(x0):

We claim that, for all n large enough, xn1 + �sn1 < f(x0): Suppose otherwise:

xn1 + �sn1 � f(x0) for in�nitely many n. Then by upper semi-continuity of �; there

exists a subsequence �n with x
�n
1 + �s�n1 � f(x0) and a triplet (

_
c1;

_
s1;

_
x1) 2 �(x0);

such that (c�n1 ; s
�n
1 ; x

�n
1 ) converges to (

_
c1;

_
s1;

_
x1): Clearly, x

�n
1 + �s�n1 � f(x0) and

(c�n1 ; s
�n
1 ; x

�n
1 ) ! (

_
c1;

_
s1;

_
x1) implies that �

_
s1 +

_
x1 � f(x0): But since (

_
c1;

_
s1;

_
x1) 2

�(x0) � 
(x0); we obtain
_
c1 = 0; which is a contradiction with (4).

Therefore, for all n large enough, we have x1 + �s1 < xn1 + �sn1 < f(x0) < f(x00):

Particularly, x1+�s1 < f(xn0 ) and x
n
1+�s

n
1 < f(x0): Then same method in (i) applies

and we obtain V 0
+(x0) exists and is equal to u

0(f(x0)�  (x0))f
0(x0):

Now we will establish the relation between the di¤erentiability of V and the

uniqueness of the optimal path. In order to do so, we need the following lemma.

Lemma 2.1 (i) If (c0; s0; x0) 2 �(k); (c; s; x) 2 �(k); �s0 + x0 = �s+ x; then x0 = x:

(ii) �(k) =  (k) if and only if �(k) has a single element.

(iii) Given k > 0; V is di¤erentiable at k if and only if �(k) has a single element.

Proof. (i) By (3), c0 = f(k)� �s0 � x0 and c = f(k)� �s� x: By (5) we have:

u0(f(k)� �s0 � x0) = �0(s0)V (x0);

u0(f(k)� �s� x) = �0(s)V (x):
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Since �s0 + x0 = �s + x; we have u0(f(k) � �s0 � x0) = u0(f(k) � �s � x); i.e.

�0(s0)V (x0) = �0(s)V (x):W.L.O.G. assume that x0 > x: Then s0 < s: Strictly increas-

ingness of V and decreasingness of �0 imply that V (x0) > V (x) and �0(s0) � �0(s):

Then �0(s0)V (x0) > �0(s)V (x): Contradiction. Hence x0 = x:

(ii) If �(k) is a singleton, it is clear that �(k) =  (k): If �(k) =  (k); we will prove

that �(k) is a singleton. Suppose that there exists at least two di¤erent elements in

�(x); say (c�; s�; x�) and (c& ; s& ; x&): By de�nitions of �(x) and  (x); the equality

�(x) =  (x) implies �s� + x� = �s& + x& : Thus, (i) implies x� = x& : Then s� = s&

and c� = f(k) � �s� � x� = f(k) � �s& � x& = c& . Hence, (c�; s�; x�) = (c& ; s& ; x&):

Contradiction.

(iii) V is di¤erentiable at k > 0 i¤ V 0
�(k) = V 0

+(k) i¤ u0(f(k) � �(k))f 0(k) =

u0(f(k) �  (k))f 0(k) i¤ �(k) =  (k): Then by (ii), V is di¤erentiable at k > 0 i¤

�(k) has a single element.

Bringing together all of the above, we prove the following proposition concern-

ing the almost everywhere di¤erentiability of V and almost every uniqueness of the

optimal path.

Proposition 2.3 (i) Given x0; let (c; s; x) be an optimal path from x0. Then for any

t � 1; �(xt) has a single element.

(ii) Given x0; V 0(x0) exists if and only if there exists a unique optimal path from

x0.

(iii) V is di¤erentiable almost everywhere, or equivalently the optimal path is

unique for almost every initial capital x0 > 0:

Proof. (i) Assume the contrary. There exists t � 1 such that �(xt) has at least two
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di¤erent elements, say (c�t+1; s
�
t+1; x

�
t+1) and (c

&
t+1; s

&
t+1; x

&
t+1): Then by (6):

u0(ct) = �(st)f
0(xt)u

0(c�t+1);

u0(ct) = �(st)f
0(xt)u

0(c&t+1):

Thus, c�t+1 = c&t+1: Along with (3), we obtain �s
�
t+1 + x�t+1 = f(xt) � c�t+1 = f(xt) �

c&t+1 = �s&t+1 + x&t+1: By Lemma 2.1, we have x
�
t+1 = x&t+1: Then (c

�
t+1; s

�
t+1; x

�
t+1) =

(c&t+1; s
&
t+1; x

&
t+1); contradiction.

(ii) From (i), we know that given any (c1; s1; x1) 2 �(x0); �(x1) is a singleton,

say (c2; s2; x2): Again from (i), we have �(x2) is a singleton say (c3; s3; x3): Then

inductively, we know that given any (c1; s1; x1) 2 �(x0); the rest of the optimal path

is uniquely determined. This means that, the optimal path from x0 is unique if and

only if (c1; s1; x1) is unique, in other words �(x0) is singleton valued. Then by the

previous lemma, the optimal path from x0 is unique if and only if V is di¤erentiable

at x0:

(iii) Since � is increasing, � and  are increasing functions. We know that a

bounded increasing function f : R! R is almost everywhere continuos. For the proof,

see the appendix of Le Van and Dana 2003. Then � and  are almost everywhere

continuous. Firstly, we will prove that the points of continuity of � and  are exactly

the same. Then we will prove that at these continuity points, � and  yield equal

values.

Now consider a �xed number y; and two variables x; z with x < y < z: We have

x2=y < x < y < z < z2=y: Note that by de�nition, �(k) �  (k) for any k: Then the

increasingness of �; � and  imply:

 (x2=y) � �(x) �  (x) � �(y) �  (y) � �(z) �  (z) � �(z2=y): (16)
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Let x and z converge to y. Then x2=y and z2=y also converge to y:

Now, if � is continuous at y; �(z2=y) ! �(y); �(z) ! �(y): Then �(y) �

 (y) � �(z) �  (z) � �(z2=y) implies that  (z) !  (y): Also, �(x) ! �(y);

�(z) ! �(y): Then �(x) �  (x) � �(y) �  (y) � �(z) implies that  (x) !  (y):

Hence,  is continuous at y:

Conversely, if  is continuous at y;  (x2=y) !  (y);  (x) !  (y): Then we

get  (x2=y) � �(x) �  (x) � �(y) �  (y) which implies �(x) ! �(y): Also,

 (z) !  (y);  (x) !  (y): Then  (x) � �(y) �  (y) � �(z) �  (z) implies that

�(z)! �(y): Hence, � is continuous at y:

Therefore, the continuity points of � and  are coincident. Now let y be such

a point of continuity. Since �(z) ! �(y) as z ! y, �(y) �  (y) � �(z) implies

that �(y) =  (y): Now we have proved that � and  yield equal values at all of their

continuity points. But recall that they are almost everywhere continuous functions.

Then, �(k) =  (k) for almost every k: By the lemma, �(k) =  (k) implies that �(k)

is a singleton, which implies that �(k) is a singleton for almost every k; hence V is

di¤erentiable for almost every k: Then by (ii), V is di¤erentiable almost everywhere,

or equivalently the optimal path is unique for almost every initial capital x0 > 0:

2.4 Dynamic Properties of the Optimal Paths

We have proved the almost everywhere di¤erentiability of the value function, and the

almost everywhere uniqueness of the optimal path, for the so described model, which

were left as open questions in Stern (2006). Now as one can easily see, the increas-

ingness of � implies the monotonicity of the optimal path of capital stock. Formally,

for the optimal path (c; s; x) from x0 > 0; x is a monotonic sequence. Moreover,

as well known, the existence of the maximum sustainable capital stock along with
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the monotonicity of the optimal path of capital stock implies that the optimal path

of capital converges to a steady state. The monotonicity and convergence results of

any optimal path of capital are also available in Stern (2006). On the other hand,

the monotonicity or the convergence of c and s are not studied analytically in Stern

(2006). In this section, we will investigate the limiting behavior of the optimal path

without any speci�c functional forms. We will prove that c and s are convergent, and

provide conditions under which the system does not converge to zero.

Proposition 2.4 Let (c; s; x) be the optimal path from x0. Then, seperately c; s; x

are convergent sequences. Moreover, if
_
c;
_
s;
_
x are respectively the limits, then either

(
_
c;
_
s;
_
x) = (0; 0; 0) or

_
c;
_
s;
_
x > 0.

Proof. The fact that x must be convergent is already established, which also implies

that (f(xt) � xt+1)t converges. If (f(xt) � xt+1)t converges to zero, clearly the con-

straint of the problem imply that c and s also converge to zero. Now assume that x

converges to
_
x and (f(xt)�xt+1)t coverges to some positive number, i.e. f(

_
x)�

_
x > 0.

Notice that this also implies
_
x > 0:De�ne �(x; x0; s) := �u0(f(x)�x0��s)��0(s)V (x0):

Clearly � is continuous in all arguments and also strictly increasing in s, which

follows from the strict concavity of u and concavity of �. Now there exists
_
s

such that �(
_
x;
_
x;
_
s) = 0: Because, �(

_
x;
_
x; 0) = �u0(f(

_
x) �

_
x) � �0(0)V (

_
x) = �1,

�(
_
x;
_
x; f(

_
x)�

_
x

�
) = u0(0)� �(f(

_
x)�

_
x

�
)V (

_
x) = +1, and � is strictly increasing in s. Note

that since � is strictly increasing in s,
_
s is uniquely determined. Now assume that

s is not convergent, in particular s does not converge to
_
s. Then 9" > 0 there exist

in�nitely many t for which we have
��st+1 � _

s
�� > ": W.L.O.G., for in�nitely many t;

we have st+1 �
_
s > ": Then speci�cally for these t, we have

�(xt; xt+1; st+1) > �(xt; xt+1;
_
s + "): (17)
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Note that by (5),

�u0(f(xt)� xt+1 � �st+1) = �0(st+1)V (xt+1); 8t;

thus we have

�(xt; xt+1; st+1) = 0;8t: (18)

Therefore, as t goes to in�nity, the continuity of � along with (17) and (18) yields

0 � �(
_
x;
_
x;
_
s + "). Recall that �(

_
x;
_
x;
_
s), thus �(

_
x;
_
x;
_
s) � �(

_
x;
_
x;
_
s + ") which is a

contradiction with the strictly increasingness of �. Hence, s converges to
_
s: Then (3)

implies c converges to
_
c := f(

_
x)�

_
x�

_
s:

Now let the optimal path (c; s; x) from x0 converge to (
_
c;
_
s;
_
x). If x0 = 0; it is

clear that (
_
c;
_
s;
_
x) = (0; 0; 0). Consider x0 > 0: Firstly, it is clear that

_
x � xm.

If
_
x = xm; the constraint implies that

_
c;
_
s = 0: Note that such a sequence (c; s; x)

cannot be optimal because after some period, zero utility will be gained with positive

capital accumulation around xm. If
_
x = 0, again the constraints imply that (

_
c;
_
s;
_
x) =

(0; 0; 0):

Now consider
_
x > 0. (5) i.e. �u0(ct+1) = �0(st+1)V (xt+1) and the Inada conditions

on u and � imply that
_
c = 0 if and only if

_
s = 0: However, if

_
c =

_
s = 0 and

_
x > 0;

we obtain a contradiction with (4). Then for the case where
_
x > 0; we have

_
c > 0;

_
s > 0:

Formally, de�ne a steady state as any triplet (
_
c;
_
s;
_
x) such that �(

_
x) = (

_
c;
_
s;
_
x);

i.e. the stationary sequence (
_
c;
_
s;
_
x) starting from

_
x is optimal. We say (

_
c;
_
s;
_
x) is a

positive steady state if it is a steady state and
_
c;
_
s;
_
x > 0: Clearly from (4), a steady

state can either be (0; 0; 0) or a positive steady state.
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Now that we have proved the convergence of the optimal path rather than just

the optimal path of capital, we will also prove that the optimal path converges to a

steady state. In the preceeding part, we will present the condition under which the

optimal path converges to a positive steady state.

Theorem 2.2 The optimal path from any x0 converges to a steady state.

Proof. Let the optimal path from x0 be (c; s; x). It is clear that if x0 = 0; (c; s; x)

converges to (0; 0; 0) which is a steady state. Now if x0 > 0; let (c; s; x) converge

to (
_
c;
_
s;
_
x) > 0; in particular x converges to

_
x: Recall that � is upper-semi contin-

uous and singleton valued at each xt; t � 1. Then �(xt) = (ct+1; st+1; xt+1) has a

convergent subsequence which converges to a point in �(
_
x): We already know that

(c; s; x) converges to (
_
c;
_
s;
_
x); hence (

_
c;
_
s;
_
x) 2 �(

_
x): What is left to prove is that

(
_
c;
_
s;
_
x) = �(

_
x) if (

_
c;
_
s;
_
x) 2 �(

_
x): However, this is also clear since (

_
c;
_
s;
_
x) 2 �(

_
x)

implies that the statinoary sequence (c0; s0; x0) = (
_
c;
_
s;
_
x) is feasible, and � is singleton

valued at each x0t; t � 1; i.e. (
_
c;
_
s;
_
x) = (c02; s

0
2; x

0
2) = �(x01) = �(

_
x):

Proposition 2.5 If �(0)f 0(0) > 1; the optimal path from x0 > 0 converges to a

positive steady state.

Proof. Assume that �(0)f 0(0) > 1 and x0 > 0: Let the optimal path (c; s; x) from

x0 converge to (
_
c;
_
s;
_
x). Suppose that (

_
c;
_
s;
_
x) = (0; 0; 0): As � and f 0 are continuous

functions, there exists N so that for all n > N , we have �(sn)f 0(xn) > 1: Then

consider (6) for t > N :

u0(ct+1) = �(st+1)f
0(xt+1)u

0(ct+2) > u0(ct+2)

which implies ct+1 < ct+2: Inductively, we obtain 0 < cN+1 < cN+2 < :::However, ct

also converges to zero, which yields a contradiction. Hence the optimal path converges
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to a positive steady state.

Now if (
_
c;
_
s;
_
x) is a positive steady state of the system, then by (3), (5), (6), and

(27) we have respectively:

_
c + �

_
s +

_
x = f(

_
x);

�u0(
_
c) = �0(

_
s)V (

_
x);

u0(
_
c) = �(

_
s)f 0(

_
x)u0(

_
c);

V (
_
x) = u(

_
c) + �(

_
s)V (

_
x):

2Note that these are necessary conditions for a positive steady state. Thus, if

�(0)f 0(0) > 1; and also if the solution (
_
c;
_
s;
_
x) to the above system of equations

is unique, then clearly the system will posses global convergence to the prescribed

positive steady state. The above equations can be recast as:

_
c + �

_
s +

_
x� f(

_
x) = 0; (19)

�u0(
_
c)

u(
_
c)

=
�0(

_
s)

1� �(
_
s)
; (20)

�(
_
s)f 0(

_
x) = 1: (21)

2.5 The Relative Cost of Future Oriented Capital and the

Long Run Equilibrium

We show in a numerical example how a small perturbation to the price of future

oriented capital qualitatively changes the dynamical properties of the optimal policy.

In particular, we demonstrate the occurrence of a saddle-node bifurcation with respect

to the price of future oriented capital stock. We use the same functional forms

and the parameter set as Stern (2006) did while giving an example for the multiple
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steady states and divergence and show that, with the same functional forms, only

by changing the value of relative cost of future oriented capital, one can also obtain

global convergence.

Assumption 2.5 u(c) = c�; �(s) = 1 � �e�s
�
; f(k) = Ak�; A > 0, and 0 <

f�; �; �; �g < 1:

Under this functional forms we de�ne the stationary Euler equation as:

E =

8>><>>:k > 0 : � =
�
�
ln �

1� 1
�Ak��1

� ��1
�
(Ak� � k)

� + � ln �
1� 1

�Ak��1

9>>=>>; :

Consider the following set of parameters:

A = 3; � = 3=4; � = 0:85; � = 2=3; � = 4=5

In Figure 1, the bifurcation diagram is presented. It turns out that the critical

values for � are �1 = 0:806637 and �2 = 1:64558. As long as � < 0:806637, i.e. before

bifurcation occurs, there is only one steady state, xh, which is globally stable. As �

slowly increases, the steady state capital stock decreases.

For � = 0:806637 , an additional steady state appears in addition to xh and the

dynamics are now characterized by two steady states, xm < xh such that xh is locally

stable and xm is unstable in the sense that it is stable from the left but unstable from

the right.

When � slightly increases from its critical value 0:806637, the unstable steady state

splits into one locally stable and one unstable steady state through the saddle-node
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bifurcation resulting in three steady states, xl(stable)< xm(unstable)< xh(stable), in

total. The coexistence of these three steady states is preserved until � = 1:64558.

As the value of � gets closer to the critical value 1:64558, the highest stable steady

state and the unstable steady state approach one another and at the critical value,

they merge into a non-hyperbolic steady state. Slightly above the critical value, the

non-hyperbolic steady state ceases to exist leaving only the stable steady state, xl

which is now globally stable. Further increases in � only a¤ects the value of the

stable steady state.

In sum, two types of the saddle-node bifurcation emerge. The di¤erence lies in

the following: In the �rst one, the saddle-node bifurcation is realized for the pair

of steady states xm and xh and in the second, it is for the pair of steady states xl

and xm. Moreover, in the �rst one, as � increases, a pair of stable and unstable

steady states emerges simultaneously from a non-hyperbolic steady state and in the

second, the qualitative change is in the form of coalescence of the steady states into

a non-hyperbolic steady state.

This result signi�es the importance of the price of future oriented capital stock on

the dynamic behavior of the system. The possibility of multiple steady states were

established numerically for speci�c functional forms in Stern (2006). However, with

the same functional forms, only by changing the value of �, one can also obtain global

convergence.

In this chapter, we consider the e¤ects of the relative cost of the future oriented

capital on economic variables in the long term. In particular, we demonstrate the

occurrence of a saddle-node bifurcation with respect to the price of future oriented

capital stock. This is worth to examine optimal growth model with endogenous

time preference while relaxing the assumption that the cost of the future-oriented
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Figure 1: Bifurcation analysis for variations in �

capital is constant. Assuming that it changes with wealth would lets us consider the

factors in�uencing the opportunity cost of time and e¤orts being assigned for the

accumulation of future oriented capital stock. This is in our future agenda.
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CHAPTER 3

STRATEGIC INTERACTION AND DYNAMICS UNDER

ENDOGENOUS TIME PREFERENCE1

To account for development patterns that di¤er considerably among economies

in the long run (Quah, 1996; Barro, 1997; Barro and Sala-i-Martin, 1991), a va-

riety of one-sector optimal growth models that incorporate some degree of market

imperfections have been presented. These are based on technological external ef-

fects and increasing returns (Dechert and Nishimura, 1983; Mitra and Ray, 1984) or

the endogeneity of time preference (Becker and Mulligan, 1997; Stern, 2006; Erol et

al., 2011). They have characterized the optimal paths and proven the emergence of

threshold dynamics according to which the economies with low initial capital stocks

or incomes converge to a steady state with low per capita income, while economies

with high initial capital stocks converge to a steady state with high per capita income

(see Azariadis and Stachurski, 2005, for a survey). However, to what extent these

analyses are robust to the considerations of strategic interactions among agents in

the economy, still remains as a concern.

1This essay is our joint work with Carmen Camacho and Ça¼gr¬Sa¼glam and published in Journal
of Mathematical Economics, Volume 49, Issue 4 (August 2013).
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This paper presents a strategic growth model with endogenous time preference.

Each agent, receiving a share of income which is increasing in her own capital stock

and decreasing in her rival�s, invests over an in�nite horizon to build her stocks. The

heterogeneity among agents arises from di¤erences in their initial endowment, their

share of aggregate income, and therefore in their subjective discount rates. We adopt

the noncooperative open loop Nash equilibrium concept, in which players choose

their strategies as simple time functions and they are able to commit themselves to

time paths as equilibrium strategies. In this setup, agents choose their strategies

simultaneously and each agent is faced with a single criterion optimization problem

constrained by the strategies of the rival taken as given. We focus on the qualita-

tive properties of the open-loop Nash equilibria and the dynamic implications of the

strategic interaction.

In line with the empirical studies concluding that the rich are more patient than

the poor (see Lawrence, 1991, and Samwick, 1998) and in parallel to the idea that the

stock of wealth is a key to reach better health services and better insurance markets,

we consider that the discount factor is increasing in the stock of wealth. However,

this implies that the objective function of each agent�s single criterion optimization

problem includes a multiplication of the discount function. This generally destroys

the usual concavity argument which is used in the proof of the di¤erentiability of value

function and the uniqueness of the optimal paths (see Benveniste and Scheinkman,

1979; Araujo, 1991).

Due to this potential lack of concavity and the di¤erentiability of the value func-

tions associated with each agent�s problem, we employ the theory of monotone com-

parative statics and the supermodular games based on order and monotonicity prop-

erties on lattices (see Topkis, 1998). The analyses on the properties of supermodular

games have been extensively concentrated in static games and to some extent in dy-
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namic games with stationary Markov strategies (see Cooper, 1999; Amir, 2005; Vives,

2005, for a general review). This may stem from the fact that the use of open-loop

strategies has been noted for being static in nature, not allowing for genuine strategic

interaction between players during the play of the game. There are, however, many

situations in which players lack any other information than their own actions and

time so that the open-loop strategies can turn out to be unavoidable. The players

may be unable to observe the state vector, let alone the actions of their rivals. In this

respect, showing how the supermodular game structure can be utilized in the analysis

of the dynamic games under open loop strategies is inevitable.

In this paper, we �rst provide the su¢ cient conditions of supermodularity for

dynamic games with open-loop strategies based on two fundamental elements: the

ability to order elements in the strategy space of the agents and the strategic com-

plementarity which implies upward sloping best responses. In our dynamic game the

open-loop strategies are vectors instead of simple scalars. Hence, the game requires

an additional restriction to guarantee that all components of an agent�s best response

vector move together. This explains the role of the restriction that the payo¤ function

of each agent has to be supermodular in his own strategy given the strategy of his

rival. The supermodular game structure of our model let us provide the existence

and the monotonicity results on the greatest and the least equilibria. We sharpen

these results by showing the di¤erentiability of the value function and the uniqueness

of the best response correspondences almost everywhere. These allow us to derive

conclusions on the nature of best responses, the set of equilibria and the long-run

dynamics.

In particular, we analyze to what extent the strategic complementarity inherent

in agents�strategies can alter the convergence results that could have emerged under

a single agent optimal growth model and try to answer the following questions: Can
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an agent with a larger initial stock credibly maintain this advantage to preempt

the rival�s investment and reach a better long-run stock of capital? Put di¤erently,

is the initial dominance reinforced by the actions of the agents? Can small initial

di¤erences be magni�ed and then propagated through time? Can this kind of initial

advantages vanish in the non-cooperative equilibrium of this class of games with

strategic complementarity? Can the agent with a low initial capital stock pull the rich

to her lower steady state that she would never face while acting by herself? Under

what conditions do we have a unique equilibrium with strategic complementarity

under open-loop strategies?

The key feature of our analysis is that the stationary state Nash equilibria tend

to be symmetric under open-loop strategies. We show that the initially rich can

pull the poor out of poverty trap even when sustaining a higher level of steady state

capital stock for itself. A remarkable feature of our analysis is that it does not

rely on particular parameterization of the exogenous functions involved in the model.

Rather, it provides a more �exible framework with regards to the discounting of time,

keeps the model analytically tractable and uses only general and plausible qualitative

properties.

This chapter is organized as follows. The next section introduces the model. Tools

needed while utilizing the supermodularity of the game; equilibrium dynamics and

the steady state analysis have been discussed in Section 3.

3.1 The Model

We consider an intertemporal one sector model of a private ownership economy à la

Arrow-Debreu with a single good xt, and two in�nitely lived agents, i = 1; 2: The

single commodity is used as capital, along with labor, to produce output. Labor is
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presumed to be supplied in �xed amounts, and the capital and consumption are in-

terpreted in per-capita terms. The production function is given by f (xt) :We assume

that each agent receives a share of income �i(xit; x
j
t) =

xit
xit+x

j
t

; which is increasing in

her own capital stock xit; and decreasing in her rival�s, x
j
t . The amount of current

resources not consumed is saved individually as capital until the next period. For a

given strategy of the rival, each agent chooses a path of consumption ci = fcitgt�0 so as

to maximize the discounted sum of instantaneous utilities,
P1

t=0

�Qt
s=1 �(x

i
s)
�
ui(cit)

where the functions u and � denote the instantaneous utility from consumption and

the level of discount on future utility, respectively.

In accordance with these, the problem of agent i can be formalized as follows:

max
fcit;xit+1g1t=0

1X
t=0

 
tY
s=1

�(xis)

!
ui(cit); (P)

subject to

cit + xit+1 � �i(xit; x
j
t)f(x

i
t + xjt) + (1� �)xit;8t;

cit � 0; xit � 0;8t;

(xi0; x
j
0) � 0; xj = fx

j
tg1t=1 � 0; given,

where j 6= i 2 f1; 2g; and � 2 (0; 1) is the depreciation rate of the capital stock.

Agents may only di¤er in their initial endowment, their share of output, and therefore

in their subjective discount rates.

Wemake the following assumptions regarding the properties of the discount, utility

and the production functions.

Assumption 3.1 � : R+ ! R++ is continuous, di¤erentiable, strictly increasing

and satis�es supx>0 � (x) = �m < 1; supx>0 �
0 (x) < +1:
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Assumption 3.2 u : R+ ! R+ is continuous, twice continuously di¤erentiable and

satis�es either u(0) = 0 or u(0) = �1: Moreover, u is strictly increasing, strictly

concave and u0(0) = +1 (Inada condition).

Assumption 3.3 f : R+ ! R+ is continuous, twice continuously di¤erentiable and

satis�es f(0) = 0. Moreover, f it is strictly increasing and limx!+1 f
0 (x) < �.

We say that a path for capital xi = (xi1; x
i
2; :::) is feasible from (xi0; x

j
0) � 0; if for

all t and given xj � 0; if for any t � 0; xi satis�es that 0 � xit+1 � g(xit; x
j
t) where

gi(xit; x
j
t) = �i(xit; x

j
t)f(x

i
t + xjt) + (1� �)xit:

Si (xj) denotes the set of feasible accumulation paths from (xi0; x
j
0): A consumption

sequence ci = (ci0; c
i
1; :::) is feasible from (xi0; x

j
0) � 0; when there exists a path for

capital, xi 2 Si (xj) with 0 � cit � gi(xit; x
j
t) � xit+1: As the utility and the discount

functions are strictly increasing, we introduce function U de�ned on the set of feasible

sequences as

U (xi j xj) =
1X
t=0

 
tY
s=1

�(xis)

!
u
�
gi(xit; x

j
t)� xit+1

�
:

The preliminary results are summarized in the following lemma which has a standard

proof using the Tychonov theorem (see Le Van and Dana, 2003; Stokey and Lucas,

1989).

Lemma 3.1 Let �x be the largest point x � 0 such that f (x) + (1� �)x = x. Then,

for any xi in the set of feasible accumulation paths we have xit � A(xi0+ x
j
0) for all t;

where A
�
xi0 + xj0

�
= max

��
xi0 + xj0

�
; �x
	
: Moreover, the set of feasible accumulation

paths is compact in the product topology de�ned on the space of sequences xi and U

is well de�ned and upper semicontinuous over this set.
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In a recent paper, Erol et al. (2011) study the dynamic implications of the endoge-

nous rate of time preference depending on the stock of capital in a single consumer

one-sector optimal growth model. They prove that even under a convex technology

there exists a critical value of initial stock, in the vicinity of which, small di¤erences

lead to permanent di¤erences in the optimal path: economies with low initial capital

stocks converge to a steady state with low per capita income. On the other hand,

economies with high initial capital stocks converge to a steady state with high per

capita income. Indeed, it is shown that the critical stock is not an unstable steady

state so that if an economy starts at this stock, an indeterminacy will emerge.

In this paper, we propose a capital accumulation game where heterogeneous agents

consume strategically. Heterogeneity arises from di¤erences in their initial endow-

ment, their share of aggregate income, and therefore in their subjective discount rates.

Our interest focuses on the qualitative properties of the open-loop Nash equilibria and

the dynamic implications of the strategic interaction.

3.2 Non-Cooperative Di¤erence Game and Open-Loop

Nash Equilibrium

The noncooperative game in consideration is a triplet (N;S; fU i : i 2 Ng) where N =

f1; 2g is the set of players, S = �i2NSi is the set of joint admissible strategies under

open-loop information structure and U i is the payo¤ function de�ned on S for each

player i 2 N; i.e., U i = U (xi j xj) :

Any admissible strategy for agent i is an in�nite sequence compatible with the

information structure of the game which is constant through time and restricted with

the initial pair of capital stock in the economy. Accordingly, the set of admissible

strategies for agent i; can be written as Si = �1t=1S
i
t ; where S

i
t =

�
0; gi(exit�1; exjt�1)� ;
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with exit�1 = supSit�1; and exjt�1 = supSjt�1: Indeed, any strategy xi 2 Si is such that
xit 2 Sit ;8t where Si1 =

�
0; gi(xi0; x

j
0)
�
; Si2 =

�
0; gi

�
gi(xi0; x

j
0); g

j(xi0; x
j
0)
��
; :::; etc.

A few important remarks on the way the set of joint admissible strategies is

constructed are in order. Denoting the set of joint feasible strategies by �; for any

(xi;xj) 2 �; we have

�(xi;xj) =
��
[xj2XjSi (xj)

�
�
�
[xi2XiSj (xi)

��
\�;

where Xj = fxj : Si (xj) 6= ?g. It is important to recall from Topkis (1998) that

� =
�
[xj2XjSi (xj)

�
� ([xi2XiSj (xi)) if and only if �(xi;xj) = � for each (xi;xj)

in �: However, note that under the open-loop information structure of our game,

the action spaces of the agents turn out to be dependent on each other converting

the game into a �generalized game� in the sense of Debreu (1952). More precisely,

� 6=
�
[xj2XjSi (xj)

�
� ([xi2XiSj (xi)) as the set of feasible accumulation paths from

(xi0; x
j
0) of agent i is constrained by the choices of agent j. This simply prohibits to

order elements in the joint feasible strategy space and calls for additional restrictions

on the plan of the game in proving the existence of an equilibrium and analyzing

the long-run dynamics via order theoretical reasoning. The admissibility condition2

imposed on the set of feasible strategies of the agents allows to write the set of joint

admissible strategies as a simple cross product of the each agent�s set of admissible

strategies that constitute a complete lattice.3

2Whenever there exists a positive externality, i.e., @g
i(xit;x

j
t)

@xjt
� 0;8t; the admissibility imposed

on the set of joint feasible strategies is far from a restriction. Even in case of negative externality,

i.e., @g
i(xit;x

j
t)

@xjt
< 0;8t; the long-run implications of our analysis will not rely on such a restriction.

Indeed, an admissible strategy of agent i is an in�nite sequence of capital stock feasible from (xi0; x
j
0)

constituted under the consideration of the highest feasible strategy of the rival.
3In order to be able to work on a joint strategy space which constitutes a complete lattice, one

may also introduce an ad-hoc rule that exhausts the available stock of capital at the period where
the joint strategies of the agents turn out to be infeasible (see Sundaram, 1989). However, in such
a case, showing that the payo¤ function of each agent exhibits "increasing �rst di¤erences" on the
joint strategies turns out to be unnecessarily complicated.
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We adopt the noncooperative open loop Nash equilibrium concept, in which play-

ers choose their strategies as simple time functions and they are able to commit

themselves to time paths as equilibrium strategies. In this setup, agents choose their

strategies simultaneously and each agent is faced with a single criterion optimization

problem constrained by the strategies of the rival taken as given.

For each vector xj 2 Sj; the best response correspondence for agent i is the set of

all strategies that are optimal for agent i given xj :

Bri (xj) = arg max
xi2Si

U (xi j xj) :

A feasible joint strategy (x�i ; x
�
j) is an open loop Nash equilibrium if

U
�
x�i j x�j

�
� U

�
xi j x�j

�
for each xi 2 Si and each i 2 N: (22)

Given an equilibrium path, there is no feasible way for any agent to strictly improve

his life-time discounted utility as the strategies of the other agent remains unchanged.

The set of all equilibrium paths for this noncooperative game (N;S; fU i : i 2 Ng) is

then identical to the set of pairs of sequences, (x�i ; x
�
j) such that

x�i 2 Bri
�
x�j
�
and x�j 2 Brj (x�i ) : (23)

We will �rst prove that the best response correspondence of each agent is non-empty

so that there exists an optimal solution to problem P. The dynamic properties of

the best response correspondence then follows from the standard analysis in optimal

growth models (see Stokey and Lucas, 1989; Le Van and Dana, 2003 and Erol et al.,

2011) .
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3.3 Dynamic Properties of the Best Responce

Correspondances

The existence of an optimal path associated with P follows from the set of feasible

accumulation paths being compact in the product topology de�ned on the space

of sequences xi and U i being upper semicontinuous for this product topology. Let

xi 2 Bri (xj) so that xi solves P given xj. We can prove that the associated optimal

consumption and capital paths are positive at equilibrium.

Proposition 3.1 Let xi 2 Bri
�
x�j
�
.

i ) The associated optimal consumption path, ci (i; j 2 N; i 6= j) is given by

cit = gi(xit; x
j�
t )� xit+1;8t:

ii) Given fxj0; x�jg; if xi0 > 0, every solution (xi; ci) to P satis�es

cit > 0; x
i
t > 0; 8t: (24)

Proof. It can be easily checked from the �rst order conditions and the Inada condi-

tion.

In accordance with these, let the value function V associated with P be de�ned

by

8xi0 � 0; V
�
xi0 j fx

j
0;x

�
jg
�
= max

xi2Si
U
�
xi j x�j

�
: (25)

The bounds on discounting together with the existence of a maximum sustainable

capital stock guarantee a �nite value function. Under Assumptions 1 and 2, one can

immediately show that the value function is non-negative and strictly increasing. If
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u (0) = 0 then the continuity of the value function immediately follows as well. If

u (0) = �1 then the value function turns out to be continuous in the generalized

sense so that it is continuous at any strictly positive point and it converges to �1

when the stock of capital converges to zero (see Le Van and Dana, 2003). Given

these, the Bellman equation associated with P follows.

Proposition 3.2 i) V satis�es the following Bellman equation:

8xi0 � 0; V
�
xi0 j fx

j
0;x

�
jg
�
= maxfu

�
gi(xi0; x

j
0)� xi

�
+

�(xi)V
�
xi j fxj0;x�jg

�
j 0 � xi � gi(xi0; x

j
0)g: (26)

ii) A sequence xi 2 Si(x�j) is an optimal solution so that xi 2 Bri
�
x�j
�
if and only

if it satis�es:

8t; V
�
xit j fx

j
0;x

�
jg
�
= u

�
gi(xit; x

j�

t )� xit+1

�
+

�(xit+1)V
�
xit+1 j fx

j
0;x

�
jg
�
: (27)

Proof. See Le Van and Dana (2003) or Erol et al. (2011).

The optimal policy correspondence associated with P, �i : R+ ! R+ is de�ned

as follows:

�i
�
xi0 j fx

j
0;x

�
jg
�
= argmaxfu

�
gi(xi0; x

j
0)� xi

�
+ �(xi)V

�
xi j fxj0;x�jg

�
j xi 2

�
0; gi(xi0; x

j
0)
�
g:

It is important to note that although the utility function is strictly concave, the

solution to P may not be unique as the multiplication of a discount function destroys
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the concave structure needed for uniqueness. We can prove the following properties

for the optimal policy correspondence associated with P.

Proposition 3.3 i) �i
�
0 j fxj0;x�jg

�
= f0g:

ii) If xi0 > 0 and x
i
1 2 �i

�
xi0 j fx

j
0;x

�
jg
�
; then 0 < xi1 < gi(xi0; x

j
0):

iii) �i is upper semicontinuous.

iv) xi 2 Bri(x�j) if and only if xit+1 2 �i
�
xit j fx

j
0;x

�
jg
�
;8t:

v) The optimal correspondence �i is increasing: if xi0 <
�
x
i

0; x
i
1 2 �i

�
xi0 j fx

j
0;x

�
jg
�

and
�
x
i

1 2 �i
�
�
x
i

0 j fx
j
0;x

�
jg
�
then xi1 <

�
x
i

1:

Proof. ii) Follows easily from (24). iii) See Le Van and Dana (2003). iv) Follows

from (27). v) See Dechert and Nishimura (1983) or Amir et al. (1991).

The increasingness of �i is crucial for the convergence of optimal paths associated

with P and hence for the analysis of the long-run dynamics. Moreover, we have

also proven that the optimal correspondence, � is not only closed but also upper

semi-continuous.

With the positivity of the optimal consumption and the stock of capital, the Euler

equation associated with P easily follows.
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Proposition 3.4 When xi0 > 0; any solution xi 2 Bri(x�j) satis�es the Euler equa-

tion associated with P for all t:

u0
�
gi(xit; x

j�

t )� xit+1

�
= �

�
xit+1

�
u0
�
gi(xit+1; x

j�

t+1)� xit+2

� @gi(xit+1; xj�t+1)
@xit+1

+ �0
�
xit+1

�
V
�
xit+1 j fx

j
0;x

�
jg
�
: (28)

Recall that in a standard optimal growth model with geometric discounting and

the usual concavity assumptions on preferences and technology, the optimal policy

correspondence is single valued. Furthermore, the properties of the optimal path are

easily found using the �rst order conditions together with the envelope theorem, dif-

ferentiating the value function. However, in the i�th agent�s problem P, although the

utility function is strictly concave, the solution, namely Bri(x�j) may not be unique as

the objective function includes the multiplication of a discount function. This gener-

ally destroys the usual concavity argument in the proof of the di¤erentiability of value

function and the uniqueness of the optimal paths (see Benveniste and Scheinkman,

1979; Araujo, 1991). To this end, we show that the value function associated with

the i�th agent�s problem P is di¤erentiable almost everywhere so that there exists a

unique path from almost everywhere.

Proposition 3.5 i) If xi 2 Bri(x�j); then V is di¤erentiable at any xit; t � 1: If

xi 2 Bri(x�j); there exists a unique optimal path from xit for any t � 1:

ii) V is di¤erentiable almost everywhere, i.e. the optimal path is unique for almost

every x0 > 0:

Proof. See Le Van and Dana (2003).
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We prove in the next proposition that the optimal paths associated with P are

monotonic. As a monotone real valued sequence will either diverge to in�nity or

converge to some real number, the monotonicity of the optimal capital sequences

xi 2 Bri(x�j) will be crucial in the analysis of the dynamic properties and the long-

run behavior of the best response correspondences.

Proposition 3.6 For any initial condition (xi0; x
j
0); the optimal path xi 2 Bri(x�j)

is monotonic.

Proof. Since �i is increasing, if xi0 > xi1; we have x
i
1 > xi2: Then, by induction, it is

true that xit > xit+1; 8t: If xi1 > xi0; using the same argument yields x
i
t+1 > xit; 8t: Now

if xi1 = xi0; then x
i
0 2 �i

�
xi0 j fx

j
0;x

�
jg
�
: Recall that there exists a unique equilibrium

path from xit for any t � 1: Since xi0 2 �i
�
xi0 j fx

j
0;x

�
jg
�
; xit = xi0; 8t:

We will now present the condition under which the convergence to a steady state

is guaranteed and concentrate on the behavior of the optimal paths xi 2 Bri(x�j)

associated with P.

Proposition 3.7 i) There exists an � > 0 such that if supx>0 f 0(x) <
1��
�m
; then any

optimal path xi 2 Bri(x�j) converges to zero.

ii) Assume xi0 > 0: Let infx>0 � (x) = �: If @g
i(0;xj

�
0 )

@xi0
> 1

�
; then the optimal path

x�i 2 Bri(x�j) converges to a steady state xi > 0.

Proof. See Erol et al. (2011).

We will now concentrate on the existence of an open-loop Nash equilibrium to the

non-cooperative game (N;S; fU i : i 2 Ng). To achieve our goal, we will show that the

non-cooperative game (N;S; fU i : i 2 Ng) is a supermodular game under open-loop
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strategies. Besides, we will prove that under some regularity conditions, the set of

equilibria is a non-empty complete lattice.

3.4 Supermodular games and the existence of Nash

equilibrium

Let us �rst outline the fundamental properties of the supermodular games:

De�nition 3.1 (Topkis, 1998) A non-cooperative game (N; S; fU i : i 2 Ng) is a

supermodular game if the set S of admissible joint strategies is a sublattice of Rm (or

of
Q
i2N R

mi), and if for each i; j 2 N; i 6= j, the payo¤ function U i is supermodular

in xi on Si for each xj in Sj and U i has increasing di¤erences in (xi; xj) on Si�Sj.

These hypotheses on the payo¤ function for each agent i, imply that any two

components of agent i�s strategy are complements and each component of i�s strategy

is complementary with any component of j0s strategy. The following theorem provides

the existence of extremal equilibria in supermodular games with modest regularity

conditions.

Theorem 3.1 (Topkis, 1998) Consider a supermodular non-cooperative game de-

noted by (N;S; fU i : i 2 Ng) for which the set S of admissible joint strategies is

nonempty, compact and for each i; j 2 N; i 6= j; the payo¤ function U i is upper

semicontinuous in xi on Si (xj) for each xj in Sj, then the set of equilibria is a

nonempty complete lattice and a greatest and a least equilibrium exist.

There are two fundamental elements in supermodular games: the ability to order

elements in the strategy space of the agents and the strategic complementarity, which
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implies upward sloping best responses. These properties of supermodular games have

been extensively used in static games and to some extent in dynamic games with

Markov perfect strategies (see Cooper, 1999; Amir, 2005; Vives, 2005, for a general

review). We already stated in the introduction that open-loop strategies do not allow

for genuine interaction between the players during the game. However, they are most

appropriate in situations where the information about the other players is reduced

to their initial condition or games with a very large number of players. We can add

games in which agents decide whether to enter or not a coalition. Suppose a number

of players who evaluate the bene�ts of entering a coalition for a given period of time.

They would set the rules of the coalition at the time the decision is taken. To evaluate

the coalition, players would play open-loop strategies. For all these reasons, we believe

it is important to show how the supermodular game structure can be utilized in the

analysis of dynamic games under open loop strategies.

Here we consider a dynamic game with open-loop strategies and place related

restrictions on strategy spaces and payo¤ functions which lead to ordered strategy

sets and monotone best responses: as the other player selects higher strategies, the

remaining player will as well. This will allow us to derive conclusions on the nature

of best responses and the set of equilibria. To this end, the next proposition is crucial

as it establishes the conditions under which our capital accumulation game turns out

to be supermodular.

Proposition 3.8 The non-cooperative game (N;S; fU i : i 2 Ng) is a supermodular

game if for each i; j 2 N; i 6= j, and for all t;

@2
�
�(xit)u

�
gi(xit; x

j
t)� xit+1

��
@xit@x

i
t+1

� 0; (29)

@2
�
�(xit)u

�
gi(xit; x

j
t)� xit+1

��
@xit@x

j
t

� 0: (30)
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The set of equilibria for this supermodular game is a nonempty complete lattice and

there exist a greatest and a least equilibrium.

Proof. See the Appendix.

In this dynamic game with open-loop information structure strategies are vectors

instead of simple scalars. Hence, the game requires an additional restriction to guar-

antee that all components of an agent�s best response vector move together. This

explains the role of the restriction (29) that the payo¤ function of each agent has to

be supermodular in his own strategy given the strategy of his rival. Put di¤erently,

given the choice of the rival, the agent is better o¤ combining high activity in one

component of choice with high activity in another (see Cooper, 1999). The restriction

(30) ensures that the gains to a higher strategy by one player increase with the strat-

egy taken by the other so that the best responses turn out to be monotone. The key

characteristic of a supermodular game, namely the presence of strategic complemen-

tarities is ensured by the restriction (30) which essentially implies the monotonicity

property of the best responses.

Though the conditions (29) and (30) can be interpreted along general lines re-

garding the supermodularity of the non-cooperative dynamic games under open loop

information structure, a further re�nement of the conditions will be useful in provid-

ing their limitations and economic interpretations to the full extent. Indeed, under

Assumptions (1)-(3), the conditions (29) and (30) can be recast for each i; j 2 N;

i 6= j, and for all t as

�0(xit)

�(xit)
+
u00 (cit)

u0 (cit)

@gi(xit; x
j
t)

@xit
� 0; 

�0(xit)

�(xit)
+
u00 (cit)

u0 (cit)

@gi(xit; x
j
t)

@xit

!
@gi(xit; x

j
t)

@xjt
+
@2gi(xit; x

j
t)

@xit@x
j
t

� 0;
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respectively. Accordingly, the supermodularity of the non-cooperative game given by

(N;S; fU i : i 2 Ng) crucially depends on the sensitivity of the agents�time preferences

with respect to their stock of wealth and the sensitivity of the gains to a higher

strategy by one player with respect to the rival�s stock of capital. Note that for

su¢ ciently low values of the marginal rate of patience, if the aggregate income of

each player decreases with the rival�s stock of capital, a su¢ cient condition for the

supermodularity of the noncooperative game turns out to be the supermodularity

of the aggregate income of each agent, i.e. @2gi(xti;xtj)

@xit@x
j
t

� 0; 8i; j 2 N; i 6= j, and

8t. However, if the aggregate income of each player increases with the rival�s stock of

capital then the supermodularity of each agent�s aggregate income becomes necessary

for the game to be supermodular.

Proposition 3.8 ensures the existence of an open loop Nash equilibrium path in

a supermodular game. The following proposition provides monotone comparative

statics results.

Proposition 3.9 Let T be a partially ordered set of parameters and (� (�) ; � 2 T )

with � (�) = (N;S� ; fU �i : i 2 Ng) be a parameterized family of supermodular games.

S� and U �i denote the dependence of S and U i on parameter � . The set S� of

admissible joint strategies is nonempty and compact for each � in T and is increasing

in � on T . If for each i; j 2 N; i 6= j, and for all t;

@2
�
�(xit; �)u

�
gi(xit; x

j
t ; �)� xit+1; �

��
@xit@�

� 0; (31)

then the greatest and the least equilibrium of game � (�) are increasing in � on T .

Proof. See the Appendix.
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On a parameterized collection of supermodular games, the condition (31) ensures

that the best response correspondence of the agents, hence the extremal equilibrium

will be increasing in a parameter that may be endogenous or exogenous due to the

strategic complementarity inherent in the agents�strategies. As an example, consider

that �(x) = � � 
e�(x+�)
"
where 0 < 
e��

"
< � < 1, 0 < " < 1; and � > 0 (see Stern,

2006): Proposition 3.9 asserts that an increase in �; a measure of patience, leads

to an increase in the extremal open loop Nash equilibria of the supermodular game

(N;S�; fU�i : i 2 Ng). That is, the more patient agents are, the larger the individuals

capital stock at every period in the greatest and the least equilibrium trajectories.

In what follows we will concentrate on the dynamic properties of the open-loop

Nash equilibria of the supermodular game (N;S; fU i : i 2 Ng) : Since the open loop

Nash equilibrium is weakly time consistent, instead of referring to the discrete time

Hamiltonian, we will focus on the closed loop representation of the equilibrium strate-

gies and utilize (26), (27), and Proposition 3.7 in determining the dynamic properties

of the equilibrium paths.

3.5 Dynamic Properties of the Open-Loop Nash

Equilibrium and the Steady State

Let (x�i ; x
�
j) be an open loop Nash equilibrium from (xi0; x

j
0) of the noncoopera-

tive game (N;S; fU i : i 2 Ng) : We denote by fxi0;x�i g the i�th agent�s trajectory

of capital stock at such an equilibrium path, i.e., fxi0;x�i g =
�
xi0; x

i�
1 ; ::; x

i�
t ; :::

�
:

It is then clear that (x�i ; x
�
j) satis�es (23). Hence x�i solves P given x�j so that

xit+1 2 �i
�
xit j fx

j
0;x

�
jg
�
;8t:

Let infx>0 � (x) = � and @gi(0;xj
�
0 )

@xi0
> 1

�
; for each i; j 2 N; i 6= j: The optimal

paths x�i 2 Bri(x�j) and x�j 2 Brj (x�i ) converge to the steady state values xi > 0 and
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xj > 0; respectively. These steady state values solve the following stationary state

Euler equations:

u0
�
gi(xi; xj)� xi

�
= �0(xi)

u (gi(xi; xj)� xi)

1� �(xi)
+

�(xi)u0
�
gi(xi; xj)� xi

� @gi(xi; xj)
@xi

;8i; j 2 N; i 6= j: (32)

However, it is important to note that the stationary sequences associated with

each solution of (32) may not induce a steady state open loop Nash equilibrium (see

Dockner and Nishimura, 2001) unless they constitute a best reply to each other. A

steady state open loop Nash equilibrium (xi; xj) is de�ned as the stationary sequences

associated with a solution (xi; xj) to (32) such that fxi0;xig = (xi; xi; ::; xi; :::) 2

Bri(xj) and
�
xj0;xj

	
= (xj; xj; ::; xj; :::) 2 Brj(xi):

If the game was symmetric, we could have already concluded that the two agents

will end up with the same amount of physical capital in the long-run. Indeed, if a

supermodular game is symmetric, then a greatest and a least equilibria exist and they

are symmetric. Amir et al. (2008) show that monotonicity induces the greatest and

the least equilibrium converge to the highest and the lowest symmetric steady states,

respectively. A game is symmetric supermodular if on top of the usual conditions for

supermodularity, the agents�strategy spaces are identical and

U (xi j xj) = U (xj j xi) ; 8(xi;xj) 2 S:

Neither of these latter conditions are met in our game. Strategy spaces coincide

only when the initial conditions are identical for both of the agents. Furthermore,

the second condition also fails at the �rst period since we have u
�
gi(xi0; x

j
0)� xi1

�
6=

u
�
gj(xj0; x

i
0)� xi1

�
for each i; j 2 N; i 6= j: Despite the lack of symmetry in the game,
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we prove that our game always leads to symmetric steady states so that the initial

wealth di¤erences vanish in the long run.

Proposition 3.10 All steady state open loop Nash equilibria of the supermodular

game (N;S; fU i : i 2 Ng) are symmetric.

Proof. See the Appendix.

In the following proposition, we show that the individual level of capital stock at

the lowest and the highest steady state open loop Nash equilibrium is greater than

the lowest and the highest steady states of the associated single agent optimal growth

problem, respectively.

Proposition 3.11 Let xL and xH denote the lowest and the highest steady states of

the optimal growth problem and xoL and x
o
H denote the lowest and the highest steady

state open loop Nash equilibrium of the noncooperative game (N;S; fU i : i 2 Ng). If

the game is supermodular then we have xL � xoL and xH � xoH :

Proof. See the Appendix.

Next, we identify the most preferred steady state depending on the game elements.

Corollary 3.1 Let (x̂; x̂) and (�x; �x) denote the highest and the lowest symmetric

stationary open loop Nash equilibria of the game (N;S; fU i : i 2 Ng). If

@

@x

�
u (g(x; x)� x)

1� �(x)

�
> 0;

then (x̂; x̂) is the most preferred steady state open loop Nash equilibrium. Otherwise,

(�x; �x) will be the most preferred.
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Proof. See the Appendix.

Recall that the stationary sequences associated with each solution of (32) may not

constitute a steady state open loop Nash equilibrium. This moves the concern on the

number of solutions to the stationary Euler equations and among those that will be

induced by a steady state open loop Nash equilibrium. Since one cannot provide an

analytical answer to this question, we will move on to the numerical analysis of our

problem. Next section is devoted to this end. For given functional forms, we analyze

the solutions to (32). In order to determine which of these indeed constitute a steady

state open loop Nash equilibrium, we employ the iterations of the Bellman operator

(26) for the given stationary strategy of the rival. We compute the dynamics of the

equilibrium paths from an initial condition, using the supermodular structure of the

game on top of the iterations of the Bellman operator.

3.6 Characterization of the Long-Run Equilibria:

Numerical Analysis

The analysis of the solutions to the stationary Euler equations and the determination

of solutions induced by a stationary open loop Nash equilibrium can not be carried out

without specifying the forms of the utility, discount and the production functions. In

what follows, our analysis will be based on the functional forms speci�ed in accordance

with Stern (2006). The utility, production and the discount functions are speci�ed as

u(c) =
c1��

1� �
;

f(x) = Ax� + (1� �)x;

�(x) = � � 
e�(x+�)
"

;
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where 0 < fA; �g; 0 < �; �; " < 1; and 0 < 
e��
"
< � < 1: Under these functional

forms, in reference to Proposition 3.8, a su¢ cient condition for our strategic growth

model to become a supermodular game is:

�
0
(xit)

�(xit)
�
(� � 1)

�
xjt + �xit

�
+ xit

xit
�
xit + xjt

� ;8t � 1: (33)

Condition (33) is trivially checked for � � 1 when � is su¢ ciently large, since �
0

�
is

a decreasing function and its supremum equals 
"��1+"

��
e��" : In accordance with these, we

utilize the following set of fairly standard coe¢ cients as our benchmark parameteri-

zation:

A = 0:75; � = 0:4; � = 0:03; � = 1:5; � = 0:95; 
 = 2:5; � = 4:5; " = 0:99;

under which the maximum sustainable level of capital stock turns out to be:

A
�
xi0 + xj0

�
= max

��
xi0 + xj0

�
; �x
	
; where

�
x is 213:747:4

We prove in the �rst subsection of the sequel that strategic interaction removes

indeterminacy, in case indeterminacy existed in the single agent optimal growth prob-

lem. Then, we continue our numerical analysis with the case in which multiplicity of

equilibria persists in the long-run.

4Our analysis utilizes a felicity function constrained to a negative domain. Schumacher (2011)
shows that if the discount rate is endogeneized via a state variable, the domain of the felicity
function should be constrained to a positive domain. In a negative domain, a higher stock of capital
would have a negative impact on overall welfare. However, under our parameterization, even with
a negative felicity function constrained to a negative domain, a higher stock of capital will have a
positive impact on welfare. Indeed, our discount factor attributed to the utility of consumption at
period t increases with the level of capital stock, as in Becker and Mulligan (1997) and Stern (2006).
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3.6.1 Strategic Interaction Removes Indeterminacy

Under our benchmark parametrization, we prove numerically that strategic growth

removes indeterminacy and implies global convergence towards a unique symmetric

steady state. In order to provide a better exposition of this point, and to provide

a basis of comparison for our strategic growth model, we �rst recall the analysis of

Erol et al. (2011) and we concentrate on the dynamic implications of endogenous

discounting in the single agent framework.

Case 3.1 Optimal growth framework.

Consider problem P in which only agent i starts with a positive stock, xj0 = 0 and

xi0 > 0, i.e. agent i acts alone. There exist three solutions to (32): xl = 0:5953,

xm = 2:9155; and xh = 8:4913. In order to determine which of these are actually

the optimal steady states, we analyze the optimal policy using the Bellman operator.

Figure 2 indicates that xl and xh are stable optimal steady states, but in contrast

with Stern (2006), Figure 2 strongly indicates that xm is not an optimal steady state.

Indeed, if it were, the optimal policy would have crossed the y = x line at xm: The

Bellman operator also reveals the existence of a genuine critical point at xc � 5:5846:

for any initial capital stock level lower than xc, the economy will face a development

trap, enforcing convergence to a very low capital level xl. On the other hand, for any

initial capital level higher than xc, the optimal path will converge to xh. However, if

an economy starts at xc; an indeterminacy will emerge.

Case 3.2 Strategic growth

Consider now the case where (xi0; x
j
0) > 0: Let infx>0 � (x) = �: Note that

@gi(0;xj
�
0 )

@xi0
> 1

�
: Under the benchmark parameter values, there exists a unique symmet-

ric solution of the stationary state Euler equations (32): (x�i ; x
�
j) = (10:8906; 10:8906).
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Figure 2: Optimal policy after 300 iterations on the zero function
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Indeed, consider a two region economy, one with a large initial stock of capital and

the other with almost none, take for example xi0 = 0:1 and x
j
0 = 10: Whenever they

act independently of each other, the poor region ends up in a development trap,

xl = 0:5953, whereas the rich region reaches a steady state level of capital stock

xh = 8:4913: However, if there exists a strategic interaction between the two regions,

they both reach an identical steady state level of capital (x�i ; x
�
j) = (10:8906; 10:8906) :

Thanks to the strategic interaction between regions, the rich region pulls the poor

out of poverty trap while sustaining a higher level of steady state capital stock in the

rich region.

3.6.2 Multiplicity of Equilibria

As we have already underlined, in a single agent optimal growth framework, the

capital dependent time preference rate generates a critical point. In the vicinity

of this critical point, small di¤erences lead to permanent di¤erences in the optimal

path. Since this result heavily depends on the value of �; we would like to de-

viate from the benchmark to explore how strategic interaction modi�es the single

agent result. Hence, we assign a lower value to �, � = 4. The supermodular game

(N;S; fU i : i 2 Ng) studied in this section exhibits multiple long-run equilibria al-

though a single agent optimal growth model exhibits global convergence. Indeed,

there exist three solutions to the stationary Euler equation (32) of the single agent

optimal growth problem: xl = 0:3708, xm = 4:0061; and xh = 8:4315. Among

these three solutions, xl turns out to be the only optimal steady state (see Figure 3).

The natural question is then to what extent strategic growth dynamics are a¤ected

from such a change? When we consider the dynamic implications of strategic growth

we note that there are multiple solutions of the stationary state Euler equations as

listed below. The stationary sequences associated with only those in bold are indeed
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Figure 3: Low steady state (xl = 0:59) is optimal

constituting a steady state open loop Nash Equilibrium as we show later:

(xi; xj) = f(0:864;0:864) ; (2:2404; 2:2404) ; (10:8863;10:8863) ;

(2:7941; 1:1354) ; (2:3869; 10:4927) ; (1:1353; 2:7941) ; (10:4927; 2:3869)g:

The stationary sequences associated with the asymmetrical solutions above do not

constitute a steady state open loop equilibrium of our game as announced in Propo-

sition 3.10. Among the three symmetric solutions to the stationary Euler equations

(32), the stationary sequences associated with the lowest and the highest pairs con-

stitute a steady state open loop equilibrium is shown in Figures 4 and 5 respectively.

In other words, when the initial condition is (xi0; x
j
0) = (10:8863; 10:8863), then the

stationary strategies of the agents sticking to the initial condition constitute a best

reply to each other so that (10:8863; 10:8863) turns out to be a steady state open loop

equilibrium. The same is true for (0:864; 0:864). As we show in Proposition 3.11, both
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of them are higher than the unique steady state of the single agent optimal growth

problem.

We can easily show that threshold dynamics emerge. There exist critical values of

initial capital (xc; xc), below which an open loop Nash equilibrium of our supermodu-

lar game will converge to the lowest steady state (0:864; 0:864). There exists a second

critical point, (xc; xc) above which a sequence of an open loop Nash equilibrium will

converge to the highest steady state (10:8863; 10:8863). Noteworthy, these critical

values are not a solution of the stationary state Euler equations so that the station-

ary sequences associated with these can not constitute a stationary state open loop

equilibrium of the game. As the optimal policy of agent i is upper semi continuous,

given the strategy of the rival x�j ! 10:8863; the graph of �i(xi j fxj0; x�jg) jumps over

45� line at xc so that xc =2 �i(xc j fxj0; x�jg): With an analogous reasoning, given the

strategy of the rival is x�j ! 0:864; the graph of �i(xi j fxj0; x�jg) jumps over 45� line

at xc so that xc =2 �i(xc j fxj0; x�jg) This implies even further that as soon as xc = xc

an indeterminacy arises so that for a game emanating from such a critical stock of

capital, the best responses of the two agents that converge either to low or to the

high steady state may both constitute an open loop Nash equilibrium.
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Figure 4: Stationary sequence associated with (xi = 0:863991) is an open
loop Nash equilibrium

Figure 5: Stationary sequence associated with (xi = 10:8863) is an open
loop Nash equilibrium
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CHAPTER 4

GAMES OF COMMON PROPERTY RESOURCES UNDER

ENDOGENOUS DISCOUNTING

The exploitation of the natural resources over time is directly linked with the issue

of time preference. While the time preference is one of the major factor on allocation

of the resources, these resources can also a¤ect society�s time preference. There is

a new but growing literature considering the dependence of time preference to the

aggregate variables while studying extinction and exploitation of renewable resources.

Meng (2006) extends the one sector optimal growth model by considering the e¤ects

of social factors on time preference, particularly economy wide avarage consumption

and production. Ayong Le Kama and Schubert (2007) study the consequences of

endogenous time preference depending on the environmental quality in an optimal

growth framework. Tsur and Zemel (2009) consider the social discount rate that

includes the occurance hazard under risk of abrupt climate change and study optimal

emission policy for a growing economy. However, none of these studies investigate

the implications of endogenous discounting under strategic interaction.

The �shery model has been used as a metaphor for any kind of renewable resource

on which the property rights is not well de�ned.(see Long, 2010, for a comprehensive
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survey) In these models, the sets of feasible strategies available to the players are

interdependent and in addition, the agents�choices in the current period a¤ect the

payo¤s and their choice sets in the future.

In this chapter, we focus on the economy wide determinants of the individual rate

of time preference, particularly, we consider the socially determined time preference

which depends on the level of �sh stock and completely characterize the basic �shery

model under this setup. Our aim is to incorporate this insight into the theoretical

formulations in a way that will increase the accuracy of predictions while not losing

any other values like tractability and generality.

Our interest focuses on the qualitative properties of open-loop Nash equilibrium

(OLNE). By using a discrete time formulation, we study existence and e¢ ciency

of the equilibrium. Under constant discounting, there exists OLNE that is Pareto-

e¢ cient has been shown by Chierella et. al. (1984) and Dockner and Kaitala (1989)

in continuous time. In discrete time, Amir and Nannerup (2006) obtain this result

for a logarithmic utility and cobb douglas production function. We show that this

result can not be extended to the endogenous discounting case: We can not rely on

symmetric social planner problem while showing existence and qualitative properties

of Nash equilibrium. Instead, we use a topological �xed point theorem to show

existence of OLNE.

Depending on the return is bounded or unbounded from below, OLNE may result

in overexploitation or underexploitation of the resources relative to e¢ cient solution.

The OLNE di¤ers from the collusive equilibria in terms of not only e¢ ciency but

also equilibrium dynamics. As it is shown by Erol et. al. (2011) under standard

preferences and technology, endogenous discounting creates threshold dynamics such

that every equilibrium that starts to the left of the threshold level converges to low

steady state and every equilibrium that starts to the right of the threshold level
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converges to the high steady state. We show that open loop information structure

can remove indeterminacy that we may face under collusive equilibrium and be a

source of multiplicity despite the uniqueness we may face under collusive equilibrium.

This chapter is organized as follows. The next section introduces the model.

The existence and e¢ ciency of collusive, and open loop equilibrium are discussed

successively in section 3 and 4. Finally, section 5 concludes.

4.1 The Model

Consider a �nite number, n; of agents having identical preferences. N = f1; 2; :::; ng

is the set of players. The real valued function u gives the instantaneous utility from

consumption where the ith player consumption at period t is denoted by cit. At each

period t; f(kt) units of the resource are available for consumption. Then, the leftover

resource stock, kt+1 = f(kt) �
NP
i=1

cit; generates the next period resource, f(kt+1). In

accordance with these, the problem of each agent i can be formalized as follows:

max
fcitg1t=0

1X
t=0

 
tY
s=1

�(ks)

!
u(cit); (34)

subject to

8t;
NP
s=1

cst + kt+1 � f(kt) (35)

8i; cit � 0; kt+1 � 0; (36)

k0 > 0; given,

where the real valued function �(ks) is the level of discount on future utility.
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We make the following assumptions regarding the properties of the utility, pro-

duction and discount functions.

Assumption 4.1 u : R+ ! R+ is continuous, twice continuously di¤erentiable and

satis�es u(0) = 0: Moreover, it is strictly increasing, strictly concave and u0(0) = +1

(Inada condition).

Assumption 4.2 u : R+ ! R+ is continuous, twice continuously di¤erentiable and

u(0) = �1: Moreover, it is strictly increasing and strictly concave.

Assumption 4.3 f : R+ ! R+ is continuous and strictly increasing. Moreover,

there exists an
�
k such f (k) < k whenever k >

�
k and f 0(0) = +1:

Assumption 4.4 � : R+ ! R++ is continuous and di¤erentiable. Moreover, it

satis�es supk>0 � (k) = �m < 1; sup
k>0

�0 (k) < +1:

Since the Samuelson�s seminal work in 1937, discounted utility model in which an

instantenous utility is discounted with a constant rate has been used broadly in spite of

the reservations of the Samuelson by himself, on the normative and descriptive validity

of the model. We assume that the rate of time preference depends on the resource

stock. In particular, the discount factor attributed to the utility of consumption at

period t increases with the level of resource stock available at the same period.
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4.2 The Collusive Equilibrium

Social planner who is seeking the symmetric pareto optimal solution solves the fol-

lowing problem:

max
fkit;citg1t=0

1X
t=0

 
tY
s=1

�(ks)

!
NP
s=1

u(cst)

subject to

8t;
NP
s=1

cst + kt+1 � f(kt)

k0 � 0; given

For any initial condition k0 � 0, when k = (k0; k1; k2; :::) is such that 0 � kt+1 �

f(kt) for all t, we say it is feasible from k0 and the class of all feasible accumulation

paths is denoted by �(k0).

As the period utility is strictly concave, we can impose symmetry of agent�s con-

sumption paths and the problem turns out to be:

V (k0) = max
fctg1t=0

1X
t=0

tY
s=1

�(ks)u(ct)

subject to

8t; nct + kt+1 � f(kt)

k0 � 0; given

The case with bounded from below returns is analyzed completely by Erol et
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al.(2011). By generalizing to the case with unbounded from below returns, we provide

the results needed:

Proposition 4.1 Under the assumptions of 4.1 or 4.2 and 4.3 and 4.4, for any

k0 � 0;

(i) There exists an optimal accumulation path k such that

8t; kt � A(k0) = maxfk0; �kg:

The associated optimal consumption path c is given by:8t 2 1::1 and 8s 2 N , cst =

f(kt)�kt+1
n

:

(ii) If k0 > 0; the optimal path (c;k) satis�es kt > 0; cst = clt > 0 for all s; l 2 N:

(iii) V (k0) is strictly increasing and veri�es the Bellman equation:

V (k0) = max

�
u

�
f(k0)� k1

N

�
+ � (k1)V (k1) : 0 < k1 < f(k0)

�
: (37)

(iv) Let g : R+ ! R+ be the argmax correspondence of 37. Then, g is non-empty,

upper semi-continuous and increasing in the sense that if k0 � k00 then k1 2 g (k0) <

k01 2 g (k00) : Moreover, a sequence k feasible from k0 � 0 is optimal if and only if

kt+1 2 g (kt) for all t:

(v) When k0 > 0 any solution k 2 �(k0) satis�es the Euler equation:

u0(ct) = � (kt+1)u
0(ct+1)f

0(kt+1) +N�0 (kt+1)V (kt+1) (38)

(vi) An optimal path k from k0 is monotonic.
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Proof. Under the case with bounded from below returns, the results follows from

Erol et. al.(2011) Lemma 1 and Proposition 1,2,3,4,5 and 8.

When we have unbounded from below returns, we have to reconsider part (i) and

(iv). As the utility and the discount functions are strictly increasing, we introduce

function U de�ned on the set of feasible sequences as

U (k) =

1X
t=0

 
tY
s=1

�(ks)

!
u(
f(kt)� kt+1

N
):

Since u () is concave, there exist A� 0; B � 0 such that u(c) � Bc + C; 8c � 0:For

every k 2 �(k0) ; we have f(kt) � A(k0): This implies that, for a given � > 0; there

exist T0 such that, for any T � T0; for any k 2 �(k0) ; we have

1X
t=T

 
tY

s=T+1

�(ks)

!
u+(

f(kt)� kt+1
n

) � �Tm
BA(k0) + C

1� �m
� �:

where u+ denotes the positive value of u.

Let kn 2 �(k0) converge to k 2 �(k0) and � > 0 be given. Then there exists T0

such that, for any n, for any T � T0;

U (kn) �
TX
t=0

 
tY
s=1

�(kns )

!
u(
f(knt )� knt+1

N
) + �:

By letting T !1; we have

lim supU (kn) � U (k) + �

Since � is arbitrarily chosen, we have lim supU (kn) � U (k) i.e. U () is upper semi-

continuous. The existence of the optimal solution follows from the fact that U (k) is

upper semi continuous and �(k0) is compact in the product topology (see Erol et.
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al.(2011), Lemma 1 a,b.)

(iv) Since V (0) = �1; we can not use the the theorem of the maximum while

proving the upper semi-continuity of g () : Let fkn0 g be a sequence that converges to

k0 and let yn 2 g (kn0 ) ; 8n:We have 0 � yn � f(kn0 ); 8n: Since f () is continuous, the

sequence fyng will be uniformly bounded when n is large enough. We can assume

that it converges to some y 2 [0; f(k0)] : Take any z 2 [0; f(k0)] : One can �nd a

sequence fzng included in [0; f(kn0 )] for every n large enough, which converges to z.

We have:

8n; V (kn0 ) = u (f(kn0 )� yn) + � (yn)V (yn) � u (f(kn0 )� zn) + � (zn)V (zn):

By letting n go to in�nity, we have

V (k0) = u (f(k0)� y) + � (y)V (y) � u (f(k0)� z) + � (z)V (z)

so that y 2 g (k0) :

Next proposition provides the condition under which the solution to the collusive

problem is independent of the number of players.

Proposition 4.2 If the period utility is homogenous in consumption, then the optimal

accumulation path for the collusive problem is independent of number of players.

Proof. Since u
�
f(kt)�kt+1

N

�
= h (N)u (f(kt)� kt+1) ; collusive problem can be writ-

ten as,

V (k0) = h (N) max
fktg1t=0

1X
t=0

tY
s=1

�(ks)u (f(kt)� kt+1)
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which assures that the solution does not depend on N.

Since the optimal path is monotonic and bounded with A(k0) = maxfk0; �kg, there

exist a steady state satisfying the necessary condition below:

u0
�
f(k)� k

N

�
= � (k)u0

�
f(k)� k

N

�
f 0(k) +N

�0 (k)u
�
f(k)�k
N

�
1� � (k)

(39)

Next, we adopt the noncooperative open loop Nash equilibrium concept, in which

players choose their strategies as simple time functions and they are able to commit

themselves to the time paths as equilibrium strategies. Players choose their strategies

simultaneously and best response correspondance of each player is de�ned with a

single criterion optimization problem constrained by the strategies of the rival taken

as given.

4.3 The Open-Loop Equilibrium

First, we show that the OLNE is e¢ cient under constant discounting so that existence

of OLNE directly follows from the collusive problem. But, this result can not be

generalized to social time preference depending on the stock of wealth.

Given the optimal decisions of the rival, each agent chooses a path of consump-

tion ci = fcitgt�0 so as to maximize a discounted sum of instantaneous utilities. In

accordance with these, the problem of each agent i can be formalized as follows:
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max
fcitg1t=0

1X
t=0

 
tY
s=1

�(ks)

!
u(cit); subject to (40)

8t;
NP
s=1

cst + kt+1 � f(kt)

k0 � 0; cj = fcjtg1t=1 � 0; given, where j 6= i 2 f1::Ng

Given the open loop strategies of the rivals�, agent i faces a dynamic optimization

problem. For any initial condition k0 � 0; and for a given cj � 0; when k = (k1; k2; :::)

is such that
P
s 6=i

cst � f(kt) � kt+1 for all t; we say it is feasible from k0 The class of

all such feasible accumulation paths from k0 is denoted by Si (c�i) : A consumption

sequence ci = (ci0; c
i
1; :::) is feasible from k0 � 0; when there exists k 2 Si (c�i) with

0 � cit � f(kt)�
P
s 6=i

cst�kt+1: As utility is strictly increasing, we introduce the function

U de�ned on the set of feasible sequences as

U(k j c�i)=
1X
t=0

 
tY
s=1

�(ks)

!
u

 
f(kt)�

P
s 6=i

cst � kt+1

!
:

We can solve the dynamic optimization problem via the discrete time Maximum

Principle (for the details, see Dechert 1997). By introducing the discount rate as

another constraint, the problem can be rewritten as:

max
fcitg1t=0

1X
t=0

�tu(c
i
t); subject to

8t;
NP
s=1

cst + kt+1 � f(kt) and �t+1 = �(kt+1)�t

k0 � 0; �0 = 1; cj = fc
j
tg1t=1 � 0; given, where j 6= i 2 f1::Ng
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The state variables are f�t; ktg ; costate variables are fpit; sitg and control variable is

fcitg. The discrete time Hamiltonian for the i�th agent�s problem can be written as:

H i
�
�t; kt; p

i
t+1; s

i
t+1; c

i
t

�
= �tu(c

i
t) + p

i
t+1

�
f(kt)�

NP
s=1

cst

�
+ sit+1

�
�(f(kt)�

NP
s=1

cst)�t

�

The �rst order condition for the optimization is:

�tu
0(cit) = pit+1 + sit+1�

0(f(kt)�
NP
s=1

cst)�t (41)

and the canonical equations are:

pit =

�
pit+1 + sit+1

�
�0(f(kt)�

NP
s=1

cst)�t

��
f 0(kt) (42)

sit= u(c
i
t) + s

i
t+1

�
�(f(kt)�

NP
s=1

cst)

�
(43)

By iterating (43), we get

sit =
1

�t

1P
r=t

u(cir)�r

From (41) and (42), one can recast that

pit = �tu
0(ct)f

0(kt):

Substituting
�
pit+1; s

i
t+1

�
and rewriting (41);

u0(cit) = � (kt+1)u
0(cit+1)f

0(kt+1) +
�0 (kt+1)

�t+1

1P
r=t+1

u(cir)�r
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By de�ning V i(kt+1) = u(cit+1) + � (kt+2)V
i(kt+2); we obtain that

u0(cit) = � (kt+1)u
0(cit+1)f

0(kt+1) + �0 (kt+1)V
i(kt+1) (44)

Condition (44) is identical to (38) under constant discounting. This assures that there

exist an open loop Nash equilibrium which is e¢ cient. However, this is not valid under

endogenously determined time preference. We can not rely on collusive problem while

showing existence and qualitative properties of open loop Nash equilibrium.

4.4 Existence of OLNE

We �rst de�ne the best response correspondance on the feasible accumulation paths.

Suppose that we are given a sequence of resource stock k = (k1; k2; :::) satisfying

kt+1 � f(kt);8t:By the symmetry of the problem, we let all players but player i,

consume ct =
(f(kt)�kt+1)

n
. Consider the following problem,

max
fxtg1t=0

1X
t=0

 
tY
s=1

�(xs)

!
u

�
f(xt)� xt+1 �

(N � 1) (f(kt)� kt+1)

N

�
(45)

subject to 8t; 0 � xt+1 � f(xt)�
(N � 1) (f(kt)� kt+1)

N

x0 � 0; k = fktg1t=1 � 0; given.

The value function associated with the problem (45) takes the following form:
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V (x0; k1; k2; k3::) = max
fxtg1t=0

1X
t=0

 
tY
s=1

�(xs)

!
u

�
f(xt)� xt+1 �

(N � 1) (f(kt)� kt+1)

N

�
;

subject to 8t; 0 � xt+1 � f(xt)�
(N � 1) (f(kt)� kt+1)

N

x0 � 0; k = fktg1t=1 � 0; given.

Let

U (x0;k;x) =

1X
t=0

 
tY
s=1

�(xs)

!
u

�
f(xt)� xt+1 �

(N � 1) (f(kt)� kt+1)

N

�
;

and

�(x0;k) =

�
x2�(k0) s.t 0 � xt+1 � f(xt)�

(N � 1) (f(kt)� kt+1)

N
;8t � 0

�
:

V (x0;k) = max fU (x0;k;x) j x 2 �(x0;k)g :

Let ' denote the solution to the 45 de�ned as below,

'(x0;k) = argmax fU (x0;k;x) j x 2 �(x0;k)g ;

Proposition 4.3 The solution to the 45, '(x0; k); is upper semi continuous in k and

it is ordered so that if y; ŷ 2 '(x0; k) either y � ŷ or y � ŷ:

Proof. Let fkng be a sequence that converges to k and let yn 2 '(x0; k
n); 8n: We

can assume that it converges to some y 2 �(x0;k) : Take any z 2 �(x0;k) : One can

�nd a sequence fzng included in �(x0;k) for every n large enough, which converges

to z. We have:

8n; V (x0;kn) = U (x0;k
n;yn) � U (x0;k

n; zn)
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By letting n go to in�nity, we have

V (x0;k) = U (x0;k;y) � U (x0;k; z)

so that y 2 '(x0; k):

Let y; ŷ 2 '(x0; k):

Case 1: Suppose that y1 = ŷ1: Since the y and ŷ satisfy 44;we can conclude that

yt = ŷt;8t:

Case 2: Let y1 6= ŷ1: Without loss of generality, consider the case of y1 > ŷ1:

De�ne the correspondance,

�(x j k) = argmax
0�y�f(x)� (N�1)(f(kt)�kt+1)

N

264 u
�
f(x)� y � (N�1)(f(kt)�kt+1)

N

�
+�(y)V (y; kt+1; kt+2::)

375

By the monotonicity theorem (Amir, 1996), �(x j k) is increasing in x. So that

y2 > ŷ2: Then by induction, y > ŷ:

Proposition 4.4 Let f() be concave. Then there exists an OLNE.

Proof. We �rst show that �(k0) is compact and convex set. Take any two ele-

ments k; k0 in �(k0) so that f(kt) � kt+1 and f(k0t) � k0t+1 for all t: We have to

show that
�
�kt+1 + (1� �) k0t+1

�
� f(�kt + (1� �) k0t) where � 2 [0; 1] : For t = 0,

it is trivially satis�ed. For t 6= 0; this inequality follows from the concavity of pro-

duction function. Continuity of f assures the compactness of �(k0) under product

topology. By the proposition 4.3, '(x0; k) is uppersemi continuous and ordered so

that it admits an upper semi continuous selection, �'(x0; k) = max'(x0; k) where
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�'(x0; k) 2 '(x0; k): Moreover �' is closed as it is uppersemicontinuous and closed val-

ued. From the Kakutani-Fan-Glicksberg Theorem5, we can conclude that �'(k) has a

�xed point in �(k0) which coincide with the symmetric OLNE of the game.

We get the following equation satis�ed by the stationary symmetric OLNE

u0
�
f (k)� k

N

�
= � (k) u0

�
f (k)� k

N

�
f 0(k)+

�0 (k)u
�
f(k)�k
N

�
1� � (k)

(46)

Schumacher (2011) shows that if the discount rate is endogeneized via a state

variable, the domain of the felicity function should be constrained to a positive do-

main. In a negative domain, a higher stock of capital would have a negative impact

on overall welfare. However, under our parameterization, even with a negative felic-

ity function constrained to a negative domain, a higher stock of capital will have a

positive impact on welfare. Indeed, our discount factor attributed to the utility of

consumption at period t increases with the level of capital stock, as in Becker and

Mulligan (1997) and Stern (2006). Note that when the period utility is homegenous

in consumption, it can be recast as

H(k) =
u0 (f (k)� k) (1� � (k) f 0(k)) (1� � (k))

�0 (k)u (f (k)� k)
=
1

N
(47)

If H(k) is monotone then there is a unique stationary symmetric OLNE and the

equation 46 is su¢ cient. In that case, the following proposition states that the com-

parative statics of statioanary symmetric OLNE depends on if the returns are bounded

or unbounded from below.
5Kakutani - Fan - Glicksberg: Let K be a nonempty, compact, convex subset of locally convex

Hausdorf space, and let the correspondance ' : K � K have closed graph and nonempty convex
values. Then the set of �xed points of ' is compact and nonempty.
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Proposition 4.5 Let us assume that the period utility is homogenous in consumption

and H(k) is monotone. If the return is bounded (unbounded) from below, then the

unique stationary symmetric OLNE increases (decreases) with the number of players.

Proof. If the return is bounded (unbounded) from below we have H (0) = +1

(H (0) = �1) : Since H (k) is monotone and there exist unique stationary symmetric

OLNE, 47 is a su¢ cient condition. Then the result follows from the fact that 1
N
is

decreasing in N .

Corollary 4.1 Let us assume that the period utility is homogenous in consumption

and H(k) is monotone. If the return is bounded (unbounded) from below, then the

unique stationary symmetric OLNE is higher (lower) than the unique collusive equi-

librium.

Proof. Under collusive equilibrium we have H (k) = 1 > 1
N
: The result is a direct

corollary to 4.5.

If H(k) is not monotone, there might be multiple solution to (46). Since equation

46 is just a necessary condition, they may not constitute a steady state open loop

Nash equilibrium(see Dockner and Nishimura, 2001). This moves the concern on the

number of solutions to the stationary Euler equations and among those that will be

induced by a steady state open loop Nash equilibrium. The analysis of the solutions

to the stationary Euler equations and the determination of which of these solutions

constitute a steady-state can not be carried out without specifying the forms of the

utility, discount and the production functions.
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4.5 Numerical Analysis

In what follows, our analysis will be based on the functional forms speci�ed in ac-

cordance with Stern (2006). The utility, production and the discount functions are

speci�ed as

u(c) =
c1��

1� �
;

f(k) = Ak� + (1� �)k;

�(k) = � � 
e�(k+�)
"

;

where 0 < fA; �g; 0 < �; �; " < 1; and 0 < 
e��
"
< � < 1:

In accordance with these, we utilize the following set of fairly standard coe¢ cients

as our benchmark parameterization:

A = 0:75; � = 0:4; � = 0:03; � = 1:5; � = 0:95; � = 4:5; � = 1:5; 
 = 2:5; " = 0:99

under which the maximum sustainable level of capital stock turns out to be A(k) =

maxf(k0;
�
kg; where

�
k is 213:747:

As it is shown by Erol et. al. (2011) under standard preferences and technology,

endogenous discounting creates threshold dynamics First we borrow an example from

Erol et .al. (2011) showing that endogenous discounting creates threshold dynamics

such that every equilibrium that starts to the left of the threshold level converges to

low steady state and every equilibrium that starts to the right of the threshold level

converges to the high steady state.
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4.5.1 Emergence of Threshold Dynamics under Collusive Equilibria

There exist three solutions to (39): kl = 0:5953, km = 2:9155; and kh = 8:4913. In

order to determine which of these are actually the optimal steady states, we analyze

the optimal policy using the Bellman operator. Here kl and kh are stable optimal

steady states and there exists a genuine critical point at kc � 5:5846 which is not an

unstable steady state. Therefore, for any initial stock lower than kc, the economy will

face a development trap, enforcing convergence to a very low capital level kl. On the

other hand, for any initial capital level higher than kc, the optimal path will converge

to kh. However, if an economy starts at kc; an indeterminacy will emerge. Hence

even optimally managed renewable resources are sensitive to initial conditions under

standard preferences and technology.

OLNE di¤ers from cooperative solution as it is not e¢ cient. We will see that it

di¤ers from the cooperative solution also in terms of equilibrium dynamics.

4.5.2 Equilibrium Dynamics under OLNE

Comparison with Collusive Problem

The open loop information structure can remove indeterminacy that we may face

under collusive equilibrium and be a source of multiplicity despite the uniqueness we

may face under collusive equilibrium.

Case 4.1 Open Loop information structure removing indeterminacy

Consider now the case with 2 agents. Under the benchmark parameter values,

there exists a unique solution of the stationary state Euler equation (46): (x�) =
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(8:53449) :Open Loop information structure remove indeterminacy that we face under

collusive problem.

Case 4.2 Open Loop information structure as a source of multiplicity

As we have already underlined, in a single agent optimal growth framework, the

capital dependent time preference rate generates a critical point. In the vicinity of

this critical point, small di¤erences lead to permanent di¤erences in the optimal path.

Since this result heavily depends on the value of �; we would like to deviate from the

benchmark to explore how the Open Loop information structure modi�es the results

under collusive problem. Hence, we assign a lower value to �, � = 4. We show that

Open Loop information structure creates multiplicity while the capital accumulation

path for the collusive problem converges to a unique globally stable steady state.

Indeed, there exist three solutions to the stationary state Euler equation (39) of the

single agent optimal growth problem: xl = 0:3708, xm = 4:0061; and xh = 8:4315.

However, among these three solutions, only xl turns out to be an optimal steady

state implying a global convergence result. When we consider the noncooperative

problem under open loop information setting we �nd xl = 0:953053, xm = 2:30966;

and xh = 8:50707 as the solutions of the stationary state Euler equations where xl

and xh are the steady state OLNE.

Comparative Statics with respect to the Number of Players

Recall that the optimal capital path in collusive problem is independent of the

number of players. Under open loop information setting, we show numerically that

proposition 4.5 is valid for the extremal equilibria in the case of multiple steady states.
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� = 4:5 � = 4
Number of Players � = 1:5 � = 0:5 � = 1:5 � = 0:5

1
0:59531
8:49127 8:64795

0:37076
8:68861

2
8:53449 8:61245

0:95305
8:50707 8:63394

3
8:54821 8:60014 8:53019 8:61457

4
8:55496 8:59389 8:54142 8:60465

100
8:57396 8:57552 8:57261 8:57513

1000
8:57466 8:57482 8:57375 8:57400

Table 1: How does the steady state OLNE change with the number of players?

Remark 4.1 Note that number of player may change the equilibrium dynamics. For

the case with � = 4 and � = 1:5 we have multiplicity when there is two player and

unique steady state OLNE when there is more than two player.

4.6 Conclusion

In spite of the mathematical convenience that the exogenous time preference bring us,

it is not an innocent assumption. As we summarize below, many results we have under

exogenously discounted dynamic �shery models can not be extended to endogenous

discounting case.

� Endogenous discounting creates threshold dynamics so that even optimally man-

aged renewable resources are sensitive to initial conditions under standard pref-

erences and technology.

� OLNE is not e¢ cient. Depending on whether the return is bounded or un-

bounded from below, it may cause overexploitation or underexploitation of the
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resources relative to e¢ cient solution.

� The OLNE di¤ers from the collusive equilibria in terms of not only e¢ ciency

but also equilibrium dynamics. Open loop information structure can remove

indeterminacy that we may face under collusive equilibrium and be a source of

multiplicity despite the uniqueness we may face under collusive equilibrium.
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CHAPTER 5

CONCLUDING REMARKS

In this thesis, we study the existence and qualitative properties of equilibrium dy-

namics under endogenous time preference. In chapter two, we consider future oriented

capital stock people allocate to increase anticipation of future bene�ts. This idea has

been introduced formally by Becker and Mulligan (1997). Stern (2006) adopted this

idea into the optimal growth framework to provide a more �exible framework regard-

ing discounting of time. We contribute his e¤orts by focusing on questions that were

left as open and studying how sensitive the equilibrium dynamics are with respect

to the cost of future oriented capital stock. To our knowledge, almost none of the

studies on endogenous time preference consider the strategic interaction among the

agents. In chapter three, we let the discount factor to be increasing in stock of wealth

and show that the strategic complementarity among the agents would be a remedy

of poverty trap. Lastly, we consider socially determined time preference where the

discount factor depends on aggregate resources in the economy. We show that, unlike

the case under constant discounting, open loop Nash equilibrium is not e¢ cient and

depending on the return is bounded or unbounded from below, it may result in over

exploitation or under exploitation of the resources relative to e¢ cient solution.
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While considering the strategic interaction we adopt the noncooperative open loop

Nash equilibrium concept, in which players choose their strategies as simple time func-

tions and they are able to commit themselves to time paths as equilibrium strategies.

While open loop information setting provides a base point, the characterization of

the Markov Perfect Nash equilibrium(MPNE) is important to consider the e¤ects of

making use of information. In feedback models, MPNE is subgame perfect which re-

quires that players respond optimally to the realizations of random variables as well

as unexpected deviations.

In feedback models, studies mostly rely on speci�c functional forms that allow

closed form equilibrium strategies and clear cut comparative statics conclusions. It

is desirable to reduce the present interdependence on speci�c functional forms. En-

dogenous time preference makes it harder to get close form solutions if it does not

make it impossible. Hence, the existence of and algorithms for feedback equilibrium

is valuable. In basic �shery models, for the exogenously �xed discount factor, the

existence of stationary symmetric Markovian equilibrium (SSME) has originally pro-

vided by Sundaram (1989) and Amir (1989). Both of the approaches use Schauder�s

�xed point theorem, while the former use topological arguments and the latter use

lattice theoretic ones. Recently, Datta et al.(2009) use partial ordering methods for

characterization of SSME of a �nite period game. We will utilize their approach un-

der endogenous time preference and provide a constructive proof for the existence of

a Markov equilibria and a monotonicity of a state trajectory being implied.

There is economic literature on addiction and self-control that draws upon a psy-

chological �nding that optimal saving plans for the present self would not be optimal

for the later self. Strotz (1955), by formally modeling this idea, state that an in-

dividual has a myopic tendency to resist delaying consumption in the near future.

Considering the �shery problem in chapter four, we can ask what will happen if one
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agent has time inconsistent preferences. Does it cause the other agents with time con-

sistent preferences act like her? In other words, are the time inconsistent preferences

contagious if the property rights are not well de�ned?

Hopefully, these studies incorporate the insights behind the time preference into

theoretical formulations in a way that will increase the accuracy of predictions while

not losing any other values like tractability and generality.
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APPENDIX

Proof of Proposition 3.8

The non-cooperative game (N = f1; 2g;S; fU i : i 2 f1; 2gg) is supermodular if S

is a sublattice of
�Q

i2N Rmi
�
, U i is supermodular in xi, for any xj and U i has in-

creasing di¤erences in (xi;xj).

i) The lattice S is a subset of R1 and it is a sublattice of it:

ii) Let us start proving that each individual payo¤ function is supermodular in

its own strategy. By de�nition, a function f is supermodular if and only if

f(x _ y) + f(x ^ y) � f(x) + f(y):

Consider two di¤erent strategies for agent i, xi and x0i who di¤er from each other

at time t and t+ 1 so that t+1x =t+1 x0i = (x
i
t+2; x

i
t+3; :::): Recall that

U (t+1xi j xj) =
1X

�=t+1

 
�Y

s=t+2

�(xis)

!
u
�
gi(xi� ; x

j
� )� xi�+1

�
:
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We need to show that:

�(x0t
i)u
�
gi(x0t

i; xjt)� x0it+1
�
+ �(x0t

i)�(x0it+1)U (t+1x
0
i j xj)

+ �(xit)u
�
gi(xit; x

j
t)� xit+1

�
+ �(xit)�(x

i
t+1)U (t+1xi j xj)

� �(x0t
i)u
�
gi(x0t

i; xjt)� xit+1
�
+ �(x0t

i)�(xit+1)U (t+1xi j xj)

+ �(xit)u
�
gi(xit; x

j
t)� x0it+1

�
+ �(xit)�(x

0i
t+1)U (t+1x

0
i j xj)

Since

�
�(xit)� �(x0t

i)
�
�(x0it+1)U (t+1x

0
i j xj) � �

�(xit)� �(x0t
i)
�
�(xit+1)U (t+1xi j xj) ;

it is su¢ cient to show that

�(x0t
i)u
�
gi(x0t

i; xjt)� x0it+1
�
+ �(xit)u

�
gi(xit; x

j
t)� xit+1

�
�

�(x0t
i)u
�
gi(x0t

i; xjt)� xit+1
�
+ �(xit)u

�
gi(xit; x

j
t)� x0it+1

�
:

This is equivalent to showing that �(xit)u
�
gi(xit; x

j
t)� xit+1

�
is supermodular in

(xit; x
i
t+1). As �(x

i
t)u
�
gi(xit; x

j
t)� xit+1

�
is di¤erentiable, it holds if

@2�(xit)u
�
gi(xit; x

j
t)� xit+1

�
@xit@x

i
t+1

� 0:

iii) Let us now prove the increasing di¤erences. A function f has increasing

di¤erences if and only if

f(x; t00)� f(x; t0); t00 > t0;

is increasing in x.
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Let xi 2 Bri(xj) so that xit+1 2 �i (xit j xj) ;8t: As open-loop strategies are only

dependent on the initial conditions, one can easily write that

xit = �i
�
�i
�
�i
�
:::�i

�
xi0
���

j xj
�| {z } � �it

�
xi0 j xj

�
;8t = 1; 2; :::

t� times

Now we �x x̂j > xj (that is x̂
j
t > xjt for all t), and consider a best response of

agent i, x̂i � fx̂itg
1
t=1 so that x̂

i
t+1 2 �̂i (x̂it j x̂j) ;8t: Accordingly,

x̂it = �̂i
�
�̂i
�
�̂i
�
:::�̂i

�
xi0
���

j x̂j
�| {z } � �̂it

�
xi0 j x̂j

�
;8t = 1; 2; :::

t� times

We have to check whether

U(x̂i; x̂j)� U(x̂i;xj) � U(xi; x̂j)� U(xi;xj) (48)

for �̂i (x j x̂j) > �i (x j xj) ;8x. We can substitute U :

1X
t=0

 
tY
s=1

�(�̂is
�
xi0
�
)

!
[u
�
gi(�̂it

�
xi0
�
; x̂jt)� �̂it+1

�
xi0
� �
�

u
�
gi(�̂it

�
xi0
�
; xjt)� �̂it+1

�
xi0
��
] �

1X
t=0

 
tY
s=1

�(�is
�
xi0
�
)

!
[u
�
gi(�it

�
xi0
�
; x̂jt)� �it+1

�
xi0
� �
�

u
�
gi(�it

�
xi0
�
; xjt)� �it+1

�
xi0
��
]:
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Since �̂is (x
i
0) � �is (x

i
0) for all s, we have that the above inequality is equivalent to

check whether:

�(�̂it
�
xi0
�
)u
�
gi(�̂it

�
xi0
�
; x̂jt)� �̂it+1

�
xi0
� �
�

�(�̂it
�
xi0
�
)u
�
gi(�̂it

�
xi0
�
; xjt)� �̂it+1

�
xi0
��
�

�(�it
�
xi0
�
)u
�
gi(�it

�
xi0
�
; x̂jt)� �it+1

�
xi0
� �
�

�(�it
�
xi0
�
)u
�
gi(�it

�
xi0
�
; xjt)� �it+1

�
xi0
��
:

We shall proceed by dividing both sides by
�
x̂jt � xjt

�
and taking the limit when�

x̂jt � xjt
�
! 0. We get that (48) holds if and only if

@
�
�(�̂it (x

i
0))u

�
gi(�̂it (x

i
0) ; x̂

j
t)� �̂it+1 (x

i
0)
��

@xjt
�

@
�
�(�it (x

i
0))u

�
gi(�it (x

i
0) ; x

j
t)� �it+1 (x

i
0)
��

@xjt
� 0:

Note that when
�
�̂i (xi0)� �i (xi0)

�
! 0; then

�
�̂is (x

i
0)� �is (x

i
0)
�
! 0; 8s: Dividing

both sides by
�
�̂it (x

i
0)� �it (x

i
0)
�
and taking the limit when

�
�̂it (x

i
0)� �it (x

i
0)
�
! 0;

we obtain that

@2
�
�(�it (x

i
0))u

�
gi(�it (x

i
0) ; x

j
t)� �it+1 (x

i
0)
��

@ (�it (x
i
0)) @x

j
t

� 0:

Put di¤erently, in terms of period utilities,

@2
�
�(xt

i)u
�
gi(xt

i; xt
j)� xit+1

��
@xit@x

j
t

� 0;
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together with
@2
�
�(xt

i)u
�
gi(xt

i; xt
j)� xit+1

��
@xit@x

i
t+1

� 0;

ensures the supermodularity of the game. Since S is compact under product topology

and U i is upper semicontinuous in xi on Si (xj) ; the result follows from Theorem 3.1.

Proof of Proposition 3.9

By the same reasoning that we use in the proof of proposition 3.8-(iii), condition

31 assures that for each player, U �i has increasing di¤erences in (xi; �) : All the rest

follows from Topkis (1998) Theorem 4.2.2.

Proof of Proposition 3.10

We proceed in three steps. First, we show that the game (N;S; fU i : i 2 Ng), only

admits symmetric and antisymmetric steady states. Then, we prove that antisym-

metric steady states are linearly ordered with the highest and the lowest symmetric

steady states. Finally, we prove that our game only admits symmetric steady state

open loop Nash equilibria.

Lemma 7.1 If (x�; x�) is a steady state open loop Nash equilibrium of the game

(N;S; fU i : i 2 Ng), then (x�; x�) is also a steady state open loop Nash equilibrium.

Proof. If (x�; x�) is a steady state open loop Nash equilibrium of the game given by

(N;S; fU i : i 2 Ng), then (x�; x�) satis�es 32 for both agents. (x�; x�) is also a steady

state since for each i; j 2 N; i 6= j; gi(xi; xj) = gj(xj; xi) and @gi

@xi
= @gj

@xj
:

Lemma 7.1 shows that the set of steady states only contains symmetric and anti-

symmetric steady states. As the next lemma shows, the antisymmetric steady states

are linearly ordered with the highest and the lowest symmetric steady states.
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Lemma 7.2 Let (x̂; x̂) and (�x; �x) denote the highest and the lowest symmetric steady

steady state open loop Nash equilibria of the supermodular game (N;S; fU i : i 2 Ng).

If there exists an asymmetric steady state open loop Nash equilibrium, say (x�; x�)

with x� 6= x�; then (�x; �x) � (x�; x�) � (x̂; x̂) :

Proof. Let x� < x�; without loss of generality. Let x0 be such that gi (x0;x0)

= min fgi (x�; x�) ; gj (x�; x�)g for i 2 f1; 2g :

Assume now on the contrary that x� < �x�: We have, by construction,

gi (x0;x0) < gi (x�; x�) < gi (�x�; �x�) :

Let � = (gi (x0;x0) ; g
j (x0;x0)) and �� = (gi (x�; x�) ; g

j (x�; x�)) ; where � < �� : Con-

sider the corresponding supermodular games � (�) and � (��) : By Proposition 3.9; the

greatest and the least equilibrium of the game are increasing in � on T; i.e. steady

state levels that the greatest and the least open loop Nash equilibrium of the game

converge to will be higher for �� : Since � (�) is a symmetric supermodular game, the

least equilibrium converge to a symmetric steady state, i.e. �x� � x�;leading to a

contradiction.. The case of x� � x̂� can be shown similarly.

Let us prove now that any steady state open loop Nash equilibrium of our game

is indeed symmetric:

Let (x̂; x̂) and (�x; �x) denote the highest and the lowest symmetric steady state

open loop equilibria of the game, respectively. First and as a corollary to Lemma

7.2, if the highest and the lowest symmetric steady states coincide, i.e., x̂ = �x; there

does not exist any asymmetric stationary state open loop equilibria of the game. Now

consider the case where x̂ 6= �x and assume that (x�; x�) is an asymmetric stationary

state open loop Nash equilibrium with x� < x� without loss of generality. Then, by
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Lemma 7.1, (x�; x�) constitutes an asymmetric steady state open loop Nash equilib-

rium as well. Consider now the game (N;S; fU i : i 2 Ng) under the following three

initial endowments: (x�; x�); (x�; x�) and
�
x�+x�
2

; x
�+x�
2

�
: Recall that the game with a

symmetric initial endowment turns out to be symmetric supermodular so that due to

the monotonicity of the best replies, the greatest and the least equilibrium converge

to the highest and the lowest symmetric steady state, respectively. Accordingly, as-

sume that the equilibrium of the symmetric supermodular game that starts with the

initial endowment of
�
x�+x�
2

; x
�+x�
2

�
converges to the highest symmetric steady state

(x̂; x̂) in the long run, without loss of generality. In comparison with the asymmetric

stationary state open loop equilibrium (x�; x�); the open loop Nash equilibrium of the

game that emanates from
�
x�+x�
2

; x
�+x�
2

�
and converging to (x̂; x̂) in the long run re-

veals that an increase in agent�s own initial capital stock and a decrease in the rival�s

implies the convergence of the agent�s stock towards a higher steady state. This then

implies that the equilibrium of the supermodular game that emanates from (x�; x�)

has to monotonically converge to the highest steady state (x̂; x̂) as well. However,

this contradicts with the fact that (x�; x�) has to be a steady state open loop Nash

equilibrium.

Proof of Proposition 3.11

Let x0 be such that

gi (x0;x0) = min

�
f (xL) ;

f (2xoL)

2

�
; i 2 f1; 2g ;

and consider the corresponding symmetric supermodular game. Let
�
xj0;xj

	
=

(x0; 0; 0::; 0; :::) : Note that Bri (xj) coincides with the single agent optimal growth

problem for the given initial capital stock, f�1 (gi (x0;x0)) : As xL is stable from left, 9

xi 2 Bri (xj) such that xi ! xL: Since xL is the lowest steady state and the optimal

policy correspondence of a single agent optimal growth problem is ordered (see Erol
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et al., 2011), we can conclude that xi is the least element of the best response corre-

spondence. Let (x�; x�) constitute the least open loop Nash equilibrium of the game,

i.e. x� 2 Bri (x�) and x� 2 Brj (x�) : Note that the supermodular game structure

implies that the least and the greatest elements of the best response correspondence

are increasing in opponent�s strategy. Having xj < x� by construction, we conclude

that x� � xi and xoL � xL:

For the second case, let x0 be such that

gi (x0;x0) = max

�
f (2xoL)

2
; f (xH)

�
; i 2 f1; 2g ;

and consider the corresponding symmetric supermodular game. Let
�
xj0;xj

	
=

(x0; 0; 0::; 0; :::) : Br
i (xj) coincides with the single agent optimal growth problem

for given initial capital stock, f�1 (gi (x0;x0)) : As xH is stable from the right, 9

xi 2 Bri (xj) such that xi ! xH : By the same reasoning as above, xi is the high-

est element of the Bri (xj). Having xj < x� by construction, we get x� � xi and

xoL � xH :

Proof of Corollary 3.1

As proven in Proposition 3.10, there only exist symmetric steady state open loop

Nash equlibria. At any steady state open loop Nash equilibrium (x; x), agents�payo¤

can be recast as

U (x j x) = u (g (x; x)� x)
1

1� �(x)
:

Note that if
@

@x

�
u (g(x; x)� x)

1� �(x)

�
> 0;

then U (x̂ j x̂) � U (x j x) � U (�x j �x) holds where at least one of the inequalities will

be strict.
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