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ABSTRACT

OPTIMAL DETECTOR RANDOMIZATION IN
COGNITIVE RADIO RECEIVERS IN THE PRESENCE

OF IMPERFECT SENSING DECISIONS

Ahmet Dündar Sezer

M.S. in Electrical and Electronics Engineering

Supervisor: Assoc. Prof. Dr. Sinan Gezici

August, 2013

In cognitive radio systems, spectrum sensing is one of the crucial tasks to be

performed by secondary users in order to limit the interference to primary users.

Therefore various spectrum sensing methods have been proposed in the literature.

Once secondary users make a sensing decision, they adapt their communication

parameters accordingly, which means that they perform communications when

the channel is sensed as idle whereas they either do not transmit at all or transmit

at a reduced power when the channel is sensed as busy. However, in practical

systems, sensing decisions of secondary users are never perfect; hence, there can

be cases in which the sensing decision is idle (busy) but primary user activity ac-

tually exists (does not exist). Therefore, the optimal design of secondary systems

requires the consideration of imperfect sensing decisions.

In this thesis, optimal detector randomization is developed for secondary users

in a cognitive radio system in the presence of imperfect spectrum sensing deci-

sions. Also, suboptimal detector randomization is proposed under the assumption

of perfect sensing decisions. It is shown that the minimum average probability

of error can be achieved by employing no more than four maximum a-posteriori

probability (MAP) detectors at the secondary receiver. Optimal and suboptimal

MAP detectors and generic expressions for their average probability of error are

derived in the presence of possible sensing errors. Numerical results are presented

and the importance of taking possible sensing errors into account is illustrated in

terms of average probability of error optimization.

Keywords: Cognitive radio, spectrum sensing, detector randomization, probabil-

ity of error.
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ÖZET

HATALI SEZİM KARARLARININ VARLIĞINDA
BİLİŞSEL RADYO ALICILARDA OPTİMAL SEZİCİ

RASTGELELEŞTİRME

Ahmet Dündar Sezer

Elektrik ve Elektronik Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Doç. Dr. Sinan Gezici

Ağustos, 2013

Bilişsel radyo sistemlerinde spektrum sezimi, birincil kullanıcılara olan girişimi

limitlemek için ikincil kullanıcılar tarafından gerçekleştirilen önemli görevlerden

biridir. Bu nedenle literatürde çeşitli spektrum sezim yöntemleri önerilmiştir.

İkincil kullanıcılar bir sezim kararına vardıktan sonra, karara göre iletişim

parametrelerini uyarlarlar. Yani kanal meşgul olarak algılandığında ya hiç yayın

yapmaz ya da düşük güçte yayın yaparken, kanal boş olarak algılandığında

iletişimi gerçekleştirirler. Fakat uygulanabilir sistemlerde ikincil kullanıcıların

sezim kararı hiç bir zaman mükemmel olmaz. Bu yüzden sezim kararının boş

(meşgul) olduğu ama aslında birincil kullanıcı faaliyetinin olduğu (olmadığı) du-

rumlar olabilir. Bu nedenle ikincil sistemlerin optimal tasarımı, hatalı sezim

kararlarının göz önünde bulundurulmasını gerektirir.

Bu tezde optimal sezici rastgeleleştirme, bilişsel radyo sistemindeki ikincil

kullanıcılar için hatalı spektrum sezim kararlarının varlığında geliştirilmektedir.

Ayrıca, optimal olmayan sezici rastgeleleştirme mükemmel sezim kararları altında

tasarlanmaktadır. İkincil alıcıdaki dörtten fazla olmayan maksimum sonsal

olasılık (MAP) sezicilerinin çalıştırılmasıyla en düşük ortalama hata olasılığına

ulaşılacağı gösterilmektedir. Optimal ve optimal olmayan MAP seziciler ve bun-

ların ortalama hata olasılıklarının genel ifadeleri muhtemel sezim hatalarının

varlığında elde edilmektedir. Sayısal sonuçlar sunulmakta ve muhtemel sezim

hatalarını hesaba katmanın önemi ortalama hata olasılığı eniyilemesi açısından

gösterilmektedir.

Anahtar sözcükler : Bilişsel radyo, spektrum sezimi, sezici rastgeleleştirme, hata

olasılığı.
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Chapter 1

INTRODUCTION

As the electromagnetic radio spectrum is a limited natural resource, it is im-

portant to improve spectrum utilization. Based on the report prepared by the

Spectrum Policy Task Force and published by the Federal Communications Com-

mission, radio spectrum is not being fully utilized due to spectrum holes unoccu-

pied by the licensed users. To increase spectrum efficiency, this report proposes a

solution that users other than the licensed users can also access spectrum holes on

a time, frequency, bandwidth, or space basis [1]. This solution can be applicable

by means of cognitive radios [2].

Cognitive radio was first proposed by Mitola in his article [2] and it was de-

fined in his PhD thesis [3] in 2000 as: “The point in which wireless personal digital

assistants (PDAs) and the related networks are sufficiently computationally in-

telligent about radio sources and related computer-to-computer communications

to detect user communications needs as a function of use context, and to provide

radio resources and wireless services most appropriate to those needs.”

According to another definition mentioned in the P1900.1 Standard, a cog-

nitive radio is “a type of radio in which communication systems are aware of

their environment and internal state and can make decisions about their radio

operating behavior based on that information and predefined objectives [4].”
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In cognitive radio systems, primary users, i.e., licensed users, have the right to

use the allocated spectrum. Besides primary users, secondary users also have the

right to access this licensed spectrum when it is not occupied by the primary users

to provide highly reliable communications and to increase efficiency of utilization

of the radio spectrum when needed [5].

One of the main problems in cognitive radio system is spectrum sensing. Since

secondary users first sense the channel to decide whether the licensed spectrum is

available or not, they need to sense the channel before starting communications

in order to prevent interference caused to primary users. In the literature, various

spectrum sensing methods such as energy detection, waveform detection, cyclo-

stationary detection and matched filtering have been proposed [6]. As a common

sensing method, energy detection is a simple way of deciding whether primary

user’s signal is present or not since it does not require any prior knowledge about

the signal [7, 8, 9]. In a generic energy detection scheme, the signal filtered at

the center frequency is squared and integrated over an interval. Then the output

is compared with a threshold level in order to identify the absence and presence

of primary user activity. Cyclostationary detection is the second method which

relies on the cyclostationary feature of received signal, such as periodicity, auto-

correlation, and spectral correlation [10]. As a third method, waveform detection

(coherent detection) can be applied when the primary users’ signal includes known

patterns such as preambles, midambles, and pilot tone [11]. Based on waveform

detection, matched filtering is the optimum method for perfectly known signals,

which requires frequency, bandwidth and modulation scheme of the received sig-

nal [12]. In addition to these methods, cooperative sensing methods implemented

via centralized and distributed collaboration among cognitive radios are studied

in [13, 14].

In this thesis, the aim is to design the optimal secondary communications sys-

tem in the presence of detector randomization by taking imperfect channel sensing

decisions into account. In most of the studies in the literature, communications

systems of secondary users are designed independently of the sensing decision, or,

the sensing decisions are considered as perfect. However, the spectrum sensing

methods discussed above do not provide perfect sensing in general; hence, the

2



optimal secondary systems need to be designed in the presence of sensing errors.

In this thesis, possible spectrum sensing errors are taken into consideration in the

optimal design of secondary systems.

Detector randomization is a technique to employ multiple detectors at the

receiver with certain probabilities (certain fractions of time) [15, 16, 17]. By

adapting the transmitted power level according to the employed detector at the

receiver, performance improvements can be achieved via detector randomization

(i.e., via switching between multiple transmit power-detector pairs). In [18], it is

shown that an average power-limited transmitter cannot improve its error perfor-

mance via detector randomization when the channel noise has a unimodal prob-

ability density function. However, as investigated in [16, 17], benefits of detector

randomization are observed commonly in non-Gaussian channels. By noting that

secondary users in cognitive radio systems experience non-Gaussian channels in

practice due to imperfect sensing decisions, the use of detector randomization for

the design of secondary communications systems is proposed in this thesis.

The main contributions of this thesis are as follows:

1. Detector randomization is studied for cognitive radio systems for the first

time.

2. Optimal detector randomization is developed both in the presence of im-

perfect sensing decisions and under the assumption of perfect sensing deci-

sions, and it is shown that the minimum average probability of error can be

achieved by employing no more than four maximum a-posteriori probability

(MAP) detectors at the secondary receiver.

3. Optimal MAP detectors are derived and generic probability of error expres-

sions are obtained in the presence of possible sensing errors.

4. Effects of ignoring possible sensing errors are illustrated in terms of de-

graded error performance.

3



Chapter 2

DETECTOR

RANDOMIZATION IN

COGNITIVE RADIO

RECEIVERS

2.1 Motivation and System Model

In a cognitive radio system including two groups of users, primary and secondary

users, secondary users first sense the channel to decide whether the channel is be-

ing occupied by primary users. Assume that H0 and H1 represent the hypotheses

that correspond to the absence and presence of primary user activity, respectively.

In addition to H0 and H1, Ĥ0 and Ĥ1 denote the events in which the secondary

user declares H0 and H1 as the true hypothesis, respectively. Since there are two

channel sensing decision states, {Ĥ0, Ĥ1}, and two states of the channel (i.e., the

presence and absence of primary user activity), {H0,H1}, four scenarios exist:

4



(H1, Ĥ1) : Detection of active primary user (2.1)

(H1, Ĥ0) : Miss-detection of active primary user (2.2)

(H0, Ĥ1) : False alarm (2.3)

(H0, Ĥ0) : Detection of inactive primary user (2.4)

After the channel sensing phase, cognitive secondary users start digital com-

munications. Specifically, the secondary transmitter sends information carrying

signals to the secondary receiver in a certain manner depending on the channel

sensing decision. When the channel sensing decision is Ĥ0 (i.e., no primary user

activity is detected), the information symbol power is set to P0. On the other

hand, the symbol power is set to P1 when the channel sensing decision is Ĥ1. The

selection of two different power levels is employed for the protection of primary

users. In practice, lower power levels are employed in the presence of primary

user activity; hence, P1 < P0. In this way, the interference caused to primary

users is limited. It is noted that when P1 = 0 is employed, the considered generic

scenario reduces to the special case in which no secondary user communications

are allowed when primary users are active. For the theoretical investigations in

this thesis, generic values for P0 and P1 are considered.

In this study, the secondary radio channel is assumed to be subject to slow

frequency-flat fading. Then, depending on the channel sensing decision and the

true state of the channel (i.e., the presence and absence of primary user activity),

the following four scenarios exist:

(H1, Ĥ1) : x = h
√
P1 d+ n+ s (2.5)

(H1, Ĥ0) : x = h
√
P0 d+ n+ s (2.6)

(H0, Ĥ1) : x = h
√
P1 d+ n (2.7)

(H0, Ĥ0) : x = h
√
P0 d+ n (2.8)

5



where (Hi, Ĥj) denotes the scenario in which the sensing decision is Ĥj while

the true hypothesis is Hi. Also, x is the observation at the receiver of the sec-

ondary user, h denotes the fading coefficient of the channel between the secondary

transmitter and receiver, n denotes the zero-mean complex Gaussian noise with

variance σ2
n, s is the sum of the faded primary users’ signals arriving at the sec-

ondary receiver, and d denotes the complex information symbol. In addition, as

discussed in the previous paragraph, Pi denotes the power level of the information

symbol when the sensing decision is Ĥi. Without loss of generality, it is assumed

that E{|d|2} = 1. Considering M -ary modulation, the complex information sym-

bol d takes values from set {d0, d1, . . . , dM−1}. Furthermore, it is assumed that

the channel coefficient h is known; i.e., channel estimation is performed perfectly

before the communications start.

It is noted that in the presence of primary user activity, the additive dis-

turbance is noise plus the primary users’ received sum signal, i.e., n + s, as in

(2.5) and (2.6), while only additive noise is present when the channel is not oc-

cupied by the primary users. Since errors are possible in channel sensing, the

true state of the channel (busy or idle) and consequently the statistics of the

additive disturbance are not perfectly known by the secondary receiver. Hence,

optimal communications system needs to be designed in the presence of such

sensing errors and ambiguities.

We consider a secondary communications system as in Figure 2.1, where the

secondary transmitter can randomize the power levels, P0 and P1 in (2.5)-(2.8),

and the secondary receiver can perform a corresponding randomization (time-

sharing) among multiple MAP detectors.1 The power levels P0 and P1 are gen-

erated according to PDFs fP0 and fP1 , respectively, depending on the sensing

decision. Namely, if the secondary system decides that there are no primary

users in the system (Ĥ0), the secondary transmitter generates the power levels

according to fP0 . Otherwise (Ĥ1), the power levels are generated based on fP1 . It

is assumed that for each possible power level used by the secondary transmitter,

the secondary receiver can employ the corresponding optimal MAP detector for

that power level. Hence, there exist as many MAP detectors at the secondary

1Please see [16, 17] for detailed discussions on detector randomization.
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Figure 2.1: Basedband model of the communications system for the secondary
users. The secondary transmitter generates a signal, the power Pi of which is
determined according to the PDF fPi

for i ∈ {0, 1}. The information signal,√
Pi d is multiplied with the complex channel coefficient h, and it is corrupted by

additive noise n. Also, if primary users exist, their faded signals, denoted by s,
interfere with the desired signal. The secondary receiver can perform randomiza-
tion among multiple MAP detectors, each of which is optimized according to a
possible power level of the transmit signal.

receiver as the number of different transmit power levels. Although we start with

such a generic formulation in order to obtain the optimal error performance that

can be achieved by the secondary system, we show in the following that no more

than four MAP detectors are necessary for obtaining the overall optimal solution.

Remark 1: MAP detectors are employed in Figure 2.1 since they minimize

the average probability of error among all possible detectors. It is also possible

to start with generic detectors and then show that they must be MAP detectors

in order to minimize the average probability of error of the system, by employing

an approach similar to that in [17, 19]. �

2.2 Problem Formulation

Based on the formulation in (2.5)-(2.8) and the system model in Figure 2.1, the

aim is to find the optimal power distributions for P0 and P1 in order to minimize

7



the average error probability of the secondary system under the following average

and peak power constraints:

E{Pi} ≤ Pav,i and Pi ≤ Ppk,i for i ∈ {0, 1} (2.9)

where Pav,i and Ppk,i are the limits on the average and peak powers, respectively.

Note that the constraints in (2.9) also imply limits on the average transmit power

at the secondary transmitter and on the average interference power to primary

users [20]. Specifically, the average transmit power at the secondary user is ex-

pressed as

Pr{Ĥ0}E{P0}+ Pr{Ĥ1}E{P1} , (2.10)

and the average interference power to a primary user is given by(
Pr{Ĥ0|H1}E{P0}+ Pr{Ĥ1|H1}E{P1}

)
E{|g|2} , (2.11)

where g is the channel coefficient between the secondary transmitter and the pri-

mary receiver. (If there are multiple primary users in the system, the primary

user with the maximum value of E{|g|2} can be considered in (2.11) for deter-

mining the average interference power constraint.) It is noted from (2.10) and

(2.11) that via the constraints in (2.9), the average transmit and interference

powers can be constrained. In addition, it is observed that for practical cases

with Pr{Ĥ0|H1} < Pr{Ĥ1|H1}, A1 < A0 is commonly employed in order to meet

strict limits on the interference to primary users.

In obtaining the optimal power distributions for P0 and P1 under the average

power constraints in (2.9), two scenarios are considered. In the first one, possible

errors in the sensing decision are taken into consideration in designing the optimal

secondary system (Section 2.3). In the second one, the secondary receiver assumes

that the sensing decision is perfect (although it is not in general) and designs the

MAP detectors accordingly (Section 2.4).

8



2.3 Optimal Detector Randomization in the

Presence of Channel Sensing Errors

Consider the secondary system as shown in Figure 2.1. Let Pe,i denote the average

probability of error for the secondary receiver when the sensing decision is Ĥi,

where i ∈ {0, 1}. Then, the proposed optimal detector randomization problem

can be formulated under the constraints in (2.9) as follows:

min
fP0

, fP1

Pr{Ĥ0}Pe,0 + Pr{Ĥ1}Pe,1

subject to E{Pi} ≤ Pav,i , Pi ≤ Ppk,i for i ∈ {0, 1} .
(2.12)

where Pr{Ĥi} is the probability that the sensing decision is Ĥi, and fPi
denotes

the PDF of the power parameter Pi for i ∈ {0, 1}. In other words, the aim

is to obtain the optimal power distributions that minimize the average error

probability of the secondary system under the power constraints.

Due to the structure of the optimization problem in (2.12), the optimal power

distributions can be obtained separately for P0 and P1 as follows:

min
fPi

Pe,i subject to E{Pi} ≤ Pav,i , Pi ≤ Ppk,i (2.13)

for i ∈ {0, 1}. In order to obtain a solution of the optimization problem in

(2.13), Pe,i is evaluated for optimal MAP detectors in the following proposition

(cf. Remark 1).

Proposition 1: Consider a scenario in which the sensing decision is Ĥi.

Suppose that the secondary transmitter employs a power randomization strategy

according to PDF fPi
, and the secondary receiver employs the corresponding ran-

domization of MAP detectors. Then, Pe,i in (2.13) can be expressed as

Pe,i = 1− E{φi(Pi)} (2.14)

9



with2

φi(Pi) ,
∫

max
l∈{0,1,...,M−1}

{
Pr{dl}

(
Pr{H0|Ĥi}f(x|dl, Ĥi,H0)

+ Pr{H1|Ĥi}f(x|dl, Ĥi,H1)
)}
dx (2.15)

where Pr{dl} is the prior probability of information symbol dl, Pr{Hj|Ĥi} is the

conditional probability of Hj when the sensing decision is Ĥi, and f(x|dl, Ĥi,Hj)

denotes the conditional PDF of observation x when information symbol dl is sent,

the sensing decision is Ĥi and the true hypothesis is Hj .

Proof: When the sensing decision is Ĥi, the following MAP decision rule is

employed in order to estimate the information symbol for a given value of Pi :

d̂ = dk where k = arg max
l∈{0,1,...,M−1}

Pr{dl|x, Ĥi} . (2.16)

Then, the following manipulations can be performed to derive alternative expres-

sions:

k = arg max
l∈{0,1,...,M−1}

Pr{dl, Ĥi}f(x|dl, Ĥi) (2.17)

= arg max
l∈{0,1,...,M−1}

Pr{dl}f(x|dl, Ĥi) (2.18)

= arg max
l∈{0,1,...,M−1}

Pr{dl}
(

Pr{H0|Ĥi}f(x|dl, Ĥi,H0)

+ Pr{H1|Ĥi}f(x|dl, Ĥi,H1)
)

(2.19)

where (2.17) is obtained from (2.16) based on Bayes’ rule, (2.18) follows from the

independence of dl and Ĥi, and (2.19) is obtained by conditioning on the true

hypotheses.

When the sensing decision is Ĥi, the average probability of error for a given

2The expectation in (2.14) is taken with respect to the PDF of Pi; i.e., fPi
.

10



value of Pi can be expressed as follows:

Pe,i(Pi) = 1−
M−1∑
l=0

Pr{dl}Pr{d̂ = dl|dl, Ĥi} (2.20)

= 1−
M−1∑
l=0

Pr{dl}
∫

Γl,i

f(x|dl, Ĥi) dx (2.21)

= 1−
M−1∑
l=0

∫
Γl,i

Pr{dl}
(

Pr{H0|Ĥi}f(x|dl, Ĥi,H0)

+ Pr{H1|Ĥi}f(x|dl, Ĥi,H1)
)
dx (2.22)

where Γl,i denotes the decision region for symbol l of the MAP decision rule cor-

responding to sensing decision Ĥi. Based on (2.19), Γl,i is specified as the set

of x for which Pr{dl}(Pr{H0|Ĥi}f(x|dl, Ĥi,H0) + Pr{H1|Ĥi}f(x|dl, Ĥi,H1)) ≥
Pr{dm}(Pr{H0|Ĥi} f(x|dm, Ĥi,H0) + Pr{H1|Ĥi}f(x|dm, Ĥi,H1)), ∀m 6= l.

Therefore, (2.22) can be stated as

Pe,i(Pi) = 1−
∫

max
l∈{0,1,...,M−1}

{
Pr{dl}

(
Pr{H0|Ĥi}

× f(x|dl, Ĥi,H0) + Pr{H1|Ĥi}f(x|dl, Ĥi,H1)
)}
dx. (2.23)

Since the expression in (2.23) is conditioned on a given value of Pi, the average

probability of error for a power randomization strategy corresponding to PDF fPi

can be expressed as the expectation of (2.23), which results in

Pe,i =

∫
fPi

(t)Pe,i(t) dt = 1− E{φi(Pi)} (2.24)

where φi(Pi) is as defined in (2.15).3 �

Proposition 1 provides an explicit expression for the average probabilities of

error under both sensing decisions when a generic power randomization strategy

(denoted by fP0 or fP1) and the corresponding MAP detectors are employed

as shown in Figure 2.1. Based on the proposition (specifically, based on the

expression in (2.14)), the optimal detector randomization problems in (2.13) can

3The dependence of φi(Pi) in (2.15) on the value of Pi is through the conditional PDFs
f(x|dl, Ĥi,H0) and f(x|dl, Ĥi,H1) (please see (2.5)-(2.8)).
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be formulated as

max
fPi

E{φi(Pi)} subject to E{Pi} ≤ Pav,i , Pi ≤ Ppk,i (2.25)

for i ∈ {0, 1}.

Although it is challenging to obtain a closed-form solution for the optimal fPi

in (2.25), the form of an optimal solution can be obtained based on the arguments

similar to those in [21, 22, 23]. Specifically, when φi’s are continuous functions

and Pi’s take values from finite closed intervals (i.e., [0, Ppk,i] ), it can be shown

that an optimal solution to (2.25) lies at the boundary of the convex hull of set

U , which is defined as the set of all possible (Pi, φi(Pi)) pairs [23]. Therefore,

from Carathéodory’s theorem [24, 25], an optimal solution can be obtained as

the convex combination of at most two different pairs from set U . Hence, an

optimal solution to (2.25) can be expressed in the form of

f opt
Pi

(Pi) = λi δ(Pi − Pi,1) + (1− λi) δ(Pi − Pi,2) , (2.26)

for i ∈ {0, 1}, where λi ∈ [0, 1], and δ(·) denotes the Dirac delta function.

The form of the optimal solution in (2.26) implies that, for each sensing deci-

sion, the secondary transmitter should perform randomization between at most

two different power levels and the secondary receiver needs to perform corre-

sponding detector randomization between at most two different MAP detectors.

Therefore, the secondary receiver illustrated in Figure 2.1 should implement at

most four different MAP detectors considering the two possible sensing decisions,

which are the absence (Ĥ0) and presence (Ĥ1) of primary users.

Based on the expression in (2.26), the solutions of the optimization problems

in (2.25) can be obtained from the following formulation:

max
λi,Pi,1,Pi,2

λi φi(Pi,1) + (1− λi)φi(Pi,2)

subject to λi Pi,1 + (1− λi)Pi,2 ≤ Pav,i , λi ∈ [0, 1] (2.27)

Pi,1 ∈ [0, Ppk,i] , Pi,2 ∈ [0, Ppk,i]
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for i ∈ {0, 1}. Compared to (2.25), the problems in (2.27) are significantly easier

to solve since they require a search over three scalar parameters instead of a

search over all possible PDFs.

Since generic probability distributions are considered in the derivations, the

formulation in (2.27) may result in non-concave problems in some cases depend-

ing on the probability distributions of the noise and the interference from pri-

mary users. Therefore, global optimization algorithms such as particle swarm

optimization (PSO) and differential evolution (DE) can be used to obtain the

solution [26, 27].

2.4 Detector Randomization Assuming Perfect

Sensing Decisions

Now consider a scenario in which the secondary receiver assumes that the sensing

decision is perfect, and designs the optimal MAP detectors according to the signal

models in (2.5) and (2.8). In other words, the secondary receiver considers the

sensing decision as the true hypothesis corresponding to the absence or presence of

primary users although the sensing decision may not always be correct. Although

this approach is suboptimal compared to the one in Section 2.3, it is studied in

this section for two main reasons. First, the performance of this suboptimal

approach will be compared to that of the optimal one in Section 2.3 in order to

quantify the performance improvements due to the optimal approach (i.e., due

to considering possible channel sensing errors). Second, since most approaches

in the literature do not take into account possible errors in sensing decisions

when designing secondary receivers (except for some recent studies such as [28]),

it is important to derive the optimal MAP detectors and analyze their error

performance under the assumption of perfect sensing decisions.

Consider the secondary system model in Figure 2.1, where the secondary

transmitter randomizes the power levels according to PDF fPi
under sensing

decision Ĥi, and the secondary receiver performs corresponding randomization of

13



MAP detectors. The main difference of this scenario from the one in Section 2.3

is that the receiver assumes that the sensing decisions are perfect and designs

the MAP detectors according to that assumption. For this scenario, let P̃e,0

and P̃e,1 denote the average probabilities of error at the secondary receiver when

the sensing decision is Ĥ0 and Ĥ1, respectively. The aim is to find the optimal

power distributions, fP0 and fP1 , that minimize the average probability of error,

Pr{Ĥ0}P̃e,0 + Pr{Ĥ1}P̃e,1, under the average and peak power constraints as in

(2.12). Due to the structure of the problem, the optimal probability distributions

can be obtained separately for P0 and P1 as follows:

min
fPi

P̃e,i subject to E{Pi} ≤ Pav,i , Pi ≤ Ppk,i (2.28)

for i ∈ {0, 1}. Then, the following proposition can be employed to provide an

explicit formulation of P̃e,i in (2.28).

Proposition 2: Consider a scenario in which the sensing decision is Ĥi.

Suppose that the secondary transmitter employs a power randomization strategy

according to PDF fPi
, and the secondary receiver employs the corresponding ran-

domization of MAP detectors assuming that the sensing decision is perfect. Then,

P̃e,i in (2.28) can be expressed as

P̃e,i = 1− E{ϕi(Pi)} (2.29)

with

ϕi(Pi) , Pr{Hi|Ĥi}
∫

max
l∈{0,1,...,M−1}

{
Pr{dl}f(x|dl, Ĥi,Hi)

}
dx

+ Pr{H1−i|Ĥi}
M−1∑
l=0

Pr{dl}
∫

Γ̃l,i

f(x|dl, Ĥi,H1−i) dx (2.30)

where Γ̃l,i = {x | Pr{dl}f(x|dl, Ĥi,Hi) ≥ Pr{dm}f(x|dm, Ĥi,Hi) ,∀m 6= l}.

Proof: When the sensing decision is Ĥi and the receiver assumes that this

decision is perfect (i.e., correct), the following MAP decision rule is employed in
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order to estimate the information symbol for a given value of Pi :

d̂ = dk where k = arg max
l∈{0,1,...,M−1}

Pr{dl|x, Ĥi,Hi} . (2.31)

Then, after some manipulation, the following expression can be obtained:

k = arg max
l∈{0,1,...,M−1}

Pr{dl}f(x|dl, Ĥi,Hi) . (2.32)

When the sensing decision is Ĥi and the decision rule in (2.32) is employed,

the average probability of error for a given value of Pi can be calculated as follows:

P̃e,i(Pi) = 1−
M−1∑
l=0

Pr{dl}Pr{d̂ = dl|dl, Ĥi} (2.33)

= 1−
M−1∑
l=0

Pr{dl}
(

Pr{Hi|Ĥi}Pr{d̂ = dl|dl, Ĥi,Hi}

+ Pr{H1−i|Ĥi}Pr{d̂ = dl|dl, Ĥi,H1−i}
)

(2.34)

= 1−
M−1∑
l=0

Pr{dl}
(

Pr{Hi|Ĥi}
∫

Γ̃l,i

f(x|dl, Ĥi,Hi) dx

+ Pr{H1−i|Ĥi}
∫

Γ̃l,i

f(x|dl, Ĥi,H1−i) dx
)

(2.35)

where Γ̃l,i is defined as Γ̃l,i = {x | Pr{dl}f(x|dl, Ĥi,Hi) ≥ Pr{dm}f(x|dm, Ĥi,Hi) ,∀m 6=
l} due to the decision rule in (2.32).

After some manipulation, (2.35) becomes

P̃e,i(Pi) = 1− Pr{Hi|Ĥi}
M−1∑
l=0

∫
Γ̃l,i

Pr{dl}f(x|dl, Ĥi,Hi) dx

− Pr{H1−i|Ĥi}
M−1∑
l=0

Pr{dl}
∫

Γ̃l,i

f(x|dl, Ĥi,H1−i) dx . (2.36)

Due to the definition of Γ̃l,i, the term
∑M−1

l=0

∫
Γ̃l,i

Pr{dl}f(x|dl, Ĥi,Hi) dx in (2.36)
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can be expressed as
∫

max
l∈{0,1,...,M−1}

{Pr{dl}f(x|dl, Ĥi,Hi)}dx. Hence, P̃e,i(Pi) be-

comes equal to 1−ϕi(Pi), where ϕi(Pi) is as defined in (2.30). Since the expression

in (2.36) is conditioned on a given value of Pi, the average probability of error

for a power randomization strategy corresponding to PDF fPi
can be calculated

as the expectation of (2.36), which results in P̃e,i = 1− E{ϕi(Pi)}, as claimed in

the proposition. �

From (2.29) in Proposition 2, the optimization problems in (2.28) can be

expressed as

max
fPi

E{ϕi(Pi)} subject to E{Pi} ≤ Pav,i , Pi ≤ Ppk,i (2.37)

for i ∈ {0, 1}. Since (2.37) is in the same form as (2.25), its solution can also

be expressed as in (2.26) based on similar arguments to those in Section 2.3.

Therefore, the optimal solutions of (2.37) can be obtained from the following

formulation:

max
λi,Pi,1,Pi,2

λi ϕi(Pi,1) + (1− λi)ϕi(Pi,2)

subject to λi Pi,1 + (1− λi)Pi,2 ≤ Pav,i , λi ∈ [0, 1] (2.38)

Pi,1 ∈ [0, Ppk,i] , Pi,2 ∈ [0, Ppk,i]

for i ∈ {0, 1}.

2.5 Performance Evaluation

In order to investigate the error performance of the optimal and suboptimal

detector randomization approaches in the previous sections, consider a scenario

in which noise n in (2.7) and (2.8) is modeled as zero-mean, circularly symmetric,

complex Gaussian noise, and the sum of primary signal and noise, s+ n, in (2.5)

and (2.6) is modeled as a mixture of complex Gaussian components each with

independent real and imaginary parts having equal variances. That is, the PDFs
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of n and s+ n , ε are expressed, respectively, as

pn(x) =
1

πσ2
n

exp

(
−|x|

2

σ2
n

)
, (2.39)

pε(x) =
Nm∑
j=1

νj
πσ2

j

exp

(
−|x− µj|

2

σ2
j

)
. (2.40)

where σ2
n is the variance of noise n, Nm is the number of Gaussian components

in the mixture ε, µj and σ2
j are, respectively, the mean and the variance of the

jth component in the mixture, and
∑Nm

j=1 νj = 1 with νj ≥ 0, ∀j.

The main motivation for employing the Gaussian mixture model in (2.40)

is that the sum of noise and interference from primary users can accurately be

modeled by a non-Gaussian random variable as discussed in [29]-[33]. In addition,

the Gaussian mixture model in (2.40) is quite generic since it can model various

probability density functions by a suitable selection of its parameters. Specifically,

as the number of components, Nm, increases, it can approximate any probability

density function as accurately as desired [34].

Based on (2.39) and (2.40), the conditional PDFs in Proposition 1 and Propo-

sition 2 (please see (2.15) and (2.30)) can be expressed as follows:

f(x|dl, Ĥi,H0) =
1

πσ2
n

exp

(
−
∣∣x− h√Pi dl∣∣2

σ2
n

)
(2.41)

f(x|dl, Ĥi,H1) =
Nm∑
j=1

νj
πσ2

j

exp

(
−|x− h

√
Pi dl − µj|2

σ2
j

)
(2.42)

for i ∈ {0, 1}.

For the simulations, the receiver is assumed to have perfect channel state

information (CSI), and h in (2.5)-(2.8) is set to 1 without loss of generality. In

addition, Pr{H0} = 0.75, Pr{H1} = 0.25, Pr{Ĥ1|H1} = 0.6, and Pr{Ĥ0|H0} =

0.8 are employed. From these parameters, Pr{H1|Ĥ1} and Pr{H0|Ĥ0} can be

obtained via Bayes’ rule as Pr{H1|Ĥ1} = 0.5 and Pr{H0|Ĥ0} = 0.8571.

In order to quantify the improvements obtained via detector randomization,
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systems that do not employ any detector randomization are considered as well.

Similar to the cases in Section 2.3 and Section 2.4, the following two scenarios

are investigated in the simulations:

Optimal Single Detector in the Presence of Channel Sensing Errors:

In this case, no detector randomization is employed, and the optimal MAP de-

tector is obtained by taking the channel sensing errors into account. Since this

scenario is a special case of the one in Section 2.3 when there is only a single

detector, the optimal power values can be obtained as (cf. (2.25))

max
Pi

φi(Pi) subject to Pi ≤ min{Pav,i, Ppk,i} (2.43)

for i ∈ {0, 1}, and the resulting conditional probabilities of error can be calculated

from 1− φi(P ∗i ) (cf. (2.14)), where P ∗i denotes the maximizer of (2.43).4

Single Detector Assuming Perfect Sensing Decisions: In this case,

no detector randomization is employed, and the MAP detector is obtained by

assuming that the channel sensing decision is correct. Since this scenario is a

special case of the one in Section 2.4 when there is only a single detector, the

optimal power values can be obtained as (cf. (2.28)-(2.29))

max
Pi

ϕi(Pi) subject to Pi ≤ min{Pav,i, Ppk,i} (2.44)

for i ∈ {0, 1}, and the resulting conditional probabilities of error can be calculated

from 1 − ϕi(P ?
i ) (cf. (2.29)), where P ?

i denotes the maximizer of (2.44).5 (This

approached is called suboptimal single detector in the following.)

First, consider binary phase-shift keying (BPSK), where d ∈ {−1, 1} with

equal priors, and assume that the power levels are limited by the peak power

constraint which is set as Ppk,i = 3 for i ∈ {0, 1}. In Figure 2.2, the average

probabilities of error are plotted versus 1/σ2 for the four approaches described

above, where σ2 = σ2
n = σ2

j ∀j in (2.39) and (2.40), and the parameters of the

complex Gaussian mixture in (2.40) are given by Nm = 3, µ = [µ1 µ2 µ3] =

4For practical cases, min{Pav,i, Ppk,i} = Pav,i in (2.43).
5For practical cases, min{Pav,i, Ppk,i} = Pav,i in (2.44).
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Figure 2.2: Average probability of error versus 1/σ2 for different approaches when
Pav,0 = 1.3 and Pav,1 = 0.4.

[−1 0 1], and ν = [ν1 ν2 ν3] = [0.25 0.5 0.25]. Also, the average power limits

Pav,0 and Pav,1 in (2.9) are set to Pav,0 = 1.3 and Pav,1 = 0.4. From Figure 2.2, it

is observed that the proposed optimal detector randomization approach achieves

the lowest average probabilities of error among all the approaches for reasonably

low values of σ2 (namely, when 1/σ2 is larger than 10 dB), which correspond to

practical error rates. Also, it is concluded that it can be crucial to take possible

sensing errors into account when designing the detector. Specifically, the average

probabilities of error are significantly larger for the suboptimal approaches, which

assume that the sensing decision is perfect.

In Table 2.1, the solutions of the optimal single detector and optimal detec-

tor randomization approaches are presented for the scenario in Figure 2.2. The

solution of the optimal single detector approach, which is obtained from (2.43),

is denoted by P ∗0 and P ∗1 , which correspond to the optimal power levels employed

when the sensing decision is Ĥ0 and Ĥ1, respectively. On the other hand, the

solution of the optimal detector randomization approach, calculated from (2.27),
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Table 2.1: Solutions of optimal single detector and optimal detector randomiza-
tion approaches for the scenario in Figure 2.2.

1/σ2 Single Detector Detector Randomization
(dB) P ∗0 P ∗1 λ∗0 P ∗0,1 P ∗0,2 λ∗1 P ∗1,1 P ∗1,2

2 1.300 0.400 1 1.300 N/A 1 0.400 N/A
4 1.300 0.400 1 1.300 N/A 1 0.400 N/A
6 1.300 0.400 1 1.300 N/A 1 0.400 N/A
8 1.300 0.400 1 1.300 N/A 1 0.400 N/A
10 1.300 0.400 1 1.300 N/A 1 0.400 N/A
12 1.300 0.400 1 1.300 N/A 0.691 0.296 0.633
14 1.300 0.400 0.223 0.765 1.453 0.397 0.096 0.600
16 1.300 0.082 0.320 0.704 1.581 0.399 0.078 0.614
18 0.667 0.073 0.337 0.659 1.627 0.388 0.071 0.608
20 0.629 0.068 0.333 0.626 1.637 0.373 0.068 0.598
22 0.605 0.066 0.323 0.604 1.632 0.359 0.066 0.587
24 0.590 0.065 0.312 0.589 1.622 0.348 0.065 0.579
25 0.584 0.064 0.306 0.584 1.616 0.344 0.064 0.576

is expressed by λ∗i , P
∗
i,1, and P ∗i,2 for i ∈ {0, 1} (please see (2.26)). That is, when

the sensing decision is Ĥi, the optimal detector randomization approach employs

power levels P ∗i,1 and P ∗i,2 for λ∗i and (1− λ∗i ) fractions of time, respectively, with

the corresponding MAP detectors. From the table, it is observed that the two

approaches result in the same solution for large σ values whereas randomization

between two different power levels and two MAP detectors becomes the optimal

solution for small values of σ.

Similarly, in Table 2.2, the solutions of the suboptimal single detector and

suboptimal detector randomization approaches are presented for the scenario in

Figure 2.2. P ?
0 and P ?

1 are the solution of the suboptimal single detector approach

obtained from (2.44). Also, λ?i , P
?
i,1, and P ?

i,2 for i ∈ {0, 1} represent the solution

of the suboptimal detector randomization approach obtained from (2.38) (please

see (2.26)). It is observed from the table that the solution of both approaches are

the same as the case in which no primary activity is detected by the secondary

user (i.e., the channel sensing decision is Ĥ0). However, for the channel sensing

decision that primary user activity exists, the solution differs for small values of

σ.
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Table 2.2: Solutions of suboptimal single detector and suboptimal detector ran-
domization approaches for the scenario in Figure 2.2.

1/σ2 Single Detector Detector Randomization
(dB) P ?

0 P ?
1 λ?0 P ?

0,1 P ?
0,2 λ?1 P ?

1,1 P ?
1,2

2 1.300 0.400 1 1.300 N/A 1 0.400 N/A
4 1.300 0.400 1 1.300 N/A 1 0.400 N/A
6 1.300 0.400 1 1.300 N/A 1 0.400 N/A
8 1.300 0.400 1 1.300 N/A 1 0.400 N/A
10 1.300 0.380 1 1.300 N/A 0.967 0.381 0.969
12 1.300 0.312 1 1.300 N/A 0.800 0.312 0.751
14 1.300 0.283 1 1.300 N/A 0.557 0.212 0.637
16 1.300 0.074 1 1.300 N/A 0.408 0.073 0.625
18 1.300 0.069 1 1.300 N/A 0.397 0.068 0.619
20 1.300 0.066 1 1.300 N/A 0.378 0.066 0.604
22 1.300 0.065 1 1.300 N/A 0.363 0.066 0.591
24 1.300 0.064 1 1.300 N/A 0.350 0.064 0.581
25 1.300 0.064 1 1.300 N/A 0.346 0.064 0.578
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Figure 2.3: Average probability of error versus Pd for different approaches when
σ = 0.1, Pav,0 = 1.3 and Pav,1 = 0.4.

21



0 0.2 0.4 0.6 0.8 1
10

−3

10
−2

10
−1

P
d

A
ve

ra
ge

 P
ro

ba
bi

lit
y 

of
 E

rr
or

 

 

Optimal Single Detector
Optimal Detector Randomization
Suboptimal Single Detector
Suboptimal Detector Randomization

Figure 2.4: Average probability of error versus Pd for different approaches when
σ = 0.15, Pav,0 = 1.3 and Pav,1 = 0.4.
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Figure 2.5: Average probability of error versus Pd for different approaches when
σ = 0.25, Pav,0 = 1.3 and Pav,1 = 0.4.
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Figure 2.6: Average probability of error versus Pf for different approaches when
σ = 0.1, Pav,0 = 1.3 and Pav,1 = 0.4.

In Figures 2.3, 2.4, and 2.5, the average probabilities of error are plotted

versus Pd for σ = 0.1, 0.15 and 0.25, respectively, where Pd is the probability of

detection of active primary user (i.e., Pd = Pr{Ĥ1|H1}). Also, the probability of

false alarm, Pf is set to 0.2 (i.e., Pf = Pr{Ĥ1|H0}).

Figures 2.6, 2.7, and 2.8 illustrate the average probabilities of error versus Pf

for σ = 0.1, 0.15 and 0.25 where Pd = 0.6.

In order to investigate the effects of the mean values of the Gaussian compo-

nents in (2.40) on the average probability of error performance of optimal and

suboptimal detector randomization approaches, Figure 2.9, 2.10, and 2.11 are

presented for σ = 0.1, 0.15 and 0.25 where µ = [µ1 µ2 µ3] = [−µ′ 0 µ′].

It is evident from Figures 2.3-2.11 that the optimal detector randomization

approach that takes possible channel sensing errors into account achieves the best

probability of error performance among all the approaches. Also, the suboptimal

approaches has worse error performance than the optimal approaches as expected.
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Figure 2.7: Average probability of error versus Pf for different approaches when
σ = 0.15, Pav,0 = 1.3 and Pav,1 = 0.4.
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Figure 2.8: Average probability of error versus Pf for different approaches when
σ = 0.25, Pav,0 = 1.3 and Pav,1 = 0.4.
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Figure 2.9: Average probability of error versus µ = [−µ′ 0 µ′] for different ap-
proaches when σ = 0.1, Pav,0 = 1.3 and Pav,1 = 0.4.
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Figure 2.10: Average probability of error versus µ = [−µ′ 0 µ′] for different
approaches when σ = 0.15, Pav,0 = 1.3 and Pav,1 = 0.4.
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Figure 2.11: Average probability of error versus µ = [−µ′ 0 µ′] for different
approaches when σ = 0.25, Pav,0 = 1.3 and Pav,1 = 0.4.
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Figure 2.12: Average probability of error versus 1/σ2 for different approaches
when Pav,0 = 1.0 and Pav,1 = 0.1.
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Table 2.3: Solutions of optimal single detector and optimal detector randomiza-
tion approaches for the scenario in Figure 2.12.

1/σ2 Single Detector Detector Randomization
(dB) P ∗0 P ∗1 λ∗0 P ∗0,1 P ∗0,2 λ∗1 P ∗1,1 P ∗1,2

2 1.000 0.100 1 1.000 N/A 1 0.100 N/A
4 1.000 0.100 1 1.000 N/A 1 0.100 N/A
6 1.000 0.100 1 1.000 N/A 1 0.100 N/A
8 1.000 0.100 1 1.000 N/A 1 0.100 N/A
10 1.000 0.100 1 1.000 N/A 1 0.100 N/A
12 1.000 0.100 0.457 0.854 1.122 0.559 0.092 0.110
14 0.843 0.100 0.658 0.765 1.453 0.993 0.096 0.600
16 0.728 0.082 0.663 0.704 1.581 0.959 0.078 0.614
18 0.667 0.073 0.647 0.659 1.627 0.947 0.071 0.608
20 0.629 0.068 0.630 0.626 1.637 0.028 0.068 0.068
22 0.605 0.066 0.615 0.604 1.632 0.934 0.066 0.587
24 0.590 0.065 0.602 0.589 1.622 0.931 0.065 0.579
25 0.584 0.064 0.597 0.584 1.616 0.930 0.064 0.576

Table 2.4: Solutions of suboptimal single detector and suboptimal detector ran-
domization approaches for the scenario in Figure 2.12.

1/σ2 Single Detector Detector Randomization
(dB) P ?

0 P ?
1 λ?0 P ?

0,1 P ?
0,2 λ?1 P ?

1,1 P ?
1,2

2 1.000 0.100 1 1.000 N/A 1 0.100 N/A
4 1.000 0.100 1 1.000 N/A 1 0.100 N/A
6 1.000 0.100 1 1.000 N/A 1 0.100 N/A
8 1.000 0.100 1 1.000 N/A 1 0.100 N/A
10 1.000 0.100 1 1.000 N/A 0.173 0.033 0.114
12 1.000 0.100 1 1.000 N/A 0.705 0.066 0.181
14 1.000 0.090 0.222 0.339 1.189 0.828 0.077 0.212
16 1.000 0.074 0.266 0.225 1.280 0.952 0.073 0.631
18 1.000 0.069 0.256 0.155 1.291 0.942 0.068 0.619
20 1.000 0.066 0.233 0.106 1.271 0.936 0.066 0.604
22 1.000 0.065 0.207 0.072 1.242 0.935 0.066 0.591
24 1.000 0.064 0.181 0.049 1.210 0.930 0.064 0.581
25 1.000 0.064 0.168 0.040 1.195 0.929 0.064 0.578
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Figure 2.13: Average probability of error versus Pd for different approaches when
σ = 0.1, Pav,0 = 1.0 and Pav,1 = 0.1.
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Figure 2.14: Average probability of error versus Pd for different approaches when
σ = 0.15, Pav,0 = 1.0 and Pav,1 = 0.1.
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Figure 2.15: Average probability of error versus Pd for different approaches when
σ = 0.25, Pav,0 = 1.0 and Pav,1 = 0.1.
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Figure 2.16: Average probability of error versus Pf for different approaches when
σ = 0.1, Pav,0 = 1.0 and Pav,1 = 0.1.
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Figure 2.17: Average probability of error versus Pf for different approaches when
σ = 0.15, Pav,0 = 1.0 and Pav,1 = 0.1.
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Figure 2.18: Average probability of error versus Pf for different approaches when
σ = 0.25, Pav,0 = 1.0 and Pav,1 = 0.1.
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Figure 2.19: Average probability of error versus µ = [−µ′ 0 µ′] for different
approaches when σ = 0.1, Pav,0 = 1.0 and Pav,1 = 0.1.

0.5 1 1.5
10

−3

10
−2

10
−1

µ′

A
ve

ra
ge

 P
ro

ba
bi

lit
y 

of
 E

rr
or

 

 

Optimal Single Detector
Optimal Detector Randomization
Suboptimal Single Detector
Suboptimal Detector Randomization

Figure 2.20: Average probability of error versus µ = [−µ′ 0 µ′] for different
approaches when σ = 0.15, Pav,0 = 1.0 and Pav,1 = 0.1.
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Figure 2.21: Average probability of error versus µ = [−µ′ 0 µ′] for different
approaches when σ = 0.25, Pav,0 = 1.0 and Pav,1 = 0.1.

Another example is obtained to indicate that the optimal detector random-

ization approach does not provide significant error performance improvements

over the single detector approach in some scenarios. The same parameters as in

Figure 2.2 are employed in Figure 2.12 except for Pav,0 and Pav,1. In this case,

Pav,0 and Pav,1 are set to 1.0 and 0.1, respectively. It is observed from Figure 2.12

that optimal detector randomization results in slight performance improvement

over the optimal single detector approach even though it achieves the lowest

average probabilities of error among all the approaches. Similar to those in Fig-

ures 2.3-2.11, Figures 2.13-2.21 are presented for this example. Also, Table 2.3

and Table 2.4 present solutions of the optimal and suboptimal detector design

approaches, respectively, for the scenario in Figure 2.12.

Next, consider quadrature phase-shift keying (QPSK), where d ∈{
−1−j√

2
, −1+j√

2
, 1−j√

2
, 1+j√

2

}
with equal prior probabilities. Figures 2.22, 2.23, and 2.24

show the average probability of error versus 1/σ2 where Pav,0 = 1.3, 1.0, 1.0 and

Pav,1 = 0.4, 0.1, 0.5, respectively. Also, the parameters of the complex Gaussian
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Figure 2.22: Average probability of error versus 1/σ2 for different approaches
when Pav,0 = 1.3 and Pav,1 = 0.4.
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Figure 2.23: Average probability of error versus 1/σ2 for different approaches
when Pav,0 = 1.0 and Pav,1 = 0.1.
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Figure 2.24: Average probability of error versus 1/σ2 for different approaches
when Pav,0 = 1.0 and Pav,1 = 0.5.

mixture in (2.40) are given by Nm = 5, µ = [µ1 µ2 µ3 µ4 µ5] = [−j − 1 0 1 j],

and ν = [ν1 ν2 ν3 ν4 ν5] = [0.2 0.2 0.2 0.2 0.2]. The other parameters are kept the

same as in Figure 2.2 and Figure 2.12. From the figures, it is observed that the

optimal detector randomization approach achieves the best probability of error

performance; however, the amount of error performance improvements obtained

via detector randomization varies for different values of Pav,0 and Pav,1.
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Chapter 3

CONCLUSION

In this thesis, detector randomization has been studied for secondary users in

a cognitive radio system. Optimal and suboptimal detector randomization ap-

proaches both in the presence of possible sensing errors and under the assumption

of perfect sensing have been analyzed in terms of average probability of error op-

timization. It has been concluded that the lowest average probability of error can

be achieved via optimal detector randomization approach which takes possible

sensing errors into account. Another result obtained via the solution of optimiza-

tion problem is that at most four MAP detectors are needed at the secondary

receiver to achieve the minimum average probability of error.

For future work, the detector randomization approach can be considered not

only for secondary users but also for primary users. The optimization problem

can be reformulated under the power constraints of both primary and secondary

users and the optimal solution for both users can be investigated. Also, a new

system can be modeled for secondary users by considering an undesired user such

as a jammer, which tries to block communications among secondary users and

prevents efficient spectrum utilization.
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