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ABSTRACT 

NOVEL LIGHT-SENSITIVE NANOCRYSTAL SKINS 

 

Shahab Akhavan 

M.S. in Materials Science and Nanotechnology 

Supervisor: Assoc. Prof. Dr. Hilmi Volkan Demir 

July, 2013 

 

Light sensing devices traditionally made from crystalline or amorphous silicon, 

operating at the visible and near-infrared wavelengths, have led to a 

multibillion-dollar annual market. However, silicon faces various limitations 

including weak detection at long wavelengths (insufficient beyond 1.1 µm) with 

a cut-off at short wavelengths (in the ultraviolet) and small-area applications. On 

the other hand, solution-processed semiconductor nanocrystals (NCs), also 

known as colloidal quantum dots, offer large-area light sensing platforms with 

strong absorption cross-section. In this thesis we propose and demonstrate a new 

class of large-area, semi-transparent, light-sensitive nanocrystal skin (LS-NS) 

devices intended for large-surface applications including smart transparent 

windows and light-sensitive glass facades of smart buildings. These LS-NS 

platforms, which are fabricated over areas up to many tens of cm
2 

using spray-

coating and several cm-squares using dip-coating, are operated on the basis of 

photogenerated potential buildup, as opposed to conventional charge collection. 

The close interaction of the monolayer NCs of the LS-NS with the top 

interfacing metal contact results in highly sensitive photodetection in the 

absence of external bias, while the bottom side is isolated using a high dielectric 

spacing layer. In operation, electron-hole pairs created in the NCs of the LS-NS 

are disassociated and separated at the NC monolayer - metal interface due to the 

difference in the workfunctions. As a result, the proposed LS-NS platforms 

perform as highly sensitive photosensors, despite using a single NC monolayer, 

which makes the device semi-transparent and reduces the noise generation. 



 iv 

Furthermore, because of the band gap tunability, it is possible to construct 

cascaded NC layers with a designed band gap gradient where the NC diameters 

monotonically change. Here we present the first account of exciton funneling in 

an active device, which leads to significant performance improvement in the 

device. We show highly photosensitive NC skins employing the exciton 

funneling across the multiple layers of NC film. To further enhance the device 

photosensitivity performance, we demonstrate embedding plasmonic 

nanoparticles into the light-sensitive skins of the NCs. In addition, we exhibit 

the LS-NS device sensitivity enhancement utilizing the device architecture of 

semi-transparent tandem skins, the addition of TiO2 layer for increased charge 

carrier dissociation, and the phenomenon of multiexciton generation in infrared 

NCs. With fully sealed NC monolayers, LS-NS is found to be highly stable 

under ambient conditions, promising for low-cost large-area UV/visible sensing 

in windows and facades of smart buildings. We believe the findings presented in 

this thesis have significant implications for the future design of photosensing 

platforms and for moving toward next generation large-surface light-sensing 

platforms. 

 

 

Keywords: Quantum dots, nanocrystals, plasmonic nanostructures, TiO2, 

multiexciton generation, light sensing, time resolved fluorescence, 

nanofabrication. 
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ÖZET 

NANOKRĠSTAL TABANLI IġIĞA DUYARLI 

YENĠLĠKÇĠ YÜZEYLER 

 

ShahabAkhavan 

Malzeme Bilimi ve Nanoteknoloji Yüksek Lisans 

Tez Yöneticisi: Doç. Dr. Hilmi Volkan Demir 

Temmuz, 2013 

 

Günümüzde kristal veya amorf tabanlı silikondan yapılan ıĢığa duyarlı aygıtlar 

en çok kullanılan ıĢık sensörleridir. Bu aygıtlar görünür ve kızılötesi 

bölgelerinde çalıĢırlar ve yıllık birkaç milyar dolarlık bir markete sahiptirler. 

Fakat silikonun sınırlı malzeme özellikleriden dolayı, ıĢığa duyarlı aygıtlarda 

zayıf hassasiyete (kızılötesinde ve morötesinde) sahip olmaktadır ve üretim 

teknikleri sebebiyle bu aygıtlar sadece ufak alanlarda üretilebilmektedirler. 

Alternatif olarak, yarı iletken nanokristaller, aynı zamanda kolloidal kuvantum 

noktacıkları olarak da bilinirler, farklı ve üstün özellikleri ile son yıllarda ıĢığa 

duyarlı aygıtlar için ön plana çıkmıĢ yenilikçi malzemelerdir. Bu tip 

nanokristaller solüsyon bazlı üretime ve iĢlemeye uygundurlar ve kuvvetli optik 

soğurmaya sahiptirler. Bu tezde yeni bir tip ıĢık sensörü olarak, büyük alanlı, 

yarı-geçirgen ve ıĢığa duyarlı nanokristal yüzeyleri tasarlıdık ve geliĢtirdik. Bu 

tip nanokristal yüzeyler (kısaltma olarak LS-NS‟i kullanıyoruz) akıllı camlar ve 

akıllı bina cepheleri gibi geniĢ alanlı uygulamalara uygundur. LS-NS‟ler onlarca 

cm
2
 büyüklüğündeki alanlara sprey kaplması yöntemi ile, birkaç cm

2
 

büyüklüğündeki yüzeylere ise daldırmalı kaplama yöntemi ile kaplanabilir ve 

üretilebilir. LS-NS‟lerin çalıĢma prensibi ıĢık ile elektriksel gerilim yaratımına 

dayanmaktadır ve bu klasik fotosensörlerin fotoakım yaratımı prensibinden 

farklıdır. LS-NS genel olarak paralel tabakalı kondansatöre benzemektedir. Üst 

metal katmanın altında tek bir nanokristal katmanı içerir. Alt iletken kısım ise 

optik geçirgendir ve nanokristal katmanında dielektrik sabiti yüksek bir yalıtkan 
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ile ayrılmıĢtır. Nanokristal katmanının üst metal ile etkileĢimi sayesinde 

dıĢarıdan bir gerilimi uygulamaksızın yüksek ıĢık hassasiyeti elde edilir. IĢık ile 

nanokristallerin içinde oluĢturuluan elektron-deĢik çiftleri metal-nanokristal 

arayüzeyinde farklı metal ve nanokristalin farklı elektonegativiteleri sebebiyle 

bir birinden kopar ve ayrıĢır ve bu ayrıĢma potansiyel fark, olarak ölçülebilir. 

LS-NS platformu tek bir nanokristal katmanı içermesine rağmen yüksek 

hassasiyette ıĢık duyarlılığına sahiptir, ayrıca yarı-geçirgen yapılabilir ve gürültü 

seviyesi azaltılabilir. Nanokristallerin ıĢıma dalga boylarının kolayca 

ayarlanabilir olması ile basamaklı yapıda nanokristal içeren dizaynlar 

yapılmasına olanak sağlamıĢtır. Bu sayede ıĢık ile oluĢturulan elektron-deĢik 

çiftleri yüksek enerjili nanokristallerden düĢük enerjili nanokristallere doğru 

verimli Ģekilde aktarılabilmiĢtir. Bu tip eksiton taĢınımı ilk defa aktif bir aygıtta 

bu tezde kullanıldı. Bu sayede eksiton taĢınımını kullanan çok katmanlı 

nanokristal yapıları ile hassasiyeti artırılımıĢ LS-NS‟leri gösterdik. Aygıtların 

hassasiyetini daha da artırmak için plasmonik nanoparçacıkların katkılandırıldığı 

LS-NS‟ler tasarladık. Yanı sıra yarı-geçirgen LS-NS‟lerin ardarda dizilmesi ile 

birleĢik aygıt yapıları ürettik, bunlara titanyum oksit katmanı ekleyerek yük 

ayrıĢımını artırılması sağldık. Ayrıca çoklu eksiton yaratımı prensibi ile 

kızılötesire hassas nanokristaller kullanarak verimlilik artıĢı gösteridik. LS-

NS‟ler tamamen izole edildiklerinden ortam koĢullarından etkilenmediklerini ve 

karalı oldukları gördük. Tüm bu özellikler, LS-NS‟leri ucuz, geniĢ alanlı ve ıĢık 

tayfına duyarlı (morötesi, görünür ve kızılötesi) ıĢık sensörleri yapmaktadır ve 

bu özellikleri onları akıllı camlarda ve akıllı bina cepheleri gibi alanlar için 

uygun yapmaktadır. Bu tezde gösterilen nanokristal tabanlı ıĢığa hassas yüzeyler 

gelecekteki ileri nesil ıĢık duyarlı platformlar için gelecek vaadetmektedir.  

 

Anahtar kelimeler: Kuvantum noktacıkları, nanokristaller, plasmonik 

nanoyapılar, TiO2, çoklu eksiton yaratımı, ıĢık hassasiyeti, zaman çözünürlü 

ıĢıma, nanofabrikasyon. 
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Chapter 1 

 

Introduction 

 

Imaging, remote sensing, optical communications, and spectroscopy are some of 

the important applications enabled by the detection of optical signals. A 

photosensitive material needs to absorb incident optical signals and convert 

them into electrical signals. Detection in the visible region is suitable for 

applications including spectroscopy and fluorescent biomedical imaging. In 

favor of the passive night vision [1, 2] and biomedical imaging for tumor 

detection [3, 4, 5] sensitive photodetection in the infrared region is required. 

Subsequently, multispectral imaging, which provides independent piece of 

information, is possible by combining visible and infrared wavelengths. 

However, due to the high fabrication cost and modest performance, their 

functionality is limited [6].       

 

Light detection has traditionally been enabled by crystalline semiconductor 

photodetectors. In the last few decades, detectors made from silicon as photon-

to-electron converter dominate the multibillion-dollar annual market [7]. The 

compatibility of the silicon electronics with silicon photodiodes enables low 

noise signal and multiplexing [8]. However, this technology faces some 

limitations. Silicon can absorb light relatively strongly only below 1.1 m in 

addition to the weak absorption over the entire spectrum at 500 nm the 

absorption of silicon can only exceed 10
4 

cm
-1 

[9]. Furthermore, silicon may also 



 2 

suffer the cross talk and blurring of optical signal problems due to the long 

lifetime and high mobility of the electron-hole pairs [10]. Consequently, 

materials that expand the absorption spectrum with a high absorption coefficient 

to decrease the semiconductor thickness to at least less than 100 nm are 

significantly required.  

 

Solution-processed semiconductor nanocrystals (NCs) are of increasing interest 

for use in optoelectronic devices and offer advantages including low cost, 

flexibility, large device area, and spectral tunability based on the quantum size 

effect [11, 12]. In contrast to conventional epitaxial growth of lattice-matched 

semiconductors, such solution-processed optoelectronic materials provide 

promising convenient integration atop electronic substrates (e.g., using dip 

coating, spin coating and drop casting), where lattice mismatch problems do not 

arise. Therefore, these NCs are promising candidates for applications in diverse 

areas, such as in light-emitting diodes [13], solar cells [14], and photodetectors 

[15, 16] as well as for biolabeling [17] and biosensing [18].  

 

Conventional photodetectors using NCs typically operate on the principle of 

collecting photogenerated charges, where an external bias must be applied for 

the charge collection. Recent research efforts increasingly focus on NC 

photodetectors that show a remarkable level of sensitivity [19] and short 

response times [20]. These photodetectors do, however, commonly exhibit high 

dark current, which results in high noise levels and limits the device‟s detection 

capabilities [21].   

 

Our research interest mainly focuses on fabricating and developing novel highly 

sensitive photosensor structure. As an alternative architecture, NC skins offer 

the potential of high sensitivity for large-area applications because they operate 

on the principle of photogenerated voltage buildup in the absence of an external 

bias. With a single NC layer in the device structure, noise generation is 

significantly reduced, which enhances the device sensitivity [22].   
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In Chapter 1, we present a brief introduction to materials and NCs for optical 

detection. The importance and the use of NCs in optoelectronic applications are 

discussed here.   

 

In Chapter 2, we provide a background on the nanostructured materials for 

photon detection. Furthermore, we introduce surface plasmon resonance of 

metal nanoparticles and the influence of size, shape and environmental medium 

on the plasmonic behavior. Hence, we present a brief background on the Förster 

resonance energy transfer and its mechanism. 

 

In Chapter 3, we discuss the fundamental properties of NCs as promising 

materials for optoelectronic devices. Also, we explain the synthesis methods of 

CdTe NCs, along with their optical characterization. 

 

In Chapter 4, we present and demonstrate a large-area, semi-transparent, light-

sensitive nanocrystal skin (LS-NS) devices. These LS-NS platforms, which were 

fabricated over areas up to 48 cm
2 

using spray-coating and several cm-squares 

using dip-coating, are operated on the basis of photogenerated potential buildup, 

as opposed to conventional charge collection. In operation, close interaction of 

the monolayer NCs of the LS-NS with the top interfacing contact, while the 

bottom one is isolated using a high dielectric spacing layer, results in highly 

sensitive photosensing in the absence of external bias application.  

 

In Chapter 5, we show that plasmonic nanoparticles are strong candidates to 

improve the electron-hole pair generation in NC-based devices. In particular, 

NC photosensors exhibit low performance toward long wavelengths, due to low 

optical absorption of NCs. Here, to enhance the device photosensitivity 

performance, embedding silver nanoparticles into the light-sensitive skins 

composed of the monolayer CdTe NCs was demonstrated. The deposited 

plasmonic silver nanoparticles increased optical absorption of the NC monolayer 

and enhanced the device photosensitivity. Improvements in photosensitivity 
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over broadband (400-650 nm) spectral range were observed with a 2.6-fold 

enhancement factor around the localized surface plasmon resonance peak. To 

further predict the enhancement in sensitivity of the devices, we performed 

simulations using FDTD method. Our experimental results agree well with the 

theoretical calculations considering the near-field electric field enhancement in 

the vicinity of silver nanoparticles. Furthermore, we studied the distance 

dependent sensitivity of the resulting devices with silver nanoparticles 

incorporated into NC skins to reveal the effect of localized surface plasmons.  

 

In Chapter 6, we report the first colloidal NC-based tandem photosensitive 

skins. We fabricated the tandem photosensors which is composed of spray-

coated monolayers of colloidal water soluble CdTe NCs and design the device to 

operate without applying any external bias. The top semi-transparent electrodes 

on each constituent junction accumulate holes while electrons are trapped inside 

the NCs. Subsequently, we have demonstrated that it is possible to enhance the 

device sensitivity for more that 100% and at the same time accelerate the 

response time compared to the single junction photosensitive devices. 

 

In Chapter 7, we present the first account of exciton funneling in an active 

device, which leads to significant performance improvement in the device. Here 

we show highly photosensitive gradient NC skins based on the exciton funneling 

across the layers of NC film. Previously, this concept was demonstrated using 

layered NC films in the pioneering work of Franzl et al. [23]. To explore this 

proposition, we fabricated devices that rely on accumulating dissociated charges 

after photogenerating and funneling excitons. We demonstrate how funneling 

excitons along a gradually decreasing band gap gradient of the cascaded NC 

monolayers enhances photosensitivity of the device platform. We observed 

substantial improvements in the photosensitivity over a broadband spectral 

range (350-600 nm), with an approximately twofold enhancement factor along 

the entire operating wavelength range. To better understand and prove the 

presence of the exciton transfer process in the cascaded NC skins, we also 
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conducted time-resolved fluorescence measurements at the donor and acceptor 

wavelengths; the results confirmed the exciton transfer process in the NC 

gradient structure. 

 

In Chapter 8, we show highly photosensitive NC skins based on the use of TiO2 

as electron accepting material. In the absence of any external bias, some 

excitons may remain in the NCs layer where it was created and then tend to 

recombine leading lower voltage buildup. To explore this proposition, we 

fabricated devices that rely on accumulating dissociated excitons after 

photogenerating and transferring electrons to TiO2 while holes migrating to Al 

contact. As a result, we demonstrate how the electron transfer to TiO2 thin film 

in LS-NS enhances photosensitivity of the device platform. We observed 

substantial improvements in the photosensitivity over a broadband spectral 

range (350-475 nm), with an approximately 22% enhancement. To better 

understand and prove the presence of the electron transfer process from the 

CdTe NCs to the TiO2 layer, we also conducted time-resolved fluorescence 

measurements; the results supported the existence of electron transfer from the 

NCs to TiO2 layer in light-sensitive skins. 

 

In Chapter 9,  we report a significant sensitivity enhancement making use of 

multiple exciton generation and subsequent charge accumulation per incident 

photon in photosensitive NC skins composed of a monolayer of near-infrared 

absorbing CdHgTe NCs. The 3.3-fold enhancement in sensitivity was observed 

at photon energies greater than 2.4 times of the CdHgTe NCs band gap. 

Implementing a control experiment, excitation of CdTe NC-based device did not 

show any enhancement through MEG due to the improper band gap of these 

NCs given the excitation wavelength.           
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Chapter 2 

 

Scientific Background 

 

2.1 Nanostructured Materials for Photon Detection 

 

Colloidal semiconductor NCs, also known as colloidal quantum dots are made 

up of a few hundred to a few thousand atoms. Usually these materials are 

surrounded by an organic layer of surfactant molecules called as ligands [24, 

25]. Their small size to a few nanometers (less than the Bohr radius) results in 

strong quantum confinement effect. This also increases the effective band gap 

due to the quantization of energy levels to discrete values. Subsequently, the 

sizes of the NCs influence their optical properties [26]. Optical properties of 

NCs also depend on their surface passivation. These surface passivated core 

NCs may result in surface trapped states acting as nonradiative channels 

reducing the fluorescence quantum yield. In order to improve the NCs‟ surface 

passivation, overgrowth with a shell of second semiconductor material has been 

the focus of significant research over the past two decades. It has been 

demonstrated that with coating the shell material it is possible to tune the 

emission and absorption spectra [27]. 

 

Regarding the band gap and relative position of electronic energy levels of the 

semiconductor, shell can have different functions. Electronic energy levels of 

bulk materials which are mostly used in NCs synthesis is given in Figure 2.1.1. 
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Figure 2.1.1 Energy levels of bulk materials which are mostly used in NCs synthesis [28].    

 

Band alignment configurations can be distinguished in three cases known as 

type-I, reverse type-I, and type-II (see Figure 2.1.2). In the type-I case, when the 

band gap of the shell material is larger than the core, the electrons and holes are 

confined in the core. Usually, in order to passivate the surface of the core NCs 

which leads to improved emission, type-I is used. In this case, the shell 

passivates the core and reduces its dependency on the environmental changes 

such as oxygen or water molecules. Subsequently, stability of the NCs against 

photodegradation is enhanced. Moreover, the shell reduces the number of 

surface dangling bonds, which can act as trap states. In the reverse case, the 

band gap of the core material is larger than the shell one. Subsequently, 

depending on the shell thickness, electrons and holes are partially or completely 

confined in the shell. Subsequently, by changing the shell‟s thickness, the 

emission wavelength can be tuned [29, 30]. In these systems photostability can 

be enhanced by the growth of a second shell with a larger band gap [31]. In the 

last case, either the conduction-band edge or valence-band edge band gap of the 

shell is located in the band gap of the core. Because of the lower overlap of the 
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electron and hole wavefunctions, the photoluminescence (PL) decay of type-II is 

longer than type-I.   

 

 

Figure 2.1.2 Energy-level alignment in three different core/shell cases [32]. 

 

For detection applications, NCs are attractive materials since they can easily be 

deposited with a variety of substrates. Although detectors made from silicon 

dominate the multibillion-dollar market for digital cameras and image sensors, 

they have some limitations. Silicon cannot absorb most of the infrared spectrum, 

since it absorbs wavelengths only below 1.1 m. Moreover, it has a small 

absorption coefficient over the entire spectrum. Subsequently, materials that can 

absorb light where silicon cannot are of intense interest. However, these 

materials preferably need to be compatible for integration with silicon, flexible, 

and large-area substrates.           

 

NCs offer great potential with their superior properties. They are very promising 

for optoelectronic devices including light emitting diodes [33], solar cells [34], 

single photon detectors and emitters [35], infrared sensors [36], light convertors 

[37, 38, 39], and scintillators [40]. NCs can be synthesized using wet chemistry 

and processed from the solution phase [41], which enables solution processable 

optoelectronic devices at reduced costs, with the additional advantages of 

making flexible structures, if desired, and in large-area production in principle. 

NCs are very versatile and can be deposited essentially almost on any substrate 

using dip coating [42], spin coating [43], spray coating [44], and inject printing 

[45]. Additionally, NCs possess widely tunable optical absorption and emission 
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properties using the quantum size effect. Moreover, the strong confinement 

leads to various mechanisms in NC solids including variable-range hopping 

[46], slow carrier relaxation [47], and electron and hole interaction [48] and 

delocalization [49]. 

 

Solution-processed photodetectors are classified into two classes, 

photoconductors and photodiodes. In the photodetectors, one type of the carrier 

circulates through the external circuit for several times until it recombines with 

the opposite trapped carrier, which leads to high gain. If the transit time is longer 

than the recombination duration of photogenerated excitons, many of charges 

can pass through the circuit. In order to prolong the electron-hole pair 

recombination time, introducing traps in the colloidal NCs film can be used [50, 

51, 52]. The physical mechanisms behind solution-cast photoconductive 

photodetector have attracted great interest since 2006 [19]. In this previous 

study, PbS colloidal NCs were coated over prefabricated planar electrode array. 

The device showed a large photoconductive gain, especially after removing the 

ligands (see Figure 2.1.3). 

 

Figure 2.1.3 Device structure of ultrasensitive solution-cast quantum dot photodetector 

[19]. 
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On the other hand, in the photodiodes, the photogenerated electrons and holes 

move to opposite electrical contacts (see Figure 2.1.4). These types of 

photodetectors can have fast response times. In photodiodes, difference in the 

material‟s Fermi levels leads to built-in potential. The internal field in the 

semiconductor depletion region separates the electrons and holes in opposite 

directions. To obtain high internal quantum efficiency, tlife should be larger than 

textract, where tlife is the lifetime of excess charge carriers and textract is the time 

taken to transport carriers to the contacts given by textract = L
2
/Vbi where L is the 

contact separation,  mobility of slower carrier and Vbi is the built-in potential 

[53]. In conventional crystalline semiconductors, charges sweep a distance of 

1m much faster than nanoseconds through a built-in potential of 1 V, due to 

their high mobility, which is in the range of 10
2 

cm
2
Vs

-1
 and above. On the other 

hand, in solution-processed NCs charges sweep a distance of 100 nm with a 

built-in voltage of 1 V in the range of 100 ns-10 s, since they have much lower 

motilities in the range of 10
-5

-10
-3 

cm
2
Vs

-1
. However, thanks to the unusual long 

exciton lifetimes of some colloidal NCs (> 1s), excellent photodiode quantum 

efficiency can be obtained [54]. 

 

 

Figure 2.1.4 A schematic representation of the photodiode device architecture [21]. 
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2.2 Fundamentals of Surface Plasmons 
 

Localized surface plasmons (LSP) consist of the collective oscillations of free 

electrons spatially confined in metal nanoparticles under impinging 

electromagnetic radiation on resonance condition [55]. SP may appear in 

different forms such as freely propagating electromagnetic surface waves along 

metal surfaces and localized electron oscillations confined in metal 

nanoparticles. In this thesis, we will study the LSP generated in metal 

nanoparticles and used to enhance the device sensitivity in the spectral range 

especially where the photosensitivity is low.  

 

The optical response of metal nanoparticles is due to the LSP resonance 

wavelength. As a result of SP, a strong electric field around the nanoparticle 

takes place, which vanishes exponentially by distance away from  the 

nanoparticle [56]. LSP is strongly observed when the nanoparticle size decreases 

considerably, since electromagnetic field can penetrate into the particle. For Ag 

and Au metals, the penetration depth is around tens of nanometers. 

Subsequently, metal nanoparticles at this range should be obtained [57]. LSP 

generates polarization on the particle (sinusoidal varying electric field) and 

because of the Coulomb attraction force between the conduction electrons and 

fixed positive ions at the nucleus, a restoring force is generated [58]. As the 

electrons move back and forth, the restoring force gives rise to the oscillation 

(see Figure 2.2.1).  
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Figure 2.2.1 Schematic representation of the electric field due to an incident wave and 

creation of oscillation as the electrons move back and forth.  

 

The frequency of this oscillation is called the SP resonance frequency. SP 

resonance is given as  
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                                                      (1) 

where ɛ0 is the vacuum permittivity, me is the effective mass, rs radius of sphere. 

As it is evident, resonance frequency is inversely proportional to the 

nanoparticle size [59].  

 

LSP resonance frequency depends on the size, shape, and surrounding medium 

dielectric function. Ag and Au nanoparticles have frequencies corresponding to 

the visible region. On the other hand, Al and Hg have higher frequencies. The 

upper and lower size limits for Ag and Au to observe plasmonic effects is 100 

and 5 nm, respectively. Ag and Au show strong SP resonance in the size range 

of 5-50 nm [60]. As the nanoparticle size increases, plasmon resonance makes 

red shift. Additionally, monodispersity of nanoparticle size distribution 

influences the plasmonic resonance peak. As the nanoparticles monodispersity 

increases, plasmon resonance peak become sharper. One of the other key factors 

effective on plasmon resonance is the shape of metal nanoparticles. They can be 

made in spherical, cubical and cylindrical. It has been reported that plasmon 
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resonance wavelength can be shifted from 400 to 670 nm as the spherical Ag 

nanoparticle changes to trigonal prism [61]. Moreover, different kinds of 

materials surrounding the nanoparticle can change the SP resonance spectrum. 

For example, the dielectric coating on film increase the refractive index of 

surrounding medium which cause a red shift in the plasmon resonance spectrum 

[62].    

         

2.3 Förster Resonance Energy Transfer 

 

Förster resonance energy transfer (FRET) is a nonradiative-type energy transfer 

that takes place between two resonance molecules in very close proximity. 

FRET has been especially used in biology to determine the distance between the 

molecules. In FRET, the donor molecule transfers its energy before being 

radiated as a photon emission. FRET occurs, when the donor emission spectrum 

overlap with the acceptor absorption spectrum. In this mechanism, the donor 

should have a high quantum yield, the acceptor should have a high extinction 

coefficient, and donor and acceptor should be in close proximity (less than 10 

nm). In the case when the acceptor and donor molecules are less than 1 nm 

distance apart from each and, if their wavefunctions overlap, the exciton transfer 

occurs, which was first explained by the Förster theory.  

 

To verify the Förster energy transfer, time resolved spectroscopy and steady 

state fluorescence measurement are used. In time resolved spectroscopy the 

mechanism is observed with the change in the donor lifetime. As the donor 

molecule feed the acceptor with its excitation energy, its lifetime decreases 

while the acceptor‟s increases. The rate of energy transfer has a r
-6

 dependency 

as given by Equation 2. 
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where Kt is the rate of energy transfer, τD is the donor lifetime in the absence of 

acceptor. R0 is the Förster radius at which the decay rate and transfer rate of the 

molecule is equally probable and FRET efficiency is 50%. Förster radius can be 

found as follows: 

 

 

1

2 4 6
0 0.211( Q J( ))DR n                                                (3)  

 

Here κ
2
 is the orientation factor, n is the refractive index of the media, QD is the 

quantum efficiency of the donor, and J (λ) is the overlap integral. As it can be 

seen from the Figure 2.3.1 FRET is effective when r is less than or equal to R0.  

 

 

Figure 2.3.1 Dependence of the FRET efficiency on r/R0. 
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Chapter 3 

 

Semiconductor Nanocrystals  

 

Chemically synthesized NCs are considered as candidate materials promising 

for a wide range of optoelectronic applications because of their band gap 

tunability and solution processability, which facilitate integration with a variety 

of substrates at reduced costs over large-areas. As a result, light detection using 

these colloidal NCs has attracted significant attention in recent years. Our 

research group is also interested in colloidal NCs containing the elements 

cadmium, indium, and selenium, which may also be surrounded by a shell 

composed of sulphur or zinc.  

 

Generally, synthesis of semiconductor NCs results in spherical-like crystalline 

structures with diameters ranging from one to ten nanometers. When the 

electrons and holes are trapped in the potential well of the NCs in three 

dimensions, quantum confinement effect takes place. Moreover, on the contrary 

to the bulk crystalline semiconductor in which the energy level is continuous, 

the energy levels in NCs become discrete via the reduction of crystal size to 

nanoscale. Moreover, the exciton binding energy is given as follows: 

 

                                                 
2 2

28
n

n
E

mr
                                                          (4) 

 



 16 

where ħ is the reduced plank‟s constant, n is the quantum number, m is the 

effective mass and r is the radius of NC. 

 

Subsequently, the quantum size effect is the main reason for shifting the NCs 

emission as their size changes. For instance, we obtain red emission for the 

larger NCs, while the emission is blue for the smaller NCs.     

 

3.1 CdTe Nanocrystal Synthesis 

 

We synthesized water soluble (aqueous) CdTe NCs according to Ref [63]. In 

this method, 4.59 g of Cd(ClO4)2.6H2O was dissolved in 500 mL of Milli-Q 

water and 1.33 g TGA was added, followed by adjusting pH to 11.8-12.0. Then, 

H2Te gas obtained from the reaction of 0.8 g Al2Te3 with H2SO4 was passed 

through the solution with a slow Ar flow. Subsequently, the nucleation and 

growth of the NCs was initiated at 100 
0
C. NCs start to grow as the solution 

starts boiling and gets bigger in size during this period. Synthesis setup used to 

synthesize CdTe NCs can be seen in Figure 3.1.1.  

 

 

Figure 3.1.1 CdTe nanocrystal synthesis setup.  
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Fluorescence and optical absorption spectra of the resulting TGA-capped CdTe 

NCs are shown in Figure 3.1.2 and the NC diameters were calculated from their 

extinction spectra [32]. These diameters were 2.90, 2.98, 3.19, 3.62, and 3.71 

nm, increasing the first excitonic peak wavelength as 525, 532, 545, 595, and 

605 nm, respectively.  

 

 

Figure 3.1.2 Photoluminescence and UV-vis absorption spectra of as-synthesized aqueous 

CdTe NC solutions at room temperature. 

 

Furthermore, we found their photoluminescence decay lifetimes to be ~4 ns. 

After all, we use a rotary evaporator to increase the concentration and remove 

the extra amount of solvent. Hence, to further clean the solution from impurities, 

paper filters and size-selectively precipitation after several centrifuging steps are 

applied.  

 

The control over the interface of NC surface is important because this helps to 

increase the device operation efficiency. Due to the ligands passivating the NC 

surface, charges see high potential barriers. To study the effect of ligands, we 

removed the TGA ligands from the NC surfaces by adding isopropanol into the 

CdTe NC solution and centrifuging the mixture. This process was carried out 

three times to remove sufficient ligands. During the layer-by-layer (LBL) film 

assembly, NC solution was then rigorously stirred in order to prevent the 

precipitation. The removal of the ligands from the NCs was confirmed by FT-IR 

spectroscopy. In the FT-IR spectrum, carbon-sulphur (C-S) bond is found to be 
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present in the TGA-capped CdTe NCs, whereas it is mostly absent after the 

cleaning step (see Figure 3.1.2), indicating the successful removal of the ligands.  

 

 

Figure 3.1.3 Normalized FT-IR spectra of TGA-capped CdTe NCs before and after the 

ligand removal. 

 

3.2 Assembling of Semiconductor Nanocrystals 

 

LBL deposition technique can be used for fabricating multilayered thin films 

with a fine control over the film thickness. The LbL assembly relies on 

alternating adsorption of oppositely charged species, e.g., positively and 

negatively charged polyelectrolyte pairs [64]. For the purpose of controlled NC 

deposition, the NC monolayer of LS-NS devices was prepared using LBL 

deposition. To make film deposition via LBL assembly, a fully computerized 

dip-coater system was used (see Figure 3.2.1). A monolayer of negatively 

charged CdTe NCs was deposited on top of alternating bilayers of strongly 

positive and negative polyelectrolyte polymers, deposited on HfO2 layer, and 

followed by a final positive polyelectrolyte layer. 

Poly(diallyldimethylammonium chloride) (PDDA) and poly(sodium 4-

styrenesulfonate) (PSS) were used as the positively and negatively charged 
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polyelectrolytes, respectively. The concentrations of these polyelectrolytes were 

2 mg/mL in 0.1 M NaCl solution, since NaCl helps the polymer chain to relax 

on the surface. Water-soluble CdTe concentration was 4 M. LBL films were 

prepared according to the standard cyclic procedure: (i) dipping of HfO2-coated 

substrate into a PDDA solution for 5 min, (ii) rinsing it with water for 1 min, 

(iii) next dipping it into a solution of PSS for 5 min, and (iv) rinsing it with 

water for 1 min. This procedure was continued until four bilayers of PDDA and 

PSS composite were obtained. Finally, after deposition of one extra layer of 

PDDA and washing with water, the steps of dipping the sample into the 

dispersion of CdTe NCs for 20 min and rinsing with water again for 1 min were 

applied. Since the dip-coating technique has limitations for depositing CdTe NC 

monolayer on a large-area substrate, we employed spray-coating technique to 

paint NCs over large-areas, while keeping exactly the same sequence of 

monolayer depositions as described above. 

 

 

Figure 3.2.1 Picture of our computerized dip-coater system. 
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Chapter 4 

 

Large-Area Semi-Transparent Light-

Sensitive Nanocrystal Skins  

 

This chapter is based on the publication “Large-area semi-transparent  light-

sensitive nanocrystal skins,” S. Akhavan, B. Guzelturk, V. K. Sharma, and H. V. 

Demir, Optics Express, 20, 25255-25266 (2012). 

 

4.1 Introduction 

 

Thin-film NC photodetectors based on photogenerated charge collection (using 

resultant photocurrent as the readout signal) have previously been proposed and 

successfully demonstrated in recent years, for which an externally applied bias is 

commonly required to extract the photogenerated charges [65]. In the 

conventional photodetection scheme, for increased sensitivity, it is necessary to 

use a thicker absorbing region so that a maximum amount of optical absorption 

takes place to give rise to the photocurrent. However, the thickness of the 

absorption region is restricted to few hundred nanometers (basically 

corresponding to many tens to hundreds of NC monolayers) due to the diffusion 
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length and short carrier lifetimes, which tends to decrease the photodetection 

sensitivity [66].  

 

In this work, different than the previous reports, we propose and demonstrate a 

new class of large-area, semi-transparent, solution processed, light-sensitive 

nanocrystal skin (LS-NS) devices incorporating only one monolayer of NCs as 

the absorbing layer (see Figure 4.1.1). These LS-NS systems operate on the 

basis of photogenerated potential buildup internally across them rather than the 

charge collection, unlike common photodetectors [67]. The proposed LS-NS 

platforms perform as highly sensitive photosensors, despite using a single NC 

monolayer, though with a slow response. In operation, electron-hole pairs 

created in the NCs of the LS-NS are disassociated and separated at the NC 

monolayer-metal interface without applying any external bias. This leads to a 

voltage buildup, which decays with the RC decay of the whole circuitry mainly 

owing to the capacitive nature of the LS-NS device and the external shunt 

resistor connected to the device. These LS-NS devices can be fabricated over 

large areas at low cost, while providing high sensitivity to UV and visible light. 

Such LS-NS platforms are intended for use in large-area photosensitive 

windows and glass facades of smart buildings. These devices are not intended 

for applications that require a high operation speed. However, if desired, their 

operation can still further be extended to infrared (IR) range by selecting 

appropriate band gap of the NC sensing material (e.g., CdHgTe, PbS, and PbSe 

NCs). 

 

The monolayer NCs used in the LS-NS are located immediately below the top 

metal contact enabling high sensitivity because of the close interaction with the 

metal contact while the other side of the NC monolayer is isolated using a thin 

stack of high-dielectric spacing layers. Only a small amount of NC material is 

used in the monolayer, which makes the LS-NS device semi-transparent 

(together with very thin top Al contact layer and transparent ITO contact layer 

on the bottom). The single monolayer of NCs, which is used to only partially 
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absorb the incident light, suffices to make the device highly photosensitive 

because it takes only a very small amount of charge accumulation for large 

enough photovoltage buildup. This NC single monolayer further enhances the 

sensitivity of the LS-NS device with reduced generation-recombination noise 

reduction [22]. It is worth noting that a single NC layer, such as the one used in 

LS-NS platform, would indeed make a very poor photodetector due to its very 

low optical absorption in the case of conventional photodetection scheme, in 

contrary to the highly sensitive LS-NS operation. Yet, as another important 

difference with respect to conventional photodetectors, there is no need for the 

LS-NS devices using an external power supply in a way similar to photovoltaic 

operation. This allows for potentially powerless operation of the LS-NS 

platforms in segments (each of which is under some detectable optical 

illumination as a whole). 

 

In this work, we also demonstrate that it is further possible to fabricate large-

area LS-NS conveniently by using the spray-coating method. This, in addition to 

being a low cost fabrication approach, results in a simple up-scalable technique 

for fabrication over extremely large areas. Also, the substrate on which the 

device is fabricated can be a flexible one, which makes it possible to fabricate 

fully flexible LS-NS devices. Moreover, the proposed NC photosensor structure 

allows for extremely high stability under ambient condition, since NCs are being 

sealed between the top metal contact and the bottom layers so that the NC 

monolayer is not exposed to air. With all these attractive features of high 

photosensitivity and photostability, and powerless operation, along with the 

possibility of large area and flexible implementations, the LS-NS platform holds 

great promise for three-dimensional wide-scale photosensing surfaces in the 

future. 
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(a)                                                      (b) 

 

 

(c) 

 

(d) 

Figure 4.1.1 (a) Large-area, semi-transparent, solution processed, light-sensitive 

nanocrystal skin (LS-NS) devices. Here is shown a 8 cm  6 cm LS-NS device. (b) 

Photograph of a flexible LS-NS. (c) Schematics of a LS-NS structure consisting of a 

monolayer of TGA-capped CdTe nanocrystals (NCs) (shown as a monolayer of red dots 

here), along with a zoom-in illustrating the device structure of 

ITO/HfO2/PDDA+PSS/CdTe NCs/Al. (d) Band alignment of CdTe NCs and Al contact. 

CdTe NC conduction band (CB) and valence band (VB) and the workfunction (Φ) of Al 

are shown on the energy diagram. 

 

As a proof-of-concept demonstration, we fabricated a semi-transparent LS-NS 

device of 8 cm × 6 cm (i.e., 48 cm
2
) in size (see Figure 4.1.1(a)) in which the 
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maximum voltage buildup reaches 300 mV (under excitation at 350 nm with an 

optical power level of 0.153 mW/cm
2
 without applying any external bias). To 

deposit a NC monolayer on the substrate, colloidal dots were painted onto the 

substrate using spray coating, followed by a washing step to guarantee the 

formation of a monolayer. By increasing the interaction with the top contact 

placed immediately above the NC monolayer, more charge accumulation took 

place, which expectedly led to the measured high photosensitivity. Thanks to the 

device architecture and utilization of solution processable NCs as the active 

semiconductor layer, our device has the potential to be constructed over even 

larger areas than the actual demonstrations here. LS-NS devices can also be 

made on a flexible substrate (e.g., ITO coated PET) if desired, as shown in a 

fabricated exemplary device in Figure 4.1.1(b). The device architecture of 

ITO/HfO2/PDDA+PSS/CdTe NCs/Al is also sketched in Figure 4.1.1(c). Here 

the Al contact serves as the hole acceptor for the NCs given the workfunction of 

Al and the band alignment of the NCs shown in Figure 4.1.1(d). The 

experimental procedure and characterization results will be further discussed in 

detail in the following sections. 

 

4.2 Experiments and Results 

 

ITO film on a glass (or PET) substrate was washed using ultrasonication in a 

mixture of 2 mL Hellmanex in 100 mL water for 15 min, followed by 

ultrasonication in water (15 min), acetone (15 min) and isopropanol (15 min). 

Milli-Q water was used for all these steps and cleaning of the substrates. We 

then continued our fabrication by sputtering a 100 nm thick HfO2 dielectric film. 

Subsequently, to deposit NCs, we used LBL self-assembly via dip coating to 

make a small device and spray coating to make a large device. At this step, we 

found that the formation of 4 bilayers of PDDA+PSS gives a uniform film with 

a high surface coverage for the subsequent CdTe NC monolayer. Following each 

self-assembly step, the sample was washed to remove excess and unbound 

species of the substrate. Finally, a transparent, very thin, Al contact layer (of 15 

http://www.google.com/url?sa=t&rct=j&q=Hellmanex&source=web&cd=1&ved=0CB0QFjAA&url=http%3A%2F%2Fwww.hellma-analytics.com%2Ftext%2F197%2Fen%2Fhellmanex%25C2%25AE-iii.html&ei=nscWT_OrB4T-8QPJwfDkAg&usg=AFQjCNFv4gm5VhOJzSmt89DMMLc5TjqHCA
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nm in thickness) was laid down immediately on top of the CdTe NC monolayer 

via thermal evaporation (see Figure 4.1.1(c)).  

 

In our measurements, we used Agilent Technologies B1500A semiconductor 

parameter analyzer and Xenon light source with an integrated monochromator. 

The illumination intensity was measured with an optical powermeter (Newport 

multi-function optical powermeter). In operation, the devices were connected to 

a shunt resistor (for example, 200 MΩ, or other values of choice), and no 

external bias was applied across the device. 

 

We performed electrical and optical characterizations of the LS-NS devices, 

including the measurements of photovoltage buildup, photodetection sensitivity, 

and photovoltage decay time. Because of the device architecture (sketched 

Figure 4.1.1(c)), electrical charges cannot directly pass through the device 

including the current blocking dielectric films (100 nm HfO2 film and 4 bilayers 

of PDDA+PSS with full surface coverage) so that the LS-NS device itself acts 

as a capacitor. With light illumination on the device, excitons are 

photogenerated in the NCs. Following the exciton formation, excitons are 

dissociated at the NC-Al interface and the holes are transferred and accumulated 

at the Al side due to Al workfunction and HOMO/LUMO band alignment of the 

NC layer as shown in Figure 4.1.1(d). As a result, Al layer favors hole 

accumulation given the interfacing NC monolayer  [26]. Therefore, in the LS-

NS device, Al acts as a hole acceptor, which leads to positive charge 

accumulation in the top Al contact, while electrons tend to remain in the NCs. 

These charges are capacitively held across the device (stored charges); these are 

not trapped charges. However, due to the photocharging effect, some of the 

electrons are also trapped inside the NC deep trap states; these are long-lived 

trap states.  

 

The operation of our device is experimentally shown in Figure 4.2.1. Starting 

the light illumination, we first observe that there is a net potential buildup and, 
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after reaching a peak point, this voltage buildup appears to diminish over time 

until it reaches a steady state in the presence of light illumination. At the steady 

state, when the light is switched off, a negative potential appears, which comes 

back to the initial point after short time. The observed operational mechanism of 

the LS-NS device is based on the photovoltage buildup rather than the 

immediate charge collection. This operation does not require external biasing. 

To understand the working of the device, it is worth mentioning that the non-

trapped charges, which are held capacitively across the LS-NS device, are the 

stored charges, continuously decaying because of the shunt resistor with the RC 

decay of the whole circuitry (device + shunt resistor). There exist also trapped 

charges, beside the exponentially decaying stored ones. Simultaneously, the 

external circuitry tends to neutralize the trapped charges in the NCs for 

eventually obtaining charge neutrality across the device. With light impinging 

on the device, the transient response reaches a peak, at which these opposing 

components become equal to each other and balance each other. The net 

photovoltage buildup appears to decay after this point. The decay continues until 

the steady state is reached. By switching off the light at this steady state level 

(see Figure 4.2.1), the net potential goes negative. This is the potential of the 

trapped electrons. 
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Figure 4.2.1 Changes in the voltage buildup in time via switching the incident light on and 

off (with 0.153 mW/cm
2
 at 350 nm), marked with respective blue and red arrows. 

 

While the light is on, some of the trapped charges draw holes from the Al 

contact to ensure the neutral state of the device. At the point when light is turned 

off, since there are no accumulated holes on the Al anymore, the net voltage 

reaches the lowest negative level and starts to recover and goes back to the zero 

level. This behavior shows the effect of trapped charges inside the NCs and the 

time taken to sweep out these charges. This indicates that the LS-NS device has 

a memory effect (within a certain time window). 

 

As another interesting feature, LS-NS devices can also be used to give 

information directly about the total amount of incident light power impinging on 

the device within a certain exposure period of time. This corresponds to the total 

incident optical energy to which LS-NS has been exposed. We found that the 

magnitude of the negative voltage appearing after switching the light off, which 

is directly proportional to the number of trapped electrons inside the NCs, 

change accordingly in response to changing light exposure time. This is due to 

proportional photocharging during the period of light exposure as seen in Figure 

4.2.2. However, this will work provided that the trap states in the NCs are not 

yet fully occupied and there are still more trap states available.  
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Figure 4.2.2 Effect of photocharge trapping inside the NCs as the incident light shines 

continuously on the nanocrystals skin for different periods of time at 350 nm (0.175 

mW/cm
2
).  Here the total of incident optical energy given in the legend is the amount of 

incident optical power multiplied by the exposure time and the exposure area. 

 

For a detailed understanding of the device operating principle, we further 

studied the LS-NS operation by systematically varying the excitation 

wavelength and illumination intensity. The voltage buildup variation in response 

to excitation with different intensities at different wavelengths is shown in 

Figure 4.2.3(a). We observed a higher voltage buildup at a shorter excitation 

wavelength, accompanied with a larger negative voltage after switching off the 

incident light. Due to the stronger optical absorption of CdTe NCs at shorter 

optical wavelengths, the voltage buildup is expected to increase with decreasing 

excitation wavelength. Essentially, this is because there are more electron and 

hole states available in a NC at a larger energy. This implies that a NC can 

absorb a larger number of photons at higher photon energies (i.e., at shorter 

wavelengths), photogenerating more electrons and holes under optical 

illumination at the same intensity level compared to longer wavelength 

excitation. This is in strong agreement with the profile of optical absorption 

spectrum of CdTe NCs. 

 



 29 

We also observed that the device exhibits a larger negative voltage at a shorter 

excitation wavelength due to the increased number of trapped charges, again 

owing to the increased optical absorption. It also takes more time to relax this 

increased number of charges in the absence of light as shown in Figure 4.2.3(a). 

Similarly, Bulović et al. reported a decreasing external quantum efficiency of 

their cycled devices (NC-LEDs) as a result of charging of the NCs by trapped 

electrons over time [68]. We can measure the trap charge density in our devices, 

using the negative voltage value and the time required to recover after the light 

exposure is stopped.  

 

Next, a meaningful figure-of-merit has been formulated to evaluate 

photodetection sensitivity of our device. Here we used the generic definition of 

the sensitivity as the ratio of electrical output signal to the optical input signal. 

Adapting this definition for the LS-NS devices, the photodetection sensitivity 

(S) is given by the ratio of photovoltage buildup to the incident optical power 

(i.e., S=V/P, where V is the photogenerated voltage (in V) and P is the optical 

power (in W) impinging on the device). Figure 4.2.3(b) presents the sensitivity 

of the LS-NS device as a function of the excitation wavelength, with an 

increasing trend towards shorter wavelengths in agreement with the discussions 

above. 
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Figure 4.2.3 (a) Variation of the voltage buildup at different excitation wavelengths and 

intensity levels. Light was turned off after reaching the peak point. (b) Corresponding 

sensitivity curve of the LS-NS device as a function of excitation wavelengths. 

 

We also studied the effect of varying incident power on the voltage buildup at a 

fixed wavelength (in this case, 350 nm). We observed that, with increasing 

power, the photosensitivity decreases while the response time grows shorter. 

This is because of the decreased RC, which means a faster response time and a 

decreased level of sensitivity (Figure 4.2.4). 
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Figure 4.2.4 (a) Response time increases with the decreasing power since both deeper and 

shallower states saturate and (b) increasing illumination, resulting in decreased sensitivity 

because of filling the long-lived trap states. Arrows indicate the point in time when the 

light was turned off. 

 

Furthermore, we observed that the RC decay kinetics changes over time in LS-

NS devices (see Figure 4.2.5). While the shunt resistance (R) is fixed at 200 

MΩ, the RC decay time constant decreases with time because of the change in 

the capacitance of the device. This change in the capacitance comes from the 

variation in the effective dielectric constant of the NC layer and thus the overall 

capacitance of the LS-NS device. The decreasing device capacitance can explain 

the reduced charge accumulation in the presence of light over time, which then 

results in a lower voltage buildup. Likewise, after reaching the peak point, the 

decrease in the device capacitance speeds up the RC decay, which is in 

correlation with the data summarized in Table 1. 
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Figure 4.2.5 RC decay rate changing in time by turning the incident light on and off at 

different intensity levels at 350 nm. 

 

Positions 

in Figure 

4.2.5  

P = 0.175 mW P = 0.117 mW P = 0.011 mW 

 τ 

(s) 

C 

(nF) 

εCdTe τ (s) C 

(nF) 

εCdTe τ (s) C 

(nF) 

εCdTe 

(1) 7.56 37.80 5.3 7.76 38.80 8.6 7.91 39.55 16 

(2) 6.57 32.85 1.6 6.93 34.65 2.2 7.53 37.65 4.9 

(3) 5.24 26.20 0.7 5.95 29.75 0.9 6.82 34.10 2.0 

(4) 4.65 23.25 0.5 5.06 25.30 0.6 6.08 30.40 1.1 

(5) 3.62 18.10 0.3 4.34 21.70 0.4 5.64 28.20 0.9 

 

Table 4.2.1 Various device parameters including RC decay time constant (τ), effective 

device capacitance (C), and effective dielectric constant of CdTe NCs (εCdTe)) obtained 

from Figure 4.2.5, when the shunt resistance is fixed at 200 MΩ. P represents the excitation 

power level (of the Xenon lamp) incident on the device. 
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From Table 4.2.1, we observe that the illumination intensity changes the RC 

decay time constant. We found that the slowest one belongs to the lowest 

intensity level. This is in agreement with the potential buildup changing with the 

illumination intensity when the light illuminates the device continuously (Figure 

4.2.6). The increased incident power results in a faster decrease, implying that 

the effective dielectric constant of NCs and thus the device capacitance are 

decreased. Therefore, the voltage buildup under higher power excitation drops 

faster after reaching the peak point compared to those at the lower optical 

intensity levels. 

 

 

Figure 4.2.6 Variation of voltage buildup with time for different illumination intensity 

levels. 

 

In the NCs, ligands act as the stabilizers by preventing them from aggregation 

and precipitation. However, when we make devices of these NCs, ligands can 

suppress the charge transport. It therefore makes sense to consider that the 

removal of ligands may increase charge transport and voltage buildup. This 

means that it is better to remove the ligands from NCs before making a device 
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out of them. To demonstrate the effect of ligand removal, the LS-NS devices 

were fabricated using ligand-removed CdTe NCs. It is found that these devices 

with the NC ligand removal exhibit a higher voltage buildup (104 mV), which 

indicates higher photosensitivity compared to the case of NC devices with the 

ligands (60 mV) at the same intensity level. This leads to a large sensitivity 

enhancement factor of 73%, together with a 3-fold faster response with respect 

to the case of using ligands. Ligand-removed NC devices also exhibit more 

trapped charges. Figure 4.2.7 shows that when ligands are removed, trapped 

charges can also be released much faster than the case with the ligands. Also, it 

is expected the change in the device capacitance be faster than the case with 

ligands, which is also confirmed experimentally in Figure 4.2.7. 

 

Figure 4.2.7 (a) Variation of voltage buildup with time for 0.175 mW/cm
2
 at 350 nm and 

(b) RC decay change in time by turning the incident light on and off for 0.153 mW/cm
2
 at 

350 nm wavelength in the case of ligand-removed LS-NS devices.  

 

Sensitivity and fast response time are desirable parameters for different 

photosensing applications. However, there is a tradeoff between them, and thus 

improving one worsens the other. For instance, for a device to be compatible 

with video-frame-rate imaging, a temporal response in the order of 50 ms is 

necessary. In the case of LS-NS devices, by decreasing the shunt resistance 

(e.g., from 200 MΩ, to 100 MΩ, 50 MΩ, 1000 KΩ, and 360 KΩ), it is possible 

to speed up the response time (from 8.0 s to 4.4 s, 2.4 s, 720 ms, and 300 ms, 
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respectively, for an excitation intensity of 0.175 mW/cm
2
) as expected. For the 

same optical power, in the case of ligand-removed LS-NS devices, a faster RC 

decay time constant of 4.7 s, 2.4 s, 1.4 s, 220 ms, and 90 ms was observed. On 

the other hand, by increasing the shunt resistance (which was set to ~ 200 MΩ in 

our previous characterizations) would in fact enhance the sensitivity, but this 

would come at the cost of slowing its temporal response time (due to the 

increased RC decay time constant). Therefore, the response time of LS-NS 

devices need to be adjusted in regards to the requirements of a specific 

application.  

 

The LS-NS devices exhibit reasonably high photosensitivity in comparison to 

typical NC photodetectors. In the case of LS-NS devices, we calculate the 

minimum noise equivalent intensity to be 1.94 W/cm
2
 for the devices with the 

ligands and 0.443 W/cm
2
 when ligands are removed, which is comparable to 

the solution-cast NC photodetectors reported previously [69]. This, in addition 

to the adjustable response time, makes the LS-NS platform a promising one for 

photosensing applications. 
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Chapter 5 

 

Plasmonic Light-sensitive Skins of 

Nanocrystal Monolayers 

 

This chapter is based on the publication “Plasmonic light-sensitive skins of 

nanocrystal  monolayers,” S. Akhavan, K. Gungor, E. Mutlugun, and H. V. 

Demir, Nanotechnology, 24, 155201 (2013). 

 

5.1 Introduction 

 

NCs exhibit low optical absorption in the long wavelength range, which limits 

the device performance. Here, to enhance the sensitivity and extend operating 

wavelength range, embedding silver nanoparticles into LS-NS is proposed and 

demonstrated. LSP consists of the collective oscillations of free electrons 

spatially confined in metal nanoparticles under impinging electromagnetic 

radiation on resonance condition. LSP resonance wavelength depends on the 

material, shape and size of the nanoparticle as well as the surrounding medium 

dielectric function [70]. Around the LSP resonance peak exponentially 

decaying, evanescent fields are localized in the vicinity of silver nanoparticles, 

which may yield an order of magnitude field localization enhancement. 

Consequently, this field enhancement promotes the optical absorption and 

electron-hole pair generation of plasmonically coupled active layer [71, 72]. 
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Introduction of plasmonic materials into light harvesting devices can 

substantially enhance the exciton photogeneration [73, 74].   

 

Silver nanoparticle-enabled plasmonic effect has been made in variety of ways 

to enhance the performance of thin film based optoelectronic devices. M. L. 

Tseng et al. have proposed a fast technique for the development of Ag 

nanostructure from AgOx thin film deposited on a glass substrate via a 

femtosecond laser which can be applied over large areas [75]. Similarly, low 

cost, simple and novel nucleated silver nanoparticles has been demonstrated to 

broadband absorption enhancement in thin-film amorphous silicon solar cells 

[76]. In this work we employed LSP effect of silver nanoparticles to engineer 

plasmonic absorption profile for enhancing electron-hole pair generation in 

CdTe NCs. This enhancement leads to increased sensitivity and broadened 

operational spectral region of the LS-NS devices. Careful tailoring of the 

plasmonic absorption profile enables further optimized device performance. 

Therefore, the integration of monolayer NCs film with silver nanoparticles 

offers great potential to become a promising low cost light-sensitive platform for 

UV/visible sensing [77]. 

       

5. 2 Device Preparation and Characterization  

 

To obtain localized plasmonic nanostructures, we deposited silver nanoparticles 

on 50 nm thick HfO2 dielectric layer of our LS-NS devices using a thermal 

evaporator at a reduced evaporation rate of 0.3 Å/s in vacuum environment. As a 

result of such a low evaporation rate and small mass thickness, nanometer size 

islands of silver isolated from each other were obtained. After the evaporation, 

the samples were annealed at different temperatures and for different durations 

(150 °C for 2 min, 300 °C for 2 min, and 300 °C for 20 min) to further allow the 

silver nanoparticles to reorganize into the desired morphology. In this method, 

the four main parameters that determine the size and organization of the silver 

nanoparticles include evaporation rate, thickness, annealing temperature, and 
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duration. During the process of developing these silver nanoparticles, different 

mass thicknesses and evaporation rates (not presented here) have been 

systematically studied. Consequently, the best results were achieved with 10 nm 

mass thickness and 0.3 Å/s evaporation rate as the optimal case, which gives the 

sharpest peak and narrowest full-width-half-maximum (FWHM) in addition to 

the desired LSP resonance. Scanning electron microscopy (SEM) images of four 

silver films deposited with a film mass thickness of 10 nm on the HfO2 substrate 

and annealed at different temperatures and for different durations are shown in 

Figure 5.2.1. Here it can be seen that heat treatment helps the silver 

nanoparticles to reorganize themselves such that they become more isolated 

from each other and more spherical in shape. 

 

 

Figure 5.2.1 SEM images of four silver nanoparticle films with 10 nm mass thickness on a 

50 nm thick HfO2 film annealed at different temperatures and durations. (a) Not annealed, 

(b) annealed at 150 °C for 2 min, (c) annealed at 300 °C for 2 min, and (d) annealed at 300 

°C for 20 min.  
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Optical absorption spectra of the resulting silver nanoparticle films (see Figure 

5.2.2(a)) are in agreement with the SEM images displayed in Figure 5.2.1. 

Stronger, blue-shifted LSP resonance with a narrow FWHM is observed from 

optical extinction spectra confirming the isolation and size reduction of 

nanoparticles. Later we shall discuss how this tunability of resonance peak 

enhances the device sensitivity in the range where photosensitivity is low. To 

facilitate layer-by-layer assembly of NCs, a 1 nm thick negatively charged 

aluminum oxide (Al2O3) layer was subsequently deposited using ALD onto the 

silver nanoparticle films. Depositing 1 nm thick Al2O3 and subsequently coating 

bilayers of PDDA and PSS polyelectrolytes onto the silver nanoparticle films 

did not make a significant change in the LSP resonance (see Figure 5.2.2(b)). 

 

   

Figure 5.2.2 (a) Optical excitation spectra of silver nanoparticle films with a mass thickness 

of 10 nm deposited at 0.3 Å/s evaporated rate annealed at different temperatures for 

different durations. (b) Optical extinction spectra of 10 nm thick silver nanoparticle film 

annealed at 300 °C for 20 min covered with 1 nm Al2O3, different number of PDDA and 

PSS bilayers, and single monolayer of NC. 

 

Figure 5.2.3(a) presents a schematic of the plasmonically enhanced LS-NS 

device, in which aluminum oxide and polyelectrolyte polymers separate silver 

nanoparticles and CdTe NCs. In our device architecture, charges are not allowed 

to pass directly through the device. After electron-hole pairs are photogenerated, 

because of the workfunctions of the NC monolayer [78] and Al layer (see 
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Figure 5.2.3(b)), holes migrate to the Al contact while most of the electrons are 

trapped inside the NCs. By shining light on the device, excitons are dissociated 

at the Al and NC monolayer interface. Subsequently, holes are migrated and 

accumulated at the Al side due to Al workfunction and band alignment of the 

NC monolayer. On the other hand, electrons tend to stay in the NCs because of 

presence of highly dielectric layer of HfO2. Consequently, holes start to 

accumulate at the Al contact, making a positive potential buildup up to the 

saturation point. After a while, switching off the light results in decreasing the 

potential buildup. Hence, the device exhibits negative voltage value after 

switching off the light due to the trapped electrons inside the NCs. Furthermore, 

a higher voltage buildup is observed at a shorter wavelength indicating 

wavelength dependency of the device as a consequence of a larger number of 

states available at the shorter wavelength. This behavior is in strong agreement 

with the absorption spectrum of CdTe NCs. Furthermore, the voltage buildup as 

a result of trapped electrons is directly related to the negative voltage observed 

after switching off the light. In other words, a larger potential buildup causes a 

higher negative voltage value after turning the incident light off.  

 

 

(a) 
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(b) 

Figure 5.2.3 (a) Schematic illustration of a plasmonic light-sensitive nanocrystal skin (LS-

NS). (b) Surface plasmon resonance sensitization of Ag nanoparticle and band alignment of 

CdTe NC (3.7 nm in size) conduction band (CB), valence band (VB), and the workfunction 

(Φ) of Al and ITO. Hence, Ef demonstrates the Fermi level of CdTe NCs at equilibrium 

condition. After the excitons are photogenerated (1), electrons are remained in the NCs 

while holes migrate to the Al side (2).   

 

 For device fabrication, ITO coated glasses were first cleaned in Hellmanex, 

Milli-Q water, acetone, and isopropanol in an ultrasonic bath. We then 

continued by depositing a 50 nm thick HfO2 dielectric layer via ALD on the ITO 

substrate. Then, 10 nm silver nanoparticle films were deposited on the dielectric 

layer at a very low evaporation rate 0.3 Å/s in vacuum environment. 

Subsequently, the films were annealed using rapid thermal annealing (RTA) at 

different temperatures and for different durations to modify the LSP resonance 

peak. In this work we proposed that the enhancement in sensitivity of the LS-NS 

devices can be promoted by surface plasmon excited in metal nanoparticles and 

modified density of photon states in NCs at the proper spacing range. In order to 

make a spacer between NCs and silver nanoparticles, 1 nm Al2O3 was deposited 

http://www.google.com/url?sa=t&rct=j&q=Hellmanex&source=web&cd=1&ved=0CB0QFjAA&url=http%3A%2F%2Fwww.hellma-analytics.com%2Ftext%2F197%2Fen%2Fhellmanex%25C2%25AE-iii.html&ei=nscWT_OrB4T-8QPJwfDkAg&usg=AFQjCNFv4gm5VhOJzSmt89DMMLc5TjqHCA
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using ALD followed by self-assembly of strong polyelectrolyte 

poly(diallyldimethylammonium chloride) (PDDA) and poly(sodium 4-

styrenesulfonate) (PSS) bilayers via a fully computerized dip-coater system. 

Since ALD uses pulses of water, it preferentially coats hydrophilic surfaces, 

which improves the self-assembled film quality [79]. The PDDA and PSS 

solution is prepared by taking 2 mg/mL in 0.1 M NaCl solution. The PDDA-PSS 

is self-assembled by sequentially dipping a substrate into the prepared solution 

for 5 min and rinsed with water for 1 min. The thickness of PDDA-PSS bilayer 

is approximately 1.4 nm [80] as verified by the optical ellipsometry 

measurement. After coating one extra layer of positively charged PDDA on top 

of alternating bilayers of positive and negative polyelectrolyte polymers 

(PDDA-PSS), negatively charged water soluble CdTe NCs were coated. 

Substrate was immersed for 20 min using the 4 M water-soluble CdTe 

concentration, then it was washed with water for 1 min to remove the extra 

layers of CdTe NCs [81] to obtain the uniformly coated monolayer of CdTe 

NCs. Finally, Al contact was deposited using a thermal evaporator on top of the 

NC layer. As-synthesized CdTe NCs are found to be ~ 3.7 nm in diameter with 

the first exciton peak at around 605 nm depicted in Figure 5.2.4.  

 

 

Figure 5.2.4 UV-vis absorption spectrum of aqueous CdTe NCs at room temperature. 
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All optoelectronic characterizations were performed without applying any 

electric field using an Agilent Technologies parameter analyzer and a Xenon 

light source with a monochromator. For the wavelengths longer than 500 nm, a 

color glass filter (with a cut-off of 400 nm) FSQ-GG 400 Newport was used to 

prevent the mixing of the second harmonic. Optical power was measured using a 

Newport 1835C multi-function optical power meter. During the measurements, 

the sample was connected in series with a load resistance of 200 MΩ with ITO 

contact grounded. 

 

5. 3 Results and Discussions  

 

The spacing between the plasmonic structures and semiconductor materials 

affect the enhancement mechanism [82]. Metal enhanced absorption in our 

structure is based on the interaction between the absorption of the NCs and LSP. 

In general, the mechanism is based on the influence of NCs absorption close to 

the metal nanoparticles due to the highly localized electric field in the vicinity of 

metal nanoparticles. Consequently, the field localization enhances the absorption 

as long as the spacing between the plasmonic structure and active layer is 

sufficient to prevent charge accumulation suppression. As a result, we designed 

our optimal device structure to minimize the effect of suppression and maximize 

the influence of enhancement. In order to reveal the localized plasmon coupling 

in the proximity of metallic nanostructures, we separated CdTe NCs and silver 

nanoparticle by 1 nm thick Al2O3 in addition to the bilayers of PDDA and PSS. 

Aluminum oxide film was set to be only 1 nm thick to have the minimum 

possible resonance red shift following the assembly of bilayers of PDDA and 

PSS, and the monolayer of CdTe NCs via dip coating. A varying number of 

bilayers of PDDA and PSS were deposited on 1 nm Al2O3 as an interparticle 

spacer between metal nanoparticle and semiconductor NCs to investigate the 

effects of distance dependence of LSP enhancement. Accordingly, we prepared 

three different sets of devices, each one having its own control sample (bare 

structure in which there is no plasmonic nanoparticle). The reason for having 
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individual control sample is the change in the surface coverage of the NCs as the 

number of polyelectrolyte bilayers changes [83, 84]. Dependence of the 

absorption on the number of bilayers can directly affect the potential buildup 

and may enhance photosensitivity of the device. Device sensitivity (S) was 

calculated by taking the ratio of the voltage buildup (V) and the incident optical 

power (P) impinging on the device. 

 

The spacing between the plasmonic structure and NCs consists of 1 nm thick 

Al2O3, in addition to varying bilayers of PDDA+PSS and an extra positively 

charged PDDA layer for depositing negatively charged NCs. We begin with ca. 

7 nm spacer consisting of 1 nm Al2O3 with 4 bilayers of PDDA+PSS. 

Comparison of the plasmonic based device structure and the control sample 

shows the suppression in the voltage buildup and consequently reduced 

sensitivity of the device. Suppressing the voltage buildup can be explained by 

the charges trapped inside NCs, which is directly related to the storage of the 

holes at the Al contact. In the case that the separation distance is not enough or 

the NCs possibly contact with the metal nanoparticles, electrons are not 

completely trapped inside the NCs. Instead they can directly migrate to the 

metal nanoparticles. Consequently, a small amount of charge is trapped inside 

the NCs, which results in a lower voltage buildup (see Figure 5.3.1(a)). Hence, 

the control sample has a signal output to yield a voltage buildup around 475 nm; 

however, the operational wavelength range is limited to 450 nm in the 

plasmonic structure due to the suppression of charge accumulation. Indeed, for 

the plasmonic structure beyond 450 nm, the voltage buildup level approaches 

the minimum noise equivalent intensity; however, this occurs after 475 nm for 

the control sample (see Figure 5.3.2(a)).  

 

Increasing the spacing between silver nanoparticles and NCs from ca. 7 nm to 

11 nm (1 nm Al2O3 with 7 bilayers PDDA+PSS) shows a great enhancement. 

This improvement is basically because of the prevention of the charge 

accumulation suppression. Consequently, in the presence of metal nanoparticles, 
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optical absorption of the CdTe NCs film is enhanced, which in turn increases 

electron and hole generation. When the spacer layer is sufficiently thick to 

prevent charge accumulation suppression of the NCs, electrons are trapped 

inside NCs and holes get accumulated at the metal (Al) contact. As a result, a 

larger voltage buildup can be observed, which consequently enhances the 

sensitivity of the device (see Figure 5.3.1(b)). We observed up to a 2.6-fold 

sensitivity enhancement over a broad spectral range (400-525 nm) compared to 

the control sample. The plasmonic structure exhibits a significant enhancement 

in the sensitivity at around 525 nm, which also agrees well with the silver 

nanostructure LSP resonance peak (see the inset of Figure 5.3.2(b)). 

Furthermore, voltage buildup can be observed at longer wavelengths (up to 650 

nm) for the plasmonic device structure compared to the control sample. In other 

words, at longer wavelengths, due to the low absorption of NCs we observed a 

higher sensitivity enhancement with the plasmonic structure compared to the 

control sample. This evidence indicates the absorption enhancement of CdTe 

NCs via plasmonic silver nanostructures since NCs exhibit low absorption at 

long wavelengths.  
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Figure 5.3.1 Voltage buildup variations of LS-NS based on (a) four bilayers of PDDA and 

PSS and (b) seven bilayers of PDDA and PSS for different excitation wavelengths. Solid 

line represents the plasmonic sample (PS) and dashed line represents the control sample 

(CS).  

 

Increasing the interparticle spacer between silver nanoparticle and NCs skin to 

further ca. 16 nm (1 nm Al2O3 with 10 bilayers of PDDA and PSS) to prevent 

charge accumulation suppression completely enhances the sensitivity and 

increases the operational wavelength range, though not as much as the 11 nm 

case. However, a considerable enhancement can still be observed at around 525 

nm as a result of LSP of the silver nanostructure (Figure 5.3.2(c)). Moreover, it 

can be realized that the control sample based on 10 bilayers of PDDA-PSS has a 

higher sensitivity level compared to the 7 bilayers because of the dependency of 

the voltage buildup on the number of bilayers. However, the plasmonic structure 

of 7 bilayers LS-NS is superior to both of the control sample and the plasmonic 

sample of 10 bilayers in terms of sensitivity around the LSP resonance (see 
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Figure 5.3.2(b-c)). This is evident in designing plasmonic LS-NS structures that 

placing a proper separator film between the NCs and plasmonic nanoparticles is 

one of the important factors that determine the level of plasmonic interactions.  

 

 

Figure 5.3.2 Comparison of the sensitivity of LS-NS device structure in the absence and 

presence of plasmonic nanostructures based on (a) four bilayers, (b) seven bilayers, and (c) 

ten bilayers of PDDA and PSS separating bilayers. Insets Figure presents the sensitivity 

enhancement factor vs. wavelength.   

 

In order to understand underlying mechanism in sensitivity enhancement of the 

LS-NS devices, we performed several numerical simulations and observed near 

field electric field enhancement in the vicinity of the silver nanoparticles. We 

also compared far field extinction of the simulated nanoparticles with the 

experimental values. Figure 5.3.3(a) shows the extinction response of the 

nanoparticles with and without a spacing layer which can be compared to Figure 
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5.2.2. The difference between the simulation results and the experimental 

response is attributed to the thickness variation of silver nanoparticles in three 

dimensions, background noise in SEM image, other smaller particles which are 

not modeled effectively in this simulation, and limited simulation area 

compared to real device surface. Subsequently these effects lead to different 

resonant modes and resonance peak broadening in extinction data. In general, 

our experimental and theoretical responses look similar.  

Cross-sectional electric field intensity maps at special positions shows the 

electric field intensity localization of the silver nanoparticles at LSP resonance 

wavelength 520 nm. Figure 5.3.3(b-c) shows the electric field intensity 

enhancements of HfO2-Silver nanoparticle interface and spacing layer-air 

interface, respectively, in the logarithmic scale. Figure 5.3.3(d-e) shows the 

electric field intensity enhancements of two surface normal cross-sectional maps 

at random positions indicated with dashed lines in Figure 5.3.3(c). From Figure 

5.3.3(c) even at a 11 nm distance from the silver nanoparticles we observe 

electric field intensity enhancement slightly less than 10 times. The observed 

locally enhanced electric field due to the resonance of silver nanoparticles 

supports our assumption that the excitation of the LSP in silver nanoparticles is 

responsible for the enhancement in the CdTe NCs absorption, which generates 

more electron-hole pairs. 
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Figure 5.3.3 (a) Normalized extinction of simulated silver nanoparticles with and without 

spacing layer. (b) Electric field intensity distribution at the interface of HfO2 film and the 

silver nanoparticles. (c) Electric field distribution along the interface of the spacing layer 

and air interface. (d) Cross-sectional 2D electric field intensity distribution along y-z plane. 

White dashed line coincides with the vertical line of figure 5.3.3(c) indicated with red dots. 

(e) Cross-sectional 2D electric field intensity distribution along x-z plane. White dashed 

line coincides with the horizontal line of figure 5.3.3(c) indicated with blue dots. All the 

color bars and scale bars are identical for the cross-sectional electric field maps. Scale bars 

correspond to 200 nm and color bar represents relative values of electric field intensity 

ranging from 0 to 2 in logarithmic scale.  

 

Simulations are run using a commercially available software FDTD solver from 

Lumerical Inc. The simulated nanostructure was imported from the SEM image 

in Figure 5.2.1(d) using the import picture property of the software and 20 nm 

thickness is applied. Then 31 nm dielectric layer encapsulating the silver 
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nanoparticles is placed giving a 11 nm additional separating layer on top of the 

silver nanoparticles. 3D simulation region having 800  800 nm
2
 area with 

periodic boundary conditions was used since the random distribution of the 

particles imposes no additional periodicity effect on the plasmonic response. For 

simplicity, HfO2 and indium tin oxide (ITO) layers under the silver 

nanoparticles were taken as simple dielectric layers with an index of refraction 

of 1.95 and 7 bilayer PDDA + PSS layer was modeled with a dielectric layer 

having a dielectric constant 1.4. In order to obtain unpolarized response, we 

performed two simulations with orthogonal source polarizations and, 

subsequently, electric field intensities and transmission values were obtained 

using the average value of the results of these two simulations. Based on the 

simulation results it can be indicated that the experimentally observed well-

defined LSP resonance around 525 nm creates localized electric field intensity 

enhancement at the position of CdTe NCs. Subsequently, this enhancement can 

generate more electrons and holes in the CdTe NCs. 
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Chapter 6 

 

Tandem Photosensitive Nanocrystal 

Skins 
 

6.1 Introduction 

 

From the light detection materials point of view, an ideal photoactive layer 

material needs to harvest most of the impinging photons in broad spectrum. This 

would generate a good opportunity for the further improvement of photosensors. 

Given that the performance efficiency of photosensors is strongly dependent on 

the fraction of photons absorbed, there is a compromise for the thickness of 

photoactive layer, which is still a remaining challenge in the electronic 

properties of NCs solids. Indeed, the active region thickness is restricted in the 

order of or considerably less than, 100 nm due to the relatively short minority 

carrier diffusion length. To increase absorbance, increasing film thickness is not 

a good approach since it may exceed the diffusion length. Similarly, thickness 

limitation reduces the device transparency and influences the noise generation-

recombination. Furthermore, the use of a thin film based photoactive layer is 

effective for avoiding the self-absorption effect. In conventional photosensors to 

collect the photogenerated carriers external bias need to be applied, which 

sometimes influences the photoactive layers and degradates the NC film. 

Furthermore, increasing illumination leads to the saturation of deeper and 
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shallower trap states, which results in acceleration of the response time but at the 

expense of having a reduced sensitivity.  

 

In this work, we present a new device design structure to overcome the 

aforementioned challenges for solution processed light-sensitive devices. Here 

highly sensitive tandem photosensitive NC skins (PNS) are achieved by spray 

coating a single monolayer of UV-VIS CdTe NCs on top of the substrates that 

operate without any external bias. Usage of single monolayer NCs and few 

nanometers aluminum as the electrode, a semi-transparent tandem PNS was 

obtained. In this type of devices, higher sensitivity can be obtained if the 

absorption of the photoactive layer is increased. When we adapted a thick 

photoactive NCs layer, a much lower photovoltage buildup was observed which 

was attributed to the self-absorption effect. Consequently, because of the 

principle operation dependency of the device on the single monolayer NCs, we 

have successfully developed a tandem PNS composed of two constituent 

junctions, each consisting of a single NC monolayer. Usage of single 

monolayers of NCs as the photoactive layer significantly reduces the noise 

generation and recombination.      

 

6.2 Results and Discussions 

 

To fabricate the devices, we used ITO coated glass. As shown in Figure 6.2. 

1(a), the semi-transparent tandem PNS configuration was glass/indium tin oxide 

(ITO)/ (hafnium dioxide) HfO2/ poly(diallyldimethylammonium chloride) 

PDDA &  poly(sodium 4-styrenesulfonate) PSS/ CdTe NCs/ Al/ HfO2/ PDDA- 

PSS/ CdTe NCs/ Al. The monolayers of UV-VIS light-sensitive CdTe NCs are 

sandwiched between transparent polyelectrolyte polymers and semi-transparent 

Al electrodes. Figure 6.2.1(b) shows the film absorption of the photoactive layer 

consisting of a single monolayer of CdTe NCs with the absorption located below 

650 nm. 
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These NCs are capped with TGA ligand to stabilize their dispersions. However, 

these ligands are insulating and prevent charge transport through NCs in solid 

state at the same time. We have already shown that NCs eradicated from ligands 

can be coated to form uniform, crack free, randomly close packed NC thin film. 

This greatly expands the applicability of these materials compared with the 

presence of ligands. Regarding a higher absorption coefficient of CdHgTe (6 nm 

in size) NCs, CdTe (3.4 nm in size) NCs were preferred for the bottom junction 

since it is more efficient to accumulate the photogenerated charges from smaller 

NCs compared to the bigger one. Indeed, we observed that in big NCs surface 

trap states are more probable which prevents the charges migration to the 

electrode.  

 

Figure 6.2.1 (a) Schematic of the device architecture for solution-processed semi-

transparent tandem photosensitive nanocrystal skins. (b) Absorption spectra of single 

colloidal CdTe and CdHgTe NCs monolayers.  

 

To ensure the transmission of light, for both the electrodes on top of the NCs we 

deposited only 10 nm thick Al via thermal evaporator under vacuum condition. 

The tandem PNS showed >10% optical-transparency in the wavelength range of 

350-800 nm. Moreover, the 10 nm Al layer was evaporated immediately onto 

the NCs monolayers serving both as the electrode layer and as a protective layer 

to protect the NCs from exposure to reactive oxygen. Because of the energy 

band diagram of NCs and Al, the presence of NCs as the photoactive layer 

underneath the electrode helps to avoid the need for any external bias to 
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dissociate the photogenerated excitons. Hence, the absence of any energetic 

barrier at the interface of NCs and Al electrode allows for the photogenerated 

holes immediately to migrate to the aluminum, resulting in higher sensitivity. 

Moreover, independency of the device on the external bias, boost the stability of 

the device and diminishes the effects for the NCs film degradation.    

   

ITO coated atop a glass substrate was chosen as the bottom electrode. The 

substrate was exposed to oxygen plasma to create additional hydroxyl groups 

necessary for the ALD of HfO2 high dielectric constant layer. The great 

challenge in fabricating the tandem PNS is to deposit thin enough dielectric 

spacer layer on top of the large area ITO in order to prevent any charges 

migrating from the NCs to the ITO. We intentionally deposited 50 nm HfO2 via 

ALD at a low temperate of 80 ˚C temperate to prevent any catastrophic damage 

to the NCs since they were synthesized in the boiling water at 100 ˚C. ALD 

preferentially coats hydrophilic surfaces owing to the usage of pulses of water, 

which improves the self-assembled film quality. Moreover, the encapsulation 

with HfO2 averts any crack damage to the substrate in the further fabrication 

steps. After that, oppositely charged PDDA and PSS bilayers were coated via a 

fully computerized dip-coater system. The other challenge was the monolayer 

coating of the NCs on top of the large area polyelectrolyte polymers. To solve 

this problem, a spray-coated NC-based solution was applied in our approach to 

achieve the transparent monolayer photoactive layer. Spray-coating of NCs 

gives us the opportunity to cover a small amount of NCs over large areas. The 

NCs coated substrate was then washed under water to ensure that extra NCs 

were removed.     

 

The proposed platform demonstrates higher sensitivity if we manage to increase 

the number of photogenerated electron-hole pairs. Subsequently, we proposed 

an extra monolayer of NCs to be integrated inside the device in order to increase 

the photogenerated potential buildup. Since during the device operation we do 

not apply any external bias, exactly below the aluminum electrode, we need to 
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have only a single monolayer of colloidal NCs. Subsequently, we add an extra 

junction to the conventional CdTe based light-sensitive device. With the 

addition of constituent junction of CdTe monolayer, we demonstrated that 

sensitivity of the PNS devices increases significantly.  

 

Using our tandem PNS, we verified our concept of enhancement in sensitivity as 

mentioned above. Figure 6.2.2 shows the photoresponse spectra of the tandem 

structure under the incident light. In response to the excitation wavelength and 

illumination intensity we observed a higher voltage buildup at shorter 

wavelengths. Similarly, as a result of increased optical absorption at shorter 

excitation wavelengths, which increases the number of trapped electrons inside 

the NCs, we observed a higher negative voltage after switching off the light. As 

a result of increased charging of the NCs by the trapped electrons at shorter 

excitation wavelengths, it takes more time to recover after the light exposure is 

switched off. The photodetection sensitivity of the PNS was defined as the ratio 

of photovoltage buildup (V) to the impinging optical power (P) on the device. 

We constructed two classes of control devices to eludicate the benefits of the 

tandem PNS. The performance of control devices is depicted in Figure 6.2.2. In 

the testing of the control samples, we measured their performance with 

illumination from the top side to coincide with the tandem PNS, which shows 

the best performance from the top. 
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Figure 6.2.2 Photovoltage buildup at different excitation wavelength and optical intensity 

levels for devices based on (a) CdTe and (b) CdHgTe, and (c) the device using both CdTe 

and CdHgTe.    

 

To compare the tandem and single junction PNS, all measurements from the 

samples were taken under the same condition. The ideal tandem PNS should 

exhibit a photovoltage buildup equal to the sum of the photogenerated potential 

buildup of the constituent junctions. The PNS device achieves a total 

photovoltage buildup at each wavelength, equal to within few percent to the sum 

of the photovoltage buildup of the individual single junctions. We attribute this 

small difference to the mismatch between the interface layers in the tandem 

PNS. To understand the reproducibility of the results obtained, over 40 samples 

were prepared in developing the fabrication process, with the best performing 

device reported here. In the conventional NC-based photodetectors, impinging 

higher intensity light on the device is followed by the occupation and saturation 

of deeper and shallower electron trap states in the NCs. This accelerates the 

response time but at the expense of reduced sensitivity. Such a compromise 
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would curtail photovoltage buildup, leading to a significantly reduced 

sensitivity.  

 

The benefit of introducing a tandem PNS is twofold. It is expected to observe 

the response time to be accelerated when we adapt the two separated junctions 

incorporated into one structure. Since each one behaves like a capacitor, by 

fabricating two of them on top of each other; the capacitances are connected in 

series. As a result, the total capacitance decreases, which speed up the RC decay 

response time. Furthermore, on the contrary to the conventional multijunction 

devices, for which the current matching between the junctions is essential, there 

is no such limitation in tandem PNS devices. The photogenerated holes from an 

adjacent monolayer are accumulated at the top electrode, contributing its 

potential buildup to the overall device response. It should be noted, however, 

that the detection sensitivity remains small in the long wavelength region where 

NCs exhibit low optical absorption. Essentially, this is because there are fewer 

electron and hole states available in a NC at lower photon energy. This behavior 

indicates the wavelength dependency of the PNS and is in strong agreement with 

the profile of optical absorption spectrum of CdHgTe and CdTe NCs. Moreover, 

any probable cavity effect from the two Al electrode in the tandem PNS was 

investigated. We designed the layers constituting the tandem PNS to be as thin 

as possible to minimize any cavity effect to prevent any complexity in studying 

kinetics of the device. However, this can be also used to benefit from resonant 

cavity enhanced absorption with a proper design.  
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Chapter 7 

 

Nanocrystal Skins With Exciton 

Funneling For Photosensing 
 

7.1 Introduction 

 

With a single NC layer in the device structure, noise generation is significantly 

reduced, which enhances the device sensitivity. However, in this case, limiting 

these devices to a single NC layer for absorbing incident light hinders 

performance. In operation, with exciton disassociation due to the difference 

between the work functions of the NCs and the metal contact, electrons are 

trapped inside the NCs and holes are accumulated in the metal electrode, leading 

to a potential buildup across the device. Thus, although increasing the NC 

layer‟s thickness results in increased optical absorption, in the absence of any 

applied bias across the device, photogenerated excitons may not disassociate and 

sufficient charge may not accumulate. Thus, photosensitive NC skin 

performance depends not only on the optical absorption but also on the capacity 

to accumulate dissociated excitons.  

 

For the above reasons, we posit that by relying on the direct relationship 

between increasing the number of trapped electrons inside the NCs and 

subsequently the accumulated holes in the metal contact, a larger potential 

buildup in the photosensitive NCs skins will occur. We therefore pursue a 
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cascaded structure of semiconductor NCs with the necessary band gap gradient 

to enable exciton funneling expecting a considerable improvement in the 

sensitivity. We fabricate photosensitive NC skins based on the Schottky barrier 

at the interface between the top CdTe NCs and Al contact (Figure 7.1.1(a)). A 

thin film of transparent indium tin oxide (ITO) underneath a dielectric film 

forms the opposite contact. Due to the device architecture and full surface 

coverage of the current blocking dielectric film made of 100 nm hafnium oxide 

(HfO2) and four bilayers of polydiallyldimethylammonium chloride-polysodium 

4-styrenesulfonate (PDDA-PSS), the photosensitive NC skin itself acts as a 

capacitor.  

 

Figure 7.1.1(a) shows a schematic drawing of the closely packed NC 

monolayers. Because of the considerable change in the NC surface coverage as 

the number of polyelectrolyte bilayers changes, we found that four bilayers of 

PDDA-PSS were necessary to provide a uniform film with enough surface 

coverage for depositing the CdTe NC monolayer. Light incident through the 

glass substrate generates excitons in the NC monolayers. The excitons funnel 

along the gradually decreasing band gap gradient of cascaded NC monolayers, 

and are finally captured by the NC monolayer with the largest band gap adjacent 

to Al contact, which acts as a hole acceptor. These excitons are then dissociated 

at the NC-Al interface, and thus, holes migrate to the Al contact due to the 

HOMO/LUMO band alignment of the NC layer and the Al workfunction, as 

shown Figure 7.1.1(b). Electrons, however, remain trapped inside the NCs. 
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Figure 7.1.1 (a) Schematic of the photosensitive NC skins, consisting of closely packed 

layers of ligand-free CdTe NCs. (b) Alignment of the conduction and valence bands of the 

CdTe NC layers and the workfunction of the Al contact. Excitons transfer through the 

layers from smaller to larger NCs because of the band gap gradient.  

 

Controlling NC surface passivation is critical for efficient device operation, and 

because no external bias is applied through our cascaded NC structure, efficient 

exciton transfer must be achieved through some other method. NCs are normally 

separated from each other via ligands of isolating organic molecules that 

passivate NC surfaces through oxidation and chemical modifications. The 

ligands also control electronic NC properties including conductivity and charge 

mobility. To bring NCs closer, we removed the ligands by adding isopropanol to 

the CdTe NC solution and centrifuging the mixture. 

  

For this work, we synthesized water-soluble CdTe NC-capped TGA ligands of 

different sizes and calculated the NC diameters from their extinction spectra. 

These diameters were 2.90, 2.98, 3.19, 3.62, and 3.71 nm, leading to the first 

excitonic peak wavelengths of 525, 532, 545, 595, and 605 nm, respectively. 

 

(b) 
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 Figure 7.1.2 Photoluminescence and UV-vis absorption spectra of as-synthesized aqueous 

CdTe NC solutions at room temperature. 

 

7. 2 Results and Discussions  

 

In this work we demonstrate that with the proper energy gradient of NC skins 

composed of several monolayers, photosensitivity can be substantially enhanced 

and extremely broadband photosensitivity can be achieved. Figure 7.2.1 shows 

the photovoltage buildup as a function of time across four devices that we 

fabricated. For the device utilizing a single NC layer as the photoactive layer, 

we show that varying photovoltage buildup amounts at different excitation 

wavelengths, Figure 7.2.1(a). Increasing the number of the same NC layers from 

one to five leads to greatly enhanced absorption, but we observe voltage buildup 

suppression and a consequent reduced level of the device sensitivity compared 

to the single layer. Voltage buildup suppression can be explained by the self-

absorption effect in the lowermost NC layers; fewer fractions of photons reach 

the topmost NC layers and excitons photogenerated in the bottom NC layers 

cannot make it to the top which leads to fewer electrons and holes being trapped 

in the NCs and stored at the Al contact. Additionally, in the absence of a band 

gap gradient, each exciton tends to remain in the layer where it was created until 

it is recombined. Therefore, given that the device performance efficiency is 

strongly dependent on the fraction of photons absorbed, a balance must be found 
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between the thickness of the photoactive layer and the thicknesses of the NC 

layers. 

 

Previously, Franzl et al. proposed that NC funnel-like band gap profiles transfer 

excitons to the largest NCs with the smallest band gap. The funnel structure 

recycles the trapped and lost electron-hole pairs, leading to enhanced 

photoluminescence (PL) of the largest NCs as well [85]. In this work, we focus 

on three structures composed of five NC monolayers, where the NC sizes differ 

depending on the structure (see Figure 7.2.1(b-d)). The band gaps of the CdTe 

NCs are adjusted to transfer photogenerated excitons from the layers comprising 

smaller NCs to the layer comprising the largest NCs, which is immediately 

underneath the Al contact. Compared to the device with a single NC layer, the 

device with multiple NC layers placed within the proper band gap gradient 

exhibits a significant enhancement in the sensitivity and a considerable 

extension in the operating wavelength range (see Figure 7.2.1(a-d)). 
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Figure 7.2.1 Experimental photovoltage buildup results of photosensitive NC skins at 

different excitation wavelengths and intensity levels based on (a) a single layer of NCs, (b) 

five layers of NCs of the identical size, (c) five layers of NCs ranging from large to small, 

and (d) five layers of NCs ranging from small to large. 

 

The observed enhancement in the proposed cascaded structure‟s voltage buildup 

behavior can be attributed to the excitonic transfer from the smallest NCs to the 

largest NCs. After the excitons reach the largest NC layer, the excitons 

dissociate and the holes migrate and accumulate at the Al contact. Similarly, the 

electrons are trapped inside the NCs, as observed from the negative voltage 

levels of the photovoltage spectrum (Figure 7.2.1). 

 

As evident from Figure 7.2.1(d), we achieve a more than twofold enhancement 

in photovoltage buildup in the multilayer device compared to the monolayer 
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device. Furthermore, the cascaded NC skin structure exhibits considerably 

improved spectral behavior, with its operating wavelength range between 350 

and 600 nm.  

 

To investigate the effect of the band gap gradient in a funnel-like device, we 

study the order dependence of NC layers by fabricating a converse structure 

(accumulating photogenerated excitons from layers with smaller NCs to layers 

with larger NCs, now placed far away from the Al contact), whose voltage 

buildup is presented in Figure 7.2.1(c). The low performance of the converse 

funnel-like device is attributed to the depopulation of photogenerated excitons 

from the layers with smaller NCs because of the energy gradient in the reverse 

direction. Thus, fewer numbers of holes accumulate at the Al contact and 

consequently, fewer electrons become trapped in the NC layer under the Al 

contact. This observation strongly coincides with the proposed excitonic transfer 

process of NC exciton population and depopulation dynamics via nonradiative 

energy transfer toward the layer with the largest NCs.  

 

As can be seen from Figure 7.2.1(c-d) the response time of the converse funnel-

like device is slower than the gradient device with the ideal band gap. This result 

indicates that, although the excitons become disassociated in the former device, 

due to the unfavorable band gap gradient, they separate from the Al contact and 

remain longer in the device, which results in a slower operation. 

 

We calculated NC skin photosensitivity according to the ratio of S = V/P, where 

V and P are the photovoltage buildup and incident optical power impinging on 

the device, respectively. Figure 7.2.2 demonstrates the corresponding sensitivity 

curves as a function of the excitation wavelength. Similar to the observed 

photovoltage buildup behavior, the sensitivity spectra also follow the NC 

absorption spectrum and increase as the photon energy increases.  
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Figure 7.2.2 A comparison of the corresponding sensitivities as a function of excitation 

wavelength based on (a) a single layer of NCs, (b) five layers of NCs of the identical size, (c) 

five layers of NCs ranging from large to small, and (d) five layers of NCs ranging from 

small to large. Inset figures present the device schematics and the direction of incident 

light.  

 

The absorption and emission spectra of the distinct sizes of the CdTe NCs show 

considerable overlap; therefore, as the physical basis for exciton transfer, 

nonradiative exciton transfer (NRET) from small NCs to large NCs can be 

considered to be a very likely process [86]. To further verify the presence of 

NRET between these NC layers, we conducted time-correlated single-photon 

counting experiments (Picoquant, Fluotime 200) with a calibrated time 

resolution of 32 ps and a pulsed excitation laser diode at 375 nm. We conducted 

time-resolved fluorescence (TRF) measurements of the cascaded NC structure at 

the emission peaks of the smallest (donor-side) and largest (acceptor-side) NCs, 
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which were 545 and 645 nm, respectively. These peak wavelengths correspond 

to the respective emission peaks of the dark green layer (smallest NCs) and the 

red layer (largest NCs). The dynamics obtained in the experiments include the 

fluorescence decays of the NCs convolved with the system instrument response 

function (IRF). When analyzing the TRF results, we used multiexponential least 

chi-square fittings in the reconvolution mode to determine the system‟s IRF 

Picoquant Fluofit. 

 

 

Figure 7.2.3 Time-resolved PL decays of the five donor NC layer samples, the five acceptor 

NC layer samples, and the five hybrid-layer samples. Insets show the first 20 ns parts of 

the decays.  

 

To verify the existence of NRET, we conducted experiments on five monolayers 

of donor-only NCs, acceptor-only NCs, and cascaded samples with the band gap 

gradient. As evident from Figure 7.2.3, there is a clear difference between the 

TRF decays of the donor-only sample and the hybrid sample for the 

measurements at 545 nm, the PL peak of the donor NCs. The amplitude-
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averaged donor lifetime becomes 0.304 ns in the hybrid sample and 0.567 ns for 

the donor-only sample, which is a clear indicator for the presence of the NRET 

process from the layer with the smallest NCs to the four layers with larger NCs. 

To verify exciton feeding to the layer with the largest NCs (acceptor NCs) from 

the four layers with the smaller NCs, we took TRF measurements of the 

acceptor-only sample and the hybrid sample at the emission peak (645 nm) of 

the red (largest) NCs. The acceptor-side average lifetime of the hybrid sample 

was 2.86 ns, whereas the acceptor-only sample lifetime was 1.66 ns. These 

significant decay lifetime differences are shown in Figure 7.2.3, and the PL 

spectra are shown in the Figure 7.2.4. These observations indicate that NRET 

occurs between the NC layers, and therefore, we can attribute the enhancement 

in photovoltage buildup and the consequent sensitivity improvement to NRET 

towards the top NC layer with the desirable energy gradient of the NC films.  

 

 

Figure 7.2.4 Normalized photoluminescence spectra of five NC monolayers of different 

sizes on the glass.  

 

Although the NRET from the small NCs to the large ones is evident, its 

efficiency could in principle be higher. The ligand removal process may cause 

new nonradiative decay channels in the NCs, thus resulting in very fast NC 

decay; hence, NRET may become less effective. It is important to note that the 
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monolayer-based device can build up approximately 100 mV under 0.170 

mW/cm
2 

at 350 nm. The cascaded monolayer device in the proper funnel 

structure was thus expected to show a photovoltage buildup of about 500 mV 

under similar experimental conditions, but the observed voltage buildup was 

only about 245 mV in all our fabricated funnel-based devices. This deficiency in 

performance indicates that exciton transfer in the funnel structure is not fully 

efficient. Excitons can be trapped between NC layers because of intervening 

polyelectrolyte layers, surface states, and defects created in the layer-by-layer 

assembly, and we surmise that such events occurred in these experiments.  

 

 

 

 

 

 

 

 

 

 

 

 

 



 69 

 

 

Chapter 8 

 

Photosensitivity Enhancement in 

Semi-transparent Light-sensitive 

Skins of Nanocrystal Monolayers 

with Electron Transfer to TiO2 
 

8.1 Introduction 

 

In the first generation of NC light-sensitive skins, NCs closely interact with the 

top interfacing contact while the other side is isolated using a high dielectric 

constant spacing layer. After excitons are photogenerated, electron-hole pairs 

are dissociated at the aluminum (Al) and NC monolayer interface. Owing to the 

Al workfunction and band alignment of the NC monolayer, holes migrate and 

accumulate at the Al side, which serves as hole acceptor. On the other hand, 

because of the dielectric layer of hafnium dioxide (HfO2) electrons remain 

inside the NCs. In these devices, the more the electrons and holes are 

photogenerated, the higher voltage buildup can be obtained. Nominally, 

electrons and holes tend to recombine in the NCs. Therefore, there is a 

competition between exciton diassociation and exciton recombination. 

Consequently, we posit that, by further separation of the holes and electrons to 

decrease the recombination probability within the device, a favorable 

enhancement in the device performance can be obtained by transferring 
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electrons from NCs to an electron acceptor layer. The higher conduction band 

level of NCs can serve as the driving force for electron injection from the NCs 

to nearly acceptor with a lower conduction band level. Subsequently, we 

propose that in light-sensitive skins favorable conduction band offset may aid in 

transferring the electrons from NCs to the electron accepting material TiO2. 

Hence, majority of the holes migrate towards the top Al contact. The schematic 

band diagram of the TiO2 and Al, which serve as the acceptors for the electron 

and the hole, respectively, is shown in Figure 8.1.1(a). In this work, we 

employed TiO2 layer that was engineered to transfer electrons from CdTe NCs 

to decrease the recombination probability of the photogenerated excitons in the 

NCs. This segregation leads to increased sensitivity of the LS-NS devices. 

Therefore, integrating the monolayer NC film with a TiO2 layer offers a great 

potential for large-area photosensitive windows and glass facades of smart 

buildings.       

 

Figure 8.1.1 (a) Energy band diagram and (b) schematic of the LS-NS device incorporating 

TiO2 layer.  

 

8.2 Experiments 

 

We fabricated light-sensitive skins using both TiO2 deposited sample and the 

reference sample without any TiO2 layer. In a quest to find a proper electron 
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accepting material, Jin et al. reported the process of electron transfer (ET) from 

NCs to TiO2 layer grown by ALD [87]. In addition, ALD uses pulses of water, 

which preferentially coats hydrophilic surfaces and improves the quality of self-

assembled films. UV-visible absorption spectra showed that TiO2 has absorption 

in the spectral region from 350-600 nm, shown in Figure 8.2.1.  

 

 

Figure 8.2.1 Absorption spectrum of 10 nm TiO2 on HfO2 coated glass. 

 

The average diameter of as-synthesized CdTe NCs was found to be 3.7 nm with 

the first excitonic peak at around 605 nm and the photoluminescence emission at 

about 627 nm (Figure 8.2.2). Furthermore, we note that another means of 

decreasing the recombination probability of photogenerated electrons and holes 

in these devices relies on surface passivation of the NCs. Indeed, charges 

encounter high potential barriers due to the ligands passivating the NCs surface. 

To enhance the electron transport and charge conductivity, we partially removed 

the TGA ligands from the NC surfaces by adding isopropanol into the CdTe NC 

solution and centrifuging the mixture. During the film assembly, NC solution 

was rigorously stirred to prevent any precipitation.  
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Figure 8.2.2 Photoluminescence and UV-vis absorption spectra of as-synthesized aqueous 

CdTe NCs in solution at room temperature.  

 

For the device implementation, after cleaning the ITO film deposited on glass 

substrate, a 50 nm thick HfO2 dielectric film, followed by 10 nm TiO2, was 

deposited using ALD (Savannah) at 150 
o
C. Subsequently, to deposit the NCs, 

we used layer-by-layer self-assembly via computerized dip coating system. 

Negatively charged CdTe NCs were coated on top of the bilayers of PDDA-PSS 

serving as strong polyelectrolyte polymers. Finally, a semi-transparent, very 

thin, Al contact was deposited on top of the NC layer using a thermal 

evaporator. The device architecture for the light-sensitive skins with an electron 

accepting layer (TiO2) is depicted in Figure 8.1.1(b).  

 

We carried out all optoelectronic characterizations at room temperature and no 

external bias was applied across the device. Voltage buildup vs. time 

characteristics was measured using an Agilent Technologies parameter analyzer 

and a Xenon light source with a monochromator. In operation, the devices were 

connected to a 200 MΩ shunt resistor, with the ITO contact grounded. Optical 

power was measured using a Newport 1835C multi-function optical power 
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meter. Due to the slight absorption of TiO2 layer, all devices were illuminated 

from the top (Al) side. 

 

8.3 Results and Discussions 

 

For a detailed understanding of the effects of TiO2 layer incorporation in light-

sensitive skins on the device operation and performance, we systematically vary 

the excitation wavelength and illumination intensity. Voltage buildup vs. time 

characteristics for the devices based on four bilayers of polyelectrolyte polymers 

(PDDA-PSS) under the Xenon light source with the monochromator is shown in 

Figure 8.3.1(a-b). We observed higher voltage buildup as the excitation 

wavelength is shortened, followed by a larger negative voltage value after 

switching off the light. This is due to the stronger optical absorption of CdTe 

NCs at shorter optical wavelengths. At higher photon energies, NC can absorb 

larger number of photons, photogenerating more electrons and holes compared 

to longer wavelength excitation. The reference devices without any TiO2 (wo)  

and those with TiO2 (w), all based on four bilayers of PDDA-PSS, showed 

similar voltage buildup variation in response to the excitation with different 

intensities at different wavelengths. In neither of the devices (wo/w), we did not 

observe any considerable improvement in the outputs, which implies that TiO2 

layer did not significantly affect the charge transfer mechanism. In these 

structures, the electrons are not able to migrate to the TiO2 layer.  
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Figure 8.3.1 Variations of the photovoltage buildup based on four bilayers PDDA-PSS at 

different excitation wavelengths (a) without TiO2 and (b) with TiO2. Photovoltage buildup 

variation based on one bilayer PDDA-PSS (c) without TiO2 and (d) with TiO2. 

 

We suggest that one primary mechanism responsible for hindering the electron 

transfer to the TiO2 layer in our device design structure might be the blocking of 

electron transfer due to the thickness of the polyelectrolyte polymers (PDDA-

PSS). As shown in Figure 8.1.1(a), the conduction band edge for the CdTe NCs 

lies above that of TiO2. As a result, electron injection into TiO2 layer should be 

strongly favored. Of crucial interest, we attribute the similar voltage buildup 

variation in the devices wo/w TiO2 layer to the thickness of polyelectrolyte 

polymers. When the polyelectrolyte polymers are so thick that they prevent 

electron transfer to the TiO2 layer, electrons are trapped inside the NCs. Trapped 

electrons may recombine with the photogenerated holes at the interface of NCs 

and Al layer. As a result, a similar amount of voltage buildup compared to the 

reference devices can be observed. Furthermore, when we used the generic 

definition of sensitivity (S = V/P) as the ratio of voltage buildup (V) to the 

incident optical power (P), again no considerable change was observed as shown 

in Figure 8.3.2(a). 

 

In the case that the dielectric polyelectrolyte is thin enough, electrons are not 

completely trapped inside the NCs. Instead, they can be transferred to the TiO2 

as the electron accepting layer. Consequently, recombination probability of 
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photogenerated excitons in the NCs decreases, resulting in larger photovoltage 

buildup. Due to the change in the surface coverage of the NCs as the number of 

polyelectrolyte bilayers increases, an individual control sample for each set has 

been fabricated. Decreasing the number of polyelectrolyte polymers from four to 

one bilayer, the enhanced electron injection into TiO2 layer is confirmed by the 

voltage buildup spectra, which exhibits a great enhancement, in Figure 8.3.1(c-

d). This finding suggests the possibility of photogenerated electron transfer to 

the TiO2 layer. In the presence of the thin polyelectrolyte polymer between the 

NCs and TiO2, electron transfer to the TiO2 film takes place easily, which in turn 

decreases the recombination probability of the electrons and holes in the NCs. 

As a result, a larger voltage buildup can be observed, which consequently 

enhances the device sensitivity, as shown in Figure 8.3.2(b). Here, we observed 

the sensitivity enhancement over a broad spectral range (350-475 nm) up to 22% 

compared to the reference sample. Furthermore, the sensitivity enhancement at 

longer wavelengths is not larger than the shorter wavelengths. This evidence 

supports that the enhancement is most likely because of the charge transfer 

mechanism and there is no absorption enhancement of CdTe NC monolayer. 

Indeed, CdTe NCs show weaker absorption at longer wavelength and, if there 

was higher sensitivity enhancement in this spectral range, then we could 

attribute the enhancement to the increase in optical absorption of CdTe NC 

monolayer. However, we clearly observe a higher enhancement at shorter 

wavelengths, which we attribute to the electron transfer from CdTe NCs to TiO2 

thin film. Furthermore, a slight enhancement in both of the wo/w device 

performance at the longer wavelengths can be attributed to the lower photon 

energies. These low energetic electrons are less probable to pass the potential 

barrier of the NCs and more probable to be captured at the surface states.  
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Figure 8.3.2 Sensitivity comparison of the LS-NS devices in the absence and presence of 

TiO2 layer for the structures based on (a) four bilayers PDDA-PSS and (b) one bilayer 

PDDA-PSS.  

 

To further verify the existence of charge transfer from the NCs to the TiO2 film, 

we conducted time-correlated single-photon counting experiments (Picoquant, 

Fluotime 200) on the hybrid structure composed of the NC monolayer on top of  

the polyelectrolyte polymers coated on 10 nm TiO2 deposited substrates and on 

the same structure without TiO2. Single NC monolayer based films were 

prepared following the assembly of bilayers of PDDA-PSS, with the monolayer 

of CdTe NCs subsequently self-assembled via dip coating. These hybrid 

structures wo/w TiO2 layer were subjected to TRF spectroscopy at room 

temperature. TRF system has a calibrated time resolution of 32 ps and a pulsed 

laser diode with the excitation wavelength of 375 nm. TRF detection was 

performed at the in-film peak emission wavelength of the NCs, which is 640 

nm. Figure 8.3.3 depicts the TRF decay curves for the entire samples wo/w TiO2 

layer. The decay curves were fitted with multi-exponentials (χ2 ~ 1) and the 

excited-state lifetimes for the samples wo/w TiO2 were calculated via amplitude-

averaging since there is only one type of fluorophore (i.e., the NCs) in the 

system. As evident from the figure, there is a clear difference between TRF 
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decays of the one bilayer PDDA-PSS based structures wo/w TiO2 layer. 

According to the measurement, the amplitude-averaged lifetime decreases 

considerably from 0.796 ns in the sample without any TiO2 to 0.467 ns in the 

sample with TiO2. This reduction in the lifetime supports the presence of 

electron transfer channel from the donor NCs into the acceptor TiO2. Here it is 

worth noting that due to the lack of overlap between the TiO2 absorption and the 

NC emission, the energy transfer from NCs to TiO2 is ruled out in this work 

[88]. Similarly, to verify the device demonstration in which the thick 

polyelectrolyte layers such as four bilayers PDDA-PSS prevent the electron 

transfer from the NCs to the TiO2 layer, we took the TRF measurements of the 

structures with a monolayer of CdTe NCs using four bilayers PDDA-PSS wo/w 

TiO2. 

  

 

Figure 8.3.3 Time-resolved PL decays of the NCs in the absence and presence of TiO2 layer 

based on different bilayers of polyelectrolyte polymers. The arrow indicates the reduction 

in the lifetime of the NC samples based on one bilayer of polyelectrolyte polymers from the 

structure without TiO2 to the one with the TiO2 layer.   

 

Lifetimes of the structures based on four bilayers of PDDA-PSS wo/w TiO2 

were found to be very similar to each other, which is ~1.74 ns. Thick 

polyelectrolyte polymers must therefore hinder the migration of electrons to the 
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TiO2 film, which explains the observation of no performance improvement in 

device operation aforementioned. For the further analysis of the lifetimes, the 

electron transfer rate of the presented structures was calculated by using the 

expression 
ET hybrid ref    [89], where 

hybrid is the rate for the single monolayer 

NCs on top of bilayers of polyelectrolyte polymers with the presence of TiO2 

and 
ref  is the NCs excited-state relaxation rate obtained from the same structure 

without any TiO2. By subtracting the rate of the hybrid structure from that of the 

reference for the one bilayer based PDDA-PSS, we predicted an electron 

transfer rate of 0.89ET  ns
-1

. However, this rate is almost zero for the four 

bilayers case. Furthermore, we calculated the electron transfer efficiency using 

the relation / ( )ET ET ref      and the resulting efficiency for the one bilayer 

case was found to be 41.3%. This significant efficiency explains the migration 

of a considerable amount of photogenerated electrons from the CdTe NCs to the 

TiO2 layer. These observations are in strong agreement with the voltage buildup 

and sensitivity spectrum of the LS-NS with TiO2.       
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Chapter 9 

 

Multiple Exciton Generation and 

Charge Accumulation from 

Photosensors of CdHgTe Monolayer 

Nanocrystals 

 

9.1 Introduction 

 

In this chapter, we study sensitivity enhancement in LS-NS devices via multi 

exciton generation (MEG). MEG corresponds to multiple electron-hole pairs 

generated per photon when the photon energy exceeds the MEG threshold. MEG 

threshold can be calculated as  

                                         / 2 e
Photon Bandgap

h

m
E E

m

 
 

 
                                        (5) 

where Ephoton is the photon energy, Ebandgap is the band gap energy of NC, and mh 

and me are the effective masses of hole and electron, respectively. MEG converts 

the excess energy of the high energy photon to extra electron-hole pair 

generation, and thus increases the device efficiency [90, 91].   
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In this work we propose the use of MEG to enhance the electron-hole pair 

generation and subsequent charge accumulation in the CdHgTe monolayer of 

the LS-NS device. Subsequently, a larger number of electrons are likely to be 

trapped inside the NCs while holes accumulate at the metal contact. We 

fabricated LS-NS devices from three different sets of NCs for comparative 

study. Two different CdHgTe NCs (MPA and TGA ligands) have been 

investigated as candidate materials for MEG enhancement. These NCs have a 

suitable exciton absorption peak, which enables them to be used for the MEG 

absorber device. Being aware of the improper band gap of CdTe NCs for MEG 

to the corresponding excitation spectra, we use this LS-NS device based on 

these NCs as the control sample where MEG does not take place.  

 

9.2 Experiments  

 

Colloidal water soluble MPA and TGA ligand CdHgTe NCs were synthesized in 

accordance with [92] with the first exciton peak at wavelengths of 835 and 950 

nm, respectively. Figure 9.2.1(a) shows the high-resolution transmission 

electron microscopy (HRTEM) image of the MPA ligand CdHgTe NCs with the 

6 nm in size. Furthermore, aqueous CdTe NCs were synthesized with an 

excitonic absorption peak at around 605 nm corresponding to a diameter of ~ 3.7 

nm. Figure 9.2.1(a) demonstrates optical absorption spectra of the resulting NCs. 

Also a schematic of the proposed LS-NS devices is shown in Figure 9.2.1(b). 

After cleaning the indium tin oxide (ITO) substrate, a 50 nm thick high 

dielectric constant HfO2 film deposited via ALD on the 1 cm × 0.75 cm area. 

Because of using pulses water, ALD preferentially coats hydrophilic surfaces, 

which helps to improve the dip-coated film quality. Subsequently, in order to 

deposit a highly closed packed monolayer of NCs on the substrate, poly 

(diallyldimethylammonium chloride) (PDDA) and poly (sodium 4-

styrenesulfonate) (PSS) bilayers were dip-coated to build four bilayers using 

layer-by-layer assembly. Finally, Al contact was laid down immediately on top 

of the CdHgTe NCs monolayer by using an electron beam evaporator. After 



 81 

device fabrication, voltage-time (V-t) characteristics and sensitivity were taken 

to characterize without applying any external bias. During these measurements, 

the samples were grounded from the ITO contact, connected in series with a 

load resistance of 200 MΩ.  

 

 

Figure 9.2.1 Absorption spectra of NCs and device structure. (a) UV-vis absorption 

spectrum of aqueous TGA and MPA ligand CdHgTe and CdTe NCs at room temperature. 

(b) Schematic drawing of the light-sensitive nanocrystal skin structure. Monolayer 

CdHgTe NCs were formed through dip-coating procedure.  

 

To measure the effect of MEG on LS-NS devices, they were illuminated via a 

Xenon lamp light source and a monochromator was used to provide tunable 

wavelength source from 350 to 550 nm. The number of absorbed photons at 

each wavelength was adjusted to make the absorbance of CdHgTe NCs to be 

identical for all corresponding wavelengths.  

 

9.3 Results and Discussions 

 

For the LS-NS devices based on the monolayer of MPA ligand CdHgTe, MEG 

occurred at over 2.03 times of the excitonic energy of the NCs (1.48 eV) which 

correspond to 3.02 eV in energy or 411 nm in wavelength. Subsequently, the 

voltage buildup and sensitivity spectra shown in Figure 9.3.1 reveal no change 

up to the MEG threshold and approximately remain constant. However, for the 

wavelength of < 425 nm towards UV the sensitivity rises sharply. As it can be 

seen, the sensitivity enhance by ~3.3-folds at 350 nm wavelength with respect to 
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the long wavelengths where MEG does not occur. Similarly, these results of LS-

NS device based on a monolayer of TGA ligand CdHgTe NCs are consistent 

with the role of MEG. In this device, due to the larger band gap (with the first 

exciton peak at a wavelength of 950 nm) the threshold of MEG is at a longer 

wavelength, around 468 nm. The spectral sensitivity and potential buildup of the 

devices show a jump in the sensitivity at the vicinity of MEG threshold in 

agreement with the previous device, indicating the multiple electron-hole pair 

generation of LS-NS devices. A slight change in the overall sensitivity of the 

two devices can be attributed to the size of NCs and their ligand length.   

 

The observed voltage buildup spectra of the two samples exhibit over two times 

enhancement in charge generation for photon energies below the MEG 

threshold. We correlate these observations with the probability of charge 

trapping in NCs. For our design structure, photon energies of excited photons 

together with the ligand length and the size of NCs may all influence the trap 

state occupation. During measurements, since the number of absorbed photons is 

adjusted to be the same, the deeper trap states dominate the sensitivity at low 

photon energies (long wavelengths) resulting in a lower voltage buildup. 

Increasing photon energies (lower wavelengths) leads saturation of deeper and 

shallower trap states. This translates to an effective increase in the voltage 

buildup and consequently the sensitivity.  
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Figure 9.3.1 (a) Voltage buildup behavior of LS-NS devices based on a monolayer of TGA 

(solid line) and MPA (dashed line) ligand CdHgTe NCs at different wavelengths. (b) 

Spectral sensitivity of two LS-NS devices corresponding to their voltage buildup while 

identical numbers of photons impinge on them. 

 

Implementing a proof-of-concept, demonstration for trapping charges we built a 

LS-NS device from a monolayer of CdTe NCs having a large enough band gap 

energy to prevent MEG and adequately small in size to prove the concept of 

trapped charges. Accordingly, the device characterization did not show any 

sharp increase in the photogenerated potential buildup and sensitivity at different 

wavelengths (see Figure 9.3.2). Indeed, a monotonous increase in the sensitivity 

toward the UV spectral range was observed. This observation agrees with our 

hypothesis on the effect of photon energies in sensitivity and voltage buildup. 

This suggests that Ephoton influence the trapping efficiency. Higher photon 

energies excite electrons to deeper and shallower trap states, allowing for more 

holes to accumulate in the metal contact. As the NCs size increases, the 

probability of surface trap charge decreases. Consequently, small NCs are more 

probable to trap charges. Since CdTe NCs were 3.7 nm in size, for such a small 

NCs, the probability of electrons being trapped is more than large NCs. 

Consequently, we observed higher sensitivity. Accordingly, for the LS-NS based 

on these small NCs, more electrons are trapped, which means more holes 

accumulate at the metal contact, resulting in higher sensitivity.  
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Figure 9.3.2 Sensitivity of the LS-NS based on a monolayer of CdTe NCs at corresponding 

wavelength. 

 

Furthermore, the occurrence of MEG in the LS-NS design structure confirms 

that multiple charge generation occurs faster than the capture of the excited 

carrier being trapped. While, the device operation is based on the electron 

trapping, multiple carrier generation and hole accumulation takes place before 

they are captured by the traps. Consequently, after this multiple charge 

generation, electrons are trapped at the available states and holes accumulate at 

the electrode.  
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Chapter 10 

 

Conclusion 

 

In this thesis, we proposed and demonstrated highly efficient, semi-transparent, 

large-area, solution processable NC-based photosensors employing only single 

monolayers of NCs. These devices operate on the basis of photogenerated 

charge accumulation for which there is no need for external biasing (though an 

external bias also be applied to quickly reset the system if desired). The 

monolayer of CdTe NCs, placed exactly underneath the metal contact without 

any transit intervening layer, results in close interaction enabling high 

photosensitivity and high stability under ambient conditions because of the 

device architecture sealing the NC monolayer. Furthermore, this device 

architecture is advantageous in terms of using a small amount of NC materials 

and making the device transparent with sufficient partial optical absorption. 

With the ligand removal, we observed substantial enhancement of ~ 73% in the 

light sensitivity and 3-fold faster response with respect to the case of using 

ligands. Also, we obtained a significant decrease in the minimum noise 

equivalent intensity by a factor of 4.4 in the case of ligand-removed NC devices 

(0.443 W/cm
2
) compared to the devices without ligand removal (1.94 

W/cm
2
).  

 

In the following chapters we presented that using LSP the photosensitivity of 

NC monolayer light-sensitive skins can be either enhanced or suppressed and 
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their operational wavelength region can be accordingly extended or curtailed 

where the optical absorption is not sufficient for charge generation. The 

measured voltage buildup spectra clearly reveal the influence of the silver 

nanoparticles on the optical absorption and charge generation in LS-NS devices. 

Moreover, to disclose the effect of localized plasmonics in the vicinity of 

metallic nanostructures, we studied the distance dependent sensitivity with silver 

nanoparticles incorporated at varying distances to NC skins. Likewise, the 

plasmonic nanostructure can also be tuned well to enhance the photosensitivity 

of the light-sensitive devices into the infrared region if desired.  

 

Additionally, we reported broadband highly sensitive, solution processed and 

semi-transparent tandem photosensitive skin through the incorporation of single 

colloidal monolayers of CdHgTe and CdTe NCs. With the addition of a CdHgTe 

junction to the existing CdTe one, enhancement in sensitivity and spectral range 

extension were observed. Furthermore, due to the higher absorption coefficient 

of CdHgTe monolayers, illumination from the top side was detected to be more 

efficient compared to the bottom one. The present tandem PNS concept can be 

used to build photosensitive devices with three or more junctions. Such many-

junction devices provide a route to enhance the sensitivity and increase the 

devices operation probability. 

  

We also showed photosensitive NC skins utilizing a band gap gradient of 

cascaded NC layers exhibit significant sensitivity enhancement and extension in 

their operating wavelength range. This performance improvement is attributed to 

exciton transfer from the layer with the smallest NCs to the layer with the largest 

NCs. In this work, by conducting TRF measurements of NC structures, we 

observe and attribute the reduction in average PL lifetime of the smallest NCs 

and the increase in PL lifetime of the largest NCs compared to the lifetimes of 

the same NCs in the hybrid sample to exciton transfer through the NC layers. 

These observations strongly coincide with the measured sensitivity enhancement 

and operating wavelength range extension. 
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We also studied the transporting of photogenerated electrons to the TiO2 layer in 

light-sensitive skins, which leads to great enhancement in device sensitivity. We 

observed that using TiO2 layer the sensitivity of LS-NS devices can be enhanced 

or remain unaffected depending on the thickness of the polyelectrolyte 

polymers. Subsequently, we verified that thick polyelectrolyte polymer layers 

prevent transferring the photogenerated electrons to the TiO2 layer. 

Consequently, we designed our optimum structure based on one bilayer PDDA-

PSS to improve the charge separation at the CdTe/TiO2 interface. The measured 

voltage buildup spectra clearly reveal the influence of TiO2 layer and charge 

transporting in the LS-NS devices. Also, we studied the influence of TiO2 layer 

and tracked changes in the TRF decay of the structures with a monolayer of 

CdTe NCs based on different polyelectrolyte polymer thicknesses. We attribute 

the shortening of lifetimes to the presence of electron transfer from NCs to TiO2, 

which is energetically favorable. 

 

Finally, light-sensitive devices based on a monolayer of CdHgTe NCs film were 

made to demonstrate sensitivity enhancement due to MEG. In particular, the 

numbers of trapped electrons and extracted holes were shown to be increased 

per absorbed photon. We hypothesize that the size of the NCs, photon energies 

and ligand length affect the probability of charge trapping in the NCs. As a 

result, voltage buildup may enhance more than expected results in the presence 

of MEG or steady increase in the absence of MEG. However, sharp rises in 

voltage buildup and sensitivity at the threshold of NCs, support the charge 

extraction efficiency via MEG. Our findings presented herein have significant 

implications for the future design of optical sensing applications and moving 

toward new-generation light harvesting devices. 
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