
IMPROVING APPLICATION BEHAVIOR ON
HETEROGENEOUS MANYCORE SYSTEMS

THROUGH KERNEL MAPPING

A THESIS

SUBMITTED TO THE DEPARTMENT OF COMPUTER ENGINEERING

AND THE GRADUATE SCHOOL OF ENGINEERING AND SCIENCE

OF BILKENT UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF SCIENCE

By

Ömer Erdil Albayrak

July, 2013

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Bilkent University Institutional Repository

https://core.ac.uk/display/52927498?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

I certify that I have read this thesis and that in my opinion it is fully adequate, in

scope and in quality, as a thesis for the degree of Master of Science.

Assoc. Prof. Dr. Özcan Öztürk (Advisor)

I certify that I have read this thesis and that in my opinion it is fully adequate, in

scope and in quality, as a thesis for the degree of Master of Science.

Assoc. Prof. Dr. İbrahim Körpeoğlu

I certify that I have read this thesis and that in my opinion it is fully adequate, in

scope and in quality, as a thesis for the degree of Master of Science.

Asst. Prof. Dr. Alper Şen

Approved for the Graduate School of Engineering and Sci-

ence:

Prof. Dr. Levent Onural
Director of the Graduate School

ii

ABSTRACT

IMPROVING APPLICATION BEHAVIOR ON
HETEROGENEOUS MANYCORE SYSTEMS

THROUGH KERNEL MAPPING

Ömer Erdil Albayrak
M.S. in Computer Engineering

Supervisor: Assoc. Prof. Dr. Özcan Öztürk
July, 2013

Many-core accelerators are being more frequently deployed to improve the system pro-
cessing capabilities. In such systems, application mapping must be enhanced to maxi-
mize utilization of the underlying architecture. Especially, in graphics processing units
(GPUs), mapping kernels that are part of multi-kernel applications has a great impact
on overall performance, since kernels may exhibit different characteristics on different
CPUs and GPUs. While some kernels run faster on GPUs, others may perform better
in CPUs. Thus, heterogeneous execution may yield better performance than executing
the application only on a CPU or only on a GPU. In this thesis, we investigate on two
approaches: a novel profiling-based adaptive kernel mapping algorithm to assign each
kernel of an application to the proper device, and a Mixed Integer Programming (MIP)
implementation to determine optimal mapping. We utilize profiling information for
kernels on different devices and generate a map that identifies which kernel should run
where in order to improve the overall performance or energy consumption of an appli-
cation. Initial experiments show that our approach can efficiently map kernels on CPUs
and GPUs, and outperforms CPU-only and GPU-only approaches. Some part of this
work is published in 41st International Conference on Parallel Processing Workshops
(ICPPW), 2012 [1], and submitted to Parallel Computing journal (ParCo) [2].

Keywords: Mixed Integer Programming, Kernel Mapping, Heterogeneous Systems,
GPGPU, OpenCL.

iii

ÖZET

ETKİLİ ÇEKİRDEK FONKSİYON DAĞILIMI İLE
HETEROJEN ÇOK ÇEKİRDEKLİ SİSTEMLERDE

UYGULAMA DAVRANIŞLARININ İYİLEŞTİRİLMESİ

Ömer Erdil Albayrak
Bilgisayar Mühendisliği, Yüksek Lisans
Tez Yöneticisi: Doç. Dr. Özcan Öztürk

Temmuz, 2013

Her geçen gün sistemlerin işlem kapasitelerini artırmak için, daha fazla çok-
çekirdekli hızlandırıcı piyasaya sunulmaktadır. Bu gibi sistemlerde, uygulamaların
var olan donanım mimarisi ile eşleştirilmesi işlemi daha fazla önem kazanmak-
tadır. Çünkü, daha uygun eşleştirmeler sonucunda donanımdan kazanılan faydanın
arttırılması hedeflenmektedir. Özellikle grafik işleme birimlerinde, çekirdek fonksiy-
onların donanıma doğru bir şekilde eşleştirilmesinin nihai performans üzerine etk-
isi büyüktür. Bunun nedeni, çeşitli çekirdek fonksiyonlarn çeşitli karakteristiksel
özelliklere sahip olmalarıdır. Bu karakteristiksel özellikler nedeniyle bazı fonksiy-
onlar merkezi işlem biriminde (CPU) iyi sonuçlar verirken, ötekiler ise grafik işleme
birimlerinde (GPU) daha iyi performans sonuçları ortaya koymaktadırlar. Bu ne-
denle, uygulamaların heterojen ortamlarda heterojen bir şekilde çalıştırılması, uygu-
lamanın sadece CPU ya da sadece GPU üzerinde çalıştırılmasından daha iyi per-
formans sonuçları verecektir. Bu tezde iki farklı yaklaşım araştırılmıştır: ilki,
çekirdekleri uygun aygıta atamak için geliştirdiğimiz özgün profil temelli uyarlan-
abilir çekirdek eşleştirme algoritması, ve ikincisi, ideal eşleştirmeleri bulmak için
ürettiğimiz karışık tamsayılı programlama modelidir. Geliştirdiğimiz algoritmada, bir
uygulamanın nihai performansını artırmak ya da enerji tüketimi azaltmak hedeflen-
mektedir. Bu hedef doğrultusunda uygulamaların çekirdek fonksiyonlarının doğru bir
şekilde aygıtlara dağılımı yapılmakta, ve bu işlem süresince çekirdek fonsiyonların
sistemde bulunan çeşitli aygıtlar üzerinde elde edilen profil bilgileri kullanılmaktadır.
Deneyler göstermektedir ki, yaklaşımlarımız verimli bir şekilde çekirdek fonksiyon-
ların CPU’lara ve GPU’lara dağılımını yapmakta, ve sadece CPU ya da sadece GPU
yaklaşımlarından daha iyi sonuçlar ortaya koymaktadır. Bu tezde bahsi geçen işin bir
bölümü 41. Uluslararası Paralel İşleme Çalıştayında (ICPPW, 2012) yayınlanmış [1],
ve Paralel Hesaplama dergisine (ParCo) gönderilmiştir [2].

iv

v

Anahtar sözcükler: Karışık Tamsayılı Programlama, Çekirdek Eşleştirme, Heterojen
Sistemler, GPGPU, OpenCL.

Acknowledgement

I would like to express my gratitude to my supervisor Assoc. Prof. Dr. Özcan Öztürk

who has been supporting me for the last four years. He was not only an academic

advisor, but also an idol especially in work discipline, and ethics. It has always been

an honor and pleasure to be his student.

This thesis could not be completed without the advices and supports of İsmail

Aktürk, I would like to thank him in name.

I would like to thank to Assoc. Prof. Dr. İbrahim Körpeoğlu and Asst. Prof. Dr.

Alper Şen for accepting to read and review the thesis.

I would like to acknowledge Asst. Prof. Dr. Kağan Gökbayrak for his much-

appreciated help in developing the MIP formulation, and also for the solver environ-

ment.

I also would like to thank to Assoc. Prof. Dr. Uğur Güdükbay and William Sawyer

for leading me to a great academic life.

I would like to thank to Özge Koç for her love and support. One glimpse of her

takes away all the sorrow.

I would like to thank to Çağlar and Yiğit, without them the last three years would

become such a misery, I would like to thank them in name.

I would like to thank The Scientific and Technological Research Council of Turkey

(TÜBİTAK), especially Kamil, Ahmet, Mehmet, Tuğçe, Ümit, Alptuğ and all of my

colleagues for their support.

Finally, I would like to offer my sincere love to my family, Talat, Deniz and Erdinç

for their endless support, my grandparents Melek and Emine for their love and my

uncle Cengiz for being an idol, and leading me to computer engineering.

vi

Contents

1 Introduction 1

2 Background Information 4

2.1 Multi-Core and Many-Core Systems 4

2.2 GPGPU . 9

2.2.1 CUDA . 11

2.2.2 OpenCL . 11

2.2.3 Kernels . 13

2.2.4 Memory Model . 13

2.2.5 Execution Grid . 15

2.3 Mixed-Integer Programming . 17

2.4 Related Work . 18

3 Methods 20

3.1 Preliminaries . 20

3.2 Our Approach . 21

vii

CONTENTS viii

3.3 Greedy Mapping Algorithm . 22

3.3.1 Base Algorithm . 22

3.3.2 Improved Algorithm . 26

3.4 Multi-Device Mapping . 30

3.5 Mixed-Integer Programming . 33

3.6 Different Types of Cost Functions 37

4 Experimental Results 39

4.1 Setup . 39

4.2 Results . 40

4.2.1 Greedy Algorithm Results 42

4.2.2 MIP Results . 43

4.2.3 Analysis of Data Transfer Cost On Overall Kernel Mapping . 45

4.2.4 Reducing Energy Consumption Through Effective Kernel

Mapping . 46

5 Conclusion 52

List of Figures

2.1 Uniprocessor power consumption by the years. The latest processors

such as Pentium 4 and Itanium had great power needs [3]. 5

2.2 GPU architectures usually have many simple compute units (green

squares), CPU architectures, in contrast, have less number of complex

compute units[4]. 6

2.3 GPU and CPU comparison in terms of Gflops over years. As can be

seen, recently developed GPUs provide much more Gflops capacity

over years and the gap between CPUs and GPUs is increasing[4]. . . 7

2.4 GPU and CPU comparison in terms of memory bandwidth over years.

As can be seen, GPUs have four times more bandwidth when com-

pared to CPUs, thus the data transfer rate from main memory to GPU

is much faster[4]. 8

2.5 Memory hierarchy in a typical CPU-GPU system. 9

2.6 CUDA computing framework stands right between the application and

the NVIDIA hardware in the process of porting CUDA parallel appli-

cation to the GPU[4]. 11

2.7 Sample CUDA kernel. 12

2.8 Multiple layers of memory in GPU[4]. 14

ix

LIST OF FIGURES x

2.9 CUDA execution grid splits the workforce into blocks and each block

is divided into threads[4]. 15

2.10 OpenCL execution grid similar to CUDA[5]. 16

2.11 Branch and bound algorithm in action on the recursion tree. Note that,

calculations happen from in left to right. 17

3.1 High level view of our approach. 22

3.2 Time cost function calculation in action. Cost of running a kernel for

each device is calculated according to the Equations 3.1 and 3.2. Note

that, CPU is referred as Host and GPU is referred as Device. Therefore,

Host to Host (H2H) and Device to Device (D2D) is always zero due

to the fact that they mean the data objects stay in the same device. . . 25

3.3 Illustration of mapping obtained by base algorithm applied to the sam-

ple problem given in 3.1. Note that, the total cost with the base algo-

rithm is 15. 27

3.4 Illustration of mapping obtained when kernel1 is forced to execute on

the GPU for the sample problem given in Table 3.1. Note that, the

cost of kernel1 for CPU and GPU are 5 and 6, respectively. However,

when kernel1 is forced to execute on the GPU (which is not the local

minimum) the total cost is reduced to 14. 28

4.1 Comparison of GPU-only, CPU-only, base (GA), and improved algo-

rithm (IA) mappings. 42

4.2 Comparison of GPU-only, CPU-only, improved algorithm (IA), and

MIP implementation mappings. 44

4.3 Speed up of benchmarks normalized with respect to the best CPU-only

or GPU-only. 44

LIST OF FIGURES xi

4.4 Comparision of the execution times of each algorithm. Note that, for

10000 kernels MIP model couldn’t generate the mapping due to insuf-

ficient amount of memory. 45

4.5 Speed up of benchmarks normalized with respect to the best single-

device execution with different data transfer times. Note that, the map-

ping also changes according to the data transfer times. 47

4.6 Speed up of benchmarks normalized with respect to the default data

transfer times with varying data transfer times. 47

4.7 Comparison of time × power cost function for each kernel mapping.

Values are normalized with respect to the best single-device execution. 48

4.8 Execution latency values for each mapping given in Figure 4.7. Note

that, these are normalized with respect to the best single-device execu-

tion. 48

4.9 Comparison of time× power2 cost function for each kernel mapping.

Values are normalized with respect to the best single-device execution. 50

4.10 Execution latency of each mapping given in Figure 4.9. Note that,

these values are normalized with respect to the best single-device exe-

cution. 50

List of Tables

3.1 A simple example to show the difference between GA and IA. 26

3.2 Sample data for multi device mapping. Each column shows the execu-

tion time of kernels on the corresponding device. 31

3.3 Trace data for running the base algorithm on the sample data given in

Table 3.2. Note that, the data transfer cost for each transfer is two. If

the transfer cost is added to the execution latency, the sum operation is

shown in the cost column of each device. 32

3.4 Trace data for running the base algorithm on the sample data given in

Table 3.2. Note that, the data transfer cost for each transfer is two.

Cost column shows the decision cost for running the the kernel k on

each device. 33

4.1 Our experimental setup and hardware components. 39

4.2 The descriptions and problem sizes of benchmarks used in our experi-

ments [6, 7]. 40

4.3 Distribution of kernels with different approaches. 41

4.4 Execution times of benchmarks with different approaches. 41

4.5 Execution times of benchmarks according to time× power objective. 51

xii

LIST OF TABLES xiii

4.6 Execution times of benchmarks according to time× power2 objective. 51

Chapter 1

Introduction

Today’s high performance and parallel computing systems consist of different types of

accelerators, such as Application-Specific Integrated Circuits (ASICs) [8], Field Pro-

grammable Gate Arrays (FPGAs) [9], Graphics Processing Units (GPUs) [10], and

Accelerated Processing Units (APUs) [11]. In addition to the variety of accelerators in

these systems, applications that are running on these systems also have different pro-

cessing, memory, communication, and storage requirements. Even a single application

may exhibit different such requirements throughout its execution. Thus, leveraging the

provided computational power and tailoring the usage of resources based on the appli-

cation’s execution characteristics is immensely important to maximize both application

performance and resource utilization.

Applications running on heterogeneous platforms are usually composed of multi-

ple exclusive regions known as kernels. Efficient mapping of these kernels onto the

available computing resources is challenging due to the variation in characteristics and

requirements of these kernels. For example, each kernel has a different execution time

and memory performance on different devices. It is our goal to generate a kernel map-

ping system that takes the characteristics of each kernel and their dependencies into

account, leading to improved performance.

In this thesis, we propose a novel adaptive profiling-based kernel mapping algo-

rithm for multi-kernel applications running on heterogeneous platforms. Specifically,

1

we run and analyze each application on every device (CPUs and GPUs) in the system

to collect necessary information, including kernel execution time and input/output data

transfer time. We, then, pass this information to a solver to determine the mapping of

each kernel on the heterogeneous system. Solvers used are a greedy algorithm (GA)

based solver, an improved version of the same algorithm (IA), and a Mixed-Integer

Programming (MIP) based solver. Our specific contributions are:

• an off-line profiling analysis to extract kernel characteristics of applications.

• an adaptive greedy algorithm (GA) to select the suitable device for a kernel con-

sidering its execution time and data requirements.

• an improved version of the greedy algorithm (IA) to avoid getting stuck in local

minima.

• a Mixed-Integer Programming (MIP) implementation to determine optimal map-

ping and to compare it with the greedy approach.

• specific cost functions targeting the energy consumption, besides overall execu-

tion delay of an application.

The initial results revealed that our approach increases the performance of an ap-

plication considerably compared to a CPU-only or GPU-only approach. Furthermore,

in many cases, our generated mappings are equivalent to the mappings of MIP imple-

mentations, or very close to them. Although our initial experiments are limited to a

single type of CPU and GPU, it is possible to extend this work to support multiple

CPUs, GPUs, and other types of accelerators. Moreover, the proposed algorithm can

be modified with different cost functions to enhance different properties of an applica-

tion, such as energy consumption.

The remainder of this thesis is organized as follows. Background information is

discussed in Chapter 2. Specifically, GPGPU concept is given in Section 2.1. Related

work on general-purpose GPU computing (GPGPU) is given in Section 2.4. The prob-

lem definition and an introduction to the proposed approach are given in Section 3.1.

The details of the greedy algorithm (GA) and the implementation are given in Sec-

tion 3.3. The multi-device mapping is given in Section 3.4. The MIP formulation is

2

introduced in Section 3.5. The different cost functions concerning energy consump-

tion are given in Section 3.6. The experimental evaluations are presented in Chapter 4.

Finally, we present conclusion and future work in Chapter 5.

3

Chapter 2

Background Information

2.1 Multi-Core and Many-Core Systems

Multi-Core processor is a single computing device with two or more independent, yet

connected central processing units (called ”cores” or ”processing elements”). By the

late 1990’s manufacturers discovered that improvements on the manufacturing tech-

niques and the chip design had diminishing return on performance gain. According

to Gordon E. Moore (co-founder of Intel), between 1958 and 1965 every year the

amount of transistors doubled [12] and he expected this trend to go on at least for an-

other 10 years. In fact, this trend continued until late 90’s, however, with the increase

in the number of transistors, energy consumption and heating problems became con-

siderably difficult. Also, the performance gain was not as high as ten, twenty years

ago. Therefore, in 2000’s manufacturers head towards the multi-core systems. In early

2000’s commodity dual-core systems emerged and in 10 years, the number of process-

ing elements quadrupled. Nowadays, many-core systems with hundreds of processing

elements are being deployed.

The multi-core processors have architectural advantages over uniprocessors (only

one processing element in each die). Because, in order to increase the performance of

a uniprocessor, one must increase the frequency, transistor amount and energy. On the

other hand, to enhance the performance of a multi-core system, increasing the number

4

Figure 2.1: Uniprocessor power consumption by the years. The latest processors such
as Pentium 4 and Itanium had great power needs [3].

of cores in a die is sufficient most of the time. Increasing the number of cores may seem

to be more energy hungry. However, multi-core systems can dynamically adjust the

number of active cores to increase the energy efficiency. Thus, in need of processing

power, all of the processors may be activated to increase the performance or vice versa.

Moreover, multi-cores also help to cope with the heating problem which is one of the

biggest concerns of uniprocessors.

Traditionally, there are two types of multi-core architectures, homogeneous and

heterogeneous. Homogeneous architectures consist of some number of simple, power

efficient processing elements. In this context, simple means individually not as pow-

erful as uniprocessors, yet effective when working together collaboratively. Intel and

AMD commodity CPU’s can be given as examples to homogeneous architectures. On

the other hand, heterogeneous architectures consist of few big, powerful units with

many simple, efficient processing elements. Traditionally, in heterogeneous systems,

the number of powerful elements are less than the simpler ones, the job of powerful

5

Figure 2.2: GPU architectures usually have many simple compute units (green
squares), CPU architectures, in contrast, have less number of complex compute
units[4].

elements is to manage the small processing elements, and also to contribute to compu-

tation when it is needed. The major examples of heterogeneous architectures are IBM

Cell, IBM Xenon CPUs, and GPUs.

Graphics Processing Units (GPUs) are a variation of CPUs specialized for the

graphics domain. They are the extreme case of many-core architecture. Traditionally,

a graphical application requires high amount of mathematical computation. There-

fore, GPUs are designed in a way that they can cope with high number of calculations

on immense amount of data. To cope with such workload, GPUs utilize instruction

level parallelism, data level parallelism and pipelining. Currently, the state of the art

GPUs are very powerful. For example, NVIDIA Titan [13] has 2688 computing units

and a 6GB integrated memory working at 6.0 Gbps, and it only requires 250 Watt

power. Moreover, it can handle 4,494 GFLOPS (giga-floating operations per second).

On the other hand, a state of the art CPU such as, Intel i7-3960x [14] has only 6

computing units, which can handle 12 threads simultaneously with hyper-threading

technology [15], and it can only handle 187 Gflops [16] and requires 130 Watt.

Such architectural diversity comes from the requirements of the tasks which these

devices are assigned to. GPUs are designed to handle intense mathematical com-

putation on immense amount of data. Which is exactly what graphics rendering is

about. Therefore, GPUs don’t need complex hardware structures, the computing units

in GPUs are small and less powerful, yet very effective when in great numbers. That is

6

Figure 2.3: GPU and CPU comparison in terms of Gflops over years. As can be seen,
recently developed GPUs provide much more Gflops capacity over years and the gap
between CPUs and GPUs is increasing[4].

why the number of computing units in a GPU is much higher than a traditional CPU.

On the other hand, CPUs deal with not only mathematical calculations, but also I/O op-

erations, encryption/decryption, encoding/decoding and many other additional tasks.

Such additional capabilities require specialized sub-components, thus some space in

CPU chip is reserved for the additional hardware. As a result, CPUs end up with big,

powerful, multi-functional computing devices in small numbers. An example is shown

in Figure 2.2, where a GPU with many small compute units and a smaller cache and

control units. On the other hand, CPU has just four compute units and much bigger

control unit and cache per compute unit.

GPU architecture is more suitable for data-parallel computations because of the

tremendous computational horsepower (Figure 2.3) and memory bandwidth (Fig-

ure 2.4). For a typical graphics rendering, for each vertex and edge, there is a pipeline

7

Figure 2.4: GPU and CPU comparison in terms of memory bandwidth over years. As
can be seen, GPUs have four times more bandwidth when compared to CPUs, thus the
data transfer rate from main memory to GPU is much faster[4].

of several computations, such as shading, lighting, screen clipping, z-buffer elimina-

tion and many more operations. This pipeline is applied to billions of vertices and

edges on the screen at least for 25-30 times per second. Therefore, GPU architecture

is specialized to handle such data intensive and parallel computational mechanism.

Figure 2.3 shows the GFLOPS (one thousand floating point operations per second) ca-

pacity of current GPUs. As can be seen in the figure, latest GPUs have a capacity to

handle six times more floating point operations per second than the latest CPUs.

GPUs also have much higher memory bandwidth as shown in Figure 2.4. However,

this bandwidth is between the compute units and the internal memory. Unfortunately,

the external bandwidth between main memory and the graphics card is bounded by

the main board’s data bandwidth, and it is much lower than the internal transfer rate.

Therefore, although the data transfer internally is fast, the cost of data transfer to the

8

Figure 2.5: Memory hierarchy in a typical CPU-GPU system.

graphics card beforehand is considerably high.

2.2 GPGPU

General Purpose Computing on Graphics Processing Units (GPGPU) is the utilization

of a graphics processing unit (GPU), which normally handles only graphics render-

ing computations, to perform massively data-parallel computations which normally

handled by a CPU. As explained in Chapter 2.1, GPUs have a great structure for data-

parallel operations due to its immense computation power shown in Figure 2.3, and

internal memory bandwidth shown in Figure 2.4. As discussed in Section 4.2, for

some algorithms, GPUs may execute faster than its parallel implementation for CPU.

There are even much better improvements, yet they are not in the scope of this the-

sis. According to TOP 500, an organizational website which keeps track of the TOP

500 supercomputers on earth, the most used accelerators and co-processors used in

supercomputers are by far the GPUs [17].

Alongside its performance benefits, GPUs are very energy efficient devices. Ac-

cording to researches conducted by NVIDIA, the most efficient CPU require 10 times

more energy than a GPU [18]. In addition, Bloomberg swapped out their systems run-

ning on 2000 CPUs with 48 NVIDIA Tesla GPUs and their annual energy cost backed

from $1.2 million to $30,000 [18]. Similarly, French bank BNP Paribass changed 64

CPUs with a pair of GPUs and the new configuration cut energy use from 44 kilowatts

9

to 2.9 kilowatts [18]. As also explained in Chapter 2.1, GPUs require much less energy

per GFLOPS compared to a typical CPU.

Despite the fact that GPUs may end up with much better results and energy effi-

ciency, the complex internal memory structure of GPUs complicate the software devel-

opment, especially from CPU optimized implementations. Figure 2.5 shows a simple

illustration of GPU and main memory structures together. In the figure ”GLOBAL”,

”LOCAL” and ”PRIVATE” corresponds to the three major internal memory structures

of a GPU and ”PCIe” is the bus between the graphics card and the main memory.

Since, there is multi-level memory hierarchy in GPU, a data object must be moved be-

tween each level, and each level has different characteristics. While, private memory

is the fastest and the closest to computing units, global memory is both the slowest and

the furthest memory level. Local memory is in between global and private memories

in terms of distance and data transfer rate. In order to be processed, a data object must

follow a path from the main memory via global and local memories and ends up in

the private memory. Therefore, multi-level memory structure of GPUs requires well

optimization and utilization of each level. In order to obtain the best results from a

GPU, it is necessary to have an in-depth understanding of the GPU structure. This, in

turn, makes legacy code porting a non-trivial task.

There are two major GPGPU platforms accepted by the community right now, and

these are CUDA and OpenCL. CUDA is the GPGPU platform developed for only

NVIDIA graphics cards by NVIDIA, thus it is supported by only NVIDIA. OpenCL

stands for Open Computing Library, and it is a framework for parallel programs that

execute across heterogeneous platforms consisting of CPUs, GPUs, APUs and other

processors. It has been adopted and supported by many companies, such as AMD,

Intel, NVIDIA, ARM, Apple, and many others. CUDA is discussed in detail in Chap-

ter 2.2.1. Likewise, OpenCL is discussed in detail in Chapter 2.2.2. Chapter

10

Figure 2.6: CUDA computing framework stands right between the application and the
NVIDIA hardware in the process of porting CUDA parallel application to the GPU[4].

2.2.1 CUDA

CUDA is a programming model for utilization of NVIDIA graphics cards for general

purpose applications. Sample works indicate that the adaptation of computation inten-

sive applications to the GPU systems via CUDA framework result in great performance

benefits [19, 20, 21]. This difference comes from the reasons discussed in Chapter 2.2.

Figure 2.6 shows the CUDA framework itself, the libraries, and the drivers which stand

right between the application and the hardware.

2.2.2 OpenCL

OpenCL is also a programming model for utilization of various hardware. OpenCL is a

framework for developing applications that run across heterogeneous systems consist-

ing of CPUs, GPUs, APUs, FPGAs, mobile devices, etc. from various manufacturers.

In fact, OpenCL is just like CUDA, targetting the additional hardware to utilize. How-

ever, it is not limiter to only GPUs. OpenCL is supported by a non-profit technology

consortium, Khronos Group [22], formed by members from different companies such

11

Figure 2.7: Sample CUDA kernel.

as, Apple, AMD, Intel, NVIDIA, ARM, etc. The main goal of OpenCL is to enable

users to develop hardware-independent programs. Therefore, OpenCL applications

can utilize various devices from various manufacturers. Additionally, such feature also

enables to develop heterogeneous platforms. Portions of the computations can be as-

signed to different computing devices, and performance gain can be achieved. The

work proposed in this thesis supports such idea of performance gain via heterogeneous

computing.

OpenCL framework consists of several layers: application, OpenCL runtime,

OpenCL platform, and installable client driver (ICD). Application, runtime, platform

layers are similar to the components of CUDA framework. On the other hand, instal-

lable client driver is the main difference in OpenCL. Installable client driver controls

the porting mechanism of each application to the target hardware. Each manufacturer

deploys an ICD for their own products. Therefore, the porting mechanism is controlled

by the manufacturer to acquire the best performance of the hardware.

12

2.2.3 Kernels

Kernels are the functions that run on the hardware. Each kernel consists of three crit-

ical sections which are, thread access model, memory access model, and finally the

operation itself. Thread access model is the assignment of the threads to the data ob-

jects (or buffers). Figure 2.7 shows a sample CUDA kernel. In this code snippet, two

dimensional thread model is defined. Each thread dimension has one to one relation

with the dimensions of the data objects. Serial applications would define two levels of

indices to access each data object, and iterating over these indices, the data would be

processed. However, for the parallelization of this operation, each index is assigned

to a thread, and each thread concurrently processes a part of the data objects. The ex-

ecuted device code is stated with the ” global ” keyword which means the function

runs on the device, and it is accessable from the host code (main function). Finally, the

actual operation in Figure 2.7 is the sum operation over each index of the data objects

A and B, and the result is written to the corresponding C index and sent back to the

main memory.

2.2.4 Memory Model

A GPU architecture has multiple levels of memory, these memory levels, from outer-

most to inner-most, are called global memory, shared memory, local memory and reg-

isters, while each memory has different access times and different needs. The underly-

ing reasons for such complex memory model is discussed in Chapter 2.2.5. Figure 2.8

illustrates the memory architecture. Each memory level has different access times due

to the distance to threads. The closest one is also the fastest and the smallest in terms

of capacity. When a data object is sent to GPU from CPU, it is first placed in the global

memory (or similar). When threads need to access the data objects, each block fetches

a portion of the data to its own shared memory, where the threads of that particular

block will work on. Similarly, each thread fetches its own data to its own local mem-

ory from the block’s shared memory. When the processing is completed, each data

set is sent back to global memory, and finally to the CPU. This way, it is possible to

execute the threads much faster from a local memory. However, data transfer costs can

13

Figure 2.8: Multiple layers of memory in GPU[4].

be significant if there is not sufficient computation required.

Moreover, there are additional fast and efficient memory types, such as texture

memory, and constant memory. These additional memories are read-only memory

types and data can be sent only on the setup phase, also the capacity of these structures

are too small to fit all the input data. However, since they are fast and effective, the

constant read-only data can be copied and used without conflicting the threads.

14

2.2.5 Execution Grid

GPUs are designed to be able to cope with huge amount of data and computation at

the same time. Therefore, GPUs must have a mechanism to separate different compu-

tations from each other. For this purpose, computation units are assembled in chunks,

and each chunk is assigned to a set of operations and data. These chunks are called

Streaming Multiprocessor (SM) and each processing element or computation unit is

called Streaming Processor (SP). This structure enables applications to run different

tasks for each SM, however the application itself must be clever enough to compre-

hend in which chunk it exists.

Figure 2.9: CUDA execution grid splits the workforce into blocks and each block is
divided into threads[4].

15

Figure 2.10: OpenCL execution grid similar to CUDA[5].

GPGPU frameworks offer an execution grid to the user. Figure 2.9 and Figure 2.10

shows the execution grids for CUDA and OpenCL platforms. Each block in CUDA

(work-group in OpenCL) is assigned to an SM. Each thread (work-item in OpenCL)

is assigned to a SP. Moreover, such multiple level hierarchy provides the utilization of

the memory model discussed in Chapter 2.2.4. Figure 2.8 shows the memory model

discussed earlier, each SM has its own shared memory and for each SP a local mem-

ory is dedicated. Each thread (work-item in OpenCL) must move its own data to the

shared and local memory. Therefore, blocks or work-groups must be composed of

threads working on the same section of the data objects in order to utilize the shared

memory. The most significant advantage of such hierarchy is that it enables the user

to implement a pipeline of operations which has a different memory access model. To

explain, one set of SMs may require to access column-wise for one type of operation

and another set may need to access row-wise, therefore with this architecture each set

may be assigned to different SMs.

16

Cut off Cut off

4

5
GPU

4

3

GPU

GPU

GPU GPU

CPU

CPU

CPU
CPU

CPU

k3

k2 k2

k1

k3 k3 k3

2 1

Figure 2.11: Branch and bound algorithm in action on the recursion tree. Note that,
calculations happen from in left to right.

2.3 Mixed-Integer Programming

Integer Linear Programming (ILP) is a mathematical optimization method for finding

the best solution for a problem, such as the minimum delay, or maximum profit. A

set of integer or boolean values are given as linear relations to the ILP optimization

method, and the method itself effectively searches for the best outcome. The optimiza-

tion problem itself is an NP-hard problem, yet ILP technique effectively solves. The

relations between the variables define an N-dimensional space and the method finds a

point in the space by cutting down each dimension. If the variables used in the mathe-

matical model are all integers, then the problem is called Integer Linear Programming

(ILP), otherwise it is called Mixed-Integer Programming (MIP). The mathematical

model of the optimization problem we implemented has both integer and non-integer

values, therefore the optimization method we used in this work will be referred as

Mixed-Integer Problem (MIP) in the rest of the thesis.

17

There are several algorithms to solve linear problems, such as branch and

bound [23] and cutting-plane method [24]. The tool we used to solve our problem

applies the branch and bound algorithm. This algorithm starts searching a tree of vari-

ables recursively and calculates the potential outcomes. Whenever it finds a better

combination of variables the setting becomes the local optimum. For the rest of the

tree, whenever the local cost passes the local optimum, the algorithm cuts down the

rest of the tree and reverts to a past decision and continues searching. At the very end,

after all the branches are cut-off or searched, it locates the global optimum.

In Figure 2.11 a sample branch and bound is explained. The circles correspond to

an OpenCL kernel, and for each kernel there are two possibilities to work on, CPU and

GPU. Each arrow indicates the local cost in the search tree. The algorithms starts from

the left branch and finds the local minimum as 4, then it moves to the next leaf with

cost 3, and finds out that there is a better option with smaller cost, as a result, the local

optimum becomes 3. Afterwards, the algorithm moves on to k2 with GPU setting, and

since the cost of this decision is already 4, the branch is cut-off. Algorithm reverts to

k1 and continues the search, where eventually after skipping couple of branches, finds

the global optimum in ”all GPU” setting.

2.4 Related Work

OpenCL is an open standard for parallel programming, targeting heterogeneous sys-

tems [22]. It began as an open alternative to Brook [25], IBM CELL [26], AMD

Stream [27], and CUDA [28]. It provides a standard API that can be employed on

many architectures regardless of their characteristics, and therefore has become widely

accepted and supported by major vendors. In this work, we also used OpenCL and

evaluated our approach on an OpenCL version of the NAS benchmarks [7].

Recent advancement in chip manufacturing technology has made it feasible to pro-

duce power efficient and highly parallel processors and accelerators. This, however,

increases the heterogeneity of the computing platforms and makes it challenging to

determine where to run the given application. To the best of our knowledge, there are

18

only a few studies targeting this critical challenge. Luk et al. proposed Qilin [29],

which uses a statistical approach to predict kernel execution times offline, generate a

mapping and perform the execution. Rather than individual kernel mapping, they par-

tition single instruction multiple data (SIMD) operations into sub-operations and map

these sub-operations to the devices. In contrast to Qilin, we aim to map the kernels

as a whole rather than their sub-operations. While we obtain CPU and GPU execu-

tion times (in addition to the data transfer times) through profiling, they use statistical

regression model to estimate these values. Therefore, it is orthogonal to our profiling

method, and can be integrated into our system when profiling is not possible or when

it is costly.

Grewe and O’Boyle [30] proposed a machine learning-based task mapping algo-

rithm. They use a predictor to partition tasks on heterogeneous systems. Their method

predicts the target device for each task according to the extracted code features used

in the training set of the machine-learning algorithm. Our decision method could be

enhanced with such techniques in the future.

The main difference between these works and ours is that ours is an adaptive

profiling-based kernel mapping algorithm.

19

Chapter 3

Methods

3.1 Preliminaries

A major challenge in a heterogeneous platform is using existing resources while ob-

taining an application’s highest performance. This issue is mainly due to the nature of

such systems, because they comprise computing devices with different characteristics

and capabilities. Therefore, the main goal of this work is to utilize these devices by

capturing tasks’ specific characteristics and making task-assignment decisions in a way

that tasks are assigned to the device they perform better. Ultimately, the overall perfor-

mance will be improved and the underlying resources will be utilized. Traditionally,

applications run on a single hardware which they perform better. However, when the

application is divided into tasks, each task is assigned to a device, thereby improving

the overall performance.

Formally, a kernel mapping problem can be defined as a triplet MAP = {K,D, S}
where K is a set of kernels K = {k1, k2, k3, . . . , kn}, D is a set of devices which

kernels can execute on D = {d1, d2, d3, . . . , dm}, and S = {s1, s2, s3, . . . , st} is a data

object set used by kernels. Each kernel ka ∈ K is sequentially executed on a device

db ∈ D right after kernel ki−1 and the required data objects sc ∈ S are copied to local

buffers before execution.

20

For this thesis, we use a simple heterogeneous platform with a single type of CPU

and GPU. However, in reality, a heterogeneous platform may consist of multiple types

of CPUs, GPUs, and APUs from different vendors with different features [31, 32, 33].

For example, it is possible to have an NVIDIA GPU and an AMD GPU in the same

system. While NVIDIA GPUs are good for simple parallel multi-threaded computa-

tions, AMD GPUs are better in vector operations [34, 5]. Thus, the characteristics of

a task, such as the number of vector operations and the number of threads running in

parallel, become critical while deciding where to run the given application.

Similarly, the size of data required by an application is an important issue, because

some of the devices, such as GPUs, may have limited memory space. Therefore, even

though an application may be developed targeting a GPU, it may not be possible to

execute it on a given GPU because of the limitation on memory.

In addition to kernel characteristics and device specifications, dependencies be-

tween kernels are also of concern. Running dependent kernels in two different devices

requires data movement upon depended kernels to finish the execution. Hence, for

certain mappings it is necessary to consider data transfer costs while assessing the

performance of an application.

3.2 Our Approach

Figure 3.1 illustrates, at a high level, how our approach operates. First, we extract the

profiling information which is used in kernel mapping.

Specifically, we run and analyze each application on every device (CPUs and

GPUs) in the system to collect necessary information, including kernel execution time

and input/output data transfer time. As an alternative, we can extract kernel charac-

teristics through compiler analysis and employ a machine-learning-based technique,

similar to [30], to predict kernel execution times and data transfer overheads. How-

ever, this is left as a future work.

21

Kernel

Characteristics

Extraction

GA
Kernel

Mapping

IA

MIP

Application

Figure 3.1: High level view of our approach.

Extracted kernel characteristics is subsequently passed to the solver which deter-

mines the mapping of each kernel on the heterogeneous system. Specific solvers used

are a greedy algorithm (GA) based solver implemented using Java, an improved ver-

sion of the greedy solver (IA), and a Mixed-Integer Programming (MIP) based solver

implemented on a commercial tool. Our goal in selecting the mapping is to generate a

mapping that minimizes the execution cost of each kernel. Note that, depending on the

functionality, each device on the system can exhibit different characteristics in terms

of data transfer cost, data bandwidth, and performance. This information is crucial for

selecting the target device.

3.3 Greedy Mapping Algorithm

3.3.1 Base Algorithm

In this Chapter, we introduce two greedy algorithms mentioned earlier, the base algo-

rithm (GA) and its improved version (IA). The main goal of these two algorithms are

to minimize the overall execution cost via effectively mapping kernels to the devices.

22

The greedy approach in the base algorithm tries to select the device with the smallest

execution time for each kernel. Note that, the base algorithm does not consider the

kernel dependencies, therefore it selects the best device for each kernel at the kernel

running time. However, due to the complex data dependencies among kernels, mini-

mizing the execution cost of each kernel may not minimize the overall performance of

an application. Therefore, the dbase algorithm may not yield the best results.

We formulate the CPU and GPU execution times as follows:

CPUcostk = CPUrunningtimek +
n∑

d=1

DeviceToHost× InDeviced ×

Requiredk,d × sized. (3.1)

GPUcostk = GPUrunningtimek +
n∑

d=1

HostToDevice× (1− InDeviced)×

Requiredk,d × sized. (3.2)

The first component in each equation indicates the execution time, while the sec-

ond component is the data transfer cost. HostToDevice and DeviceToHost functions

are simply the data transfer costs from host to device and vice versa. Note that,

Requiredk,d is either 1 or 0, and it indicates whether kernel k requires data d. Data

might already be present on the target device, and thus may not need to be moved in.

For this purpose, we use InDeviced to indicate whether data d is already in the target

device. Similarly, we express the size of data d using sized. The Figure 3.2 explains

the cost types used during the device selection in a heterogeneous environment. Note

that, in Figure 3.2 CPU is referred as Host, since initially buffer objects are located in

CPU, and likewise GPU is referred as Device since it is the additional hardware. The

sum operation in Expression 3.1 is named as D2H cost (stands for device to host) in

the figure, likewise the sum operation in Expression 3.2 is named as H2D cost (stands

for host to device). Note that for each buffer object, cost is zero if data is not moved.

The kernel execution time for each device is shown as CPU and GPU running times.

23

Algorithm 1 Base Greedy Algorithm (GA)
procedure BASEALGORITHM

total cost = 0
for all Kernel k do

cpu cost = k.CPU TIME + D2H(k)
gpu cost = k.GPU TIME + H2D(k)
if cpu cost < gpu cost then

k.onCpu← true
k.cost← cpu cost
for all Buffer b ∈ k do

b.onCpu← true
end for

else
k.onCpu← false
k.cost← gpu cost
for all Buffer b ∈ k do

b.onCpu← false
end for

end if
total cost+ = k.cost

end forreturn total cost
end procedure

procedure H2D(Kernel k)
cost = 0
for all Buffer b ∈ k do

if b.onCPU == true then
cost+ = b.H2D transfer cost

end if
end for

end procedure

procedure D2H(Kernel k)
cost = 0
for all Buffer b ∈ k do

if b.onCPU == false then
cost+ = b.D2H transfer cost

end if
end for

end procedure

The aforementioned constants are extracted through profiling except InDeviced.

InDeviced is a binary variable and its value depends on the recent iteration of the

algorithm that accessed data d. If data was left in the device after the last access,

InDeviced will be 1, otherwise it will be 0. The algorithm assumes that all the data

is initially stored in the CPU, as it is the case in most systems. This assumption can

easily be modified to reflect a different system.

The cost of executing kernel k on a particular device is the sum of running time of

k on that particular device and the data transfer times for each data object which are

required but not on the device.

24

CPU

GPU

Kernel k Buffer b1 Buffer b2

Kernel k Kernel k b2 b1 b2 b1

CPU running time GPU running time

D2D cost = 0 H2H cost = 0 H2D cost D2H cost

Running Cost On CPU: CPU running time + D2H Running Cost On GPU: GPU running time + H2D

H2D stands for Host to Device (CPU to GPU) D2H stands for Device to Host (GPU to CPU)

Figure 3.2: Time cost function calculation in action. Cost of running a kernel for each
device is calculated according to the Equations 3.1 and 3.2. Note that, CPU is referred
as Host and GPU is referred as Device. Therefore, Host to Host (H2H) and Device to
Device (D2D) is always zero due to the fact that they mean the data objects stay in the
same device.

25

Kernel CPU GPU Data CPU to GPU GPU to CPU
Number Execution Execution Transfer Transfer

Latency Latency Used Time Time
1 5 4 A 2 2
2 3 2 A 2 2
3 7 6 A 2 0

Table 3.1: A simple example to show the difference between GA and IA.

Algorithm 1 gives the pseudo code for the base algorithm. The base algorithm

shown in Figure 3.2 calculates the execution times for both devices according to Equa-

tions 3.1 and 3.2 and selects the fastest device for the given kernel. Afterwards, copies

each data object to the particular device, and moves to the next kernel. The next kernel

calculates the data transfer costs according to the latest states of the data objects. Note

that, the assignment of each kernel affects the rest of the kernels, yet the assignment

method itself does not consider with the other kernels. Therefore, base algorithm may

not give the optimal mapping.

3.3.2 Improved Algorithm

The base algorithm works with most of the tested benchmarks. However, in some cases

there is a possibility of getting stuck in local minima due to complex data dependencies

among kernels that were not handled in the base algorithm. We proposed the improved

algorithm (IA, see Algorithm 2) to avoid such inefficiencies. We introduced the notion

of Critical Points, where the algorithm can select the worst target, for the purpose of

assessing alternative mappings that may yield better performance. Table 3.1 gives a

simple example to show the effect of employing the improved algorithm (IA).

Figure 3.3 illustrates Algorithm 1 running according to the data in Table 3.1. Total

cost of running the first kernel on a CPU is calculated as the summation of execution

time on the CPU and the data movement cost if data is not currently on the CPU. In

our example, data is located in the CPU initially, thereby the total cost of running the

first kernel on the CPU is 5 + 0 = 5. Similarly, the total cost of running the first kernel

on a GPU is calculated as the summation of the execution time on the GPU and the

26

CPU

GPU

Buffer A

Buffer A

Buffer A

Buffer A

Kernel 1

Kernel 2

Kernel 3

Cost: 0 Cost: 2

Cost: 4 Cost: 5

Cost: 3

Cost: 0

Cost: 2

Cost: 2

Cost: 2

Cost: 6
Cost: 7

Cost: 0

Kernel 2

Kernel 1

Kernel 3

Decision

State

Decision

State

Decision

State

Final

State

Final

State

Final

State

Kernel 1

States

Kernel 2

States

Kernel 3

States

Initial

State

Figure 3.3: Illustration of mapping obtained by base algorithm applied to the sample
problem given in 3.1. Note that, the total cost with the base algorithm is 15.

27

CPU

GPU

Buffer A

Buffer A

Buffer A

Buffer A

Kernel 1

Kernel 2

Kernel 3

Cost: 0 Cost: 2

Cost: 4 Cost: 5

Cost: 3

Cost: 2

Cost: 0

Cost: 2

Cost: 0

Cost: 6
Cost: 7

Cost: 2

Kernel 2

Kernel 1

Kernel 3

Decision

State

Decision

State

Decision

State

Final

State

Final

State

Final

State

Kernel 1

States

Kernel 2

States

Kernel 3

States

Initial

State

Figure 3.4: Illustration of mapping obtained when kernel1 is forced to execute on the
GPU for the sample problem given in Table 3.1. Note that, the cost of kernel1 for
CPU and GPU are 5 and 6, respectively. However, when kernel1 is forced to execute
on the GPU (which is not the local minimum) the total cost is reduced to 14.

28

data transfer cost if the data is not currently on the GPU. Data is initially on the CPU,

which leads to a total cost of running the first kernel on the GPU as 4 + 2 = 6. Since the

total cost of executing the first kernel on the CPU is lower, the base algorithm would

choose the CPU in mapping. The assignments after each decision can be seen in the

final state of each kernel in Figure 3.3. Likewise, the second kernel will be mapped

to the CPU because the total costs are 3 and 4 for the CPU and GPU, respectively.

Similarly, the third kernel will also be mapped to the CPU since the total costs are 7

and 8 for the CPU and GPU, respectively. This means the total execution time will

be 5 + 3 + 7 = 15. However, if the first kernel ran on the GPU (although the cost is

higher than running on the CPU) the second and third kernel would run on the GPU, as

well. Figure 3.4 illustrates this case, kernel 1 is forced to execute on GPU (which is the

slowest device for kernel 1) the cost of kernel 1 becomes 4 + 2 = 6. However, because

data used by the first kernel (i.e. A) is also used by the second and third kernels, the

total cost would be (4 + 2) + 2 + 6 = 14, which is lower than the first mapping (which

was CPU only). In this example, the base algorithm got stuck in local minima at the

first kernel. The improved algorithm (IA), on the other hand, allows a data transfer to

the GPU that seem costly at the beginning but ultimately, it enables other kernels to

execute on the GPU and thus results in a lower total execution time compared to the

mapping generated by the base algorithm.

As previously indicated, we aim to avoid getting stuck in local minima by em-

ploying Algorithm 2. This algorithm essentially compares two assumptions at each

critical point: (i) it assumes the CPU is a better option and performs the remaining

decisions according to Algorithm 1, and (ii) it assumes the GPU is a better option and

performs the remaining decisions according to Algorithm 1. The best result among (i)

and (ii) is selected and the kernel of interest is permanently assigned to that device.

This algorithm is applied to each kernel in the application. In addition, for each ker-

nel, Algorithm 2 applies Algorithm 1 to the remaining kernels. Therefore, for kernel

i Algorithm 2 calls Algorithm 1, and Algorithm 1 runs a loop of (n − i) iterations.

For kernel (i + 1) Algorithm 1 runs a loop of (n − i − 1) iterations. For all kernels, a

total of (n−1)∗n
2

executions are performed; therefore our improved algorithm (IA) has a

complexity of O(n2).

29

Algorithm 2 Improved Algorithm (IA)
procedure IMPROVEDALGORITHM

total cost = 0
for all Kernel k do

cpu cost = k.CPU TIME + D2H(k)
gpu cost = k.GPU TIME + H2D(k)
k clone← k.clone()
k clone.onCPU ← true . set k clone as if CPU is selected and run BaseAlgorithm to

observe the results of CPU selection
for all Buffer b ∈ k clone do

b.onCPU ← true
end for
whatif cpu cost← BaseAlgorithm(k) . run BaseAlgorithm starting from k clone
k clone← k.clone()
k clone.onCPU ← false
for all Buffer b ∈ k clone do

b.onCPU ← false
end for
whatif gpu cost← BaseAlgorithm(k)
if (cpu cost+ whatif cpu cost) < (gpu cost+ whatif gpu cost) then

k.onCPU ← true
k.cost← cpu cost
for all Buffer b ∈ k do

b.onCPU ← true
end for

else
k.onCPU ← false
k.cost← gpu cost
for all Buffer b ∈ k do

b.onCPU ← false
end for

end if
total cost+ = k.cost

end forreturn total cost
end procedure

3.4 Multi-Device Mapping

In the previous section, we have proposed two greedy algorithms developed for ef-

fective kernel mapping. These algorithms focused on a system which consists of one

CPU and one GPU only. However, in real systems there are potentially higher num-

ber of devices. Moreover, manufacturers come up with new designs and architectures,

hence devices differ from one generation to another. In addition, each manufacturer

may follow completely different design strategies. Therefore, a system may consist of

wide range of devices in terms of architecture, and eventually each architecture will be

used for different variety of types. Besides, the computing devices are not necessarily

meant to be only CPU and GPU, they can be other accelerators.

30

Devices
Kernels A B C

1 2 3 6
2 3 5 2
3 3 1 1
4 4 1 1
5 4 2 1

Table 3.2: Sample data for multi device mapping. Each column shows the execution
time of kernels on the corresponding device.

The improved algorithm proposed in Chapter 3.3.2 can be tweaked to cover sys-

tems with multiple computing devices. Since CPU-GPU systems are the most common

and easy to integrate pair of devices, the previous sections covered only such systems.

However, the target devices in the algorithms can be replaced with different ones. The

algorithm itself considers cost of each device as the sum of running time and data

movement to that particular device.

The biggest challenge in multi-device mapping is that it is not easy to test on simple

benchmarks such as NAS benchmark set used in this proposed work. The main reason

is each benchmark implements one type of operation. Therefore, assigning each kernel

to different devices is not possible. Because, the tasks share the data, therefore when

data is moved to a device, all of the kernels have a tendancy to run on that particular

device, instead of moving the whole data to another device. In order to implement the

otherwise, a benchmark should consist of unrelated tasks with private data. Therefore,

each task may be assigned to a different device, and each device can be utilized.

In this section, the multi-device algorithm will run with a sample benchmark in

order to show the benefits of the algorithm. Table 3.2 gives sample data to be used

in the benchmark. Note that, for simplicity, the data transfer time from one device to

another one will be taken as 2 and the data will be assumed to initially reside on device

A. Additionally, Tables 3.3 and 3.4 show the results and mappings for the base algo-

rithm and the improved algorithm applied to the sample data. Note that, single device

mappings are calculated as the sum of initial data transfer and running times for each

kernel. The overall costs of single device mappings are 16, 14 and 13 correspondingly.

Table 3.3 shows the results of the base algorithm. Since base algorithm considers

31

Cost
Kernels A B C Decision Cumulative Cost

1 2 3+2=5 6+2=8 A 2
2 3 5+2=7 2+2=4 A 5
3 3 1+2=3 1+2=3 A 8
4 4 1+2=3 1+2=3 B 11
5 5+2=7 2 1+2=3 B 13

Table 3.3: Trace data for running the base algorithm on the sample data given in Ta-
ble 3.2. Note that, the data transfer cost for each transfer is two. If the transfer cost is
added to the execution latency, the sum operation is shown in the cost column of each
device.

only local minimum, it only sums the running time and data transfer time. Therefore,

device A dominates the other devices since it has no transfer cost initially, and for the

4th kernel device B becomes more profitable and mapping chooses B as the best device

for 4th and 5th devices. Eventually, the overall running cost becomes 13 for the base

algorithm, which is better than any single device mapping (16,14 and 13).

Table 3.4 shows the results for the improved algorithm, where each device is treated

as the potential best device. Our approach simulates the future kernels as if that par-

ticular device is selected and runs the base algorithm accordingly. This is followed

by a comparison among the device costs and the best one is selected. For device A,

the algorithm sets data on device A and runs the base algorithm and the cost is found

as 13, which is the sum of running costs of kernels 1,2 and 3 for device A plus the

data movement to B, and running costs of kernels 4 and 5 for device B. On the other

hand, when the improved algorithm is applied to the same data, although device C was

not present in the mapping of the base algorithm, due to the improvements brought C

dominates the mapping. Moreover, the overall cost becomes 12 and it is better than the

base algorithm and any of the single device mappings. This example shows that the

critical point problem still exists in multi-device mapping, since improved algorithm

generates a better mapping than the base algorithm. To sum up, the proposed greedy

algorithms can also be applied to the multi-device systems.

32

Cost
Kernels A B C Decision Cumulative Cost

1 13 12 13 B 5
2 12 9 7 C 9
3 9 6 3 C 10
4 9 3 1 C 11
5 6 4 1 C 12

Table 3.4: Trace data for running the base algorithm on the sample data given in Ta-
ble 3.2. Note that, the data transfer cost for each transfer is two. Cost column shows
the decision cost for running the the kernel k on each device.

3.5 Mixed-Integer Programming

In this Chapter, our aim is to present a MIP formulation of the kernel mapping to find

the optimal mapping and to compare it with the mapping generated by our greedy

algorithm (GA) presented in the previous section.

Mixed-Integer Programming provides a set of techniques that solves optimization

problems with a linear objective function and linear constraints [35]. We used the IBM

ILOG OPL IDE [36] tool to formulate and solve our mapping problem. Mixed-integer

problems are generally NP-hard problems, yet depending on the algorithms that the

solver uses, near-optimal results can be obtained quickly, even if optimal results can

not.

In our formulation, the same profiling information is used as in the greedy algo-

rithm (GA). When the MIP solver finishes, it generates a mapping with total execution

times as well as total data transfer cost.

First, we have some predefined constant values extracted from the profiling data,

which are:

• cpuT imek : indicates the running time of kernel k on the CPU.

• gpuT imek : indicates the running time of kernel k on the GPU.

• requiredb,k : indicates if buffer b is required by kernel k.

33

• cpu2gpub,k : indicates the transfer time of buffer b from the CPU to the GPU for

kernel k.

• gpu2cpub,k : indicates the transfer time of buffer b from the CPU to the GPU for

kernel k.

To express the location of a kernel and buffer object we have two binary variables:

• Tk : indicates if kernel k runs on the CPU or the GPU. If kernel runs on the CPU,

then it is 0; otherwise it is 1.

To keep track of each buffer object during each kernel execution, we have another

binary variable:

• Vb,k : indicates if buffer b is on the CPU or the GPU during the execution of

kernel k. If buffer b is on the CPU, then it is 0; otherwise it is 1.

In our implementation, each kernel has CPU-to-GPU and GPU-to-CPU data trans-

fer times; the GPU-to-CPU data transfer time is calculated after the execution of kernel

k, while the CPU-to-GPU is calculated before. Therefore, if kernel k requires buffer b,

its GPU-to-CPU transfer time is bound to the last kernel that used buffer b, so we need

to propagate this transfer time to kernel k. To propagate the transfer time to a kernel,

we have another decision variable:

• gpu2cpub,k : keeps track of current data transfer time from GPU to CPU for each

kernel k.

After describing our constants and binary variables, we define our constraints. Our

first constraint is an initialization constraint, which forces each buffer object initially

to be on the CPU.

Vb,k = 0,

∀b, and s.t. k = 0 (3.3)

34

For each kernel, locations of buffer objects need to be set. In Equation 3.5, if

buffer b is used in kernel k then its location is set to the location where kernel k runs.

Otherwise, the location of b is set to its previous location.

Vb,k = requiredb,k × Tk + (3.4)

(1− requiredb,k)× Vb,k−1,

∀b, k

The htd variable keeps track of each CPU-to-GPU data transfer cost. If a buffer is

previously on the CPU, then transferred to GPU, its cpu2gpu cost is updated in the htd

variable. Note that if buffer b is on the GPU during the execution of kernel k, then Vb,k

value is 1, otherwise it is 0. Therefore, subtracting two consecutive V values yields the

direction of the transfer:

htdb,k ≥ (Vb,k − Vb,k−1)× cpu2gpub,k,

∀b, k (3.5)

As explained above, in our implementation, the GPU-to-CPU transfer cost of buffer

b is bound to the last kernel that used buffer b. Therefore, we need to propagate this cost

to the following kernels that require buffer b. Equation 3.6 formulates this operation.

If a kernel requires a buffer object, then its GPU-to-CPU data transfer cost is set. If a

buffer object is not required, then the last cost is passed on.

gpu2cpub,k = requiredb,k × gpu2cpub,k + (3.6)

(1− requiredb,k)× gpu2cpub,k−1,

∀b, k

To calculate the GPU-to-CPU transfer costs of each buffer object, we used the

dth variable, which is similar to htd in Equation 3.5. However, dth is calculated as

multiplication of two decision variables, because the GPU-to-CPU data transfer cost

is present in the gpu2cpu variable and the direction of data movement is present in the

V variable. Multiplying two variables yields a non-linear problem; to cope with it, we

employed the big-M method [37]. In the big-M method, an M constant that is greater

35

than the largest value in one of the variables is necessary. In Equation 3.7, V variables

are subtracted. If the subtraction of V variables is equal to 1, then the M constants

cancel out and the dth value is set to the value of gpu2cpu. If this subtraction is not

equal to 1, the result of the equation becomes a negative value since the M value is

greater than the value of gpu2cpu. Note that the dth variable is 0 or positive; thus

if the right hand side of the expression is negative, then the variable is automatically

assigned to 0, and eventually has no effect.

dthb,k ≥ (Vb,k−1 − Vb,k)×M + gpu2cpub,k −M,

∀b, k (3.7)

Until this point, the dth and htd variables keep track of the cost of each data trans-

fer. In contrast, Equations 3.8 and 3.9 define dev2host and host2dev, which are the

summations of the dth and htd variables, respectively.

dev2host =

#buffers∑
b=1

#kernels∑
k=1

dthb,k (3.8)

host2dev =

#buffers∑
b=1

#kernels∑
k=1

htdb,k (3.9)

Next, the computation cost of each kernel is calculated. Note that, variable T keeps

track of where each kernel runs. If a kernel is executed on the GPU, then it becomes

1; otherwise it becomes 0 (i.e., it is executed on the CPU).

compCost =

#kernels∑
k=1

(1− Tk)× cpuT imek +

Tk × gpuT imek (3.10)

minimize(compCost+ host2dev + dev2host) (3.11)

36

Finally, we minimize the sum of dev2host, host2dev, and compCost under the con-

straints 3.3 through 3.10 in Equation 3.11. It is important to note that with a few

changes to the MIP implementation, it can be extended to generate mapping for a sys-

tem with more than two devices.

3.6 Different Types of Cost Functions

In this Chapter, we will analyze different types of cost functions which can be applied

to the mapping algorithms. Although, throughout the thesis, only time based costs

are analyzed, the mapping algorithms can be applied with different cost functions.

Equations 3.1, 3.2 in Chapter 3.3.1 and Equation 3.11 in Chapter 3.5 shows the cost

functions based on only time minimization objective. However, other metrics such as

power consumption can be considered together with time.

CPUcostk = CPUrunningtimek × CPUenergycost+

TRANSFERtimek × TRANSFERenergycost.

GPUcostk = GPUrunningtimek ×GPUenergycost+

TRANSFERtimek × TRANSFERenergycost. (3.12)

CPUcostk = CPUrunningtimek × CPUenergycostn +

TRANSFERtimek × TRANSFERenergycostn.

GPUcostk = GPUrunningtimek ×GPUenergycostn +

TRANSFERtimek × TRANSFERenergycostn. (3.13)

Equations 3.12 and 3.13 targets to decrease the energy consumption together with

the overall running time. The main difference between the equations is that Equa-

tion 3.13 applies some power of the power metric to the cost function, therefore the

effect of energy consumption becomes higher than it is in Equation 3.12. In short,

37

although Equation 3.12 is more balanced, Equation 3.13 is biased towards the energy

consumption. Note that, the power metric cannot be considered alone, because the ulti-

mate goal is to run a program, therefore there always will be the time metric. However,

the effect of such metrics can be adjusted using different coefficients and expressions

as in Equation 3.13.

The reason behind choosing such cost functions is that, when shipping a prod-

uct, manufacturers consider three different types of running modes: performance, bal-

anced, energy saving. Therefore, we apply a similar mechanism to enable user to select

a desired running mode in our framework. For this purpose, we introduced three dif-

ferent cost functions. The cost functions introduced in Chapter 3.3.1 is only interested

in the overall delay, so it generates the mapping for the performance mode. On the

other hand, Equation 3.12 is more balanced compared to Equation 3.13, and generates

the mapping for the balanced mode, whereas Equation 3.13 is used for energy saving

mode.

38

Chapter 4

Experimental Results

4.1 Setup

We tested and implemented our approaches on a heterogeneous platform. Specifically,

profiling each benchmark was done on a heterogeneous system consisting of a six-core

AMD CPU and an NVIDIA GeForce GTX 460 GPU. Table 4.1 shows the details of

our experimental system setup.

We assessed our algorithms on OpenCL versions of NAS parallel benchmarks [38].

Details of the benchmarks we used in the experiments are given in Table 4.2. Each

benchmark has different characteristics; some have over 50 kernels and others have

only few kernels.

CPU GPU
Architecture Phenom II X6 1055T GeForce GTX 460

Clock 2.8 Ghz 1430Mhz
of Cores 6 336 Cuda Cores

Memory Size 4 GB 1GB
Peak Energy Costs 135 Watt(memory cost 10W included) 160W

OpenCL AMD APP SDK v2.6 NVIDIA OpenCL SDK 4.0
OS Ubuntu 10.04 64-bit

Table 4.1: Our experimental setup and hardware components.

39

Benchmark Name Description Parameters Class S Class W

BT
Solves multiple, independent systems of
non-diagonally dominant, block-tridiagonal
equations.

grid size 12x12x12 24x24x24
no. of iterations 60 200

time step 0.01 0.0008

CG

Computes an approximation to the smallest
eigenvalue of a large, sparse, symmetrically positive
definite matrix using a conjugate gradient method.

no. of rows 1400 7000

no. of nonzeros 7 8
no. of iterations 15 15
eigenvalue shift 10 12

EP Evaluates an integral by means of pseudo random tri-
als.

no. of random-number pairs 224 225

LU
A regular-sparse, block (5 x 5) lower and upper
triangular system solution.

grid size 12x12x12 33x33x33

no. of iterations 50 300
time step 0.5 0.0015

SP
Solves multiple, independent systems of
non-diagonally dominant, scalar, pentadiagonal
equations.

grid size 12x12x12 36x36x36

no. of iterations 100 400
time step 0.015 0.0015

Table 4.2: The descriptions and problem sizes of benchmarks used in our experi-
ments [6, 7].

We used different problem sizes (i.e. S and W classes of NAS benchmarks) to

determine the effect of data size on kernel mapping. As evident in Table 4.3, the

tendency of kernels may change with different problem sizes, which is basically due to

the characteristics of that particular kernel. For example, it is better to run benchmark

SP with W class data set on only CPU, while it is not the case for the same benchmark

with S class data set.

4.2 Results

In our approach, mapping occurs in two phases: collecting the profiling information

and generating the mapping. In the first step, we profiled the benchmarks on the CPU-

only and GPU-only systems separately. We also extracted data access patterns. In the

second step, our algorithm generated a mapping based on the profiling data. We tested

our simulation on five different NAS benchmarks [39] with smaller and larger data

sizes.

40

Benchmark Total # of Improved Algorithm (IA) MIP
Name Kernels on CPU on GPU on CPU on GPU
BT-S 54 23 31 13 41
BT-W 54 24 30 24 30
CG-S 19 9 10 9 10
CG-W 19 14 5 12 7
EP-S 2 0 2 0 2
EP-W 2 0 2 0 2
LU-S 26 7 19 7 19
LU-W 26 17 9 11 15
SP-S 69 14 55 4 65
SP-W 69 69 0 69 0

Table 4.3: Distribution of kernels with different approaches.

Benchmark Execution Times in seconds
Name CPU-only GPU-only Base Alg. Impr. Alg. MIP
BT-S 6.969 3.413 2.457 2.452 2.387
BT-W 32.126 12.616 6.297 6.297 6.297
CG-S 0.308 0.433 0.19 0.188 0.188
CG-W 0.521 2.55 0.278 0.263 0.262
EP-S 693.971 45.301 45.301 45.301 45.301
EP-W 370.042 97.082 97.082 97.082 97.082
LU-S 23.898 2.53 1.747 1.687 1.687
LU-W 66.829 18.916 9.755 9.621 9.518
SP-S 1.522 1.002 1.276 0.998 0.98
SP-W 7.961 12.806 7.961 7.961 7.961

Table 4.4: Execution times of benchmarks with different approaches.

41

4.2.1 Greedy Algorithm Results

The results obtained by GA and IA are given in Table 4.4. The first column indi-

cates the respective name of the executed benchmark. The second and third columns

show the results for CPU-only and GPU-only mappings, whereas the fourth and fifth

columns show the base and improved algorithms, respectively. Figure 4.1 shows the

running times normalized with respect to the best single-device execution with differ-

ent benchmarks. Based on these results, the base algorithm presented in Algorithm 1

outperforms the best single-device implementation in nine out of 10 benchmarks. The

only exception is the SP-S benchmark, where the GPU-only generates better results.

As discussed before, this is due to the fact that base algorithm got stuck in local minima

and generated a worse mapping. Compared to the base algorithm, improved algorithm

(Algorithm 2) generates the same or better mappings for all benchmarks. In some

benchmarks, such as EP-S and EP-W, the improved algorithm (IA) generates the same

mapping as the GPU-only mapping, since it is faster to run the given kernels of these

two benchmarks on a GPU. Similarly, SP-W performs better when executed by CPU-

only. As can be seen from the table, IA generates the same mapping as CPU-only

mapping.

Figure 4.1: Comparison of GPU-only, CPU-only, base (GA), and improved algorithm
(IA) mappings.

The kernel distribution of the benchmarks are presented in Table 4.3. The first

column of the table shows the respective name of the executed benchmark, whereas

42

the second column specifies the total number of kernels for each benchmark. The

remaining columns show the number of kernels run on the CPU and the GPU when

executed according to the mappings generated by the improved algorithm and by the

MIP implementation that represents the optimal mapping, respectively. As evident

from this table, the majority of the benchmarks take advantage of the heterogeneity

available in the system. However, some benchmarks still favor CPU-only and others

favor GPU-only mapping due to their processing requirements and data transfer costs.

4.2.2 MIP Results

Table 4.4 shows a comparison of the MIP implementation with GA and IA algorithms.

Similarly, Figure 4.2 shows the running time of the improved algorithm and the MIP

implementation with respect to the best single-device execution for different bench-

marks. Figure 4.3 shows the speed up from the best single-device execution of the

IA and the MIP formulation. Note that, for some benchmarks, such as BT-S, CG-W,

LU-W, and SP-S, the results of MIP formulation differs from IA, because of a change

in kernel mapping. For six out of 10 cases, MIP implementation and the IA generate

the same mapping. For the other four cases, the results of the MIP implementation is

better than the IA, yet the difference is minor.

Note that, although the MIP implementation finds the optimum mapping, solution

times are considerably longer. However, as mentioned in Chapter 3.3, the proposed

algorithm is a lightweight, but efficient algorithm. The MIP solver uses branch and

bound [40] techniques, search recursively through a space obtained from the formula-

tion, and progressively set an upper bound for the search tree whenever it finds a better

result. Then, the subsets with lower bounds greater than the upper bound of the best

case are eliminated. Therefore, MIP does not search the whole recursion tree. On the

other hand, compared to MIP, our algorithm looks for only the best device for each

kernel, thereby reducing the solution times dramatically. Specifically, when a device is

selected for a kernel, the algorithm does not backtrack to a previously state and search

for a better solution, therefore it reduces the search space considerably. Hence, the

proposed algorithm is much faster than the branch-and-bound techniques used in MIP

43

Figure 4.2: Comparison of GPU-only, CPU-only, improved algorithm (IA), and MIP
implementation mappings.

Figure 4.3: Speed up of benchmarks normalized with respect to the best CPU-only or
GPU-only.

44

solvers. Figure 4.4 shows the comparison of the execution times of each mapping al-

gorithm. For each simulation only the number of kernels changes, and the number of

buffer does not change. Note that, as the number of kernels increase, the gap between

MIP and IA increases. For all of the case the improved algorithm executes much faster

than MIP. Moreover, for 10 thousand kernels, MIP model could not generate a map-

ping due to insufficient amount of memory. Because, MIP model needs to consider all

of the buffers for each kernel. Therefore, the required space increases with both the

number of buffers and kernels. On the other hand, Improved algorithm considers only

the related buffers for each kernel, and since, each kernel is related to only some of the

buffers, the space required is much less than the space MIP requires.

Figure 4.4: Comparision of the execution times of each algorithm. Note that, for
10000 kernels MIP model couldn’t generate the mapping due to insufficient amount of
memory.

4.2.3 Analysis of Data Transfer Cost On Overall Kernel Mapping

In order to analyze the behavior of the kernel mapping under different conditions, we

have scaled the data transfer costs with some factors from 0.1x to 5x. Note that, we

did not interfere with the hardware, we have only scaled the already gathered data. In

addition, we used only the IA on the scaled data. In the unscaled case, except for three

(EP-S, EP-W, and SP-W), all benchmarks use both CPU and GPU resources. While

EP-S and EP-W generate the same mapping as GPU-only mapping, SP-W generates

the mapping similar to CPU-only version. Therefore, we expect that, up to a certain

point all of the benchmarks will manage to find a way to utilize both devices. As the

data transfer cost increases, all of the benchmarks start to converge to the CPU-only

45

mapping because of the data transfer cost. Respective results are shown in figures 4.5

and 4.6.

More specifically, Figure 4.5 shows the speed up compared to the best single-device

mapping (i.e. CPU-only or GPU-only mapping). The EP-S, EP-W, and SP-W bench-

marks do not show any improvement, mainly because IA also generates single device

mappings for these benchmarks. However, when the data transfer cost is at the lowest

case, SP-W generates a better mapping than the CPU-only case. Because, it has speed

up more than 1.5 at 0.1t. Also, for EP-S and EP-W even though data transfer cost

is as high as 5x, they persist to generate GPU-only mapping. BT-S and BT-W show

interesting behavior, where they continue to increase the speed up. This means their

mappings are not as data dependent as their best single device, which is GPU-only,

thus they don’t slow down as fast as their best single device. Rest of the benchmarks

show the expected behavior.

In Figure 4.6, the speed up values of the unscaled mappings and the scaled map-

pings are compared. When the scale amount is as low as 0.1x all of the mappings

are faster than the unscaled versions. This is because of the better utilization of GPU,

since the data transfer cost is much lower making GPU an attractive option. Moreover,

as data transfer cost gets higher than the default case, the scaled mappings get slower

and eventually they saturate at the CPU-only case. This is due to the fact that GPU

becomes not profitable, such as in the case of SP-S. In addition, Figure 4.6 shows how

much data dependent kernel mappings are. The higher change in speed up shows how

much the mapping is effected from the change of data transfer cost. Therefore, SP-W

is the most data dependent benchmark.

4.2.4 Reducing Energy Consumption Through Effective Kernel
Mapping

As defined in Chapter 3.6, the proposed mapping algorithms can also generate a kernel

mapping in order to minimize the overall energy consumption according to the cost

functions given in Equations 3.12 and 3.13. The actual values of the energy costs

mentioned in the equations are given in Table 4.1. The respective energy results of

46

Figure 4.5: Speed up of benchmarks normalized with respect to the best single-device
execution with different data transfer times. Note that, the mapping also changes ac-
cording to the data transfer times.

Figure 4.6: Speed up of benchmarks normalized with respect to the default data trans-
fer times with varying data transfer times.

47

each mapping, according to the cost functions are given in Figures 4.7 and 4.9. In

addition, Figures 4.8 and 4.10 gives the execution latency results, respectively.

Figure 4.7: Comparison of time×power cost function for each kernel mapping. Values
are normalized with respect to the best single-device execution.

Figure 4.8: Execution latency values for each mapping given in Figure 4.7. Note that,
these are normalized with respect to the best single-device execution.

In Figures 4.7 to 4.10, MIP results show the optimum values as in Chapter 4.2.2,

whereas the improved algorithm and the base algorithm give the results for the greedy

algorithms. Note that, CPU-only and GPU-only results are generated by assigning all

of the kernels to the corresponding device.

For Figures 4.7 and 4.8 the balanced cost function, given in equation 3.12, is used.

48

It can be observed that the execution latency results given in Figure 4.8 is much dif-

ferent compared to the results given in Table 4.4. This is due to the fact that Table 4.4

does not consider the energy consumption, rather it minimizes the overall execution

time. However, the balanced cost function increases the overall execution time for the

sake of energy. For all of the cases tested, greedy algorithm finds a better mapping in

terms of overall energy consumption compared to single device mappings. Moreover,

four out of 10 benchmarks result with a worse overall execution latency due to the fact

that the base algorithm reduces the overall energy consumption. In addition, for nine

out of 10 cases, the improved algorithm and MIP model results better than the single

device mapping in terms of overall running time. Note that, for SP-S case, although the

MIP model is around 17% more energy efficient than the GPU-only implementation,

it is 3% slower. The actual execution latency values for balanced cost function can be

found in Table 4.5.

The second energy based cost function is more biased towards the power metric.

As discussed earlier, power is included with a power of 2 in the objective function.

Therefore, the cost function becomes further biased towards the energy consumption.

Similar to previous results improved algorithm and MIP finds a better or equal mapping

compared to the best single device implementation. However, as a result of applying

such a cost function, the mapping algorithms result with much slower mappings. For

benchmarks, such as SP-S and SP-W, optimal case is even slower than the slowest

device mapping. The overall execution latency results for this objective function can

be found in Table 4.6.

49

Figure 4.9: Comparison of time × power2 cost function for each kernel mapping.
Values are normalized with respect to the best single-device execution.

Figure 4.10: Execution latency of each mapping given in Figure 4.9. Note that, these
values are normalized with respect to the best single-device execution.

50

Benchmark Execution Times in seconds
Name CPU-only GPU-only Base Alg. Impr. Alg. MIP
BT-S 6.949 3.413 3.094 2.915 2.462
BT-W 32.126 12.617 15.304 12.289 8.459
CG-S 0.308 0.433 0.332 0.19 0.19
CG-W 0.521 2.55 0.304 0.275 0.275
EP-S 693.971 45.301 45.301 45.301 45.301
EP-W 370.043 97.082 97.082 97.082 97.082
LU-S 23.898 2.53 1.821 1.738 1.738
LU-W 66.829 18.916 10.286 9.908 9.943
SP-S 1.522 1.002 1.039 1.04 1.03
SP-W 7.961 12.806 11.021 10.504 10.504

Table 4.5: Execution times of benchmarks according to time× power objective.

Benchmark Execution Times in seconds
Name CPU-only GPU-only Base Alg. Impr. Alg. MIP
BT-S 6.949 3.413 3.474 3.474 3.474
BT-W 32.126 12.617 13.775 8.73 13.336
CG-S 0.308 0.433 0.339 0.339 0.339
CG-W 0.521 2.55 0.32 0.321 0.321
EP-S 693.971 45.301 45.301 45.301 45.301
EP-W 370.043 97.082 97.082 97.082 97.082
LU-S 23.898 2.53 2.051 2.051 2.051
LU-W 66.829 18.916 11.424 11.424 11.424
SP-S 1.522 1.002 2.12 2.139 1.958
SP-W 7.961 12.806 21.262 15.734 15.734

Table 4.6: Execution times of benchmarks according to time× power2 objective.

51

Chapter 5

Conclusion

Efficient kernel mapping for multi-kernel applications on heterogeneous platforms is

important to exploit the provided computational resources and to obtain higher per-

formance. In this thesis, we introduce an efficient mapping algorithm for multi-kernel

applications. We first employ a greedy approach to select the most suitable device for a

specific kernel by using profiling information; then we enhance it to avoid getting stuck

in local minima. Our initial experiments show that our approach generates better map-

pings compared to CPU-only and GPU-only mappings. Moreover, we also formulate

the mapping problem and solve it by a Mixed-Integer Programming-based technique,

which allowed us to compare mappings generated by the proposed algorithm with op-

timal mappings. Our approach generates the same mappings with the MIP for six of

the 10 benchmarks tested. The remaining benchmarks also result in with very close

results to MIP. Also, we have introduced different cost functions targeting energy con-

sumption. Although, we have achieved energy savings, the execution latency of each

benchmark increased dramatically. As a future work, we plan to extend this work to

support multiple CPUs, GPUs, and possibly other types of accelerators. Moreover,

the algorithm can be enhanced using machine-learning-based techniques to predict the

execution times of kernels and the data transfer cost for available devices instead of

using profiling information obtained beforehand.

52

Bibliography

[1] O. E. Albayrak, I. Akturk, and O. Ozturk, “Effective kernel mapping for opencl

applications in heterogeneous platforms,” in ICPP Workshops, pp. 81–88, IEEE

Computer Society, 2012.

[2] O. E. Albayrak, I. Akturk, and O. Ozturk, “Improving application behavior on

heterogeneous manycore systems through kernel mapping [submitted],” Parallel

Computing, 2013.

[3] J. L. Hennessy and D. A. Patterson, Computer Architecture, Fourth Edition: A

Quantitative Approach. San Francisco, CA, USA: Morgan Kaufmann Publishers

Inc., 2006.

[4] “CUDA C Programming Guide,” oct. 2012.

[5] “AMD, Accelerated Parallel Processing OpenCL Programming Guide.”

http://developer.amd.com/sdks/AMDAPPSDK/assets/

AMD_Accelerated_Parallel_Processing_OpenCL\

_Programming_Guide.pdf, Accessed in July 2013.

[6] “NAS parallel benchmarks problem sizes.” http://www.nas.nasa.gov/

publications/\\npb_problem_sizes.html, Accessed in July

2013.

[7] D. Bailey, E. Barszcz, J. Barton, D. Browning, R. Carter, L. Dagum, R. Fatoohi,

P. Frederickson, T. Lasinski, R. Schreiber, H. Simon, V. Venkatakrishnan, and

S. Weeratunga, “The NAS parallel benchmarks summary and preliminary re-

sults,” in Supercomputing, 1991. Supercomputing ’91. Proceedings of the 1991

ACM/IEEE Conference on, pp. 158 –165, nov. 1991.

53

[8] R. Gupta and G. De Micheli, “Hardware-software cosynthesis for digital sys-

tems,” Design Test of Computers, IEEE, vol. 10, pp. 29 –41, sept. 1993.

[9] J. Rose, A. El Gamal, and A. Sangiovanni-Vincentelli, “Architecture of field-

programmable gate arrays,” Proceedings of the IEEE, vol. 81, pp. 1013 –1029,

july 1993.

[10] C. J. Thompson, S. Hahn, and M. Oskin, “Using modern graphics architectures

for general-purpose computing: a framework and analysis,” in Proceedings of the

35th annual ACM/IEEE international symposium on Microarchitecture, MICRO

35, (Los Alamitos, CA, USA), pp. 306–317, IEEE Computer Society Press, 2002.

[11] M. Daga, A. Aji, and W. chun Feng, “On the efficacy of a fused cpu+gpu pro-

cessor (or apu) for parallel computing,” in Application Accelerators in High-

Performance Computing (SAAHPC), 2011 Symposium on, pp. 141 –149, july

2011.

[12] G. Moore, “Cramming more components onto integrated circuits,” Proceedings

of the IEEE, vol. 86, no. 1, pp. 82–85, 1998.

[13] “Nvidia, titan.” http://www.geforce.com/hardware/

desktop-gpus/geforce-gtx-titan, Accessed in July 2013.

[14] “Intel, Intel Core i7-3960x Processor Extreme Edition.” http://www.

intel.com/content/www/us/en/processor-comparison/

processor-specifications.html?proc=63696, Accessed in July

2013.

[15] “Intel, Hyper-Threading Technology.” http://www.intel.com/

content/www/us/en/architecture-and-technology/

hyper-threading/hyper-threading-technology.html, Ac-

cessed in July 2013.

[16] “Intel, Intel core i7-3900 Desktop Processor Extreme Edition Se-

ries.” http://download.intel.com/support/processors/

corei7ee/sb/core_i7-3900_d_x.pdf, Accessed in July 2013.

54

[17] “TOP 500 Supercomputers.” http://http://www.top500.org/

statistics/list/, Accessed in July 2013.

[18] “Social Impact of the GPU.” http://www.nvidia.com/object/

gcr-energy-efficiency.html, Accessed in July 2013.

[19] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, and K. Skadron, “A perfor-

mance study of general-purpose applications on graphics processors using cuda,”

J. Parallel Distrib. Comput., vol. 68, pp. 1370–1380, Oct. 2008.

[20] M. Garland, S. Le Grand, J. Nickolls, J. Anderson, J. Hardwick, S. Morton,

E. Phillips, Y. Zhang, and V. Volkov, “Parallel computing experiences with cuda,”

Micro, IEEE, vol. 28, no. 4, pp. 13–27, 2008.

[21] Z. Yang, Y. Zhu, and Y. Pu, “Parallel image processing based on cuda,” in

Computer Science and Software Engineering, 2008 International Conference on,

vol. 3, pp. 198–201, 2008.

[22] “Khronos group, OpenCL - the open standard for parallel programming of het-

erogeneous systems.” http://www.khronos.org/opencl/, Accessed in

July 2013.

[23] E. L. Lawler and D. E. Wood, “Branch-and-bound methods: A survey,” Opera-

tional Research, vol. 14, no. 4, pp. 699–719, 1966.

[24] J. E. Kelley, “The Cutting-Plane Method for Solving Convex Programs,” Journal

of the Society for Industrial and Applied Mathematics, vol. 8, no. 4, pp. 703–712,

1960.

[25] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston, and P. Han-

rahan, “Brook for gpus: stream computing on graphics hardware,” ACM Trans.

Graph., vol. 23, pp. 777–786, aug. 2004.

[26] “IBM CELL.” http://www.research.ibm.com/cell/, Accessed in

July 2013.

[27] “AMD, Accelerated Parallel Programming SDK.” http://www.amd.com/

stream, Accessed in July 2013.

55

[28] “NVIDIA, CUDA.” http://www.nvidia.com/cuda, Accessed in July

2013.

[29] C.-K. Luk, S. Hong, and H. Kim, “Qilin: exploiting parallelism on heterogeneous

multiprocessors with adaptive mapping,” in Proceedings of the 42nd Annual

IEEE/ACM International Symposium on Microarchitecture, MICRO 42, (New

York, NY, USA), pp. 45–55, ACM, 2009.

[30] D. Grewe and M. F. P. O’Boyle, “A static task partitioning approach for hetero-

geneous systems using opencl,” in Proceedings of the 20th international confer-

ence on Compiler construction: part of the joint European conferences on theory

and practice of software, CC’11/ETAPS’11, (Berlin, Heidelberg), pp. 286–305,

Springer-Verlag, 2011.

[31] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier, “Starpu: a unified

platform for task scheduling on heterogeneous multicore architectures,” Concurr.

Comput. : Pract. Exper., vol. 23, pp. 187–198, feb. 2011.

[32] C. Banino, O. Beaumont, L. Carter, J. Ferrante, A. Legrand, and Y. Robert,

“Scheduling strategies for master-slave tasking on heterogeneous processor plat-

forms,” Parallel and Distributed Systems, IEEE Transactions on, vol. 15, pp. 319

– 330, april 2004.

[33] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier, “Starpu: A unified

platform for task scheduling on heterogeneous multicore architectures,” in Euro-

Par 2009 Parallel Processing (H. Sips, D. Epema, and H.-X. Lin, eds.), vol. 5704

of Lecture Notes in Computer Science, pp. 863–874, Springer Berlin Heidelberg,

2009.

[34] M. Daga, T. Scogland, and W. chun Feng, “Architecture-aware mapping and op-

timization on a 1600-core gpu,” in Parallel and Distributed Systems (ICPADS),

2011 IEEE 17th International Conference on, pp. 316 –323, dec. 2011.

[35] G. L. Nemhauser and L. A. Wolsey, Integer and combinatorial optimization. New

York, NY, USA: Wiley-Interscience, 1988.

[36] “IBM ILOG.” http://www.ibm.com/software/websphere/

products/optimization/, Accessed in July 2013.

56

[37] H. Crowder, E. L. Johnson, and M. Padberg, “Solving large-scale zero-one linear

programming problems,” Operations Research, vol. 31, no. 5, pp. pp. 803–834,

1983.

[38] S. Seo, G. Jo, and J. Lee, “Performance characterization of the nas parallel bench-

marks in opencl,” in Workload Characterization (IISWC), 2011 IEEE Interna-

tional Symposium on, pp. 137 –148, nov. 2011.

[39] “NASA, NAS parallel benchmarks.” http://www.nas.nasa.gov/

publications/npb.html, Accessed in July 2013.

[40] A. H. Land and A. G. Doig, “An automatic method of solving discrete program-

ming problems,” Econometrica, vol. 28, no. 3, pp. pp. 497–520, 1960.

57

