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ABSTRACT

LOCAL OBJECT PATTERNS FOR TISSUE IMAGE
REPRESENTATION AND CANCER CLASSIFICATION

Gülden Olgun

M.S. in Computer Engineering

Supervisor: Assist. Prof. Dr. Çiğdem Gündüz Demir

July, 2013

Histopathological examination of a tissue is the routine practice for diagnosis and

grading of cancer. However, this examination is subjective since it requires visual

interpretation of a pathologist, which mainly depends on his/her experience and

expertise. In order to minimize the subjectivity level, it has been proposed to use

automated cancer diagnosis and grading systems that represent a tissue image

with quantitative features and use these features for classifying and grading the

tissue. In this thesis, we present a new approach for effective representation and

classification of histopathological tissue images. In this approach, we propose to

decompose a tissue image into its histological components and introduce a set

of new texture descriptors, which we call local object patterns, on these compo-

nents to model their composition within a tissue. We define these descriptors

using the idea of local binary patterns. However, we define our local object pat-

tern descriptors at the component-level to quantify a component, as opposed to

pixel-level local binary patterns, which quantify a pixel by constructing a binary

string based on relative intensities of its neighbors. To this end, we specify neigh-

borhoods with different locality ranges and encode spatial arrangements of the

components within the specified local neighborhoods by generating strings. We

then extract our texture descriptors from these strings to characterize histological

components and construct the bag-of-words representation of an image from the

characterized components. In this thesis, we use two approaches for the selection

of the components: The first approach uses all components to construct a bag-of-

words representation whereas the second one uses graph walking to select multiple

subsets of the components and constructs multiple bag-of-words representations

from these subsets. Working with microscopic images of histopathological colon

tissues, our experiments show that the proposed component-level texture descrip-

tors lead to higher classification accuracies than the previous textural approaches.
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ÖZET

KANSER SINIFLANDIRMA VE DOKU GÖRÜNTÜ
TEMSİLİNDE LOKAL NESNE DESENLERİ

Gülden Olgun

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Assist. Prof. Dr. Çiğdem Gündüz Demir

Temmuz, 2013

Histopatolojik doku incelemesi kanser teşhis ve derecelendirmesinde rutin olarak

uygulanan yöntemdir. Fakat, bu inceleme pataloğun uzmanlığına ve deney-

imine bağlı olan görsel çıkarımlar gerektirdiği için öznellik içerir. Sonuçlardaki

öznelliğin etkisini azaltmak için doku görüntüsünü nicel özelliklerle temsil eden

ve bu özellikleri kullanarak doku sınıflandırması ve derecelendirmesi yapan

otomatik kanser tanı ve derecelendirme sistemleri önerilmiştir. Bu tezde, etk-

ili bir şekilde histopatolojik doku görüntülerini temsil etmek ve sınıflandırmak

için yeni bir yaklaşım sunulmuştur. Bu yaklaşımda, doku görüntülerinin his-

tolojik bileşenlerine ayrılması önerilmiş ve bu bileşenlerin doku içerisindeki

dağılımını modellemek için lokal nesne desenleri olarak adlandırdığımız yeni bir

grup örgüsel tanımlayıcı ortaya konulmuştur. Bu tanımlayıcılar, lokal ikili desen-

ler yönteminin mantığı kullanılarak tanımlanmıştır. Ancak, pikseli, komşularının

göreceli yoğunluğuna göre ikili bir dizi kurarak niceleyen piksel seviyesindeki lokal

ikili desenlerin aksine, doku bileşenlerini nicelemek amacıyla, lokal nesne desen

tanımlayıcıları bileşen seviyesinde tanımlanmıştır. Bu amaçla, değişik lokallik

alanındaki komşuluklar belirlenmiş ve belirlenen komşuluklardaki bileşenlerin

uzaydaki düzeni kodlanmıştır. Sonrasında, histolojik bileşenleri karakterize et-

mek amacıyla, bu dizilerden örgüsel tanımlayıcılar çıkartılmış ve bu şekilde karak-

terize edilmiş bileşenlerden resmin kelime - torbası temsili oluşturulmuştur. Bu

tezde, bileşenlerin seçilmesi için iki yaklaşım kullanılmıştır: İlk yaklaşım kelime -

torbası temsilini çıkartmak için tüm bileşenleri kullanırken, ikinci yaklaşım çizge

yürümesi ile birden fazla bileşen alt kümesi seçmiş ve bunlardan birden fazla

kelime - torbası temsili oluşturmuştur. Mikroskopik histopatolojik kolon doku

görüntüleri üzerinde yaptığımız deneyler, önerilen bileşen seviyesindeki örgüsel

tanımlayıcıların önceki örgüsel yaklaşımlara göre daha yüksek doğruluk oranları

verdiğini göstermektedir.
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Chapter 1

Introduction

Cancer is one of the most lethal diseases especially in developed and develop-

ing countries. Although many tests are present for cancer screening, the routine

practice for cancer diagnosis and grading is the histopathological examination

of a biopsy, which includes examining biopsy tissues under a microscope and

diagnosing cancer based on abnormal tissue formations. Although this exami-

nation is the gold standard in the current practice of medicine, it is subject to

observer variability since it mainly relies on the visual interpretation of pathol-

ogists that heavily depends on their experience and expertise. To alleviate the

observer variability, it has been proposed to use computational methods that ex-

tract mathematical features to represent histopathological tissue images and use

these features for their classification.

The previously proposed automated cancer diagnosis systems typically use

one of the following two approaches to define their descriptors: textural and

structural. In the literature, there exist several studies that use different texture

descriptors for automated cancer diagnosis and grading. The most commonly

used descriptors are those that are defined on intensity/color histograms, which

quantify the first order statistics of image pixels [1, 2, 3, 4], and cooccurrence

matrices, which quantify the second order statistics among pixels [4, 5, 6, 7, 8].

In addition to these, many studies make use of wavelets to define their features.
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Examples include the descriptors defined on multiwavelet coefficients [9] and Ga-

bor filter responses [10]. Fractal analysis is another method used for defining

texture descriptors. In this analysis, fractal dimensions are frequently used as

features [1, 11, 12, 13]. More recent studies use local binary patterns to define

additional texture descriptors [14, 15, 16, 17, 18]. They are used to quantify a

pixel according to spatial arrangement of its neighbors’ intensities with respect

to its intensity. All these texture descriptors yield promising results. However,

they are defined on pixels, directly using pixels’ intensity/color values. Thus,

they are susceptible to pixel-level noise and variations that are typically observed

in histopathological images.

To alleviate the negative aspects of pixel-level noise and variations, structural

approaches have been proposed. These approaches are defined to model the spa-

tial relationships of histological components to represent a tissue image. These

approaches commonly construct a graph on these components and use graph de-

scriptors for image classification. Earlier studies construct their graphs on only

nucleus tissue components using different techniques such as Delaunay triangu-

lations [7, 10, 19, 20, 21]. minimum spanning trees [19, 22, 21], and probabilistic

graph generations [23]. In the recent study of our research group [24], we con-

struct a graph on tissue components of different types and color graph edges

based on the types of their end nodes. Different than the descriptors proposed

in this thesis, these previous structural approaches usually use a global graph

representation for the entire image and extract global graph descriptors for its

quantification.

1.1 Contribution

In this thesis, we propose a new algorithm for effective and robust representa-

tion and classification of images of histopathological colon tissues stained with

hematoxylin-and-eosin. In the proposed algorithm, our main contributions are

the introduction of a set of new texture descriptors, which we call local object

patterns, to model composition of histological components in a tissue image and

2



the use of this descriptor set to define the visual words of the bag-of-words rep-

resentation of the image. To this end, we decompose the image into component

objects of multiple types and define texture of these objects using the idea of local

binary patterns [25]. However, as opposed to local binary patterns defined at the

pixel-level, we define local object patterns on the objects at the component-level.

Particularly, local binary patterns are defined to quantify a pixel by constructing

a binary string from the spatial arrangement of its neighbors’ relative intensities.

On the other hand, we define our local object patterns to quantify an object by

specifying a set of neighborhoods with different locality ranges and constructing

a string based on how the object’s neighbors arrange in an order in each of these

local neighborhoods. Our texture definition proposed in this thesis mainly differs

from the previous texture-based tissue classification studies in the following as-

pect: It defines its texture descriptors on higher-level component objects instead

of defining them at the pixel-level.

In the proposed algorithm, the defined local object patterns are used to char-

acterize the tissue objects, the type distribution of which is used to construct

bag-of-words representations of the tissue. In this thesis, we implement two al-

gorithms for this construction. The first approach (Simple approach) uses the

type distribution of the objects to construct a single bag-of-words representation.

The second one (GraphWalk approach) uses the type distributions of the object

subsets obtained through graph walking to construct multiple bag-of-words repre-

sentations and combines them by voting. Different than the previous approaches,

this thesis uses the object distributions whose types are assigned by making use

of their local object patterns. Moreover, the use of graph walks to obtain multiple

object subsets is another contribution of this thesis.

The algorithms proposed by this thesis are tested on 3236 microscopic colon

tissue images. The experiments reveal that our proposed texture descriptors are

effective to obtain better classification accuracies compared to previous texture

definitions.
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1.2 Outline of the Thesis

This thesis is structured as follows. In Chapter 2, we give details of the back-

ground information about the problem domain and summarize the previous com-

putational methods used for automated cancer diagnosis and grading. In Chapter

3, we present our proposed local object pattern algorithm, providing the details

of decomposing an image into components, defining local object patterns on these

components, and using these patterns for image classification. In Chapter 4, we

explain the dataset, and discuss the experimental results. Finally, in Chapter 5,

we provide the summary of the thesis and discuss its future research directions.
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Chapter 2

Background

In this chapter, we briefly give domain description of colon tissues and colon

cancer. Then, we present the approaches that are used in the literature for

automated cancer diagnosis.

2.1 Domain Description

This thesis focuses on representation of colon tissues and classification of colon

adenocarcinoma. Colon tissues contain hierarchical structures called glands.

These glands are formed of epithelial cells lined up around a lumen, which is

an inner open space of a tubular structure and absorbs water and minerals while

secreting mucus. Besides these gland structures, colon tissues contain stroma,

which is a connective tissue and contains non-epithelial cells. These basic parts

of a colon tissue are shown on an example image in Figure 2.1.

Colon cancer is one of the four major cancer sites [26], which results in un-

controlled cell growth in colon tissues. Colon adenocarcinoma is the cancer type

that accounts for 90-95 percent of all colorectal cancers. Colon adenocarcinoma

originates from epithelial cells forming the glandular structures in colon tissues.

Thus, it causes changes in the glandular structures. Figure 2.2 shows normal

5



Figure 2.1: An image of a normal colon tissue stained with hematoxylin and
eosin, which is the routinely used technique to stain biopsies in hospitals.
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and adenocarcinomatous colon tissues. As shown in this figure, gland structures

deform with the existence of cancer. This deformation is less and the glands

are still differentiated in low-grade cancerous tissues whereas the deformation

increases and the glands are only poorly differentiated in high-grade cancerous

tissues. In this thesis, we focus on classifying tissue images into three classes:

normal, low-grade cancerous, and high-grade cancerous.

The final diagnosis of colon adenocarcinoma is done via histopathological ex-

amination of colon biopsies. In this process, a small amount of sample tissue

(biopsy) is taken from the body with a special instrument and then is fixed, cut

into thin pieces, and stained for microscopic examination. The staining technique

that is mostly used in hospitals is called hematoxylin-and-eosin (H&E). In this

staining, hematoxylin stains cell nuclei blue-purple and eosin stains proteins and

other cellular elements in a tissue pink-red; background remains colorless [27].

The example tissue images obtained with this staining are shown in Figure 2.1

and Figure 2.2.

2.2 Automated Cancer Classification

In this section, we will explain the previous methods that are used for automated

diagnosis and grading of cancer. These methods can be mainly grouped into

two: textural and structural. We will explain these methods in the following

subsections.

2.2.1 Textural Methods

Textural methods are essential in the image analysis based on local spatial varia-

tions of intensity or color. These methods aim to draw conclusion for an unknown

image by using a known texture. Textures are obtained from images using various

texture feature extraction methods such as cooccurrence matrix features, fractal

dimensions, run-length features, wavelet features, and entropy [28].

7



(a) (b)

(c) (d)

(e) (f)

Figure 2.2: Examples of colon tissue images: (a)-(b) normal tissues, (c)-(d) low-
grade cancerous tissues, and (e)-(f) high-grade cancerous tissues.
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2.2.1.1 Color and Intensity Histogram Features

Histograms characterize an image according to its color distribution or intensity.

The color histogram is used for cancer diagnosis [1, 2, 3]. It uses joint probabilities

of intensities in the red, green, and blue color channels. It divides the image into

bins and stores the pixels of each color channels. It can be formalized as

hR,G,B (a, b, c) = N · Prob (R = a,G = b, B = c) (2.1)

where R, G, and B are the three color channels and N is the number of pixels in

the image.

Intensity histogram illustrates the frequency of pixels in a grayscale image

with L levels of intensity found in the image. It is a discrete function h(rk) = nk

where rk is the kth gray level and nk is the frequency of pixels in the gray level rk

in range [0 - L]. The mean, standard deviation, skewness, kurtosis, and entropy

(Table 2.1) are extracted from the histogram probability density function [4].

p(rk) =
h(rk)

M
where M is the number of pixels, and p(rk) should satisfy the

following properties.

p(rk) >= 0
L∑

g=0

p(g) = 1


Table 2.1: The most commonly used intensity histogram features

Mean
∑
k

p(rk) · rk

Standard Deviation
∑
k

(rk −mean)2 · p(rk)

Skewness
∑
k

(rk −mean)3 · p(rk)

Kurtois
∑
k

(rk −mean)4 · p(rk)

Entropy −
∑
k

p(rk) · log2p(rk)

9



2.2.1.2 Cooccurrence Matrix Features

The most widely used features for textural analysis are Haralick features ex-

tracted from cooccurrence matrices [29]. They are calculated to quantify the

relationship among two pixels that cooccur at a specific distance and direction.

For a given direction Q and distance d, cooccurrence matrix keeps the frequency

of occurrences of gray levels i and j. The features extracted from a coccurrence

matrix are summarized in Table 2.2 where p(i,j) is the frequency of cooccurrence

of gray levels i and j, µ is the mean, and σ is the standard deviation. Although,

14 texture features are initially proposed, only four of them, which are angular

second moment, contrast, correlation, and entropy are widely used. A cooccur-

rence matrix is a second order statistics that defines how often different variation

of pixel gray levels cooccur in an image. Cooccurrence matrix denotes various

characteristic of the spatial distribution of the gray levels in entire images so the

features are used in tissue analysis [4, 6, 7, 8].

2.2.1.3 Run-Length Matrix Features

In cancer diagnosis and grading, higher order statistics [30] extracted from run-

length matrices are also used [31, 32, 33]. Run-length is modeled as a pattern

of the length of the scanned line of each image in pixels. A primitive is defined

as a continuous set of maximum number of pixels both in the same gray levels

and in the same direction [34]. A number of primitives of all directions p(a,r),

(where length r with a gray level in an M x N image) is used for extracting the

features. Galloway [30] extracts five features whereas Chu [35] defines two more

new features. Finally, Dasarathy and Holder [36] extend the features by defining

new four features. Table 2.3 illustrates the mostly used run-length matrix features

for cancer diagnosis and grading. In this table, K =
L∑

a=1

Nr∑
r=1

is the total number

of runs, L is the number of gray levels, and Nr is the the maximum length.

10



Table 2.2: Cooccurrence matrix features

Angular Second Moment
∑
i

∑
j

p(i, j)2

Contrast
Ng−1∑
n=0

n2


Ng∑
i=1

Ng∑
j=1

p(i, j)

 , |i− j| = n

Correlation

∑
i

∑
j(ij)p(i, j)− µxµy

σxσy

Sum of Squares : Variance
∑
i

∑
j

(i− µ)2p(i, j)

Inverse Difference Moment
∑
i

∑
j

1

1 + (i− j)2
p(i, j)

Sum Average
2Ng∑
i=2

ipx+y(i)

Sum Variance
2Ng∑
i=2

(i− f8)2p(x+y)(i)

Sum Entropy −
2Ng∑
i=2

px+y(i)log {px+y(i)} = f8

Entropy −
∑
i

∑
j

p(i, j)log(p(, j))

Difference Variance
Ng−1∑
i=0

i2px−y(i)

Difference Entropy
Ng−1∑
i=0

px−y(i)log {px−y(i)}

Info. Measure of Correlation 1
HXY −HXYl
max {HX,HY }

Info. Measure of Correlation 2 (1− exp[−2(HXY 2−HXY )])
1
2

11



Table 2.3: The mostly used run-length matrix features

Short primitive emphasis
1

K

L∑
a=1

Nr∑
r=1

p(a, r)

r2

Long primitive emphasis
1

K

L∑
a=1

Nr∑
r=1

p(a, r)r2

Gray level uniformity
1

K

L∑
a=1

[
Nr∑
r=1

p(a, r)r2]2

Primitive length uniformity
1

K

L∑
a=1

[
Nr∑
r=1

p(a, r)]2

Primitive percentage
K∑L

a=1

∑Nr
r=1 p(a, r)

=
K

MN

2.2.1.4 Law’s Texture Energy Measures

It has been proposed to use Laws’ texture energy measures [37] to describe tex-

tures for cancer diagnosis and grading [38]. The Laws’ texture features are similar

to the Haralick’s [29] co-occurrence matrix features [29]. They calculate texture

energies in the spatial domain. Given one-dimensional kernels merged into con-

volution masks, which output the energy image and every pixel located at the

center of the local window’s l(i,j) are replaced with the absolute value in the filter

window f(i,j) where n is the size of the mask as given below:

s(i, j) =
1

(2xn+ 1)2

i+n∑
k=i−n

j+n∑
l=j−n

|f(k, l)− l(i, j)| (2.2)

2.2.1.5 Fractal Analysis

Fractal geometry is used for cancer diagnosis and grading [1, 12, 13]. The fractal

dimension is the most commonly used feature in fractal analysis and computes

the self-similarity property. Although there exist various fractal dimension algo-

rithms, the box-counting method [39] is commonly used due to its cost efficiency,

high accuracy, and implementation ease [13]. The formula for the box-counting

method is given in Equation 2.3.
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DB = −limlogN∈(S)

log(∈)
(2.3)

2.2.1.6 Multiwavelet Features

Wavelets create whole representation of signals by using all of the sub-band de-

composition and allow the image decomposition into various frequency sub-bands.

Wavelets utilize one scaling function, whereas multiwavelets use more than one

scaling function. In cancer diagnosis and grading, wavelets are employed to ex-

tract features from the wavelet coefficients (like entropy and energy) [9] and from

Gabor filter responses [7].

2.2.1.7 Local Binary Patterns

Local binary patterns define the relationship between a pixel and its neighborhood

pixels. Initially, Ojala et al. [40] proposed a method where neighbor pixels whose

intensities are higher than or equal to the value of the center pixel are labeled

with 1 and the others are labeled with 0. The method is improved by considering

the neighbors which are radius r distance far away from the center pixel [25]. The

neighbors are counted clockwise to get the binary value as follows:

LBPp,r =
p−1∑
n=0

s(xr,n − x0,0)2n,
1, x ≥ 0

0, x < 0

 = s(x)

where x0,0 is center pixel and p is the number of neighbor pixels around radius

circle r.

In cancer diagnosis, local binary pattern texture features are usually combined

with other features by various methods [14, 15, 16, 17, 18].
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2.2.2 Structural Methods

Textural approaches may suffer from noise and variation commonly observed at

the pixel-level of tissue images. On the other hand, structural approach define

their features at the component level to mitigate the pixel-level problems. In au-

tomated cancer diagnosis, graph based methods are widely used as structural ap-

proaches. In these methods, nodes are mostly the nuclear components and edges

are defined for encoding the spatial information among the nodes. Voronoi dia-

grams, Delaunay triangulations, minimum spanning trees, probabilistic graphs,

weighted graphs, and color graphs are the most common graph generation algo-

rithms. These generation methods will be discussed in the following subsections.

2.2.2.1 Voronoi Diagrams

The Voronoi diagram of a point set S divides the n points in the set S into n regions

where p ∈ S contains all points in the plane such that p is the nearest site [41].

Figure 2.3 illustrates the Voronoi diagram of randomly selected 20 points. The

features extracted from a Voronoi diagram include the area, roundness, aspect

ratio, circularity, and the number of sides. They are commonly used with the

features extracted from Delaunay triangulation [7, 19, 20, 21].

2.2.2.2 Delaunay Triangulations

A triangulation of S is a planar graph with a vertex set where all the bounded

faces are triangles and S is a set of n points. The Delaunay triangulation of S is

a dual graph of the Voronoi diagram where the edges are straight lines and each

vertex is located in the set S. Delaunay triangulation are used in many cancer

diagnosis and grading algorithms [19, 42, 43]. Triangulations are characterized by

using structural features such as the area, edge length, degree of nodes, distance

to the nearest neighbor, eccentricity, clustering coefficient, shortest paths between

nodes, and diameter. Figure 2.4 shows the Delaunay triangulation of the same

randomly selected 20 points used in the construction of the Voronoi graph given
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Figure 2.3: The Voronoi diagram for randomly selected 20 points

in Figure 2.3. Note that it is also possible to use Gabriel’s graph to extract such

features [44]. Such as a Gabriel graph is shown in Figure 2.5.

2.2.2.3 Minimum Spanning Trees

In graph theory, a spanning tree T, is a sub-graph of a connected, undirected

graph G = (W,E) that includes every vertex of the graph G. A minimum span-

ning tree of graph G is the spanning tree, for which the sum of edge weights is

minimized. Like Voronoi diagrams and Delaunay triangulations, structural fea-

tures are extracted from minimum spanning trees. These are the edge length,

degree of nodes, distance to the nearest neighbor, fractal dimension, eccentric-

ity, clustering coefficient, and diameter [19, 21, 22]. Figure 2.6 demonstrates the

minimum spanning tree of the same randomly selected 20 points.
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Figure 2.4: The Delaunay triangulation for the 20 random selected points

Figure 2.5: The Gabriel’s graph for the same randomly selected 20 points
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Figure 2.6: Minimum spanning tree constructed for the same randomly selected
20 points

2.2.2.4 Color Graphs

Structural approaches explained above characterize the spatial distribution of

cell nuclei. However, color graphs model the spatial distribution of the nucleus,

stroma, and luminal structures [24]. In this graph, these tissue components are

represented as nodes and their relations are encoded constructing a graph on

these nodes. Graph edges are then colored according to the component types of

the edges’ endpoints. Features extracted from the color graphs are the colored

average degree, colored average clustering coefficient, and colored diameter.
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Chapter 3

Methodology

Our proposed algorithm introduces a new texture descriptor, which we call local

object patterns, to model tissue images and uses these descriptors for tissue image

classification. To this end, it decomposes a tissue image into its histological

components, characterizes them with the newly introduced local object pattern

descriptors, and uses this characterization for classification of tissue images. In

the following sections, the details of the proposed algorithm are provided.

3.1 Tissue Image Decomposition

We model a tissue image I by approximately representing its histological com-

ponents with a set of circular objects O(I) = {oi}. We represent each object oi

by its coordinates (xi, yi) and its type ti ∈ {purple, pink, white} . These types

correspond to the three main colors in a hematoxylin-and-eosin stained tissue.

Particularly, cell nuclei correspond to purple; stroma, stromal cells’ cytoplasms,

and mucin-poor epithelial cells’ cytoplasms correspond to pink; and lumina and

mucin-rich epithelial cells’ cytoplasms correspond to white. Since there are mul-

tiple components corresponding to the same type, we hereinafter refer them to

as purple, pink, and white, to keep the thesis simpler and easier to read.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.1: Examples of tissue images and their located objects. In these images,
(a) a normal tissue image, (c) a low-grade cancerous tissue image, (e) a high-
grade cancerous tissue image and (b)(d)(f) the objects located on these tissue
images. Here purple, pink, and white objects are represented with purple, pink,
and cyan, respectively.
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In order to define the circular object set O(I) = {oi}, we first separate hema-

toxylin and eosin channels of the image I by applying a color deconvolution

method [45]. Then, we quantize pixels into three groups (pink, white, and purple

which are the main colors in the hematoxylin and eosin stained tissues) according

to the color convolution. Particularly, we assign pixel pi into one of these groups

as follows:

pi =


purple if hi ≤ havg

pink else if ei ≤ eavg

white otherwise

where hi and ei are the hematoxylin and eosin component values of the pixel pi

and havg and eavg are the average values of the hematoxylin-and-eosin component

values over all pixels. After pixels are labeled, we apply the circle fit algorithm [46]

to each group’s pixels to locate the objects. In this algorithm, the objects are

located if radii are greater than the threshold radius rmin. Figure 3.1 illustrates

the objects located on example tissue images.

In our model, we use an approximate representation instead of finding exact

locations of histological components because their exact localization gives rise to

a quite difficult segmentation problem. Thus, there may be one-to-one or many-

to-one relation between objects and components. For example, a purple object

usually corresponds to a single nucleus, whereas a group of white objects that

form a clique corresponds to a lumen region. The proposed local binary patterns

are also effective to model such many-to-one relations.

3.2 Local Object Patterns

For object oi, the nth local object pattern n-LOP(oi) is defined as follows: we first

find the distance from the coordinate (xi, yi) of oi to the coordinate of every other

object in the object set O = {o1, ..., oi, ..., ok} and select the n nearest neighbors

of oi to get the ordered neighbor set N(oi) = {oin, ..., oij, ..., oi1}. After that, we

form a binary string B(oi) = {bin, ..., bij, ..., bi1}. In this string;
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bij =

 1 if tij ∈ {purple}
0 if tij ∈ {pink, white}

where tij is the type of the selected neighbor oij. Then, we define 2j-LOP(oi)

as the decimal equivalent of the binary string B(oi). Note that this descriptor

provides rotation invariance since objects are ordered based on their distances to

object oi and its value does not change with arbitrary rotations of the image.

We define local object patterns for an object to quantify the spatial arrange-

ment of its neighbors’ types found in a local neighborhood. In our model, we

extract a set of (m+ 1) patterns using different neighborhoods. Particularly, this

set includes S =
m⋃
j=0

2j-LOP.

Figure 3.2 illustrates extraction of local object patterns for the objects shown

in black. We select these objects such that they both belong to luminal regions;

we crop these regions from normal and cancerous tissue images as shown in Fig-

ure 3.2. This illustration shows that although lower-order patterns are the same

for the two selected objects, their higher-order patterns show differences, which

can be used to differentiate these objects.

By using the local object pattern descriptors, we define the new object

types as follows: For each original type ti ∈ {purple, pink, white}, we sepa-

rately cluster objects of the corresponding type into k groups running the k-

means algorithm on local object patterns of these objects. Thus, we learn

k clustering vectors Vpurple = {v1, v2, ..., vk} for the purple type, k cluster-

ing vectors Upink = {u1, u2, ..., uk} for the pink type, and k clustering vectors

Wwhite = {w1, w2, ..., wk} for the white type. Then, for a given image, we relabel

each object oi with a new type t
′

i based on its original type ti and the corre-

sponding set of the clustering vectors Vpurple, Upink or Wwhite. Since components

(objects) of normal and cancerous tissue images show different neighbor distribu-

tions, they are expected to be relabeled with different types t
′

i. Thus, we use the

distribution of these new types to represent an image. In our work, we use the

distribution of the new types in two different ways. We will explain these ways
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Figure 3.2: Extracting local object patterns for the objects shown in black. Here

m is selected as 4, thus S =
m⋃
j=0

2j-LOP. Sixteen-nearest neighbors of the selected

objects are indicated on the examples with their orders.
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in the following section.

3.3 Tissue Classification

After characterizing the objects of an image I, we use this characterization to

represent the image. For that, we use the bag-of-words representation on the

frequency of objects’ new types. Here we use two approaches to obtain the bag-

of-words representation.

In the Simple Approach, we use the new types of all objects in the image

to extract the bag-of-words representation and classify the image using a linear

kernel support vector machine (SVM) classifier.In our work, we use the SVM

library given in [47]. Here since our problem involves more than two classes, this

implementation uses one-against-one strategy for this multiclass classification.

This strategy constructs k(k − 1)/2 classifiers, each of which differentiates one

class from another. Then the decisions of these classifiers are voted to obtain the

final class.

In the GraphWalk Approach, we obtain multiple subsets of the objects and

separately use the frequency of their types to obtain multiple bag-of-words repre-

sentations of the same image. Here we use this approach to explore the following:

when all objects are used to create a bag-of-words representation, this gives a

global feature set of the entire image. However, in tissue images, there may exist

some local subregions that may be more important than the others. By selecting

object subsets that correspond to such local regions, we aim to extract feature

sets corresponding to these potentially important subregions.

In this second approach, we first construct a graph on the entire objects

by using Delaunay triangulation and then employ the breadth first search (BFS)

algorithm to select an object subset. We finally use the frequency of the new types

of these selected objects to construct a bag-of-words representation. Particularly,

the BFS algorithm traverses graph nodes, which correspond to the objects, level-

by-level starting from an initial node (object). In our algorithm, we start the
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BFS algorithm from each of the N largest white objects and obtain an object

subset. Here we terminate the BFS algorithm, after it traverses L objects in the

graph. Here it is worth to noting that the number L of visited objects is less than

the number of the entire objects in the image. Thus, the selected object subsets

are expected to cover a smaller local region in the tissue image. In our work, we

classify each of these bag-of-words representations with linear kernel SVMs and

combine the decisions of these SVMs through simple voting.
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Chapter 4

Experimental Results

In this chapter, we first give the details of our dataset. Then, we explain the

methods that we use in our comparisons. Later, we explicate the parameters

of our algorithms. After that, we give our results and compare them with the

comparison methods to understand how efficient and accurate our proposed algo-

rithms are. Finally, we provide the effects of the selection of the model parameters

to classification accuracy.

4.1 Dataset

Our dataset contains 3236 microscopic images of colon tissues stained with

hematoxylin-and-eosin. The images are taken from the 258 randomly selected

patients from the Pathology Department in Hacettepe University School of

Medicine. They are acquired by a Nikon Coolscope Digital Microscope using

20× microscope objective lens and 480 × 640 image resolution.

Images are randomly divided into two groups as training and test sets. The

1644 images of randomly selected patients constitute the training set and 1592

images of the rest of the patients constitute the test set. Each image in these

sets is labeled as normal, low-grade cancerous, or high-grade cancerous. The
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training set contains 510 normal, 859 low-grade cancerous, and 275 high-grade

cancerous tissues of 129 patients. The test set contains 491 normal, 844 low-grade

cancerous, and 257 high-grade cancerous tissues of the remaining 129 patients.

4.2 Comparisons

We use two groups of approaches in our comparison: textural and structural.

These comparison approaches are given in the following subsections.

4.2.1 Textural Approaches

First, we compare our algorithm that defines texture descriptors at the component

level with the textural approaches that define their descriptors at the pixel level.

These are intensity histograms, gray-level cooccurrence matrices, and local binary

patterns. These approaches use linear kernel SVMs in their classification.

4.2.1.1 Intensity Histogram Approach

First order histogram features are derived from the gray-level intensities of image

pixels. They include mean, standard deviation, kurtosis, and skewness. To reduce

noise and small intensity variations, pixel intensities are grouped into N bins [4].

We also implement the grid based variant of the Intensity Histogram approach.

Here we decide to use a grid-based variant since it is commonly difficult to find

a constant texture over an entire image as the tissue image may contain sub-

regions irrelevant to classification. In this approach, we divide the image into

fix-size grids, extract a histogram on each grid, calculate descriptors on the grid

histograms, and average these descriptors all over the image.
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4.2.1.2 Cooccurrence Matrix Approach

Second order statistics are calculated on the gray level intensities of image pixels.

In our comparisons, we use textural features that are extracted from cooccurrence

matrices at eight orientations. These features include the angular moment to

model homogeneity of a tissue image, the entropy to model randomness, the

contrast and difference moment to model local variations, the correlation function

to model linearity of gray-level dependencies, the inverse difference moment to

model local homogeneity, the dissimilarity to measure the dissimilarity between

pixels [5].

Likewise, we also use a grid-based variant of the Cooccurrence Matrix ap-

proach. Similarly, we divide the image into fixed size grids, extract cooccurrence

matrix features from each of these grids and average them all over the grids [48].

4.2.1.3 Local Binary Pattern Approach

The Local Binary Pattern descriptors include histogram frequencies. We compute

this histogram on the outputs of a uniform local binary pattern (LBP) operator

applied on image pixels. For each pixel, the LBP operator [25] outputs a binary

string by comparing the pixel’s gray-scale intensity with those of its eight neigh-

bors; it outputs 1 if its intensity is lower and 0 otherwise. It then assigns the

pixel to a histogram bin based on the number of consecutive 1’s in this binary

string. This operator is called uniform if it constructs the histogram on only

the pixels whose binary strings contain at most two bitwise 0/1 transitions in

their circular chain. We calculate an additional bin for keeping frequencies of

pixels with non-uniform strings. In our experiments, we extract these descriptors

from the histogram constructed on all pixels. Here we did not implement its grid

based variant because calculating histograms on pixels of equal-sized grids and

averaging their histogram frequencies is equivalent to calculating a histogram on

all pixels and using its frequencies.
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4.2.1.4 Pixel Based Approach

This is the pixel-based counterpart of our algorithm. This approach follows ex-

actly the same steps of our algorithm except its descriptor definition step. Partic-

ularly, it decomposes a tissue image into a set of circular objects, defines descrip-

tors on the objects, clusters the objects based on their descriptors to find their

new types, and uses the new types’ frequency in a linear kernel SVM classifier.

Here different than our proposed algorithm, which uses local object patterns as

the descriptors, the Pixel Based approach uses local binary patterns. To this

end, it locates a square window at the center of each object and calculates local

binary patterns of this window to find the descriptors of the object. We use

this comparison in our experiments to understand the effectiveness of defining

component-level local object patterns.

4.2.1.5 Resampling-based Markovian Model

Additionally, we use the Resampling-based Markovian Model (RMM) that we

previously implemented in our research group [48]. The RMM obtains multiple

samples of an image, labels each sample using discrete Markov models, and votes

the samples’ labels to classify the image. To obtain an image sample, it gen-

erates a sequence on the randomly selected points, which are characterized by

texture descriptors and ordered based on proximity. These descriptors include

the histogram of quantized pixels and the J-value texture measure.

4.2.2 Structural Methods

Next, we compare our algorithm with previous structural approaches. These

approaches construct graphs on tissue components and extract features on these

constructed graphs. Likewise, these approaches use linear kernel SVM classifiers.

The details of these methods are given below:
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4.2.2.1 Delaunay Triangulation

This approach defines its graph constructing Delaunay triangulation on nuclear

(purple) objects located by the circle fit algorithm. Then it extracts global fea-

tures from this Delaunay triangulation. These features include the average, stan-

dard deviation, minimum-to-maximum ratio, and disorder of edge lengths and

triangle areas, as well as the average degree, average clustering coefficient, and

diameter of the entire Delaunay graph [10].

4.2.2.2 Color Graph

This is similar to the Delaunay Triangulation approach except that it constructs

its graph on all types of tissue components. Particularly, it constructs Delaunay

triangulation on all objects but colors the triangle edges based on the types of

the end nodes. Then, it extracts colored version of the global features including

the average degree, average clustering coefficient, and diameter [24].

4.2.2.3 Hybrid Model

The last method is the Hybrid Model that we recently developed in our research

group [49]. This model first represents an image with an attributed graph and

defines smaller query graphs as a reference to normal gland structures. It then

selects regions of the image whose subgraphs are most structurally similar to the

query graphs based on graph edit distances. Using the graph edit distances of

the selected regions as well as their texture descriptors, it classifies the image by

a linear kernel SVM.
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4.3 Parameter Selection

We used two algorithms to define bag-of-words representations: Simple approach,

which employs all objects, and GraphWalk approach, which uses object sets ob-

tained by graph walking. The parameters of these algorithms are explained in

the following subsections. We also explain the parameters of the comparison

algorithms.

In all algorithms, we use three fold cross validation on the training set for

parameter selection. In order to do that, we list all possible values of each pa-

rameter and then test all possible parameter combinations in the list, and select

the one that yields the highest cross-validation accuracy. The three fold cross

validation method divides the training set into three equal parts. It trains the set

with the two subsets and tests the classifier with the third one. It repeats this for

three times in each of which the classifier is tested with a different subset. Note

that we consider the highest average accuracy obtained on the test subsets.

4.3.1 Simple Approach

The Simple approach has three model parameters:

Minimum Radius rmin

The minimum circle radius of the objects in tissue images

Highest Degree m

The highest degree in determining how many nearest neighbors should be

selected

Cluster Number k

The cluster number for grouping the objects of each original type in tissue

images

In addition to these parameters, we have an additional parameter C for the

SVM classifier with a linear kernel [47]. In our experiments, we used all possible
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Table 4.1: For textural approaches, considered parameter values are listed. The
parameter values selected by three fold cross-validation are indicated as bold.

Intensity Histogram
C ∈ {1, 2, ..., 9, 10, 20, ..., 90, 100, 150,200, ..., 1000}
Bin numbers ∈ {4, 8,16, 32}

Intensity Histogram Grid
C ∈ {1, 2, ..., 9, 10, 20, ..., 90, 100, 150, ..,550, ..., 1000}
Bin numbers ∈ {4,8, 16, 32}
Grid Size ∈ {10, 20, 40, 80}

Cooccurrence Matrix
C ∈ {1, 2, ..., 9, 10, 20, ..., 90, 100, 150, ...,900, 1000}
Bin numbers ∈ {4,8, 16, 32}
Distance ∈ {5, 10, 20, 40}

Cooccurrence Matrix Grid

C ∈ {1, 2, ..., 9, 10, 20,30, ..., 90, 100, 150, ..., 1000}
Bin numbers ∈ {4,8, 16, 32}
Distance ∈ {5,10, 20, 40}
Grid Size ∈ {10, 20,40, 80}

Local Binary Pattern C ∈ {1, 2, ..., 9, 10, 20, ..., 90, 100, 150, 200, ...,700, .., 1000}

RMM

C ∈ {1, 2, 3..., 9, 10, 20, ..., 90, 100, 150, ..., 1000}
winSize ∈ {10, 20,40, 80}
StateNo ∈ {4, 8, 16, 32,64}
SeqLen ∈ {10, 25, 50,100, 150}
SeqNo ∈ {10, 25, 50,100, 150}

Pixel Based Approach

C ∈ {1, 2, ..., 9, 10, 20, ...,60, .., 100, 150, 200, .., 1000}
rmin ∈ {3,4, 5}
k ∈ {5, 10, 20,30}
winSize ∈ {10, 20,40, 80}

Table 4.2: For structural approaches, considered parameter values are listed. The
parameter values selected by three fold cross-validation are indicated as bold.

Delaunay Triangulation
C ∈ {1, 2, ..., 9, 10, 20, ..., 90, 100, 150, ...,900, 1000}
Structing element size ∈ {3, 5, 7, 9}
Circle area threshold ∈ {5,10, ..50}

Color Graph
C ∈ {1, 2,3..., 9, 10, 20, ..., 90, 100, 150, ..., 1000}
Structing element size ∈ {3, 5, 7, 9}
Circle area threshold ∈ {5,10, ..50}

Hybrid Model
C ∈ {1, 2, 3..., 9, 10, 20, ..., 90, 100, 150, ..., 1000}
W ∈ {10, 20, 40,60, 80}
N ∈ {1, 5,10, 20, 30, 40}
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combinations of the following parameter sets rmin ∈ {3, 4, 5} , m ∈ {2, 3, 4, 5} ,

k ∈ {5, 10, 20, 30} and C ∈ {1, 2, .., 9, 10, 20, ..., 90, 100, 150, ..., 950, 1000}. In our

experiments, we get the highest cross-validation accuracy for rmin = 4, m = 4, k

= 20, and C = 20.

4.3.2 GraphWalk Approach

The GraphWalk approach has the following parameters:

Subset Number N

The number of object subsets selected by the breadth first search algorithm

Visited Object Number L

The number of visited objects during the breadth first search algorithm

Highest Degree m

The highest degree in determining how many nearest neighbors should be

selected

Cluster Number k

The cluster number for grouping the objects of each original type in tissue

images

This approach has also the parameter C for the SVM classifier [47]. In its

parameter selection, we use the following combinations of the parameter sets m ∈
{2, 3, 4, 5}, k ∈ {60, 70, 120, 150}, N ∈ {25, 50, 75, 100}, L ∈ {25, 50, 75, 100},
and C ∈ {1, 2, ..., 9, 10, 20, ..., 90, 100, 150, ...400, ..., 1000}. We obtain the highest

cross validation accuracy for m = 4, k = 70, N = 25, L = 100 and C = 400.

4.3.3 Comparison Algorithms

We also use three fold cross-validation on the training set to select the parameters

of the comparison algorithms. The lists of the considered parameter values for
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textural and structural approaches are given in Table 4.1 and Table 4.2, respec-

tively. The selected parameters of each approach are shown as bold.

4.4 Results

We implement local object patterns to represent and classify tissue images. We

characterize the objects using these local object patterns and construct bag-of-

words representation using two approaches: Simple approach and GraphWalk

approach. In order to understand the efficiency of these algorithms, we compare

them with the previous textural and structural algorithms. The test results are

given in the Table 4.3 and Table 4.4 for textural and for structural algorithms,

respectively. These tables show that our proposed algorithms give high accuracies

for all classes.

Our algorithm has a similar methodology to the Pixel Based approach and

differentiate only in the definition of its descriptors. The Pixel Based approach

uses pixel-based local binary patterns as descriptors whereas our methods use

object-based local patterns. When we compare these algorithms, our proposed

approaches give higher accuracies in all classes and surpass the Pixel Based ap-

proach in grading high-grade cancerous tissues. The results show that defining

local object patterns instead of local binary patterns increases the efficiency of

tissue image classification.

The Intensity Histogram, Cooccurrence Matrix, and Local Binary Pattern ap-

proaches extract global texture descriptors on the entire tissue images and their

grid-based variants make use of grids to extract their descriptors. The RMM ap-

proach extracts its pixel-based texture descriptors locally defined for the selected

points. On the other hand, the proposed algorithm extracts texture descriptors

for each object in a local neighborhood defined by the distance from this object

to its 2m-nearest neighbor. The results show that using object-based textures

is more effective to obtain higher accuracies. The grid based variants improve

results; however, they are still lower than the results of the proposed algorithm.
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The Delaunay Triangulation and Color Graph approaches also use the circular

objects and they construct graphs on these objects and extract global properties

from these graphs. The Hybrid Model approach uses local graphs for the selected

regions. Our Simple approach gives higher accuracies compared to these struc-

tural algorithms whereas our GraphWalk approach gives higher results than the

Delaunay Triangulation and Color Graph approaches and similar results with

the Hybrid Model approach. However, when we look at the accuracies of separate

classes, we observe that the GraphWalk approach gives more balance results for

the discrimination of different classes.

Table 4.3: Test set results obtained by our proposed algorithms Simple approach
and GraphWalk Approach and the textural comparison algorithms

Normal Low-Grade High-Grade Overall

Simple Approach (LOPs) 95.32 92.54 90.27 93.03

GraphWalk Approach (nLOPs) 93.68 91.23 90.66 91.90

Intensity Histogram 80.65 69.55 70.04 73.05

Cooccurrence Matrix 83.10 81.64 77.82 81.47

Local Binary Pattern 92.67 73.46 80.54 80.53

Intensity Histogram Grid 78.82 74.17 78.60 76.32

Cooccurrence Matrix Grid 87.58 84.12 85.60 85.43

RMM 95.64 87.77 88.56 90.32

Pixel Based Approach 94.50 90.17 76.65 89.32

We propose two algorithms for defining bag-of-words representations: Simple

approach and GraphWalk approach. The Simple approach defines a bag-of-words

representation on the frequency of the types of all objects in the image. On the

other hand, the GraphWalk approach obtains multiple subsets of the objects via

graph walking and constructs multiple bag-of-words representations from these

object subsets. In this thesis, we define the second approach to understand the
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Table 4.4: Test set results obtained by our proposed algorithms Simple approach
and GraphWalk approach and the structural comparison algorithms

Normal Low-Grade High-Grade Overall

Simple Approach (LOPs) 95.32 92.54 90.27 93.03

GraphWalk Approach (nLOPs) 93.68 91.23 90.66 91.90

Delaunay Triangulation 89.61 71.56 87.55 79.71

Color Graph 92.67 82.46 86.38 86.24

Hyrid Model 96.95 88.27 96.11 92.21

Table 4.5: For the test set, the confusion matrix obtained by our Simple approach

Computed
Normal Low High

Actual
Normal 468 19 4

Low 16 781 47
High 0 25 232

effects of using the characterizations of local subregions instead of using the en-

tire image characterization. Our experiments show that although this second

approach gives better results than most of the comparison algorithms, it gives

statistically significantly worse results than our Simple Approach (we use Mc-

Nemars statistical test with a significance level of 0.05). The confusion matrices

for these two algorithms are also given in Table 4.5 and Table 4.6, respectively.

As also seen in these tables, for both of these two algorithms, most of the confu-

sions occur in between low-grade and high-grade cancerous tissues. This is indeed

consistent with the current practice, in which incorrect decisions are typically ob-

served in grading especially when tissues lie at the boundary between low-grade

and high-grade cancer.
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Table 4.6: For the test set, the confusion matrix obtained by our GraphWalk
approach

Computed
Normal Low High

Actual
Normal 460 25 6

Low 28 770 46
High 3 21 233

4.5 Parameter Analysis

Next, we analyze the effects of the model parameters to the classification accuracy.

We analyze them separately for our Simple approach and GraphWalk approach.

4.5.1 Simple Approach

The Simple approach has three model parameters: minimum circle radius rmin,

highest degree m and cluster number k and one external parameter C in a linear

kernel SVM classifier. We select the values of these parameters by three fold

cross-validation. Next, we analyze the effects of the three model parameters.

For that; we fix two parameters and analyze accuracy as a function of the other

parameter.

4.5.1.1 Minimum Radius rmin

The minimum circle rmin is a threshold for an object radius in tissue image

decomposition. Smaller values for the minimum circle rmin allow a lot of objects

to be defined in tissue decomposition so that the representation may contain

irrelevant or noisy false objects. Thus, noisy or false neighborhoods can be defined

in extracting local object pattern descriptors. Note that when neighborhoods

are incorrectly defined, a tissue may incorrectly be modeled, which decreases

classification accuracy.

On the contrary, larger values for the minimum circle rmin result in ignoring
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Figure 4.1: Test set accuracy as a function of the minimum circle radius rmin

a lot of objects since many objects do not meet the threshold condition. This

may cause not to consider completely or partially some important histological

components. This might be an important problem especially for nucleus objects

as their radii are typically smaller. As a result, this causes incorrect tissue clas-

sification. The effects of the minimum circle rmin to the accuracy are illustrated

in Figure 4.1. This figure also shows the accuracy changes for normal, low-grade,

and high grade cancerous tissues.

4.5.1.2 Highest Degree m

We define local object patterns in the 2k neighborhood for an object where

k = {1, 2, ...,m} and model tissues using these patterns. Thus, parameter m

is the highest degree in the set of S =
m⋃
j=0

2j-LOP, which determines the size

of the local object patterns set. Using larger values for the highest degree m

increases the number of neighbors in the neighborhood and increases the size of

the set of the local object patterns for an object. This results is losing locality

in descriptor definition and as a result accuracies decrease. On the other hand,

smaller values result in considering only the closest neighbors for pattern extrac-

tion. This causes to define a non-distinctive descriptors for objects in different

classes. As a consequence, this situation makes it difficult to model the tissue
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Figure 4.2: Test set accuracy as a function of the highest degree m

classes since cancerous tissues differentiate the normal class for relatively large

m values. Non-distinctive descriptors cannot detect class differences so accura-

cies decrease. Figure 4.2 illustrates the effects of this parameter to classification

accuracies.

4.5.1.3 Cluster Number k

In order to define new object types and the visual words of a bag-of-words rep-

resentation, we separately cluster the objects into k groups. If small values are

used for the parameter k, insufficient words are defined, and thus, words are

non-distinctive to classify the images. On the other hand, larger values for this

parameter increase the number of the defined words. This may decrease the accu-

racy as a result of curse of dimensionality in classification. Figure 4.3 illustrates

the effects of this parameter to accuracies.
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Figure 4.3: Test set accuracy as a function of the cluster number k

4.5.2 GraphWalk Approach

Next, we analyze the parameters of the GraphWalk approach. Similarly, we

investigate the effects of a single parameter, fixing the remaining ones. Here we

observe that the effects of the cluster number k and the highest degree m to the

classification accuracy are very similar to those of the Simple approach. Thus,

we provide the sensitivity analysis for the remaining parameters.

4.5.2.1 Subset Number N

The GraphWalk approach obtains N object subsets by graph walking. These

subsets do not cover the entire image but correspond to local areas. Using too

small values for this parameter causes to ignore some important parts of the

image in classification. Thus, it lowers the accuracy. On the other hand, using

larger values does not significantly affect the accuracies. Figure 4.4 illustrates the

effects of the subset number N to the accuracies.
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Figure 4.4: Test set accuracy as a function of the subset number N

4.5.2.2 Visited Object Number L

This approach continues graph walking until L objects are visited. Using larger

values shows that the use of subregions is not effective as the use of the entire

image. This result is consistent with our comparison with the Simple Approach.

On the other hand, smaller values of L result in not considering some distinctive

parts of the tissue image, which lowers the accuracy. Figure 4.5 summarizes the

effects of this parameter to the classification accuracy.
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Figure 4.5: Test set accuracy as a function of the visited object number L
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Chapter 5

Conclusion

This thesis presents a new algorithm for representing and classifying colon tissue

images. In this algorithm, we introduce a set of new high-level texture descrip-

tors called local object patterns. We define these descriptors on tissue objects,

which approximately represent histological tissue components. To this end, we

specify a set of neighborhoods with different locality ranges and construct a bi-

nary string for each of these neighborhoods to encode spatial arrangements of

the objects within the specified local neighborhoods. We then characterize tis-

sue objects using the decimal equivalents of the binary strings as descriptors and

construct bag-of-words representation of an image from its characterized objects.

We implement two algorithms to extract bag-of-word representations: The Sim-

ple approach uses all objects whereas the GraphWalk approach uses multiple

object subsets obtained through graph walking. We test our proposed algorithm

on 3236 microscopic images of colon tissues stained with hematoxylin and eosin.

Our experiments demonstrate that our algorithm, which uses local object pattern

descriptors, leads to higher classification accuracies than its pixel-based counter-

parts.

The proposed algorithm constructs a binary string to encode objects’ com-

position in a specified local neighborhood. In this binary string, purple objects,

which usually correspond to nucleus components, are represented with 1 and the
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others with 0. Instead of this binary representation, one could consider construct-

ing ternary strings where pink and white objects are represented with different

values. Besides, the proposed algorithm computes the local object pattern de-

scriptors by converting the binary strings to their decimal equivalents. It is also

possible to obtain these descriptors directly from the strings. In this work, we

use the breadth search algorithm in the GraphWalk approach. Another future

work is to use different graph walks to obtain the object subsets. Exploring these

possibilities could be considered as future research directions of this thesis.
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