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ABSTRACT

Computer Vision Based Behavior Analysis

Zeynep Yücel

Ph.D. in Electrical and Electronics Engineering

Supervisor: Prof. Dr. A. Bülent Özgüler

December 2009

In this thesis, recognition and understanding of behavior based on visual inputs

and automated decision schemes are investigated. Behavior analysis is carried

out on a wide scope ranging from animal behavior to human behavior. Due

to this extensive coverage, we present our work in two main parts. Part I of

the thesis investigates locomotor behavior of lab animals with particular focus

on drug screening experiments, and Part II investigates analysis of behavior in

humans, with specific focus on visual attention.

The animal behavior analysis method presented in Part I, is composed of mo-

tion tracking based on background subtraction, determination of discriminative

behavioral characteristics from the extracted path and speed information, sum-

marization of these characteristics in terms of feature vectors and classification of

feature vectors. The experiments presented in Part I indicate that the proposed

animal behavior analysis system proves very useful in behavioral and neurophar-

macological studies as well as in drug screening and toxicology studies. This is

due to the superior capability of the proposed method in detecting discriminative

behavioral alterations in response to pharmacological manipulations.



The human behavior analysis scheme presented in Part II proposes an efficient

method to resolve attention fixation points in unconstrained settings adopting

a developmental psychology point of view. The head of the experimenter is

modeled as an elliptic cylinder. The head model is tracked using Lucas-Kanade

optical flow method and the pose values are estimated accordingly. The resolved

poses are then transformed into the gaze direction and the depth of the attended

object through two Gaussian regressors. The regression outputs are superposed

to find the initial estimates for object center locations. These estimates are

pooled to mimic human saccades realistically and saliency is computed in the

prospective region to determine the final estimates for attention fixation points.

Verifying the extensive generalization capabilities of the human behavior analysis

method given in Part II, we propose that rapid gaze estimation can be achieved

for establishing joint attention in interaction-driven robot communication as well.
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ÖZET

BİLGİSAYARLA GÖRÜ TABANLI DAVRANIŞ

ÇÖZÜMLEMESİ

Zeynep Yücel

Elektrik ve Elektronik Mühendisliği Bölümü, Doktora

Tez Yöneticisi: Prof. Dr. A. Bülent Özgüler

Aralık 2009

Bu tezde görsel girdi ve otomatik karar tabanlı davranış tanıma ve anla-

ması araştırılmıştır. Davranış çözümlemesi hayvan davranışlarından insan

davranışlarına kadar geniş bir kapsamda yürütülmüştür. Bu geniş kapsam

dolayısıyla incelemelerimizi ana iki bölüm içinde sunuyoruz. Bölüm I’de ilaç

görüntüleme deneyleri bakımından laboratuvar hayvanlarının lokomotor hareket-

leri ve Bölüm II’de ise görsel ilgi bakımından insan davranışlarının çözümlemesi

incelenmektedir.

Bölüm I’de sunulan hayvan davranış çözümleme yöntemi arka plan çıkarımına

dayalı hareket izleme, elde edilen yol ve hız bilgisinden ayıredici davranışsal nite-

likleri belirleme, bu nitelikleri öznitelikler yoluyla özetleme ve bu öznitelikleri

sınıflandırma işlemlerinden oluşmaktadır. Bölüm I’de sunulan deneyler

göstermektedir ki önerilen hayvan davranış çözümleme sistemi davranışsal ve

nörofarmakolojik çalışmalarda olduğu kadar ilaç görüntüleme ve toksikoloji

çalışmalarında da fayda sağlayacaktır. Bu durum, önerilen yöntemin ayırdedici

davranışsal değişiklikleri tespit etmedeki üstün yeteneğine bağlıdır.



Bölüm II’de sunulan insan davranış çözümleme şeması, sınırlandırılmamış

ortamlarda ilgi sabitleme noktalarının belirlenmesi için etkili bir yöntem

önermektedir. Deneyi yapan kişinin kafası eliptik bir silindir olarak model-

lenmektedir. Bu kafa modeli Lucas-Kanade optik akış yöntemi ile izlen-

mekte ve buna göre duruş değerleri kestirilmektedir. Ardından çözümlenen

duruşlar iki Gauss bağlanımı ile bakış doğrultusuna ve bakılan nesnenin de-

rinliğine dönüştürülmektedir. Bağlanım çıktıları nesne merkezi konumlarının

birincil kestirimlerini bulmak amacıyla çakıştırılmaktadır. Bu kestirimler in-

san seğirmelerini gerçekçi bir şekilde taklit etmek bakımından biriktirilmekte

ve nihai kestirimleri elde etmek için muhtemel bölge üzerinde belirginlik hesa-

planmaktadır. Bölüm II’de sunulan insan davranış çözümleme yönteminin kap-

samlı genelleme kabiliyetini kanıtlayarak, hızlı bakış doğrultusu kestiriminin

etkileşim güdümlü robot iletişiminde birleşik ilgi kurulmasını sağlayabileceğini

öngörülmektedir.
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understanding and loving support. To them I dedicate this thesis.

The financial support of the Scientific and Technical Research Council
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Chapter 1

Introduction

In this thesis, we handle recognition and understanding of behavior using au-

tomated decision schemes based on visual inputs. The proposed methods share

the general characteristics of automated behavior analysis methods such as ob-

jectivity and precision among others. In addition to those, they offer advantages

due to the particular capabilities of the visual capturing method and the data

gathered visually.

Automated schemes prevail over the manual evaluation methods in several

respects. The primary quality of automatic analysis tools lies in their objectivity

through experimenter-independent analysis and decision opportunities. They

can also withstand cumbersome experimental conditions, such as long durations.

Moreover, by excluding manual labor, they eliminate human error providing more

precise results in comparison to the conventional evaluation schemes. In addition

to its accuracy, the data is also suitable to enable drawing inferences. From a

behavioral analysis point of view, this enables definition and identification of

various types of actions, which are otherwise very hard to describe in accurate

terms with reliable integrity. This permits precise quantification of behavioral

characteristics and definition of analytically detectable and tractable features.
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Moreover, automatic analysis offers the possibility of employing various kinds of

sensors and capturing devices, which in turn allows detection and tracking of

different sorts of actions and behavioral attributes.

We use only visual inputs obtained from simple web cameras. The proposed

vision-based behavior analysis methods offer additional opportunities due to the

input media. One of additional favorable features is due to the low-cost and easy

implementation of the equipment. Such apparatus become smaller in size in re-

cent years and offer higher quality. Moreover, they are widely used and already

established in various settings ranging from home security to public surveillance

applications. Their application scopes can be readily extended by courtesy of

easy incorporation with computer processing. Video capturing provides percep-

tion of the environment close to human perception. This fact proposes advantages

in particular regarding artificial intelligence applications and enables design of

reasonable decision mechanisms, which mimic human reasoning.

In this thesis, we make use of these favorable features of automated visual

behavior analysis and propose several methods that operate on a wide scope

ranging from animal behavior to human behavior. We present our work in two

main parts, where Part I is dedicated to animal behavior analysis for drug screen-

ing purposes and Part II is dedicated to human behavior analysis for attention

resolution.

Part I of this thesis investigates locomotor behavior of lab animals with partic-

ular focus on drug screening experiments. For this purpose, an effective behavior

analysis tool, which discriminates locomotor activity changes with respect to

administered psychotropic drugs, is described.

The proposed method has two main components, consisting of

• representation of locomotor activity in terms of feature vectors, and

3



• classification of features with respect to drug types.

For behavior representation, locomotor activity is expressed as spatial measure-

ments of cumulative distance traveled and mean instantaneous speed. Feature

vectors, which summarize the spatial distributions of these parameters, are em-

ployed in classification stage in order to match the test subjects and the drugs.

Our proposed vision-based behavior discrimination method presents numer-

ous advantages over the previously described vision-based drug identification

tools. Some contributions that come forth are

• elimination of manual labor, and mistakes due to subjectivity of the exper-

imenter,

• formulation of locomotor activity changes in response to pharmacological

manipulation,

• summarization of these behavior alterations in terms of feature vectors,

• significantly high detection rate.

These observations indicate that due to its superior capability of detecting dis-

criminative behavioral alterations in response to pharmacological manipulations,

the proposed system proves very useful in behavioral and neuropharmacological

studies as well as in drug screening and toxicology studies.

Part II of the thesis investigates analysis of behavior in humans, with specific

focus on visual attention. In investigation of human behavior, attributes relating

interests, intentions, goals, and desires, have been an area of growing interest

to many researchers. The significance of these factors lies particularly in the

fact that they constitute some very important components of natural commu-

nication and continuous interaction. Thus, resolution of attention emerges as a

fundamental paradigm in that respect.
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Therefore, we propose a method to resolve attention fixation points visually.

In order achieve robustness and resilience as well as continuous progress, we first

identify relevant cognitive skills in humans and then mimic them on a digital

platform.

Among all cognitive skills relevant for attention, resolution of gaze direction

emerges as a prominent one. Moreover, in estimation of gaze direction, eye

locations and head pose are recognized as two principal factors. Therefore, we

design a method for gaze direction estimation inspired by the natural composition

of these principal factors. A 3D model based head pose estimation method

is described along with an isophote based eye localization scheme. Then we

incorporate these methods in a unified framework, improving the accuracy and

extending the operating range of both modules.

It has been shown in literature that neither head pose nor eye locations do

not describe the gaze direction completely [85]. Therefore, a Gaussian process

regression is applied to interpolate gaze direction from the derived parameters.

In addition to this, a bottom-up feature-based saliency model is employed to

improve the gaze direction estimates. Subsequently, the attention fixation points

are assessed by analyzing the restricted visual field indicated by the gaze direc-

tion.

The described attention resolution mechanism proves very useful in under-

standing of human behavior from an attention point of view. Hence a human

robot interaction scenario is considered to be a suitable practical implementa-

tion. Establishment of natural communication and maintenance of continuous

interaction between a human caregiver and a robotic agent is shown to be facili-

tated immensely by the proposed attention resolution method. In our application

framework, a human caregiver selects and attends to objects among several al-

ternatives and the embodied agent resolves attention fixation points identifying

the attended objects with the proposed method.
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We demonstrate our system on a number of recordings and conduct interclass

evaluations as well as intraclass evaluations verifying the extensive generalization

capabilities of our method. Our results suggest that rapid gaze estimation can

be achieved for establishing joint attention in interaction-driven robot commu-

nication as well.

The organization of the thesis is as follows. In Part I, discrimination loco-

motor activity changes based several psychotropic agents is studied. Chapter 2

discusses some previous work undertaken in this field. Chapter 3 gives details

about the experimental setup and the experiment protocol, whereas Chapter 4

explains the derivation of behavioral characteristics and summarization of those

using feature vectors. Chapter 5 discusses the performance of the proposed

method by presenting the classification results. In Part II, human behavior is

studied from an attention perspective. Chapter 6 mentions some previous work

relevant for our problem. Chapter 7 presents the attention resolution experiment

scenario and the experimental setup. The details of the head pose estimation

and eye localization methods are given in Chapter 8, where Chapter 9 explains

the incorporation of these to get the final object center location and attention

fixation point estimates. Chapter 10 presents the experimental results and the

discussion section.

Index Terms: Behavior analysis, motion tracking, head pose estimation, eye

localization, attention resolution, joint attention modeling, classification.
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Part I

Vision-Based Animal Behavior

Analysis for Drug Screening
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The term drug screening in general refers to a vast collection of iterative

experiments on drug discovery and development. The pharmacological profiles of

newly developed drugs are determined through these biological assays at several

stages including molecular, cellular, organ system and the whole organism levels.

Whole animal studies, which we undertake in this thesis with particular focus on

visual behavior analysis, constitute a part of whole organism level tests together

with human clinical trials.

Although the present essential objective of whole animal tests is derivation

of intermediate inferences for the effect of the drugs on organisms and disease

models, the statutory obligation is introduced mainly for protection of the people

in clinical trials and later stages. Compulsory animal tests are enforced basically

after the Diethylene glycol tragedy in the United States. In 1937, a chemical

similar to antifreeze was added to a sulfa drug labeled “Elixir of Sulfanilamide”

to make the medication more palatable to children. In the absence of any animal

testing, terminal effects had gone unnoticed, resulting in more than 100 casu-

alties. In response to this tragedy, the U.S. congress required safety testing of

drugs on animals prior to general market release. The scope of drug screening

on animals has later been significantly extended as a consequence of subsequent

incidents similar to the Diethylene glycol tragedy.

In spite of the restricted scope of this thesis to the visual experiments, in

pharmacokinetics, whole animal studies refer to a broad set of ADME-Tox tests,

which is an acronym for absorption, distribution, metabolism, excretion and

toxicity. All these tests are subject to extensive and strict regulations that may

vary in different countries across the world. In this regard, most authorities

aim to restrict the number of times individual animals may be used, the overall

numbers used, and the degree of pain that may be inflicted without anesthetic.

Experiments on vertebrate animals considered in this thesis are subject to the
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regulations of the local ethical committee of Faculty of Medicine of Hacettepe

University [25].

Providing that these ethical reservations are fulfilled, we focus on experi-

ments investigating behavioral alterations induced by psychotropic agents. Vi-

sual observation process is one of the primary analysis methods in this kind of

experiments. As a matter of fact, until today such behavioral effects have been

observed and discriminated in general by skillful authorities without any autom-

atized auxiliary equipment. However, this process is quite troublesome due to

several factors. To begin with, it may be very time consuming and laborious

depending on duration of the experiment and the monitored agent. Moreover,

errors arising from the human factor are inevitable in most cases. Finally, a

precise quantification of the observed features is very hard to obtain relying only

on bare visual perception.

We thus aim to design and implement an automatic tool that will help the

medical authorities in investigation of behavioral alterations in such experiments.

The proposed analysis method is suggested to facilitate the process immensely

in several respects. First of all, human error is eliminated. The flexibility to

design different sorts of experiments, which otherwise may cost extensive labor

of human experts, is propounded. Furthermore, accurate evaluation of locomotor

activity measures is offered.

In that respect, we first study certain well-surveyed psychotropic agents.

Thereby, we aim to point out to the discriminative behavioral features, which may

be associated with these agents. By re-deriving inferences on activity changes,

which have already been designated by medical authorities, we intend to vali-

date the effectiveness of the proposed tool. Therefore, the suggested tool can be

affirmed as an auxiliary instrument in investigation of unknown substances or

newly developed drugs.
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In our experiments, we considered four systematically well-known psy-

chotropic drugs, namely amphetamine, cocaine, morphine, and diazepam. Cer-

tain doses of these agents are known to induce particular effects on laboratory

mice. These effects are formulated in quantitative terms, which are derived using

the path covered by the mice, and further utilized in automatic classification of

locomotor activity.

Our experiments are designed to grasp visual cues concerning locomotor ac-

tivity changes. The mice are observed in an open-field arena and their activity

is recorded for 100 minutes by a simple surveillance camera. For each animal

the first 50 minutes of observation is carried out as the drug-free period. Each

animal is then exposed to only one drug by intraperitoneal injection with either

amphetamine or cocaine as the stimulant drugs or morphine or diazepam as the

inhibitory agents. The arena is divided into virtual grids and the number of

visits (sojourn counts) to the grids is calculated along with instantaneous speeds

within these grids. The spatial distributions of sojourn counts and instantaneous

speeds are utilized in construction of the feature vectors, which are fed to the

classifier algorithms for the final step of matching the animals and the drugs.

We determine the animals that are drug-treated with a success rate of 96%. In

sorting the data according to the increased or decreased activity, we achieve 92%

accuracy. In the last stage, the method differentiates the type of psychostimulant

or inhibitory drugs with a success rate of 70% and 80%, respectively.

The outline of the Part I of the thesis is as follows. Chapter 2 summarizes

some relevant studies to our objectives. In Chapter 3, experimental setup and

the formation of the database are explained together with the outline of the al-

gorithm. The motion tracking algorithm, sample tracking results as well as some

inferences about the drug effects and the steps of the proposed hierarchical clas-

sification algorithm are presented in Chapter 4. A discussion of the performance

of the algorithm and some conclusions are presented in Chapter 5.
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Chapter 2

Related Work

Behavioral studies in biological research are mostly based on the observation and

evaluation of motor activity of animals in experimental models. In that respect,

discrimination of variations in the locomotor activity is particularly important.

A system, which is capable of detecting behavioral alterations in response to

pharmacological manipulations, could prove very useful in behavioral and neu-

ropharmacological studies, as well as in drug screening and toxicology applica-

tions. As yet, a wide variety of methods has been described for investigating

motor activity.

One of the early works, which investigates rodent behavior focuses on mice,

hamsters and rats, which suffer from chronic fatigue syndrome [15]. In order to

monitor the activity of test subjects, force sensors located are at the bottom of

the cage. In addition to these, an infrared photo beam, which detects and counts

the turns of the running wheel, is employed.

A suitable arrangement of these infrared sensors is termed as photo beam ap-

paratus. The photo beam apparatus can be a regarded as a conventional method

in investigation of locomotor activity. It is based on the principle of generating

a signal when an animal interrupts the infrared light. A coherent configuration
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of the infrared sensors can register movements in the desired directions, so that

horizontal and vertical locomotor activity, area entries, and the occurrence of dif-

ferent activities, such as rearing, can be monitored. Due to its rich capabilities,

the standard photo beam apparatus is used for recording motor activity for pre-

clinical drug evaluation in numerous studies [14, 22, 74, 88]. The study of Drai

et al. is worth mentioning, where they demonstrate the effects of amphetamine

and phencyclidine in rats employing data measured by a standard photo beam

tracking system [30].

Continuous-wave Doppler radar (CWDR) is used as an alternative to photo

beam apparatus [71]. In [7] and [8], Austin et al. employ CWDR, to classify

behavioral activation in rodents. Multilayer feed-forward neural networks, which

are fed with the power spectrum estimation and root mean square values of these

signals, classify them into exploring, grooming, and behavioral stillness classes.

Aside from force sensors, infrared photo beam and CWDR, video data has

started to be used in tracking of rodent motion in recent years [69, 97]. The

responses against therapeutic interventions and genetic mutations as well as be-

havioral responses to psychoactive drugs are observed on video data in visual

terms. Computer systems utilizing suitable software are employed to analyze

these video sequences in order to evaluate the animal behavior.

Automated visual observation and evaluation of locomotor activity presents

significant advantages over the previous methods. Locomotor activity is incorpo-

rated within phenotype, which is very hard to quantify. However, the proposed

method provides a reliable way of recording and a precise means of evaluation

of locomotor activity. Besides, this evaluation is not prone to any operator bias.

In contrast to bare visual observation, video tracking may also perform pattern

analysis on a video sequence and derive quantitative measures for the behavior

of interest [69].
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In his work on motion tracking in medical imaging, Coatriex divides the vi-

sion based observation approaches into two classes, namely, boundary based and

region based approaches [23]. Boundary based methods rely on active contour

modeling and free-form curve-fitting. They give successful results in the absence

of restrictions on shape and motion type, but fail in tracking the newly appearing

objects and face instability problem. On the other hand, region based approaches

make use of the information from an entire region, which makes them give robust

results leading to a more stable system.

According to this classification of tracking approaches, the method described

in this thesis can be characterized as region based. Another region based ap-

proach belongs to Zurn et al. [107]. The algorithms defined in [107] for light

and dark cycle behavior analysis of rodents are simplified in [108] and a sin-

gle algorithm is suggested for both cycles. Automated observation using video

tracking is particularly suitable for recording locomotor activity. Activity is

expressed as spatial measurements of distance traveled, speed, and accelera-

tion [19, 29, 83, 84]. Andrews et al. investigate rodent behavior using path and

speed data [4]. Smoothing operation on path data is followed by construction

of a Gaussian Mixture model for the speed curve. Expectation maximization

optimizes the parameters of a two-element mixture model, which is is sufficient

for classifying motion into two categories of lingering and progression.

One of the late works belongs to Branson et al. where they handle a social

scenario and describe a method for tracking the motion of three mice in a cage

from side view video [17]. A simple foreground/background labeling is done, so

as to overcome the occlusion problem. After thresholding the difference between

the current frame and the background model, a two-element Gaussian Mixture

model is applied onto the mouse images in order to detect any possible occlusions.

The mice involved in occlusions are labeled to be foreground/background mice by

using depth order heuristics. By optical flow estimation the location of the mouse
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in the background is estimated and therefore continuous tracking is achieved.

In a recent study Shih and Young reported a combination of an accelerometer

and video camera system to simultaneously measure vibration and locomotion

activity and compare the effects of amphetamine and pentobarbital on mice [80].

This study aims developing an automated system for recording and analyzing

the locomotor activity of mice in response to pharmacological manipulation. We

present a video tracking method which utilizes an algorithm to detect and dis-

criminate drug responses elicited by diverse pharmacological groups. In order to

test the efficiency of the proposed method we employed typical pharmacological

agents with well-described behavioral effects and carried out several experiments

for discriminating the video recordings of the test animals. In the next chap-

ter, we present details concerning the video dataset and give an overview of the

proposed algorithm.
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Chapter 3

Materials and Outline

This chapter elaborates on the details of the experimental procedure. In addition,

formation of the dataset and the general characteristics of the psychotropic drugs

are briefly discussed. We note that the methods and the procedures described in

this chapter have been approved by the ethics committee of Hacettepe University

with issue number 2008/71-4 [25]. The experiments are carried out together

with Dr. Yıldırım Sara, Dr. Rüştü Onur, and Dr. Emre Esen of Department of

Pharmacology of Hacettepe University and details of part of this study has been

published in [103].

3.1 Experiment environment

3.1.1 Animals

The test subjects are chosen from among healthy adult male Swiss-albino mice

weighing 30-35g . Mice are housed in groups of three per cage in a temperature-

controlled room (23±1◦) with a relative humidity of 45−70%. They are kept in a

12h:12h light/dark cycle (illuminated between 18.00 and 06.00) with unrestricted
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access to food and water. Each test subject is exposed to a single drug. None of

the mice has been to an arena or used in any kind of experiment before.

3.1.2 Drugs

The psychotropic drugs of amphetamine, cocaine, morphine, and diazepam are

dissolved in saline and injected to the animals intraperitoneally. D-Amphetamine

hydrochloride, and diazepam were obtained from Sigma Chemical Co. (USA),

whilst cocaine hydrochloride and morphine hydrochloride were obtained from

Etablissements Roques, France and Verenigde Pharmazeutische Fabriken, Hol-

land, respectively.

All injections were given intraperitoneally in a volume of 10ml/kg dissolved

in saline. The common effects of the drugs are listed below:

• Amphetamine is a prescription stimulant which is used in the treatment

of attention-deficit hyperactivity disorder. The effects could include de-

creased appetite, increased stamina and physical energy, involuntary bodily

movements, hyperhidrosis, hyperactivity, jitteriness, tachycardia, irregular

heart rate, hypertension, and headaches.

• Cocaine is a potent central nervous system stimulant. The signs of stim-

ulation are hyperactivity, restlessness, increased blood pressure, increased

heart rate, and euphoria.

• Morphine acts directly on the central nervous system and relieves pain. In

the management of severe pain, no other narcotic analgesic is more effective

or superior to morphine.

• Diazepam is a benzodiazepine derivative drug. It is commonly used for

treating anxiety, insomnia, alcohol withdrawal, and muscle spasms. It may
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Table 3.1: Abbreviations, expansions and sample numbers.
Abbreviation Expansion # of

Samples

N Drug-Naive 24
T Drug-Treated 24

I Activity Increasing 12
R Activity Reducing 12

A Amphetamine 6
C Cocaine 6
M Morphine 6
D Diazepam 6

also be used before certain medical procedures to reduce tension and anx-

iety, and in some surgical procedures to induce amnesia.

Henceforth, the drug sets are denoted with the initial letter of the drug name,

i.e., with A, C, M , and D for amphetamine, cocaine, morphine, and diazepam,

(see Table 3.1). For each drug, six test subjects are used. From the common

drug effects, it is clear that certain doses of amphetamine and cocaine have stim-

ulating effects, and thus the corresponding 12 samples are grouped into activity-

increasing type of drugs, which is denoted by I in Table 3.1. Morphine and

diazepam are in the set of activity-reducing type of drugs, designated with R.

The combination of sets I and R constitute set of drug-treated samples, indi-

cated by T , where the corresponding drug-naive videos of the same test subjects

are contained in set N . The distribution of sample numbers and organization of

the dataset are summarized in Table 3.1.
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3.1.3 Open field experiments

The arena is an open field of 0.45m× 0.45m with glass barriers (see Figure 3.1).

The black sheet on the base helps to detect the location of the albino test sub-

ject by employing the color contrast. A CCD camera, which is an adjustable

surveillance camera (Fly WC-OML300, China), is positioned at a height of 0.6m

at the top of the cage and is connected to a personal computer. Illumination is

obtained by means of an incandescent lamp of 40W, which is positioned next to

the camera, and providing a homogeneous illumination on the arena.

Figure 3.1: Experimental setup.
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3.1.4 Experiment protocol

Experiments are performed according to a regular time schedule, namely between

09.00 and 15.00, in the weekdays except Monday, which is the weekly purification

day of the vivarium.

A neat experiment environment is adapted throughout the series of experi-

ments. The laboratory is purified from any odor or sound, which can lead to

interfering effects. Moreover, the room is completely dark apart from the single

illumination source positioned above the arena.

The test subjects are handled with great care. Before the experiment, mice

are taken one at a time from their standard home cages, weighed and marked.

Then animals are transferred to the open field apparatus and as they explored,

video sequences are recorded at a frame rate of 10fps.

Each animal is used only once and the concerning video sequences are

recorded in two following sessions. In the first session, baseline activity of the

mice is recorded for 50 minutes without drug administration. Immediately after

this session, animals receive an intraperitoneal injection of amphetamine, co-

caine, morphine, or diazepam and are placed back into the arena for another 50

minutes. Initial 10 minutes of each session were discarded. During this period

animals resumed their baseline locomotor activity following manipulation.

3.2 Outline of the method

The proposed method is composed of two main building blocks, namely repre-

sentation and classification of behavior (see Figure 3.2).

So as to achieve a comprehensive and yet simple representation, we need

to draw only those features that indicate the distinctive behavior alterations
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induced by the psychotropic agents. For this purpose, we propose to use the

traveled distance and instantaneous speeds of test animals. This requires tracking

of motion and derivation of features from the tracked path. Therefore, motion

tracking and feature extraction are recognized as two sub-blocks of behavior

representation as indicated in Figure 3.2.

The inferences about the behavior of the subject are summarized in the fea-

ture vectors comprehending the behavioral distinctions due to the administered

psychotropic agents. Subsequently the feature vectors are fed to the classifiers

and an hierarchical scheme is applied resolving the drug properties in a gradual

manner. In what follows, we elaborate on the details concerning these opera-

Figure 3.2: Outline of the method.

tions. The motion tracking algorithm is introduced in Chapter 4 together with

sample tracking results and inferences about the drug effects. In addition to

these, the two classification schemes are described in detail. The performance of

the algorithm and some conclusions are presented in Chapter 5.
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Chapter 4

Behavior Representation and

Classification

The pertinent information reserved in locomotor behavior alterations is suggested

to be summarized by a vector with certain number of quantified attributes. This

requires, to begin with, interpretation of locomotor activity by medical author-

ities on bare visual observation. The benefit of this process is two-fold. First

of all, the nature of discriminative changes in behavior are drawn forth. Sec-

ondly, we make sure that the well-surveyed drugs considered in the experiments

induce effects that are in line with the expected results. Thereby, the possibility

of overlooking any undetected medical disorders in mice is eliminated and it is

ascertained that the videos qualify to be processed further.

Provided that this condition is satisfied, the embedded information is

tractable to be formulated based on the visual feedback from the skilled observers.

The first step in behavior representation is motion tracking. The derived path

information is examined once more by the pharmacologists and it is affirmed that

the initial feedback based on bare visual observation agrees with the outcome of
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the tracking phase. Subsequently, the feature vectors are derived with a special

focus on locomotor activity changes indicated by the medical experts.

This chapter elaborates on the details of motion tracking and feature extrac-

tion processes. Details of background model and morphological operations are

described in Section 4.1, whereas sample tracking results and related inferences

are discussed in Section 4.2. The hierarchical classification scheme is explained in

Section 4.3. The details concerning derivation of feature vectors are elaborated

on in Section 4.4.

4.1 Motion tracking algorithm

The motion tracking algorithm relies on background subtraction and threshold-

ing. The background image BG is recorded prior to the experiment just before

the test subject is released into the arena. In order to get the region occupied

by the test subject on the video image, a difference image is calculated for each

frame of the video Fn, where n = 1, . . . , N and N is the total number of frames

in that particular video [32]. In addition to this, a clipped difference image Dn

is formed so as to avoid any reflections of the test subject on the glass barriers

of the arena,

Dn(i− h1 + 1, j − h2 + 1) = Fn(i, j)− BG(i, j),
∀i, j, n, h1 ≤ i ≤ h2, w1 ≤ j ≤ w2, 1 ≤ n ≤ N,

where h1, h2, w1, and w2, determine the borders of the arena. Since the camera

and the arena are both stationary, h1, h2, w1, and w2 are constant for the whole

video sequence.

To elicit the exact image of the test subject, the clipped difference image Dn

is thresholded with a suitable bound. Subsequently, a series of morphological

operations are carried out so as to eliminate any disturbances on the thresholded

image due to possible bumps on the floor.
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Let γ be the threshold and let the thresholded image be in the form a matrix

Xn, each entry of which is formed according to,

Xn(i, j) =







1 if Dn(i, j) > γ

0 if Dn(i, j) < γ

∀i, j, n, 1 ≤ i < h2 − h1, 1 ≤ j < w2 − w1, 1 ≤ n ≤ N.

The thresholded image Xn is enhanced through a series of morphological opera-

tions. First of all, the regions with an insignificant extent, which do not lie close

to a large blob, are squeezed out. Then the unconnected blobs, which are in close

proximity, are combined. Following these morphological operations, images such

as the one presented in Figure 4.1 are obtained. Here the location of the test

subject is designated as the center of mass of the white region. In order to grasp,

Figure 4.1: Center of mass for an example frame.

the temporal evolution of behavioral changes in a piecewise fashion, a number

of consecutive frames are grouped and processed in the described manner. By

convention, for this kind of drug-screening experiments, the video is processed in

non-overlapping bins of 40 seconds. For our case, this follows,

Bk = {X(k−1)L+i; 1 ≤ i ≤ L}, 1 ≤ k ≤
⌊

N

L

⌋

,

where the bin Bk is a set of enhanced video frames, L = 40×fps as fps stands

for the frame rate and b.c is the floor operator. Denoting the center of mass of
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the test subject in the ith thresholded image of the kth bin as pik, a sequence of

center of mass locations Pk concerning bin Bk is formed as,

Pk = {pik; 1 ≤ i ≤ L}, , 1 ≤ k ≤
⌊

N

L

⌋

,

where pik = (xik, y
i
k).

Connecting the points pik to pi+1
k , we obtain the path graphs concerning five

different bins as in Figure 4.2, which illustrates sample paths for drug-naive and

amphetamine-, cocaine-, morphine-, and diazepam-treated test subjects. The

(a)

(b) (c)

(d) (e)

Figure 4.2: Example paths of (a) drug-naive, (b) amphetamine-, (c) cocaine-,
(d) morphine-, (e) diazepam-treated test subjects along 40 seconds.

set of all path graphs in the dataset is examined by medical authorities and the

validity of the dataset is confirmed once more.
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4.2 Inferences from the motion tracking results

Prior to the identification of the psychotropic drugs injected to the test subjects,

we need to clarify several points. First of all, the drug-naive videos need to be

shown to qualify to be compared to the drug-treated cases. Thereby, any bias

due to stress and injection pain or the possibility of placebo effects are elimi-

nated. The activity following saline injection is studied. Six mice are injected

with saline and the covered path is calculated for that purpose. The cumulative

traveled distance curves are observed to overlap before (i.e., baseline) and after

the injections (see Figure 4.3-(a) inset). So discomfort of injection and placebo

effect are inferred not to induce behavioral alterations in terms of the investi-

gated attributes. Therefore, untreated baseline activity is shown to qualify to be

compared to the stimulated locomotion.

Subsequently, we proceed by examining drug induced behavior. The cu-

mulative traveled distances in Figure 4.3 reveal that amphetamine and cocaine

increase locomotor activity compared to the pre-drug control period, while mor-

phine and diazepam inhibit locomotion. However, further distinctive properties

are inherent within both increased and decreased locomotor activities.

Stimulant drugs segregate mainly in terms of spatial distribution of activity

on the arena. Amphetamine administered animals prefer to move along the

edges of the arena, while cocaine-treated animals move throughout the arena

including the central reagents, displaying a motion of more distributed nature

(see Figures 4.6 and 4.7).

Morphine and diazepam inhibited locomotion display different characteristics

as well (see Figures 4.3, 4.6 and 4.7). Under the influence of morphine, the an-

imals remain sedated in one restricted area, generally located near the corners
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of the arena. Diazepam-treated animals remain sedated to a lesser extent, ap-

pearing slightly more active around the edges of the arena, with respect to the

morphine group.

(a) (b)

(c) (d)

Figure 4.3: Cumulative traveled distances before and after psychotropic drug
treatment for (a-inset) saline injection and, (a) amphetamine-, (b) cocaine-, (c)
morphine- and (d) diazepam-treated test subjects. (Data is expressed as the
mean cumulative distance traveled ± standard error of the mean (SEM) over the
40min of test period.)

In what follows, we give an account of summarization of the behavioral char-

acteristics discussed in this section. Thereby, the amount of handled information

is aimed to be reduced significantly.
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4.3 Classification scheme

The observations listed in Section 4.2 indicate that several groups of drugs in-

duce similar effects with inherent distinctions within the group. Based on this

remark, a gradual inference method is suggested to attain a more efficient deci-

sion mechanism.

Figure 4.4: Hierarchical classification.

A hierarchical scheme is thus described to differentiate the administered drugs

in a progressive manner (see Figure 4.4). In Step I, it is investigated whether the

test subject is exposed to any kind of drug or is exhibiting a drug-naive behavior.

If the video of question is detected to be drug-naive, no further investigation is

performed. If it is detected to be drug-treated, the drug effect is ascertained as

activity increasing or activity decreasing in Step II. Finally at the last step, taking

the previously resolved drug characteristics into account the drug is detected.

Since these three steps utilize similar attributes from various view points,

different feature vectors are defined for each step. The following section describes

the formation of the feature vectors employed in each of the three steps of this

hierarchical classification scheme.
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4.4 Formation of feature vectors

Section 4.2 reveals that there are several variations in behavior on certain regions

of the arena. For quantifying these distinctions, we accommodate the floor of

the arena into a Λ×Λ grid-like structure. Let X be a particular video frame. A

square grid, guv, covers the following region on X :

guv(i, j) = X((u− 1)λ+ i, (v − 1)λ+ j),

∀i, j, u, 1 ≤ i, j ≤ λ, 1 ≤ u, v ≤ Λ,
(4.1)

where λ is the number of pixels along one edge of guv. The grids guv are grouped

based on the similarity of behavior on certain regions of the arena as corner, edge,

and central regions. The boundaries are as indicated in Figure 4.5. Corners are

denoted by C1, C2, C3, C4, and each of them covers ε×ε many grids. Edges are

denoted by E1, E2, E3, E4 covering ε × (Λ − 2ε) many grids each. The central

region with number of grids (Λ− 2ε)× (Λ− 2ε) is denoted by M.

0 ε Λ−ε Λ

ε

Λ−ε

Λ

 

 

C
1

C
2

C
3

C
4

E
1

E
2

E
3

E
4

M

Corner

Edge

Centre

Figure 4.5: Locations and borders of three main regions.

The behavior of the test subject in each of these regions is investigated in

terms of two measures, sojourn count and mean instantaneous speed. For a

particular grid, sojourn count is defined as the number of visits to that grid,
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and the mean instantaneous speed is the mean value of the displacement vectors

originating from that grid. The set of center of mass locations falling into grid

guv is,

πuv = {pik : pik ∈ guv, ∀i, k, 1 ≤ i ≤ L, 1 ≤ k ≤
⌊

N
L

⌋

},
∀u, v 1 ≤ u, v ≤ Λ.

It follows that the sojourn count ψuv of grid guv equals the number of elements

of the set πuv

ψuv = C(πuv), ∀u, v 1 ≤ u, v ≤ Λ.

where C(.) denotes the cardinality of a set. For evaluating mean instantaneous

speed, we first need to obtain the displacement values. The displacement of the

test subject from ith frame to the (i+ 1)st frame of the kth bin is denoted by ζ ik.

A displacement vector ζ ik is derived from the coordinate vector Pk as follows

ζ ik =
∣

∣pi+1
k − pik

∣

∣ , ∀i, k, 1 ≤ i ≤ L− 1, 1 ≤ k ≤
⌊

N

L

⌋

.

This can also be regarded as a scaled version of the instantaneous speed of the

test subject. Since the coordinates are determined at equal time intervals, ζ ik×fps
is the mean instantaneous speed. The set of displacements originating from the

grid guv is denoted by ρuv and is given by

ρuv = {ζ ik : pik ∈ guv, ∀i, k, 1 ≤ i ≤ L− 1, 1 ≤ k ≤
⌊

N
L

⌋

},
∀u, v 1 ≤ u, v ≤ Λ.

The mean instantaneous speed for grid guv is denoted by δuv and is obtained by

calculating the mean value of the set ρuv and scaling by fps according to

δuv = µ(ρuv)fps, 1 ≤ u, v ≤ Λ,

where µ(.) denotes the mean value of a set.

The evaluation of sojourn count and mean instantaneous speed values are

presented in Figures 4.6 and 4.7, respectively. In Figure 4.6, the value on the z-

axis indicates the number of visits to the corresponding grids, i.e., sojourn count

for (a) amphetamine-, (b) cocaine-, (c) morphine- and (d) diazepam-treated test
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subjects. In Figure 4.7, z-axis represents the average of instantaneous speeds

that a particular test subject had when it left a grid.

One could infer similar results to those of Figure 4.2 by examining Fig-

ures 4.6 and 4.7. Both sojourn count and mean instantaneous speed of cocaine-

treated test subjects present a more distributed pattern compared to those of

amphetamine-treated test subjects. The figures indicate a clear difference in so-

journ count and mean instantaneous speed for morphine- and diazepam-treated

subjects as well. A morphine-treated test subject displays more activity in com-

parison to a diazepam-treated test subject.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.6: Representative samples of the distribution of sojourn counts prior
to (left column) and after (right column) administration of psychotropic drugs
(a-b) amphetamine, (c-d) cocaine, (e-f) morphine and (g-h) diazepam.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.7: Mean instantaneous speeds of mice in each grid they visited prior
to (left column) and after (right column) administration of psychotropic drugs
(a-b) amphetamine, (c-d) cocaine, (e-f) morphine and (g-h) diazepam.
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A feature vector contains information on sojourn count and mean instanta-

neous speed of a test subject on corner, center, and edge regions of the arena.

The aggregate information for the corners and edges are obtained by aligning and

adding the corresponding portion of the sojourn count and mean instantaneous

speed matrices

ψC = ψ(C1) + ψ(C2) + ψ(C3) + ψ(C4),

δC = δ(C1) + δ(C2) + δ(C3) + δ(C4),

ψE = ψ(E1) + ψ(E2)
T + ψ(E3)

T + ψ(E4),

δE = δ(E1) + δ(E2)
T + δ(E3)

T + δ(E4),

ψM = ψ(M),

δM = δ(M),

where for each Cl the matrices ψ(Cl) and δ(Cl) are defined by

ψ(Cl) = [ψij ] and δ(Cl) = [δij ], (i, j) ∈ Cl.

ψ(El) and δ(El) are defined similarly for l = 1, . . . , 4.

4.4.1 Feature vectors for Step I of HC

The activity in regions C, E, and M is expressed in terms of the mean and

standard deviation of the sojourn count and mean instantaneous speed. Thus

the feature vectors for each region are

φI(C) = [µ(δC) σ(δC) µ(ψC) σ(ψC)],

φI(E) = [µ(δE) σ(δE) µ(ψE) σ(ψE)],

φI(M) = [µ(δM) σ(δM) µ(ψM) σ(ψM)],

where functions µ(.) and σ(.) give the mean and standard deviation of the in-

dicated values. This follows that the feature vector ΦI of a particular video for

classification Step I is,

ΦI = [φI(C) φI(E) φI(M)]T ,

which is the concatenation of the feature vectors for three regions.
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4.4.2 Feature vectors for Step II of HC

In this step, the change induced by the drug in the sojourn count and mean

instantaneous speed is investigated. Let the classifier at Step I label the input

feature vectors ΦI as ΦI
N and ΦI

T for the drug-naive and drug-treated recordings,

respectively.

If the test subject is detected to be drug-treated at Step I, then the difference

of the feature vectors of Step I is calculated and fed to the second step of HC as

input

ΦII = ΦI
T − ΦI

N .

The classifier processes ΦII and labels it either as ΦII
i or as ΦII

d , depending on

whether the detection is “activity increasing” or “activity decreasing”.

4.4.3 Feature vectors for Step III of HC

This step of the classification scheme aims at differentiating between

amphetamine-, cocaine-, morphine-, and diazepam-treated test subjects.

Amphetamine-Cocaine classification

If Step II classifier labels ΦII as ΦII
i , then Step III classifier should decide whether

the test subject is amphetamine- or cocaine-treated. This is done by training and

testing the classifier with the same feature vectors of Step II but with different

labels.

Morphine-Diazepam classification

If Step II classifier labels ΦII as ΦII
d , then Step III classifier should decide whether

the test subject is morphine- or diazepam-treated.
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Since morphine and diazepam both inhibit locomotor activity, unlike to the

previous classification steps, only a small part of the arena provides behavioral

information. We focus on the grids on which sojourn count of test subject are

higher. If the maximum of the sojourn count appears at the grid gu∗v∗ , we focus

on an η × η sub-matrix around grid gu∗v∗ . The sub-arena, denoted by r∗, is the

set of the following grids

r∗ = {guv : u∗ −
η

2
≤ u ≤ u∗ +

η

2
− 1, v∗ − η

2
≤ v ≤ v∗ +

η

2
− 1}.

A procedure similar to the one illustrated in Figure 4.5 is applied to this sub-

arena. The sub-arena r∗ is divided into 9 sub-regions, r∗ij , of equal size, similarly

to Figure 4.5, where 1 ≤ i, j ≤ 3. Thus, r∗ij is given by

r∗ij = {guv : u∗ − η
2
+ (i− 1)η

3
≤ u ≤ u∗ − η

2
+ iη

3
− 1

v∗ − η
2
+ (j − 1)η

3
≤ v ≤ v∗ − η

2
+ j η

3
− 1

1 ≤ i, j ≤ 3, 1 ≤ u, v ≤ Λ}.

The sojourn count and mean instantaneous speed matrices for these sub-regions

are formed according to,

ψ(r∗uv) = [ψij ], δ(r
∗
uv) = [δij ]. (i, j) ∈ r∗uv, 1 ≤ u, v ≤ 3.

Similarly, corner, edge, and center regions, r∗C , r
∗
E , and r∗M , are formed by

grouping the sub-regions. The sojourn counts and mean instantaneous speeds

are calculated by adding the corresponding portions of sojourn count and mean

instantaneous speed matrices as,

ψr∗
C
= ψ(r∗11) + ψ(r∗13) + ψ(r∗31) + ψ(r∗33),

δr∗
C
= δ(r∗11) + δ(r∗13) + δ(r∗31) + δ(r∗33),

ψr∗
E
= ψ(r∗12) + ψ(r∗21) + ψ(r∗23) + ψ(r∗32),

δr∗
E
= δ(r∗12) + δ(r∗21) + δ(r∗23) + δ(r∗32),

ψr∗
M
= ψ(r∗22),

δr∗
M
= δ(r∗22).
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The formation of the feature vectors for corner, edge, and center parts are carried

out in exactly the same manner as in Section 4.4. For instance, the feature vector

for the corner part is given by,

φr∗C
= [µ(ψr∗C

) σ(δr∗C ) µ(ψr∗C
) σ(ψr∗C

)]T .

Similarly for the edge and the middle parts. The feature vector for the third

classification step ΦIII is the concatenation of the feature vectors for all parts,

i.e., r∗C , r
∗
E , and r

∗
M ,

ΦIII = [φr∗
C
φr∗

E
φr∗

M
]T .

Finally the classifier processes ΦIII to label it as morphine- or diazepam-treated.

4.5 Classifiers

In classification step, Linear Discriminant Classifier (LDC) and Support Vector

Classifier (SVC) are used [31]. LDC employs linear discriminant functions in

classification, where SVC is based on support vector machines [2]. The details

about these classification algorithms are given in Sections 4.5.1 and 4.5.2.

4.5.1 Linear discriminant classification

Linear discriminant analysis looks for a function that gives the most efficient

direction for discrimination, namely linear discriminant function [12]. Let x

be a feature vector. A linear discriminant function is a linear combination of

components of a vector x and can be written in the form

g(x) = wTx+ b,

where w is the weight vector and b is threshold weight.

Let ci be a class, where i = 1, . . . , C. Denoting the linear discriminant func-

tion associated with class ci as gi, a feature vector x is assigned to ci if the
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Figure 4.8: Two examples of linear discriminant function for the same binary
classification problem.

following condition is satisfied

gi(x) > gj(x) ∀j 6= i

In a binary class classification case, if the decision surface is a hyperplane, g(x)

is linear. The orientation of the decision surface is determined by the vector w

and location is determined by b. Figure 4.8 illustrates a two class classification

problem. Two possible linear discriminant functions are shown. The first one is

not able to provide an efficient discrimination while the second achieves a more

satisfactory separation.

4.5.2 Support vector classification

Among all hyperplanes that separate the given classes, there exist a unique hy-

perplane, which gives the maximum margin of separation. The highest margin

of separation implies that the distances from the hyperplane to the nearest data

points in the separated classes are maximized [79]. The margin, measured per-

pendicularly to the hyperplane, equals 2
‖w‖

. Support vectors are employed in

finding this particular hyperplane, making margin of separation maximum [37].
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Given a set of training examples and class labels, (x1, y1), . . . , (xn, yn) ∈ R
d×

{±1}, the goal is to find a classifier function f : R → {±1} such that f(x) = y

will correctly classify new patterns. There exist a class of hyperplanes that

separate the two classes [79]

(w · x) + b = 0, w ∈ R
d , b ∈ R,

corresponding to decision functions

f(x) = sign((w · x) + b).

To construct the optimal hyperplane, the following optimization problem is de-

fined:

minimize 1
2
‖w‖2

subject to yi((w · xi) + b) ≥ 1, i = 1, . . . , n.

The solution to this minimization problem can be obtained using quadratic pro-

gramming techniques. The solution vector, then, becomes,

w =

n
∑

i=1

αiyixi.

for some αi i = 1, . . . , n. In this case, it is obvious that the solution is the

summation of a subset of training examples. The training patterns, which have

at least one nonzero αi, are called the support vectors. Support vectors lie on

the margin and carry all the relevant information. The value of b is calculated

using

αi(yi((w · xi) + b)− 1) = 0,

Any one of the support vectors satisfy the equation above. Replacing the previ-

ously found w and one of the support vectors, one can solve for b.

As an example, consider the binary classification problem depicted in Fig-

ure 4.9. In this case, the stars are separated from the balls using a hyperplane.

The optimal separating hyperplane is orthogonal to the shortest line connect-

ing the convex hulls of the two classes and it intersects it half way between the

classes.
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margin
Class A

(w.x)+b<−1

Class B

(w.x)+b>1

Separating hyperplane

(w.x)+b=0

Figure 4.9: Implementation of SVM for a binary classification problem.
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Chapter 5

Performance

This chapter discusses the performance of the proposed method at each stage

of the hierarchical classification scheme described in Chapter 4. A series of

experiments are carried to investigate the performance in training and test stages

separately.

Training performance is described by how well the classifier learns the char-

acteristics of the classes. While exploring training performance, the classifier

is trained with a number of training examples and then tested with exactly the

same set of patterns. The evolution of classification performance against training

set size is observed by increasing the size of the training set gradually. It is then

investigated whether a classifier is able to apprehend the class properties or not.

If the training performance turns out to be satisfactory, then the classifier is said

to be convenient for solving the problem of interest.

Test performance indicates how well the classifier performs when new pat-

terns are investigated for class membership. While measuring test performance,

the classifier is trained with a number of training patterns and then tested by

new patterns. The number of training patterns is increased step by step and

the classifier is tested by the rest of the dataset at each step. As we increase
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the number of training examples, the classification performance is expected to

increase provided that there exists a certain pattern in the data and settle down

around a steady state value. In this manner, we see how large a data set suffices

to describe the classes thoroughly. We can check whether our dataset is large

enough to comprehend the properties of all different kinds of class members.

In addition to this gradual scheme, a leave-one-out (LOO) cross-validation

method is applied as well. As a matter of fact LOO is a special case of the gradual

exploration pattern, where the test set size is one, and the rest of the dataset

is used as training patterns. That is to say, LOO uses a single observation as

the validation data and the remaining observations as the training data. This

procedure is repeated such that each observation in the dataset is used once

as the validation data. For LOO classification, we check whether the classifiers

mislabel the inputted feature vectors (items) consistently. In some cases, not all

of the items in a class present alike characteristics. This causes mislabeling in a

consistent manner among the classifiers. Such misclassification is considered not

to be attributed to the classifiers. In the particular experiments carried out in

this work, the reason for such kind of errors may be originating from the age,

weight, or metabolism of the mice.

We present in Sections 5.1, 5.2, and 5.3, the evolution of training and test

performance with respect to varying number of training samples. The graphs

presented in these sections indicate the average success rate calculated by taking

the mean of all possible combination of training and test set pairs. In addition

to this, the minimum and maximum success rates are indicated by the vertical

lines in Figures 5.1, 5.2, 5.3, and 5.4.
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5.1 Evolution of training and test performance

in Step I of HC

Figures 5.1-(a) and 5.1-(b) show training performance for classes N and E with

LDC classification scheme, while Figures 5.1-(c) and 5.1-(d) present training

performance for the same classes with SVC classification. These figures indicate

that both classifiers are able to grasp the class characteristics with notable success

rates. Thus, the classifiers do qualify to be used in the test phase. Figures 5.1 (e-

h) illustrate evolution of test performance with respect to increasing number of

training samples with a similar organization to Figures 5.1 (a-d). As expected,

test performance increases as the number of training samples increase. Moreover,

the figures indicate that it settles down in general to values around 80%-90% for

number of taining samples more than 10.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.1: Evolution of (a-d) training and (e-h) test performance for Step I
of HC. Figures (a) and (b) indicate the detection rates in training phase with
LDC for drug-naive and drug-treated test subjects, where Figures (c) and (d)
are organized similarly for SVC. Figures (e-h) are have a similar arrangement for
test performance.
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5.2 Evolution of training and test performance

in Step II of HC

The evolution of performance is investigated in a similar manner to Section 5.1

and the results are presented with the same organization as in Figure 5.1. The

training performance results presented in Figures 5.2 (a-d) prove that the LDC

and SVC classifiers are able to apprehend the class properties with a success rate

of more than 90%. Due to the specific focus of Step II of HC, the sizes of the

training and test sets reach half as much of Step I. Nonetheless, for increasing

number of trainig samples, the success rate in general reaches over 80%.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.2: Evolution of (a-d) training and (e-h) test performance for Step II
of HC. Figures (a) and (b) indicate the detection rates in training phase with
LDC for activity increasing and activity decreasing type of drugs, where Fig-
ures (c) and (d) are organized similarly for SVC. Figures (e-h) are have a similar
arrangement for test performance.
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5.3 Evolution of training and test performance

in Step III of HC

This section presents training and test performance for Amphetamine-Cocaine

and morphine-diazepam classification with similar organization to Sections 5.1

and 5.2.

The evolution of training performance in Figures 5.3 (a-d) and 5.4 (a-d)

indicates the limited size of the number of training patterns is not enough to

comprehend the class properties extensively. Therefore, we expect that increasing

number of training samples will not have an obvious effect in the improving test

performance. Nevertheless, we investigate test performance and find results that

are in line with the inferences from an examination of training performances.

Figures 5.3 (e-h) and 5.4 (e-h) indicate deficiencies due to the limited number of

feature vectors.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.3: Evolution of (a-d) training and (e-h) test performance for
amphetamine-cocaine classification. Figures (a) and (b) indicate the detection
rates in training phase with LDC for amphetamine- and cocaine-administered
test subjects, where Figures (c) and (d) are organized similarly for SVC. Fig-
ures (e-h) are have a similar arrangement for test performance.
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(c) (d)

(e) (f)

(g) (h)

Figure 5.4: Evolution of (a-d) training and (e-h) test performance for morphine-
diazepam classification. Figures (a) and (b) indicate the detection rates in train-
ing phase with LDC for morphine- and diazepam-administered test subjects,
where Figures (c) and (d) are organized similarly for SVC. Figures (e-h) are
have a similar arrangement for test performance.
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5.4 LOO classification performance

The outcomes of LOO classification are presented in a confusion table, which

indicates success and failure rates in terms of the predicted (assigned) and actual

(true) classes. Each row of the table represents the instances in a predicted class,

while each column represents the instances in an actual class. Table 5.4 gives

a visualization of the confusion table with the designation of each cell. From

Table 5.1: Designations of cells of confusion table.
Predicted Class

Positive Negative

Positive True False
Actual Positive Negative
Class Negative False True

Positive Negative

Table 5.2: LOO with (a) SVC and (b) LDC classifiers for Step I of HC.
Assigned Class
N T

True N 0.96 0.04
Class T 0 1

Assigned Class
N T

True N 0.92 0.08
Class T 0 1

(a) (b)

Tables 5.2-(a) and (b), taking into account the number of test patterns, we

conclude that there are 2 false-positives for LDC and 1 false-positives for SVC.

Going back to the videos, it turns out that one video appeared as false-positive

for both of the classifiers. From Tables 5.3-(a) and (b), number of false-positives

Table 5.3: LOO with (a) SVC and (b) LDC classifiers for Step II of HC.
Assigned Class
I R

True I 0.92 0.08
Class R 0.08 0.92

Assigned Class
I R

True I 0.83 0.17
Class R 0.08 0.92

(a) (b)

for LDC and SVC are 2 and 1, respectively. There are no common mistakes
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among these false-positives. The number of false-negatives for both LDC and

SVC is 1 and the misclassified video sequence turns our to be the same for both

classification methods. As seen in Tables 5.4-(a) and (b), the number of false-

Table 5.4: LOO with (a) SVC and (b) LDC classifiers for Amphetamine-Cocaine
classification in Step III of HC.

Assigned Class
A C

True A 0.67 0.33
Class C 0.17 0.83

Assigned Class
A C

True A 0.5 0.5
Class C 0.17 0.83

(a) (b)

negatives is 3 and 2 for LDC and SVC, respectively. Both false-negatives of SVC

are among the false-positives of LDC. There is 1 false-positive for both of the

classifiers and it is common. There are 2 false-negatives for LDC and 1 for SVC

Table 5.5: LOO with (a) SVC and (b) LDC classifiers for Morphine-Diazepam
classification in Step III of HC.

Assigned Class
M D

True M 0.83 0.17
Class D 0.17 0.83

Assigned Class
M D

True M 0.67 0.33
Class D 0.33 0.67

(a) (b)

from Tables 5.5-(a) and (b). The one false-negative of SVC appeared also among

the ones of LDC. The number of false-positives are 2 and 1 for LDC and SVC,

respectively. The video that turned out to be false-positive in SVC classification

is assigned to the wrong class in LDC classification as well.

5.5 Discussion

This section provides a detailed interpretation of the experimental results pre-

sented in Sections 5.1- 5.4. We first walk through the performance rates at all

stages of the HC and comment on the results for each experiment set. Based
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on these, we discuss the competence of the dataset and on probable causes of

misclassification. Finally, we provide a comparative evaluation of performances

of SVC and LDC classifiers.

The experimental results presented in Sections 5.1- 5.4 provide a comprehen-

sive outlook for the efficiency of the proposed method. The discrimination of

drug-naive and drug-treated animals is obtained with considerably high success

rates in Step I of HC. Although the baseline activity of mice displayed variations

among the groups, it is observed that over 96% of drug-naive animals are labeled

correctly. The proposed method also displayed 92% accuracy in Step II of HC,

where the drug-treated animals were sorted according to their increased or de-

creased locomotor activities. The proposed scheme matches the animals and the

drugs correctly with reasonably high success rates, in cases, where both of the

drugs yielded quite similar cumulative distance and mean instantaneous speed

curves. As an example, for Amphetamine-Cocaine classification in Step III of

HC, the cumulative distances traveled and mean instantaneous speed values are

influenced in the same direction by the administered drugs. Nonetheless the algo-

rithm achieved 70% success rate in drug-animal matching. Similarly, the correct

classification rate of Morphine-Diazepam classification is still around 80% despite

the comparable effects of the drugs. Finally, the conclusion of the hierarchical

classification scheme has an accuracy of 70− 80%. The efficacy of the proposed

feature vectors and the proposed classification scheme is thus ascertained with

the findings from these performance experiments.

The competence of the dataset for such kind of drug identification exper-

iments is another question that we need to answer. In the training phase of

Steps I and II of HC, the classifiers are observed to learn the characteristics of

all classes reliably and quickly. This indicates that the class characteristics are

represented by the feature vectors in an extensive and precise manner. There-

fore, 24 mice per group is concluded to yield sufficient discrimination capabilities
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at Steps I and II of HC. However, in Step III neither the training performance

nor the test performance results present a clear evolution with varying number

of training samples. This is due the fact that the six feature vectors for each

drug type is not able to represent the class characteristics extensively. However,

the performance of proposed method can be improved by introducing additional

data.

Since the dataset is shown to represent the class properties for Steps I and

II of HC, we can also comment on the convenience of the SVC and LDC clas-

sification schemes for these stages of HC. When the performance evaluations

presented in Sections 5.1,- 5.4 are examined, it is observed that SVC and LDC

are capable to resolve the distinctions between the classes considered in Steps

I and II. Nonetheless, several cases of misclassification occur. When we have a

closer look at these cases, it is observed that feature vectors, which are labeled

with a wrong label by one classifier, are usually mislabeled by the other classifier

as well. This consistent mislabeling indicates that the feature vectors and the

locomotor activities of the test animals have a dissimilar character compared to

the rest of the group. This finding is also confirmed by the medical authorities by

examining the locomotor activities, distance and speed curves of these animals.

Both classifiers are inferred to be suitable for the solution of this problem. It

should be noted that SVC and LDC do not perform equally well in classification.

In most cases SVC is observed to perform better than LDC.

In conclusion, the feature vectors and classifiers used in our study proved

to be effective and sensitive enough to represent the behavioral characteristics

of the animals under the influence of psychotropic drugs. Future work includes

investigation of the parameters like bin size, number of grids on performance.

Moreover the results presented in Sections 5.3 and 5.4 indicate that a wider

dataset is needed to determine the efficiency of the proposed method at Step III

of HC.

52



Part II

Human Behavior Analysis for

Attention Resolution
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Automatic analysis of human behavior is a very broad research field with a

multidisciplinary nature associating, among others, cognitive science, artificial

intelligence, and natural language processing. Here, we restrict this broad scope

and discuss comprehension of human behavior only from an attention point of

view with an application in a human-robot interaction framework.

This narrows the scope of human behavior analysis to a large extent, yet still

leaves a considerably broad pursuit. Within this broad field, the identification of

behavioral attributes concerning interests, intentions, goals, and desires emerge

as the key elements of attention resolution. An efficient resolution of human

attention is enabled on a fundamental basis, provided that a profound integration

of these factors is achieved.

For the realization of such a system, a recent popular design approach is to

imitate the evolution of relevant elements of human comprehension. The advan-

tages of this design approach is multifaceted. It leads not only to an automatic

interpretation of human activity and behavior but also to a spontaneous gen-

eration of complement response. This introduces the capability of establishing

joint attention with humans as well as engaging into natural communication.

Moreover, perception of the world is achieved in a natural manner leading to

a flexible training scheme. The system learns from the interactions with envi-

ronment and humans. This results in robust systems resilient in unconstrained

settings. Taking these into account, we thus propose a system, that will com-

prehend and interpret human attention very efficiently. In order to reflect the

efficacy and the benefits of the evolutionary perspective to the fullest extent,

we consider naturally interacting robotic agents to be a suitable implementation

bed. On that account, developmental robotics, which adopts a mutual stand-

point of developmental psychology and robotics [5, 106], arises as a convenient

design paradigm.
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Developmental psychology suggests that, in order to establish social contact

and fulfill the desire for knowledge, infants get engaged in communication and

hence obtain joint attention with the caregivers. These social skills are observed

to improve gradually at primary stages of infancy. It appears that young infants

first follow the head movements of others, and only in time develop the ability

to follow the gaze direction [27]. Subsequently, infants learn to relate this in-

formation with attention [20]. With these lessons learned from developmental

psychology, the learning process of infants, as well as the evolution of auxiliary

skills that contribute to learning are utilized in training of intelligent agents.

Among these skills are those that relate to the construction and restructuring of

different types of memory, but also skills to actively explore the sensors and effec-

tors of the agent, and consequently, the environment. These cognitively inspired

developmental systems allow the experimenter to obtain naturally interacting

embodied agents with inherent evolution of communicative skills. These skills

are particularly important for developing language and communication, as well

as for imitation-based learning, which allows the experimenter to demonstrate a

behavior rather than explicitly design algorithms to produce the behavior in the

agent.

Recent models of imitation-based learning rely on Meltzoff and Moore’s ac-

tive intermodal mapping framework for action imitation learning [55]. Important

work in this area includes [38] and [82], which use Bayesian principles to explore

action spaces statistically, followed by gradual learning of action groups and

communicative preferences. In [39] a goal-based action model is used to classify

intentional actions in a controlled environment. The embodied agent extracts

a large number of visual features from the scene and by tracking the trajectory

of the experimenter’s hand, determines which of the predefined actions is be-

ing performed. As a common factor of most research in this area, visual cues

are extensively used for implementing working models on embodied agents, and
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the visual distinctions that can be perceived by the embodied agent serve as

affordances [56].

In experiments concerning human robot interaction, the learned structure of a

visual scene provides additional cues to the embodied agent in guessing the focus

of attention of the communicating party. Hence, most approaches incorporate

saliency as a part of the joint-attention system, and select appropriate saliency

measures that will indicate what is inherently interesting in the scene depending

on the application domain. When the saliency of a scene is determined, a visual

feedback controller provides motor control commands to direct the gaze of the

robot to a salient location, both for attending to the face of the experimenter

and to other objects in the environment.

The saliency can be a function of natural image statistics. For instance in

[67], a robotic system is described where the bottom-up saliency of a visual

scene is computed by color, edge, and motion cues. Top-down influences can

also be incorporated by modulating bottom-up channels, or by explicitly adding

dedicated saliency components. Faces are particularly important for the natural

interaction settings, consequently they are separately detected and made salient.

Considering the natural evolution pattern of interaction of infants, estimation

of the head pose and gaze direction of the communicating party together with

resolution of saliency are suggested to constitute primary visual skills necessary

for joint attention modeling. Like most other works in this field, [67] employs a

module that learns to associate facial appearance of the experimenter with angles

that specify its pose. However, our study underlines the distinction of head pose

and the gaze direction in particular. Inspired by the natural gradual develop-

ment pattern, an initial cylindrical head model based pose estimator assesses the

orientation of the head. The regression module transforms the estimated pose

into gaze direction. Subsequently saliency is computed in the prospective region,

ascertaining the point of attention fixation and segmenting the governing object.
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In Chapter 6, we give a detailed overview of the related studies conducted in

the last decade. Chapter 7 presents an outline of the proposed method in a mod-

ular framework. These modules are handled in Chapter 8 and Chapter 9. Finally,

performance of the proposed method is evaluated quantitatively in Chapter 10.
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Chapter 6

Related Work

In order to implement human-like complex social skills, one needs to develop

a “theory of mind” model (ToMM) from an intelligent agent design perspec-

tive [78]. This requires the decomposition of the communication process into

simpler cognitive skills, which can be implemented on an intelligent agent.

In this respect, the task based decomposition proposed by Scassellati presents

practical advantages with its functional modularity [77]. According to his hy-

potheses, the primary tasks are recognition, maintenance of eye contact, and

gaze following, which enable attention resolution and engagement into joint at-

tention. Subsequently, imperative and declarative pointing are considered to

permit feedback between the infant and the caregiver. Figure 6.1 presents the

analogy between the developmental stages of infant learning and ToMM, clas-

sifying previous works according to their user, motion and tracking domains.

When we examine the gaze following methods, we see that there are two

principal components, which determine the gaze direction to a certain extent.

These are head pose and eye locations. Thereby, we would first like to give

an overview of the recent models in head pose estimation and eye localization.
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Figure 6.1: Analogy between developmental robotics and ToMM, overview of
related work.

Subsequently, we present some integrated models for attention modeling based

on naturally inspired development patterns along with pose and eye location

estimation schemes.

6.1 Literature on head pose estimation

Throughout the years, different methods for head pose estimation have been

developed. The 3D model based approaches achieve robust performance and

can deal with large rotations. However, most of the good results are gained

in restricted domains, e.g. some systems only work when there is stereo-data

available [57, 76], when there is no (self-) occlusion, or when the head is ro-

tating not more than a certain degree [51]. Systems that solve most of these
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problems usually do not work in real-time due to the complex face models they

use [104]. However, if the face model complexity is reduced to simpler ellipsoidal

or cylindrical shape, this creates a prospect for a real-time system.

The head pose estimation techniques reported in the literature are based

mainly on two different approaches. These are active appearance models (AAM),

and cylindrical head models (CHM). AAMs employ a set of reference points to

track the head and estimate the pose, whereas CHM fits the face image onto a

3D model of the human head. AAMs have advantages over CHMs in terms of

computational complexity. However they are sensitive to the slight changes in

initialization and they are not robust against extreme poses. From this point of

view, there is a trade off between complexity and robustness.

The individual approaches for head tracking and pose estimation, have been

handled extensively in numerous studies. Here, we would like to address several

recent works, which propose joint approaches for head tracking and pose estima-

tion [60]. Matsumoto et al. [54] and Newman et al. [68] employ a stereo camera

system to obtain 2D feature tracking and 3D model adaptation for tracking and

pose estimation. Ba et al. [10] improve precision of pose estimate and accuracy

of head tracking by considering these as two coupled problems in a probabilistic

setting within a mixed state particle filter framework. They refine this method by

fusion of four camera views in [9]. Huang et al. propose to integrate a skin-tone

edge-based detector into a Kalman filter based robust head tracker and hidden

Markov model based pose estimator in [42]. Hu et al. [41] describe a coarse-to-

fine pose estimation method by combining facial appearance asymmetry and 3D

head model. A generic 3D face model and an ellipsoidal head model are utilized

in [91] and [3], respectively. In [58] an online tracking algorithm employing adap-

tive view based appearance models is proposed. The method provides drift-free

tracking by maintaining a dynamic set of keyframes with views of the head under

various poses and registering the current frame to the previous frames and the
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keyframes. Another AAM based scheme is described by Sung et al. in [87]. They

combine AAM with CHM to overcome its drawbacks like sensitivity against large

pose variations and initial pose parameters and problems of reinitialization. Sim-

ilar to [87], we would like to make use of the competent attributes of the CHM.

Instead of AAM, we propose using an eye locator in order to broaden the capa-

bilities of the system and improve the precision of individual tracking schemes

building a unified framework of modules working in tandem.

6.2 Literature on eye localization

Due to the swift advances in digital technology, eye location estimation has gained

considerable importance in recent years. Numerous works in the literature stud-

ied the development of systems which can estimate eye location for various sce-

narios. Our aim is to design a method that is capable of doing accurate eye

center localization and tracking in low resolution videos. In order to achieve

higher robustness, the method should be able to cope with difficult conditions

introduced by extreme head poses.

There are several methods proposed in the literature for eye center location

but their common problem is the use of intrusive and expensive sensors [13] and

the sensitivity to head pose variations. While commercially available eye trackers

require the user to be either equipped with a head mounted device, or to use

a high resolution camera combined with a chin rest to limit the allowed head

movement, the methods using image processing techniques are considered to be

less invasive and so more desirable in a large range of applications. Furthermore,

daylight applications are precluded due to the common use of active infrared (IR)

illumination used to obtain accurate eye location through corneal reflection. Non-

infrared appearance based eye locators [28, 50, 92, 93] can successfully locate eye

regions, yet have difficulties in dealing with non-frontal face conditions.
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The method used by Asteriadis et al. [6] assigns a vector to every pixel in

the edge map of the eye area, which points to the closest edge pixel. The length

and the slope information of these vectors is consequently used to detect and

localize the eyes by matching them with a training set. Cristinacce et al. [28]

use a multistage approach to detect facial features (among them the eye centers)

using a face detector, pairwise reinforcement of feature responses, and a final

refinement by using active appearance model [26]. Türkan et al. [92] use edge

projection [105] and support vector machines (SVM) to classify estimates of eye

centers. Bai et al. [11] use an enhanced version of Reisfeld’s generalized symmetry

transform [73] for the task of eye location. Hamouz et al. [34] search for ten

features using Gabor filters, use features triplets to generate face hypothesis,

register them for affine transformations and verify the remaining configurations

using two SVM classifiers. Finally, Campadelli et al. use an eye detector to

validate the presence of a face and to initialize an eye locator, which in turn

refines the position of the eye using SVM on optimally selected Haar wavelet

coefficients [21].

Very promising to our goals is the method proposed in [93]. This method

uses isophote (i.e., curves connecting points of equal intensity) properties to

infer the center of (semi-)circular patterns which represent the eyes. However,

the accuracy of the eye center location drops significantly in the presence of large

head poses. This is due to the fact that the eye structure is no longer symmetric

and thus the algorithm delivers increasingly poor performance. This observation

suggests that it is desirable to correct the distortion given by the pose so that the

eye structure under analysis preserves its symmetry properties. The results will

be improved considerably, assuming that there is a way to compensate for the

head pose so that we obtain a normalized image patch on which the eye center

locator is deployed.
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6.3 Literature on integrated head pose and eye

location estimation

Several approaches have been reported in the literature for estimating the head

pose, eye location and gaze. The authors of [54, 68] consider a tracking scenario

equipped with stereo cameras and employ 2D feature tracking and 3D model fit-

ting. The work proposed by Ji et al. [46] describe a real-time eye, gaze, and head

pose tracker for monitoring driver vigilance. The authors use IR illumination

to detect the pupils and derive the head pose by building a feature space from

them. Although their compound tracking property promote them against sepa-

rate methods, the practical limitations and the need for improved accuracy make

them less practical in comparison to monocular low resolution implementations.

The approach proposed in [87] is very relevant to our work. The authors

combine a cylindrical head model with an active appearance model approach to

overcome the sensitivity to large pose variations, initial pose parameters, and

problems of reinitialization. Similar to [87], we would like to make use of the

competent attributes of the cylindrical head model together with the eye locator

proposed in [93] in order to broaden the capabilities of both systems and to

improve the precision of each individual component.

6.4 Literature on attention modeling

A developmental learning model for joint attention is proposed in [63] from a

biological point of view. A neural network module is employed in modeling the

visual system of the robot, where the layers represent the input, retina, visual

cortex, and the output. However, in order to implement a learning scheme, which

truly mimics the cognitive development pattern of infants, one should rather go

beyond the biological properties. Nagai et al. [64, 66] propose a developmental
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learning scheme, which improves learning by passing through the ecological, geo-

metric, and representational stages of joint attention [20]. They further improve

their system by imposing non-supervised learning condition in an uncontrolled

environment, which they name as bootstrap learning [65].

These methods, however, are not particularly designed for interaction with

multiple people. Although a long training phase with an enormous dataset may

lead to user-independent joint attention mechanisms, this is not practically fea-

sible. Thus, a codebook of face images is generated by a self-organizing map and

sensorimotor mapping is obtained accordingly in [59]. To perform joint attention

with strangers, the robot generalizes its experiences with the caregiver by calcu-

lating the similarity between the input and the codebook vectors. Moreover, the

self-organizing map makes the learning time shorter for cases with a single care-

giver as well and lets the agent communicate with a human asynchronously [40].

The methods that we have mentioned so far treat the video frames as sub-

stantive images and omit the temporal connection. Humans, on the other hand,

utilize motion information besides static information such as posture and face

direction to infer about desires and intentions. For this reason, the robotic agent

described in [86] alternates its gaze between a human caregiver and the object

he attends by triggering motion using the cues introduced by the motion of the

human’s face. Besides triggering motion, [62] states that a realistic human-like

learning scheme should utilize motion information to estimate gaze shift. The

temporal relationship between the frames is expressed in terms of optical flow

vectors and thereby a coarse estimate for gaze shift providing initial motor output

to follow the gaze is obtained [61].

These approaches formulate visual attention based on the video frames em-

ploying the 2D information available. However, the common morphological char-

acteristics can be employed in the derivation of 3D information form the 2D visual

input. Since the perception of gaze direction depends to a large extent on head

64



pose [52], one can model the head of the caregiver as a 3D object and resolve

for the pose [60]. Hoffman et al. [38] employ an ellipsoidal model for human

head and the inferred head angles are used in the estimation of the gaze vector.

Saliency computation is performed around the estimated gaze incorporating the

instructor-specific priors [81].

These methods mimic early stages of cognitive development of infants, i.e.,

mainly 6 to 12 months. Reciprocal communication, which is a part of the later

stages, is achieved employing auxiliary modules such as person identification,

speech recognition and synthesis along with natural aligned gestures [43], mutu-

ally entrained body movements and complex eye movements in [70, 44, 47, 48].

In this study, we model attention mimicking the early stages of infancy in

robot learning and making use of the principals of developmental robotics. The

modules of the theory of mind model described by Scassellati [78] is implemented

from a robotic design perspective by integrating the eye localization method of

Valenti et al. [94] and Xiao et al. [98]. In this way, we solve for the gaze direction

and target depth. Subsequently, saliency is computed in the prospective region

and the attention fixation points are estimated.
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Chapter 7

Outline and Experiments

Estimating focus of attention receives a lot of interest for obvious reasons. Gaze

direction estimation is regarded as the primary determining constituent for that

purpose and has been used as a common supplementary component in numerous

studies. Therefore, we handle the problem from a gaze point of view and derive

attention fixation points accordingly.

In estimation of gaze direction, a popular approach is to employ the eye

locations and in particular iris information (see [35] for a recent overview of eye

and gaze models). However, this requires a decent view of the eye region and

in particular the 3D model based methods need a considerably high resolution

of the eye area [99]. However, the embodied agent is not sufficiently stable to

extract an accurate estimate of the gaze direction only by analyzing the eye

and iris area of the experimenter. On the other hand, the resolution of the input

video does not provide a sufficiently good image of the eye region. It is clear from

Figure 7.1, which illustrates the eye regions cropped from different experimenters’

frontal views, that one cannot make a reasonable estimate for gaze direction using

these patches. Furthermore, the experimenter does not always present a frontal

view with a distinct image of the eye region and the eye ball. In particular,
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gazing sideways changes the image of the eye drastically, making it very hard

to distinguish the direction. Therefore, instead of completely depending upon

eye and iris information, we make use of the eye region as a supplementary

constituent whenever it is available. Alternatively, we seek to determine the

gaze direction basically from head pose estimates, by making the assumption

that head pose is indicative of but not equal to the gaze direction. Consequently,

gaze direction is derived mainly from the head pose estimates through proper

regression and is enhanced with eye locations, when there is reliable information.

(a) (b)

(c) (d)

Figure 7.1: Eye regions for the four experimenters. (Approximately 15 × 25
pixels).

This chapter outlines the basic components of the described attention reso-

lution scheme. The experimental setup is detailed in Section 7.1, whereas the

organization of the main building blocks and the coupling in between is explained

in Section 7.2.
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7.1 Experiment environment

We performed a set of experiments to resolve human attention fixation points

and to model joint attention between a human caregiver and an embodied agent.

Considering all the design details given in Chapter 6, the embodied agent of

the Artificial Intelligence Laboratory of Boğaziçi University by Çetin Meriçli and

Tekin Meriçli [102] is used. This agent is designed to be used for service and

guiding purposes, is regraded as a suitable application platform (see Figure 7.2).

Figure 7.2: The robot platform used in the experiments.

The system is composed of three main components:
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• The Aldebaran Nao humanoid robot is the main interaction and animation

unit [1]. Aldebaran Nao is a 23′′ tall humanoid robot with 25-DOF in

total, two vertically aligned color cameras with 640 × 480 resolution, and

a 500Mhz Geode processor. A Linux based operating system is running on

the robot and pre-installed text-to-speech packages allow the robot generate

speech. In our design, we utilize the upper torso of the Nao robot and use

the Robotino robot to make the whole body wander around.

• The FESTO Robotino robot is used as the navigation unit [75]. Robotino

is a wheeled robot capable of moving omnidirectionally. It is surrounded

by 9 IR sensors and a bump sensor, and it has a 300Mhz processor. Also

a 5 meters range Hokuyo laser range finder is installed on the body of

the Robotino robot to have more accurate range data from the robot’s

environment.

• A laptop computer provides additional processing and and serves as a mon-

itoring unit.

The experiment scenario is the following. The experimenter stands in front of

a table, on which six objects are placed in a non-occluding fashion as in Figure 7.3.

The robotic platform, which is located at the opposite side in approximately 2

meters distance to the experimenter, has a view of this complete scene. As the

experimenter fixates his/her attention to one of the six objects by looking at

them in random order for a certain duration of time, it records the scene at a

frame rate of 15fps. Subsequently, the attention resolution algorithm, which is

detailed in Section 7.2, is employed by the robotic agent.

Eight experiments are carried out with the described scenario, where four

different experimenters provide two sequences each. In each of these eight exper-

iments, all of the six objects are attended for several seconds in a random order

at least for once. The video sequences are composed of 1804 frames in total

and they are recorded at 15fps frame rate. The ground truth for the attended
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Figure 7.3: The experimental setup, object indices and clustering schemes.

objects is obtained by manual annotation, whereas the ground truth for the gaze

direction follows as the slope of the line connecting the center of the annotated

object and the head center resolved by the CHM.

7.2 Outline of the method

Our proposed approach mimics the natural strategy of resolution of focus of

attention observed in infants. The basic steps of the proposed algorithm are

summarized in Figure 7.4.

The experimenter initially provides a frontal view of his/her face and initial-

izes a session of joint attention. This condition approximates the initialization

of natural communication between humans. In addition to that, it facilitates

the initialization of head pose and localization of eye centers. The first step is

detecting the face of the experimenter with the Viola-Jones algorithm [95]. Sub-

sequently, the eye locations are solved using a isophote based eye localization

method. The head pose of the experimenter is initialized in line with these re-

solved eye locations and resolved by adapting a 3D elliptic cylindrical model to
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Figure 7.4: Basic steps of the algorithm.

the face region. By applying pose update, which is derived using Lucas-Kanade

optical flow method, continuous tracking of head pose is maintained.

Two Gaussian Process (GP) regressors are employed in estimation of gaze

direction and the distance of the target object along the gaze vector from these

pose values. We stress the distinction between following the head pose and the

gaze direction itself. Most of the joint attention approaches in the literature

do not explicitly correct for the discrepancy between the head pose and gaze

direction, which is reported to be normally distributed with a mean of five degrees

in natural settings in [36, 90].

The two estimates concerning gaze direction and object depth are then proba-

bilistically combined to yield a coarse estimate for the center of the target object.

By pooling a number of estimates concerning corresponding frames, a more ro-

bust decision on the target is generated. The rough localization of the attended
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object is refined by a bottom-up saliency scheme, which also segments out the

target object. If the experimenter continues to maintain a certain head pose,

alternative target locations are eventually explored as a result of an inhibition-

of-return mechanism.
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Chapter 8

Head Pose Estimation and Eye

Localization

Head pose and eye location estimation are two principal components of human

attention resolution. In recent years, these problems have been studied individ-

ually in numerous works and several competent methods have been proposed for

each.

In this chapter, we employ two of these competent methods and exploit phys-

iologic characteristics of humans to build a basis for their nested architecture.

This incorporation improves the performance of the individual methods in a pro-

found integration framework. In this manner, we eliminate several shortcomings

of the independent methods, which come into picture under certain circumstances

like extreme poses. In addition to this, we introduce several enhancements, like

extension of the operating range and improvement of precision and reinitializa-

tion capabilities.

As discussed in Chapter 6 previous research indicates that cylindrical head

models and isophote based eye localization schemes are two prominent methods

in head pose and eye location estimation, respectively. For head tracking and
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pose estimation, we employ the method of Xiao et al. [98] and combine their

elliptic cylindrical model based pose estimator with the eye locator of Valenti et

al. [93]. A feedback mechanism is established between the two components by

evaluating the tracking quality constantly at each stage. As soon as it is detected

that the head pose estimation and eye localization results yield conflicting out-

comes, the tracking system is re-initialized and two modules are adjusted to get

in line with each other. In [94], the tracking quality of each component method

is shown to improve significantly within this unified framework.

The outline of the chapter is as follows. In Section 8.1, the details of head

tracking and pose estimation algorithm is is presented, Section 8.2 gives an

overview of the eye localization method. The integrated framework is described

in Section 8.3.

8.1 Head pose estimation

The cylindrical head model approach has been used in a number of studies [18,

51, 98]. Among those, the implementation of Xiao et al. stands out with its

superior performance [98].

Since the operational real-time requirement is imperative for the application

framework, a number of simplifying assumptions are made in the formulation

of the problem. The basic assumption concerns the morphological structure.

Namely, human head is modeled as an elliptic cylinder, with the actual width of

the head and the radii in line with the anthropomorphic measures [33, 98].

The Viola-Jones algorithm, which uses the Adaboost classifier with Haar

wavelet features searches for a face on video frames until one is detected [95].

Subsequently, the cylindrical head model is accommodated on the detected face

area. The pose of this 3D model on frame Fi is represented by a vector ~pi, which
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is a collection of rotation and translation parameters

~pi = [rix r
i
y r

i
z t

i
x t

i
y t

i
z]

T .

The initial values for these parameters are determined employing the initiation

condition of a session of joint attention. In our scenario, we describe this con-

dition as establishment of eye contact between the agent and the experimenter

with a fully frontal view of the experimenter’s face. Thus the pitch r0x, roll r
0
y,

and yaw r0z angles are all set to 0. The translations along x− and y− axes, tix,

tiy, are initialized in relation with the face region obtained by the Haar classifier

after a normalization with respect to the center point of the image. Moreover,

the depth of the head, t0z, which describes the distance of the head from the

camera, is set to an approximate fixed value.

As soon as the eye contact is established between the experimenter and the

embodied agent, the head pose is initialized as described and head tracking starts.

Meanwhile, the agent estimates the head pose and applies a regression scheme

on pose values to derive gaze direction. The estimation scheme is explained in

detail in Chapter 9. Thereby, real time tracking is maintained in addition to pose

and gaze direction estimation. Since the initial pose ~p0, is already determined

employing the initiation condition, any pose value ~pi+1, i ≥ 0, can be resolved

by simply updating the previous value ~pi [98]. An operator M is used to apply

the pose update, ~∆µi = [ωi
x, ω

i
y, ω

i
z, τ

i
x, τ

i
y, τ

i
z], on ~pi to derive ~pi+1

~pi+1 = M(~pi, ~∆µi),

which will be specified below. However one should note that a 2D image retrieved

from a video sequence is employed in derivation of pose values representing the di-

rection and orientation in 3D space. In order to cope with the ambiguity ensuing

from the dimensionality disparity, a suitable mapping needs to be defined. For

that purpose, we suggest using perspective projection and ray tracing through

a pin hole camera. By this means, the relation between the 3D locations of

the points on the cylinder and their corresponding projections on the 2D image
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Figure 8.1: Perspective projection, illustrated for three consecutive frames in
which the head moves and tilts.

plane is established (see Figure 8.1). The 3D coordinates of a set of points on

the frontal part of the cylindrical head model are ascertained with respect to the

reference frame. Any point p = [px py pz]
T on the elliptic cylinder is known to

satisfy the following equation,
(

px
ρx

)2

+

(

pz
ρz

)2

= 1, (8.1)

where rx and rz stand for the radii of the ellipse along x− and z−axes, respec-
tively. In order to get the coordinates of the points on the visible part of the

cylinder, the front region is sampled in anN×N grid-like structure on x−y plane

(see Figure 8.2). The corresponding depth values are obtained using ray tracing

technique, which traces the path of light through pixels in an image plane.

Let the starting point and the direction of the ray be q = [qx qy qz]
T and

d = [dx, dy, dz]
T , respectively. Let the point that the ray hits on the cylinder

be a point sampled at p = [px py pz]
T . If the ray is considered to travel for a

duration of t, then

p = q+ dt.

From the elliptic cylindrical model assumption, it follows that px and pz satisfy

Equation 8.1, so that,
(

qx + dxt

ρx

)2

+

(

qz + dzt

ρz

)2

= 1. (8.2)
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(a) (b)

(c) (d)

Figure 8.2: Cylindrical head model for several frames from four video sequences
with four different experimenters.

While passing through, the ray intersects the cylinder at entry and exit. Hence,

the quadratic Equation 8.2 has two roots. We consider the solution with the

smaller absolute value, as it indicates a point closer to the camera asserting a

visible point.

Let u = [ux uy]
T be a point on the image plane and p = [px py pz]

T be

the corresponding point sampled from the cylinder as in Figure 8.1. Figure 8.3

illustrates the side view of this setting by making a pin hole camera assumption

for the sake of simplification.

Using similarity of triangles in Figure 8.3, the following equations apply for

the relation between p and u,

px = pzux

fl
,

py =
pzuy

fl
,
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Figure 8.3: Pin hole camera model.

where fl stands for the focal length of the camera. This relation is summarized

by the perspective projection function P

P (p) = u,

by which we formulate the relationship between the 3D locations of the points

sampled on the cylinder and their corresponding projections on 2D image plane.

As seen in Figure 8.1, the cylinder is observed at different locations and with

different orientations at two consecutive frames Fi and Fi+1. This is expressed

as an update on pose vector ~pi by the rigid motion vector ~∆µi.

Let πi denote the 3D location of a point sampled on the cylinder on frame Fi.

The new location of the point at Fi+1 is found by applying the transformation

model, M, which is defined by a rotation matrix R corresponding to [ωi
x ω

i
y ω

i
z]

T

and a translation vector T = [τ ix τ
i
y τ

i
z ]

T as

πi+1 = M(πi, ~∆µi) = Rπi + T.

The location of the projected point ui+1 on Fi+1 is found by using the 2D para-

metric function F and applying the rigid motion vector ~∆µi, which summarizes

the motion between time instants ti and ti+1,

ui+1 = F(ui, ~∆µi).
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If illumination is assumed to be constant (i.e., if the intensity of the pixel I(u)

does not change between the images), then

I(ui) = I(ui+1) = I(F (ui, ~∆µi)).

Thus the rigid motion vector can be obtained by minimizing the difference be-

tween the two image frames,

min
(

E
(

~∆µ
))

=
∑

ui+1∈Ω

{I
(

F
(

ui, ~∆µi

))

− I(ui)}2,

where Ω stands for the set of points sampled on Fi, which are still visible on

Fi+1. The minimization problem is solved by Lucas-Kanade method [53],

~∆µi = −
[

∑

u∈Ω

(IuF ~∆µ)
T (IuF ~∆µ)

]−1
∑

u∈Ω

(It(IuF ~∆µ)
T ),

as Iu an It are the spatial and temporal image gradients [53]. Thus, the projection

of the point at time instant ti+1 can be expressed in terms of the 3D location of

the point at time instant ti and the rigid motion vector as,

ui+1 = P(M(pi, ~∆µ)).

The mapping is thus formulated in a comprehensive way, covering transforma-

tions from object space to image plane (P), image plane to object space (F) and

inter-frame motion (M).

The pose vectors, which are computed in the above manner, have a dis-

tribution as illustrated in Figures 8.4-(a) and 8.4-(b) for two exemplary video

sequences. As the pose distributions are modeled with Gaussians with diagonal

covariance matrices, the indicated regions in 3D come into view.

The clear distinction in the distribution of head pose angles concerning dif-

ferent objects supports the proposition that there exists a suitable regression

scheme to map the pose values to gaze directions.
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(a)

(b)

Figure 8.4: Pose distributions for two exemplary video sequences.
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8.2 Eye localization

The head pose estimation method described in Section 8.1 is incorporated with

the eye center localization method of Valenti et al. [93], which exploits the fact

that the eyes are characterized by radially symmetric brightness patterns. In

this respect, the computation of the eye center locations is obtained through the

curvature of the isophotes on an image frame. The curvature of the isophote

curves κ is given as,

κ = −L
2
yLxx − 2LxLxyLy + L2

xLyy

(L2
x + L2

y)
3/2

,

where the illumination function is denoted by L, and Lx and Ly stand for its

derivatives in the x and y directions. The displacement vector D(x, y) indicates

the distance between the estimated center of the circle and any point p on the

isophote curve,

D(x, y) = − {Lx, Ly}(L2
x + L2

y)

L2
yLxx − 2LxLxyLy + L2

xLyy
.

By using these parameters, an estimated center is calculated for any point on

the isophote curve together with the direction and orientation regarding this

center. These values are employed in the voting scheme described in [93] and a

center map is obtained for the video frame of interest. Since the pixels, which

correspond to the eye center locations, receive higher votes, they stand out in the

center map. Thereby, the left and right eye locations, El and Er, are resolved.

After the cylinder is initialized in the 3D space, the 2D eye locations are

detected on the first frame of video employing the described method. These

initial eye locations are considered as reference points for the following video

frames. They are projected onto the cylindrical head model and the concerning

depth values are calculated. The reference points are then used to estimate the

successive eye locations.
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8.3 Integrated head pose estimation and eye lo-

calization

The CHM head pose estimation and the isophote based eye localization methods

have advantages over the other previously reported methods. However, taken

separately, they face several drawbacks under certain circumstances. In [93], the

authors claim that the system is robust to slight changes in head pose. However,

it cannot cope with extreme head poses, since the eye regions is not semi-frontal

any more. On the other hand the CHM tracker might erroneously converge to

local minimas and might not able to recover the correct track in some cases. By

integrating the eye locator with the cylindrical head model we eliminate these

drawbacks. Instead of a sequential implementation of the two systems, a deeper

integration is proposed by comparing the transformation matrices suggested by

these interpenetrated systems. The eye locations and the head pose estimated

are adjusted in such a way that they lie in excellent agreement as it is outlined

in Algorithm 1.

Steps 1- 4 of Algorithm 1 refer to the initialization process, which is com-

posed of detection of face region, reference eye locations, and initialization of the

cylinder model and pose values. As soon as a face image is detected, the video is

processed frame by frame (Line 4). For each frame initially the head is assumed

to preserve its previous location and pose(Line 6- 9). Subsequently the error in

the face region is compared to a certain threshold. If a significant difference is

observed, an iteration is carried out to resolve the pose update (Line 10). If the

difference is regarded to be insignificant, we go on processing the next frame.

The lines 11- 21 give details of pose update process using the Lukas-Kanade

optical flow method explained in Section 8.1. The lines 22- 31 checks whether the

resolved pose agrees with the new eye locations. The reference points are mapped

onto the cylindrical model and their locations are updated using the resolved pose
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vector. Subsequently, an area is sampled around the updated reference points and

a normalized canonical view is calculated according to the transformation matrix

coming from CHM tracker. The eye locations are ascertained on this normalized

eye region using a modified version of the method of Valenti et. al. [93]. The

main difference lies in the elimination of meanshift algorithm involved in the

voting process of [93]. Namely instead of using the meanshift algorithm [24] to

estimate the area with the maximum density of votes, the highest peak in the

center map, which is closer to the center of the eye region (therefore closer to

the reference eye location obtained by pose cues), is selected as estimated eye

center. In this way, the localized eyes can be considered to be optimal as long as

the CHM tracker is correctly estimating the head pose.

The cylinder is adapted on the new eye locations based on the rigid model

assumptions and the corresponding pose vector is calculated. If the condition

at Line 29 indicates that this pose vector is in close proximity to the one one

resolved by CHM, we go on processing the next video frame. Otherwise, we

apply an interpolation on the pose vectors and update the eye locations and the

transformation matrix M accordingly.

Thereby the cylindrical model is adjusted to an orientation recovering the

correct track. A modified version of the eye locator of [93] constantly verifies

that the eye location found by pose cues is consistent with the one obtained

without pose cues. Thus, as in [58], when reliable evidence (e.g., the eye loca-

tion in a frontal face) is collected and found to be in contrast with the tracking

procedure, the latter is adjusted to reflect this evidence. Therefore, the CHM

tracker and the eye locator interact and adjust their own estimations by using

each other’s information. This synergy between the two systems allows for an

initialization-free and self-adjusting system. In [94], a detailed discussion regard-

ing the performance of the proposed scheme is provided with a large collection

of experiments.
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Algorithm 1: Integrated head pose estimation and eye localization.

Input: Video sequence
Output: Head pose estimates and eye center locations
/* Initialize parameters */

- Detect face region [96]1

- Get initial eye locations [93], i.e. reference points El and Er2

- Initialize cylinder height and radii [33]3

- Initialize ~p0 as in Section 8.14

/* Iterate through all the frames */

for i← 0 to total frame number do5

- Set Ii+1 ← Ii ; /* Assume no intensity change */6

- Compute the image gradient 5Ii+17

- ~pi+1 ← ~pi ; /* Assume no pose change */8

- Initialize ~∆µ← [0, 0, 0, 0, 0, 0]9

while maximum iterations not reached ∨ ~∆µ < threshold do10

- Transform face region points p of Ii with M11

- Update and normalize face region ∀u12

- Calculate pz for ∀p ; /* Ray tracing */13

- px ← ux∗pz
fl

, py ← uy∗pz
fl

; /* Perspective projection */14

- Use inverse motion on p15

- u← P (p).16

- Compute T , Jacobian of M.17

- H ←∑

[

5Ii+1
∂T
∂p

]T [

5Ii+1
∂T
∂p

]

; /* Hessian matrix */
18

- ~∆µ← −H−1
∑
[ 5Ii+1

∂T
∂p

]T ∑[

Ii − Ii+1

]

19

- pi+1 ← pi ∗ ~∆µ ; /* Update pose */20

- M←M ∗ ~∆µ ; /* Update M */21

/* Verify the new eye locations in close proximity */

- Transform reference points Er and El using M22

- Remap eye regions to pose normalized view23

- D(x, y)← − { δI
δx

, δI
δy

}( δI
δx

2
+ δI

δy

2
)

δI
δy

2 δ2I

δx2
−2 δI

δx
δ2I
δxδy

δI
δy

+ δI
δx

2 δ2I

δy2

. ; /* See [93] */
24

- Vote for centers weighted by
√

δ2I
δx2

2
+ 2 δ2I

δxδy

2
+ δ2I

δy2
2
.25

- Select isocenter closer to the center of eye region as eye estimate26

- Remap eye estimate to cylinder reference frame27

- Get an alternative pose vector from eye locations28

if Distance between two poses > threshold then29

- Interpolate pose vectors30

- Update M31
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Chapter 9

Joint Attention Modeling

This chapter describes a transformation scheme that enables derivation of atten-

tion fixation points from the head pose estimates and a decision strategy together

with a segmentation method, which work in tandem to resolve the attended ob-

jects [100, 101, 102].

Before exploring a suitable regression scheme, one should search for reliable

indications, which indicate the feasibility of such a mapping. Hence we closely

examine the distribution of the pose angles illustrated in Figure 8.4, in relation

to the orientation of the objects in Figure 7.3. This comparative inspection

points to preservation of the topological connection between the localization of

the objects and corresponding head pose values. It is inferred that head pose and

gaze direction are closely associated permitting a transformation with reasonable

performance.

We also need to identify the factors that characterize the attention fixation

points precisely and then seek for a suitable regression scheme to derive those

from the head pose estimates. In that respect, gaze direction is considered as

the main identifying element of focus of attention. It is denoted with α and

is defined as the slope of the vector that connects the head center resolved by
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CHM and the center of the object of interest annotated by the user. The initial

location of the head center, p0

c
, can be updated at the ith video frame using the

pose corresponding pose vector ~pi. Subsequently the transformed location pi

c
is

mapped onto the image plane as,

P
(

pi

c

)

= ui

c
.

Let the center of the annotated object of focus for the ith frame be at oi

c
. Gaze

direction is formulated in terms of pi

c
and oi

c
as,

α = tan
ui

c
(y)− oi

c
(y)

ui
c
(x)− oi

c
(x)

However, gaze direction alone provides only a preliminary specifier, which is the

course that attention is channeled towards. In order to make a distinction among

the set points lying along this direction, depth of field needs to be determined.

For that purpose, we define object depth, δ, as the y coordinate of the object

center, i.e., oi

c
(y).

The intersection of these two factors, α and δ, gives an initial estimate for

the attention fixation points. Moreover, due to the fact that these estimates lie

on certain objects in our application scenario, we can employ saliency analysis

for the determination of attended objects. In the next section, we give a brief

overview of the regression process and Sections 9.2 and 9.3 elaborate on the

derivation of initial estimates and integration saliency computation.

9.1 Gaze direction and target depth estimation

The grouping of the pose angles in Figure 8.4 with respect to the target objects

reveals not only a clear clustering but also the nonlinear nature of the relation

between head pose and attention direction. Some approaches deal with this

issue by incorporating additional assumptions. For instance in [85], the focus of

attention is assumed to rest on a person, and the estimated head pose is corrected
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to select the closest person as the target of the gaze. However, this approach

cannot be applied to our scheme directly, due to the differences in the experiment

scenario. Therefore, we suggest to remedy this disparity thorough a nonlinear

formulation. For this purpose, we employ Gaussian process (GP) regression in

this study. By this means, the gaze direction and depth of the attended object

are interpolated from head pose estimates through a strict formulation rather

than an environment dependent compensation [72]. In what follows, we describe

details of GP regression, covariance functions, model selection, and adaptation

of free parameters.

9.1.1 Gaussian process regression

Let the variable x denote a pose vector and y denote the corresponding scalar

target value, which represents α or δ depending on the formulation. Our aim

is to explore the characteristics of the relation between x and y. The details of

the explicit association are disclosed adopting a Gaussian process model for the

underlying structure.

Assume that the target values y are obtained from the head pose estimates

x using a transformation f(.)

y = f(x). (9.1)

The transformation f is assumed to come from a distribution identified as a

Gaussian process so that it is completely characterized by the mean function

m(x) and the covariance function, k(x, x′)

f(x) ∼ GP (m(x), k(x, x′)),
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where

m(x) = E[f(x)],

k(x, x′) = E[(f(x)−m(x))(f(x′)−m(x′))],

and E[.] denotes the expected value [72]. For notational simplicity, let m(x) = 0

at all times, which could easily be achieved by applying an offset.

The observations are also postulated to be noisy, which makes the scenario

close to the real life settings. This may be regarded as accounting for the eye

movements by considering their effect as additive noise. This statement is for-

malized by extending Equation 9.1 as

y = f(x) + ε0, (9.2)

where ε0 stands for the independent and identically distributed (i.i.d.) white

noise with variance σ2
0. Suppose that we have a training set D with n observation

pairs,

D = {(xi, yi)|1 ≤ i ≤ n} .

As the inputs are aggregated in the matrix X , and the targets are collected in

the vector y, the entire information encompassed by D is

D = (X,y).

The observation set D is employed in training the Gaussian process regression

model. This means that model selection and optimization of parameters are

carried out utilizing the information provided by D. We adopt a Bayesian ap-

proach by which the conditional distribution of the targets given the inputs can

be resolved.

Suppose also that X is composed of n training samples and X? is composed

of n? test points. Hence one can state

f? ∼ N (0, K(X?, X?)).
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as K denotes the covariance matrix. The prior joint distribution of training

outputs y and the test outputs f? is then,





y

f?



 ∼ N



0,





K(X,X) + σ2
0I K(X,X?)

K(X?, X) K(X?, X?)







 .

The posterior distribution is obtained by restricting the prior joint distribution

to contain only those functions that agree with the observations. Hence, as the

prior is conditioned on the observations, we get,

f?|X,y, X? ∼ N (̄f?, cov(f?)),

where,

f̄? = K(X?, X)[K(X,X) + σ2
0I]

−1y,

cov(f?) = K(X?, X?)−K(X?, X)[K(X,X) + σ2
0I]

−1K(X,X?).
(9.3)

Since the mean prediction is a linear combination of the observations, Equa-

tion 9.3 is sometimes referred as the linear predictor [72].

9.1.2 Model selection

As mentioned in Section 9.1, our aim is to disclose the details of the relationship

between x and y, i.e., the structure of the Gaussian process f . In that respect,

it is commonly practiced to adopt a hierarchical approach. Let us assume that

at the uppermost level is the model structure H that f belongs to. One level

below, stand the hyper-parameters θ, which indicate the distribution of model

parameters. The model parameters are denoted with w and stand at the bottom

level.

The term model selection refers to discrete choices like model structure H
as well as optimization of hyper-parameters θ, since both of these problems are

treated in the same manner, i.e., using a Bayesian approach.
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The Bayes’ rule gives the posterior distribution at the bottom level, in terms

of the prior, likelihood, and marginal likelihood as follows,

p(w|y, X, θ,Hi) =
p(y|X,w,Hi)p(w|θ,Hi)

p(y|X, θ,Hi)
.

Here p(y|X,w,Hi) is the likelihood term, where p(w|θ,Hi) is the prior. The

evidence term, which is also termed as marginal likelihood, is,

p(y|X, θ,Hi) =

∫

p(y|X,w,Hi)p(w|θ,Hi)dw.

At the next stage of the hierarchical formulation we have,

p(θ|y, X,Hi) =
p(y|X, θ,Hi)p(θ|Hi)

p(y|X,Hi)
,

where,

p(y|X,Hi) =

∫

p(y|X, θ,Hi)p(θ|Hi)dθ.

At uppermost level we have

p(Hi|y, X) =
p(y|X,Hi)p(Hi)

p(y|X)
,

and the marginal likelihood is

p(y|X) =
∑

i

p(y|X,Hi)p(Hi).

This approach is employed together with k-fold cross validation scheme. This

means the dataset is split into k equal-sized disjoint sets. Validation is carried out

on one of these sets, while training is performed using the union of the remaining

k − 1 sets. This procedure is run k times, where at each run a different set is

considered as validation set.

Through the Bayesian model selection procedure, we determine the free pa-

rameters of the Gaussian processes with covariance functions as defined below.

The correlation between random variables at two different observations is

formulated using the correlation functions listed in Table 9.1. These are employed
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Table 9.1: Covariance functions.

Covariance function Expression
Independent σ2

0

Linear
D
∑

d=1

σ2
dxdxd

′

Rational quadratic
(

1 + r2

2αl2

)−α

Neural network 2
π
sin−1

(

2x̃T
∑

x̃′√
(1+2x̃T

∑
x̃)(1+2x̃T

∑
x̃′)

)

as indicators for dependencies in addition to the formation of the basis of rules

for interpolating observed values. In what follows, we list basic properties of

these covariance functions. Independent covariance function is used to express

the white noise term in the observations. It is assumed to come from a normal

distribution of N (0, σ2
0) and is of the form,

kc (x, x
′) = σ2

0.

For estimating depth, we consider a homogeneous linear kernel with the following

form,

kL (x, x
′) =

n
∑

i=1

σ2
i xixi

′,

where n is the number of observations. Consider a network with one hidden layer

and N units. It takes an input x and linearly combines the outputs of the units

with a bias b according to

f(x) = b+
N
∑

j=1

vjh(x; uj),

where vj ’s are the hidden-to-output weights, uj’s are the input-to-hidden weights,

and h(x; uj) is the hidden unit transfer function.
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Let b and vj ’s have zero mean and unit variance σ2
b and σ2

v , respectively, and

weights uj come from an iid distribution. Denoting the weights by w,

Ew[f(x)] = 0

Ew[f(x)f(x
′)] = σ2

b +
∑

j

σ2
v [h(x; uj)h(x

′; uj)]

= σ2
b +NHσ

2
vEu[h(x; uj)h(x

′; uj)].

Choosing the transfer function as the error function,

h(z) = erf(z) =
2

π
sin

z
∫

0

e−t2dt,

we obtain the covariance function as,

kNN(x, x
′) =

2

π
sin−1

(

2XT
∑

X ′

√

(1 + 2XT
∑

X) (1 + 2XT
∑

X ′)

)

,

where X = [1 x1 . . . xn]
T is the augmented input vector. If the covariance func-

tion is a function of r = (x− x̃), where x and x̃ is an input pair, it called an

isotropic function. Rational quadratic covariance function is a commonly-used

isotropic covariance function with the form

kRQ(r) =

(

1 +
r2

2αl2

)−α

,

As α l are positive, this can be seen an infinite scaled sum squared exponential

(SE) covariance functions, where SE covariance function has the following form,

kSE(r) = exp

(

r2

2l2

)

.

Parameterizing in terms of τ = l−2, β−1 = l2, we have

kRQ(r) =

∫

p (τ |α, β)kSE(r|τ)dτ.

9.2 Target object location estimation

In this section we present some initial results obtained by GP regression, in

comparison to an artificial neural network (NN) regressor [16].
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We first examine the details of the NN model. The regression of gaze di-

rection and object depth is carried out using a neural network of one hidden

layer. The input layer of the feed-forward artificial neural network receives the

three-dimensional estimated pose vector and maps this input to gaze direction,

represented by a single angle on the image plane. Therefore, we have an input

layer with 3 units and an output layer of one unit. Moreover there are 10 hidden

units. The learning rate is initialized to 0.1 and it decreases exponentially during

online training. Weights are initialized randomly from the (-0.5,0.5) interval. A

validation set is monitored for error decrease to prevent overfitting. The training

samples required for the supervised training of the neural network are obtained

by manual annotation of the target object location for each frame of the video.

We illustrate the improvement introduced by GP regression by presenting the

performance of GP and NN regressors for estimating each of the two identifiers

of attention fixation, i.e., gaze direction and target depth. Figures 9.1 and 9.2

illustrate the improvement introduced by GP regression in gaze direction and

target depth estimation, respectively, with respect to neural network regression.

In Figures 9.1-(a) and (b), it is observed that CHM underestimates the actual

gaze direction, while GP and NN regressions follow the ground truth with better

accuracy. Moreover GP regressor performs better than the NN regressor in gaze

direction estimation. In target depth estimation we observe a similar performance

pattern. From Figures 9.2-(a) and (b), it i clear that NN regressor has the

possibility of getting stuck at local minimas for some cases.

By imposing target depth estimation on gaze direction estimation, we obtain

attention directions and initial estimates for attended object as seen in Figure 9.3.

The vector is illustrated such that it starts from the head center, goes along the

gaze direction and ends at the point, where it reaches the estimated depth of the

object of interest. The end point of the vector is considered to be a reasonable

initial estimate for the attended object center. As we carry out this process for
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Figure 9.1: Improvement in gaze direction estimation introduced by GP regres-
sion, ground truth (GT), gaze estimation from neural network regressor and gaze
estimation from cylindrical head model for two video sequences from two different
experimenters.

each frame of an exemplary video sequence, we get the initial estimates of focus

of attention as presented in Figure 9.4.

There is of course a possibility to improve the results indicated in Figure 9.4.

For that purpose, we propose to position a Gaussian distribution around the
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Figure 9.2: Improvement in target depth estimation introduced by GP regression,
ground truth (GT), depth estimation from neural network regressor for two video
sequences from two different experimenters.

initial estimates and compute saliency within this window. We show that the

most salient in this window will yield a point that is closer to the actual object

center in cases of a deviated initial estimate.
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(a) (b)

(c) (d)

Figure 9.3: Estimated gaze direction and target depth via GP regression.

It does not however make sense to do this refinement at each frame, since

human eye does not focus on different points as frequent as the frame rate of

the video (15fps). We can turn this fact into a further enhancement by pooling

the initial estimates and computing saliency within the accumulated Gaussian

windows.

For determining the number of frames to be pooled, we make use of the

natural average rate of saccades. Since human eye makes three to five saccades

per second, we form bins of consecutive frames by considering 3 consecutive

frames to belong to the same bin. This corresponds to accumulating the gaze

information for 0.2 seconds, which is a reasonable suggestion in the light of the

natural rate of saccades.

The next parameter to determine concerning the Gaussian distributions is

their extent, i.e., their standard deviation. A fixed value is picked appropriately
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Figure 9.4: Initial estimates for object centers for an exemplary video sequence.

considering the sizes of the objects and the accuracy of estimation. Figures 9.5-

(a) and (b) illustrate the mean square error (MSE) for initial estimates regarding

gaze direction and target depth estimation, respectively. The mean of MSE

concerning gaze direction for the whole set of experiments is calculated to be

29.85 pixels, where the mean of MSE for target depth estimation is 18.47 pixels.

However, considering the sizes of the objects, we choose the standard deviation

of the Gaussian distributions as 25 pixels. Some resulting prospective target

regions illustrated in Figure 9.6 involve particular regions around the estimated

gaze, which retain image information and the rest of the visual field is suppressed.

9.3 Saliency model

The masked images, which are obtained by imposing a set of Gaussian distri-

butions on the video images, are used in saliency computation. Using saliency

to fixate on the interesting objects serves a two-fold purpose. First, it reduces

the uncertainty in the estimation of the gaze direction. In case of slight devi-

ations from the actual object center, saliency computation helps to correct the
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Figure 9.5: Mean square error for (a) gaze and (b) target depth estimation.

estimation. Second, saliency-based grafting compensates the discrepancy be-

tween intended motor commands and executed physical actions, an issue that is

particularly relevant for robotic implementations. The movement of the simu-

lated fovea effectively creates an object-centered coordinate system, which is a

precondition of parsimonious mental object representations.

For computing saliency in the prospective region, we employ the popular

bottom-up scheme proposed by [45]. Since the agent attempts to determine

the final estimation on the masked images, it is forced to attend to the salient

parts within this prospective region. The bottom-up scheme is based on the

feature integration theory of Treisman and Gelade [89]. Namely, it decomposes
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(a)

(b) (c)

Figure 9.6: Saliency computation and segmentation in the prospective region.

the saliency of a scene into separate feature channels, where the presence of illu-

mination intensity, colors, oriented features and motion are indicative of salient

locations in the scene. Each feature channel is separately used to determine a

feature-specific saliency map, which are then combined to a saliency master map.

The saccadic eye movements are simulated by directing a foveal window to

the most salient location, determined by a dynamic and competitive Winner-

Take-All (WTA) network [45]. Once a location is selected, it is suppressed by an

inhibition-of-return mechanism to allow the next most-salient location to receive

attention in the next saccade.

If there is more information available as to the experimenters intentions, or

an instruction history that can provide background probabilities with regards to

which objects are more likely to receive attention, these can be integrated into

the saliency computation in a top-down manner, by for instance modulating the

responses of individual feature channels appropriately. In [38], the probability

that an experimenter selects a particular object is learned by fitting a Gaussian
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mixture model on the pixel distribution. We do not model the top-down influence

at this stage, simply because in the absence of specific contextual models, this

additional information presented to the system would optimistically bias the

results.

100



Chapter 10

Experimental Results

This chapter presents the descriptions of the performance quantifiers employed

for our purposes, the details about the training and test schemes, and compar-

ative evaluation of performance rates of the proposed and modified methods.

The performance quantifiers are described in Section 10.1 and the features of

the training and testing processes are detailed in Section 10.2. Evaluation of

performance for the proposed scheme is provided in Section 10.3 in comparison

to the modified NN based method.

10.1 Quality measures

Quantification of performance is obtained in terms of two measures, Q1 and Q2.

While Q1 indicates at which rate an estimated center falls into the bounding box

of the target object of interest, Q2 shows the rate at which the estimated point

is at shortest distance to the true center.

Let ue denote the pixel locations of the estimated object centers for a set of

frames, which are labeled with object number i. Let Bi be the bounding box of
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this object on image plane. Then, we have

Q1(i) = C(ue ∈ Bi)/C(ue),

where C(.) denotes the cardinality of a set.

Since Q2 assigns an estimated point to the object, whose center lies in shortest

distance, it follows that,

Q2(i) = C({ue|d(ue, ci) < d(ue, cj), ∀j = 1, · · · , 6, j 6= i})/C(ue),

where d(a,b) denotes the Euclidean distance between points a and b in 2D, and

ci stands for the object center concerning object i.

In evaluation of Q1, some estimations may not be assigned to any object, in

case they do not fall into any bounding boxes. However, in evaluation of Q2, the

sum of the rows of the confusion tables always add up 1, since each estimation

is assigned to an object.

10.2 Training and test schemes

Performance rates are investigated for several configurations of the data. We

investigate the behavior of Q1 and Q2 for both initial and final object location

estimates. Thus, the effects introduced by pooling and saliency computation

are pointed out. In order to evaluate the contribution of GP regression, we

implement the proposed method replacing GP regression with NN regression

and present performance rates for the modified implementation as well. For the

nonlinear competing NN model, we prefer a two-layer back-propagation neural

network to interpolate the gaze direction and object depth from the head pose

estimates without any restrictive assumptions with regards to the context of the

application as explained in Section 9.2.
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Performance results for self-, and cross-referencing are reported in order to

account for the generalization capabilities. In self-referencing, we train the GP

regression model with the information obtained from one video of one of the

experimenters and run the test on the other video of the same experimenter. In

cross-referencing, the process is trained by one video of one of the experimenters,

but test is carried out on the videos of other experimenters. The comparison

of self- and cross-referencing results help us to understand up to which extent

people present personal characteristics in terms of attention direction and how

generalizable the proposed scheme is.

10.3 Evaluation of performance

In presentation of the performance rates, the confusion table method described

in Chapter 5 is used together with one modification. As in Chapter 5, the

numbers in the cells indicate the rate at which the true object is classified to

be in the assigned class. The intensity of the colors of the cells refers to the

standard deviation of the performance rates evaluated for different combinations

of the test and training sets. The scale of the color range is shown next to each

table (see Tables 10.1(a-h)).

We present performance rates for the proposed GP regression based method

in Tables 10.1 (a-h), competing NN regression based method in Tables 10.2 (a-h)

and the relative rates of true positives of those in Tables 10.3 (a-h). Each of these

tables have a certain organization. Namely, the top row, i.e., Tables (a-d), gives

performance results in terms of Q1, where the bottom row, i.e., Tables (e-h), gives

results for Q2. Tables (a-b) and (e-f) are calculated considering self-referencing,

whereas Tables (c-d) and (g-h) consider cross-referencing. For each of these sets,

the first table presents results for initial estimates and the second one for final
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estimates. As we consider each object individually, the tables are organized in a

6× 6 fashion.

Table 10.1: GPR Performance quantification for individual objects. Tables (a-d)
indicate evaluation of Q1, (e-h) are for Q2. Initial and final estimate means for
self-referencing are given at (a-b). Initial and final estimate means for cross-
referencing are given at (c-d). Tables (e-h) are presented similarly for Q2.
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Let us focus on the Tables 10.1(a-h) and discuss the results obtained by

the proposed GP based method. Tables 10.1(a-h), indicate that performance

rates obtained by using Q2 are usually higher than those obtained using Q1.

However, the standard deviation of the results obtained employing Q2 are also

higher than the deviation of the results obtained employing Q1. Moreover, the

final estimations are slightly worse than initial estimates for both self- and cross-

referencing quantified by Q1 and Q2. Regarding the generalization capabilities,

we observe that for initial estimates switching from self-referencing to cross-

referencing degrades the results slightly, whereas for final estimates it leads to

an improvement.

Focusing on Tables 10.2(a-h), we see that most of the remarks we made for

Tables 10.1(a-h), hold for the competing NN based method as well. Namely,
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Table 10.2: NN Performance quantification for individual objects. Table (a-d)
indicate evaluation of Q1, (e-h) are for Q2. Initial and final estimate means for
self-referencing are given at (a-b). Initial and final estimate means for cross-
referencing are given at (c-d). Tables (e-h) are presented similarly for Q2.
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Q2 values are higher than Q1 values, final estimation results are not as good as

the initial estimates, and cross-referencing results are slightly better than self-

referencing for final estimates. However, for standard deviations we observe a

similar pattern with more extreme behavior. Observing Tables 10.1 and 10.2,

one immediately notices that the proposed GP based method leads to a larger

standard deviation in comparison to the competing NN based method, when

performance is evaluated in terms of Q1. However, evaluations in terms of Q2 in-

dicates that GP based method is more consistent compared to NN based method.

This means, compared to Tables 10.1, deviations in Q1 results are minute, while

deviations in Q2 results are more prominent.

Tables 10.3(a-h) provide a compact presentation of comparison of Tables 10.1

and 10.2. In Tables 10.3, we focus on true positives and present the relative rates

in terms of percentages. The results indicate that we usually observe a slight

decrease in performance with the proposed GP based method in comparison to

the NN based method. But one should also take the actual values into account.
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Table 10.3: Relative performance quantification for individual objects. Tables
(a-d) indicate evaluation of Q1, (e-h) are for Q2. Initial and final estimate means
for self-referencing are given at (a-b). Initial and final estimate means for cross-
referencing are given at (c-d). Tables (e-h) are presented similarly for Q2.
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For example, a decrease from 0.02 to 0.03 leads a relative rate of -0.36 in the last

entry of Table 10.3-(h).

In addition to this individual approach, we cluster the objects as Central (C)

and Peripheral (P ), depending on their localization on the table. The ones in

the middle are considered to be in cluster C, whereas the ones lying on the sides

are considered to be in cluster P . For assignment of the objects to either of

these clusters, two different schemes are employed. In clustering scheme 1, the

separation is obtained by considering the light dashed lines in Figure 7.3 as sepa-

rating borders, whereas clustering scheme 2 uses heavy dashed lines of Figure 7.3

as decision ground. The confusion tables for the cluster based approach have a

2× 2 structure and are given in Tables 10.4.

Tables 10.4(a1-h2) indicate that C is classified correctly at each configuration

with 100% accuracy. The peripheral objects are classified as C in some cases but
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Table 10.4: Performance quantification for object clusters center (C) and pe-
ripheral (P) with (a1-h1) proposed GP based method and (a2-h2) competing
NN based method. Figures (a1-d1) are for clustering scheme 1, (e1-h1) are for
clustering scheme 2. Initial and final estimate means for self-referencing are given
at (a1-b1). Initial and final estimate means for cross-referencing are given at (c1-
d1). Figures (e1-h1) are presented in a similar way to (a1-d1). Same operations
are carried out for NN regression and the results are reported in a similar way
in Tables (a2-h2).
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the false positives occur usually at minor rates. Moreover, the proposed GP

based method has in general slightly worse performance rate compared to the

competing NN based method.

Generally speaking, there are several factors leading to degradation in perfor-

mance. First of all, as one would intuitively see it is harder to find small objects

in terms of Q1, since they are defined by smaller bounding boxes. On the other

hand location of the object on the table affects the performance rate as well. As

the yaw and pitch angles increase, the head pose is harder to determine since the

view is less similar to the template obtained from a frontal view. In that case, it

is more probable that the gaze direction and thus the estimated object location

deviates from the correct localization. Moreover for the objects lying at extreme

locations, it is harder to run interpolation since they do not have neighboring

values beyond them.
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Chapter 11

Conclusions

This thesis studies recognition and understanding of behavior using automated

decision schemes based on the visual inputs. We exploit the advantages of digital

visual behavior analysis and propose several methods that are carried out on a

wide scope ranging from animal behavior to human behavior.

Part I of the thesis focuses on animal behavior analysis for drug screening

purposes. Experiments, which investigate the effects of drugs on mice and rats,

constitute an important research area in pharmacology. The observation and

discrimination of drug effects by a skillful authority is on the other hand quite

time and resource consuming. Although motion tracking-based computer anal-

ysis for behavioral responses has been used for years, the previous approaches

were not intended to discriminate a particular drug among other psychoactive

agents employed. Automation of the analysis of locomotor activity renders drug

screening and behavioral phenotyping of experimental animal studies much easier

and faster, consequently this will increase the experimental throughput.

In Part I of the thesis, a new algorithm, which determines whether a test

subject is drug-naive or drug-treated automatically and classifies these patterns

according to the drug effects, in case they are detected to be drug-treated is
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presented. We give a motion tracking algorithm and process its results to provide

the feature vectors for classification phase. It is observed that the proposed

feature vectors are capable of representing the distinctions between the drug

effects and the classifiers of SVC and LDC, which are fed with those feature

vectors, give satisfactory results.

Part II of the thesis carries out a human behavior analysis with specific focus

on visual attention and proposes a system that can comprehend human behavior

from an attention point of view. We apply this scheme in a human-robot inter-

action framework and provide a detailed insight into the design and training of

naturally interacting robotic agents by first giving an overview of evolution of

joint attention in infants from a developmental psychology point of view and then

describing the decomposition of progression in cognitive skills from a robotic im-

plementation perspective. Several cognitively-inspired intelligent agent designs

are studied and an alternative algorithm, which employs 3D elliptic cylindrical

head models to estimate head pose, is described. Our model uses estimation of

head pose, correction for gaze direction, and attention based selection for find-

ing objects attended by an experimenter. We point out to a shortcoming in the

literature, in which the head pose is used for specifying the focus of attention.

We remedy this by employing a Gaussian process regressor that interpolates the

gaze direction and target object depth from the head pose estimates. By this

means, we provide a first approximation to an otherwise complex cognitive phe-

nomenon. The proposed scheme has been shown to work with a considerably

high performance rate.

Possible future directions of research include direct gaze estimation by using

a higher-resolution camera to inspect the eyes of the experimenter, as additional

top-down influences. Such systems are considered to have a more flexible nature

and thus present a suitable environment for a testbed for complex interaction

models, social patterns, alternative teaching techniques, analysis developmental
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disorders, and running social simulations. Yet one should not forget the con-

tribution of context in the interaction. As Kaplan et al. point out in [49], the

existence of top-down influences and the considerations imposed by higher-level

cognitive functions make achievement joint attention a very difficult problem.
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