

ANALYSIS AND DESIGN OF SCALABLE

SOFTWARE AS A SERVICE

ARCHITECTURES

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF ENGINEERING AND SCIENCE

OF BILKENT UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR

THE DEGREE OF

MASTER OF SCIENCE

IN

COMPUTER ENGINEERING

By

Onur Özcan

January, 2015

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Bilkent University Institutional Repository

https://core.ac.uk/display/52927337?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ii

ANALYSIS AND DESIGN OF SCALABLE

SOFTWARE AS A SERVICE ARCHITECTURES

By Onur Özcan

January, 2015

We certify that we have read this thesis and that in our opinion it is fully

adequate, in scope and in quality, as a thesis for the degree of Master of

Science.

Asst. Prof. Dr. Bedir Tekinerdoğan (Advisor)

Assoc. Prof. Dr. Hakan Ferhatosmanoğlu

Asst. Prof. Dr. Ömer Özgür Tanrıöver

Approved for the Graduate School of Engineering and Science:

Prof. Dr. Levent Onural

Director of the Graduate School

iii

ABSTRACT

ANALYSIS AND DESIGN OF SCALABLE

SOFTWARE AS A SERVICE ARCHITECTURES

Onur Özcan

M.S. in Computer Engineering

Advisor: Asst. Prof. Dr. Bedir Tekinerdoğan

January, 2015

Different from traditional enterprise applications that rely on the infrastructure

and services provided and controlled within an enterprise, cloud computing is

based on services that are hosted on providers over the Internet. Hereby, services

are fully managed by the provider, whereas consumers can acquire the required

amount of services on demand, use applications without installation and access

their personal files through any computer with internet access. Recently, a

growing interest in cloud computing can be observed thanks to the significant

developments in virtualization and distributed computing, as well as improved

access to high-speed Internet and the need for economical optimization of

resources.

An important category of cloud computing is the software as a service domain in

which software applications are provided over the cloud. In general when

describing SaaS, no specific application architecture is prescribed but rather the

general components and structure is defined. Based on the provided reference

SaaS architecture different application SaaS architectures can be derived each of

which will typically perform differently with respect to different quality factors.

An important quality factor in designing SaaS architectures is scalability.

Scalability is the ability of a system to handle a growing amount of work in a

capable manner or its ability to be enlarged to accommodate that growth. In this

thesis we provide a systematic modeling and design approach for designing

scalable SaaS architectures.

iv

To identify the aspects that impact the scalability of SaaS based systems we have

conducted a systematic literature review in which we have identified and analyzed

the relevant primary studies that discuss scalability of SaaS systems. Our study

has yielded the aspects that need to be considered when designing scalable

systems. Our research has continued in two subsequent directions. Firstly, we

have defined a UML profile for supporting the modeling of scalable SaaS

architectures. The profile has been defined in accordance with the existing

practices on defining and documenting profiles. Secondly, we provide the so-

called architecture design perspective for designing scalable SaaS systems.

Architectural Perspectives are a collection of activities, tactics and guidelines to

modify a set of existing views, to document and analyze quality properties.

Architectural perspectives as such are basically guidelines that work on multiple

views together. So far architecture perspectives have been defined for several

quality factors such as for performance, reuse and security. However, an

architecture perspective dedicated for designing scalable SaaS systems has not

been defined explicitly. The architecture perspective that we have defined

considers the scalability aspects derived from the systematic literature review as

well as the architectural design tactics that represent important proved design rules

and practices. Further, the architecture perspective adopts the UML profile for

scalability that we have defined. The scalability perspective is illustrated for the

design of a SaaS architecture for a real industrial case study.

Keywords: Cloud Computing, Software as a Service, SaaS, Scalability, Software

as a Service Architectures, Systematic Literature Review, Architectural

Perspective, Architecture design, UML Profiling.

v

ÖZET

ÖLÇEKLENEBİLİR HİZMET OLARAK SUNULAN

YAZILIM MİMARİLERİNİN ANALİZ VE TASARIMI

Onur Özcan

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Danışmanı: Yrd. Doç. Dr. Bedir Tekinerdoğan

Ocak, 2015

İşletme içinde sağlanan ve kontrol edilen altyapı ve hizmetlere dayanan

geleneksel kurumsal uygulamalardan farklı olarak, bulut bilişim sağlayıcıları

Internet üzerinden barındırılan hizmetleri temel alır. Bu vesileyle, hizmetler

tamamen sağlayıcı tarafından yönetilirken, tüketiciler ise gerekli miktardaki

hizmetleri talebi üzerine elde edebilir, yükleme olmadan uygulamaları kullanabilir

ve internet erişimi olan herhangi bir bilgisayar üzerinden kişisel dosyalarına

erişebilir. Son zamanlarda hem sanallaştırma ve dağıtılmış bilgi işlemdeki önemli

gelişmeler, hem de yüksek hızlı İnternete gelişmiş erişim sağlanması ve

kaynakların ekonomik olarak en uygun şekle sokma ihtiyacı sayesinde bulut

bilişim üzerinde artan bir ilgi gözlenebilmektedir.

Yazılım uygulamalarının bulut üzerinden sağlandığı hizmet olarak sunulan

yazılım alanı bulut bilişimin önemli bir kategorisidir. Hizmet olarak sunulan

yazılımı anlatırken genellikle, belirli bir uygulama mimarisi belirtilmez, ancak

bunun yerine genel bileşenler ve yapı tanımlanır. Sağlanan referans hizmet olarak

sunulan yazılım mimarisine dayanarak farklı hizmet olarak sunulan yazılım

mimarileri elde edilebilir. Bu mimarilerin her biri genel anlamda farklı kalite

faktörlerini uygulayacaktır. Ölçülebilirlik, hizmet olarak sunulan yazılım

mimarileri tasarımı konusunda önemli bir kalite faktörüdür. Ölçülebilirlik,

sistemin artan iş yükü miktarıyla yetenekli bir şekilde başa çıkabilme veya bu

artışa uyum sağlayabilmek için genişleyebilmesidir. Bu tezde ölçeklenebilir

hizmet olarak sunulan yazılım mimarilerinin tasarımı için sistematik modelleme

ve bir tasarım yaklaşımı sunuyoruz.

vi

Hizmet olarak sunulan yazılım tabanlı sistemlerin ölçülebilirliğini etkileyen

yönleri tespit etmek için ilgili birincil çalışmaları tespit ettiğimiz ve incelediğimiz

sistematik bir kaynak taraması yaptık. Çalışmamız ölçeklenebilir sistemlerin

tasarımında dikkate alınması gereken yönleri açığa vurmuştur. Araştırmamız,

sonraki iki yönde devam etti. İlk olarak, ölçeklenebilir hizmet olarak sunulan

yazılım mimarilerinin modellemesini desteklemek için bir UML profili

tanımladık. Bu profil, profiller tanımlayan ve belgeleyen mevcut uygulamalara

uygun olarak tanımlanmıştır. İkinci olarak, ölçeklenebilir hizmet olarak sunulan

yazılım sistemlerini tasarlamak için mimari perspektifi sunduk. Mimari

perspektifler, varolan bir dizi görünümleri değiştirmek, kalite özelliklerini

belgelemek ve analiz etmek için kullanılan faaliyetler koleksiyonundan,

taktiklerden ve talimatlardan oluşmaktadır. Mimari perspektifler temelde birden

çok görünüm üzerinde birlikte çalışan talimatlardır. Şimdiye kadar mimari

perspektifler performans, yeniden kullanım ve güvenlik gibi çeşitli kalite

faktörleri için belirlenmiştir. Ancak, ölçeklenebilir hizmet olarak sunulan yazılım

sistemlerini tasarlamaya özel bir mimari perspektif açıkça tanımlanmış değildir.

Bizim tanımladığımız mimari perspektif, hem sistematik kaynak taramasından

elde edilen ölçeklenebilirlik yönlerini hem de önemli olduğu kanıtlanmış tasarım

kurallarını ve uygulamalarını temsil eden mimari tasarım taktiklerini göz önünde

bulundurur. Ayrıca, mimari perspektif ölçeklenebilirlik için bizim tanımladığımız

UML profili benimser. Ölçeklenebilir perspektif, gerçek bir endüstriyel vaka

çalışmasının hizmet olarak sunulan yazılım mimari tasarımı üzerinde

gösterilmiştir.

Anahtar sözcükler: Bulut Bilişim, Hizmet Olarak Sunulan Yazılım, Hizmet

Olarak Sunulan Yazılım Mimarileri, Sistematik Kaynak Taraması, Mimari

Perspektifi, Mimari Tasarımı, UML Profili.

vii

Acknowledgement

I would like to express my sincere gratitude to my supervisor Asst. Prof. Dr. Bedir

Tekinerdoğan for his invaluable guidance, support and understanding during this

thesis. He encouraged and motivated me during my whole research.

I am thankful to Assoc. Prof. Dr. Hakan Ferhatosmanoğlu and Asst. Prof. Dr.

Ömer Özgür Tanrıöver for kindly accepting to be in the committee and also for

giving their precious time to read and review this thesis.

I would like to thank to my friends for their valuable friendship and the enjoyable

time we spent together.

Last, I would like to thank my family for being in my life, for all their patience

and tolerance, for their endless, unconditional love, and support to me. With very

special thanks, I dedicate this thesis to them.

viii

Contents

ABSTRACT ... iii

ÖZET ...v

Acknowledgement ... vii

Contents .. viii

List of Figures .. xii

List of Tables .. xiii

Chapter 1 ..1

Introduction ..1

1.1. Background ..1

1.1.1. Cloud Computing ..1

1.1.2. Software as a Service ...2

1.1.3. Scalability..4

1.2. Problem Statement..6

1.3. Approach ..7

1.4. Contribution ...9

1.5. Outline of the Thesis... 10

Chapter 2 .. 11

Software as a Service Architecture for Scalability .. 11

2.1. Software as a Service Architecture.. 11

2.1.1. Reference Architecture .. 11

2.1.2. Reference Architecture for SaaS.. 12

2.1.3. Reference Architecture for Scalable SaaS.................................... 13

2.2. Systematic Literature Review ... 15

2.3. Data Extraction ... 18

2.3.1. Aspects .. 18

2.3.1.1. Capacity ... 18

2.3.1.2. Database Access... 19

2.3.1.3. Network Traffic ... 19

2.3.1.4. Data Management .. 20

2.3.1.4.1. Disk Architecture .. 20

2.3.1.4.2. Data Architecture .. 21

2.3.1.4.3. Data Model ... 22

ix

2.3.1.5. Workload ... 23

2.3.1.6. Migration ... 24

2.3.1.7. Fault-Tolerance and Recovery .. 24

2.3.1.8. Software Architecture .. 25

2.3.1.9. Multi-Tenancy ... 25

2.3.1.10. Application Complexity ... 26

2.3.1.11. Levels of Scalability Mechanisms .. 26

2.3.2. Tactics ... 27

2.3.2.1. Component-based Architecture .. 27

2.3.2.2. Service-oriented Architecture ... 28

2.3.2.3. Minimize the Workload on the Server 28

2.3.2.4. Scale-up ... 29

2.3.2.5. Scale-out .. 29

2.3.2.6. Database Partitioning ... 29

2.3.2.7. Key-value Stores .. 31

2.3.2.8. Dynamic Provisioning .. 31

2.3.2.9. Caching .. 32

2.3.2.10. Replication ... 33

2.3.2.11. Virtualization ... 34

2.3.2.12. Load Balancing .. 34

2.3.2.13. Parallel Processing ... 35

2.3.2.14. Distributing Processing in Time ... 35

Chapter 3 .. 37

UML Profile for Scalability.. 37

3.1. UML Profile ... 37

3.2. Modeling Scalability... 38

3.2. General Resource Model (GRM) .. 39

3.3. Domain Viewpoint ... 40

3.3.1. Mapping Scalability Concepts into Domain Model 41

3.3.2. Scalability Domain and Its Concepts .. 43

3.4. UML Viewpoint ... 49

3.4.1. Mapping Scalability Domain Concepts into UML Equivalents 49

3.4.1.1. The Collaboration-Based Approach .. 49

3.4.1.2. Activity-Based Approach ... 50

3.4.2. UML Extensions .. 51

3.4.2.1. Stereotypes and Associated Tags .. 51

3.4.2.2. Tagged Value Types .. 55

x

3.5. Difference of Scalability Profile ... 57

Chapter 4 .. 58

Software Architecture Perspective for Scalability .. 58

4.1. Definitions .. 58

4.2. Scalability Perspective .. 59

4.3. Applicability to Views .. 60

4.4. Concerns .. 61

4.5. Activities for Applying Scalability Perspective 63

4.5.1. Capture Scalability Requirements .. 63

4.5.2. Create Scalability Model.. 67

4.5.3. Analyze Scalability .. 67

4.5.3.1. Analysis at Architecture Design Level...................................... 68

4.5.3.2. Analysis at Code Level... 69

4.5.4. Assess Against Requirements .. 71

4.5.5. Rework Architecture .. 71

4.6. Problems and Pitfalls .. 72

4.6.1. Incomplete Scalability Goals ... 72

4.6.2. Unrealistic Models .. 72

4.6.3. Use of Simple Measures for Complex Cases 72

4.6.4. Inappropriate Partitioning.. 73

4.6.5. Invalid Environment and Platform Assumptions.......................... 73

4.6.6. Concurrency-Related Contention .. 74

4.6.7. Careless Allocation of Resources .. 74

4.6.8. Disregard for Network and In-Process Invocation Differences 75

4.6.9. Checklist ... 76

Chapter 5 .. 77

Case Study .. 77

5.1. Background .. 77

5.2. Views ... 78

5.2.1. Functional Viewpoint .. 79

5.2.2. Information Viewpoint .. 80

5.2.3. Concurrency Viewpoint .. 81

5.2.4. Development Viewpoint ... 81

5.2.5. Deployment Viewpoint ... 83

5.2.6. Operational Viewpoint .. 85

5.3. Applying Scalability Perspective .. 86

5.3.1. Scalability Requirements ... 86

xi

5.3.2. Modeling Guidelines and Examples .. 87

5.4. Architectural Tactics... 94

5.4.1. Component-based Architecture ... 94

5.4.2. Service-oriented Architecture .. 94

5.4.3. Minimize the Workload on the Server ... 95

5.4.4. Scale-up .. 96

5.4.5. Scale-out ... 96

5.4.6. Caching... 97

5.4.7. Replication .. 97

5.4.8. Load Balancing ... 98

Chapter 6 .. 99

Related Work.. 99

Chapter 7 .. 102

Conclusion .. 102

Bibliography ... 104

Publications Related to This Thesis ... 110

xii

List of Figures

Figure 1: A conceptual model representing reference architecture and its factors 12

Figure 2: SaaS Reference Architecture ... 13

Figure 3: A traditional web application architecture .. 14

Figure 4: Reference Architecture for Scalable SaaS .. 15

Figure 5: Chart that shows aspects and number of inclusion 27

Figure 6: Chart that indicates tactics and their number of inclusion..................... 36

Figure 7: Conceptual model representing relation between General Resource

Model and Scalability Model .. 39

Figure 8: Conceptual model presenting the relation between domain and UML

viewpoints .. 40

Figure 9: The Resource Usage Framework ... 40

Figure 10: The scalability analysis domain model – Overview............................ 44

Figure 11: The relationship between the scalability concepts and GRM 44

Figure 12: The scalability analysis domain model - Resource 45

Figure 13: The scalability analysis domain model – Workload 46

Figure 14: The scalability analysis domain model – Dynamic Usage 48

Figure 15: Applying the Scalability Perspective ... 63

Figure 16: Functional View of CHMS .. 80

Figure 17: Development View of CHMS .. 82

Figure 18: Development Views of CHMS after application of Scalability

Perspective. Left one is the current one and the right one will be the final version.

 ... 83

Figure 19: The deployment structure of CHMS .. 84

Figure 20: User request low-level scenario – activity diagram representation 89

Figure 21: User requests high-level scenario – sequence diagram representation 90

Figure 22: User request low-level scenario – activity diagram representation with

scalability annotations .. 92

Figure 23: User request high-level scenario – sequence diagram representation

with scalability annotations .. 93

Figure 24: Annotated deployment model for CHMS ... 94

xiii

List of Tables

Table 1: Publication Sources Searched ... 16

Table 2: Tactics and Aspects of SaaS ... 36

Table 3: Mapping scalability concepts to scalability domain 42

Table 4: Table that shows the instance that a tactic can be applied 48

Table 5: Mapping scalability domain concepts into UML equivalents in

collaboration-based approach ... 49

Table 6: Mapping scalability domain concepts into UML equivalents in activity-

based approach ... 50

Table 7: Brief Description of Scalability Perspective .. 59

Table 8: Applicability of Scalability Perspective to Architectural Views 60

Table 9: Checklist Table ... 76

Table 10: Scalability Perspective Application for the Case Study 78

1

Chapter 1

Introduction

1.1. Background

1.1.1. Cloud Computing

The need for economical optimization of resources leads to various improvements

in the information technology. We have improved access to high-speed Internet.

Besides, we have realized significant developments in virtualization and

distributed computing. As a result, cloud computing has emerged, it has received

significant interest, and use of it has increased in recent years. It is an important

trend recently. It has not only changed today's computing resources,

infrastructure, platform, and software services, but also alters the way of

obtaining, managing, and delivering them for all participants, and also alters

technology and solutions contributing to realize that. The definition of it is “a

model for enabling convenient, on-demand network access to a shared pool of

configurable computing resources (e.g., networks, servers, storage, applications,

and services) that can be rapidly provisioned and released with minimal

management effort or service provider interaction” [37]. In this definition, the

most essential characteristics of cloud computing are identified as on-demand

self-service, resource pooling, broad network access, measured service and rapid

elasticity, respectively.

Cloud computing has a significant difference from traditional enterprise

applications. Instead of accessing the infrastructure, platform, and software within

2

the existing system, customers access them through cloud computing services

providing them from a central unit. These services are hosted and fully managed

by the providers. Consumers can buy the required amount of services on demand,

they can access the services and their data through any device over the Internet,

and they can use services without installation. Supplying resources as a service

from a central unit allows more cost-effective, flexible, and efficient computing. It

reduces hardware and software costs by leveraging cloud resources in a pay-as-

you-go way using virtual resources.

Cloud computing includes several categories of service, such as software as a

service (SaaS), platform as a service (PaaS), and infrastructure as a service (IaaS).

All of these services are offered on-demand over the Internet in a pay-as-you-go

model. Briefly, SaaS provides on-demand software applications, PaaS provides

on-demand software development platforms, and IaaS provides on-demand

computing infrastructures. Cloud taxonomy has other elements, such as cloud

software, service as a service, and cloud client. Cloud software is unique

purchased/packaged software used to build and run cloud services. Service as a

service is horizontal service that is subscribed to and used as a component of

SaaS, IaaS, or PaaS offerings, such as a billing service. Cloud client is client-

centric services and run-time software for cloud execution.

1.1.2. Software as a Service

Software as a Service (SaaS) is a web-based software distribution model that

delivers on-demand applications. It is the most mature the cloud service model,

since it evolved from the application-service-provider (ASP) model of software

hosting. The software is owned, hosted, and managed at a central site by the

service provider. It is accessed remotely over the Internet by multiple tenants. It

does not reside on client computers. Thus, users subscribe to the use of software

rather than acquiring it. And they pay for on a subscription basis as opposed to

purchasing it. Metric for subscription fee varies; it can be per month, per

document, per employee, etc.

3

Among IT business models SaaS is the only model that is growing in a double-

digit fashion, because it yields benefits for both service providers and end-users,

such as reduced cost, faster-time-to-market, anywhere access, and enhanced

scalability. From end-users perspective, instead of having to purchase hardware,

software, and the licenses in order to execute a specific application, they are just

subscribing to provider and using the application. So they have much lower and

predictable costs. In addition, SaaS offers high level of agility; the duration

between the time that an end-user identifies the need of having an application and

the time it finds the provider and it can start using that application is generally

very short. Another advantage is that an application become available at once and

can be reachable by all end-users all over the world. On the other hand, being

reachable increase the possibility for providers to reach the global market and

have more potential to grow their customer base. Finally, SaaS ensures cost

effective dynamic scalability. Executing processes that take a large amount of

resources is possible with more powerful hardware. Realization of this by multiple

end-users is hard in terms of cost and scalability. However, providers can increase

number of resources and they can upgrade them only once or few times in a year

more easily.

A SaaS application should have three key characteristics that are multi-tenancy,

configurability, and scalability [8]. Multi-tenancy is a software architecture

principle that offers a single instance of the software runs on a server to multiple

tenants. A tenant is a customer and each tenant has multiple users. Every tenant

experience application as if it were dedicated only to them. It allows computing

resources to be shared among tenants. Besides, SaaS can be configurable by

supporting customization. In other words, an end-user should have the ability to

alter a set of configuration options that affect functionality, communication, or

appearance of SaaS application. Each tenant may have its own settings for

configuration options. Lastly, we will explain scalability in detail in next section.

4

1.1.3. Scalability

Increase in the usage of cloud services brings new issues, challenges, and needs in

software analysis, design, development, testing, evaluation, and measurement due

to the crucial qualities, such as scalability. Scalability is the ability of a system to

handle a growing amount of task and to be adjustable to accommodate that growth

[48]. Scalability can be measured in various dimensions such as load, geographic,

functional, administrative, and generation scalability. Each dimension has the

same abstract purpose of having ability of handling more and less tasks

efficiently, yet these things depend on the dimension.

 Functional scalability describes whether a functionality of a distributed

system can be easily expanded and contracted by adding or removing new

functional modules [48]. We can say a system is functional scalable if

software architecture of it can support addition and subtraction of

functional modules easily.

 Load scalability describes whether hardware resources of a distributed

system can be easily expanded and contracted by adding or removing

resources in order to accommodate heavier or lighter loads [48]. We can

say a system is load scalable if it can cope with heavier data loads and also

can maintain its operation with fewer resources when it has lighter loads.

Functional scalability eases achieving load scalability.

 Geographic scalability describes whether area of a distributed system can

be easily expanded and contracted by distributing into wider area or

assembling in a local area [48]. We can say a system is geographic

scalable if it can perform well even its service area is expanded and also

can maintain its operation with fewer resources when it services in a

limited area.

 Administrative scalability describes whether a distributed system can be

easily shared and managed even when the number of users and tenants are

increased or decreased [48]. We can say a system is administrative

scalable if it can deal with high number of users and also can maintain its

operation with fewer resources when it has less number of users.

5

 Generation scalability describes whether a distributed system can be easily

scaled up and down by adding and removing new generations of

components [48]. We can say a system is administrative scalable if it can

support addition and subtraction of components easily.

Providing scalability for a system is a time course that involves analysis, design,

and development phases [47]. Even execution of the system is included in this

duration, as demands for a system grow, new scalability requirements are born

and existing requirements need to be improved. Any fault in these phases may

lead to loss of customer, money, labor, and time due to unsatisfying scalability. A

software system that is not scalable for the recent demands will probably face

with breakdown. If this breakdown occurs frequently or longtime, customers will

give up using it and the company will lose money. In order to avoid this situation,

the company will probably try to redesign software architecture of the system and

will purchase new hardware, so this causes loss of time and labor.

Scalability has tight relation with other non-functional properties of a system,

such as performance, availability, and reliability. Scalability is usually come up

with performance; performance of a system has impact on scalability. However,

scalability is more than performance, since it does not only cover the existing

performance, but also answers what happens if the number of users becomes

bigger than the specified number. Even though a system can run in the normal

conditions now, when unprepared or unpredicted case for the system occurs, the

system may crash, and cannot service to its users until it is fixed or until the case

ends. Thus, availability and reliability is also affected by scalability.

Scalability was one of the underestimated non-functional requirements in the past.

Several products were successful but not sustainable due to their limitations on the

scale. However, a solid system needs to be able to handle also growing demands,

for example number of user for load scalability, and to be able to arrange itself

according to this grow. To be able to realize this quality architect of the system

needs to produce a well-design.

6

1.2. Problem Statement

We have identified the following problems in scalability analysis and design of

SaaS. Below we describe each problem separately.

 Lack of a guideline that briefly presents all aspects of a SaaS system that

affects scalability and the most applied tactics to enable scaling easily.

 Lack of a formal approach for scalability analysis models.

 Lack of a guideline that explains the procedure of making a system

scalable.

Lots of studies have discussed their experience on SaaS scalability. These studies

have both common and distinct parts. A developer, who wants to scale its SaaS

system, should be able to understand where the problem is and to find the correct

solution alternatives easily and rapidly. In order to realize that there should be a

guideline study that gathers the most covered aspects and tactics addressed by

studies. These aspects and tactics should be explained briefly and clearly, and they

should be understandable. However, in the existing studies aspects of SaaS have

not been presented explicitly, they have usually focused on the tactics and

mentioned aspects in descriptions of tactics. Also, analytics about how many

times a tactic has been included in primary studies, and to which aspect it has

been addressed most should be covered.

Most of large-scale systems suffer from scalability, and the reason of that is; these

systems have not designed and implemented as a system that can handle larger

scale of demands. How system scalability is required to be should be described

before actually testing it in real life. Firstly, unambiguous, sufficient, detailed

information about system scalability should be obtained. Secondly, the scalability

requirements should be well understood. In order to achieve that, scalability

models of the system should be provided. Scalability models enable us to see both

run-time behavior and deployment of the system with scalability features. These

models should be obvious, concrete, testable, and they should also be

understandable by all of the stakeholders. Also, scalability modeling should be

made in a formal and systematic manner. Finally, analysis of system scalability

7

should be made in every phase of the system development. During this analysis

scalability requirements should be validated and modifications should be made.

Scalability is usually taken into consideration as a performance concern.

However, it should be studied in detail separately. We should be able to ensure

that the architecture exhibits the desired scalability properties via using existing

architectural views. Activities, tactics, and guidelines related to analysis and

design of system scalability should be precise. The steps to follow to be able to

assess scalability should be identified, so that the parts of the system that cannot

scale can be eliminated early, before testing the system with the participation of

stakeholders.

1.3. Approach

In order to provide a scalability guideline to address above problems, we have

initially needed to fetch brief, beneficial, and related information from high

number of primary studies. Instead of doing our domain research study in a

careless way, we have decided to follow Kitchenham’s guideline to perform

systematic literature review. This approach has provided us regular progress in

our research, and has enabled us to reach detailed and clear results. We have

started with defining our research questions, whose purpose is to understand the

aspects and tactics mentioned in the primary study. A search string to filter the

related primary studies while doing search operation in the database has been

constituted. We have assembled the primary studies that have been listed after

executing our search string on each search database. Then, we have eliminated the

false-positive ones by applying our exclusion criteria on studies. Finally, we have

analyzed the remaining studies while thinking our research questions. We have

acquired data from them to constitute list of aspects that affects SaaS scalability

and list of tactics that can be applied to make a SaaS system scalable. Then, we

have produced analytics on aspects and tactics described in studies.

In order to fulfill the issue in formal scalability modeling we have benefited from

the framework for quality analysis model offered by OMG. We have followed

8

their guideline format and have defined scalability domain and UML viewpoints.

Firstly, we have examined the general resource model and performance analysis

model, and then we have determined the elements that also take place in

scalability analysis. Secondly, we have extended our analysis on scalability

domain to define each unit involving in scalability. We have identified relations

among all scalability domain elements. Also, we have defined UML equivalents

of all domain elements which are stereotypes and association tags. Scalability

models have been derived from the viewpoint models of the system. They have

been constituted via placing defined stereotypes and association tags that include

specific scalability features.

We have thought that a procedure that explains the steps of achieving system

scalability can be achieved by defining a software architecture perspective. We

have adopted Rozanski and Woods’ architecture perspective catalogue. Defining a

perspective includes identifying applicability, concerns, activities, and problems.

Firstly, architecture viewpoints of the system should be evaluated whether they

require any modifications to provide scalability, and whether these modifications

are applicable. Concerns of scalability have been determined to be able to

evaluate and measure the quality. Activities have been constituted from five steps,

which are capturing scalability requirements, creating scalability models,

analyzing scalability, assessing scalability, and reworking architecture. We have

followed IEEE Software Engineering Book of Knowledge (SWEBOK) [26] to

carry out capturing scalability requirements. In creating scalability models we

have utilized from our UML profile for scalability. In analysis part we have

included both architecture design and code levels. We have adopted SAAM for

architecture design level analysis, and have benefited from some software testing

types, such as performance, load, spike testing. Finally, we have presented

common problems and pitfalls that are possible to occur during applying

scalability perspective.

Finally, we have provided application of scalability perspective on our case study,

Cloud Hotel Management System. We have presented architectural viewpoints of

9

the system, have described scalability requirements, and have provided scalability

analysis models.

1.4. Contribution

The contributions of this thesis can be defined as follows:

 Systematic Literature Review (SLR) of SaaS Scalability

Up to now no studies have performed systematic literature review on the studies

related to SaaS scalability. Studies and resources on this topic are discrete, and

needs to be reviewed and assembled. We have detected this need and have filled

this gap. We have scanned all primary studies in search databases, have examined

99 of them residing in databases, and have selected 32 of them after applying our

exclusion criteria. We have constituted a list of aspects that affects SaaS

scalability and a list of tactics that can be applied to make a SaaS system scalable.

We have provided a description for each of aspects and tactics. Moreover, we

have provided analytics that involve the number of occurrence an aspect is

contained or the number of occurrence a tactic is presented.

 UML Profile for Scalability

We have found out that scalability analysis modeling should have rules and

standards, so that people can use scalability models in a unique and formal way to

reveal problems before testing their systems. We have extended framework for

quality analysis model offered by OMG and have defined UML Scalability Profile

based on General Resource Model (GRM). Thus, we have provided a tool for

scalability assessment for the stakeholders. In order to realize this profile we have

defined scalability domain viewpoint to understand and to cover domain well, and

we have also defined stereotypes and association tags, which describe domain

concepts, are used in UML models.

 Software Architecture Perspective for Scalability

Scalability quality of the system is closely related to performance and has

presented together in the existing studies. We have claimed that scalability should

be separated and we have defined architectural perspective for scalability. We

10

have extended Rozanski and Woods’ architectural perspective catalog. We have

identified concerns of scalability and we have defined the steps to apply the

perspective. We have presented a study that will guide you to achieve your system

scalability. We have also provided a chapter that explains application of the

perspective for a case study.

1.5. Outline of the Thesis

This thesis is organized as follows: Chapter 2 provides background information

for SaaS architecture and presents systematic literature review made on studies

related to scalable architectures for SaaS. We present the results of our research

and provide a list of aspects that affect scalability of SaaS and a list of tactics to

achieve scalability of SaaS. Chapter 3 introduces UML profile for scalability that

is based on general resource model. Firstly, background information about

general resource and scalability analysis modeling is given. Then, domain

viewpoint is defined using scalability concepts. Also, stereotypes and associated

tags are defined while mapping domain viewpoint elements to UML equivalents.

In Chapter 4, software architecture perspective for scalability is presented. Firstly,

definitions and overview of the perspective is given. Then, parts, such as

concerns, activities, and problems are examined in detail. Chapter 5 presents our

case study, Cloud Hotel Management System, in order to show application of

information given in previous chapters on a real system. Chapter 6 gives the

related work. Finally, Chapter 7 presents the conclusions and discussions.

11

Chapter 2

Software as a Service Architecture

for Scalability

2.1. Software as a Service Architecture

2.1.1. Reference Architecture

Reference software architecture represents the structures and respective elements,

and relations provide templates for concrete architectures in a particular domain

or in a family of software systems [9]. It utilizes reference model which is an

abstract framework aiming to encourage clear communication includes a set of

clearly defined terms and concepts linking together. It provides a template based

on the generalization of a set of solutions. Each of reference architecture is formed

for a particular domain. Reference architecture is beneficial for people and

organizations that work in the same domain. Concrete architecture is formed on

the basis of it. Reference architecture accelerates the design of concrete

architecture and implementation by reusing an effective architecture. Concrete

architecture uses business requirements, and system requirements are also

included since they are used by reference architecture. Figure 1 shows the

conceptual model that represents reference architecture and its factors.

12

Implementation

Related

Standards

Principles

Guidelines

Patterns

Best Practices

includes
Driven by

Drivers

Motivation

Business
Requirements

Mission &
Vission

Goals &
Objectives

fulfils follows uses

System
Requirements

Architecture

Reference
Architecture

Reference Model

Concrete
Architecture

utilizes

uses

uses

Figure 1: A conceptual model representing reference architecture and its factors

2.1.2. Reference Architecture for SaaS

Software provided by SaaS provider is rent and accessed through internet by

multiple clients. Basic SaaS architectures are often variations of the classic three-

tier web application hosting model that contains presentation, application, and

data tiers. Traditional web application architecture is illustrated in Figure 3.

Distribution tier has a load balancer and web servers that handle HTTP requests.

Application tier has a load balancer and application servers that run business

logic. Data tier consists of master, slave, and backup database servers. Thus, this

architecture has already been designed to scale out by adding additional hosts at

the persistence or application layers and has built-in performance, failover and

availability features.

Increase in SaaS adoption as well as the new technology innovations has

significantly evolved SaaS architecture. Now, SaaS applications may have

different purpose and design priorities such as reliability, security, availability,

performance, scalability, and cost. Design priorities of three-tier architecture are

typically availability and cost, so it is not sufficient for all purposes. A study made

by Tekinerdoğan and Öztürk [53] have examined various architectures and

addressed reference architecture of SaaS. Many architecture structures harvest a

set of patterns which have been in a number of successful implementations. They

13

have worked on these architectures and have provided a reference architecture for

SaaS, see Figure 2, after generalization and structure of them. SaaS has a multi-

tier architecture which is composed of user tier on the client-side, and distribution,

presentation, business service, application, data access, data storage, and

supporting service tiers on the provider side.

internetSaaS Client

User Tier

SaaS Provider

Distribution Tier

Presentation Tier

Application Tier

Data Access Tier

Data Storage Tier Su
p

p
o

rt
in

g
Se

rv
ic

e
 T

ie
r

*

KEY

Node Layer
Internet

Connection

Figure 2: SaaS Reference Architecture

User tier consists of presentation functionality that is used by web browser and

data integration functionality which is used by web services of the provider.

Distribution tier contains load balancing and routing functionalities. Presentation

tier is responsible from presenting the formatted data to the user and adapting user

interactions. Application tier is formed by modules or services, such as identity

management, application integration, and communication. Data access tier

involves the functionality of accessing the data through caches or database

through management system. Data storage tier has database servers. Supporting

service tier plays as an assistant tier for all horizontal tiers. It provides

functionalities such as monitoring, billing, additional security services, and fault

management.

2.1.3. Reference Architecture for Scalable SaaS

A well designed SaaS application is generally distinguished by mainly three

qualities, multi-tenant efficiency, configurability, and scalability. A multi-tenant

architecture (MTA), in which all users and applications share a single, common

infrastructure, and code base, that is centrally maintained. Configurability is the

ability for each user to easily customize applications to fit their business processes

14

without affecting the common infrastructure. To support scalability the

application is installed on powerful or/and multiple machines. In order to

distribute the system efficiently application should have a scalable architecture.

Reference architecture for scalable SaaS is illustrated in Figure 4. Using scalable

architectures in applications have various advantages, such as handling peak load

behavior and addition of new features [1]. You can overcome problems that

emerge during viral events. You can leverage the scalability the cloud affords to

make the most productive use of development and testing time when introducing

new features to an application. You can absorb sudden increases in processing

time due to the addition of new features by scaling to accommodate the increased

load they impart on the system until you can isolate and optimize the performance

bottlenecks. It is not uncommon for new features to place unexpected loads on a

system when they are introduced. Exhaustive testing of the performance

characteristics of these new features before release may be possible, but this often

comes with significant cost both in time to market as well as in infrastructure and

manpower.

Master
DB

LB

Web Server Web Server

LB

Clients

App Server App Server App Server

Slave
DB

Backup
DB

Figure 3: A traditional web application architecture

15

Zone #1 Zone #n

Clients

Master
DB

Web Server Web Server

Slave
DB

Backup
DB

...

...
Cache Server

LB #nLB #1

App ServerApp Server

LB

Web Server Web Server

LB

App Server App Server

Slave
DB

...

Cache Server

...

DNS

Figure 4: Reference Architecture for Scalable SaaS

2.2. Systematic Literature Review

We have aimed to analyze and have defined the key concerns related to SaaS and

scalability. Our research method has adopted systematic literature review in which

we have selected 32 primary studies. As a result of the data extraction and

synthesis process of the systematic literature review we have provided a list that

characterizes the various important concerns with respect to scalability and SaaS.

The outcome of the paper can be useful for both practitioners and researchers to

know the current scalability aspects and tactics.

After the observation that some aspects of the SaaS has impact on the scalability,

and there are some techniques that can be applied to provide scalability of SaaS.

To identify the aspects that have impact on scalability of SaaS and approaches to

achieve scalability we have conducted a systematic literature review using the

16

guidelines as described by Kitchenham [33]. In particular we have interested in

the answers to the following research questions:

RQ1: What are the factors that affect scalability in SaaS?

RQ2: What are the current approaches for achieving scalability in SaaS?

Our search scope has included all the papers that were published in 2003 to 2014.

We have searched for full papers in selected venues that publish high quality

papers. We have used the following search databases: IEEE Xplore, ACM Digital

Library, Wiley Inter Science Journal Finder, ScienceDirect, ISI Web of

Knowledge, Springer, and other channels including Microsoft Academic Search

and manual search channels. These venues are listed in Table 1. Our targeted

search items are journal papers, conference papers, and workshop papers.

Table 1: Publication Sources Searched

Source

Number of Included

Studies

After Applying Search

Query

Number of Included

Studies After

Exclusion Criterion

IEEE Xplore 33 17

ACM Digital Library 5 3

Wiley Interscience 3 0

Science Direct 1 0

ISI Web of Knowledge 16 2

Springer 25 4

Other Channels 16 6

Total 99 32

To search the selected databases we have used both manual and automatic search

strategies. Automatic search has been realized through entering search strings on

the search engines of the electronic data source. Manual search has been realized

through manually browsing the conferences, journals or other important sources

and checking the references of selected papers. The manual searches have

appeared to be quite useful since we retrieved some good-quality articles that an

automatic search could not reveal.

The adopted search string is as follows:

17

("Document Title": scalability OR "Document Title": scalable OR "Document

Title": scaling)

AND

("Document Title": architecture OR "Document Title": software OR "Document

Title": SaaS OR "Document Title": "Software as a Service")

AND

("Abstract": cloud OR "Abstract": SaaS OR "Abstract": "Software as a Service")

The result of the overall search process after applying the search queries and the

manual search is shown in the second column of Table 1. As it can be seen from

the table we could identify 99 papers at this stage of the search process. After the

initial set of exclusion, we are unable to find any papers that discuss this issue.

In accordance with the SLR guidelines [33] we have further applied an exclusion

criterion on the large number of papers in the first stage. The overall exclusion

criteria that we have used are as follows:

 Abstract or title does not explicitly primarily discuss scalability

 Not a primary study

 The primary study does not consider SaaS architecture in particular

 Repeated in an already mined source

 Most of the content is repeated in a similar paper (Extended version is

chosen over the shorter one)

The exclusion criteria have been checked by a manual analysis by both of the

authors. According to the best of our knowledge, there has been no secondary

study related to aspects and approaches for scalability of SaaS. After applying the

exclusion criteria 32 papers of the 99 papers remained. For data extraction and

synthesis process as required by the systematic review protocol we have

thoroughly studied the primary studies in detail to answer our two defined

research questions. The answers to the research questions have been described in

the following paragraphs in which we have provided a short summary of each

identified primary study with the basic conclusions.

18

2.3. Data Extraction

In order to extract data needed to answer research questions, we have read the

full-texts of 32 selected primary studies. We have designed a data extraction form

to collect all the information needed to address the review questions and the study

quality criteria. The data extraction form has included standard information such

as study ID, document title, year, authors, repository, and contribution type. In

order to collect information directly related to answering research questions, we

have added some fields such as targeted domain, motivation for study, main

theme of study, aspects that affect scalability of SaaS, and approaches to achieve

scalability of SaaS. We have kept a record of the extracted information in a

spreadsheet to support the process of synthesizing the extracted data.

2.3.1. Aspects

An aspect is a particular part or feature of SaaS. Based on the primary studies we

could identify the following key aspects that impact the scalability of SaaS;

capacity, database access, network traffic, data management, disk architecture,

data architecture, data model, workload, migration, fault-tolerance and recovery,

software architecture, multi-tenancy, application complexity, and levels of

scalability mechanisms.

2.3.1.1. Capacity

Capacity describes quantity and quality of hardware resources and specifications

of the system software. The scalability of the system is in direct proportion with

the capacity. Computing hardware resources, such as RAM, CPU, disk, memory,

network bandwidth, the number of concurrent TCP connections the server can

support, operating system, software resource allocation and utilization, define the

capacity of the system. The scalability of the system is in direct proportion with

the capacity [45]. As the power of resources increase or the number of the nodes

increase the system can scale more. The need to host scalable systems leads to

emergence of large-scale data centers comprising thousands to hundreds of

thousands of compute nodes.

19

2.3.1.2. Database Access

The communication between components in business layer and database server is

done via database access. The components obtain and save the required data

through this connection, which makes data access the key aspect of scalability in

the multi-tenant SaaS [58]. It will be the bottleneck of a SaaS system, if accessing

a database is not efficient and is slow [23]. Database connection can be either

direct or indirect. Direct access allows applications to perform necessary database

operations directly, so scalability technique is done for the entire system. For

instance, Database integrated SaaS, which is a SaaS system fully integrated with a

database, has direct access, such as Salesforce.com [6]. On the other hand, in the

indirect access to database there is a middle layer, APIs provided by database

services, between business components and underlying database server. Indirect

access allows the software and database to have its own scalability mechanism.

For example, kernel-based SaaS, which is a SaaS system running on top of kernel

that runs on top of databases. Any communication between software applications

and databases occurs via the kernel, such as Corenttech.com [23].

2.3.1.3. Network Traffic

Another crucial issue in SaaS scalability is network traffic, which is the flow of

data around a network. Data is encapsulated in network packets. Major concerns

of network traffic that have impact on scalability include latency, packet size,

packet count, and packet loss. Latency is a time interval between the stimulation

and response. It is affected by both communication hardware specifications and

distance between servers and clients. High distance leads to high latency. When

latency in network traffic increases, response time of the system increases as well

[24]. Packet loss occurs when one or more packets of data travelling across a

network fail to reach their destination. It is typically caused by network

congestion. It reduces the throughput of the system. Packet size and count is

proportional to the workload created by users. As the number of users increases

the latency and packet losses may increase. Thus, increase in these concerns

20

causes a decrease in system performance and makes achieving scalability more

difficult [46].

2.3.1.4. Data Management

Data is the mostly essential in cloud computing systems and it is the element that

systems should handle heavier or lighter loads of data efficiently. In order to

satisfy scalability data management should be carried out in a scalable manner.

Data management comprises all the disciplines related to managing data as a

valuable resource, such as development, execution of plans that control the data

[38]. Data management has mainly two topics that affect scalability, disk

architecture and data architecture.

2.3.1.4.1. Disk Architecture

Data storage is one of the central issues to achieve system scalability. Data is

stored in disks, but storing data in scalable way is determined by disk architecture.

Disk architecture is a distributed computing architecture. A distributed system is a

software system in which components located on networked

computers communicate and coordinate their actions by passing messages. Two

most common cloud database architectures are shared disk and shared nothing.

Shared disk architecture (SD) is a distributed computing architecture where all

disks are accessible from all cluster nodes [2]. Since the persistent data is stored

and shared in network attached storage (NAS), it is a candidate for single point of

failure. However, it has some advantages that affect system scalability. It does not

need migration. It is utilized for their ability to abstract replication, fault-

tolerance, consistency, and independent scaling of the storage layer from the

DBMS logic. On the other hand, in shared nothing architecture (SN) each node is

independent, self-sufficient, and has sole access to distinct disks, generally locally

attached storage, and there is no single point of contention across the system [60].

None of the nodes shares memory or disk storage. So if one of the instances is

down, the requests of users will be forward to another node and the process is

transparent to users. SN is popular for web development because of its scalability.

A pure SN system can scale almost infinitely simply by adding nodes in the form

21

of inexpensive computers, since there is no single bottleneck to slow the system

down. A SN system typically partitions its data among many nodes on different

databases assigning different computers to deal with different users or queries, or

may require every node to maintain its own copy of the application's data, using

some kind of coordination protocol. This is often referred to as database sharding.

Both the load balance and the fault-tolerance requirements can be addressed. Also

live migration requires that all database components are migrated between nodes,

including physical storage files.

2.3.1.4.2. Data Architecture

In SaaS a single application instance of the software is shared among multiple

independent users. A well-designed SaaS application is scalable, multi-tenant-

efficient, and configurable. To satisfy these qualities it needs to have scalable and

multi-tenant data architecture. Data architecture contains models, policies, rules or

standards that specify data structure, determine which data is collected, and

manage the way how it is stored, arranged, integrated, and put to use in systems.

A component of data architecture, database, is an organized collection of data.

Three data architecture models that implement and manage scalable multi-tenancy

are separate databases, shared database-separate schemas, and shared database-

shared schema [28]. Separate databases are stored on distributed shared-nothing

environment [7].

A database should be scaled when it can no longer meet baseline performance

metrics, as when too many users are trying to access the database concurrently or

the size of the database is causing queries and updates to take too long to execute,

or when operational maintenance tasks start to affect data availability. So

providing scalable data model is crucial for all multi-tenant cloud computing

systems and is a grand challenge for a decade.

Separate databases were the first general solution that is able to deal with large

datasets stored on distributed shared-nothing environment [7]. Computing

resources and application code are generally shared between all the tenants on a

22

server, but each tenant has its own set of data that remains logically isolated from

data that belongs to all other tenants. It is easy to customize the data model of the

system for each tenant’s needs and to restore tenant’s data from backups in case of

a failure. However, these systems have some disadvantages, they require higher

hardware costs for maintaining equipment and backing up tenant data and they

cannot scale beyond a few machines as the performance degrades dramatically

due to synchronization overhead and partial failures. The second approach, shared

databases-separate schemas, involves housing multiple tenants in the same

database, with each tenant having its own set of tables that are grouped into a

schema created specifically for the tenant. Like the isolated approach, the

separate-schema approach is relatively easy to implement, and tenants can extend

the data model as easily as with the separate-database approach. A third approach

involves using the same database and the same set of tables to host multiple

tenants' data.

2.3.1.4.3. Data Model

A data model organizes data elements and standardizes how the data elements

relate to one another [20]. There are various data models used currently by

software systems, such as relational, object, document, etc. The choice of data

model has impact on the database scalability that directly affects system

scalability. For instance, a SaaS system can scale from dozens to thousands or

even more number of tenants that may have their particular needs. This case

brings major challenges to databases. To achieve scalability a database should be

able to handle the increase of both data and request accompanied with the growth

of tenants. While providing this it should maintain meeting the particular needs of

one tenant efficiently and safely without affecting the others.

In relational model all data is represented in terms of tuples grouped into relations.

Relational database, whose data is organized using relational model, have some

obstacles to be able to achieve scalability. Although relational databases scale

well on a single server node, during the past decade there has been a growing

concern that RDBMSs cannot easily scale-out from a few machines to hundreds

https://en.wikipedia.org/wiki/Data

23

or even thousands of machines and fails to provide adequate tools and guidance

[2]. Thus, the need of scalability and multi-tenant support in SaaS makes

traditional RDBMS unappealing and calls for a better data storage solution [20].

RDBMS represents the bottleneck of a SaaS system and introduces single point of

failure, since it severely limits the scalability of SaaS.

In a key/value database, schemas and relationships between tables are not

explicitly defined unlike a relational database, and therefore it is more flexible

when scaling to larger number of server nodes. Modern scalable cloud storage

systems, such as BigTable, Dynamo, and Cassandra has key-value data model.

2.3.1.5. Workload

Data, previously stored locally and only available to one single tenant, now

require much larger storage and available to multi-tenants, since SaaS systems

store bigger in both individual file size as well as total number of files and serves

to multi-tenants. Thus, this change in data storage yields a challenge in workload

and storage of systems, scalability problems. Workload influences many

application characteristics such as software architecture and algorithm. Workload

depends on the number of currently online access clients, the total load forms

from every user’s network traffic and application service usage. There are three

types of workload and require different scalability mechanisms [23], OLAP,

OLTP, and mixed type. In OLAP type workload a high portion of the requests are

reading data from the system. Read operations are usually with the purpose of

querying historical data and analysing it [21]. In this case, the system should be

able to scale in case of high volume of read operations. In OLTP write operations

are dominant operations. Although many SaaS applications require rare updates,

there are many cases for OLTP like Facebook and Salesforce. Users of both

systems update their enterprise data, profiles, pictures or status frequently. In this

case, the system should be able to distribute the write operations to avoid

bottleneck at a single node. Finally, in mixed type the portion of read and write

operations can be close and the architecture needs to be designed to ensure there is

24

no bias towards either type of operations to be able to satisfy scalability

requirements.

2.3.1.6. Migration

The process of transferring data between nodes is called migration. It is usually

performed automated to facilitate people’s task. Data migration occurs for a

variety of reasons including server or storage replacements or upgrades to get

better performance. It can be done online or offline [23]. While the system is

operational migrating data is defined as online migration and it is more

problematic than offline migration that is done when the SaaS shuts down its

services for maintenance. Data migration basically consists of two processes that

are data extraction where data is read from old node and data loading where data

is written to a new node. Data to be moved is critical in terms of amount and the

location of data, since it influences the scalability of the system. To achieve

scalability there are some strategies, such as minimizing amount of data to

minimize the bandwidth demand, moving to the closest node to minimize latency

delay [2].

2.3.1.7. Fault-Tolerance and Recovery

Fault-tolerance determines the ability of a system to maintain its operation

properly in the case of the failure of some of its components, such as processors or

storage. The data in the failed components can be obtained and corrected via

recovery process. The causes of failure may be physical or logical damage. The

solution for fault-tolerance and recovery affects the system scalability [23], and if

an appropriate solution is not chosen the system may suffer. The solution should

include detection of the nodes failed. The system should scale down without a

significant performance downgrade, when a node fails. And when the failed node

comes back to the system, it should automatically scale up and recover to previous

working status.

25

2.3.1.8. Software Architecture

Scalability of SaaS systems is not only determined by the available resources, but

also by software architects' early design decisions. Software architecture is the set

of structures needed to reason about the software system, and comprises the

software elements, the relations between them, and the properties of both

elements and relations [9]. Scalability is impacted by how the control and data

flow of the application or service is designed and implemented [23]. If software

system is not well-designed, it cannot satisfy scalability and it needs expensive re-

implementations [47]. A well-designed software architecture that satisfies

scalability depends on the features of the system. Since each system has different

features there is no one scalable software architecture design. For example, [23]

classifies SaaS systems into four categories, such as Database integrated SaaS,

Kernel-based SaaS, Service-oriented SaaS, and PaaS-based SaaS. All of them

have different software architecture. We explain them in approaches section.

2.3.1.9. Multi-Tenancy

SaaS is characterized by its multi-tenancy architecture (MTA) that enables the

sharing a single application instance of the software runs on a server among

multiple independent users [34]. The term tenant refers to a group of users sharing

the same view on an application. This view includes the data they access, the

application configuration, the user management, particular functionalities, and

related non-functional properties. MTA provides flexible customization to

individual tenant. Each tenant runs the customized instance of SaaS that is

designed to virtually partition its data and configuration while sharing the

hardware, the operating system, the middleware and the application components

[23]. However, the multi-tenancy architecture and customization requirements

have brought up challenges in SaaS scalability. These challenges mainly comprise

the high number of concurrent accesses from the users and handling large amount

of tenants effectively in addition the amount of data for an application that rises

rapidly.

26

2.3.1.10. Application Complexity

Another significant topic in SaaS that needs high levels of scalability is the way of

processing large-scale data sets [23]. Storing and saving efficiently or blindly

adding hardware resources may not necessarily yield the desired scalability in the

system, since the data is obtained to process and to make operations on it and then

save it. To be able to process effectively brings out the algorithms and makes the

scalability of a system closely related to the underlying algorithm or computation.

Algorithm of the implementation defines application complexity that specifies the

difficulty level of an application. An application can be implemented with

different ways using different algorithms. It affects time takes for realization of a

task, so performance and scalability of a system is affected by it. So there occurs a

need for designing algorithms and mechanisms that are inherently scalable.

Algorithms that implement parallel approach offer greater portability,

manageability and compatibility of applications and data and address the

scalability issues.

2.3.1.11. Levels of Scalability Mechanisms

The architects can achieve the total scalability of the SaaS by taking on scalability

of each tier of the SaaS having multi-layers separately [23]. Scaling a tier means

applying a scalability technique to a tier. The techniques applied to a tier may be

different for each single tier, because each tier has its own constraints and

objectives. Furthermore, a tier of the architecture includes third-party business

services, so the scalability of these services can be solved solely in its design.

Figure 5 shows the chart that indicates names of each aspect and their number of

inclusion in primary studies.

27

Figure 5: Chart that shows aspects and number of inclusion

2.3.2. Tactics

Architectural tactics are the approaches that should be applied to satisfy and

improve scalability of the system. Based on the primary studies that we have

found and examined during our systematic literature review study on the cloud-

based software systems we could identify the following key architectural tactics;

component-based architecture, service-oriented architecture, minimize the

workload on the server, scale-up, scale-out, database partitioning, key-value

stores, dynamic provisioning, caching, replication, virtualization, load balancing,

parallel processing, and distributing processing in time.

2.3.2.1. Component-based Architecture

To be able to satisfy scalability of SaaS, the software architecture should have

been designed in a way that in any condition the SaaS can scale up and down.

And to achieve that the software architecture should have divided into layers and

layers should be composed of components. Components are self-contained pieces

of software and they are generally considered to be larger units of composition

than objects [29]. In well-designed scalable software, the components should be

separated according to their functional domain, i.e. the separation of concerns

design principle should be applied and these components should have high

cohesion internally and low coupling to the outside. Also, they should have

minimum dependency among themselves, i.e. they should be loosely coupled

independent components. They should not interfere with each other and they can

0
2
4
6
8

10
12
14

28

be developed in parallel, i.e. they are stateless. This approach ensures that when a

component or a layer causes being a bottleneck in the scalability, the developer

can easily intervene in that component or that layer to fix it using a scalability

approach. It facilitates applying scale-out, load balancing, and replication [35].

2.3.2.2. Service-oriented Architecture

Service-oriented architecture (SOA) is a software architecture design pattern that

is composed of services, pieces of software providing application functionality

[30]. As we indicate in previous approach in order to provide excellent scalability

of SaaS, each part of the application should be able to be independently scaled

[57]. Thus, it is necessary to avoid coupling in the architecture so that a change in

a part of the software system should not affect other parts [23]. SOA achieve this,

since services are unassociated units of functionality that are self-contained. SOA

also provides asynchrony meaning system can perform useful work while waiting

for input and output to complete, and concurrency meaning tasks can be done in

parallel taking advantages of the distributed nature of hardware and software.

2.3.2.3. Minimize the Workload on the Server

Most of the cloud-based SaaS applications have some similar operations, such as

making a request, authorization of the requests, fetching data from the database,

inserting or updating or deleting data, validation of data, and making some

operations, calculations, merging, etc. on data. These operations are either done

in the client or in the server. If all of these operations are done in the server, then

server may become unresponsive, even unavailable. Scaling-up the server solves

this problem just temporarily, since as the demands grow the server always needs

to be scaled-up and it is costly. The correct way to handle this problem is to move

the workload from the server to the clients as much as possible and minimize the

workload on the server [23], [47].

29

2.3.2.4. Scale-up

To cope with dynamically increasing demands from multiple tenants, the first

approach that comes to mind is scaling the system vertically (scaling-up). It

means to add resources to a single node in a system, typically involving the

addition of processors or memory to a single computer [48]. In order to be

scalable, the more nodes are added to the system, the higher the achievable

throughput should be. When adding new hardware to the platform, the total

capacity of the entire environment increases, becoming more scalable for not just

a single customer, but for the entire client base. Such vertical scaling of a system

also enables to use virtualization approach more effectively, as it provides more

resources for the operating system and application modules to share [2]. Also, in

order to avoid service outages, a system needs to allocate computing resources for

the application dynamically.

2.3.2.5. Scale-out

The other and a popular approach that includes hardware addition is scaling

horizontally (scale-out). It means to add more nodes to a system, such as adding a

new server to a distributed server cluster [48]. Vertical scalability is addressed by

increasing the power of nodes whereas horizontal scalability uses more nodes for

the same job. It provides a more cost effective and smooth scalability versus

scale-up approach [22]. When more computing power is required, a multi-tenant

architecture makes it easy to increase capacity. Since SaaS platform consists of

many tenants and all tenants share the same application and data store, and tenants

are usually distributed to servers.

2.3.2.6. Database Partitioning

In order to support scalability of SaaS and real-time high performance computing

we apply divide-and-conquer principle to the software architecture. When this

principle has applied to databases, it means tenant data are partitioned well in the

back-end database so that processing and I/O can be done in parallel, and data can

be repartitioned easily. Partitioning is the process of pruning subsets of the data

30

from a database and moving the pruned data to other databases or other tables in

the same database [8]. You can partition a database by relocating whole tables, or

by splitting one or more tables up into smaller tables horizontally or vertically.

Horizontal partitioning means that the database is divided into two or more

smaller databases using the same schema and structure, but with fewer rows in

each table. Two most widely used horizontal partitioning methods are application-

based distribution keys in which choosing one or more attributes as a distribution

key according to domain knowledge and tenant-used distribution keys where

stores each tenant’s data in a single partition. Vertical partitioning means that one

or more individual tables are divided into smaller tables with the same number of

rows, but with each table containing a subset of the columns from the original.

Partitioning is also an example of scale-out approach, since in order to improve

the efficiency the number of databases or tables is increased [58].

In a multi-tenant SaaS data scaling approach for the data model aspect differs,

since the approach you choose for your SaaS application's data architecture will

affect the options available to you for scaling it to accommodate more tenants or

heavier usage [8]. The scalability patterns address the different challenges posed

by scaling shared databases and dedicated databases. For separate databases single

tenant scale-out approach is applied. Shared database approaches are well-suited

to the tenant-based horizontal partitioning pattern, because each hardware

resource has its own set of data, so the managers can easily target individual

tenant data and move it to another server.

Existing systems show that partitioning can effectively increase the scalability of

database systems, by parallelizing I/O or by assigning each partition to separate

workers in a cluster. Data partitioning is a proved technique that database systems

provide to physically divide large logical data structures into smaller and easy

manageable pieces (chunks) [54]. The data inside a database can be distributed

across one or more partitions. Horizontal partitioning is writeable operation

preferable, while column store and vertical partitioning is optimal for read

31

operations. Also, a hybrid approach is used in SaaS that involves both read and

write operations.

2.3.2.7. Key-value Stores

As we see in previous section most of the aspects of the SaaS are related to

database, and this indicates us database comes out as being a bottleneck for the

scalability. In a multi-tenant environment that has high number of requests,

database must be able to execute large requests with low response times and also

redistribute data and load on the new hardware. To be able to satisfy these

requirements of the database and scale data layer successfully key-value stores are

used [2]. Key-value stores (KVS) allow the application to store its data in a

schema-less way. In KVS data is viewed as key-value pairs and atomic access is

supported only at the granularity of single keys. Since the data could be stored in a

data type of a programming language, there is no need for a fixed data model. In

DBMS all data within a database is treated as a whole and it is the responsibility

of the DBMS to guarantee the consistency of the entire data. In the context of key-

value stores this relationship is completely severed into key-values where each

entity is considered an independent unit of data or information and hence can be

freely moved from one machine to the other. Also, single key atomic access

semantics naturally allows efficient horizontal data partitioning. Moreover, the

design of the key-value stores provides dynamic provisioning in the presence of

load fluctuations easily. On the other hand, traditional DBMS are more

appropriate for static provisioning. Due to the above desirable properties of key-

value stores, they have almost limitless scalability. Key-value stores can be

applied either from the beginning of the system setup or leveraging from it during

using the conventional DBMS architecture.

2.3.2.8. Dynamic Provisioning

By adding new resources to system or partitioning data we just guarantee

scalability of the system for a while. However, there is another challenge in SaaS;

the system should provide scalability even sudden load fluctuations on an

application or a service due to demand surges happens [2]. The basis of the

32

mechanism that respond to sudden is dynamic provisioning which includes

deploying and instantiating the server computing instances from a centralized

administrative console. Briefly, this mechanism should make the system maintain

and avoid any interruption. Dynamic provisioning mechanism uses scalability

approaches dynamically, i.e. a system can be scaled-up dynamically by adding

more nodes or can be scaled-down by removing nodes, and this is called as

elasticity. With dynamic provisioning processing can be shifted to off-peak hours.

2.3.2.9. Caching

Caching is a common practice of storing data in a medium holding smaller

amounts of data but which can deliver it faster than a secondary complete source

when future requests are made [32]. The purpose of caching is to be able to serve

data faster when dealing with thousands of requests per second. By serving data

faster throughput of the system is increased, response time is decreased, and

scalability can be satisfied. Almost every application can be configured to use

caching either as a built in feature or third party library. Also, caching can be done

in any tier, but generally the application tier caches database state for quick local

access. The data to be cached is determined according to percentage and time of

use of data. Data that has frequent use or recent use has the priority of caching.

The probability of data being used increases when it just has been recently used,

because it is the most likely data to be used in the near future. For read-intensive

applications, caching approach can provide large performance gains, great

scalability as application processing time and database access is reduced. On the

other hand, write-intensive applications usually do not see as a great benefit, but

solutions that include modifications to caching approach exist. For SaaS systems

distributed caching, the extension of caching applied to multiple servers, is used.

Distributed caching is scalable because of the architecture it employs [32]. It

distributes its tasks across multiple servers. Since caching mechanism is much

simpler than a DBMS, usage of distributed cache avoids the scalability problems

that a database usually faces.

33

2.3.2.10. Replication

In a system in order to increase availability and performance, and also to be fault-

tolerant the same data can be stored on multiple software or hardware

components, this operation is called replication [23]. Replication is typically

applied in databases. Since when running a high traffic site, one of the biggest

bottlenecks becomes the database. In order to solve this problem and to achieve

scalability of database, replication is applied as one of the most common

techniques. In replication technique all or part of the data in a database is copied

to another database, and then these replicas are kept synchronized with the

original. This provides increasing the availability of the data, so that processes or

threads that are waiting in the queue to be able to do some operation with data do

not need to wait anymore. Since there are multiple copies of data, it can reach it

from the next available one. However, the type of the operation is an issue that is

needed to take care on. If the operation is writing, then to provide the consistency

of data all of the copies need to be updated when one of them is changed. And this

brings another workload to the database layer, so it may not be helpful for the

scalability. Thus, replication of data is recommended for mostly read-type

operations in terms of scalability perspective.

There is another type of replication in terms of the place the replication occurs,

replicating application. Components in the application layer or the whole

application layer can be stored on multiple server instances. Thus, workload on

the application layer can be distributed to multiple machines and processed

concurrently by each of the application instances, so a performance improvement

can be satisfied and it can reply to more number of requests without performance

degradation. Moreover, to support dynamically increasing demands from multi-

tenants, the cloud service providers have to duplicate computing resources

dynamically to cope with the fluctuation of requests from tenants. This is

currently handled by virtualization and duplication at the application level in the

existing cloud environment [55].

34

For instance, in horizontal scaling (scale-out) to distribute workload application

instances are replicated onto multiple nodes, also data is replicated onto multiple

database servers. The important point is careful data placement, since it minimizes

the response times.

2.3.2.11. Virtualization

As we mentioned in scale-up approach increasing the number of resources in the

system, also increases the performance of the system and lead to satisfy

scalability. Resources can be provided to the system by not only plugging in the

server machine. The resources of the system that is comprised of OS, memory,

storage, network, etc. can be virtualized and creating a virtual of something is

called virtualization. It allows the ability to run multiple systems on a single

physical system or one operating system on multiple physical systems. To be able

to dynamically respond to increasing demands of the multi-tenants virtualization

is widely used in current cloud computing systems. Since virtualization needs to

replicate the OS, middleware and application components for each customer, it is

often insufficient to provide SaaS [49].

2.3.2.12. Load Balancing

With an increased number of end users, the performance of a SaaS degrades and it

is necessary to distribute client requests to different servers in order to perform

parallel processing and provide scalability. The process of distributing workloads

across multiple computing resources is referred as load balancing. Its purpose is to

optimize resource usage, maximize throughput, minimize response time, and

avoid overload of any one of the resources. In most of the existing SaaS, client

requests towards web servers are distributed using a front-end load balancer [60].

Load balancer that is either hardware or software distributes traffic over web

servers. To do better load balancing among partitions of a database or application

servers, an effective algorithm that can migrate, distribute and duplicate tenants

among partitions through monitoring the load is highly desirable.

35

2.3.2.13. Parallel Processing

In multi-tenant environment the SaaS has high number of requests from users, and

in order to respond to all of these requests in a very short time, an approach that

improves SaaS scalability should be followed. A request is composed of many

tasks, including computing operations, database access, etc. In order to be able to

reduce execution time of tasks and to reduce the workload of each component, the

tasks should be grouped and executed in a parallel and asynchronous manner [47].

MapReduce, a programming model for processing large data sets with a parallel

algorithm on a cluster, is an example of this manner [54]. It is a good example of

data-intensive computing, requiring task coordination, and is heavily linked to

distributed storage. Many applications can be broken down into sequences of

MapReduce jobs. A map task runs through each element of a list and produces a

new list, and reduce applies a new function to a list, reducing it to a single final

value or output.

2.3.2.14. Distributing Processing in Time

Software systems have wavy usage plots, since clients access the system

randomly. However, for some periods there will be an excessive usage of the

system. These periods can be hourly, daily, monthly, seasonally, etc. or randomly.

The cause of these periods may be that being a specific time for the domain of that

system. This excessive usage leads to peak load on the server and causes low

response time and scalability problems. To overcome this problem the first thing

to do is reducing the system load, and you may postpone some of the workload to

other times in your processing cycle [47]. Some of the tasks on the server occur

continually at all times of day or night, and some of them is not urgent, or not

need to do real-time, so these tasks can be postponed to other times. Since the

total workload will be reduced during the peak load times, you will achieve

performance and scalability improvement. You can realize the tasks postponed

during quieter times, and you can also utilize from your idle resources.

Figure 6 shows the chart that indicates names of each tactic and their number of

inclusion in primary studies.

36

Figure 6: Chart that indicates tactics and their number of inclusion

Table 2 gives the relation between tactics and aspects of SaaS. It shows which

aspects are affected when we apply a tactic.

Table 2: Tactics and Aspects of SaaS

Tactic Aspects

Component-based
Architecture

Software Architecture,
Levels of Scalability Mechanisms,

Database Access

Service-oriented

Architecture

Software Architecture,

Levels of Scalability Mechanisms,

Database Access

Database Partitioning Workload,

Data Model,

Data Management,

Migration,

Multi-Tenancy

Key – Value Stores Workload,

Data Model,

Data Management,

Migration

Load Balancing Algorithm,
Workload,

Database Access,

Disk Architecture, Network

Scale-Up Workload, Capacity

Scale-Out Workload,

Capacity,

Multi-Tenancy

Parallel Processing Algorithm

Replication Disk Architecture,

Fault Tolerance & Recovery,

Migration

Caching Workload,

Migration,

Network

Virtualization Multi-Tenancy, Capacity

Dynamic Provisioning Workload,

Network

0

2

4

6

8

10

37

Chapter 3

UML Profile for Scalability

3.1. UML Profile

UML model is used to represent viewpoints of software architecture that depicts

both static and dynamic behaviors of the system [41]. Deployment viewpoint

depicts static structure of the system, deployment of software on hardware

resources. Activity and sequence models which are used to depict dynamic

behavior, such as information flow. UML has been developed as an open

extensible modeling language, and the intention and usage of its extension

mechanisms has been described at an early stage. Two types of extensions are

devised; lightweight extensions, based on stereotypes, tagged values, and

constraints, and heavyweight extensions, based on direct modifications of the

UML meta-model. In our study we take the first approach. A profile in UML for a

software quality is a customized version, lightweight extension, of these UML

models in order to present analysis of the quality. It contains stereotypes, tag

definitions, and constraints, having quality information, applied to model

elements. In theory a UML profile can be defined for any non-functional attribute

of software and hardware systems in order to model quality of service with its

distinctive properties. Creating UML profile consists of two parts; defining a

domain model, which is a UML-independent description of the structural and

behavioral patterns that characterize the considered domain, and mapping the

concepts introduced in the domain model onto a UML viewpoint, which is a

specification of how the domain elements are realized in UML. The resulting

UML viewpoint is made of stereotypes, tags and constraints.

38

3.2. Modeling Scalability

Scalability modeling is the process of creating a model for a system that contains

scalability specifications. In order to do scalability modeling sufficient

information about system scalability should have been obtained. It describes how

the scalability will be for a system without actually testing it in real life. It is

created by software development engineers and system engineers, and it is used

by all of the stakeholders. All of the large-scale systems need to determine,

analyze, and create scalability models in the design phase and update them during

system development iterations. Since these systems include a lot of detailed

requirements, large numbers of stakeholders, multiple hardware platforms,

distribution of components over several hardware platforms, high concurrency,

and high complexity of interaction between components [47]. The purposes of

scalability modeling include the following set:

 To make scalability requirements and estimations more understandable,

visual, manageable, and easier for the stakeholders.

 To be able to see both run-time behavior and deployment of the system

with scalability features.

 To provide a tool for scalability assessment for the stakeholders.

 To identify resources that cannot achieve scalability. These resources may

have the following properties:

o have high response time,

o unable to support addition and removal of another resource or

unable to upgrade them,

o may face with heavier workload,

o have complex, unambitious definition.

Scalability models are derived from the viewpoint models of the system. To

indicate scalability critical elements deployment viewpoint of the system should

be used. Scalability requirements should be mapped to this view, and features of

elements, such as process, network links, data storages, that need to be scalable,

should display its scalability data. As an example for scalability data, we can say

response time of functional elements and resources, the request latency between

39

processes, duration of a database operation, the number of concurrent requests

that each element can handle. Moreover, we can also present run-time behavior of

the system by using sequence and activity diagrams. We can specify scalability

requirements of functional modules and resources that are in action and

communication with others.

To be able to create scalability models in a formal way, we define UML

Scalability Profile based on General Resource Model (GRM). Figure 7 shows the

conceptual model representing the relation between GRM and scalability model.

In next sections, we firstly explain GRM, then UML Scalability Profile.

GeneralResourceModel ScalabilityModel

UMLViewpoint

supports

DomainViewpoint
uses

DomainViewpoint UMLViewpoint
uses

Figure 7: Conceptual model representing relation between General Resource

Model and Scalability Model

3.2. General Resource Model (GRM)

As in other run-time qualities in scalability context resource has higher impact and

importance than other aspects, since scalability is directly proportional to the

capacity of hardware resources. So general resource model (GRM) is the thing we

need while describing the scalability domain. GRM is a framework for modeling

systems with the usage of quality of service (QoS) information [43]. QoS

information represents, either directly or indirectly, the physical properties of the

hardware and software environments of the application represented by the model.

GRM has two viewpoints, domain and UML viewpoints. Domain viewpoint

describes the common structural and behavioral concepts and patterns that

characterize a system. UML viewpoint defines the realization way of the elements

of domain model using UML. It consists of a set of UML extensions, such as

stereotypes, constraints, tagged values, and is supplemented by specifications of

the mappings of the domain concepts to those extensions. Figure 8 shows the

conceptual model presenting the relation between domain and UML viewpoints.

GRM provides mostly abstract concepts that are not applied directly to elements

40

of a UML model. It provides a basis for UML profiles so that concrete extensions

can be generated.

Figure 8: Conceptual model presenting the relation between domain and UML

viewpoints

In domain viewpoint GRM describes the abstract analysis domain and its

concepts. It has six packages that are core resource model, resource usage model,

resource management, resource types, realization model, and causality model.

Since we focus on and use the resource usage in scalability, now we give brief

information about only resource usage model, given in Figure 9. The resource

usage framework explains how a set of clients uses a set of resources and their

services either statically or dynamically. In static usage the resource usage is

described by static relationships between resources and it expresses how and

when a resource is used. On the other hand, dynamic usage explains a resource

usage scenario that contains order and time of the usage events.

EventOccurence

UsageDemand

AnalysisContext

1

1..*

ResourceUsage

1

1..*

StaticUsage DynamicUsage

ResourceInstance

ResourceServiceInstance

1
1..*

0..*

1..*

1

+workload

1..*

0..*

+usedServices

1..*
0..*

0..*

Figure 9: The Resource Usage Framework

3.3. Domain Viewpoint

In this section we describe how the scalability concepts can be represented in a

domain model. Firstly, we discuss the mappings and relationships between

concepts and model elements, and then present the scalability domain model.

41

3.3.1. Mapping Scalability Concepts into Domain Model

In previous chapters we have explained scalability concepts in detail and in

section 2 we have explained resource usage framework that forms the basis of our

domain model. In this section we provide the mapping of scalability concepts into

domain model. Table 3 shows this mapping.

We can provide scalability of a system in load, functional, geographic,

administrative, and generation dimensions. In the scalability context each

dimension has one resource and a variable instance determined according to the

dimension:

 Load scalability reveals data instance,

 functional scalability reveals functional module instance,

 geographic scalability reveals area instance,

 administrative scalability reveals user instance,

 and generation scalability reveals resource instance.

The preliminary and execution conditions we have explained in Chapter 2 is also

covered and described in the domain model:

 Capacity is determined by all of the resources in the system context.

 Database access is done via communication resource. It is also affected by

static usage models, such as disk architecture and software architecture.

 Network traffic is created by flow of data.

 Data management has three concepts:

o Disk architecture is a static usage model for storage resources.

o Data architecture contains static and dynamic usage models that

manages how data is collected and how it is stored, arranged.

o Data model organizes data elements that is stored and presents

static usage of how the data elements relate to one another.

 Software architecture is represented by both static and dynamic usage

models for application software components.

 Levels of scalability mechanisms show both static and dynamic

application of scalability techniques on different tiers.

https://en.wikipedia.org/wiki/Data

42

 Application complexity is related to the content of the functional module.

 Workload has user access, data storage access, and communication

categories that are described by workload model element.

 Recovery contains three elements that have impact on scalability, flow of

data that contributes to network traffic, workload that is produced because

of it and functional module that is responsible to detect failures and

recoveries.

 Migration contains both flow of data that occurs during transfer of data

and workload that is formed during storage access and communication of

nodes.

All of the ancillary tactics are met by ancillary tactic model element. Primary

tactics, such as scale up and scale out, are met by primary tactics. Metrics are also

mapped with metric model element.

Table 3: Mapping scalability concepts to scalability domain

Scalability Concept Domain Model Element

Load Scalability Data, Resource

Functional Scalability Functional, Resource

Geographic Scalability Area, Resource

Administrative Scalability User, Resource

Generation Scalability Resource

Capacity Resource

Database Access Communication Resource, Static Usage

Network Traffic Flow of Data

Disk Architecture Static Usage

Data Architecture Storage of Data, Static Usage, Dynamic Usage

Data Model Storage of Data, Static Usage

Workload Workload

Software Architecture Static Usage, Dynamic Usage

Levels of Scalability

Mechanisms

Static Usage, Dynamic Usage

Application Complexity Functional Module

Recovery Flow of Data, Workload, Functional Module

Migration Flow of Data, Workload

Ancillary Tactics {…} Ancillary Tactic

Scale Up/Down Primary Tactic

Scale Out Primary Tactic

Metrics {…} Metric

43

3.3.2. Scalability Domain and Its Concepts

The UML Profile describes a domain model. Figure 10 presents scalability

analysis domain model which identifies the basic abstractions and relationships

used in scalability analysis which is instance-based. The concepts in this model

are fully consistent with the conceptual framework defined in the general resource

model (GRM) [43]. Thus, in the scalability profile we can benefit from modeling

styles and stereotypes provided for GRM. The relationship of the scalability

modeling concepts to corresponding GRM concepts is depicted in the class

diagram in Figure 11. We explain each concept that takes part in the scalability

analysis model in depth below. Features and associations in each concept are

described.

Scalability context explains a scalability case of a system and a system may have

more than one scalability context. It is formed by four main elements which are

Instance, Instance Usage, Tactic, and Workload. It may have multiple numbers of

these elements. It describes the workloads that occur during usage of these

instances and also describes tactics applied to these instances. It is described by

presenting one or more instance usage models. And these usage models give QoS

outputs, scalability metrics, such as response time, throughput, number of

concurrent users, hardware resource specifications, etc. For instance, a scalability

context may present peak load time for a SaaS application that describes the

expected response time, throughput of the system, number of concurrent users,

processor power, etc., during its operation.

Scalability context has relationship with other contexts, such as performance,

predictability, reliability, and availability. Firstly, scalability is closely related to

performance, since it is directly proportional to the performance of the system.

Another context it is dependent on is predictability of the system’s performance,

since it must ensure that as the workload increases, it must satisfy scalability goals

at the present time and in the future. Definition of Predictability context is that the

degree to which a correct prediction of a system’s state can be made either

qualitatively or quantitatively [47]. Furthermore, scalability affects availability

44

and reliability contexts. Availability context describes the capability of providing

the intended service of a system fully or partly [47]. A system that has scalability

problems cannot ensure its availability as well, since when the system has heavy

workload it cannot response and it becomes unavailable. Reliability context

explains the probability of failure or availability [47]. Reliability depends also

scalability as availability, since a large-scale system needs to ensure its scalability

before making it reliable.

responseTime
priority

Workload

11..*

ReliabilityContext AvailabilityContextPredictabilityContext

User

ScalabilityContext

InstanceUsage

1
1..*

1..*

1..*

SCResource FunctionalModule

DynamicUsage StaticUsage

Data

ApplicationFM SystemFM FlowOfData StorageOfData ProcessOfData

1

1..*

Area
Tactic

PerformanceContext

AncillaryTactic PrimaryTactic

1..* 1..* 1..* 1..*

Figure 10: The scalability analysis domain model – Overview

UsageDemand

Workload

AnalysisContext

ScalabilityContext

Scenario

SCScenario

PassiveResource ProtectedResource ActiveResource

SCProcessingResourceSCPassiveResource

EventOccurence

Tactic

QoSValue

Metric

Figure 11: The relationship between the scalability concepts and GRM

Instance is a specific realization of any object in the scalability context.

Scalability context has five main instances, which plays a key part in scalability,

are resource, functional module, user, data, and area.

Resource is any physical or virtual component of limited availability within

a computer management system. Its element name has “SC” prefix, since it is a

concrete element of scalability context and it should not be confused with the

abstract resource defined in GRM or a resource element of any other analysis

domain. Resource has two categories, purpose kind and activeness kind. A

resource can have only one value for each category. In terms of purpose resources

45

include processor, storage, and communication. Processor represents either virtual

or physical processing devices capable of storing and executing program code.

Storage resources represent the device for storing data, such as disk, memory, etc.

Communication resources provide communications, flow of data, between

resources. A resource is used during the operation time of the system. Thus,

according to usage activeness, it is either processing or passive resource. Passive

resources can only respond to requests or stimulus, they cannot behave

themselves. Processing resources can generate stimuli concurrently without being

prompted by an explicit stimulus instance. You can see the scalability resource

model in Figure 12.

StorageProcessor Communication

utilization
throughput

SCResource

processingRate
contextSwitchTime
priorityRange
isPreemptible

SCProcessingResource

waitingTime
responseTime
capacity
accessTime

SCPassiveResource

activenessKind purposeKind

MemoryDisk

Figure 12: The scalability analysis domain model - Resource

Functional Module is any set of machine-readable instructions that directs

a computer's processor to perform specific operations. It controls the resources

and data flow of the system. It exists both at the client-side and server-side. It is

divided into two, application and system functional module (FM). Application FM

uses the computer system to perform special functions. System FM is designed to

directly operate the computer hardware, to provide basic functionality needed by

users and other software, and to provide a platform for running application

software.

Data is a set of values of qualitative or quantitative variables. It is either the result

of measurements or information given by the user. It is separated into three

categories according to its place in the context that are flow of data, storage of

data, and process of data. Flow of data, which flows through the system network,

http://en.wikipedia.org/wiki/Computer
http://en.wikipedia.org/wiki/Computer_hardware

46

generates the network traffic. Storage of data resides in a storage resource.

Process of data takes place in an operation and it is processed in one of the

software component.

User is a person who interacts with a system through an interface to extract some

functional benefit. It sends requests by using its own resources and the software

the system provides. It can be either at the client-side or server-side.

Workload is the amount of work an instance has to do. It has two categories,

occurrence kind and openness kind. In terms of occurrence kind the main

concerns are user access load, communication traffic load, and data storage

access load. User access load indicates the number of concurrent users who

access the system, number of online users, in a given time unit. Communication

traffic load indicates amount of incoming and outgoing communication messages

and transactions in a given time unit. Data storage access load refers to the

underlying system data store access load, such as the number of data store access,

and data storage sizing. In terms of openness kind it is divided into two types

being closed and open workloads [43]. Closed workload is a static workload in

which the number of incoming requests and the number of active users is

constant. An open workload is a dynamic workload in which number of incoming

requests varies with respect to a given rate in some predetermined pattern. Figure

13 depicts the workload.

numOfUsers

UserAccessWorkload

numOfRequests

CommunicationWorkload

numOfTransactions

DataStorageAccessWorkload

occurenceKind

occurencePattern

OpenWorkload

population
externalDelay

ClosedWorkload

opennessKind

responseTime
priority

Workload

Figure 13: The scalability analysis domain model – Workload

Instance usage explains how a set of instances uses another set of instances and

their services either statically or dynamically. In static usage the instance usage is

described by static relationships between instances and it expresses how and when

http://en.wikipedia.org/wiki/System
http://en.wikipedia.org/wiki/User_interface

47

an instance is used. On the other hand, dynamic usage explains an instance usage

whose details are determined by a scenario that contains order and time of the

usage events. Dynamic usage domain model is presented in Figure 14. A scenario

is an ordered series of steps called action executions. A step may be an elementary

operation or a complex sub-scenario composed of many basic steps. It may

include a scalability requirement or estimation like hardware resource

specification, response times, or throughputs. Execution of scalability scenario

produces workload on the system and also produces metrics as outputs, QoS

values. Metrics, which are the result types of execution of a scenario, are

monitored to be able to measure scalability of service, such as response time,

throughput, requests per second, number of users, CPU usage, memory usage,

network usage. These metrics can have four different types, such as a measured

value, an estimated value, an assumed value, and a required value. A measured

value is determined by monitoring the system while running. An estimated value

is calculated by a tool. An assumed value is assigned by a human, determined

according to its experience. A required value is specified in the system

requirements. Metrics are included in the stereotype attributes. During the

execution of a scenario we can see the change in values of these metrics,

describing the scalability of the system.

48

hostExecutionDemand
responseTime

SCScenario

probability
repetition
delay
operations
interval
executionTime

SCStep

1

+{ordered}

1..*

1

+root

1

+predecessor0..*

+successor

0..*

responseTime
priority

Workload

1..*

1 0..*

+host

0..1

«deploys»

Metric

DynamicUsage

Data

processingRate
contextSwitchTime
priorityRange
isPreemptible

SCProcessingResource

1

+root

1

1..* 1..*

User

1..*

Area

1..*

FunctionalModule

Tactic

1..*

1..*

Figure 14: The scalability analysis domain model – Dynamic Usage

Tactic is the approach that should be applied to satisfy scalability of the system. It

presents possible solutions in case of the system does not show its required quality

properties the perspective addresses. Tactic is divided into two categories,

ancillary and primary tactics. Table 4 shows the relation between tactics and

instances. In the right column it has the instance names that the tactic in the left

column can be applied to.

Table 4: Table that shows the instance that a tactic can be applied

Tactic Instance

Scale-up/down SCResource

Scale-out SCResource

Load Balancing SCResource,

FunctionalModule

Parallel Processing SCResource,

FunctionalModule

Virtualization SCResource

Dynamic Provisioning SCResource

Multi-tiered Architecture FunctionalModule

Component-based

Architecture

FunctionalModule

Service-oriented

Architecture

FunctionalModule

Caching FunctionalModule, Data

49

Replication FunctionalModule, Data

Database Partitioning Data

Key-Value Stores Data

3.4. UML Viewpoint

In this section we describe how the domain concepts can be represented in UML.

First we discuss the mappings in general, and then introduce the actual UML

extensions defined for this purpose.

3.4.1. Mapping Scalability Domain Concepts into UML
Equivalents

Scalability domain concepts can be explained by only instance usage models. In

static usage model we can specify scalability requirements and the estimations as

well as the structure of the system instance, for example, functional, deployment

models. In dynamic usage models we can show run-time attributes of a system.

Scenarios facilitate our understanding about the scalability of the system. They are

modeled using either collaboration or activity graphs. In both approaches

Scenarios are represented by collections of graphical elements, so that it does not

have any specific stereotype. Scalability attributes of a scenario can be described

in the first step.

3.4.1.1. The Collaboration-Based Approach

Collaboration-based approach describes a scenario using UML sequence diagram.

Table 5 shows the mapping scalability domain concepts into UML equivalents for

collaborations and the stereotypes describing it.

Table 5: Mapping scalability domain concepts into UML equivalents in

collaboration-based approach

Scalability

Domain

Concept

UML – Collaboration Stereotype

Scalability

Context

Collaboration <<SCAcontext>>

Scenario Set of Interactions Not applicable

50

Step Action Execution <<SCAstep>>

Workload Note,

Message

<<SCAopenLoad>>,

<<SCAclosedLoad>>,

<<SCAuserAccesLoad>>,

<<SCAcomTrafficLoad>>,

<<SCAdbAccessLoad>>

Resource Classifier,

Instance

<<SCAhost>>,

<<SCAresource>>,

<<SCAstorage>>,

<<SCAprocessor>>,

<<SCAcommunication>>

Functional

Module

Classifier, Instance <<SCAfunctional>>

User Classifier, Instance <<SCAuser>>

Tactic Message, Action Execution <<SCAtactic>>

3.4.1.2. Activity-Based Approach

A scenario can also be modeled via an activity diagram.

Table 6 shows the mapping scalability domain concepts into UML equivalents for

activity graphs and the stereotypes describing it.

Table 6: Mapping scalability domain concepts into UML equivalents in activity-

based approach

Scalability

Domain

Concept

UML – Activity Stereotype

Scalability

Context

Activity graph <<SCAcontext>>

Scenario Set of Activities and

Transitions

Not applicable

Step Activity <<SCAstep>>

Workload Note <<SCAopenLoad>>,

<<SCAclosedLoad>>,

<<SCAuserAccesLoad>>,

<<SCAcomTrafficLoad>>,

<<SCAstorageAccessLoad>>

Resource Swimlanes <<SCAhost>>,

<<SCAresource>>,

<<SCAstorage>>,

<<SCAprocessor>>,

<<SCAcommunication>>

Functional

Module

Swimlanes <<SCAfunctional>>

51

User Swimlanes <<SCAuser>>

Tactic Activity <<SCAtactic>>

3.4.2. UML Extensions

In order to avoid naming conflicts with other profiles we add “SCA” prefix to all

stereotypes.

3.4.2.1. Stereotypes and Associated Tags

In this section we explain how scalability domain concepts can be represented

using UML.

<<SCAcontext>>

This stereotype models scalability analysis context. This context must have at

least one instance usage that is either static or dynamic usage. If it has static

usage, it must have at least one element stereotyped as a kind of instance. Or if it

has dynamic usage which is formed by a scenario, it must have at least one

element stereotyped as a kind of step. All of the instance usages must have at least

a kind of workload stereotyped element.

Stereotype Base Class

<<SCAcontext>> Collaboration

CollaborationInstanceSet

ActivityGraph

<<SCAhost>>

This stereotype models a processing resource.

Stereotype Base Class Tags

<<SCAhost >> Classifier SCAutilization

SCArate

SCAthroughput
Node

ClassifierRole

Instance

Partition

Tag definitions:

Tag Type Multiplicity Domain Attribute Name

SCAutilization Real [0..*] Resource:: utilization

SCArate Real [0..1] Resource::processingRate

SCAthroughput Real [0..1] Resource:: throughput

52

<<SCAresource>>

This stereotype models a passive resource.

Stereotype Base Class Tags

<<SCAresource >> Classifier SCAutilization

SCAcapacity

SCAaxTime

SCArespTime

SCAwaitTime

SCAthroughput

Node

ClassifierRole

Instance

Partition

Tag definitions:

Tag Type Multiplicity Domain Attribute Name

SCAutilizati

on

Real [0..*] Resource::utilization

SCAcapacit

y

Integer [0..1] PassiveResource::capacity

SCAaxTime SCAscalaValue [0..n] PassiveResource::accessTi

me

SCArespTi

me

SCAscalaValue [0..n] PassiveResource::responseT

ime

SCAwaitTi

me

SCAscalaValue [0..n] PassiveResource::waitTime

SCAthrough

put

Real [0..1] Resource::throughput

<<SCAopenLoad>>

This stereotype models an open workload.

Stereotype Base Class Tags

<<SCAopenLoad >> Message SCArespTime

SCAoccurence

Stimulus

ActionState

Action

Operation

Method

Constraint

Tag definitions:

Tag Type Multiplicity Domain Attribute

Name

SCArespTime SCAscalaValue [0..*] Workload::responseTime

SCAoccurence RTarrivalPattern [0..1] OpenWorkload:: arrival

<<SCAclosedLoad>>

53

This stereotype models a closed workload.

Stereotype Base Class Tags

<<SCAclosedLoad>> Message SCArespTime

SCApopulation

SCAextDelay
Stimulus

ActionState

Action

Operation

Method

Constraint

Tag definitions:

Tag Type Multiplicit

y

Domain Attribute Name

SCArespTime SCAscalaValue [0..*] Workload::responseTime

SCApopulatio

n

Integer [0..1] ClosedWorkload::populati

on

SCAextDelay SCAscalaValue [0..1] ClosedWorkload::external

Delay

<<SCAuserAccessLoad>>

This stereotype models a user access workload.

Stereotype Base Class Tags

<<SCAuserAccessLoad>> Message SCAnumOfUsers

Stimulus

ActionState

Action

Operation

Method

Constraint

Tag definitions:

Tag Type Multiplicity Domain Attribute Name

SCAnumOfUsers Integer [0..1] UserAccessWorkload::numOf

Users

<<SCAcomTrafficLoad>>

This stereotype models a communication traffic workload.

Stereotype Base Class Tags

<<SCAcomTrafficLoad>> Message SCAcomDelay

SCAnumOfRequests Stimulus

ActionState

54

Action

Operation

Method

Constraint

Tag definitions:

Tag Type Multiplic

ity

Domain Attribute Name

SCAcomDelay Integ

er

[0..1] CommunicationTrafficWorkload::co

mDelay

SCAnumOfReq

uests

Integ

er

[0..1] CommunicationTrafficWorkload::nu

mOfRequests

<<SCAdbAccessLoad>>

This stereotype models a database access workload.

Stereotype Base Class Tags

<<SCAdbAccessLoad>> Message SCAconUsers

SCAnumOfTransactions Stimulus

ActionState

Action

Operation

Method

Constraint

Tag definitions:

Tag Type Multiplicit

y

Domain Attribute Name

SCAconUser

s

Integ

er

[0..1] StorageAccessWorkload::SCAconUse

rs

SCAnumOfT

ransactions

Integ

er

[0..1] StorageAccessWorkload::numOfTrans

actions

<<SCAstep>>

This stereotype models a step in a scalability analysis scenario.

Stereotype Base Class Tags

<<SCAstep>> Message SCAdemand

SCArespTime

SCAprob

SCArep

SCAdelay

SCAextOp

SCAinterval

Stimulus

ActionState

Action

ActionExecution

Transition

55

Tag definitions:

Tag Type Multiplicity Domain Attribute

Name

SCAdemand SCAscalaValue [0..*] Step::hostExecutionDe

mand

SCArespTime SCAscalaValue [0..*] Step::responseTime

SCAprob Real [0..1] Step::probability

SCArep Integer [0..1] Step::repetition

SCAdelay SCAscalaValue [0..*] Step::delay

SCAextOp SCAextOpValue [0..*] Step::operations

SCAinterval SCAscalaValue [0..*] Step::interval

<<SCAtactic>>

This stereotype models a tactic in a scalability analysis scenario.

Stereotype Base Class Tags

<<SCAtactic>> Message SCAtype

Stimulus

ActionState

Action

ActionExecution

Activity

Tag definitions:

Tag Type Multiplicity Domain Attribute Name

SCAtype String [0..1] Tactic::type

3.4.2.2. Tagged Value Types

The following types of tag value strings are defined for use with the stereotypes

above. In representing the syntax of these types, we use the following standard

BNF notational conventions:

 A string between double quotes (“) represents a literal.

 A token in angular brackets (<element>) is a non-terminal.

 A token enclosed in square brackets ([<element>]) implies an optional

element of an expression.

 A token followed by an asterisk (<element>*) implies an open-ended

number of repetitions of that element.

56

 A vertical bar indicates a choice of substitutions.

SCAscalaValue

These strings are used to specify a complex performance value. The value is an

array in the following format:

“(“ <source-modifier> “,” <type-modifier> “,” <time-value> “)”.

Source modifier is a string that defines the source of the value meaning

respectively: required, assumed, predicted, and measured:

<source-modifier>::= ‘req’ | ‘assm’ | ‘pred’ | ‘msr’

Type modifier is a specification of the type of value meaning: average, variance,

k
th
-moment (integer identifies value of k), percentile range (real identifies

percentage value), probability distribution:

<type-modifier> ::= ‘mean’ | ‘sigma’ | ‘k
th

-mom’ , <Integer> | ‘max’ |’percentile,’

<real> | ‘dist’.

Time value is a time value described by the SCAtimeValue type.

{SCAduration = (1, ‘sec’)}

For example, the tagged value expression below represents a response time in a

scenario step with a requirement 99% of requests are responded in 500 ms.

{SCArespTime = (‘req’, ‘percentile’, 99, 500, ‘ms’))}

SCAextOpValue

This string is used to identify an external operation. It identifies either the number

of repetitions of that operation that are performed or a scalability time value. The

general format for this string is given as:

“(“ <String> “,” <integer> | <time-value> “)”

RTarrivalPattern

This string is used to specify concrete values of arrival patterns and the details are

described in [42].

57

3.5. Difference of Scalability Profile

UML profile for scalability has new concepts which are not defined in any of

profiles based on GRM. These differences from UML profiles for SPT [43]

include tactic, functional module, data, user, area, workload types, and metric.

Scalability has five dimensions including load, functional, geographic,

administrative, and generation scalability, so scalability context addresses these

dimensions with concrete instances which are data, functional module, area, user,

and resource. In load scalability load is represented by types of data element, flow

of data, storage of data, and process of data. Architectural tactics are applied also

on functional modules to provide any dimension of scalability. Area is used to

represent the availability zones of the system. A geographically scalable system

has many area elements. Administrative scalability concept has many user

elements. Last, generation scalability uses resource elements.

Another difference from GRM exists in workload element of the scalability

context. It has another kind property, occurrence kind. Types of occurrence are

communication, user access, and data storage access workloads. Details are

explained in section 3.3.2.

Steps of a performance scenario are executed on a host processing resource and

performance of the resources staying on the host is measured. The performance

measurements determine the features of the resources with respect to a given

workload. On the other hand, executing a scalability scenario is more complex,

since it is interested in the features of resources in a long duration. During this

duration, features of workload and resource may change. Metrics are evaluated

periodically in order to make a decision to provide scalability. A decision means

applying a tactic. One or more tactics may be applied, and applying tactics affects

some of the elements, such as functional module, data, in the context, you can see

Table 4.

58

Chapter 4

Software Architecture Perspective

for Scalability

4.1. Definitions

Rozanski and Woods give some crucial definitions about designing the

architecture of a system [47]. They define a view as a representation of one or

more structural aspects of an architecture that illustrates how the architecture

addresses one or more concerns held by one or more of its stakeholders. Also, a

viewpoint is defined as a collection of patterns, templates, and conventions for

constructing one type of a view. They describe a number of perspectives and a

guideline for defining new perspectives in their book. For each perspective in the

catalog they present an outline that describes brief information about that

perspective. The information contains the following properties:

 Desired quality gives the definition of the perspective

 The perspective’s applicability to views examines the views that are

impacted by the application of the perspective

 The most significant concerns the perspective takes care of

 An explanation of activities for applying the perspective to the architecture

 The architectural tactics present possible solutions in case of the

architecture does not shows its required quality properties the perspective

addresses

 Some problems and pitfalls to be aware of and risk-reduction techniques

to prevent these possibly

59

 Checklist of things to consider when applying and reviewing the

perspective to help ensure correctness, completeness, and accuracy

Furthermore, in the applicability to views section they examine six core

viewpoints, functional, information, concurrency, development, deployment, and

operational viewpoint.

 Functional viewpoint describes the system’s functional elements, their

responsibilities, interfaces, and primary interactions.

 Information viewpoint describes the way that the architecture stores,

manipulates, manages, and distributes information.

 Concurrency viewpoint describes the concurrency structure of the system

and maps functional elements to concurrency units to clearly identify the

parts of the system that can execute concurrently.

 Development viewpoint describes the architecture that supports the

software development process.

 Deployment viewpoint describes the environment into which the system

will be deployed.

 Operational viewpoint describes how the system will be operated,

administrated, and supported when it is running in its production

environment.

4.2. Scalability Perspective

One of the perspectives in the Rozanski and Woods’ perspective catalog [47] is

performance and scalability. However, although performance and scalability is

associated, scalability is not limited to only performance. Thus, we need to define

a new perspective that is scalability alone. We present scalability perspective in

Table 7 based on the guideline.

Table 7: Brief Description of Scalability Perspective

Desired

Quality

The ability of a system to handle a growing amount of work and to be

adjustable to accommodate that growth

Applicability Any systems that have the possibility of increase in the amount of work;

systems always require low response time; systems that needs additional
resources in the future; systems with complex, unclear, or ambitious

scalability requirements

60

Concerns User access load, communication traffic load, data storage access load,

transaction, response time, throughput, hardware resource requirements, cost,

predictability, availability, and reliability

Activities Capture the scalability requirements, create the scalability models, analyze

the scalability models, assess against the requirements, and rework the

architecture

Architectural

Tactics

Multi-tiered Architecture, Component-based Architecture, Service-oriented

Architecture, Database Partitioning, Scale-Out, Scale-Up, Key-Value Stores,

Dynamic Provisioning, Caching, Replication, Virtualization, Load Balancing,

Parallel Processing

Problems and

Pitfalls

Inaccurate scalability goals, use of simple requirements for complex cases,

unrealistic models, choice of inappropriate or redundant scalability approach,
invalid environment, platform, and user behavior assumptions

4.3. Applicability to Views

Applying the scalability perspective impacts architectural views, defined by

Rozanski and Woods [47], of the system, and Table 8 explains how it impacts

them.

Table 8: Applicability of Scalability Perspective to Architectural Views

View Applicability

Functional View Applying this perspective leads to changes in some functional

elements, such as adding new elements or splitting some elements into

more, and to change some of the links between elements. Also it

requires determining which elements need to be scalable. The models
from this view can be used to create scalability models.

Information View This view identifies shared resources, static data structure, dynamic

information flow, information lifecycle, and transactional

requirements. Some of the obstacles to scalability may be identified in

this view. It gives information about which data can be cached or

replicated, and also how the data can be partitioned. It may provide

input to scalability models.

Concurrency View Application of this perspective may change the concurrency design. It

may divide the work on some functional elements or it may provide

solutions for excessive contention on key resources. To meet

requirements of the perspective will change the concurrency design.

Elements in this view can also provide input to scalability models.

Development View This view changes according to scalability approaches chosen. These

approaches are done to avoid scalability problems, and indicate what
actions to be done. There may be increase in the number of packages.

Change in layers has low possibility, yet it may happen if the

architectural pattern changes.

Deployment View Scalability tactics that are chosen will affect this view and requires

redefining types, specification, and quantity of hardware required,

network requirements, third-party software requirements and physical

constraints. Scalability models usually created by using this view.

Operational View Applying this perspective makes performance monitoring more

important, it also may cause to change the migration model.

61

4.4. Concerns

In last decades, most of the system needs to be capable to scale up or scale out.

This need of scalability has some indicators that are used in the evaluation of

system scalability. Meanwhile, since system scalability is dependent on the

system performance, many published papers discussed these two issues together.

However, scalability perspective has other concerns. The concerns of the

scalability perspective describe what the main scalability measures are. The main

concerns are user access load, communication traffic load, data storage access

load, transactions, response time, throughput, hardware resource requirements,

cost, peak load behavior, predictability, availability, and reliability [47], [24].

User Access Load: This indicates the number of concurrent users who access the

system, number of online users, in a given time unit [24]. Concurrent connection

determines the ability of connection to server from various locations at the same

time. Each system has a limit of concurrent connections that specify the total

number of device that can be connect to the server at the same time for a region.

To address more users and to handle more workload in a time period, system

should support concurrency as many as possible. User access load affects the

communication traffic load of the servers and load on data storage access. The

system should accommodate the growing user load in scalable systems.

Communication Traffic Load: It indicates amount of incoming and outgoing

communication messages and transactions in a given time unit [24]. Request per

second, hits per second, and transaction per second describes the communication

traffic load on the servers.

Data Storage Access Load: It refers to the underlying system data store access

load, such as the number of data store access, and data storage sizing [24].

Transactions: A transaction is a unit of work, typically encapsulating a number

of operations, such as reading or writing an object, over a database. Every

database transaction obeys the ACID rules. Transactions should be executed

concurrently in a controlled manner to meet scalability requirements.

62

Response Time: Response time is the duration of a process between starting time,

when a system takes an input, and the ending time, when the system finishes and

reacts to the given input [47]. Response time is formed with service time and wait

time. Service time varies as the workload changes, in other words it tends to

increase as the workload increases. Wait time is the duration the request waits in a

queue. It depends on the number of requests, service time of each request, and the

scheduling algorithm of the system. For scalable systems there should be no high

variations in the value of response time and always be available in its supported

time period. Thus, varying workload should affect the response time as low as

possible.

Throughput: Throughput is the amount of workload the system can handle in a

unit time period [47]. In other words, as the system can finish a task more quickly,

we can say the throughput becomes high. For scalable systems there should be no

high variations in the value of throughput.

Hardware Resource Requirements: Hardware resource requirements have high

impact on the scalability of the system, since how much workload the system can

handle, how fast the system responds to requests, and how many devices

connected it can support depends on the hardware resources of the system [47].

These requirements determine number, type, location of the resources, and the

connection between them.

Cost: The deployment of the system takes important place in scalability of the

system. However, when determining hardware resource requirements

organizations should also think the cost of these resources. Generally, the more

and better hardware resources bring higher throughput and better response times,

yet higher costs. Since the important thing is to be able to satisfy the needs of

stakeholders, they should try to get best configuration that can be afforded in low

cost as possible as.

Predictability: Predictability is the degree to which a correct prediction of a

system’s state can be made either qualitatively or quantitatively [47]. Scalability

63

focuses also predictability of the system’s performance, since it must ensure that

as the workload increases, it must satisfy scalability goals at the present time and

in the future.

Availability: Availability is one of the several important non-functional

requirements related to scalability. It is the capability of providing the intended

service of the system fully or partly [47]. An available system should effectively

handle failures and maintain its operation. A scalable system must be highly

available during a certain period. However, increasing load of a system makes it

difficult.

Reliability: Reliability is the probability of failure or availability [47]. It plays a

key role in cost-effectiveness of a system. A scalable system is expected to be

highly reliable. A potential overload of the system due to limited scalability harms

reliability.

4.5. Activities for Applying Scalability Perspective

The activity diagram in Figure 15 displays the process for applying the scalability

perspective. In this section, we describe the activities in this process.

Figure 15: Applying the Scalability Perspective

4.5.1. Capture Scalability Requirements

To be able meet the scalability goals of a system the only way is to specify each

of them clearly and unambiguously. And they should be determined accurately at

the earliest phase of the system development [16]. Defining them early provides

you with a certain amount of flexibility in the future. The scalability of the system

is also strongly dependent on the performance requirements, so performance

requirements should be stated well before scalability requirements. It is a simple

64

fact that if scalability is not a stated criterion of the system requirements, then the

system designers will generally not consider scalability issues. While loose or

incorrectly defined scalability specifications can lead to failures and

dissatisfaction of users. Moreover, if they stated after the system is deployed,

raising the level of the service to accommodate growth can be difficult and too

costly. However, defining scalability requirements is usually difficult, since it

involves quantitative goals and it is based on future needs. These goals and needs

are determined according to certain amount of estimations, assumptions, and

constraints. Another difficulty is that scalability requirements need more domain

and deployment research, since each system has its own features decided

according to stakeholders’ needs. To be able to provide adequate inputs for

architectural design and analysis, scalability requirements need to be specified

accurately and precisely, and need to be testable. Moreover, as the amount of

workload increases the scalability requirements should be re-examined and

updated.

To be able to capture scalability requirements we follow existing requirements

engineering techniques defined in the IEEE Software Engineering Book of

Knowledge (SWEBOK) [26]. It defines four stages for requirements that are

Elicitation, Analysis, Specification, and Validation. However, these techniques

contribute little concrete support [16]. User stories and use-case-based approaches

to requirements engineering overlook scalability concerns and other nonfunctional

requirements altogether. In the papers [16], [17] authors present a systematic

method for elaborating and analyzing scalability requirements and apply the rules

of GORE (goal-oriented requirements engineering). To specify scalability

requirements they follow the following steps:

i. Specifying Scaling Assumptions

ii. Specifying Scalability Goals

iii. Identifying Scalability Obstacles

iv. Assessing Scalability Obstacles

v. Resolving Scalability Obstacles

65

To reveal scalability goals the following must be clearly specified [47], [17]:

 Workload,

 Response Time,

 Throughput,

 And Hardware Resource Requirements.

Specify Workload Requirements: Description of workload goals should include

user access load, communication traffic load, and data storage access load with

the deployment information. When specifying workload, all relevant details

should be covered. These details include number of users and what each of them

is doing, and all of other operations such as management requests, backups, and

error scenarios/handling. Once all loads have been considered, infrequent or

inappropriate workloads can be eliminated. Furthermore, peak workload, a rare or

unexpected increase in the workload, should be defined separately. Because it is

an extreme scenario, the worst case of failure should be thought while defining it.

Meanwhile, specifying the workload provides to detect and processing overload to

ensure flood control mechanisms are in place to avoid the system crashing under

intensive loads. Moreover, when defining workload requirements, researching

past growth patterns of the system can help determine how demand on your

system may grow. The expectation for the quantity of new users within the next

few years, growth rate over the next few years in terms of data, users, and client

applications should also be thought. If you already have a system that runs, then

you should also specify whether there is an anticipated increase in entry volume

and any new business processes are expected.

Specify Response Time Requirements: Response time goals should described

with the information how much workload the system has, measurement location,

and features of hardware resources during that time [47]. User access load,

communication traffic load, data storage access load, and deployment features

affect the response time. As these loads increase response time a user see

increases as well. Also, the location of response time measurement is done should

be specified. For instance, response time measurement that is done from a location

being distant from the servers comes out higher than a location near data center

66

because of network. Furthermore, features of hardware resources should be stated,

since response time is directly proportional to the power of deployment. Response

time is not only concern of scalability and performance perspectives, but also a

concern of usability perspective. According to J. Nielsen’s book [36][39] on

usability response times must be less than 1 second for navigation to feel seamless

and less than 10 seconds to prevent a user’s attention from wandering. These time

limits are caused by the human brain’s structure and are thus firm and stable

decade by decade. Finally, to be more accurate the acceptable error rate allowed

during the measurement of the response times should be defined. Some systems

may produce errors under high workloads and therefore the acceptable error rate

need to be defined.

Specify Throughput Requirements: Scalability requirements should state how

many requests or transactions of each kind processed and go through the system

per unit time as throughput [45]. It should be determined for the steady cases

when the number of incoming requests would be equal to the number of processed

requests. Also, it should be determined for homogenous tasks when a system

doing the same type of business operations for a given time. Its specification is

more difficult for systems with complex workloads; the ratio of different types of

requests can change with the time and season. Moreover, it should be defined for

a specific time and workload, since it varies with time and workload. For instance,

the throughput of a system during typical hour and during peak hour cannot be the

same. Furthermore, the hardware configuration of the system should be specified

while specifying it, since the hardware configuration is also affects it too.

Specify Hardware Resource Requirements: Features and quantities of CPU,

memory, storage, I/O, network, etc. of the system should be specified [45]. We

benefit from these requirements during capacity management, production

monitoring, and resource utilization. The capability of these hardware resources

and cost of them should be considered well before specifying. According to

administrator’s budget, a hardware plan can be made. For instance, they can

purchase hardware at regular intervals to add to their existing deployment. If they

67

have budget limitations, they can purchase servers that can be enhanced later by

adding RAM or CPUs.

4.5.2. Create Scalability Model

A scalable system has a lot of detailed requirements as we examined in the

previous section. Project includes large numbers of stakeholders, high complexity

of interaction between components, multiple persistence mechanisms, multiple

hardware platforms, distribution of components over several hardware platforms,

and high concurrency [25]. Thus, dealing with such a complexity can be a

challenge for every stakeholder. The scalability requirements should be used in an

effective way to facilitate this problem and make it understandable and

manageable. The solution is to create scalability models that provide a set of

measures to make stakeholders assess the workload, concurrency by looking

through useful estimates for capacity planning, and provides [47]. Scalability

models are derived from the viewpoint models of the system. To indicate

scalability critical elements deployment view of the system should be used.

Scalability requirements should be mapped to this view, and features of elements,

such as process, network links, data storages, that need to be scalable, should

display its scalability data. As an example for scalability data we can say the

processing time of functional elements, the request latency between processes,

duration of a database operation, the number of concurrent requests that each

element can handle.

4.5.3. Analyze Scalability

Scalability analysis is about determining the rate at which a system can perform

its action when demands increase or decrease. As other quality requirements of

software, scalability analysis can be carried out two different levels, either

analysis at the architecture design level or analysis at the code level with respect

to the defined requirements. In the first case, by using architecture design as an

input we can measure the impact of predefined scenarios on it, so that we can

68

detect conflicts in the requirements and incomplete design descriptions from a

particular stakeholder’s perspective [15]. This helps to predict the quality of the

system before it is built, thereby reducing unnecessary maintenance costs.

However, not all parameters/metrics can be evaluated at the architecture design

level because of the run-time properties. These metrics need to be analyzed on a

running code.

4.5.3.1. Analysis at Architecture Design Level

Software development consists of phases and initial output of this process is the

architecture design. Architecture design has impact on the subsequent analysis,

design, and implementation phases [52]. Architecture design should satisfy the

software qualities determined by the various stakeholders. To be able to provide

this the fundamental concerns for architecture design should be identified. To

verify that right concerns have been identified usually architecture design are

analyzed or a set of architecture analysis methods are adopted. According to The

Software Architecture Review and Assessment (SARA) report [40] the

architecture evaluation approaches are useful in making design decisions explicit

and supporting the refactoring of the architecture to enhance its quality.

We can apply one or set of the architecture analysis approaches that have been

proposed so far, such as the scenario-based architecture analysis method (SAAM),

the architecture trade-off analysis method (ATAM), scenario-based architecture

reengineering (SBAR), architecture level prediction of software maintenance

(ALPSM), and a software architecture evaluation model (SAEM). A

comprehensive overview of these architecture analysis methods is given in [15].

SAAM can be considered as a mature method which has been validated in various

cases studies, such as [15], [52], among the architecture analysis methods. SAAM

aims to verify basic architectural assumptions and principles against the

requirements and use case scenarios which describe the desired properties of a

software system [31]. Thus, SAAM evaluates the architecture for the given

69

system requirements and architectural description. Also, it analyzes for the risks

by running the scenarios on the architecture.

SAAM uses scenarios. A scenario is a brief description of some anticipated or

desired use of the system [15]. It has two types, direct and indirect scenarios.

Direct scenarios can be directly supported by the architecture. On the other hand,

indirect scenarios require changes in the architecture design and this redesign

needs to be done in order to make them direct scenarios.

4.5.3.2. Analysis at Code Level

The last step of the software development process or phase is about analyzing the

software at code-level. Code analyzing reveals mistakes and potential risks in the

software. Scalability analysis at code level analyzes the behavior of the system at

various load levels, identifies scalability problems and the bottlenecks of the

system. It enables us to verify and validate the quantitative scalability goals and

provides us to examine and to make strong estimations for scalability concerns,

such as response time, throughput, user access load, communication traffic load,

data storage access load. We can also determine availability and reliability

concerns of the software. It measures sufficiency of the underlying hardware

components, so that we can take precautions by making modifications on

deployment before releasing the software system. For analyzing the code in

scalability perspective we can apply one or more of testing methods that involve

performance testing, load testing, endurance testing, stress testing, spike testing,

and scalability testing [36], [51].

 Performance testing: Performance testing determines the speed and

stability characteristics of the system under test. It is concerned with

achieving response times, throughput, and resource-utilization levels that

meet the performance objectives for the product.

 Load testing: The aim of load testing is to examine how the software

system behaves when it is exposed to varying workload during its

70

production operations and to validate the scalability concerns of the

system.

 Endurance testing: This test is focused on examining the behavior of the

system during a long period of time while it is subjected to moderate load

and to validate the scalability concerns of the system.

 Stress testing: Stress testing is done by pushing the limits, putting into

conditions that are not anticipated, such as high workload, server failure,

limited memory, insufficient disk space, etc., to find the breaking points of

the system, under what conditions it fails, how it fails, and what indicators

can be monitored to warn of an impending failure, during its production

operations and to validate the scalability concerns of the system.

 Spike Testing: Spike testing is used to examine the behavior of the system

while it is subjected to repeatedly increasing workload during a short

period of time and to observe how well an application responds to sudden

increases in the workload that exceeds the anticipated limits.

 Scalability testing: Scalability testing is carried out to examine how an

application scales to handle increased load (i.e. serve more users) with

added resources. Scalability tests can be implemented by running one or

more of the above types of performance test against setups with differing

resources and comparing the results. If a significant increase in application

performance and/or capacity is observed, as a result of adding to available

resources, then the system is said to scale well.

71

4.5.4. Assess Against Requirements

Requirements are specified, but they are written on estimations mostly. There is a

need to validate and to verify these requirements. This is done by two ways, either

by conducting practical testing and then checking requirements against test results

or comparing with independent sources. In scalability analysis phase we realize

the first step of the requirement validation. In the second step, after analyzing the

software system in terms of scalability perspective, we should compare the results

of the analysis with the scalability requirements and determine the differences on

these requirements if there exist any. If most of them match, then it means

requirements are valid. If there are cases that don’t match, then modifications on

requirements should be done to correct them. After all comparison and

modifications are done, we should also review all of the scalability requirements

and consider any potential scalability risks.

4.5.5. Rework Architecture

We have validated and verified scalability requirements and analysis results.

Therefore, as a last step it’s time to update the architecture of the system

according to latest version of scalability requirements. We should start with the

functional and the deployment viewpoints, since they are usually the most

affected ones, and then continue updating with the rest of the viewpoints. While

reworking the architecture we can benefit from the architectural tactics described

below. Finally, when we have the modified, improved architecture, we should

also modify our scalability model and repeat the steps we have followed until we

have a stable, with desired quality architecture and system.

72

4.6. Problems and Pitfalls

In this section, we provide the potential scalability problems and pitfalls as well as

the risk-reduction techniques.

4.6.1. Incomplete Scalability Goals

Incomplete or unambiguous scalability goals lead to failures in system scalability

[16], [17], and [47]. If system designers use indefinite scalability goals, they do

not think possible scalability problems and do not take precautions for them.

Risk Reduction:

 While defining scalability requirements, make you sure that they are

testable, measurable.

 Always validate and verify the scalability requirements by comparing with

another reliable, independent source or by results of tests performed by

you.

4.6.2. Unrealistic Models

Scalability models should cover all of the requirements as well as their details

[44], [47]. A model is an abstraction of reality, so having a lack of feature in the

model yields a system that may encounter a scalability problem in the future.

Besides, scalability models should be realistic.

Risk Reduction:

 Always validate and verify the scalability requirements by comparing with

another reliable, independent source or by results of tests performed by

you.

4.6.3. Use of Simple Measures for Complex Cases

While determining scalability requirements, we make estimations to specify the

values of loads, latencies, and hardware features [16], [17], and [47]. Making

wrong estimations is very possible, since the systems are complex and scalability

is affected from various variables, so thinking all of them together is very hard.

Since realizing a system is a long process, firstly we make estimations even they

73

are wrong. However, these values estimated should not be far from its value that it

is required to satisfy scalability. We should make estimations as strong as

possible. Also, scalability testing should be done in a way that every detail should

be thought and specified. If the test does not cover the realistic runtime

environment, then the values that we compare with our estimations will probably

be wrong. As a result, oversimplifying scalability goals and testing leads to wrong

realizations of the system.

Risk Reduction:

 Consistently validate and verify your scalability goals.

 Consistently compare your testing with independent sources.

 Consider the differences between the test environment and the real system

runtime environment to notice critical conflicts.

4.6.4. Inappropriate Partitioning

Partitioning is required when one or more elements involved in nearly all of the

transactions in the system, since it prevents them from being bottlenecks of the

system that violate scalability feature [2], [47]. Separations of concerns,

distributing the tasks, and concurrent execution usually provide more scalability.

However, these separation and distribution, partitioning, should be done

appropriately according to some logic. Otherwise, it would result in a system with

more scalable problems.

Risk Reduction:

 Consistently watch for functional elements that have high coupling to most

of the other elements and avoid them from being the bottleneck of the

system.

4.6.5. Invalid Environment and Platform Assumptions

Scalability of the software system is highly dependent on its execution

environments and platforms [45], [47]. Hardware and software the system is

deployed on should be determined according to scalability goals desired. Also,

scalability testing should be done at the environments that are used in realistic

runtime environment. Wrong environment assumptions may occur when you

74

overestimate or underestimate your scalability goals or estimate for an unknown,

new technology. These invalid assumptions lead to scalability problems.

Risk Reduction:

 Always validate and verify the scalability requirements by comparing with

another reliable, independent source or by results of tests performed by

you.

4.6.6. Concurrency-Related Contention

Systems usually have concurrency, and processing occurs in separate threads [45],

[47]. However, these threads may work on some shared resources which cause

allocation problems. A shared resource can be used for only read purpose at the

same time by different threads. If a write task requires for a shared resource, then

that resource can only be used by just one thread. This allocation process may be

the bottleneck of the system, since while a shared resource is allocated by one

thread; other threads wait until that resource become free. This situation may

cause serious performance and scalability problems.

Risk Reduction:

 Examine your functional, information, and concurrency views to identify

the functional elements that must work concurrently and to identify shared

resources.

 Work on your concurrency view to adjust allocation of shared resources

and wait time of threads in a sensible manner.

 Also consider other ways that provide threads to access the shared

resources, such as partitioning, replication, caching, etc.

 During software development test the concurrent behavior of critical

elements as early as possible and be sure that they will not become

bottlenecks.

4.6.7. Careless Allocation of Resources

Since we can obtain more computing power and more space via better hardware,

we may be careless for allocation of resources. However, our unconsciousness, an

75

excessive allocation and freeing of runtime resources, leads to performance and

scalability problems [45], [47].

Risk Reduction:

 Do not allocate and deallocate large amounts of dynamic resource in

critical path elements.

 Try to allocate resources in advance and at less critical times, such as

startup or during quiet periods.

 Choose the one that requires less effort consumption, between reuse of the

allocated resource or freeing and reallocating them.

 Understand the problem thoroughly and document guidelines and patterns.

4.6.8. Disregard for Network and In-Process Invocation

Differences

Most of the systems are distributed and provide the distribution of the resources

over different geographical locations [46], [47]. However, while choosing these

locations, we need to be careful, since accessing a resource on the network

introduces latency and higher response times.

Risk Reduction:

 Ensure that the geographical locations of the resources provide less latency

and reflect their inter-element invocation costs in your scalability model.

76

4.6.9. Checklist

In this section, we provide checklists in Table 9 for requirements capture and

architecture definition to consider when applying and reviewing the perspective to

help make sure correctness, completeness, and accuracy. While deciding on the

checklist items, we have benefit from various resources, such as [17], [23], [45],

and [47]. The [CH1] - [CH8] presents the checklist for requirements and the

[CH9] - [CH20] presents the checklist for architecture definition.

Table 9: Checklist Table

Item Explanation

[CH1] Have you identified scalability goals with stakeholders?

[CH2] Have you identified the platform features of the system?

[CH3] Are scalability goals driven by business needs?

[CH4] Does cost of your hardware requirements conform to your project budget plan?

[CH5] Have you considered goals for user access load, communication traffic load,

data access load, response time, and throughput?

[CH6] Have you assessed your scalability goals for reasonableness?

[CH7] Have you appropriately set expectations among your stakeholders of what is

feasible in your architecture?

[CH8] Have you defined all scalability goals within the context of a particular load on

the system?

[CH9] Have you identified possible scalability obstacles in your architecture?

[CH10] Have you done sufficient analysis and testing to figure out the scalability need
of the system?

[CH11] What are the expected and maximum workloads the system can process?

[CH12] Do you define the way how to detect the time when to apply the scalability

solution?

[CH13] Do you know to which components you will apply a scalability tactic?

[CH14] Do you know by which tactics your architecture can be scaled when needed?

[CH15] Have assessed the impact of the scalability solution on functionality and

performance? Is this impact acceptable?

[CH16] Have you reviewed your architecture for possible scalability problems?

[CH17] Have external experts reviewed your scalability design?

[CH18] Have you verified and validated estimations you have made for scalability

goals?

[CH19] Have you updated your scalability requirements after you validated the

scalability goals estimated?

[CH20] Have you applied the results of the scalability perspective to all of the affected

views?

77

Chapter 5

Case Study

5.1. Background

Scalability has always been one of the major requirements in designing SaaS

applications to meet the both growing and fluctuating demands. Since these

fluctuating demands may occur at varying frequencies, such as hourly, daily,

weekly, if the SaaS is not well-designed then it may be unresponsive or

inconsistent during a high load. It causes loss in the number of customers and loss

of time and monetary for the designers. To be able to examine this issue we have

followed scalability perspective guideline described in previous sections on a

SaaS application. This part presents our case study, cloud optimized SaaS

framework for enterprise applications using RDBMS.

Cloud Optimized SaaS framework [11] uses the tables and the relations in a given

RDBMS and automatically produces client interfaces. These interfaces provide

listing, editing, and reporting data for the cross-platform devices. Its production

occurs with the usage of a code-base that resides on cloud servers. The aim of this

framework is to develop enterprise applications rapidly and platform independent.

It is used in ERP systems, hotel and property management systems. In our case

study we examine Cloud Hotel Management System (CHMS) that uses the SaaS

framework [10]. This management system manages and tracks all operations

related with different hotel departments. Since most of the hotels serve during

only summer season, three months, they can rent the hotel management software

service for only summer season instead of buying and keeping it for nine months

unnecessarily. As we described above, to meet growing and fluctuating user load,

78

and to achieve a well-designed SaaS, the system must be scalable. Major

requirements of the system are as follows.

Multiple guests connect to CHMS via a travel agency or a hotel or a hotel web site

or online travel agencies simultaneously. Some guests try to book, some of them

download their invoices, and others generate reports. Also, hotel manager see

details about their customers and search for a particular customer. All of these

transactions are done real-time synchronized. As a result, the system should

always be responsive, available, consistent, and scalable. For instance, all of the

stakeholders should see the same condition for the reservation status of a

particular room at the same time. When multiple transactions done by multiple

guests exist on the server, the system may become out of service or some guests

may experience performance issues unless the system is scalable. Scalable

CHMS provides the stakeholders to guarantee access the system always, without

any performance degradation, and without any failures.

5.2. Views

This section explains the application of scalability perspective to the views for our

case study, which allows us to ensure that the architecture is suitable in terms of

scalability perspective. Table 10 lists a summary of the application of scalability

perspective to the views for our case study.

Table 10: Scalability Perspective Application for the Case Study

View Applicability to the case study

Functional Sessionless authorization has been applied. Field validations have

been moved from database layer to client business logic layer. Data to

be displayed in web view has been cached on the client device.

Information We could see that hotel, guest, and other information related with

them may cause a scalability problem, since with multi-tenancy

number of their records is high. Also, we could understand reservation

data is sensitive in terms of consistency and availability, so that we

have taken care of that during applying scalability tactics.

Concurrency No change has been made.

Development Layers have been reorganized. Database has been separated from the

server layer and as a result, the system has client, application, and
database layers.

Deployment Application layer and database has been placed on the same Amazon

EC2 server machine. Database has been moved to another EC2

79

instance. Instead of using shared memory TCP/IP will be started to use

to access database. Memory cache will be added in front of the

database, the contents of the application will be reproduced, and a load

balancer will be put in front of them.

Operational Performance monitoring and management has been started and metrics

related to concerns have been collected and tracked periodically. It has

seen that auto scaling can be needed and can be applied in the future.

5.2.1. Functional Viewpoint

CHMS is web-based hotel management software that automates the major hotel

operations. Major stakeholders of it are guests, hotel managers, travel agencies.

The system consists of nine subsystems that are Reservation and Booking, Room,

POS, Guest, Accounting, Agency, Channel, General, and Report Management.

Reservation and Booking Management module keeps track of reservations and.

Room Management module is responsible from the operations related to hotel

rooms, such as room availability, room schema, room status, room wakening list,

and other activities. POS Management module manages the product selling and

delivery operations made by the guests that stays in a hotel or visits for a day.

Guest Management module keeps track of the information about guests that stays

in a hotel or visits for a day. Accounting Management module manages all of the

accounting operations that are done in a hotel. Agency Management module

manages all the information about travel agencies and all of the sales information.

Channel Management module keeps track of selling channels and administrators

that a hotel is contracted out. General Management module is responsible from

room settings, financial settings, etc. Finally, Report Management module

manages generation of various types of reports.

Functional view of CHMS is shown in Figure 16. Database layer contains tables

and stored procedures. SaaS framework automatically extracts the database

schema and generates JavaScript business object model (JBOM) code files that

indicate tables, relations, constraints, stored procedures in JavaScript Object

Notation (JSON) format. They are used in client interface as business logic. Client

interface includes HTML5 UI components, such as forms, views, grids, and

reports that are displayed in web view. Client communication manager manages

client requests and server responses.

80

In the application layer, four components, authorization, multi-tenant filtration,

logging, and data transfer components exist. Authorization component is

responsible from authorization of client requests, such as create, read, update,

delete, and execute. We have chose session authorization, since it has less usage

of computational power, reduces the response time of each request and makes

both component and the system more scalable. We have explained the details in

the section 5.4.3. As a future action when the scale-out is applied on application

instances and a load balancer is added in front of them, the request can be spread

to these instances, so more scalability can be achieved.

Multi-tenant filtration component process each query and eliminates the data that

are not related to tenant of the requested client. Data transfer handles database

operations that come from authorization component. Logging component keeps

record of some events occurred in the application layer and saves these logs into

database.

StoredProcedure

Table

JBOM

DataSet

Grid

Form

Reporting

DataTransfer

Logging

MultiTenantFilter

Authorization

extractView
request

response

fetch

save

Figure 16: Functional View of CHMS

5.2.2. Information Viewpoint

With the help of information view we can see which data may cause a scalability

problem, and also we can understand which data is sensitive in terms of

consistency and availability so that we take care on during applying scalability

tactics. For instance, in CHMS reservation information is significant, and it must

be consistent and available during execution. Depending on the room availability

and channel used the reservation can be waited, approved, checked-in, and finally

checked-out. Also, number of hotels, guests, and the information related with

81

them has large number of occurrence in requests, so scalability perspective should

focus on them. All of the components that process the reservation information

should be scalable too.

The system has different type of data transfers between clients and server. This

data are auto-generated client code, client requests, server responses, and also data

transfer between application unit and database. Initially, all of the tables and

relations between them in the database are scanned and code is generated

automatically by the SaaS framework accordingly. This generated code is sent to

a client to be displayed in the interfaces. A request is sent to the server from a

client. This request is either to send information to the server or to get information

from the server. Another flow is logging of records that is; application unit saves

some process results into database.

5.2.3. Concurrency Viewpoint

Application layer of CHMS has dependency on .NET 3.5, Windows Server 2012

r2, and IIS 7 and it uses default values of their configurations. Thus, they handle

the web requests concurrently, and they open thread per request, and limit of

concurrent requests are dependent on them. According to official Windows Server

site [27] default value of maximum number of concurrent ASP requests that are

allowed into the request queue is 3000 and default value of the maximum number

of worker threads per processor that ASP can create is 25. Besides, in database

layer MS SQL Server 2000 queues related queries for consistency of information.

As a result, they continue to use the same environment and same configurations,

and also no change in concurrency design of the application is made after

applying scalability perspective.

5.2.4. Development Viewpoint

CHMS has two separate development views for client-side and server-side. Figure

17 represents the development view of both server-side and client-side of CHMS.

For server-side it has four layers, domain, utility, platform and data layers.

Domain layer consists of nine modules related to management of subsystems,

82

such as Reservation and Booking, Room, POS, Guest, Accounting, Agency,

Channel, General, and Report Management. Utility layer includes logging library,

authorization controls, multi-tenant filtration, security controls, database access,

and message handling library. Platform layer involves .NET 3.5 libraries. Data

layer has tables and stored procedures stored in MSSQL2000 RDBMS.

On the client-side, the system has three-layered architecture that has presentation,

business, and data access layers. Presentation layer contains HTML forms, views,

grids, graphics, and reports. Business layer contains JavaScript files. Data access

layer has datasets that are taken from database and cached in the client device.

Figure 17: Development View of CHMS

As seen in left side of Figure 18, client layer makes requests to application layer,

and application layer processes these requests, fetches data from database layer,

and replies with the result data to client layer.

83

Figure 18: Development Views of CHMS after application of Scalability

Perspective. Left one is the current one and the right one will be the final version.

Finally, as the demands and sources grow the system is planned to have the

development view shown in right side of Figure 18. There will be no major

changes in the contents of the layers instead there will be some additions to

current layers. Memory cache will be added in front of the database, the contents

of the application will be reproduced and a load balancer will be put in front of

them.

5.2.5. Deployment Viewpoint

CHMS has client-server architecture like most of the cloud-based SaaS

applications. In this pattern clients request functional operation to the server.

Clients can access to the system from any device that has any environment

(hardware, OS, etc.) specification. On the other hand, the server consists of the

application and database layers. Instead of buying and maintaining hardware and

software environments for the server, CHMS administrators decided to use

Amazon’s EC2 machine. It allows them to launch server instance with the

platform features that they can select among set of platform packages, to access

the instance via web service interfaces, and to pay only for the resources they

consume. Also, EC2 provides auto-scaling, elastic load balancing, monitoring

whose details are explained in the architectural tactics section. They assess the

requirements of the system, they think it is appropriate to select Amazon EC2

compute optimized c3.xlarge instance, hosted in Ireland as the server of CHMS

[18]. It has 4 vCPUs 2.8 GHz High Frequency Intel Xeon E5-2680 v2 (Ivy

Bridge) physical processors, 7.5 GiB memory, 2 40 GB SSD storage, and

enhanced networking. Enhanced networking enables them to get significantly

84

higher packet per second (PPS) performance and lower latencies. Moreover,

since most of the CHMS customers are in Europe region, they select the nearest

location, Ireland, among Amazon’s hosting locations for the server instance.

Choosing the nearest location decreases latencies in the network that has an

impact on the scalability too. Furthermore, the OS is Windows Server 2012 r2,

and it has MSSQL2000 DBMS. The server has IIS 7 and .NET 3.5 software

dependencies.

Figure 19 shows the deployment diagram of current CHMS. The diagram can be

used to identify scalability modules. SCL stereotype is used to tag scalability

modules. Amazon EC2 server and business logic in the client device consists of

application of scalability tactics which are described in tactics section. Scalability

plan of this framework includes maintaining the system scalability for one server

machine and multi-client environment in the first place.

Internet

ApplicationServer

Authorization

Management

Logging

DataTransfer

ClientMachine

WebView

DataSetForms

DatabaseInstance

RDBMS

Figure 19: The deployment structure of CHMS

The one server contains both database and application components. Database

contains multi-tenant data, a lot of information related to a large number of hotels,

and millions of users that is registered to system. Also it contains not only data of

hotel domain, but also data of other domains like property, hospital, etc. Such a

large number of entries and such a large number of clients connected to database

periodically cause a lot of requests and an overload on the server. To solve that

scalability problem they will need to separate the RDBMS from the one server,

and have execution of application and database on separate server machines. Also,

when application layer and database are on the same machine, application layer

accesses to database through shared memory, since it provides performance

85

optimization. However, when they separate them, using TCP/IP protocol is

preferred. Moreover, as the number of clients increase and demands grow they

will start to scale-out, increase the number of application server machines, add

load balancer in front of application servers, add memory cache in front of

database server, etc. And possible outcome of application of these tactics will lead

to a deployment diagram as you see in right side of the Figure 18.

5.2.6. Operational Viewpoint

As we describe in concerns section, response time, throughput, user access load,

communication traffic load, data access load, usage and sufficiency of hardware

resources are crucial for scalability perspective. To be able to collect information

about these concerns and to be able to detect the scalability problems and to

improve the system there is a need to periodic monitoring during the system is

running in its production environment. Since server of CHMS run on the Amazon

EC2 machine, they benefit from CloudWatch to monitor this machine. They

collect and track throughput, processing time, disk usage, and data transfer

metrics, such as number of the requests, latency. They also benefit from MS SQL

Server 2000 counters to assess the volume of workload on database, time taken

for application’s transactions to complete, IIS counters to assess the number of

web requests being serviced and how long it is taking to service them, and

Windows Server 2012 counters to assess the amount of workload that the

application is performing and how long it is taking to perform the operations.

Moreover, by logging component important events and statuses of important

components are written into database. Furthermore, they can also set alarms to be

able to be notified for peak load times. Also, they can use auto scaling feature of

the service to dynamically add or remove EC2 instances by setting an alarm

threshold.

Information stored in database is significant part of the system, and to satisfy

consistency, reliability, and availability of the system a protection of information

is a must. Therefore, information in the database should be backed up

periodically. In CHMS two database backups occur per day. If any failure

86

happens in the database, to rescue information as much as possible they can

restore the last saved information from the backups. This is why two backup

operations occur in a day.

Another important aspect of operational view is maintenance of the system and

user training. User and developer guidelines and APIs are prepared during the

project.

5.3. Applying Scalability Perspective

5.3.1. Scalability Requirements

Scalability requirements of CHMS include limits of user access load,

communication traffic load, data access load, response time, throughput, and also

they specify hardware resource requirements. Initial performance and scalability

system requirements that are determined with customers are extended.

Requirements include mostly quantitative descriptions so that they can be tested

and be verified. These requirements are as follows.

 System shall be responsive, available, reliable, and consistent all the time.

 95% of all visible pages for customers shall respond in 8 seconds or less,

including infrastructure, excluding back-ends.

 The load time for user interface screens shall take no longer than two

seconds.

 The log in information shall be verified within five seconds.

 System shall response to queries within five seconds.

 50 records of any table shall be downloaded at most 1 second. (Max:50kb)

 System shall be able to deal with 100 users at the same time.

 System shall ensure that performance shall not fall below while supporting

3000 users.

 System shall be fast enough to support a 1000-transaction-per-day-

workload.

87

 Under a load of 360 update transactions per minute, 95% of transactions

shall return control to the user within 5 seconds of pressing the submit

button.

 Under a load of 360 update transactions per minute, 90% of service

requests should return a reply to the calling program within the following

times:

o Open account: 30 seconds

o Update account details: 10 seconds

o Retrieve account status: 5 seconds

o Search operation: 5 seconds

o List operation: 12 seconds

o Filter and sort operations: 7 seconds

o Display graphs, tables, calendars operation: 10 seconds

o Save forms and reports operation: 6 seconds

 The DBMS shall support up to 100 concurrent users performing

reservation transactions.

 Database of the system shall handle at least a 200 of users at any periods.

 Server machine shall have a powerful CPU and high speed internet access

so that it can handle multiple users at the same time.

 Server machine shall have higher storage space so that it can have more

user and bigger workspace per user so higher the storage, better the

performance.

 Client-side web application shall be developed as a lightweight web app so

that it can work on almost any platform even with slower internet

connections.

 System shall handle 2 database backup operations without any

performance degradation per day.

5.3.2. Modeling Guidelines and Examples

In this section we provide application of UML Scalability Profile on Cloud Hotel

Management System (CHMS) that we present in our case study. The deployment

of the logical elements across the engineering environment is shown in Figure 19.

88

Scenario: Scenario is composed of two parts, low-level and high-level scenarios.

Low-level Scenario: The user (us) requests business objects, table, view and

stored-procedure schemes, from the SaaS framework. JBOM files are generated

from RDBMS instance and extracted in the client machine. Client Application

(ca) of CHMS is setup and ready to use. User requests one of web pages that have

a list of records through the Web View (wv) that displays the web page. Then,

user makes an update request and that request comes to program manager (pm) in

the application instance. It, firstly, waits the result of authorization, the

authorization component (ac) checks the credentials, session information by

retrieving id and password from database (db) and comparing them with the data

come. Any result of authorization is sent to logging component (lg). Logging

component inserts the log record into database (db). At the same time, if the

credentials are valid, program manager (pm) starts the processing operation. The

result of the operation is sent through data transfer (dt) component to the client

machine and the Web View (wv) displays the result data. The activity diagram in

Figure 20 depicts this scenario.

89

dt:
DataTransfer

lg: Loggingau: Authorizationpm:
ProgramManager

db: RDBMSwv: WebView

showForm

sendRequest

handleRequest

checkCredentials

retrieveUserData

processRequest

update
saveRecord

insert

sendResponse

formResponse

displayResponse

Figure 20: User request low-level scenario – activity diagram representation

High-Level Scenario: In high-level scenario there are a lot of users (us) that

access to the CHMS from their client applications. All of the requests that are

formed by these users are goes through communication links (cm) and reaches to

the CHMS application server (as). Application servers make necessary operations

that require also making database operations in the database instance (db). The

low-level scenario explains the details of these requests and operations during the

usage of one user. It can be thought as a sub-scenario that is occurred many times

in this scenario. After the first iteration is realized, the number of users increases

and the second iteration occurs. And to address demands of many users, the

system is scaled vertically. Finally, the third iteration occurs. This scenario is

represented by the sequence diagram in Figure 21.

90

loop

ca: ClientApp cm: Communication

sendRequest

as: ApplicationServer

handleRequest

db: Database

makeDBOperation

sendDBResponse

sendResponse

displayResponse

Figure 21: User requests high-level scenario – sequence diagram representation

Scalability Requirements

To analyze scalability, we need quantitative information on the execution of the

components. We have the following values labeled as to whether they are

measured values, estimates, or assumptions:

 (estimate) System shall ensure that performance shall not fall below while

supporting 3000 users.

 (estimate) application instance processing duration: mean: 250 ms

 (estimate) database instance processing duration: mean: 150 ms

 (estimate) The DBMS support for concurrent users performing some

transactions: 100

 (measured) Download duration per record of any table: 12 ms

 (assumed) network delay distribution: exponential with mean: 2 ms

Additional parameters that are needed to complete an evaluation include the

requirements, and a description of the workload intensity. Here, we will use the

following additional parameters:

 initially the number of users active in the system: $NUsers, a variable

 external delay: each user has an average delay between ending one session

and beginning another of 20 minutes

 records in a table: $N, a variable

 (requirement) Response time for any web page: 95% value < 8000 ms

 (requirement) Loading time for any web page: 99% value < 2000 ms

91

 (requirement) Verification duration of credentials in authorization

component: 99% value < 5000 ms

The Annotated UML Model

The UML diagrams of CHMS can be annotated with scalability requirements

defined. For example, events and actions of the low-level scenario in activity

diagram shown above are associated with the scalability attributes and the

resulting model is shown in Figure 22. It shows possible response times for

critical operations.

92

dt:
DataTransfer

lg: Loggingdb: RDBMSau:
Authorization

pm:
Management

wv: WebView

<<SCAcontext>>

<<SCAstep>>
showForm

<<SCAstep>>
sendRequest

<<SCAstep>>
handleRequest

<<SCAstep>>
checkCredentials

<<SCAstep>>
retrieveUserData

<<SCAstep>>
processRequest

<<SCAstep>>
update

<<SCAstep>>
saveRecord

<<SCAstep>>
İnsert

<<SCAstep>>
formResponse

<<SCAstep>>
sendResponse

<<SCAstep>>
displayResponse

«SCAopenWorkload»
{SCApopulation=$NUsers,
SCAextDelay=('mean', 'asgn', 20, 'ms')}

{SCArespTime=('req',
'percentile', 99, 500, 'ms')}

{SCAdemand=('est', 'mean', 250, ms)}

{SCArep=$N,
SCAdemand=('est', 'mean', 150, ms),
SCAextOp=('record', 12)}

{SCArespTime=('req',
'percentile', 99, 2000, 'ms')}

{SCArespTime=('req',
'percentile', 95, 8000, 'ms')}

Figure 22: User request low-level scenario – activity diagram representation with

scalability annotations

Also, events and actions of the high-level scenario in sequence diagram shown

above are associated with the scalability attributes, see Figure 23. It shows the

impact of increase on number of users and the scale-up tactic. The impacts can be

recognized by comparing the user access loads and the scalability metrics of the

server resource. The values are assumed, so they may not be the same in the real

scenario.

93

loop

loop

loop

ca: ClientApp

<<SCAcontext>>

cm: Communication

sendRequest

as: ApplicationServer

handleRequest

db: Database

makeDBOperation

sendDBResponse

sendResponse

displayResponse

«SCAuserAccessLoad»
{SCAnumOfUsers=$NUsers}

«SCAcomTrafficLoad»
{SCAcomDelay=('assm', 'mean', 2, 'ms')}

«SCAresource»
{SCAcapacity=$C,
SCArespTime=$R,
SCAutilization=$U,
SCAthroughput= $T}

increase

sendRequest

handleRequest

makeDBOperation

sendDBResponse

sendResponse

displayResponse

«SCAtactic» scale-up

sendRequest

handleRequest

makeDBOperation

sendDBResponse

sendResponse

displayResponse

«SCAuserAccessLoad»
{SCAnumOfUsers=$2NUsers}

«SCAresource»
{SCAcapacity=$C,
SCArespTime=$2R,
SCAutilization=$2U,
SCAthroughput= $T/2}

«SCAresource»
{SCAcapacity=$2C,
SCArespTime=$R,
SCAutilization=$U,
SCAthroughput= $T}

Figure 23: User request high-level scenario – sequence diagram representation

with scalability annotations

Finally, we also present the annotated deployment diagram in Figure 24. We have

annotations for the communication traffic, user access, and database access loads.

94

Internet

<<SCAcontext>>

«SCAuserAccesLoad»
{SCAconUsers=('est', 'mean', 3000)}

«SCAdbAccessLoad»
{SCAconUsers=('est', 'mean', 100)}

«SCAhost»ApplicationServer

«SCAfunctional»
Authorization

«SCAfunctional»
Management

«SCAfunctional»
Logging

«SCAfunctional»
DataTransfer

«SCAhost»ClientMachine

«SCAfunctional»
WebView

«SCAfunctional»
Form

«SCAfunctional»
DataSet

«SCAhost»DatabaseInstance

«SCAfunctional»
RDBMS

«SCAcomTrafficLoad»
{SCAcomDelay=('assm', 'mean', 2, 'ms')}

Figure 24: Annotated deployment model for CHMS

5.4. Architectural Tactics

This section describes the scalability tactics that we have applied. As the demands

and sources grow application, some possible scalability tactics that we will apply

respectively are also listed below. The summary of all of the tactics are shown in

Table 10. It shows which components are affected and in which aspects the tactic

is applied.

5.4.1. Component-based Architecture

As you can see from the development view of CHMS, the system is divided into

layers, client, application, and database. All of the functional elements of the

system are placed in one of these layers, you can see functional view. Also, they

are grouped into modules according to their functional domain to achieve high

cohesion internally and low coupling to the outside. They have minimum

dependency among themselves and do not interfere with each other. This

condition facilitates finding the scalability obstacle and also applying the other

scalability tactics, such as scale-out, load balancing, and replication.

5.4.2. Service-oriented Architecture

Built-in server components of the SaaS framework, such as authorization, multi-

tenant filtration, logging, data transfer, have service behavior and totally they have

95

provided service-oriented architecture. This provides scaling each part of the

application independently. With the application of this pattern asynchrony is also

satisfied, different components of the system can run parallel for concurrent

requests and perform useful work while waiting for input and output to complete.

5.4.3. Minimize the Workload on the Server

CHMS have reduced the workload of the server, in other words it has moved and

distributed some of the operations to clients and it has benefited from the

computational power and memory of clients. Firstly, it has made use of cache part

or all of the data used in a client. After the first fetch of data, it has been placed on

the memory of client. This has provided making most of the operations like

reading, validating, searching, and sorting, on the client-side rapidly without

server connection. Thus, caching has reduced the number and the size of requests

going to the server.

The requests have covered only the atomic create-read-update-delete-execute

(CRUDE) operations that are computed at database. However, holding data has

not been merely adequate. We have needed to move also the business logic, which

processes this information for specific purposes, from server to client layer. For

instance, field validations provide conformity of data to rules, such as minimum

and maximum value or length, while doing operations with data. Before an

operation the system should check whether data is valid or not. When data is not

correct according to validation rules, the system should give an error as an output

and should not continue the operation. Thus, when we have implemented this

operation in client layer, we have made the system more responsive and scalable

by reducing the network traffic and computational operations. Because we have

moved a thing that consumes processing cycle of the whole application to a place

that only one user is affected. Even if these operations must be done at the

application layer, there exists a performance gain, since some of the checks are

eliminated in first check in the client-side.

96

Difference between authorization mechanisms has also some effects on

scalability. There are two ways of authorization, with session or sessionless. With

session authorization client indicates its credentials only in its first request to the

server. In its next requests it indicates its unique session key that is given by the

server if its credentials are correct. Since requests have the session key,

authorization component does not consume computational power for the

validation of credentials On the other hand, in sessionless authorization client

should indicate its credentials in every request to the server. For each request

authorization component validates credentials of the incoming request. In the case

of millions of requests this makes usage of a lot of computational power. As a

result, since session authorization has less usage of computational power, it

reduces the response time of each request and makes both component and the

system more scalable.

5.4.4. Scale-up

Current hardware and software environment has been explained in the deployment

view section. These features have been determined by thinking possible increase

in demands. Therefore, up to now there has been no need to scale-up the system.

But when a scalability problem, high response time, low throughput occurs the

system can be scaled vertically by adding more and better hardware resources

immediately. This can be done easily by editing the configuration of EC2. Also,

EC2 provides auto-scaling that allows us to automatically scale EC2 capacity up

or down according to conditions they define [18]. In other words, during peak

loads they can increase the number resources to maintain performance, and

decrease during low usage periods to minimize costs.

5.4.5. Scale-out

With the advantage of current multi-tenant architecture of CHMS they can easily

scale the system horizontally. They can have more than one application and

database nodes and tenants can be distributed to these nodes. Currently, scale-out

has not been applied, yet in the future it is planned to be done. Firstly, database

will be moved to another EC2 machine. Since multi-domain multi-tenant system

97

brings high load on the server, a need to reduce the load on the server and to make

it more responsive is obvious. Then, as the number of clients, their data, and their

demands increase another horizontal scaling need will emerge. At this point, they

will add more nodes in the application layer and requests will be processed in

more than one application node. By the way, they can benefit from the auto-

scaling feature of EC2 to realize this via web service. Thus, response time and

throughput is stabilized on the same value ranges.

5.4.6. Caching

As we mention in the section 5.4.3 CHMS has applied caching in the client side to

reduce communication traffic load, data access load, and usage of computational

power of the server. Client does not request data from application layer any more

after it has been requested initially. Also, since data can be fetched from memory

rapidly, all of the information, such as customers, bookings, and invoices, that is

displayed in guest or administrator interface is be searched and sorted quickly.

Another caching can be applied in database layer by adding a memory cache in

front of database. By doing this they can optimize the repeated queries and reduce

data access load.

5.4.7. Replication

As the number of requests increase, CHMS application layer cannot response all

of these requests as fast as before. CHMS needs to catch the increase in the

number of requests increase, so the response time should be lower and throughput

should be higher than before. To realize this, replication, one of the scalability

tactics, can be applied. There are two types of replication in terms of the place the

replication occurs, replicating application or data. Firstly, components in the

application layer or the whole application layer can be stored on multiple server

instances. For instance, authorization component can work on multiple machines

that reside in geographically different places. And each of them can hold session

keys of clients who connect to the system from that region. Thus, workload of

authorization on the application layer can be distributed to multiple machines, so a

98

performance improvement can be satisfied. Or another example, during scale-out

application layer as a whole can be placed in different instances. Thus, the total

workload on the server can be distributed and processed concurrently by each of

the application instances. Therefore, the system achieves a performance gain and

can reply to more number of requests without performance degradation.

The second type of replication is multiplying the part or all of the data and storing

them in multiple locations. The details have been explained in section 2.3.2.10.

Database of CHMS has both shared data and tenant specific data. Shared data,

such as countries, languages, currencies, is common data that contain any specific

information to any of the tenants and can be usable by every tenant. It is usually

used for read purposes. Thus, shared data should be replicated on another database

instance. Tenant data has high usage ratio, since most of the requests coming to

database includes it. Since it is used in write operations, it is not preferred to be

replicated.

Moreover, SaaS framework provides the clients of CHMS to load the application

code and parameters from the replicated file servers. Thus, the contention because

of the JBOM files of each client is reduced.

5.4.8. Load Balancing

To reduce response time and waiting time of tasks they can use load balancing in

CHMS. It can be done in the client layer, front-end load balancing, or in

application layer, back-end load balancing. For front-end load balancer, a client

decides a node to connect among available server nodes. This node can be

selected randomly or via an algorithm. Another application of load balancing

occurs in the application layer. When the application layer is horizontally scaled,

number of application instances is increased and a need of distributing incoming

requests to these instances emerges. In CHMS they can use Elastic Load

Balancing service and automatically distribute incoming requests to multiple

application EC2 instances in the application layer [19].

99

Chapter 6

Related Work

Scalability concern has been addressed by distributed systems and web-based

systems for ten years. With vastly usage and proliferation of cloud computing,

scalability has become a crucial quality concern for all of the large-scale systems.

It has been addressed as a quality concern and as a problem of not meeting

growing demands in studies of industrial cases. In these studies developers have

shared their scalability problem and solution. Software architecture design books

and guidelines have mentioned scalability concern in non-functional requirements

and with performance criteria. Besides, some of the architectural patterns touch on

the scalability of the software. However, there has been no study that addresses

the scalability perspective as a standalone architectural perspective guideline that

describes its concerns, activities, tactics, aspects, and problems. Rozanski and

Woods [47] have discussed on the architectural perspectives and they have treated

scalability perspective as a sub-concern of the performance perspective. They

have aimed to avoid unexpected, complex, and expensive problems late in the

system lifecycle. Also, there have been some papers and guidelines on scalability.

For example, in [24] SaaS performance and scalability have been evaluated and

analyzed with proposed graphical models and metrics, but they have not focused

on scalability at the architectural level. In [23] the authors have discussed factors

that have impact on SaaS scalability and some tactics to improve SaaS scalability,

yet they have addressed subset of the factors and tactics. Some of the papers have

described application of one scalability tactic or pattern. In [29] they have applied

component-based scalability, in [60] they have worked on scalable SaaS database

design.

100

OMG has proposed various UML profiles, such as profile for schedulability,

performance and time (SPT) [43] and profile for modeling Quality of Service and

Fault Tolerance (QoS & FT) [42]. SPT profile has enabled the construction of

models that can be used for making quantitative predictions regarding these

characteristics [42]. Performance profile has extended the UML meta-model with

stereotypes, tagged values and constraints, which make it possible to attach

performance annotations, such as resource demands and visit ratios, to a UML

model. It has provided facilities for capturing performance requirements within

the design context, associating performance-related QoS characteristics with

selected elements of the UML model, specifying execution parameters which can

be used by modeling tools to compute predicted performance characteristics, and

presenting performance results computed by modeling tools or found by

measurement. Firstly, it has described a domain model which identifies basic

abstractions used in performance analysis. Then, it has mapped the classes from

domain model to a stereotype that can be applied to a number of UML model

elements, and each class attribute to a tagged value. Finally, it has provided

activity or sequence diagrams with performance annotations that illustrate a

scenario. Scenarios define response paths through the system, and can have QoS

requirements such as response times or throughputs. QoS deals with the set of

non-functional aspects of a system that determines the satisfaction level of its

users, and it may be therefore intended as a multi-attribute resulting from the

combination of basic non-functional attributes such as performance and usability

[42]. Fault Tolerance is a very strictly related attribute that assesses the capability

of a system to deliver continuous and failure-free service.

UML performance profile has been used by lots of existing studies. Petriu and

Shen [44] have defined a model transformation method and they have used UML

performance profile as an input to this method. Their method is based on graph-

grammar and transforms automatically a UML model annotated with performance

information into a Layered Queuing Network (LQN) performance model. Their

reason of choosing UML performance profile is that it is easy to understand and it

provides enough annotations for generating LQN models. They have also applied

101

their method on their case study and have provided a deployment and an activity

diagrams with performance annotations. Bennett and Field [5] have assessed the

effectiveness of their performance engineering methodology using UML SPT

profile with a case study, a mobile telecommunications billing system. They have

reached that their methodology is effective at detecting, quantifying, and locating

performance bottlenecks. Their methodology includes system scenarios and

covers the early phases of development process. In order to assess their

methodology, they have translated scenarios of their case study illustrated with

using SPT profile into the stochastic process algebra FSP and have analyzed them

using existing tools.

Another quality domain, reliability, has been addressed by various authors.

Reliability is a measure of the continuous delivery of correct service. Zarras and

Issarny [59] have proposed a UML profile for modeling and assessing software

reliability. They have identified the main concepts of the reliability domain and

have provided domain viewpoint. They have also presented a tool using their

profile definition. Cortellessa and Pompei [13] have presented an UML extension

to be able to model reliability of component-based systems. Their extensions have

built on concepts introduced in SPT profile [42] and have contributed to QoS &

FT profile [42]. They have defined domain model, stereotypes, tags, and

constraints that are related to reliability of component-based systems. Their model

has described the failure rates of components and combines them to obtain a

reliability factor for the whole system. As an example they have included UML

models with reliability annotations for an elevator control system.

102

Chapter 7

Conclusion

The need for economical optimization of resources has leaded to emergence of

cloud computing. Software as a Service (SaaS), the most mature the cloud service

model, addresses the software demands of users. In this model providers own,

host, and manage software at a central site. They offer the same instance of an

application to multiple customers, typically in a single-instance multi-tenant

architecture model. On the other hand, users simply access it remotely over the

Internet instead of installing and maintaining software, and managing hardware.

Recently, SaaS is intended to be used by thousands of people simultaneously and

this increase in SaaS adoption makes scalability as one of key characteristics of

SaaS. Scalability is defined as the ability of a system to either handle a growing

amount of work in a capable manner, or to be enlarged to accommodate that

growth [48]. It brings significant challenges for providers in designing and

maintaining SaaS. In order to fulfill this quality, understanding the scalability

features of the system and being aware of existing scalability patterns are crucial.

In this thesis, we have contributed systematic literature review of SaaS scalability,

UML profile for scalability, and software architecture perspective for scalability.

We have conducted a domain analysis study on scalability of SaaS applications.

In this study, we have aimed to provide a guide for new SaaS applications and to

existing SaaS applications to be able to achieve scalability easily by showing the

most common aspects affecting scalability of SaaS and tactics being applied to

make a SaaS scalable determined so far. During this research we have followed

the steps of Kitchenham’s systematic literature review methodology [33]. We

have analyzed the primary studies we have found in search databases, we have

103

filtered some of them according to our exclusion criteria, and finally have

extracted the data needed and have provided the list of aspects and tactics.

Also, we have proposed UML profile for scalability, which has not been proposed

by any study before. OMG has provided a study on UML profiling, but it has

addressed to only three qualities that are schedulability, performance, and time

[43]. Scalability profile is based on the general resource modeling. It enhances the

comprehension of scalability requirements and estimations. It describes how the

scalability will be for a system without actually testing it in real life.

Furthermore, Rozanski and Woods [47] have presented a perspective catalog that

consists of perspectives for most common quality concepts, such as performance,

availability, security, etc. These perspectives consist of patterns for each

viewpoint to be able to achieve the quality in the architecture. Scalability has been

addressed as a concern of the performance quality, but scalability is a separate

quality that has a relation with performance. Therefore, we have provided a

perspective for scalability, so that it supports the design and analysis of scalable

SaaS architectures. It includes a collection of activities and guidelines that require

consideration across a number of the architectural views. It can assist software

architects in designing, analyzing, and communicating the decisions regarding

scalability. We have illustrated the scalability perspective for a real industrial case

study.

During this study we have identified some possible future works. SLR on search

databases can be expanded to extend list of aspects and list of tactics. Also, a

scalability model can be defined and can be offered to OMG to make it formal. If

it is achieved, transformation between UML profile for scalability and scalability

model can be also provided. A new tool, that allows designing UML diagrams

with scalability annotations and automatically generates a scalability model, may

be introduced. DSL for scalability can be proposed. It can use the stereotypes,

tags, and constraints we have provided in UML profile. A tool that takes system

requirements and architect preferences as inputs to produce scalable architecture

can be implemented.

104

Bibliography

[1] B. Adler. Building Scalable Applications in the Cloud: Reference Architecture

& Best Practices, RightScale, 2011.

[2] D. Agrawal, A. El Abbadi, S. Das, and A. J. Elmore. Database Scalability,

Elasticity, and Autonomy in the Cloud, in Proc. of the 16
th

 International

Conference on Database Systems For Advanced Applications (DASFAA), pp. 2-

15, Springer-Verlag, 22-25 April 2011.

[3] AWS. SaaS on AWS, Amazon, September 2010.

[4] M. A. Babar, L. Zhu, and R. Jeffery. A framework for classifying and

comparing software architecture evaluation methods, in Proc. of Australian

Software Engineering Conference, pp. 309 – 318, 2004.

[5] A. J. Bennett and A. J. Field. Performance Engineering with the UML Profile

for Schedulability, Performance and Time: A Case Study, in Proc. of the IEEE

Computer Society’s 12
th

 Annual International Symposium on Modeling, Analysis,

and Simulation of Computer and Telecommunications Systems (MASCOTS),

2004.

[6] S. Bobrowski. The Force.com Multi Tenant Architecture,

https://developer.salesforce.com/page/Multi_Tenant_Architecture. Accessed on

06.11.2014.

[7] C. Chen, G. Chen, D. Jiang, B. Chin Ooi, H. Tam Vo, S. Wu, and Q. Xu.

Providing Scalable Database Services on the Cloud, in Proc. of the 11
th

International Conference on Web Information Systems Engineering (WISE), pp.

1-19, Springer-Verlag, 12-14 Dec. 2010.

[8] F. Chong, G. Carraro, and R. Wolter. Multi-Tenant Data Architecture, MSDN,

June 2006.

[9] P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little, R. Nord, J.

Stafford. Documenting Software Architectures: Views and Beyond. First Edition.

Addison-Wesley, October 2002.

105

[10] Cloud Hotel Management System. http://www.cloudhotel.us. Accessed on

17.10.2013.

[11] Cloud Optimized SaaS Framework. http://wiki.torkyazilim.com. Accessed on

17.10.2013.

[12] CloudWatch. http://aws.amazon.com/cloudwatch/. Accessed on 26.09.2014.

[13] V. Cortellessa and A. Pompei. Towards a UML profile for QoS: A

Contribution in the Reliability Domain, in Proc. of the 4
th
 International Workshop

on Software and Performance (WOSP), pp. 197-206, ACM, 2004.

[14] Data Model, http://en.wikipedia.org/wiki/Data_model. Accessed On

04.11.2014.

[15] L. Dobrica & E. Niemela. A survey on software architecture analysis

methods. IEEE Trans. on Software Engineering, Vol. 28, No. 7, pp. 638-654, July

2002.

[16] L. Duboc, E. Letier, and D. S. Rosenblum. Systematic Elaboration of

Scalability, IEEE Transactions on Software Engineering, vol. 39, no. 1, pp. 119–

140, January 2013.

[17] L. Duboc, E. Letier, D. S. Rosenblum, and T. Wicks. A Case Study in

Eliciting Scalability Requirements, in Proc. 16
th
 IEEE International Requirements

Engineering Conference, pp. 247-252, 8-12 Sept. 2008.

[18] EC2. http://aws.amazon.com/ec2/. Accessed on 26.09.2014.

[19] Elastic Load Balancing. http://aws.amazon.com/elasticloadbalancing/.

Accessed on 26.09.2014.

[20] S. Fang and Q. Tong. A comparison of multi-tenant data storage solutions for

Software-as-a-Service, in Proc. of 6
th

 International Conference on Computer

Science & Education (ICCSE), IEEE, pp. 95 – 98, 3-5 Aug. 2011.

[21] S. Frischbier and I. Petrov. Aspects of Data-Intensive Cloud Computing,

From Active Data Management to Event-Based Systems and More, Springer-

Verlag, pp. 57-77, 2010.

http://aws.amazon.com/cloudwatch/
http://en.wikipedia.org/wiki/Data_model.%20Accessed%20On%2004.11.2014
http://en.wikipedia.org/wiki/Data_model.%20Accessed%20On%2004.11.2014
http://www.cs.bilkent.edu.tr/~bedir/CS411/Papers/SurveySADAnalysisMethods.pdf
http://www.cs.bilkent.edu.tr/~bedir/CS411/Papers/SurveySADAnalysisMethods.pdf
http://aws.amazon.com/ec2/details/
http://aws.amazon.com/elasticloadbalancing/

106

[22] B. Gao, W. Hao An, X. Sun, Z. Hu Wang, L. Fan, C. Jie Guo, W. Sun. A

Non-intrusive Multi-tenant Database for Large Scale SaaS Applications, in Proc.

8
th
 IEEE International Conference on e-Business Engineering, 2011.

[23] J. Gao, X. Bai, W. Tsai, Y. Huang. Scalable Architectures for SaaS, in Proc.

IEEE 15
th
 International Symposium on Object/Component/Service-Oriented Real-

Time Distributed Computing Workshops, 2012.

[24] J. Gao, P. Pattabhiraman, X. Bai, W. T. Tsai. SaaS Performance and

Scalability Evaluation in Clouds, in Proc. of the 6
th

 IEEE International

Symposium on Service Oriented System Engineering (SOSE), pp. 61-71, 2011.

[25] J. Garland and R. Anthony. Large Scale Software Architecture, New York,

Wiley, 2003.

[26] IEEE. Guide to the Software Engineering Body of Knowledge (SWEBOK),

IEEE, 2004.

[27] IIS 7, ASP Settings. http://technet.microsoft.com/en-

us/library/cc730855(v=ws.10).aspx. Accessed on 26.09.2014.

[28] L. Jiang, J. Cao, P. Li, and Q. Zhu. A Mixed Multi-tenancy Data Model and

Its Migration Approach for the SaaS Application, in Proc. of IEEE Asia-Pacific

Services Computing Conference (APSCC), pp. 295 – 300, 6-8 Dec. 2012.

[29] S. Kachele and F. J. Hauck. Component-based Scalability for Cloud

Applications, in Proc. of the 3rd International Workshop on Cloud Data and

Platforms (CloudDP), pp. 19-24, ACM, 2013.

[30] M. Kapuruge, J. Han, A. Colman, and I. Kumara. ROAD4SaaS: Scalable

Business Service-Based SaaS Applications. Advanced Information Systems

Engineering (CAISE), pp. 338-352, 2013.

[31] R. Kazman, G. Abowd, L. Bass & P. Clements. Scenario-Based Analysis of

Software Architecture, in Proc. IEEE Software, pp. 47-55, November 1996.

[32] I. Khan. Distributed caching on the Path to Scalability, MSDN Magazine,

July 2009.

http://technet.microsoft.com/en-us/library/cc730855(v=ws.10).aspx
http://technet.microsoft.com/en-us/library/cc730855(v=ws.10).aspx

107

[33] B. A. Kitchenham. Guidelines for Performing Systematic Literature Reviews

in Software Engineering, Keele Univ. and Univ. Durham, UK, EBSE Tech. Rep.

EBSE-2007-01, Ver. 2.3, Jul. 2007.

[34] R. Krebs, A. Wert, and S. Kounev. Multi-tenancy Performance Benchmark

for Web Application Platforms, in Proc. 13th International Conference on

Web Engineering (ICWE), pp 424-438, Springer-Verlag, 8-12 July 2013.

[35] S. Lehrig. Architectural Templates Engineering Scalable SaaS Applications

Based on Architectural Styles, in Proc. Doctoral Symposium at the 16th

International Conference on Model Driven Engineering Languages and Systems

(MODELS), IEEE, 2013.

[36] J. D. Meier, C. Farre, P. Bansode, S. Barber, D. Rea. Performance Testing

Guidance for Web Applications, Microsoft Corporation, 2007.

[37] P. Mell and T. Grance. The National Institute of Standards and Technology

(NIST) Definition of Cloud Computing, Special Publication 800-145, September

2011.

[38] M. Mosley. DMBOK Functional Framework v3, The Data Management

Association (DAMA) International, The Premier Organization for Data

Professionals Worldwide, September 10, 2008.

[39] J. Nielsen. Designing Web Usability: The Practice of Simplicity. New Riders

Publishing, 1999.

[40] H. Obbink, P. Kruchten, W. Kozaczynski, H. Postema, A. Ran, L. Dominick,

R. Kazman, R. Hilliard, W. Tracz, E. Kahane. Software Architecture Review and

Assessment (SARA) Report. February, 2002.

[41] Object Management Group. Unified Modeling Language Specification v.

2.4.1, OMG document number formal/2011-08-05.

[42] Object Management Group. UML Profile for Modeling Quality of Service

and Fault Tolerance Characteristics and Mechanisms. Request for Proposal,

ad/02-01-07, January 2002.

108

[43] Object Management Group. UML Profile for Schedulability, Performance

and Time Specification. OMG Document, Version 1.1, formal/05-01-02, January

2005.

[44] D. C. Petriu, H. Shen. Applying the UML Performance Profile: Graph

Grammar-Based Derivation of LQN Models from UML Specifications, TOOLS

'02 Proceedings of the 12th International Conference on Computer Performance

Evaluation, Modeling Techniques and Tools, pp. 159-177, Springer-Verlag, 2002.

[45] A. Podelko. Multiple Dimensions of Performance Requirements, in Proc.

33rd International Computer Measurement Group (CMG) Conference, 2-7

December 2007.

[46] M. Reza Rahimi, N. Venkatasubramanian, S. Mehrotra, and A. V. Vasilakos.

MAPCloud-Mobile Applications on Elastic and Scalable 2-Tier Cloud

Architecture, in Proc. IEEE 5th International Conference on Utility and Cloud

Computing (UCC), pp. 83 - 90, 5-8 Nov. 2012.

[47] N. Rozanski, E. Woods, Software Architecture Systems Working with

Stakeholders Using Viewpoints and Perspectives, First Edition, Addison-Wesley,

April 2005

[48] Scalability, http://en.wikipedia.org/wiki/Scalability. Accessed On

04.11.2013.

[49] J. Song, Z. Yan, F. Han, Y. Bao, and Z. Zhu. Introducing SaaS Capabilities

to Existing Web-Based Applications Automatically, in Proc. 14th Asia-Pacific

Web Conference (APWeb), Web Technologies and Applications, pp 560-569,

Springer-Verlag, 11-13 April 2012.

[50] C. Spence, J. Devoys, S. Chahal. Architecting Software as a Service for the

Enterprise, Cloud Computing, Intel Information Technology, October 2009.

[51] B. M. Subraya. Integrated Approach to Web Performance Testing, IRM

Press, 2006.

[52] B. Tekinerdoğan. ASAAM: Aspectual Software Architecture Analysis

Method, in Proc. of 4th Working IEEE/IFIP Conference on Software Architecture

(WICSA), pp. 5-14, June 2004.

109

[53] B. Tekinerdoğan, K. Öztürk, and A. Doğru. Modeling and Reasoning about

Design Alternatives of Software as a Service Architectures, in Proc. Architecting

Cloud Computing Applications and Systems workshop, 9th Working IEEE/IFIP

Conference on Software Architecture, pp. 312-319, 20-24 June 2011.

[54] W. Tsai, Q. Shao, Y. Huang, X. Bai. Towards a Scalable and Robust Multi-

tenancy SaaS, in Proc. Second Asia-Pacific Symposium on Internetware ACM,

2010.

[55] W. Tsai, X. Sun, Q. Shao, and G. Qi. Two-Tier Multi-tenancy Scaling and

Load Balancing, IEEE 7th International Conference on e-Business Engineering

(ICEBE), pp. 484-489, 10-12 Nov. 2010.

[56] W. Wu, W. Tsai, W. Li, B. Esmaeili. Model-driven tenant development for

PaaS-based SaaS, IEEE 4th International Conference on Cloud Computing

Technology and Science (CloudCom), pp. 821 - 826, 3-6 Dec. 2012.

[57] J. Wu, Q. Liang, E. Bertino. Improving Scalability of Software Cloud for

Composite Web Services. IEEE International Conference on Cloud Computing,

2009.

[58] D. Yuanyuan, N. Hong, W. Bingfei, L. Lei. Scaling the Data in Multi-tenant

Business Support System. Pacific-Asia Conference on Knowledge Engineering

and Software Engineering, IEEE, 2009.

[59] A. Zarras and V. Issarny. UML-based Modeling of Software Reliability.

[60] Y. Zhang, S. Liu, X. Meng. Towards high level SaaS maturity model:

Methods and case study, in Proc. Services Computing Conference, IEEE Asia-

Pacific (APSCC), pp. 273-278, 7-11 Dec. 2009.

110

Publications Related to This Thesis

O. Ozcan and B. Tekinerdogan. Architectural Perspective for Design and Analysis

of Scalable Software as a Service Architectures, Managing trade-offs in adaptable

software architectures (MASA), 2015, to be submitted.

