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ABSTRACT

SORTING OF CHIRAL MICROSWIMMERS

Mite Mijalkov

M.S. in Physics

Supervisor: Assist. Prof. Dr. Giovanni Volpe

December, 2014

Microscopic swimmers, for example chemotactic bacteria and cells, are capable of

directed motion by exerting a force on their environment. In some cases, including

bacteria and spermatozoa swimming near boundaries, or many asymmetrical ar-

tificial microswimmers, the driving force and propulsion direction are misaligned.

In those situations a torque acting on the microswimmers arises, resulting in mo-

tion with a well-defined chirality which is circular in two dimensions and helicoidal

in three dimensions. In this thesis, I demonstrate with numerical simulations in

two dimensions, how the chirality of the circular motion can couple to chiral fea-

tures present in the microswimmer environment. I show that by employing static

chiral pattern of elliptical obstacles in their environment, microswimmers can be

separated on the basis of their motion parameters. In particular, levogyre and

dextrogyre microswimmers as small as 50nm can be separated and selectively

trapped in chiral flowers of ellipses. Patterned microchannels can be used as fun-

nels to rectify the microswimmer motion, as sorters to separate microswimmers

based on their linear and angular velocities, and as sieves to trap microswimmers

with specific parameters. I also demonstrate that these results can be extended

to helicoidal motion in three dimensions.

Keywords: Active chiral microswimmers, sorting of microswimmers.
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ÖZET

KIRAL MIKROYÜZÜCÜLERIN SINIFLANDIRILMASI

Mite Mijalkov

Fizik bölümü, Yüksek Lisans

Tez Yöneticisi: Yrd. Doç. Dr. Giovanni Volpe

Aralık, 2014

Kemotaktik bakteriler ve hücreler gibi yüzen mikroskopik canlılar çevrelerine

kuvvet uygulayarak hareket yönlendirebilme yeteneğine sahiptirler. Bazı durum-

larda, örneğin, bakteri ve sınıra yakın yüzen sperm, veya birçok asimetrik yapay

yüzücülerde, itici kuvvet ve itme yönü yanlış hizalanmıştır. Böyle durumlarda;

mikroyüzücüler üzerine etki eden, iki boyutta dairesel ve üç boyutta sarmal olan

iyi tanımlanmış bir kiralite ile harekete neden olan bir dönme kuvveti ortaya

çıkar. Bu tezde, iki boyuttaki nümerik simulasyonlar ile, dairesel hareketin ki-

ralitesi ile mikro yüzücülerin ortamında mevcut olan kiral özelliklerin birbiri ile

nasıl eşleştiği gösterilmektedir. Kendi çevrelerindeki eliptik engellerin statik ki-

ral desenini kullanarak, mikroyüzücülerin kendi hareket parametreleri temelinde

ayrılabildiği gösterilmektedir. Özellikle, 50nm kadar küçük levojir ve dextro-

jir mikroyüzücüler elipslerin kiral çiçeklerinde ayrılabilir ve seçici olarak kapana

kıstırılabilirler. Mikroyüzücülerin hareketini düzeltmek amacıyla, lineer ve açısal

hızına dayalı olanları ayırmak için ayıklayıcı olarak ve belirli parametreler ile

olanları yakalamak için süzgeç olarak desenli mikrokanallar huni olarak kul-

lanılabilirler. Ayrıca bu sonuçların üç boyuttaki sarmal harekete uzatılabildiği

de gösterilmektedir.

Anahtar sözcükler : Aktif kiral mikroyüzücüler, mikroyüzücülerin sınıflandırılması.
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Chapter 1

Introduction

Most of the events that we frequently encounter are inherently random. Ran-

domness takes place in many sciences including game and information theory,

and is also used to model stock markets, games of chance, etc. [1]. Due to its

widespread use, there have been great interest to model and gain an intuitive un-

derstanding of these phenomena. However, solving the corresponding equations

is a tough task due to the requirement of complex mathematical understand-

ing. Often, processes are simplified by doing some justifiable approximations and

solving simpler models that serve as a paradigm to understand more complex

behavior.

One of the simplest stochastic processes that can be studied is the Brownian

motion [2]. This is the omnipresent and continuous random motion of any micro-

scopical particle suspended in a fluid that arises due to the continuous collisions

with the surrounding fluid molecules. As such, it has been a model and inspiration

for many discoveries, in particular the development of the microscopic theory for

the matter structure [3]. Moreover, since the Brownian motion exists in thermal

equilibrium as a fluctuation, it can be used as model for systems in the scope of

equilibrium statistical mechanics.

In contrary to the Brownian particles, which fluctuate randomly while their av-

erage position remains at zero, active Brownian particles, also referred to as

microswimmers, are able to take up energy from the environment and use it to
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navigate through the environment [4]. They have a well directed motion, which

is disturbed by random fluctuations due to their Brownian nature. Due to this

property, active swimmers possess the potential to be used in many applica-

tions which would include any kind of pick up and delivery of molecules at the

nanoscale, then to localize pollutants in soils or to perform tasks in lab-on-a-chip

devices [5, 6, 7, 8]. Additionally, their ability to self-propel means that active

swimmers are out of equilibrium, so their behavior could be used to model such

systems [4]. All these promising applications led to a great interest to study

microswimmers and many artificial swimming methods to solve the problem of

self-propulsion have been proposed [9].

However, often microswimmers are designed to be asymmetric and the self-

propulsion direction does not align with the driving force [10]. In these cases

microswimmers become chiral and they undergo a circular motion in two and he-

licoidal motion in three dimensions. Such examples are vast, and they also exist

in nature, for example the bacterium E. coli and spermatozoa swim in circles

when they are near a boundary [11, 12, 13, 14, 15, 16, 17].

Sorting chiral microswimmers based on their swimming properties is of topmost

importance in science and engineering. For example, in order to increase the

probability of success of the artificial fertilization, velocity based selection of the

spermatozoa might be employed [18]. Separation and sorting of some geneti-

cally engineered bacteria can be achieved using the morphological variations in

the motion parameters [19]. Moreover, the capability of microswimmers to per-

form a specific tasks, such as bioremedication or drug delivery, can be significantly

increased just by selecting the swimmers that possess the most appropriate swim-

ming properties. Finally, the need to separate the chiral (levogyre and dextro-

gyre) molecules is very pronounced because generally only one specific chirality is

needed by the pharmaceutical and chemical industry [20]. Molecules can be made

active by coupling them with a microscopic chiral propellers, and then remove

the propellers after the separation is completed. The extreme importance in the

methods presented in this thesis, lies in the fact that due to the small Reynolds

number of the environment in which the molecules exist, their separation due to

chirality is very difficult to achieve by mechanical means [21].

In this thesis, I demonstrate by performing numerical simulations, that active

2



chiral swimmers can be sorted and separated due to their chirality, linear and an-

gular velocity by placing some static patterns in their environment [22]. I explain

how to numerically solve the Langevin equation for the motion in homogeneous

environment (chapters 2-5), complex environment (chapter 6) and finally I present

my results of how to sort chiral microswimmers (chapter 7). First, in chapter 2,

I go over some simple definitions of the random walk before outlining the finite

difference method and show how to numerically simulate the white noise. Using

these concepts, I demonstrate how to numerically simulate a Brownian parti-

cle (chapter 3), active Brownian motion (chapter 4) and chiral microswimmers

(chapter 5). Then, in chapter 6, I show how to treat the most commonly encoun-

tered boundary conditions which arise when a microscopic particle encounters

any obstacle in its environment. In here, I first outline the procedure of treat-

ment of periodic and reflective boundary conditions and then I present the sliding

boundary conditions illustrated in the examples of particle in a spherical well and

microswimmer encountering an elliptical obstacle. Finally, I introduce my results

and show that a racemic mixture of two dimensional chiral microswimmers can

be separated by placing the microswimmers inside a chiral flower which traps

microswimmers with specific chirality. Moreover, I show that a patterned mi-

crochannel can be used as a funnel which rectify the motion of the swimmers, as

a sorter on the basis of the linear and angular velocities of the microswimmers

and as a sieve to trap the microswimmers with certain properties. Moreover, I

demonstrate that all the results can be extended to the three dimensional case.

All these results are scalable down to smaller microparticles as long as the Péclet

number of the motion is kept constant.
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Chapter 2

Random Walk

Random walks are used to model many phenomena occurring at different scales,

such as scattering of the light at the nanoscale, the motion of biomolecules and

nanodevices at microscale or the financial status of a gambler, stock markets or

food foraging. Two properties of the random walk are of utmost importance [23]:

scale invariance, the random walks look the same at all scales, and universality,

random walks have the same properties regardless of their nature. Therefore, I

discuss some general properties of the random walk in this chapter as an outline

of the physical view of Brownian motion that I introduce in Chapter 3. First, I

consider the binary unbiased random walk and derive average quantities and the

diffusion equation for this model. Then I introduce the finite difference method

and go over the procedure of numerically simulating the effects on white noise,

before I end this chapter by describing the generalized version of random walk

and show the properties of this stochastic process via numerical simulations.

2.1 Binary unbiased random walk in 1D

Binary random walk in 1D occurs when the walker can choose to go in one of

the two available directions, making steps of equal length in the process. If the

two choices can occur with same probabilities the walk is said to be unbiased, the

4



walk is biased if one event is more likely to occur then the other (i.e. the walker

experiences a kind of drift in either dimension).

In particular, consider the case in which we have a walker in 1 dimension who

makes a decision to go left or right based on the outcome of a simple coin flip.

All the steps are of equal length, L, as depicted in figure 2.1.

Figure 2.1: Illustration of binary random walk. The walker makes a decision
based on a coin flip: he goes right if the result is heads and left if tails. All the
steps are of equal length, L. This is a unbiased random walk since the coin is
fair, there is 50% probability to go in either direction.

In order to show how the motion looks, I simulate three random walkers that

take 15 steps each and show them in figure 2.2. Any individual step is denoted

by the black markers, the colors indicate the distinctive paths of the walkers.

From figure 2.2, we observe that all the walks are rugged, unlevel, independent

and different from each other. Subsequently, the individual displacements after

N steps, DN vary from walker to walker. As a result, some variables need to be

derived that will answer the questions about how far the walker goes on average

in a given time, or how much time does the walker need to get to some certain

distance.
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Figure 2.2: The path that three walkers take (in units of L) as a function of the
number of steps taken in the fair coin toss game. Black markers denote each
individual step of the walkers.

2.2 Average quantities

Consider the binary random walker that can make steps with length ±L. Then,

if DN is the distance covered in N steps, we can express this distance as a sum

of the individual steps,

DN = L1 + L2 + L3 + ...+ LN =
N∑
i=1

Li (2.1)

Taking the average and keeping in mind that the average for a single step in an

unbiased random walk is 0, we get

DN = L1 + L2 + L3 + ...+ LN = L1 + L2 + L3 + ...LN = 0 (2.2)

Therefore, the average position of an unbiased random walk is zero. This

means that, if we plot the probability distribution of finding the walker at some
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distance, it will be centered at the origin and it will have its tails expanding as

the number of steps increases.

The quantity that gives the information of how much the walker traveled from the

initial point after some certain number of steps N is the square of the distance,

D2
N . To find the expectation value of D2

N , we simply square 2.1. Then,

D2
N = (L1 + L2 + L3 + ...+ LN)2 =

N∑
i=1

Li
2 +

N∑
i=1

N∑
j ̸=i

LiLj (2.3)

Now, calculating both terms in the sum one by one,

(Li)
2 = LiLi =

1

2
[(+L)(+L) + (−L)(−L)] = L2 (2.4)

LiLj =
1

4
[(+L)(+L) + (−L)(−L) + (+L)(−L) + (−L)(+L)] = 0 (2.5)

Therefore, D2
N , or the mean square displacement from the starting point, we have

[23]

⟨D2
N⟩ =

N∑
i=1

L2 = NL2 (2.6)

So, the mean-square displacement of an unbiased walker is proportional

to the number of steps.

One more measure for a random walk, is the information of how much time it

takes to the walker to reach a certain distance. Consider that it takes the walker

t0 seconds to make a single step with some velocity v. Then, during the total

time t, the walker will make N = t
t0

steps with length L = vt0. Then,

⟨D2
N⟩ = NL2 =

t

t0
(vt0)

2 = (vt0)vt = (vL)t (2.7)

Therefore, we conclude that the the mean-square displacement of an unbi-

ased walker is proportional to the time.

Figure 2.3 shows the calculated MSD (mean-squared displacement) for 4 different

step lengths. It can be seen that the MSD is proportional to the number of steps

(also proportional to time, since t = Nt0) and it also illustrates the fact that

MSD increases as the step length increases.
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It shows that MSD depends greatly on the step size and is directly proportional
to the time elapsed in motion.

An important point to note here is that the above properties were obtained by

taking time averages, i.e. considering a particular trajectory of a single random

walker and averaging it over time. However, the random walk represents an

ergodic system, so if we take ensemble averages, i.e. considering a lot of random

walkers and averaging their trajectories at the same time, the obtained results

will coincide. To illustrate this point, I calculate the average distance over a

lot of random walkers and plot its evolution over time in figure 2.4. This figure

illustrates the point that if we take larger and larger ensembles of walkers, the

average of their trajectory approaches the equilibrium position.
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to zero as we average over larger ensembles. Due to the fact that the system is
ergodic, averaging over ensembles gives the same results as averaged over time as
shown in section 2.2.

2.3 Continuum limit

In the previous sections, I described the random walk and showed some of its

properties by using individual trajectories and analyzing their behavior. However,

another way to look at the random walk, is to describe the behavior in terms of

the probability to find the walker at a certain position and analyzing how this

probability evolves over time. Before outlining these properties, I first explain

the finite difference method, that is used thoroughly throughout this thesis to

simulate various motions.
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2.3.1 Numerical simulations: The Finite difference

method

In this method [24, 25], I use finite differences in order to approximate the deriva-

tives in the stochastic equations. In particular, the following expression approxi-

mates the first derivative in backward difference:

f
′
(x) ≈ f(x)− f(x−∆x)

∆x
(2.8)

In order to approximate the second derivative, again in the backward direction,

I use the following:

f ”(x) ≈ f(x)− 2f(x−∆x) + f(x− 2∆x)

(∆x)2
(2.9)

2.3.2 The Diffusion equation

Consider a random walker that has a probability p to take a step to the right

and probability q to take a step to the left. Let PN(n) be the probability to find

the walker at position DN = nL after time t = Nt0. This random walk has the

properties that the probabilities to go from one position to another, in this case

p and q are constant in time, do not depend on the history of the system and

obey the sum rule. Due to these properties, the following equation follows for the

probabilities:

PN+1(n) = pPN(n− 1) + qPN(n+ 1) (2.10)

This equation represents the following: If the particle is at positionDN+1(n) = nL

at time t = (N + 1)t0, then there is p chance that the particle came with a step

to the right from DN(n− 1) = (n− 1)L at time t = (N)t0 and there is q chance

that the particle came with a step to the left from DN(n+1) = (n+1)L at time

t = (N)t0 as outlined in figure 2.5

From this point on, I will continue the derivation for the specialized case of

unbiased random walk. i.e. p = q = 1
2
. However, the diffusion equation that will

be obtained at the end holds in general as I show in the following chapters of this

10



Figure 2.5: Probability transitions and sum rule. The particle can reach its final
state (the red circle) from two possible positions that could occur 1 time step
earlier (the blue circles). Therefore the total probability for the particle to be
found at the red circle’s position is the sum of the probabilities for the particle
to be found at the positions of the left (right) blue circle and make a next step
to the right (left).

thesis.

In this special case, the equation 2.10 becomes:

PN+1(n) =
1

2
PN(n− 1) +

1

2
PN(n+ 1) (2.11)

Subtracting PN(n) from both sides yields

PN+1(n)− PN(n) =
1

2
(PN(n− 1) + PN(n+ 1)− 2PN(n)) (2.12)

Consider the expression on the left. It gives the difference between the probabili-

ties obtained at two consecutive times. In accordance to the discussion in section

2.3.1, in the limit when N is large (thus t0 ≪ t) this finite difference represents

the time derivative of the probability distribution. In order to preserve the units,

this has to be multiplied by t0.

By going through the same arguments, the finite difference on the right represents

the second derivative of the probability with respect to position, multiplied by

L2. Therefore, equation 2.12 turns into,

t0
∂P

∂t
=

1

2
L2∂

2P

∂x2
(2.13)

Finally, this can be rewritten as,

∂P

∂t
= D

∂2P

∂x2
(2.14)

11



where D is the coefficient of diffusion given by D = L2

2t0
. Equation 2.14 is known

as free diffusion equation that describes the evolution of the probability

for a random walk. For the case when all the particles start at the origin, the

diffusion equation has the following solution,

P (x, t) =
1√
4π∆t

e−
x2

4∆t ; (2.15)

where, x = nL and t = Nt0

2.4 Random walk as a stochastic process

Until now, in the 1D random walk that I considered, the walker was able to move

left or right on a lattice with equal steps of length L. However, in the most general

case, the lengths do not need to be same, in fact they can also be chosen to be

random. Therefore, the random walk can be described as a stochastic process by

the following simple free diffusion equation:

∂x

∂t
= ξ(t) (2.16)

ξ(t) is called white noise and it is the term that gives the randomness of the

system. Intuitively, this equation represents the straightforward interpretation of

a random walk: the increments the walker takes over time are variables that are

chosen at random.

In the following, I will first discuss the properties of the white noise and how to

simulate it numerically, then I illustrate some of the properties discussed above

by numerical simulations of random walk.

2.4.1 White noise properties and simulation

The white noise carries the following properties: [25]

1. The mean of the white noise is zero ⇒ ⟨ξ(t)⟩ = 0 for all t

12



2. Two instances of the noise that occur at different times are independent of

each other

3. ⟨ξ(t)2⟩ = 1 for all ( t)

In order to represent this noise within the finite difference approach, we need a

discrete sequence of random numbers that will have the same properties as white

noise, thus imitating its behavior. As argued in [25], due to property 1 and 2

described above, we require a sequence of uncorrelated random numbers that

has a mean zero. As authors also point out, if we further require the condition
⟨(ξ(t)∆t)2⟩

∆t
= 1, due to the fact that the power of ξ(t) is unitary, the random number

sequence should have a variance of 1
∆t
. Since the random number sequences

generated by most programming languages are Gaussian sequences with zero

mean and unit variance, we need to scale down the random number sequence by

dividing it by
√
∆t to obtain the correct variance.

Finally, the white noise term ξ(t) is described in the finite difference approach as

the

ξ(t) =
ξi√
∆t

(2.17)

where ξi is a sequence of random numbers generated by any programming lan-

guage. One particular instance of the white noise is shown in figure 2.6

2.4.2 Numerical simulation of general random walk

In view of the discussion above about the treatment of white noise and the deriva-

tive within the finite difference approach in section 2.3.1, equation 2.16 takes the

following form:

xi+1 − xi+1

∆t
=

ξ(t)√
∆t

⇒ xi+1 = xi +
√
(∆t)ξi (2.18)

If we would like to consider random walk in 2 or 3 dimensions, it is sufficient

to notice that the motion along different Cartesian coordinates can be simulated

independently. Therefore, the set of equations that simulate 2D random walk are

xi+1 = xi +
√
(∆t)ξxi

(2.19)
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Figure 2.6: One particular occurrence of white noise simulated by using a se-
quence of 1000 random numbers generated by MATLAB scripting language with
a time step of ∆t = 0.5

yi+1 = yi +
√

(∆t)ξyi (2.20)

where ξxi
and ξyi are mutually independent random noises.

In order to illustrate the previous discussions, I plot a single instance of the

random walk in figure 2.7. Parts (a-c) show the particular realizations of the

white noise needed to simulate the random walks in (d-f) in one and (h-j) in two

dimensions respectively. All trajectories are 10s long and we observe that as the

time step is decreased, the random walk becomes more jagged and we need a

larger magnitude of the white noise to simulate the motion. However, due to the

fact that all random walks look similar to each other at all scales, this simulation

does not depend on the time step chosen and there is no optimal time step for this

free diffusion equation. What is more, random walks in x and y direction in figure

2.7 (d-f) are obtained by separating the two components of the two dimensional

motion shown in (h-j) thus demonstrating that the Cartesian components of two

and three dimensional random walks behave independently of each other.
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Figure 2.7: Simulation of one particular realization of random walk with tra-
jectories that are 10s long.As the time step decreases the trajectories look more
ragged and white noise of larger magnitude is needed to replicate the motion.
(a-c) The instances of the white noise needed to simulate the one dimensional
(d-f) and two dimensional (h-j) random walk. The trajectories in (h-j) are con-
structed by concatenating both one dimensional trajectories in (d-f) showing that
in two dimensional random walk, each of the x and y components performs an
independent random walk itself.
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Chapter 3

Brownian Motion

Brownian motion is the everlasting zigzag motion of the entities present at the

microscale. From its earliest observation in the early 19th century, Brownian mo-

tion has constantly gained much attention from scientists all around the world.

The complete formulation of its theory was done in the early 20th century and

from that point on, the many studies of this motion resulted in its widespread

application. In this chapter, after going through a very brief historical overview,

I present an outline of the theory of Brownian motion as developed by Einstein

and Langevin. Finally, I explain how to simulate this motion by using the finite

difference method explained in Chapter 2 and demonstrate some of its properties

by numerical simulations. As the generally accepted picture of the Brownian mo-

tion is the one of a microscopic colloidal particle performing random motion due

to the collisions with the surrounding molecules, there will be many similarities

between the concepts presented here and the ones presented in Chapter 2.

3.1 History

Robert Brown was a botanist who first observed the irregular motion of the

pollen grains when suspended in water. He thought that this motion was due

to the fact that the grains were living and he was looking for the ”vital forces”,
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interpreting his observations as a motion of small living creatures. However, after

experimenting with a vast range of plants of different age as well as inorganic

grains, he concluded that the motion was an intrinsic property of the microscopic

entities, not connected with biology, rather with physics itself.

Afterwards, around 1880s, a series of experiments done by Leon Gouy showed that

the motion cannot be due to external forces, but is a property of the fluid itself.

Then, the Brownian motion gained its theoretical interpretations. It all started

with the works of Einstein who derived the expressions for the diffusion constant

and mean-squared displacement of a suspended particle. Then, Smoluchowski

obtained the same results as Einstein but with a different numerical coefficient and

finally, Langevin showed a mistake in Smoluchowski’s assumptions and provided a

much simpler derivation of the diffusion coefficient. These results provided a good

framework for Jean Perrin to make his careful, precise and systematic experiments

that showed the first quantitative observations of the Brownian motion. [26]

3.2 Basic properties

Figure 3.1 below shows three trajectories of Brownian particles recorded by Per-

rin. He was tracking small granules (the radius of the granules being 0.52µm)

suspended in water by recording the positions of the granules every 30 seconds

and then connecting the positions (black dots in the figure) by straight line seg-

ments in what is one of the earliest experimental systematic study of the Brownian

motion.

All careful work on Brownian motion led to the conclusion that the following

main properties hold:

• The motion consists of straight translations and rotations at random angles.

It is extremely irregular and the trajectory does not have a tangent (the

velocity of the motion is not well defined).

• Even when many particles approach each other very closely, they still do

17



Figure 3.1: Three independent trajectories of the Brownian motion of granules
with radius 0.52µm as recorded in 30s intervals by Jean Perrin in one of the
earliest systematic experimental works to measure the properties of Brownian
motion. Adapted from [27]

.

not affect each other and move independently.

• The motion becomes more vigorous as: the particles get smaller, the fluid

gets less viscous and the temperature increases.

• The composition of the particles has no effect on the motion.

• The motion is omnipresent at microscale and does not ever stop.

3.3 Einstein’s theory of Brownian motion

Einstein’s development of the theory consists of two main results. The first one

connects the diffusion coefficient to the other physical parameters describing the

system, while the second result is the derivation of the free diffusion equation

which describes the evolution of the probability distribution of a particle. In

the following, I will go over the main points of both derivations, using the same
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notation as used in [3]. All the following arguments are derived by using 1D

systems, however the extension to 2D and 3D is straightforward.

3.3.1 Diffusion constant

According to Einstein’s view, the suspended colloids in a solution perform random

walk due to the random impulses these colloids experience because of numerous

collisions with the solvent’s molecules. He also asserts that the suspended par-

ticles and the surrounding molecules are indistinguishable with respect to the

osmotic pressure, expressed as

p = kBTν (3.1)

where ν represents the number of suspended particles in unit volume. The ar-

gument runs along the following lines: Let ν amount of particles be suspended

in a liquid in equilibrium. Furthermore, assume that they are acted upon some

external force K (the origin of this external force need not be specified) and the

system is in equilibrium. In this configuration, the external force is balanced by

the force due to the osmotic pressure of the suspension. Therefore,

Kν − ∂p

∂x
= 0 (3.2)

From equation 3.1, substituting for the pressure and taking into account that

only the quantity ν depends on x,

Kν − kBT
∂ν

∂x
= 0 (3.3)

The next step is to consider unit area and calculate how many particles pass

through that area in unit time due to the motion of the suspended colloids. This

motion can be analyzed as an interplay between two processes that occur in

opposite directions: the external force K pushing a single particle and imparting

a certain velocity to it opposed by a process of diffusion produced by thermal

molecular movement.

According to Stokes’ law, if the suspended particles are spheres with radii R in

a liquid with viscosity η, upon the influence of the force K each particle gains
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a velocity K
6πηR

. Therefore, a total of νK
6πηR

particles pass the unit area in unit

time. In addition, if we denote the coefficient of diffusion by D, then a total of

−D ∂ν
∂x

particles pass through the same are in unit time. Since the particles are

at equilibrium,
νK

6πηR
+ (−D

∂ν

∂x
) = 0 (3.4)

Substituting the value for νK from equation 3.3, equation 3.4 becomes

(
kBT

6πηR
−D)

∂ν

∂x
= 0 (3.5)

Then, the diffusion constant is obtained as

D =
kBT

6πηR
(3.6)

which is the first main result derived originally by Einstein in ref. [3].

3.3.2 Probability distribution

Let us assume that the probability of a particle to be at a position x at time t

is given by f(x, t). Then, in the subsequent very short time interval τ , suppose

the particle takes a very short step of magnitude ∆. There will be a certain

probability law that will hold for ∆, ϕ(∆), representing the probability of the

jump with specific length ∆ happening. In terms of ϕ, the total probability is

expressed as, ∫ +∞

−∞
ϕ(∆) = 1 (3.7)

In addition, there will be equal probabilities of going left and right, so ϕ(∆) =

ϕ(−∆) will hold.

Then, the aim is to calculate the number of particles that are located between x

and x+ dx at time t+ τ .

f(x, t+ τ)dx =

∫
f(x+∆)ϕ(∆)d∆ (3.8)

Since we consider a very small increment of time τ , we can expand the left hand

side to first order,

f(x, t+ τ) = f(x, t) + τ
∂f(x, t)

∂t
(3.9)
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Similarly, because ∆ is also very small,

f(x+∆, t) = f(x, t) + ∆
∂f(x, t)

∂x
+

∆2

2!

∂2f(x, t)

∂x2
. . . (3.10)

Bringing this expression under the integral (bearing in mind that f(x, t) does not

depend on ∆) and combining the two equations,

f(x, t) + τ
∂f(x, t)

∂t
= (3.11)

f(x, t)

∫
ϕ(∆)d∆+

∂f(x, t)

∂x

∫
∆ϕ(∆)d∆

+
∂2f(x, t)

∂x2

∫
∆2

2
ϕ(∆)d∆ . . .

Consider the right hand side: The second, fourth, sixth and all consecutive terms

will vanish because of the property that the probability law is an even function.

The fifth, seventh and next terms are ignored because of the high powers of

∆, and the integral in the first term is equal to 1. Therefore, identifying the

diffusion coefficient as the second moment of the probability law, in other words

the variance,

D =
1

τ

∫ +∞

−∞

∆2

2
ϕ(∆)d∆ (3.12)

the diffusion equation is obtained,

∂f(x, t)

∂t
= D

∂2f(x, t)

∂x2
(3.13)

In the discussion until now, all of the particles’ positions were taken relative to

a single coordinate system. However, due to the randomness and independence

of the particle trajectories from each other, Einstein argues that it is possible to

consider every particle as an independent system whose origin corresponds to the

center of the particle initially, at t = 0. In that case, the solution of the diffusion

equation is expressed as,

f(x, t) =
n√
4πD

e−
x2

4Dt

√
t

(3.14)

where n is the total number of particles. From here, we are able to read off the

mean square displacement of the motion as

⟨x2⟩ = 2Dt (3.15)
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3.3.3 Fokker-Planck equation

The previously derived free diffusion equation is the equation of ”motion” of

the probability distribution of the Brownian motion. The generalization of this

equation in the case in which there is also an external force acting on the particle

is known as Fokker-Planck equation. This equation can be derived by introducing

the diffusion current, which satisfies the continuity relation and is expressed as,

Jdiff (x, t) = −D
∂f(x, t)

∂x
(3.16)

If there is any external force applied to the particle,F (x, t), the velocity of the

particle can be written as v(x, t) = F (x,t)
γ

, γ being the friction coefficient of the

suspended particle in the liquid. The total current of particles can be written as

J(x, t) = Jdiff (x, t) + Jext(x, t) = −D
∂f(x, t)

∂x
+ v(x, t)f(x, t) (3.17)

Then, by taking one position derivative of the right side and invoking the conti-

nuity relation, the Fokker-Planck equation is obtained:

∂f(x, t)

∂t
=

∂F (x, t)p(x, t)

∂x
−D

∂2f(x, t)

∂x2
(3.18)

3.4 Langevin description of Brownian motion

As seen from the previous section, there are 2 ways to describe the Brownian

motion: in terms of probability density distribution of an ensemble of particles

that evolves over time (its evolution is given by Fokker-Plank equation) or as

a stochastic trajectory of a single particle. Both approaches are intrinsically

connected, since the probability can be obtained by averaging over many tra-

jectories, or on the other hand, the statistical properties of the random forces

depend strongly on the probability density distributions. Einstein’s derivation of

the diffusion equation and its connection to the diffusion constant are connected

with the 1st approach. The Langevin approach is concerned with the derivation of

an equation whose solution describes a stochastic trajectory of a single Brownian

swimmer. In this section I outline the derivation of the Langevin equation and

present a way to solve it numerically, via the method of finite differences.
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3.4.1 Langevin equation

Consider a spherical particle with radius R and velocity v suspended in a liquid

with a viscosity η. The motion of the particle can be described by the Newton’s

equation:

m
∂2x

∂t2
= Ftotal(t) (3.19)

The force on the right side represents the total force due to all external interac-

tions that the particle feels at time t. Therefore, by virtue of knowing this force

as a function of time exactly, the motion of the particle would be completely

deterministic. However, owing to the fact that the force is due to collisions with

a large number of molecules present in the liquid, a closed from of this force is un-

known. Instead, the force is generally broken down into components that model

and represent the effects the particle feels. First, as the particle moves through

the liquid, there is a frictional force opposing its motion. This force is given by

−γv, where γ is the friction coefficient given by Stokes’ law, γ = 6πηR. So, the

equation now takes the form,

m
∂2x

∂t2
= −γv(t) (3.20)

The solution to this equation gives an exponentially decaying velocity. However,

the actual velocity of the particle cannot remain at zero, so it follows that the

friction force is not the only contribution. Rather, another term in the shape

of random or fluctuating force is added to model the random collisions with the

molecules of the solvent and the equation attains the following form, [28]

mẍ = −γẋ+
√

2kBTγξ(t) (3.21)

where ξ(t) again represents a white noise.

This equation represents the Langevin equation to describe the Brownian motion.

Note that, both the fluctuation and friction term in the equation originate from

the interactions of the Brownian particle with its environment, as such they are

closely connected by the Einstein relation for diffusion D = kBT
γ

.
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3.4.2 Numerical Solution

The finite difference method can be readily applied to solve the Langevin equation

numerically. By using the definitions of the derivatives explained in section 2.3.1

and treating the white noise as explained in section 2.4.1, the Langevin equation

takes the following discretized form:

m(
xi − 2xi−1 + xi−2

(∆t)2
) = −γ(

xi − xi−1

∆t
) +

√
2kBTγ

1√
∆t

ξi (3.22)

Solving this algebraically to obtain the solution for xi, one obtains [25]

xi =
2 +∆t( γ

m
)

1 + ∆t( γ
m
)
xi−1 −

1

1 + ∆t( γ
m
)
xi−2 +

√
2kBTγ

m[1 + ∆t( γ
m
)]
(∆t)

3
2 ξi (3.23)

This way of writing this equation places emphasis on the ratio γ
m
. It has units

of Ns
m2kg

= s−1. Therefore, the time τ = m
γ
is the characteristic time scale of the

equation (momentum relaxation time). It means that one needs to be particularly

careful when choosing the time step of discrete simulation ∆t. It has to be

small with respect to the total observation time, nevertheless it has to be chosen

sufficiently larger than τ , so that two succeeding updates of the position can be

considered independent of each other. This is in contrast to the random walk

discussed in chapter 2, due to the fact that there is not a particular time scale of

the random walker considered in that chapter.

3.4.3 Inertial vs Non-inertial solution

Reynold’s number is defined as the ratio between inertial and viscous forces and

its value is an indication of how important the inertial forces are in the medium.

The value can be approximated as Rvρ
η
, where ρ, η are fluid density and viscosity

respectively and R is the radius of the particle moving with velocity v. For

the systems that I consider throughout this work, the Reynolds number is very

low [29]. Therefore, for these kinds of swimmers the inertia plays a negligible

role, friction forces are overwhelmingly dominant. In addition, since in typical

experiments the time scale is much larger than the τ defined above and the

instantaneous velocity and the ballistic regime are not probed, [25] the inertia
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term can be dropped. Therefore, a good approximation to equation 3.21 is the

following version of Langevin equation

ẋ =
√
2Dξ(t) (3.24)

which has a simpler numerical solution,

xi = xi−1 +
√
2D∆tξi (3.25)

An extensive discussion of the validity of the non-inertial approximation vs the

inertial solution is done in [25] and their conclusions are summarized in figure 3.2.

In figures 3.2(a) and 3.2(b) the authors simulate 1D Brownian motion solving both

inertial, eq. 3.22 and non-inertial, eq. 3.25 solutions and plot them as functions

of time. In figure 3.2(a) the time steps used in the simulations are much smaller

than the characteristic time of the motion and therefore we can observe a big

difference in both trajectories. However, when the time steps are large enough,

as in figure 3.2(b), both trajectories look the same. In these cases, the microscopic

details are not observable, therefore the effect of inertia is not noticeable and both

trajectories look jagged.

In figure 3.2(c) plots of the velocity auto-correlation function are presented, which

give information on how the velocity of the particle at time t
′
influences the

velocity of the particle at some later time t+ t
′
and is calculated as

Cv(t) = v(t′)v(t+ t′) (3.26)

We can observe that while the correlation function of the velocity decays to zero

with some time scale in the case of the inertial solution, it goes immediately down

to zero when we apply the non-inertial solution demonstrating that it does not

have a characteristic time scale in this case. Finally, the authors plot the mean

square displacement for both cases. Theoretically, it is expected for ballistic

motion to have an MSD proportional to t2 and for diffusive motion MSD is

proportional to t. The plot in figure 3.2(d) demonstrates that both solutions

have the same MSD for sufficiently long times, therefore making them equivalent

in this limit.

Due to the discussions above, in the following chapters I will always set m ≈ 0

and solve the non-inertial version of the Langevin equation.
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3.5 Numerical solution of the free diffusion

equation

The free diffusion equation, 3.13, can be solved numerically by using the method

of finite differences. Instead of solving for f(x, t), I solve for the discrete series

f(xn, tn) therefore creating a grid that discretizes the position and time indepen-

dently. In this solution, the index referring to position is denoted with n and the

one denoting the time with m.

Approximate the first time derivative in the forward direction:

∂f(x, t)

∂t
|xn,tm ≈ fn,m+1 − fn,m

∆t
(3.27)

To approximate the second derivative of the position, I use the backward deriva-

tive:
∂f(x, t)2

∂2x
|xn,tm ≈ fn,m − 2fn−1,m + fn−2,m

(∆x)2
(3.28)

After rearranging the terms, I obtain for the probability distribution

fn,m+1 = fn,m +
D ×∆t

(∆x)2
(fn,m + 2fn−1,m + fn−2,m) (3.29)

The unit for the diffusion constant ism2s−1. In the figure 3.3 I plot the probability

distribution at different times and use D = 0.5m2s−1 for the diffusion coefficient.

Note that for the Brownian motion of the molecules, the translational diffusion

coefficient is of the order ≈ 1 µ2s−1. A comparison between equations 3.25 and

2.18 we see that the value used in this calculation corresponds to macroscopic

random walk. In the figure we observe that starting the particles from very sharp

Gaussian distribution centered at the origin will result to the flattening of the

probability distribution for longer times and asymptotically it becomes uniform

(over the region in position that is simulated in the grid. In this case it is the

region between x = −0.5 and x = 0.5 m ). Therefore, a Brownian particle moving

for an infinite amount of time, goes over every point in space.
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3.6 Brownian motion in 2D square well

In order to further illustrate this probability distribution behavior, I confine a

Brownian particle in a two dimensional square well with reflective boundary con-

ditions. The method for treating the boundary conditions is explained in sec-

tion 6.2. In figure 3.4 we see the time evolution of the probability distribution of

an ensemble of 100 particles randomly distributed around the origin at t = 0s.

We see that while in the beginning most of the particles are stacked near the

origin, after 1000000 seconds the probability to find a particle inside any position

in the well is uniform. Although these results were calculated using ensembles

of 100 particles, due to the ergodicity of the system, the same results could be

obtained by calculating the probability due to a single very long trajectory.
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Figure 3.2: Comparison between the inertial and non-inertial regime. The iner-
tial and non-inertial solutions are plotted for small times in (a) which leads to
difference in their behavior. The difference vanishes in the limit of larger time
steps, as illustrated in (b). (c) Plot of velocity auto-correlation function in both
cases. The fact that the values of this function drop to zero immediately show
that velocity has no characteristic time scales. (d) Plot of the MSD in both
cases which shows agreement between the two when long time steps are used.
Reproduced from [25].
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peaked Gaussian centered at the origin. As the time passes, the probability
distribution becomes flatter, asymptotically becoming uniform.
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Figure 3.4: Evolution of probability distribution averaged over 100 particles in
time in square well with side length 4µm. Initially, the particle position is ran-
domized near the origin. As the time passes, the probability distribution spreads
out, becoming uniform after 1000000s. The radius of all particles is 1 µm.

30



Chapter 4

Active swimmers

Active swimmers, or microswimmers, are able to convert the energy they pick up

from the environment into kinetic energy, resulting in a directed motion. The

range of agents that can be considered active is vast, from insects and birds

on the macroscale, to flagellated bacteria or sperm cells in the microscale. Due

to their potential for many applications, many artificial microswimmers were

devised (for example, Janus particles) which are able to propel themselves by

various mechanisms. Another reason to study these microswimmers is the fact

that they can serve as a model system for out of equilibrium phenomena and

thus, drawing a comparison between the systems outlined in this and previous

chapter can give a great insight of these phenomena [4]. In here, I first go over

some examples of the active motion, starting from the flagellated bacteria to the

artificially engineered Janus particles, then I describe the model I use to simulate

the active motion before finally I present the numerical solution and illustrate

some properties of the motion by simulations.

4.1 Examples of Active motion

There are two main examples of active motion at the microscale: the run-and-

tumble motion which is a property of flagellated bacteria and active Brownian
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motion exhibited by the artificially designed microswimmers. In this section I

briefly go over the different mechanisms of motion citing some examples of both.

4.1.1 Run-and-tumble of the bacteria

A particular trajectory taken by H. Berg [19] while studying the movement E.

coli in gradients is shown in figure 4.1(a).

Figure 4.1: (a) An example of the run-and-tumble motion of Escherichia coli.
The dots denote time steps of 0.1 second. Adapted from [19] (b) An illustration
of the behavior of the flagella of E.coli. During a run, they rotate together in
counter-clockwise direction and propel the bacteriaum. Once in a while, the
flagella change their direction of rotation and they start working out of synch,
therefore tumbling the bacterum. Adapted from [30]

The E. coli bacterium moves by virtue of a bundle of flagella that rotate together

in the counter-clockwise direction while doing the ”runs”. To conserve angular

momentum, the body of bacterium rotates in the opposite direction and moves

through space. However, once in a while, the flagella turn to rotate in the opposite

direction, they stop working together and the bacteria ”tumbles”. The main

property of the bacterium is that E. coli can sense the environment around itself.

Therefore it can go around and change the length of the runs (in other words,

the frequency of tumbling) depending on whether the run is directed to more

favorable conditions or not. Therefore, as it can be seen in figure 4.1, all the runs

of the bacterium trajectory are not equal in length.
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4.1.2 Active Brownian motion due to Janus particles

The artificially engineered active Brownian motion is generally made possible by

the production and use of Janus particles. Their name comes from Janus, the

two faced Roman god, and they are particles which have two or more distinctive

physical properties as shown schematically in figure 4.2(a).

Figure 4.2: (a) A schematic representation of Janus particles. Parts A and B
have different physical and chemical properties and therefore can react differently
to outside stimuli. (b-c) Methods of propulsion using Janus particles inside a
gradient [31, 32] (d) A particular type of Janus particle, half silica half gold.
Adapted from [33] (e-f) Different type of self-propulsion including responsive gel
body and artificial flagella [34, 35]

.

Therefore, since the parts A and B have different properties, they can react differ-

ently in a specifically prepared medium, therefore creating gradient that is able to

push the particles in some direction, as is the case in 4.2(b) and (c). Apart from

creating gradients, many researches have found propulsion mechanisms using ar-

tificial flagella, shown in 4.2(f) or creating a periodically shrinking and expansive

gel body, 4.2(e). An extensive overview of the many different propulsion mech-

anisms can be found in [9]. In the next section I briefly explain a particular

method that is using light to tune the motion of the swimmer.
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4.1.3 Active motion tunable by light

This method was studied in detail in [36] and it uses silica particles half-coated

with a gold cap, figure 4.2(d), placed in a critical mixture of water and lutidine.

The mixture is kept at a temperature which is very near to the critical tempera-

ture of the mixture. Therefore, when light shines upon the particle the two sides

of the particle get heated up differently. This results in a local demixing of the

critical mixture, therefore creating gradient that propels the particle. The whole

process is summarized in figure 4.3.

Figure 4.3: Active Brownian motion tunable by light. A half silica half gold
coated particle is placed in a critical mixture. Upon shining of light onto it,
there is local demixing, a gradient is created and the particle can be propelled.
Adapted from [36]

.

Here it is important to note that the orientation of the particle is due to the

rotational diffusion and has no effect of the propulsion of the motion. Therefore,

the frequency of runs of the particle is connected to the characteristic time scale

of the system, irrespective of the external force or environment the particle is in.
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4.2 Model

Active Brownian motion can be viewed as an interplay between Brownian fluc-

tuations, both in the translational and rotational direction, and a self-propelling

force that results in a velocity of propulsion v, assumed to be constant [4]. To

be more precise, the position of the active swimmers undergoes a translational

Brownian diffusion with a coefficient,

DT =
kBT

6πηR
(4.1)

On the other hand, the orientation of the particle is characterized by angle ϕ(t)

which performs rotational diffusion with rotational diffusion coefficient,

DR =
kBT

8πηR3
(4.2)

At the same time, ϕ(t) specifies the direction of the velocity of the motion as

illustrated in figure 4.4(a). Since the examples of microswimmers that will be

considered further in this text, move within the low Reynolds number regime, in

writing these equation I drop the inertial term. Therefore, the set of Langevin

equations describing the motion of an active microswimmer are the following,

d

dt
ϕ(t) =

√
2DRξϕ (4.3)

d

dt
x(t) = v cosϕ(t) +

√
2DT ξx (4.4)

d

dt
y(t) = v sinϕ(t) +

√
2DT ξy (4.5)

In these equations, ξϕ, ξx, ξy are independent white noise terms.

4.3 Numerical simulations

These equations are solved by using the finite difference methods explained in

section 2.3.1. By making the appropriate discretized version of the derivatives

and the white noise terms, the above equations take the following form:

ϕi = ϕi−1 +
√
2DR∆tξϕ,i (4.6)

35



xi = xi−1 + v cosϕi∆t+
√

2DT∆tξx,i (4.7)

yi = yi−1 + v sinϕi∆t+
√
2DT∆tξy,i (4.8)

In figure 4.4 I plot 10s trajectories for different parameters of active particles

in order to demonstrate how the motion changes depending on the propulsion

velocity of the particles as well as their radius. It can be seen that as the parti-

cles become smaller, the trajectories become more and more similar to the ones

for passive Brownian particles. This is due to the fact that the rotational diffu-

sion scales down as R−3 and for smaller particles the rotational diffusion plays a

dominant role over the propulsion. On the contrary, as expected, the increase in

the velocity leads to trajectories well spread and particles are able to travel over

longer distances. The MSD of this motion is quadratic with respect to time in

the short time scales, but then becomes linear with time on the long time scales

with enhanced diffusion coefficient.

4.4 Active Brownian swimmers in square well

In order to draw a comparison between the active and passive motion, I plot

the active Brownian motion of a particle in the same well used to calculate the

probability shown in figure 3.4. Again I use ensemble of 100 particles with the

same size, in this case they are propelled with velocity of v = 1µm for figure 4.5

and velocity of v = 50µm for figure 4.6. While we were observing uniform proba-

bility distribution in the case for the Brownian motion, the active particles tend

to spend some more time near the walls of the well. In particular, the time they

spend there increases as the velocity of propulsion of the active particles increases.
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Figure 4.4: (a) The angle between the velocity and x axis is given by ϕ(t) and
it performs rotational Brownian diffusion therefore reorienting the particle as it
is propelled through space with velocity v. (b) Active Brownian motion as a
function of the velocity for particles of radius R = 250nm (c) Active Brownian
motion as a function of the radius of the particles for velocity v = 10µm/s. (d)
MSD for active particles of radius R = 1000nm as a function of velocity. All
velocities in (d) are analogous to the ones in part (b). All trajectories are 10s
long.
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Figure 4.5: Evolution of probability distribution averaged over 100 active particles
in time in square well with side length 4µm. The radius of all particles is 1 µm
and their velocity is 1µm/s. As the time passes, the probability distribution
spreads out and eventually becomes uniform except at the walls, where particles
tend to spend some more time.
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Figure 4.6: Evolution of probability distribution averaged over 100 active particles
in time in square well with side length 4µm. The radius of all particles is 1 µm
and their velocity is 50µm/s. As the time passes, the probability distribution
spreads out and eventually becomes uniform except at the walls, where particles
tend to spend some more time. The probability of an active particle to be found
near the wall of the well increases with the increasing of the propulsion velocity
of the particle.
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Chapter 5

Chiral Active Swimmers

In the process of taking up energy from the environment in order to perform

active motion, a microswimmer exerts a force on its surroundings. In the case

of highly symmetric microswimmers moving in a symmetric environment with

a driving force acting exactly along the direction of motion, the microswimmer

performs a motion along a straight line which is just perturbed by the Brownian

fluctuations. More often than not, the swimmers are asymmetric and the force is

not aligned with the propulsion direction. This results in a net torque acting on

the particle, and the particle starts moving in circular (in 2D) or helicoidal (in

3D) fashion, thus becoming chiral [22].

In this chapter, I give the model that I use to simulate chiral active swimmers

and obtain all the results that will be presented later in the thesis, then I solve

the set of Langevin equation numerically and discuss the motion of the chiral

microswimmers in homogenous environments.

5.1 Model for chiral microswimmers

Since chiral motion arises when a net torque from outside starts acting on the

particle, we can think of it as a motion of active microswimmer of the kind

considered in chapter 4, but with a bias in the rotational angle. Denoting the
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angular velocity as Ω, with units rad s−1, the equations of motion for a chiral

swimmer are obtained straightforward from equations 4.3, 4.4 and 4.5 as

d

dt
ϕ(t) = Ω +

√
2DRξϕ (5.1)

d

dt
x(t) = v cosϕ(t) +

√
2DT ξx (5.2)

d

dt
y(t) = v sinϕ(t) +

√
2DT ξy (5.3)

All of the symbols retain their meanings from Chapter 4. Here it should be noted

that the sign of Ω defines the type of chirality (levogyre or dextrogyre) of the

swimmer.

5.2 Numerical Solution

Using the same methods as described in earlier chapters, the following equations

are solutions of the discretized Langevin equation for a chiral swimmer:

ϕi = ϕi−1 + Ω∆t+
√

2DR∆tξϕ,i (5.4)

xi = xi−1 + v cosϕi∆t+
√

2DT∆tξx,i (5.5)

yi = yi−1 + v sinϕi∆t+
√
2DT∆tξy,i (5.6)

The black line in figure 5.1(c) is a single instance of a dextrogyre swimmer. The

radius of the swimmer is R = 1000nm and it is seen that when swimming in

obstacle-free environment this swimmer bends clockwise, tracing out an almost

exact circular trajectories just perturbed by Brownian fluctuations due to the

translational and rotational diffusion of the particle. Just by changing the sign

of Ω we change the chirality of the particle, and thus we obtain the red line in

figure 5.1(c) for the case of levogyre swimmer. The general properties of the

motion are scalable and in particular we observe similar trajectories in figure

figure 5.1(d - g) for particles with radii R = 500, 250, 125 and 50nm respectively.

The qualitative resemblance between the trajectories is retained provided the

Péclet number, given by Pe = Rv
DT

, is kept constant. This is accomplished by
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scaling the velocity v, angular velocity Ω and time t by the factor of R−2. The

whole set of parameters used to produce these trajectories is given in Table 1.

I note here that although there is a resemblance between the trajectories for

different swimmers, as the particles become smaller, their motion become more

vigorous and the trajectories become less deterministic. As discussed in chapter

4, the reason for this lies in the equations 4.1 and 4.2 which show that when the

particle is small, the rotational diffusion, which is responsible for the reorientation

of the particle, becomes more prominent since it scales down as R−3 while the

translational diffusion only scales down as R−1. Therefore, in order to gain insight

into the characteristic motion of the chiral swimmers, we should consider the

ensemble average of many swimmers. In figure 5.1(h), I plot the average of 105

trajectories for particles with radius R = 1000nm starting from the origin, red

line represents levogyre chirality swimmers while black line shows the dextrogyre

swimmers. The average trajectory is a spira mirabilis with orientation dependent

on the chirality of motion. This spira mirabilis has dimensions that set the length

scale for the swimmers rotations which becomes important for the motion of the

swimmers in patterned environments.

Table 5.1: Microswimmer parameters used in the simulations. From the radius R
the rotational diffusion coefficient DR and the translational diffusion coefficient
DT are obtained using Eqs. 4.1 and 4.2 respectively. The linear velocity v and the
angular velocity ω are rescaled in order to maintain the Péclet number Pe = Rv

DT

constant. Reproduced from [22]
R (nm) DR (rad2 s−1) DT (µm2 s−1) v (µms−1) Ω (rad s−1) Pe

1000 0.16 0.22 3.13 × 101 ±3.14 142
500 1.32 0.44 1.25 × 102 ±1.26 × 101 142
250 10.54 0.88 5.00 × 102 ±5.03 × 101 142
125 84.4 1.76 2.00 × 103 ±2.00 × 102 142
50 1320 4.4 1.25 × 104 ±1.25 × 103 142

41



−10 −5 0 5 10
−20

−15

−10

−5

0

5

10

15

20

r̄‖ [µm]

r̄
⊥

[µ
m

]

(a) (b)

(c) (d)

(e) (f)

(g)

(h)

30µm

Figure 5.1: Chiral microswimmers. (a) Escherichia coli bacteria perform a char-
acteristic chiral motion in the proximity of a surface. (b) Active chiral molecules
can be obtained by chemically attaching a chiral molecule with a chiral propeller,
e.g., a flagellum. (c− g) The trajectories of chiral levogyre (red) and dextrogyre
(black) microswimmers with different radii (R = 1000, 500, 250, 125, and 50 nm
for (c), (d), (e), (f) and (g) respectively, see Tab. 5.1 for the other parameters)
are qualitatively similar as long as the Péclet number is kept constant and the
time is scaled accordingly (t = 10 s, 2.5 s, 625ms, 157ms and 25ms for (c), (d),
(e), (f) and (g) respectively). See also the supplementary movies 1, 2 and 3 corre-
sponding to (c), (d) and (e) respectively. (h) Average of 105 trajectories starting
at [x(0), y(0)] = [0µm, 0µm] with φ(0) = 0 for levogyre (red) and dextrogyre
(black) microswimmers as in (c). Reproduced from [22]

.
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Chapter 6

Boundary Conditions

In this chapter I simulate the motion of the particles in complex environments

and show how to treat the motion of the particle when the particle approaches

some impenetrable boundary that restricts its motion. Let the current position

of the particle be given by rn = (xn, yn). We would like to find the position

appropriate with the boundary conditions after one time step, rn+1(xn+1, yn+1).

This task can be achieved by applying the following algorithm to the motion of

the particle:

1. Temporarily update the position of the particle for one time step, to r̃n+1 =

(x̃n+1, ỹn+1) .

2. Check whether the boundary condition is satisfied by the point r̃n+1.

3. Do one of the following:

• If the point satisfies the condition, accept it as a final point, and accept

rn+1(xn+1, yn+1) = r̃n+1.

• If the point does not satisfy the condition, calculate the new point

that satisfies the boundary conditions. Therefore, we can write

rn+1(xn+1, yn+1) = F(r̃n+1), where F is some action to be taken de-

pending on the nature of the boundary conditions.
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4. Continue with the simulation of the next time step, going through this

algorithm during every update.

This algorithm is general and it does not change with the nature of the boundary

conditions. However, each set of boundary conditions needs distinctive treatment

in order to find the right form of the action F . Over the next sections in this

chapter, I go over some of the most commonly used boundary condition and

outline the procedure of treating them retaining the notation I used this section.

6.1 Periodic boundary conditions

This type of boundary conditions is generally used to model an infinite space

which can be constructed by series of translations of a single unit cell, fig-

ure 6.1(b). In this case, one imagines that the particle is confined in the unit

square of length L. We require that the coordinates, x and y for 2D motion, have

the periodicity of the length of the unit cell.

The updated coordinates are always calculated as the remainder of the

division of themselves by the length of the unit cell. This ensures the

following:

• If after the update, the particle’s position is inside the unit cell, r̃n+1 < L,

therefore the remainder of the division of particle position to the unit cell

is the position itself, rn+1 = r̃n+1.

• If after the update, the particle’s position is outside of the unit cell, r̃n+1 >

L, then rn+1 is the remainder of the division of particle position to the unit

cell length. This satisfies the periodicity requirement, as a particle who has

gone out of the unit cell through some wall, enters back into the same unit

cell from a wall directly opposite, as illustrated in figure 6.1(a).

One visualization problem arises when plotting the trajectories. If we directly

plot the trajectory as obtained from the simulation program, all the steps will
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Figure 6.1: Treatment of periodic boundary conditions.(a) Application of the
boundary conditions. If the particle is at the position of dark green circle and in
the next step the position is calculated to be outside of the unit cell (light blue
circle), the particle is assumed to have came from the opposite wall and the final
updated position will be the dark blue circle. (b) If we take a unit cell to be a
square, the whole two dimensional space can be constructed by translations of
the unit cell.

appear as if they have been taken within the unit cell (due to the boundary

conditions, the simulated particle never escapes the unit cell, just makes jumps

between opposite walls). Therefore, when visualizing, we need to be aware of the

nature of the trajectory, therefore ”unwrap” it so that we see the original motion

in the periodic space.

Note: Some programming languages have a built in function that does the visual-

ization of the trajectory properly. In particular, MATLAB has a built-in function

unwrap that, having taken as input x and y gives the unwrapped trajectory X

and Y as

X = unwrap(
x

2πL
)/(2πL) (6.1)

Y = unwrap(
y

2πL
)/(2πL) (6.2)

Figure 6.2 shows the difference between the unwrapped (black line) and original

trajectory (yellow line) for a simulated time of t = 5s. The unit cell is denoted

by the red square and consists of 9 impenetrable circular obstacles.
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Figure 6.2: Difference between the original (yellow line) and unwrapped (black
line) trajectory for an active Brownian particle swimming for 5s. The original
trajectory always stays withing the unit cell, denoted by the red square in the
figure. On contrary, the unwrapped trajectory gives the ”real” motion in the
space that is obtained by consecutive translations of the unit cell.

6.2 Reflective boundary conditions in a square

Reflective boundary conditions are used when the x and y coordinates of the

particle are reflected with respect to the wall of the boundary. In partic-

ular, since we are simulating motion in 2 dimensions, the walls are represented by

lines with a given thickness. Denote with rn the initial point, r̃n+1 the tentative

final point and rn+1 the final point after one time step update. Therefore, if r̃n+1

is outside of the square well, we do the following:

• In the case of vertical wall,

xn+1 = −x̃n+1 & yn+1 = +ỹn+1 (6.3)
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• In the case of horizontal wall,

xn+1 = +x̃n+1 & yn+1 = −ỹn+1 (6.4)

• In the case when wall is given by a generic function, ywall = mxwall + b,

see appendix A for the detailed derivation of the formula.

6.3 Sliding boundary conditions in a circular

well

This type of boundary condition follow closely the type explained in the previous

section, with the difference that instead of reflecting of the coordinates with

respect to the wall, the particle is placed at the rim of the wall. The point

on the rim at which the particle is placed is the intersection point between the

line that connects the origin to r̃n+1 and the rim of the circle, as illustrated in

figure 6.3. In this case, I kill off the perpendicular component of the motion and

retain only the parallel one, thus having the effect of particle sliding along the

circumference of the circle. This method is applicable to the circular well (it

needs modification in the case when circle is ellipse, as I show in the next section)

due to the symmetry of the circle.

Let the circular well have a radius Rwell with a center placed at [xwell, ywell]. Then,

the intersection point will have a certain polar angle, call it m, with respect to

the x - axis. The angle is found as,

m = arctan (
ỹn+1 − ywell

ỹn+1 − ywell

) (6.5)

Having obtained that, the final point is,

xn+1 = xwell +Rwell cos(m) (6.6)

yn+1 = ywell +Rwell sin(m) (6.7)

The derivation for the boundary conditions when the particle is confined to move

only on the outside of the circular boundary go along the same lines. However,
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it should be noted that, in that case the time step of the simulation should be

chosen carefully so that the spatial increment of the trajectory is less than

the size of the obstacle, therefore avoiding a number of unphysical situations,

for example a particle jumping over to the opposite side of unpenetrable obstacle.

Figure 6.3: Illustration of sliding boundary conditions along a circular well. (a)
Particle is initially at the position of the red circle and the tentative update of
the position is the black circle. (b) Find the polar angle that the tentative point
has with respect to the x axis. (c) Place the point at the rim of the circle by
setting its radial position to Rwell and find the x and y coordinates as discussed
in equations 6.6 and 6.7

6.4 Sliding boundary conditions for ellipsoidal

obstacles

The sliding boundary condition when the particle encounters an ellipsoidal ob-

stacle are more complex to calculate than the corresponding ones for the circular

obstacle because of the breaking of the symmetry due to the unequal major and

minor axis. The additional feature of the ellipses is that they can have particular

orientation in the medium, expressed as angle between the major axis and x axis.

We start by realizing that an ellipse with any arbitrary position and orientation

can be obtained from an ellipse placed in the center with its major axis and x

axis aligned by a suitable translation followed by rotation. Therefore, referring
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to figure 6.4, I outline the process of implementation of the boundary conditions

when a particle encounters an arbitrary elliptical boundary:

• Perform a suitable rotation and translation of the general ellipse, such that

after these processes the ellipse is centered at the origin and its major axis

is aligned with the x axis. (figure 6.4(a) and (b))

• Find the line that connects rn (red dot in figure 6.4(b)) to r̃n+1 (black dot in

figure 6.4(c)). Find the intersection point between this line and the ellipse.

• Draw the tangent line to the ellipse passing through the intersection point.

(figure 6.4(c))

• Project r̃n+1 to the tangent line. The projected point is rn+1. (figure 6.4(d-

e))

• Transform the system back to the initial state by performing the inverses

of the actions undertaken in step one. Take note that rotations and trans-

lations do not commute. (figure 6.4(f))

In appendix B, I present detailed calculation for the treatment of the boundary

conditions and obtain the corresponding equations for the x and y coordinates of

the final point rn+1.

49



Figure 6.4: Illustration of the boundary conditions when the microswimmer en-
counter an elliptical obstacle. (a) Any general ellipse can be brought to the center
of the standard coordinate system by a suitable rotation and translation. (b-e)
Find the tangent line to the ellipse through a point that is intersection between
the black and the red circle, project the black circle onto this tangent to find the
final point. (f) Rotate the whole system back to the initial position.
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Chapter 7

Results

In this chapter I numerically show how to sort chiral microswimmers on the basis

of their swimming properties, such as chirality, linear and angular velocity. The

microswimmers are simulated using the model I presented in chapter 5 and all

the discussions follow closely the ones in ref. [22]. Most of the results I show are

obtained by simulating two dimensional swimmers moving in two dimensional

patterned environment, however at the end I provide a brief explanation on how

these results can be extended to microswimmers performing helicoidal motion

in three dimensions. In the simulations I show in this chapter microswimmers

frequently encounter obstacles on their way. They interact with the obstacles

by sliding along them until the orientation of the particle points away from the

obstacle as discussed in [33]. Numerically, I implement this fact by using the

procedure presented in section 6.4. Despite neglecting the hydrodynamic effects

between the microswimmers and the obstacles, in ref. [33] the authors showed

that the model I use in this thesis accurately describes the interaction trajectories

near an obstacle.
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7.1 Chirality separation

The microswimmers can be selected on the basis of their chirality by placing some

chiral patterns in their swimming environment, therefore coupling the chirality

of the motion to the chirality of the obstacle pattern. The pattern we propose,

the chiral flower, is an arrangement of tilted ellipses along a circle, depicted as

the shaded areas in 7.1(a). In here, the circle has a radius of 11µm, specifically

chosen in this way by comparing it to the length scale of the spira mirabilis shown

in figure 5.1. Since the chirality of the motion couples with the chirality of the

flower we observe different behavior for the opposite chiralities. Therefore, while

the levogyre swimmer (the red line in 7.1(a)) is able to move in and out of the

chiral flower the dextrogyre microswimmer (black line) is always trapped inside

the flower. To gain greater understanding of this behavior, I plot the probabil-

ity distribution in the swimmers’ radial position. The probability distribution is

averaged over 105 trajectories that are 10s long after all the particles have been

released from the origin. Figure 7.1(b)) shows the results: the levogyre swimmers

(the red histogram) are outside of the chiral flower while the dextrogyre particles

(the black histogram) are trapped inside.
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Figure 7.1: Chiral microswimmers in a chiral environment. (a) 10 s trajectories
of a levogyre (red line) and dextrogyre (black line) microswimmer with radius
R = 1000 nm (for the whole list of parameters, see Tab. 5.1) in a chiral flower of
ellipses (shaded areas). (b) Radial position distribution after 10 s of 1000 levogyre
(red histogram) and dextrogyre (black histogram) microswimmers starting from
the center of the chiral flower at t = 0 s. Reproduced from [22].
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The method outlined until now manages to trap only the dextrogyre microswim-

mers, in this configuration we do not have the control over where the levogyre

swimmers end up after escaping the flower. However, improving on the single

flower configuration, I propose a simple device to separate and trap microswim-

mers with different chiralities. As it is shown in figure 7.2, the separation can be

achieved by placing two chiral flowers with opposite chiralities in a box in which

the particles move freely. I start by placing a racemic mixture inside each of

the chiral flowers at t = 0s (figure 7.2a)). What I observe is that, each chirality

couples with one of the two flowers, therefore we have most of the levogyre (dex-

trogyre) microswimmers going out of the right (left) flower while the opposite

chirality remains trapped. The microswimmers that escaped are free to roam

and explore the box, until the time they are trapped by the corresponding chiral

flower (figure 7.2(c-f)). In particular, note that most of the swimmers are trapped

and the separation is finished by t = 500s.

In order to make these observations more quantitative, I introduce the parameter

Q =
1

2

[ LL

LL +DL

+
DD

LD +DD

]
(7.1)

where LL(DL) is the number of levogyre (dextrogyre) microswimmers in the lev-

ogyre flower and DD(LD) is the number of dextrogyre (levogyre) microswimmers

in the dextrogyre flower, both calculated after t = 500s have elapsed. As shown

in figure 7.3, I easily obtain Q ≈ 100% for a great range of parameters, including

variations of the radius of the flower (figure 7.3(b)), the length of the elliptical

obstacles (figure 7.3(c)) and the chirality of the flower (figure 7.3(c)). The time

needed to separate the microswimmers depends mainly on the size of the box

that encloses the chiral flower and does not depend strongly on the parameters

of the flowers themselves. Due to the increasing randomness in the trajectories,

the coefficient becomes slightly lower for smaller particles, however high sorting

efficiency can still be obtained for small particles down to 50nm.
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7.2 Sorting by velocity

Sorting of microswimmers on the basis of their linear velocity can be done by

using a patterned microchannel. This channel is achieved by placing a series of

elliptical structures on the walls of the channel, tilting the ellipses at some angle

and slightly shifting the obstacles on the top and bottom walls, as shown by the

grey areas in figure 7.4. A channel devised by this way is chiral and can couple

with the chirality of the motion, and figure 7.4 shows that the microswimmers

with different linear velocities show different behavior when placed inside this

channel. Indeed, after starting at x = 0µm at t = 0s, the levogyre microswimmers

with linear velocity of v = 70µm are able to propagate several hundreds microns

to the right, while the slower microswimmers are trapped near the initial position

(figure 7.4(a)). Both sets of microswimmers have the same chirality and same

angular velocity of Ω = +3.1 rad s−1. The channel has a multiple functions when

considered how the microswimmers behave when placed inside it. In particular,

the channel may act as a funnel and it rectifies the motion of the microswimmers

to the right. Another usage of the channel is as a sieve, since from figure 7.4

we can see that the particles below certain velocity cannot propagate to the

right. What is more, by changing the structure of the channel (length and angle

of the ellipses), the threshold velocity above which particles propagate can be

changed. Also, by reorientation of the ellipses, we can obtain the same results for

dextrogyre particles. Finally, the microchannel is a sorter of the microswimmers

with separation efficiency increasing over time. Figure 7.4(b-e) show that, as

time progresses, the probability distributions of the particles separate, the faster

particles move further down the channel while the slower ones are constantly kept

back.

7.3 Sorting by angular velocity

The microchannel I discussed in the previous section can be also used to separate

the microswimmers on the basis of their angular velocity. Same as the previous
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case, the probability distribution of the microswimmers can separate over time,

figure 7.5(b-e) and as shown by the histograms, swimmers with angular velocities

Ω = 2.2, 2.5, 2.8 and 3.1rad s−1 can be successfully separated, with the ones

with smaller angular velocity propagating further to the right in the channel. In

particular, as shown in 7.5(a), the particles with Ω = 2.2rad s−1 (red dots) can

propate while the ones with Ω = 3.1rad s−1 (black dots) are trapped near to the

initial position.

7.4 Sorting of 3D chiral microswimmers

All the results discussed in the previous cases, can be extended to 3-dimensional

swimmers that perform helicoidal motion. A particular example of this is illus-

trated in figure 7.6. In here, the microswimmers are made to enter from the

bottom with a given initial velocity. As such, they perform helicoidal motion

whose orientation depends on the chirality of the swimmer. In a microchannel

patterned with a chiral flower at a certain height, as the one showed in 7.6,

levogyre microswimmers (red line) tend to escape from the channel while the

dextrogyre have the tendency to remain in the tube and the efficiency of the

process that I was able to obtain is Q = 93%. A straightforward generalization

can also be made from the microchannels shown in figures 7.4 and 7.5 just by

decorating the inner walls of the 3D microchannel with some elliptical obstacles.
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(a) t = 0 (b) t = 10s

(c) t = 100s (d) t = 200s

(e) t = 500s (f) t = 1000s

20µm

Figure 7.2: Separation of levogyre and dextrogyre microswimmers. (a) At t =
10 s, the microswimmers (R = 1000 nm, see Tab. 5.1) are released inside two
chiral flowers with opposite chirality. (b − f) As time progresses, the levogyre
(black symbols) microswimmers are trapped in the right chiral flower and the
dextrogyre (red symbols) ones in the left chiral flower. Reproduced from [22].

56



10 11 12 13 14 15
0

25

50

75

100

Q
(%

)

a [µm]

3.5 4 4.5 5 5.5 6 6.5
0

25

50

75

100

Q
(%

)

l [µm]

0 5 10 15 20 25 30 35 40 45
0

25

50

75

100

Q
(%

)

ξ [deg]

(a)

(b)

(c)

(d)

R = 1000 nm
R = 500 nm
R = 250 nm
R = 125 nm
R = 50 nm

a

l

ξ

Figure 7.3: Sorting efficiency. (a) Parameters of the chiral flower: a is the radius
of the flower; l is the length of the ellipses; and ξ is the angle of the ellipses. (b-d)
Sorting efficiency Q (Eq. (7.1)) as a function of (b) a, (c) l, and (d) ξ for various
particle sizes (Tab. 5.1) using the configuration in Fig. 2.3. Each datapoint is
calculated using 50 levogyre and 50 dextrogyre particles placed inside the chiral
flowers. The error bars represent one standard deviation repeating the numerical
simulations 10 times. Reproduced from [22].
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Figure 7.4: Linear velocity based sorting in a microchannel. (a) Patterned mi-
crochannel (grey areas) and position of levogyre 1000 nm microswimmers with
v = 40 (black symbols) and 70µm/s (red symbols) 1000 s after they have been re-
leased from position x = 0µm (other parameters as in Tab. 5.1).(b−e) Histograms
at various times of 1000 particles with v = 40, 50, 60 and 70µm/s released at
t = 0 s from x = 0µm. Reproduced from [22].
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Figure 7.5: Angular velocity based sorting in a microchannel. (a) Patterned
microchannel (grey areas) and position of levogyre 1000 nm microswimmers with
Ω = 2.2 (black symbols) and 3.1 rad/s (red symbols) 1000 s after they have been
released from position x = 0µm (v = 40µm/s, other parameters as in Tab. 5.1).
(b − e) Histograms at various times of 1000 particles with Ω = 2.2, 2.5, 2.8 and
3.1 rad/s released at t = 0 s from x = 0µm. Reproduced from [22].
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Figure 7.6: Sorting of three-dimensional chiral microswimmers. The transpar-
ent structures represent a circular microchannel (inner diameter 10µm) with an
engraved chiral flower. Views from the side (top) and from above (bottom) are
presented. When levogyre microswimmers (R = 1000 nm, v = 3.2e+2µm/s,
Ω = +50 rad/s, red line on the left) are made to enter the channel from the lower
end to break the reflection symmetry of the channel, they tend to exit the channel
as soon as they reach the chiral flower, in contrast to dextrogyre microswimmers
(Ω = −50 rad/s, black line on the right), which are prevented from escaping. The
sorting efficiency is Q = 93%. Reproduced from [22].
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Chapter 8

Conclusion and outlook

Due to the ability to propel themselves, active Brownian particles hold great

promises for applications in many different tasks in science and engineering or

as model to study out of equilibrium systems. Taking inspiration from the ac-

tive microorganisms existing naturally, many artificial swimmers that can propel

themselves have been designed.

If these swimmers are engineered to be anti-symmetric, they follow characteristic

circular trajectories in two dimensional environments, therefore becoming chiral.

Sorting of this kind of microswimmers is of extreme importance due to the fact

that selecting only the best microswimmers for a certain task can result in greater

chance to accomplish that task with improved efficiency. In this thesis, I showed

that such separation is possible by placing a static chiral patterns that can be

readily fabricated by standard micro fabrication techniques in the environment

of the microswimmer.

I showed that chiral flower can trap microswimmers with certain chirality, a

patterned microchannel can sort the microswimmers based on their linear and

angular velocity, can trap the microswimmers with certain parameters and can

serve to rectify their motion. The main advantage of the proposed methods is

that they rely on static environmental structures and on the microswimmers’ own

self-propulsion, without the need of moving parts, fluid flows or external forces.

These techniques can be exploited to separate naturally occurring chiral active
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particles, for example bacteria and spermatozoa, or separate chiral passive par-

ticles, for example chiral molecules, by coupling them to some chiral motors to

make them active.
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Appendix A

Reflection about a generic wall

Let the wall be defined by the equation ywall = mxwall+b. The swimmer’s current

position is denoted by rn, I am tentatively updating its position after one time

step to point A ≡ r̃n+1 and supposing that this position cannot be accepted in

the simulation, the following derivation will show how to find the final updated

point, B ≡ rn+1 which is reflection of r̃n+1 about the wall given by the above

equation.

• Find the slope of the line of reflection (this is the line which is perpendicular

to the wall)

mref ×m = −1 =⇒ mref = − 1

m
(A.1)

• Compute the equation of the reflection line that passes through the point

A

yref − ỹn+1 = mref (xref − x̃n+1) =⇒ yref = mrefxref + (ỹn+1 −mref x̃n+1)

(A.2)

Call d = ỹn+1 −mref x̃n+1.

• Find the point of intersection (use the subscript int to denote this point)

yint = mxint + b = mrefxint + d =⇒ xint =
b− d

mref −m
(A.3)
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So, the point of intersection,Pint[xint, yint] is given by the coordinates

xint =
b− d

mref −m
& yint = mxint + b (A.4)

• Finally, we find B by noting that it lies on the line of reflection at equal

distance from Pint as A. Therefore, we can write

B = A+ 2×
−−−→
APint (A.5)

Since we can write the x and y components of the vector as [xint−x̃n+1, yint−
ỹn+1], for the final point we have

x(n+1) = 2xint − x̃n+1 & y(n+1) = 2yint − ỹn+1
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Appendix B

Boundary conditions in the

presence of an elliptical obstacle

Let the point A ≡ rn be the initial point and the point B ≡ rn+1 be the final

point after one time step increment. These points are given with respect to the

standard coordinate system. As discussed in section 6.4 I perform translation

then rotation of the system consisting of an arbitrary ellipse plus the two points

in a manner that I obtain ellipse centered at the origin of the standard coordinate

system and two points, (xt0 , yt0) and (xt1 , yt1) respectively. Let a and b be the

axes of the ellipse, (xc, yc) be the coordinates of the center of the ellipse and the

angle ξ be the angle of orientation of the ellipse. By using this notation, we can

find the relation that helps us go from one point to another.

• Given the point (x(n), y(n)) we get (xt0 , yt0) from the following transforma-

tion:

xt0 = (x(n)− xc) ∗ cos (−ξ)− (y(n)− yc) ∗ sin (−ξ)

yt0 = (x(n)− xc) ∗ sin (−ξ) + (y(n)− yc) ∗ cos (−ξ)

Exactly the same equations can be used to obtain the point (xt1, yt1) from

the point (x(n+ 1), y(n+ 1).
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• In here I discuss the case of a particle that is restricted to enter into the

ellipse. The check to be performed for this condition is,(xt1

a

)2

+
(yt1

b

)2

< 1

If this condition returns true, I continue to calculate the sliding point.

• Find the intersection point between the line that connects the points

(xt0 , yt0) and (xt1 , yt1) and the ellipse.

1. The equation of the line connecting the two points is the following:

y = yt1 +m ∗ (x− xt1)

where ”m” is the slope of this line and can be expressed as

m =
yt1 − yt0
xt1 − xt0

2. To simplify the notation, define y0 = yt1 −m ∗ xt1 , to get the equation

of the line as,

y = y0 +m ∗ x

3. Find the intersection between this line and the ellipse.(x
a

)2

+

(
y0 + xm

b

)2

= 1

Expanding this and grouping the like terms,(
1

a2
+

m2

b2

)
x2 +

(
2y0m

b2

)
x+

(
y20
b2

− 1

)
= 0

4. This equation yields two solutions for the x coordinate of the intersec-

tion points.

x1 =
−(y0∗m

b2
) + sqrt((y0∗m

b2
)2 − ( 1

a2
+ m2

b2
)(

y20
b2

− 1))

( 1
a2

+ m2

b2
)

x2 =
−(y0∗m

b2
)− sqrt((y0∗m

b2
)2 − ( 1

a2
+ m2

b2
)(

y20
b2

− 1))

( 1
a2

+ m2

b2
)

The values for the y coordinate of the same point are found from the

equation of the line derived earlier,

y1 = y0 + x1 ∗m

y2 = y0 + x2 ∗m
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5. From the two solution points, chose only the point which is closer

to (xt1 , yt1). Decide this by comparing the distances between those

points.

(x1 − xt1)
2 + (y1 − yt1)

2 < (x2 − xt1)
2 + (y2 − yt1)

2

and if this is true then I choose the point (x1, y1) and if this is not

correct the point (x2, y2) is chosen.

For the purpose of this derivation I use the notation (xi, yi) for any of

these points.

• Find the tangent line passing through this point. The slope of the tangent

line can be found by implicit differentiation of the equation of the ellipse.

2x

a2
+

2ymtan

b2
= 0

ymtan

b2
= − x

a2

Then, at the particular point y = yi and x = xi, the slope of the tangent

line is given as:

mtan = −xi

yi
∗ b2

a2

• Find the equation of the line that is normal to this tangent line and passes

through the point (xt1 , yt1).

1. The slope of this line is found by mn = − 1
mtan

, and for this particular

case

mn =
yi
xi

∗ a2

b2

2. The equation for the line:

y = yt1 +mn(x− xt1)

• Find the point at which this line intersects the tangent line by equating the

y coordinates of both equations:

yi +mtanx−mtanxi = yt1 +mnx−mnxt1

xf =
yt1 − yi +mtanxi −mnxt1

mtan −mn

yf = yi +mtanxf −mtanxi
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• Finally, project this point back into the original configuration. This means,

rotate the point for an angle ξ and then translate for xc (yc). This gives

the final point (x(n+ 1), y(n+ 1) as:

x(n+ 1) = xf ∗ cos ξ − yf ∗ sin ξ + xc

y(n+ 1) = xf ∗ sin ξ + yf ∗ cos ξ + yc
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Appendix C

Code

C.1 Random Walk in 3D

1 f unc t i on r e s u l t = RWin3D( pos i t i on , parameter , s imu la t i on )

2

3 % RWin3D( pos i t i on , increment parameter ) s imu la t e s the motion o f a

p a r t i c l e

4 % performing random walk in three dimensions

5

6 % Inputs :

7

8 % po s i t i o n = Structure with in fo rmat ion about the i n i t i a l p o s i t i o n

o f the

9 % pa r t i c l e

10 % po s i t i o n . x0 = i n i t i a l p o s i t i o n in x d i r e c t i o n

11 % po s i t i o n . y0 = i n i t i a l p o s i t i o n in y d i r e c t i o n

12 % po s i t i o n . z0 = i n i t i a l p o s i t i o n in z d i r e c t i o n

13

14 % parameter = Structure with in fo rmat ion about the mu l t i p l i c a t i o n

f a c t o r

15 % that c on t r o l s the s t r ength o f the white no i s e

16 % parameter .PX = mu l t i p l i c a t i o n f a c t o r o f the increment in the x

d i r e c t i o n

17 % parameter .PY = mu l t i p l i c a t i o n f a c t o r o f the increment in the y

d i r e c t i o n
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18 % parameter .PZ = mu l t i p l i c a t i o n f a c t o r o f the increment in the z

d i r e c t i o n

19

20 % simula t i on = Structure with in fo rmat ion about the s imu la t i on

parameters

21 % simula t i on .N = number o f samples

22 % simula t i on . dt = time step o f s imu la t i on

23

24 % Outputs :

25

26 % r e s u l t . x = x coord inate

27 % r e s u l t . y = y coord inate

28 % r e s u l t . z = z coord inate

29

30 % Copyright 2012 So f t Matter Lab @ Bi lkent Un ive r s i ty

31 % Author : Mite Mijalkov

32 % $Revis ion : 1 . 0 $ $Date : 2012/04/17$

33

34 % Simulat ion parameters

35

36 x0 = po s i t i o n . x0 ;

37 y0 = po s i t i o n . y0 ;

38 z0 = po s i t i o n . z0 ;

39

40 PX = parameter .PX;

41 PY = parameter .PY;

42 PZ = parameter .PZ ;

43

44 N = s imu la t i on .N;

45 dt = s imu la t i on . dt ;

46

47 %Simulat ion

48 x = ze ro s (1 ,N) ;

49 y = ze ro s (1 ,N) ;

50 z = ze ro s (1 ,N) ;

51

52 x (1) = x0 ;

53 y (1) = y0 ;

54 z (1 ) = z0 ;

55
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56 f o r m = 2 :N

57

58 x (m) = x(m−1)+ PX ∗ s q r t ( dt ) ∗ randn (1) ;

59 y (m) = y(m−1)+ PY ∗ s q r t ( dt ) ∗ randn (1) ;

60 z (m) = z (m−1)+ PZ ∗ s q r t ( dt ) ∗ randn (1) ;

61

62 end

63

64 % Output :

65

66 r e s u l t . x = x ;

67 r e s u l t . y = y ;

68 r e s u l t . z = z ;

Listing C.1: Random walk in 3D

C.2 Brownian motion in 2D

1 f unc t i on r e s u l t = BM( pa r t i c l e , s imu la t i on )

2

3 % BM( pa r t i c l e , s imu la t i on ) s imu la t e s the motion o f a p a r t i c l e

per forming

4 % Brownian motion

5

6 % Inputs :

7

8 % pa r t i c l e = Struc ture with in fo rmat ion about the phy s i c a l

p r op e r t i e s o f

9 % the p a r t i c l e

10 % pa r t i c l e .R = p a r t i c l e rad iu s [m]

11 % pa r t i c l e . eta = f l u i d v i s c o s i t y [ Ns/mˆ2 ] −− water = 0.001

12 % pa r t i c l e .T = temperature [K]

13

14 % simula t i on = Structure with in fo rmat ion about the s imu la t i on

parameters

15 % simula t i on . dt = t imestep [ s ]

16 % simula t i on .N = number o f samples

17 % simula t i on . x0 = i n i t i a l x−coord inate [m]

18 % simula t i on . y0 = i n i t i a l y−coord inate [m]

19
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20 % Outputs :

21

22 % r e s u l t = Structure with the s imualted t r a j e c t o r y

23 % r e s u l t . p a r t i c l e = Structure with in fo rmat ion about the phy s i c a l

p r op e r t i e s o f the p a r t i c l e

24 % r e s u l t . s imu la t i on = Structure with in fo rmat ion about the

s imu la t i on parameters

25 % r e s u l t . x = x coord inate [m]

26 % r e s u l t . y = y coord inate [m]

27

28 % Copyright 2012 So f t Matter Lab @ Bi lkent Un ive r s i ty

29 % Author : Mite Mijalkov

30 % $Revis ion : 1 . 0 $ $Date : 2012/03/08$

31

32 % Constants :

33 kB = 1.38 e−23; % Boltzmann constant [ J/K]

34

35 % Phys i ca l Parameters

36 R = pa r t i c l e .R; % rad iu s [m]

37 eta = p a r t i c l e . e ta ; % f l u i d v i s c o s i t y [ Ns/mˆ2 ] −− water = 0.001

38 T = pa r t i c l e .T; % temperature [K]

39

40 % Derived quan t i t i e s

41 gamma = 6∗ pi ∗ eta ∗R; % f r i c t i o n c o e f f i c i e n t [ Ns/m]

42 Dt = kB∗T/gamma; % d i f f u s i o n [mˆ2/ s ]

43

44 % Simulat ion Parameters

45 dt = s imu la t i on . dt ; % t imestep [ s ]

46 N = s imu la t i on .N; % number o f samples

47 x0 = s imu la t i on . x0 ; % i n i t i a l x−coord inate [m]

48 y0 = s imu la t i on . y0 ; % i n i t i a l y−coord inate [m]

49

50 % Simulat ion

51

52 x = ze ro s (1 ,N) ;

53 x (1) = x0 ;

54 y = ze ro s (1 ,N) ;

55 y (1) = y0 ;

56

57 f o r n = 1 : 1 :N−1
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58

59 x (n+1) = x(n) + sq r t (2∗Dt∗dt ) ∗ randn (1 ) ;

60 y (n+1) = y(n) + sq r t (2∗Dt∗dt ) ∗ randn (1 ) ;

61

62 end

63

64 % Output

65

66 r e s u l t . p a r t i c l e = p a r t i c l e ;

67 r e s u l t . s imu la t i on = s imu la t i on ;

68 r e s u l t . x = x ;

69 r e s u l t . y = y ;

Listing C.2: Brownian motion in 2D

C.3 Active Brownian motion in 2D

1 f unc t i on r e s u l t = ABM 2D( pa r t i c l e , s imu la t i on )

2 % ABM( pa r t i c l e , s imu la t i on ) s imu la t e s the motion o f an a c t i v e

brownian

3 % pa r t i c l e

4

5 % Inputs :

6

7 % pa r t i c l e = Struc ture with in fo rmat ion about the phy s i c a l

p r op e r t i e s o f the p a r t i c l e

8 % pa r t i c l e .R = p a r t i c l e rad iu s [m]

9 % pa r t i c l e . eta = f l u i d v i s c o s i t y [ Ns/mˆ2 ] −− water = 0.001

10 % pa r t i c l e .T = temperature [K]

11 % pa r t i c l e . v = v e l o c i t y [m/ s ]

12

13 % simula t i on = Structure with in fo rmat ion about the s imu la t i on

parameters

14 % simula t i on . dt = t imestep [ s ]

15 % simula t i on .N = number o f samples

16 % simula t i on . x0 = i n i t i a l x−coord inate [m]

17 % simula t i on . y0 = i n i t i a l y−coord inate [m]

18 % simula t i on . phi0 = i n i t i a l ang le with in−plane o r i e n t a t i o n o f the

19 % pa r t i c l e [ rad ]%
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20 % simula t i on . theta0 = i n i t i a l ang le with out o f plane o r i e n t a t i o n

o f the

21 % pa r t i c l e [ rad ]

22

23 % Outputs :

24

25 % r e s u l t = Structure with the s imualted t r a j e c t o r y

26 % r e s u l t . p a r t i c l e = Structure with in fo rmat ion about the phy s i c a l

p r op e r t i e s o f the p a r t i c l e

27 % r e s u l t . s imu la t i on = Structure with in fo rmat ion about the

s imu la t i on parameters

28 % r e s u l t . x = x coord inate [m]

29 % r e s u l t . y = y coord inate [m]

30 % r e s u l t . phi = ang le with in−plane o r i e n t a t i o n o f the p a r t i c l e [

rad ]

31 % r e s u l t . theta = angle with out o f plane o r i e n t a t i o n o f the

p a r t i c l e [ rad ]

32

33 % Copyright 2012 So f t Matter Lab @ Bi lkent Un ive r s i ty

34 % Author : Mite Mijalkov

35 % $Revis ion : 1 . 0 $ $Date : 2012/03/08$

36

37 % Constants

38 kB = 1.38 e−23; % Boltzmann constant [ J/K]

39

40 % Phys i ca l Parameters

41 R = pa r t i c l e .R; % rad iu s [m]

42 eta = p a r t i c l e . e ta ; % f l u i d v i s c o s i t y [ Ns/mˆ2 ] −− water = 0.001

43 T = pa r t i c l e .T; % temperature [K]

44 v = p a r t i c l e . v ; % v e l o c i t y [m/ s ]

45

46 % Derived quan t i t i e s

47 gamma = 6∗ pi ∗ eta ∗R; % f r i c t i o n c o e f f i c i e n t [ Ns/m]

48 Dt = kB∗T/gamma; % d i f f u s i o n [mˆ2/ s ]

49 Dr = kB∗T/(8∗ pi ∗ eta ∗(Rˆ3) ) ; % r o t a t i o n a l d i f f u s i o n [1/ s ]

50 % F = v∗gamma; % f o r c e [N]

51

52 % Simulat ion Parameters

53 dt = s imu la t i on . dt ; % t imestep [ s ]

54 N = s imu la t i on .N; % number o f samples
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55 x0 = s imu la t i on . x0 ; % i n i t i a l x−coord inate [m]

56 y0 = s imu la t i on . y0 ; % i n i t i a l y−coord inate [m]

57 phi0 = s imu la t i on . phi0 ; % i n i t i a l ang le with in−plane o r i e n t a t i o n o f

the p a r t i c l e [ rad ]

58

59 % Simulat ion

60

61 x = ze ro s (1 ,N) ;

62 x (1) = x0 ;

63 y = ze ro s (1 ,N) ;

64 y (1) = y0 ;

65 phi = ze ro s (1 ,N) ;

66 phi (1 ) = phi0 ;

67

68 f o r n = 1 : 1 :N−1

69

70 %cr ea t i n g random increments

71 nphi = randn ;

72 nx = randn ;

73 ny = randn ;

74

75 %angular part performs s imple Brownian motion

76 phi (n+1) = phi (n) + sq r t (2∗Dr∗dt ) ∗nphi ;
77

78 % x and y components depend on the parameter v which in turn

depend on

79 % the propu l s i on f o r c e

80 x (n+1) = x(n) + v∗ cos ( phi (n+1) ) ∗dt + sq r t (2∗Dt∗dt ) ∗nx ;
81 y (n+1) = y(n) + v∗ s i n ( phi (n+1) ) ∗dt + sq r t (2∗Dt∗dt ) ∗ny ;
82

83 end

84

85 % Output

86 r e s u l t . p a r t i c l e = p a r t i c l e ;

87 r e s u l t . s imu la t i on = s imu la t i on ;

88 r e s u l t . x = x ;

89 r e s u l t . y = y ;

90 r e s u l t . phi = phi ;

Listing C.3: Active Brownian motion in 2D
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C.4 Chiral active Brownian motion in complex

environments

1 f unc t i on r e s u l t = CABMellipses ( p a r t i c l e , e l l i p s e s , s imu la t i on )

2 % CABMellipses ( p a r t i c l e , e l l i p s e s , s imu la t i on ) s imu la t e s the motion

o f

3 % Chira l Act ive Brownian p a r t i c l e in the presence o f e l l i p s e s

4

5 % Inputs :

6 %

7 % pa r t i c l e = Struc ture with in fo rmat ion about the phy s i c a l

p r op e r t i e s o f the p a r t i c l e

8 % pa r t i c l e .R = p a r t i c l e rad iu s [m]

9 % pa r t i c l e . eta = f l u i d v i s c o s i t y [ Ns/mˆ2 ] −− water = 0.001

10 % pa r t i c l e .T = temperature [K]

11 % pa r t i c l e . v = v e l o c i t y [m/ s ]

12 % pa r t i c l e . alpha = angular v e l o c i t y [ rad/ s ]

13 %

14 % simula t i on = Structure with in fo rmat ion about the s imu la t i on

parameters

15 % simula t i on . dt = t imestep [ s ]

16 % simula t i on .N = number o f samples

17 % simula t i on . x0 = i n i t i a l x−coord inate [m]

18 % simula t i on . y0 = i n i t i a l y−coord inate [m]

19 % simula t i on . phi0 = i n i t i a l ang le with in−plane o r i e n t a t i o n o f the

20 % pa r t i c l e [ rad ]

21 %

22 % e l l i p s e s = Struc ture with the in fo rmat ion about the e l l i p s e s

that g ive

23 % the boundary cond i t i on s

24 % e l l i p s e s . a = ax i s o f the e l l i p s e that corresponds to x

coord inate [m]

25 % e l l i p s e s . b = ax i s o f the e l l i p s e that corresponds to y

coord inate [m]

26 % e l l i p s e s . xc = x coord inate o f the cente r o f the e l l i p s e [m]

27 % e l l i p s e s . yc = y coord inate o f the cente r o f the e l l i p s e [m]

28 % e l l i p s e s . c s i = the ang le about which the e l l i p s e i s ro ta ted [ rad

] i t i s

29 % measured in counte r c l o ckw i s e d i r e c t i o n from the x ax i s
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30 % e l l i p s e s . i o = parameter which s p e c i f i e s which boundary cond i t i on

to check ,

31 % where +1 means that p a r t i c l e i s con f ined i n s i d e ; −1 stands f o r

ou t s id e

32 %

33 % Output :

34 %

35 % r e s u l t = Structure with the s imualted t r a j e c t o r y

36 % r e s u l t . p a r t i c l e = Structure with in fo rmat ion about the phy s i c a l

p r op e r t i e s o f the p a r t i c l e

37 % r e s u l t . s imu la t i on = Structure with in fo rmat ion about the

s imu la t i on parameters

38 % r e s u l t . x = x coord inate [m]

39 % r e s u l t . y = y coord inate [m]

40 % r e s u l t . phi = ang le with in−plane o r i e n t a t i o n o f the p a r t i c l e [

rad ]

41

42 % Constants

43 kB = 1.38 e−23; % Boltzmann constant [ J/K]

44

45 % Phys i ca l Parameters

46 R = pa r t i c l e .R; % rad iu s [m]

47 eta = p a r t i c l e . e ta ; % f l u i d v i s c o s i t y [ Ns/mˆ2 ] −− water = 0.001

48 T = pa r t i c l e .T; % temperature [K]

49 v = p a r t i c l e . v ; % v e l o c i t y [m/ s ]

50 alpha = p a r t i c l e . alpha ; % angular v e l o c i t y [ rad/ s ]

51

52 % Derived quan t i t i e s

53 gamma = 6∗ pi ∗ eta ∗R; % f r i c t i o n c o e f f i c i e n t [ Ns/m]

54 Dt = kB∗T/gamma; % d i f f u s i o n [mˆ2/ s ]

55 Dr = kB∗T/(8∗ pi ∗ eta ∗(Rˆ3) ) ; % r o t a t i o n a l d i f f u s i o n [1/ s ]

56 % F = v∗gamma; % f o r c e [N]

57

58 % Simulat ion Parameters

59 dt = s imu la t i on . dt ; % t imestep [ s ]

60 N = s imu la t i on .N; % number o f samples

61 x0 = s imu la t i on . x0 ; % i n i t i a l x−coord inate [m]

62 y0 = s imu la t i on . y0 ; % i n i t i a l y−coord inate [m]

63 phi0 = s imu la t i on . phi0 ; % i n i t i a l ang le with in−plane o r i e n t a t i o n o f

the p a r t i c l e [ rad ] c l e a r s imua l t i on ;
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64

65 % Simulat ion

66 x = ze ro s (1 ,N) ;

67 x (1) = x0 ;

68 y = ze ro s (1 ,N) ;

69 y (1) = y0 ;

70 phi = ze ro s (1 ,N) ;

71 phi (1 ) = phi0 ;

72

73 f o r n = 1 : 1 :N−1

74 phi (n+1) = phi (n) + alpha ∗dt + sq r t (2∗Dr∗dt ) ∗ randn ;

75 x (n+1) = x(n) + v∗ s i n ( phi (n+1) ) ∗dt + sq r t (2∗Dt∗dt ) ∗ randn ;

76 y (n+1) = y(n) + v∗ cos ( phi (n+1) ) ∗dt + sq r t (2∗Dt∗dt ) ∗ randn ;

77

78

79 f o r e l l i p s e = e l l i p s e s

80 a = e l l i p s e . a ;

81 b = e l l i p s e . b ;

82 xc = e l l i p s e . xc ;

83 yc = e l l i p s e . yc ;

84 c s i = e l l i p s e . c s i ;

85 i o = e l l i p s e . i o ;

86

87 % Fina l po int in standard coord inate system

88 xt1 = (x (n+1)−xc ) ∗ cos (− c s i ) − ( y (n+1)−yc ) ∗ s i n (− c s i ) ;

89 yt1 = (x (n+1)−xc ) ∗ s i n (− c s i ) + (y (n+1)−yc ) ∗ cos (− c s i ) ;

90

91 i f ( io>0 & ( xt1/a ) ˆ2+(yt1/b)ˆ2>1 ) | | ( io<0 & ( xt1/a ) ˆ2+(

yt1/b)ˆ2<1 )

92

93 % I n i t i a l po int in standard coord inate system

94 xt0 = (x (n)−xc ) ∗ cos (− c s i ) − ( y (n)−yc ) ∗ s i n (− c s i ) ;

95 yt0 = (x (n)−xc ) ∗ s i n (− c s i ) + (y (n)−yc ) ∗ cos (− c s i ) ;

96

97 % Slope o f l i n e between i n i t i a l and f i n a l po int

98 m = ( yt1−yt0 ) /( xt1−xt0 ) ;

99

100 % In t e r s e c t i o n s with e l l i p s e

101 y0 = yt1−xt1∗m;

102
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103 x i1 = ( −y0∗m/bˆ2 + sq r t ( ( y0∗m/bˆ2) ˆ2 − ( aˆ−2+mˆ2/bˆ2)

∗( y0ˆ2/bˆ2−1) ) ) /( aˆ−2+mˆ2/bˆ2) ;

104 x i2 = ( −y0∗m/bˆ2 − s q r t ( ( y0∗m/bˆ2) ˆ2 − ( aˆ−2+mˆ2/bˆ2)

∗( y0ˆ2/bˆ2−1) ) ) /( aˆ−2+mˆ2/bˆ2) ;

105 y i1 = y0+xi1 ∗m;

106 y i2 = y0+xi2 ∗m;

107

108 % Chooses the c l o s e s t i n t e r s e c t i o n to the f i n a l po int

109 i f ( xi1−xt1 ) ˆ2+(yi1−yt1 ) ˆ2 < ( xi2−xt1 ) ˆ2+(yi2−yt1 ) ˆ2

110 x i = xi1 ;

111 y i = yi1 ;

112 e l s e

113 x i = xi2 ;

114 y i = yi2 ;

115 end

116

117 % Slope o f the tangent and normal to the e l l i p s e at the

i n t e r s e c t i o n po int

118 m tan = −x i / y i ∗bˆ2/a ˆ2 ;
119 m norm = −m tanˆ−1;

120

121 % Calcu la te the p r o j e c t i o n on the e l l i p s e

122 xf = ( yt1−y i+m tan∗xi−m norm∗xt1 ) /(m tan−m norm) ;

123 yf = y i+m tan∗xf−m tan∗ x i ;
124

125 % Pro j e c t i on in i n t i a l coo rd inate system

126 x (n+1) = xf ∗ cos ( c s i ) − yf ∗ s i n ( c s i ) + xc ;

127 y (n+1) = xf ∗ s i n ( c s i ) + yf ∗ cos ( c s i ) + yc ;

128 end

129 end

130

131 end

132

133 % Output

134 r e s u l t . p a r t i c l e = p a r t i c l e ;

135 r e s u l t . s imu la t i on = s imu la t i on ;

136 r e s u l t . x = x ;

137 r e s u l t . y = y ;
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138 r e s u l t . phi = phi ;

Listing C.4: Chiral active Brownian motion in complex environments (elliptical

obstacles) in 2D
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