-

View metadata, citation and similar papers at core.ac.uk brought to you byt CORE

provided by Bilkent University Institutional Repository

PARALLEL SPARSE MATRIX VECTOR
MULTIPLICATION TECHNIQUES FOR
SHARED MEMORY ARCHITECTURES

A THESIS
SUBMITTED TO THE DEPARTMENT OF COMPUTER ENGINEERING
AND THE GRADUATE SCHOOL OF ENGINEERING AND SCIENCE
OF BILKENT UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF

MASTER OF SCIENCE

By
Mehmet Basaran

September, 2014

https://core.ac.uk/display/52927294?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Prof. Dr. Cevdet Aykanat(Advisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Assist. Prof. Dr. Can Alkan

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Assist. Prof. Dr. Kayhan Imre

Approved for the Graduate School of Engineering and Science:

Prof. Dr. Levent Onural
Director of the Graduate School

i

ABSTRACT

PARALLEL SPARSE MATRIX VECTOR
MULTIPLICATION TECHNIQUES FOR SHARED
MEMORY ARCHITECTURES

Mehmet Bagaran
M.S. in Computer Engineering
Supervisor: Prof. Dr. Cevdet Aykanat
September, 2014

SpMxV (Sparse matrix vector multiplication) is a kernel operation in linear
solvers in which a sparse matrix is multiplied with a dense vector repeatedly.
Due to random memory access patterns exhibited by SpMxV operation, hard-
ware components such as prefetchers, CPU caches, and built in SIMD units are
under-utilized. Consequently, limiting parallelization efficieny. In this study we

developed;

e an adaptive runtime scheduling and load balancing algorithms for shared

memory systems,
e a hybrid storage format to help effectively vectorize sub-matrices,

e an algorithm to extract proposed hybrid sub-matrix storage format.

Implemented techniques are designed to be used by both hypergraph parti-
tioning powered and spontaneous SpMxV operations. Tests are carried out on
Knights Corner (KNC) coprocessor which is an x86 based many-core architecture
employing NoC (network on chip) communication subsystem. However, proposed
techniques can also be implemented for GPUs (graphical processing units).

Keywords: SpMxV, parallelization, KNC, Intel Xeon Phi, many-core, GPU, vec-
torization, SIMD, adaptive scheduling and load balancing, Work stealing, Dis-
tributed Systems, Data Locality.

il

OZET

PAYLASIMLI HAFTZA SISTEMLERI ICIN PARALEL
SEYREK MATRIS - DIZI CARPIM TEKNIKLERI

Mehmet Bagaran
Bilgisayar Miithendisligi, Yiiksek Lisans
Tez Yoneticisi: Prof. Dr. Cevdet Aykanat
Eylil, 2014

Seyrek matris dizi ¢arpimi, denklem coziiciilerde kullanilan anahtar iglemdir.
Seyrek matrix tarafindan yapilan diizensiz hafiza erigimleri nedeniyle, buyruk
on yiikleyicisi, iglemci 6n bellegi ve dizi buyruklar1 gibi bir ¢ok donamim etkili
bir gekilde kullanilamamaktadir. Buda paralel verimliligin diigmesine neden olur.

Bu ¢aligmada, paylasimlh hafiza sistemlerinde kullanilmak tizere,

o Ogrenme yetisine sahip planlayici ve yiik dengeleyici algoritmalar,

e Dizi buyruklarim etkili bir gsekilde kullanmaya olanak saglayan melez bir

seyrek veri yapisi ve

e Bu veri yapisini olugturmada kullanilan bir algoritma

geligtirilmigtir.

Bu algmada belirtilen teknikler, hem ¢6n yapilandirmali hemde direkt olarak
seyrek matrix-dizi ¢arpiminda kullanilabilir. Testler Intel tarafindan iiretilen
Xeon Phi adli, x86 tabanli cekirdeklere ve bu ¢ekirdekleri birbirine baglayan halka
ag protokoliine sahip, yardimer kartlar izerinde yapilmig tir. Onerilen teknikler

ekran kartlarinda da kullanilabilir.

Anahtar sozcikler: Seyrek matris-dizi c¢arpimi, KNC, Intel Xeon Phi, ¢ok
cekirdekli ilemciler, vektorizasyon, SIMD, ogrenebilen planlayici ve y“k denge-

leyiciler, i calma, dagitik sistemler, veri yerelligi.

v

Acknowledgement

I acknowledge that ...

Contents

1 Introduction 1
1.1 Preliminary 1
1.2 Problem Definition 0oL 2
1.3 Thesis Organization 4

2 Background 5
2.1 Terms and Abbreviations L. 6
2.2 Background Infomation on SpMxV 8

2.2.1 Sparse-Matrix Storage Schemes 9
2.2.2 Space Requirements 12
2.2.3 Task decomposition techniques for SpMxV 13
2.3 Partitioning & Hypergraph model explored 15
2.3.1 Column-Net Model & Interpretation 15
2.3.2 Row-Net Model & Interpretation 16
2.3.3 Recursive Bipartitioning 17

vi

CONTENTS vii

2.4 A high level overview of Intel’s Xeon Phi High Performance Com-
puting Platform oo 19
2.4.1 5 key features of Xeon Phi Coprocessors 20
2.4.2 Thread Affinity Control 24
3 Partitioning, Scheduling, and Load Balancing Algorithms 26
3.1 Ordering Only Routines 28
3.1.1 Sequential Routine 28
3.1.2 Dynamic OMP Loop Routine 28
3.2 Ordering & blocking routines 30
3.2.1 Chunk & Scatter Distribution Methods 32
3.2.2 Static Routine 34
3.2.3 OpenMP Task Routine 35
3.2.4 Global Work Stealing Routine (GWS) 36
3.2.5 Distributed Work Stealing Routine (DWS) 37
4 Implementation deltails, Porting, and Fine tuning 40
4.1 Test sub-seto 41
4.2 General template of application behaviour 42
4.3 Application Kernels 43
4.3.1 CSRformat 43

4.3.2 JDS format 44

CONTENTS viii

4.4 Runtime Scheduling and Load Balance 47
4.4.1 Generic Warm-up Phase 47
4.4.2 Improving Application Scalability 47
4.4.3 Adaptiveness: Reasoning 48

4.5 Overcoming deficiencies related to storage format 51
4.5.1 Hybrid JDS-CSR storage format 52
4.5.2 Laid Back Approach 53
4.5.3 Possible Improvements & Performance Analysis 59

4.5.4 Choosing optimum partition size and decomposition algo-

rithm 60

4.5.5 Effect of Hypergraph Partitioning: Analyzed 61

5 Experimental Results and Future Work 64
5.1 Test Environment oo 65
5.2 Hardware Specifications 65
5.3 Test Data 66
54 Future Worko 91
5.4.1 Experiments with hybrid JDS-CSR format 91

5.4.2 Choosing optimum partition size and decomposition algo-

5.4.3 GPU implementation 94

CONTENTS

6 Conclusion

1X

95

List of Figures

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

2.10

2.11

2.12

Sample matrix in 2D array representation. 9
CSR representation of SpM in figure 2.1. 10

Matrix rows are sorted by their non-zero count in descending order. 10

All non-zeros are shifted to left. 11
JDS representation of SpM in Figure 2.1. 11
Rowwise 1-D Block Partitioning algorithm for 4 PEs. 13
Columnwise 1-D Block Partitioning algorithm for 4 PEs. 14
2-D Block Partitioning algorithm for 16 PEs. 14
Column-net interpretation incurs vertical border. 16
Row-net interpretation incurs horizontal border. 17

A SpM is recursively reordered and divided into four parts using
column-net recursive bipartitioning scheme. And sub-matrix to

PE assignment is done using rowwise 1-D partitioning algorithm. 18

An SpM is recursively reordered and divided into 4 parts using
row-net recursive bipartitioning scheme. Sub-matrix to processor

assignment is done by using columnwise 1-D partitioning algorithm. 18

LIST OF FIGURES

2.13

2.14

2.15

2.16

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

4.1

4.2

High level view of on-die interconnect on Xeon Phi Coprocessor
cards. TD (tag directory), MC (Memory Channel), L2 (Level
2 Cache), L1-d (Level 1 Data Cache), L1-i (Level 1 Instruction
Cache), HWP (hardware prefetcher).

Compact thread affinity control.
Scatter thread affinity control.

Balanced thread affinity control.

Sample bipartitioning tree for column-net interpretation using
CSR/JDS schemes on 5 EXs.

Sample matrix ordered by column-net model using rowwise 1-D
partitioning algorithm for task to PE assignment. There are 5
EXs and collective reads on X vector by tasks are pointed out by

density of portions’ color.o
Bipartitioning tree for 2 blocks.

Sample matrix ordered by column-net model using rowwise 1-D
partitioning using scatter distribution method. Collective reads

by task on X vector are shown by the density of potions’ color. . .

Static routine sub-matrix distribution among 5 execution contexts.

Global queue and the order in which sub-matrices line up.

Ring work stealing scheme making efficient use of bidirectional

communication ring for 60 PEs.00 00000

Tree work stealing scheme in action.

Task decomposition for CSR format.

Task decomposition for JDS format.

x1

21

24

25

25

30

31

33

33

34

36

37

LIST OF FIGURES

4.3

4.4

4.5

4.6

5.1

5.2

Constraint violation in LBA is described.
LBA in action.
Sample output for CSR implementation of LBA.

Possible improvement for hybrid JDS-CSR format to avoid extra

prefetch issues.o

Comparison of JDS-heavy CSR and CSR-heavy JDS in certain
senarios. Hybrid format doesn’t necessarily contain both JDS and

CSR everytime. In this case, cost of JDS and CSR are same.

Therefore, one of them is chosen depending on the implementaion.

Comparison of JDS-heavy CSR and CSR-heavy JDS in certain
senarios. Here, at certain points costs are the same. Depending

on version of LBA, one of them will be chosen.

xii

92

List of Tables

2.1

4.1

4.2

4.3

4.4

Properties of Atmosmodd, it holds only 7 times the memory space

of a dense vector with same column count.

Stats of choosen data sub-set. Row & column count, NNZ, and

max-avg-min NNZ per row/column are given.

Effect of discarding permutation array from JDS format. Results
are measured in GFlops and belong to single precision spontaneous
static routine with 32KB sub-matrix sizes. Gains are substantial

for matrices that are efficiently vectorizable.

Row & Column count, NNZ, and max, avg, min NNZ per

row/column are given for as-Skitter and packing-500x100x100-b050. 49

Time measured (in seconds) for 100 SpMxV operations performed
using as-Skitter and packing-500x100x100-b050 with Static and
DWS routines both ’sp’ (spontaneous) and ’hp’ (hypergraph)
modes. ’spc’ stands for spontaneous mode partition count while
"hpc’ for hypergraph mode patition count. In third row, how many
times faster packing-500x100x100-b050 executes compared to as-
Skitter is shown. (A hybrid storage format, proposed later in this

chapter, is used to take these runs).

xiil

LIST OF TABLES

4.5

4.6

5.1

5.2

5.3

5.4

5.9

Storage format performance (measured in GFLOPs) comparison
for single precision SpMxV. For CSR format, the routine that per-

forms best is chosen to include OpenMP Dynamic Loop implemen-

tation. For JDS and CSR formats, results belong to DWS routine.

Hypergraph partitioning effect is observed on different schedulers.
'sp’ stands for spontanenous mode, while "hp’ for hypergraph par-
titioning mode. ’su’ is the speed up of hypergraph partitioning
based sequential routine over spontaneous sequential run. Out of
3 tree work stealing routines, only chunk distribution method is

tested. Results are presented in GFlops.

CPU and memory specifications of Xeon Phi model used in tests.
Cache specifications of Xeon Phi model used in tests.
CPU and memory specifications of Xeon model used in tests. . . .

For all the SpMs used to test proposed routines, row & column
count, NNZ, min/avg/max NNZ per row/col, and their matrix

structures are grouped by their problem types.

Performance is measured in GFlops and compared between MKL
and default DWS (DWS-RING) routine. ’spc’ stands for spon-
taneous mode partition (/ sub-matrix) count, while "hppc’ for
hypergraph-partitioning mode partition count. ’su’ is speed up
of hypergraph-partitioning use over spontanenous use while run-
ning sequential routine. If, for a matrix, in spontaneous mode,
DWS routine performs worse than MKL in either single or double
precision versions, that matrix’s row is highlighted in red, statistics
for problem groups are highlighted in blue, and overall statistics

INgreen.

xXiv

33

LIST OF TABLES

5.6 Different variants of LBA are compared. Results are taken from
single precision Static routine. Performance and measured in
GFlops. Partition size is 32KB.

XV

List of Algorithms

4.1
4.2
4.3
4.4
4.5
4.6

4.7

General template of application behaviour. 42
Kernel function for CSR format. 44
Kernel function for JDS format. 45
Kernel function for hybird JDS-CSR format. 52
Hybird JDS-CSR sub-matrix extraction. 54

JDS implementation of LBA to find the optimum cut for infinite
vector unit length.o 57
CSR implementation of LBA to find the optimum cut for infinite
vector unit length. 58

XVvi

Chapter 1

Introduction

1.1 Preliminary

Advancements in manufacturing technology made it possible to fit billions of
transistors in a single processor. At the time of this writing, a 60+ core Xeon Phi
coprocessor card has 5 billion transistor count. For a processor, higher transistor
count means more computational power. But unfortunately, more computational
power doesn’t necessarily result in better performance. Since computations are
carried out on data, processor has to keep data blocks nearby or bring it from

memory / disk when needed.

Increase in clock frequency implies an increase in data transfer penalty as
well. In current era, the time it takes to transfer data blocks from memory
dominates the time it takes to for processors to perform calculations on those data
blocks. Because of the latency caused by transfer, processors has to be stalled
frequently. Fortunately, most applications do not make entirely idenependent
memory accesses. In general, memory access patterns express some degree of
locality (classified under either temporal or spatial) [2]. Therefore CPU caches
along with prefetchers are introduced in an effort to keep data nearby for certain

senarios. Substantially reducing average time to access memory.

On the other hand, sequential execution model reaching a point of diminish-
ing returns, paved the way for parallel programming paradigm. With this new
paradigm, problems are expressed in terms of smaller sub-problems which are
solved simultaneously. The process of dividing a workload into smaller chunks is
called task decomposition. Task decomposition takes several metrics into account,

such as load balance, data locality, and communication overhead.

Due to certain applications expressing definitive characteristics (such as pre-
dictable access patterns, being embarassingly parallel...), specialized hardware
structures are developed. In particular, vector extensions such as SSE (Stream-
ing SIMD extensions), operates on chunks of data instead of individual elements
in an effort to improve performance. This is referred as SIMD (single instruction

multiple data) in Flynn’s taxonomy [19, 20].

In this context, scalability of an application is measured by simultaneously
running threads at its peak performance. Increasing thread count further after
this point reduces overall performance which is measured in GigaFLOPs (one
billion floating point operations per second). Scalability depends on application

itself and measured on the hardware it’s running on. Therefore, effectively using;

e prefetchers and CPU cache to hide latency,

e task decomposition to improve load balance, data locality, and to relax

communication overhead, and

e hardware components built in for specific use,

increases the scalability of parallel applications.

1.2 Problem Definition

In computer science alone, linear solvers are used in various, seemingly irrelevant,

areas. Whether the aim is to dynamically animate a character while satisfying

certain constraints [16] or to find the best possible placement for millions of circuit

elements [17], the need to use a linear solver remains intact.

In an application, the routines that dominate the runtime, form its kernels.
Improving the performance of an application kernel, stands for improving the
application performance itself. And in linear solvers, the kernel operation is

SpMxV (sparse-matrix vector multiplication).

In this study,

e A hybrid storage format to increase the efficient usage of SIMD components,
e A heuristic based algorithm to extract proposed storage format,

e An adaptive & architecture aware runtime scheduling & load balancing

algorithms that respect data locality,

are developed.

Techniques implemented in this work are designed to be used for both hyper-

graph partitioning powered and spontaneous SpMxV operations.

Hypergraph model is used to

e implement cache blocking techniques to reduce the number of capacity

misses.
e create

— elegant task decomposition,

— data locality awareness in runtime scheduler and load balancer.

Tests are carried out on Intel’s brand new Xeon Phi High Performance Com-
puting platform which gathers NoC (network on chip) and NUMA (non-uniform
memory access) paradigms in single hardware. However, proposed routines can

also be implemented for GPUs (Graphical Processing Units).

3

1.3 Thesis Organization

The rest of this thesis is organized as follows;

e Chapter 2 provides the definition of terms and abbreviations used in this
document, background information on SpMxV, and reviews Xeon Phi High

Performance Computing Platform briefly.

e Chapter 3 describes proposed scheduling algorithms and ideas behind their

implementations.

e Chapter 4 discusses optimization techniques and proposes a data structure
& algorithm to effectively utilize SIMD components for wide spectrum of

matrices.
e Chapter 5 presents experimental results and possible areas for future work.

e Chapter 6 summarizes contributions of this work.

Chapter 2

Background

In this chapter,

definitions of terms and abbreviations

background information on SpMxV

e basic concepts of and motives behind partitioning algorithms

e an overview of Xeon Phi Architecture

are provided.

2.1

Terms and Abbreviations

Below are the definitions of terms and abbreviations as they are used throughout

this document.

M, N: Row, column count of a matrix.

SpM: Sparse-matrix.

SpMxV: Sparse-matrix vector multiplication.

DMxV: Dense-matrix vector multiplication.

NUMA: Non-uniform memory-access.

NoC: Network on Chip commutnication subsystem.
Flops: Number of floating point operations per second.

GFlopss: GigaFlops, main metric used for measuring performance in this

study.

MKZL: Intel’s Math Kernel Library [24].

icc: Intel C Compiler [23].

gce: GNU C Compiler [22].

nnz: number of non-zero elements in a sparse-matrix.

Cache capacity miss: Cache misses that occur due to cache’s insufficient

capacity and can be avoided if bigger cache is provided.

Cache blocking: Converting a big computational work, into smallter
chunks that can fit into cache to reduce capacity misses. In this work,

L2 cache is chosen for cache blocking.

Recursive bipartitioning: Dividing given data structure into two sub-

parts recursively until a certain condition is met.

P, PE: Processing element.

EX: Execution context.

FIFO: First in first out.

GPU: Graphical processing unit.

GPGPU: General purpose graphical processing unit.
SISD: Single instruction single data.

SIMD: Single instruction multiple data.

ALU: Arithmetic logic unit.

SSE: Streaming SIMD extensions.

Sub-Matrix: A small part of SpM that can be used simultaneously with

other sub-matrices.
SMT: Simulatenous multi-threading.

LBA: Laid back algorithm (a heuristic algorithm to find optimum cut for
hybrid JDS-CSR format).

2.2 Background Infomation on SpMxV

A matrix is said to be sparse if the total number of nonzeros is much less than
its row and column count multiplied (M x N). In general any number of nonzeros
per row/column remains constant. Below in Table 2.1, stats of an SpM, taken

from University of Florida sparse-matrix collection [21], are presented.

Table 2.1: Properties of Atmosmodd, it holds only 7 times the memory space

of a dense vector with same column count.

atmosmodd

number of rows | 1,270,432
number of columns | 1,270,432
nonzeros | 8,814,880
max nonzeros per row | 7
average nonzeros per row | 6.9
min nonzeros per row | 4
max nonzeros per column | 7

average nonzeros per column | 6.9

min nonzeros per column | 4

In both SpMxV and DMxV (Dense matrix vector multiplication), through-
put is measured in FLOPs (number of floating operations) per second. If both
routines were implemented in the same way, effective throughput of SpMxV will
be much lower than the throughput of DMxV. Because elements with the value
zero doesn’t contribute to overall results in any way, the throughput of SpMxV
calculated in terms of non-zero elements. Using the same storage format as dense
matrix will result in wasted memory, memory bandwidth, and CPU cycles. As
a result, sparse-matrices are generally stored in compact data strucutres (only
keeping track of non-zero values) which allows traversing non-zeros in a certain

way, instead of using traditional 2D array format.

2.2.1 Sparse-Matrix Storage Schemes

There are various storage schemes for sparse-matrices (most fundamental ones
are explained in [15]), only 2 of those are implemented for this work and they are
stated below.

1. CSR (Compressed Storage by Rows)

2. JDS (Jagged Diagonal Storage)

Both structures facilitate efficient use of sequential access and prefetchers. In
Figure 2.1, a sample sparse-matrix with dimensions 8 x 8 is shown in 2D array
representation to be converted into CSR, and JDS counterparts in the following

two sections.

40 0 00
0 -1 0 6 2
Mss= |0 —2 0 0
1 0 0 00
0 41 2

Figure 2.1: Sample matrix in 2D array representation.

2.2.1.1 CSR (Compressed Row Storage) Format

The CSR format consists of 3 arrays; values, columns, and row-ptr. The sparse-

matrix in Figure 2.1 is presented in CSR format in Figure 2.2.

index |0 1 2 3 4 5 6 7 8
values |4 -1 6 2 -2 1 -4
collnd |0 1 3 4 0 2 3 4
rowPtr [0 1 4 5 6 9

Figure 2.2: CSR representation of SpM in figure 2.1.

Given that an SpM has enough non-zero elements per row, CSR scheme can
benefit from vectorization. If average non-zero elements per row is significantly
smaller than the number of elements that can fit into SIMD unit, vectorization

is inefficient since most SIMD slots will be left empty.

2.2.1.2 JDS (Jagged Diagonal Storage) Format

The JDS format is formed by 4 arrays and designed to be used by GPUs and
SSE components. Conversion steps of matrix in 2.1 to JDS format is depicted in
figures 2.3, 2.4, and 2.5.

0 -1 0 6 2
0 0 —4 1 2
Mss=1{4 0 0 00
0 0 -2 00
1 0 0 00

Figure 2.3: Matrix rows are sorted by their non-zero count in descending

order.

10

Figure 2.4: All non-zeros are shifted to left.

index |0 1 2 3 4 5 6 7 8
dj -1 4 4 -2 1 6 1 2 2
jdiag | 1 2 0 2 0 3 3 4 4
idiag | 0O 5 7 9

peem | 14 0 2 3

Figure 2.5: JDS representation of SpM in Figure 2.1.

In JDS format, much like in CSR, because they are continuous in memory,
both y vector entries and dj & jdiag arrays can be brought into cache with single
high performance load instruction (vector load). It differs from CSR in that, all
non-zero elements are shifted to left regardless of their column indices to create
longer chunks of SpM elements which will be traversed in the innermost for loop
(see sections 2.4.1.3 and 4.3 for more information). Only x vector entries need
additional gather and pack instructions. Also, for JDS, vectorization is more
efficient for matrices that have similar amount of non-zeros per row (in this case,

matrix assumes more of a rectangle rather than jagged array).

11

2.2.2 Space Requirements

Algorithms presented in this work aim to make use of data residing in cache and
reduce the number of times processor has to go to memory to fetch blocks of data.
Because of this, data structures are compact and their space requirements are cru-
cial. The formulas that calculate matrix storage schemes’ space requirements, for
a single sub-matrix, are given below. Size of X vector entries is discarded because
of no particular way to calculate it using rowwise 1-D partitioning algorithm

(which is the partitioning algorithm utilized in this study).

e CSR Storage Scheme
sizeof(REAL) * NNZ + // values array
sizeof INTEGER) * NNZ + // collnd array
sizeofINTEGER) * ROW-COUNT // rowPtr array
sizeof(REAL) * Y_.VECTOR_LENGTH // y entries used by sub-matriz

e JDS Storage Scheme
sizeof(REAL) * NNZ + // dj array
sizeof INTEGER) * NNZ + // jdiag array
sizeofINTEGER) * LONGEST-ROW-LENGTH + // idiag array
sizeof INTEGER) * ROW-COUNT // permutation array
sizeof(REAL) * Y_.VECTOR_LENGTH // y entries used by sub-matriz

12

2.2.3 Task decomposition techniques for SpMxV

Depending on the computation, decomposition may be induced by partitioning
the input, output, or intermediate data [1]. In following sections, 3 of the task

decomposition schemes for SpMxV are explained.

2.2.3.1 Rowwise 1-D Block Partitioning

As shown in Figure 2.6, output vector Y is partitioned among 4 PEs which
resulted in dividing matrix in row slices and broadcasting input vector X to all
processing elements. Rowwise 1-D block partitioning algorithm incurs shared

reads on X vector on shared memory architectures.

A X Y

P1
P2
P3
P4

Figure 2.6: Rowwise 1-D Block Partitioning algorithm for 4 PEs.

2.2.3.2 Columnwise 1-D Block Partitioning

Parallel algorithm for columnwise 1-D block partitioning is similar to rowwise,
except this time input vector X is partitioned among PEs which resulted in par-
titioning matrix in column slices and collective usage of output vector Y. Paral-
lel SpMxV using this type of decomposition incurs conflicting writes and must
provide a synchronization infrastructure to guarantee the correctness of results.

Columnwise 1-D partitioning algorithm is depicted in Figure 2.7.

13

B RIRRIRRRRRK
oo

R
LI

et

et

Y

PRI
RISOKKKKES

X

S Satatatatetototets
S aatataatstete | &

P1:P2:P3 ‘P4

-D Block Partitioning algorithm for 4 PEs.

Columnwise 1

Figure 2.7

2.2.3.3 2-D Block Partition

ing

Also known as checkerboard, 2-D block partitioning algorithm directly divides

given matrix into blocks in way that both input vector X and output vector Y

can be partitioned among all PEs. Both shared reads and conflict writes incurred

in this decomposition type. Figure 2.8 shows this scheme in action for 16 PEs.

2-D Block Partitioning algorithm for 16 PEs.

Figure 2.8

It is stated in [1] that DMxV multiplication is more scalable with 2-D parti-

for SpMxV multiplication, cache blocking tech-

tioning algorithm. In addition,

niques can be used with checkerboard partitioning.

14

This work uses only rowwise 1-D decomposition algorithm.

2.3 Partitioning & Hypergraph model explored

In this study, hypergraph partitioning model [11] serves is used to sort matrix

rows and columns so that case misses induced by X vector entries are reduced.

In a single iteration of SpMxV multiplication, SpM entries are used only
once. On the other hand, dense vector entries are used multiple times. When
combined SpM, Y, and X size is bigger than targeted cache size, vector entries
can be evicted from and transferred back to cache due to its limited capacity.
Hypergraph partitioning model is utilized to order SpM rows and columns such
that vector entries are used multiple times before they are finally evicted from

cache.

Secondly, in parallel systems where performance can be hindered by commu-
nication and uneven work distribution between PEs (processing elements), with
the help of hypergraph partitioning model;

e clegant task decomposition which reduces inter-process comminication,

e locality aware scheduling and load balancing algorithms,

can be implemented. PATOH (Partitioning Tool for Hypergraphs) [11] is used
throughout this work. Two of PATOH’s partitioning models are explained below.

2.3.1 Column-Net Model & Interpretation

In the column-net model [11], matrix columns are represented as nets (hypern-
odes) and rows as vertices. Ordering & Partitioning decisions are made using cut
nets which represent columns that cannot be fully assigned to single PE, therefore
has to be shared.

15

In this work, column-net model is used with rowwise 1-D partitioning algo-
rithm which is previously explained in this chapter. SpM entries on borders incur

collective reads on shared memory architectures.

When using column-net interpretation, partitioning a matrix into 2 sub-
matrices incurs one column border. In Figure 2.9, sample structure of a sparse
matrix partitioned using column-net model is depicted. Al and A2 are dense
blocks (which will be distributed among PEs). B is border which has all the cut

nets (columns that cannot be fully assinged to single PE).

A &
7 %
N

Figure 2.9: Column-net interpretation incurs vertical border.

2.3.2 Row-Net Model & Interpretation

In the row-net model [11], matrix rows are used as nets (hypernodes) and columns
as vertices. Ordering & Partitioning decisions are made using cut nets which
represent rows that cannot be fully assigned to single PE, therefore has to be

shared.

When using row-net interpretation, partitioning a matrix into 2 sub-matrices
incurs one row border. In Figure 2.10, sample structure of a sparse matrix par-

titioned using row-net model is depicted.

16

Figure 2.10: Row-net interpretation incurs horizontal border.

Row-net model is not used throughout this work.

2.3.3 Recursive Bipartitioning

PATOH recursively divides a matrix into two sub-matrices until the total size of
data structures (required to multiply sub-matrix in question) falls below targeted
size (determined by user input). Generally, targeted size is either below or equal
to the local cache size of a processor core. This way, number of cache capacity

misses are reduced.

Total size of the sub-matrix data structure denpends on the underlying storage

format and explained in section 2.2.2

e Rowwise 1-D partitioning algorithm when used with column-net partition-

ing model & interpretation,

e Columnwise 1-D partitioning algorithm when used with row-net partition-

ing model & interpretation (not used in this work),

produces better load balance and parallel scalability.

In Figures 2.11 and 2.12, both algorithms are depicted in action accordingly.
Matrices are partitioned using bipartitioning scheme explained earlier in this

chapter.

17

P1 o Pl

P4 P4

Figure 2.11: A SpM is recursively reordered and divided into four parts using
column-net recursive bipartitioning scheme. And sub-matrix to PE assignment

is done using rowwise 1-D partitioning algorithm.

As can be seen from Figure 2.11, using ordering, number of shared reads are

reduced compared to Figure 2.6 (Shared portion of X vector are weaved denser).

A X %
: P1
P2
P3
- g;g%ﬁ Lyt
recese BEILS

P1 P2 :P3 P4

Figure 2.12: An SpM is recursively reordered and divided into 4 parts using
row-net recursive bipartitioning scheme. Sub-matrix to processor assignment

is done by using columnwise 1-D partitioning algorithm.

Column parallel SpMxV using row net partitioning scheme, as shown in Figure
2.12, reduces the number of conflicting writes (weaved denser), thus the synchro-

nization overhead, compared to SpMxV in Figure 2.7 is minimized.

18

2.4 A high level overview of Intel’s Xeon Phi
High Performance Computing Platform

Covering the whole architecture of Xeon Phi cards is out of the scope of this
document. Therefore, hardware is briefly inspected and only the parts that are

crucial for this study are explained in detail.

Xeon Phi co-processor card [13, 14] is an external and independent hardware
that works in conjunction with Xeon processor [25]. It’s very similar to GPU in

that sense.

Unlike a graphics card, Xeon Phi card has very similar structure to that of a
traditional processor, making it easy to program and port existing code written
for a conventional processors [3]. Porting is done by Intel’s compiler [3, 23] (thus it
is required to program the coprocessor). As a result, using the implementations of
algorithms which are designed for traditional processors, speed-up can be attained

on Xeon Phi card.

Xeon Phi coprocessor is intended for applications where runtime is dominated
by parallel code segments. Because Xeon Phi cores have much lower frequency
compared to Xeon cores, tasks whose runtime is dominated by serial execution
segments can perform better on general purpose Xeon processors [3]. Specifica-
tions of these two products used throughout this work are given in are given in

chapter 5.
In addition to 604 cores, Xeon Phi coprocessor cards;

e use directory based cache coherency protocol compared to Xeon’s bus based

cache coherency protocol.

e has 512bit SIMD vector unit in each core, compared to Xeon’s SSE / MMX

instructions.

e has GDDR5 memory, compared to DDR3 of Xeon procesor.

19

2.4.1 5 key features of Xeon Phi Coprocessors

Covering features of Xeon Phi Coprocessors is out of the scope of this document.
Here are the 5 aspects of this hardware which carries upmost importance for this

work.

2.4.1.1 Number of threads per core

Each core has an inorder dual-issue pipeline with 4-way simultaneous multi-
threading (SMT). For applications (except the ones that are heavily memory
intensive), each core must have at least two threads to attain all the possible per-
formance from coprocessor. This is the result of coprocessor cores having 2-stage

pipeline and described in [3].

2.4.1.2 On die interconnect

All the processing elements on die are connected to each other with a bidirectional
ring which uses store and forward communication scheme (making it possible that
one or more messages can be on the ring at the same time). It is mentioned in
[3] that, because of high quality design of interconnect, data locality beyond a
single core (4 threads running on same core) usually doesn’t make any differ-
ence. Meaning the physical distance between two communicating cores doesn’t
significantly affect overall performance. See Figure 2.13 for a high level hardware

view.

20

VPU VPU

x86 core x86 core

i | i
32KB 32KB

L2 512KB L2 512KB

—ecseees
OI\[HATD |t ‘
OI\I qAaD <—> I

<= [coomc]
< [coomc]

aMel1s ¢l
2100 98X

NdA

VPU

x86 core

L2 512KB
o

2100 98X

+4—........
[rdiegag

ndA

32KB

VPU
L1-i

~— (e |
& — o]

x86 core

L2 512KB

aMe1s Tl
e
...... Ll
2100 98X

ndA ndA

O Haan
O Hadn
LB
L 58
8
/m
X
%
. 3
&
=

Figure 2.13: High level view of on-die interconnect on Xeon Phi Coprocessor
cards. TD (tag directory), MC (Memory Channel), L2 (Level 2 Cache), L1-
d (Level 1 Data Cache), L1-i (Level 1 Instruction Cache), HWP (hardware
prefetcher).

There are 3 type of bidirectional rings, each of which is used for different

purposes and operate independently from one another [27].

e Data block ring: Sharing data among cores.
e Address ring: Send/Write commands and memory addresses.

e Acknowledgement ring: Flow control and coherency messages.

21

2.4.1.3 Vector Unit

Each core has 512bit wide SIMD instruction unit. Which means 8 double or 16
single precision floating point operations may be carried out at the same time.
It can be used in loop vectorization, however as explained in [4] loops must meet

the following criterias in order to be vectorized.

1. Countable: Loop trip count must be known at entry of a loop at runtime

and remain constant for the duration of the loop.

2. Single entry and single exit: There should be only one way to exit a loop

once entered (Use of breaks and data-dependent exit should be avoided).

3. Straight-line code: It is not possible for different iterations to have dif-
ferent control flow, in other words use of branching statements should be
avoided (However, there is an exception to this rule if branching can be

implemented as masked assignments).

4. The innermost loop of a nest: Only the innermost loop will be vec-
torized (exception being outer loops transforming into an inner loop from

through prior optimization phases).

5. No function calls: There shouldn’t be any procedure call withing a loop
(major exceptions being intrinsic math functions and functions that can be

inlined).

2.4.1.3.1 Obstacles to vectorization There are certain elements that not
necessarily prevent vectorization, but decrease their effectiveness to a point in
which whether to vectorize is questioned. Some of these elements (illustrated

detailly in [4]) are described below;

1. Data alignment: To increase the efficiency of vectorization loop data
should be aligned by the size of architecture’s cache line. This way, it can

be brought into cache using minimum amount of memory accesses.

22

2. Non-contiguous memory access: Data access pattern of an application
is crucial for efficient vectorization. Consecutive loads and stores can be
accomplished using single high performance load instruction incorporated
in Xeon Phi (or SSE instructions in other architectures). If data is not
layed out continuously in memory, Xeon Phi architecture supports scatter
and gather instructions which allow manipulation of irregular data patterns
of memory (by fetching sparse locations of memory into a dense vector or
vice-versa), thus enabling vectorization of algorithms with complex data

structures [26]. However, as shown in Section 4.3.2, it is still not as efficient.

3. Data Dependencies: There are 5 cases of data dependency overall in

vectorization.

(a) No-dependency: Data elements that are written do not appear in

other iterations of the loop.

(b) Read-after-write: A variable is written in one iteration and read in
a subsequent iteration. This is also known as 'flow dependency’ and

vectorization can lead to incorrect results.

(c) Write-after-read: A variable is read in one iteration and written in
a subsequent iteration. This is also known as ’anti-dependency’ and it

is not safe for general parallel execution. However, it is vectorizable.

(d) Read-after-read: These type of situations are not really dependen-

cies and prevent neither vectorization nor parallel execution.

(e) Write-after-write: Same variable is written to in more than one
iteration. Also refered to as 'output dependency’ and its unsafe for

vectorization and general parallel execution.

(f) Loop-carried dependency: Idioms such as reduction are referred to
as loop-carried dependencies. Compiler is able to recognize such loops

and vectorize them.

As much as advatageous it may seem, significant amount of code is not data
parallel, as a result it is quite rare to fill all of the SIMD slots. Considering
SIMD instructions are slower than their regular counterparts, vectorization may

deteriorate performance when heavily under-utilized.

23

2.4.1.4 Execution Models

There are 2 execution models for Xeon Phi co-processors.

1. Native Execution Model: In this model, execution starts and ends on

co-processor card. This is usually better choice for applications that doesn’t

have long serial segments and 10 operations.

2. Offload Execution Model: This is designed for applications with incon-
sistent behaviors throughout their execution. Application starts and ends
on processor, but it can migrate to co-processor in between. Intends to
execute only the highly parallel segments on co-processor. Using processor

simultaneously along with co-processor is also possible in this model.

2.4.2 Thread Affinity Control

In this work, precise thread to core assignment is crucial for better spatial locality
and architecture awareness. As mentioned in [9], there are 3 basic affinity types

depicted in Figures 2.14, 2.15, and 2.16. Examples have 3 cores with each core

having 4 hardware threads, and 6 software threads in total.

Pkg O
|
Core 0 Core 1 Core 2
‘HTOHHT1 HI—I‘I’ZHI—I‘I’3| ‘HTOHHT1 HHTZHHTE‘ ‘I—I‘I’[]HI—I'HHHTZHI—ITB‘
0 1 2 3 4 5

Figure 2.14: Compact thread affinity control.

24

Pkg 0

|

Core 0 Core 1 Core 2

‘I—IT[]HI—IT1HHT2HI—IT3| ‘HTOHI—I'HHHTZHHTE!‘ ‘HT[]HH'HHHTZHHTE‘

0 3 1 4 P 5

Figure 2.15: Scatter thread affinity control.

Pkg 0
|
Core 0 Core 1 Core 2
‘HT[]HHT1HHT2HI—H3| ‘HT[]HHT1HHT2HHT3‘ ‘I—rr[]Hl—rHHHTZHI—HB‘
0 1 2 3 4 5

Figure 2.16: Balanced thread affinity control.

25

Chapter 3

Partitioning, Scheduling, and
Load Balancing Algorithms

In this chapter,

e developed SpMxV routines,
e utilized task decomposition strategies, and

e implemented scheduling and load balancing algorithms

are all explained in detail.

26

All of the SpMxV routines developed for this study uses rowwise 1-D parti-
tioning algorithm and utilizes PATOH’s column net model to regulate memory

access patterns of SpMs. They are listed below.

e Ordering only routines

1. Sequential routine

2. Dynamic OMP Loop routine
e Ordering & Blocking routines

1. Static routine
(a) Chunk distribution
(b) Scatter distribution
2. OpenMP task routine
(a) Chunk distribution
(b) Scatter distribution
3. Global work stealing routine (GWS)
4. Distributed work stealing routine (DWS)
(a) Ring work stealing mode
i. Chunk distribution
ii. Scatter distribution
iii. Shared queue implementation
(b) Tree work stealing mode
i. Chunk distribution
ii. Scatter distribution

iii. Shared queue implementation

In the following sections, clarifications about those routines on the way they

work and the problems they aim to solve are made.

27

3.1 Ordering Only Routines

Routines presented in this category utilize only the ordering information passed

on by hypergraph model.

3.1.1 Sequential Routine

Uses traditional sequential SpMxV algorithm on single Xeon Phi core using only
one thread. This algorithm is used as a baseline to calculate speed up of other
algorithms and forms application kernel for other routines. C style pseudo code
of this routine is provided in Algorithm 4.2 and Algorithm 4.3 for both CSR and

JDS formats in order.

3.1.2 Dynamic OMP Loop Routine

This is the parallelized version of sequential routine using OpenMP parallel for
pragma. Routine distributes sparse-matrix rows by using OpenMP runtime load
balancing algorithms (Dynamic scheduling type is chosen using 32, 64, 128 long
trip counts). Schedule types are described in [12].

Problem with using OpenMP runtime load balancing algorithms is that

e they don’t use the benefits of cache blocking done by partitioning algo-

rithms. Thus may occasionally disturb data locality.

e they can fail to balance workload in cases where a matrix has dense rows
& small row count (latter needs a change in scheduling trip count to get
fixed).

e they allow limited control over the order in which SpM entries are traversed.
Certain storage schemes cannot be implemented inside OpenMP’s parallel

for pragma.

28

However, unlike routines that use blocking, dynamic implementation doesn’t
have the extra for loop (which is used for traversing SpM row slices - also ad-

dressed as sub-matrices) overhead.

29

3.2 Ordering & blocking routines

In hypergraph partitioning powered use, routines in this category utilize cache
blocking techniques along with ordering. Blocking information is either passed
on by hypergraph model or created manually in spontaneous mode. Also, the
load balancing decisions and initial partitioning in these routines are locality and
architecture aware when using hypergraph model. In spontaneous mode, they
only consider underlying architecture (physical placement of EXs) before making

any scheduling decisions.

An SpM is partitioned using recursive bipartitioning algorithm explained in
chapter 2. Then load balancing decisions are extracted from resulting bipartition-
ing tree. Sample bipartitioning tree and its corresponding matrix view (ordered
using hypergraph model), shown in Figures 3.1 and 3.2, are used throughout this

chapter for more clear explanation of partitioning and scheduling algorithms.

O Non-executable node . Assignment node O Executable node

s T9 TI0 JI13 Ti4 TI15 I18 TI19 T20

T1T T2 T6 T7 T11 TIi2 T16 T17

Figure 3.1: Sample bipartitioning tree for column-net interpretation using
CSR/JDS schemes on 5 EXs.

30

)
—

)
N}

P4

P5

|
|
[
i
|
|
|
|
|
|
|
|
|
|
[
|
|
|
|
|
[
|
I
| (NNNNN ENNEE NN NEN BN EEEEe
| |
| |
H—HHH
GRS QO N =

H

—_

—_
<P ————— P ———p4—a<—r

- T20

Figure 3.2: Sample matrix ordered by column-net model using rowwise 1-
D partitioning algorithm for task to PE assignment. There are 5 EXs and
collective reads on X vector by tasks are pointed out by density of portions’

color.

As mentioned in chapter 2, column-net interpretation is used with rowwise
1-D partitioning. Roles played by each tree node depends on underlying storage

scheme, patitioning algorithm, and execution context count as explained below.

e Assignment Node is attached to a PE. All child nodes, connected to this
node, are assigned to that PE.

e Non-Executable Node contains a sub-matrix whose total space is bigger

than targetted size. So, it is continued to be divided and ignored by PEs.

e Executable Node , in rowwise 1-D partitioning, contains a sub-matrix
whose total space is smaller than targetted size. Therefore, it isn’t divided
anymore and ready for execution. Additionally, in implementations that
have conflicting writes, inner nodes of the bipartitioning tree are also exe-

cutable and require synchronization framework. In this study, matrices are

31

distributed by rowwise 1-D partitioning algorithm and underlying storage
schemes are CSR and JDS, as a result, only the leafs in Figure 3.1 are

executable.

Depicted in Figure 3.1 and 3.2, when using hypergraph model, nodes that have
more common parents, share more input dense vector entries (borders). Thus,
for each EX, executing groups of nodes that share this trait, will result in better

performance and such approach is said to be locality aware.

3.2.1 Chunk & Scatter Distribution Methods

Before describing distribution methods, it is mandatory to define a block. In this

study, Block is a group of EXs. It can have multiple EXs or single one.

3.2.1.1 Chunk Distribution

In chunk distribution, a block consists of single EX. Assignments to blocks occur
as chunks of continuous sub-matrices. For 5 EXs, assignment is the same as the

on depicted in Figures 3.1 and 3.2.

3.2.1.2 Scatter Distribution

In scatter distribution, a block can have multiple EXs. It is assumed that EXs
on the same block is physically closer to each other than other EXs. Therefore,
continuous sub-matrices are scattered among multiple EXs in a block. When
execution starts, each EX executes the sub-matrices that share the most X vector
entries, at the same time in an effort to improve temporal locality. In Figures 3.3
and 3.4 this distribution method is shown in action for 2 blocks, first containing
3 EXs, while the latter having only 2.

32

O Non-executable node . Assignment node O Executable node

@ ® ® ®
dn d o dn don
REPPPHIPERFIINILR
ofe ofe ofe ofe

T1 T2 T6 T7 T11 Ti2 T16 T17

Figure 3.3: Bipartitioning tree for 2 blocks.

T16 P5

|
ML ITTIM T T T >
|
|
el
DO = s

720

Figure 3.4: Sample matrix ordered by column-net model using rowwise 1-D
partitioning using scatter distribution method. Collective reads by task on X

vector are shown by the density of potions’ color.

33

3.2.2 Static Routine

This routine makes use of cache blocking techniques to adjust size of sub-matrices
which reduces the number of cache capacity misses. Figure 3.5 shows how initial

work distribution is done in block parallel algorithm.

O Non-executable node [Job batch

. Assignment node Job queue

Figure 3.5: Static routine sub-matrix distribution among 5 execution con-

texts.

When used with hypergraph partitioning, tasks who share more borders (X

vector entries) are assigned to a single PE as shown in Figures 3.2 and 3.5.

The downside of static routine is that it only uses initial work distribution
to balance load. Throughout execution no scheduling decisions are made which

causes load imbalance as shown in Figure 3.5.

34

3.2.3 OpenMP Task Routine

Tries to improve static routine by adding a dynamic load balancing component.
After an EX finishes its share of load, it looks to steal from other EXs and choses
the victim randomly. Since this routine is implemented using omp task pragma,
control of the order in which sub-matrices are executed and the victim choice is

left to OpenMP runtime.

Aside from locking schemes used by OpenMP runtime, this routine tries to
improve load balance without destroying cache blocks. In this work, victim
choice can improve performace (in both hypergraph partitioning and sponta-
neous modes). However, lacking a way to control execution order, steal count
(how many matrices to steal at once), and choosing the victim randomly this

methods doesn’t allow further tuning.

35

3.2.4 Global Work Stealing Routine (GWS)

GWS uses a single FIFO job queue, accessed multiple times by and EX, as a
means of dynamic load balancing structure. In GWS, all the sub-matrices are
stored in a global queue, and each EX takes the first sub-matrix from queue as
they finish the sub-matrix they are currently working on. Queue is protected by
a single spin lock which has to be obtained in order to make a change in its state.

In Figure 3.6 the way sub-matrices line up in global queue is depicted.

O Non-executable node 1 Job batch
. Assignment node . - Job queue %
[T
111
\\\\\\\\\\\\ 111
- T i
111
Global T
Job Queue 1

Figure 3.6: Global queue and the order in which sub-matrices line up.

Although using a global job queue provides perfect load balance, it also limits
scalability since all EXs are racing to obtain the same lock. It can also be argued

that it destroys data locality of initial work distribution.

36

3.2.5 Distributed Work Stealing Routine (DWS)

Instead of a single FIFO queue, this algorithm keeps multiple FIFO queues, 1
per EX| each protected by its own lock. A block can have either 1 or more EXs
depending on different DWS implementations (See Chapter 4). Initial state of
the queues before execution are same as Figure 3.5. To preserve data-locality in
victim queues, successful steal attempts to a queue always removes tasks from

the back. Not front, where owner of the queue detaches tasks for itself.

Stealing in this routine happens in 2 ways.

3.2.5.1 Ring Work Stealing Scheme

This scheme is designed to make better use of ring based communication inter-
connect and it is locality aware in a sense that it checks for nearby cores first. In

Figure 3.7, it is shown in action.

@ n.th victim . Finished PE

—— |

Figure 3.7: Ring work stealing scheme making efficient use of bidirectional

communication ring for 60 PEs.

True data-locality awareness in ring stealing scheme comes from the hyper-

graph partitioning phase. Because of the way sub-matrices are distributed, there

37

is a strong chance that nearby EX carry sub-matrices using more common input

dense vector entrice compared to a distant EX.

This algoirthm is also architecture aware since each EX prefers steal attempts
on nearby EXs (in terms of physical placement) over distant ones in an effort to

relax communication volume.

3.2.5.2 Tree Work Stealing Scheme

This scheme is more aggressive in a sense that it tries harder to steal the sub-
matrices with more common input dense vector entries. It uses bi-partitioning
tree to look for victims without any concerns for on-die interconnect. Figure 18

shows this scheme in action.

O Non-executable node Victim Orders
P1: 23514

. Assignment node P2: 1354
P3:2154
P4: 5321

P5: 4321

P1 P2

Figure 3.8: Tree work stealing scheme in action.

This algorithm too is locality aware since it prefers stealing sub-matrices with

more common borders first.

Compared to GWS, DWS algorithm is more scalable because, contention for

each EXs’ lock is much less compared to global lock contention of GWS. On the

38

downside, EXs still have to go through a lock for accessing their local queues

which limits application scalability.

In distributed schemes, after a victim is chosen, last half of the tasks in its
local queue are stolen. However, execution contexts don’t perform steals on
queues which has less than certain number of entries. This is called steal treshold

and is an adjustable parameter.

3.2.5.3 Shared Queue Implementation

Everything is same with chunk distribution except in shared queue implemen-
tation blocks have more than one EX sharing the same job queue and stealing
occurs between blocks. The first EX that spots the job queue is empty, will look
to steal from other blocks while other EXs in the same block stalls. After a suc-
cessful steal attempt, EX that stole sub-matrices will get itself a single sub-matrix

and free synchronization units for others to continue execution.

Much like scatter distribution, EXs on the same block are assumed be closer in
terms of physical placement and temporal data locality is tried to be exploited.
This implementation, however, is more strict from scatter distribution in that
data-locality is restricted to single block until that blocks sub-matrices are all
executed. After that, stealing can be accomplished according to both ring and

tree work stealing designs.

This implementation of DWS is designed to be used with hypergraph parti-

tioning which is employed to regulate memory access pattern of SpMs.

39

Chapter 4

Implementation deltails, Porting,

and Fine tuning

In this chapter;

high level execution course of application,

detailed analysis of application kernels,

optimization techniques used,

new hybrid storage scheme for sub-matrices and an algorithm to extract it

are presented.

40

4.1 Test sub-set

Peak GFlops achieved for each proposed routine on test SpM set of this work are
given in chapter 5. Because there are more than 200 test results, to demonstrate
the effects of optimizations documented in this chapter, small but diverse sub-
set of 15 matrices are chosen. Below in Table 4.1, stats of these matrices are

presented.

Table 4.1: Stats of choosen data sub-set. Row & column count, NNZ, and

max-avg-min NNZ per row/column are given.

row column

Matrix rows columns nnz min avg max | min avg max
3D_51448_3D 51448 51448 1056610 12205 5671 | 13 205 946
3dtube 45330 45330 3213618 10 709 2364 | 10 709 2364
adaptive | 6815744 6815744 20432896 1 0 3 4
atmosmodd | 1270432 1270432 8814880 4 6.9 7 4 6.9 7
av41092 41092 41092 1683902 2 41 2135 2 41 664
5 5
0 1

cageld | 1505785 1505785 27130349 18 41 18 41
cnr-2000 | 325557 325557 3216152 9.9 2716 9.9 18235
F1 | 343791 343791 26837113 | 24 781 435 24 781 435
Freescalel | 3428755 3428755 18920347 1 5.5 27 1 5.5 25
in-2004 | 1382908 1382908 16917053 0 122 7753 0 12.2 21866
memchip | 2707524 2707524 14810202 2 5.5 27 1 5.5 27
road_central | 14081816 14081816 19785010 0 14 8 0 1.4 8
torsol 116158 116158 8516500 9 73.3 3263 8 73.3 1224
webbase-1M | 1000005 1000005 3105536 1 3.1 4700 1 3.1 28685
wheel 601 | 902103 723605 2170814 1 24 602 2 3 3

Optimizations in this chapter doesn’t alter matrix structures in any way. They
are, in general, related to (parallel) programming and geared towards effective
usage of host hardware resources. To demonstrate their impact more clearly,

results are presented in between.

41

4.2 General template of application behaviour

Explanations of sub-routines ,shown in Algorithm 4.1, are listed below;

1. CREATE_SUB_MATRICES procedure divides SpM into smaller parts

and its implemention changes with underlying storage scheme.

2. ASSIGN_TO_EXSs procedure performs the initial assignment has different

implementation for each routine explained in chapter 3

3. ADAPTIVE_WARM _UP procedure adaptively balances workload be-
tween multiple execution contexts and is also differs for routines mentioned

in chapter 3.

4. EXECUTE_KERNEL procedure performs SpMxV and varies depend-
ing on underlying storage scheme and task decompoisition as explained in

section 4.3.

Algorithm 4.1 General template of application behaviour.

1: A « sparse_matrix

2: > Cache size for sub-matrices are calculated using total size of the partial
spm strucutre and size of corresponding output vector entries

cacheSize < targettedsize

ex_count < total_number_of _execution_contexts

sub_mtx_list <~ ROWWISE_1D_PARTITION (A, cacheSize)
initial_assignments <— ASSIGN_TO_EX s(sub-mtz_list, ex_count)
assignments <~ ADAPTIVE W ARM U P(initial_assignments, ex_count)

ParallelSection

10: ex_id <— ID_of _current_execution_context
11: ex_subMatrices < assignments(ex_id)

12: while ex-subMatrices is not empty do

13: subMatriz < ex_subMatrices.remove()
14: EXECUTE_KERNEL (subMatrix, x, y)
15: end while

42

4.3 Application Kernels

Impelementation details and aplication kernels for CSR and JDS formats are

given in next two sections.

4.3.1 CSR format

In CSR implementation, sub-matrix structure composed only of a descriptor
which includes, starting row index, row count, starting column index, and column

count of sub-matrix itself.

Task decomposition depicted in Figure 4.1 occurs in row slices and during

multiplication process global SpM structure is used with sub-matrix descriptors.

Starting Row Index Row count
Starting Column Index

Column count

Figure 4.1: Task decomposition for CSR format.

Kernel function for CSR format is given in Algorithm 4.2. For SpMs having
only a few average non-zero elements per row (smaller than SIMD length), CSR
scheme suffers from vectorization since most of SIMD slots will be left unutilized.
However, this scheme will benefit from vector component considering SpM rows

are dense enough to effectively fill SIMD slots.

43

Algorithm 4.2 Kernel function for CSR format.
1: function CSR_KERNEL(csr, x,y)

2 for : = 0;1 < esr.rowCount; + + i do

3 sum < 0

4 for j = csr.rowPtr(il; j < csrorowPtr[i + 1];+ + ¢ do
5: sub < sum + csr.values|j| * z[csr.col Ind[j]];

6 end for

7 y[i] < sum;

8 end for

9: end function

4.3.2 JDS format

As depicted in Figure 4.2 task decomposition is implemented as row slices. How-
ever, in addition to a descriptor, sub-matrix strucutres also has a part of SpM
stored in JDS format (partial JDS). And during multiplication, this structure is
used instead of global SpM.

Starting Row Index Row count
Starting Column Index
- P\
Column count Partial JDS
.. idiag []
jdiag []
e values |]

Figure 4.2: Task decomposition for JDS format.

44

Kernel function for JDS format is given in Algorithm 4.3. As mentioned in
section 2.2.1, for well behaved matrices, JDS format can be vectorized efficiently.
On the other hand, for SpMs that have occasional dense rows and significantly
low average non-zero count per row, vectorization becomes inefficient. Because
vectorization is carried out by unrolling the innermost loop of JDS kernel, loop
will most likely have very few iterations when traversing dense rows. Therefore,

the mojority of SIMD slots will be left empty.

Algorithm 4.3 Kernel function for JDS format.
1: function JDS_KERNEL(jds, z,y)
2: for i = 0;7 < jds.idiagLength; + + ¢ do

3 for j = jds.idiagli]; j < jds.idiag[i + 1];+ + j do

4 rowlndex < j — jds.idiagli];

5: y[jds.perm[rowIndex|+ = jds.dj[j] * x[jds.jdiag[j]];
6 end for

7 end for

8: end function

Application kernel for JDS can be further optimized by making memory ac-
cesses to y vector sequential. In optimized implementation permuataion array in
JDS structure is eliminated by one time sort on y vector at the end of multipli-
cation phases. Performance differences regarding the update are given in Table
4.2.

45

Table 4.2: Effect of discarding permutation array from JDS format. Results
are measured in GFlops and belong to single precision spontaneous static rou-
tine with 32KB sub-matrix sizes. Gains are substantial for matrices that are

efficiently vectorizable.

jds_perm | jds_sort

Matrix | (GFlops) | (GFlops)
3D_51448_3D 0.30 0.33
3dtube 1.64 1.97
adaptive 3.63 4.20
atmosmodd 13.89 16.48
av41092 0.67 0.34
cageld 5.47 6.33
cnr-2000 3.79 4.65
F1 2.58 2.90
Freescalel 3.00 3.23
in-2004 1.71 1.87
memchip 7.09 3.54
road_central 0.65 0.67
torsol 0.31 0.32
webbase-1M 0.26 0.28
wheel 601 1.46 0.65

46

4.4 Runtime Scheduling and Load Balance

4.4.1 Generic Warm-up Phase

Each routine, whether it is ordering only or uses both ordering and blocking, is
run 10 times to warm up CPU caches. In this work, SpMxV operation usually
takes up much more space than the space provided by CPU caches as a direct
result of huge SpM size. Therefore, SpM, X, and Y vector entries cannot reside
in cache between runs. However, generally, warm-up operation is not designed
for data-sets, but for frequently used data-structures that are small enough to fit
into cache, such as job queues. After warm-up stage, application simply settles

down on hardware.

4.4.2 Improving Application Scalability

Routines implemented using 'OpenMP for loop’ limits programmers’ control in
many ways as described in Chapter 3. Therefore, they do not allow any more

tuning in warm-up phase.

However, routines with hand coded scheduling algorithms can be optimized
during warm-up phase. When each routine is executed multiple times, frequently
used job-queue data structures, thread descriptors, and other low level primitives
such as scheduling data structures are brought into cache so that each routine

can settle down.

Routines with dynamic scheduling rely on lock and other synchronization
primitives defined by OpenMP library to ensrure correctness of results. Although
it depends on routines itself, synchronization overhead introduced by locks is
visible in every routine and significantly limits scalability of an application. Locks
affect GWS the most because of contenttion caused by all EXs racing to obtain
a single lock. As a result, it cannot scale up to 240 threads which is the most

number of threads, Xeon Phi model used in this work can simultaneously run.

47

As for distributed routines, although contention per lock is greatly reduced, PEs
still have to go through their own lock to access local queue which significantly
hinders performance. There is litte improvement between 180 threads (3 per core)
and 240 (4 per core). By discarding these locks and critical sections, hardware

threads will not be stalled due to yields caused by them.

Also, locks and other sychronization primitives used by handcoded schedulers
are defined at a relatively high level (also called as application-level), which incurs

more overhead than sometimes needed (as they are designed for general use) [28].

For SpMxV, all this can be discarded through warm-up phase. Execution
starts with initial task decompositions which are defined in Chapter 3. After a
run, stolen tasks for each queue are recorded and job queues are reformed using
that info. And for the next run, same thing happens on reformed job queues.
This phase is repeated for 10 times, where each run building on the one before
it. It has been observed that after 6 - 7 runs, job queues reach to an almost
stable state, where task groups assigned to PEs, do not change despite actively
working scheduler. Consequently, number of times software threads yield due
to I/O are reduced and scalability is further enhanced. This is called adaptive

warm-up phase, since it displays a form of learning.

4.4.3 Adaptiveness: Reasoning

Previously, when performance was limited by the transistor count (calculation
power) of processor, load balance could be defined as “equally distributing
computations to each processing element”. However, today, where major-
ity of applications’ performance is determined by their memory access pattern, it
is almost mandatory to alter the definition by adding “and minimizing pro-
cessing element idle time”. To further illustrate the point, below in Table

4.3, two matrices’ stats are provided.

48

Table 4.3: Row & Column count, NNZ, and max, avg, min NNZ per

row/column are given for as-Skitter and packing-500x100x100-b050.

row column
Matrix rows columns nnz - -
min | avg | max | min | avg | max
as-Skitter | 1696415 | 1696415 | 20494181 12.1 | 35455 0 12.1 | 35455
packing-500x
2145852 | 2145852 | 32830634 15.3 18 0 15.3 18
100x100-b050

From Table 4.3, it can be seen that as-Skitter has lesser NNZ. It also has

smaller row & column count which translates into Y & X vector sizes respec-

tively. Bigger Y vector also means number of writes are higher.

However,

packing-500x100x100-b050 is more structured since there isn’t big difference be-

tween max/avg/min NNZ per row & column. Below in Table 4.4 results of 100

SpMxV operations for these matrices are presented for both spontaneous & hy-

pergraph powered uses for Static and DWS routines.

Table 4.4: Time measured (in seconds) for 100 SpMxV operations performed
using as-Skitter and packing-500x100x100-b050 with Static and DWS routines
both ’sp’ (spontaneous) and 'hp’ (hypergraph) modes. ’spc’ stands for spon-

taneous mode partition count while "hpc’ for hypergraph mode patition count.

In third row, how many times faster packing-500x100x100-b050 executes com-

pared to as-Skitter is shown. (A hybrid storage format, proposed later in this

chapter, is used to take these runs).

static DWS
Matrix | spc hpc
sp hp Sp hp
as-Skitter | 3959 | 2606 | 1.589 | 0.577 | 0.531 | 0.372
packing-500x100x100-b050 | 8192 | 4139 | 0.378 | 0.279 | 0.227 | 0.255
comparison - speedup | 4.20 | 2.06 | 2.33 | 1.45

Compared to packing-500x100x100-b050, as-Skitter also has much less par-

tition count. However, because of its complex structure, as-Skitter’s memory

49

access pattern cannot be captured (thus require more memory access / data
fetch issues from processor). As shown in Table 4.4, despite being much bigger
matrix, packing-500x100x100-b050 runs multiple times faster. In spontaneous
mode, DWS runs almost 3 times faster than Static routine for as-Skitter. Which

means it has severe load imbalance as well.

Problems are said to be memory bound, if the time it takes to complete is
primarily determined by memory operations. SpMxV is a memory bound problem
as well. And from the experiment above, it can be inferred that for applications
which are memory bounded, load balancing doesn’t necessarily mean physical
load (computation) balance. It can also mean, cache miss count, cache miss rate,
memory latency, write cost, read cost, how they are implemented, and so on.
Therefore, for SpMxV, load balancing algorithms should also take many other

factors into acount.

As stated in previous section, in warm-up phase each run is built on top of
the one before it and overall workload is tried to be balanced in a limited time
interval. It starts with physical workload sizes, however, because of its adaptive
nature, after that, it’s not the computation sizes that are tried to be balanced.
It is the active runtime for each EX that is tried to be balanced and it includes

all the things that are mentioned above.

20

4.5 Overcoming deficiencies related to storage

format

Both CSR and JDS formats are compact and compressed. Therefore, they are
naturally optimized to benefit from vectorization using high performance load
& store instructions through data alignment and continuous memory accesses.
However, loop vectorization occurs when innermost loops in CSR and JDS appli-
cation kernels (shown in Figures 4.2 and 4.3 can be unrolled. And a loop can be
unrolled as many times as there are iterations. In conclusion, iteration count of
the innermost loops significantly effects efficiency of vectorization (Other factors

to consider for vectorization are described in chapter 2).

In CSR, average/max/min non-zero count per row can be used as a metric
to illustrate effectiveness of vectorization, the higher they are the more items
to fill ALUs in vector unit. However, max-column non-zero count of a SpM or
'not-so-rare’ dense columns can equally effect vectorization of a CSR structure.
In such situtations, vector unit will be severely under utilized most of the time,

sometimes even operating on only 1 element.

In JDS, similarly, higher average/max/min non-zero count per column can be
thought as a possitive sign for vectorization, while high max-row non-zero count

of an SpM or 'not-so-rare’ dense rows can hinder it.

Above, not-so-rare’ idiom means occasional but at the same time not occa-
sional enough to keep avg non-zero per row/column high. When vectorization
unit is severely under-utilized, depending on the architecture and the length of
vectorization unit, computations are carried out much slower compared to regular
SISD (single instruction single data) instructions. This is the direct result of vec-
tor instructions being slower than regular ones, however they are also forgiving

and sometimes rewarding when heavily utilized.

To efficiently vectorize even the most ill-behaved matrices, an hybrid storage
format and an algorithm to how to extract it is presented in the following two

sections.

51

4.5.1 Hybrid JDS-CSR storage format

There are various SpM storage formats [6, 7, 10, 15]. One perfect storage format
for all types of SpM is still a goal versus reality. Because, they tend to fix certain
problems at the expense of performace or some other problems they introduce
themselves. This study asks the question, “Is it really necessary to put an

effort to fit a global SpM into certain data structure?”.

In current era, parallel programming paradigm is adopted, in which, problems
are expressed in terms of smaller sub-problems and solved simultaneously. More-
over, parallelism is expressed in terms of tasks (rather than threads) which helps
with scalability and load balancing. As a result, partitioning a global SpM, pro-
duces many small sub-matrices with each having different characteristics. Some
expressing parents’ ill-behaved nature while others having completely different

structure.

For the reasons stated above, a partial hybrid JDS-CSR storage format for
‘sub-matrices’ - 'not for global SpM’ is implemented aiming to not only neutralize
worst case behaviour, but also attain otherwise lost performance. In Algorithm
4.4, application kernel for this new format is presented. In Table 4.5, peak GFlops
achieved by normal CSR, vectorized CSR, JDS, and hybrid JDS-CSR formats are
shown. Despite code size growing by a small portion, results show that hybrid
sub-matrix format is superior to both CSR and JDS formats. In the following

section, how to efficiently extract this hybrid structure is discussed.

Algorithm 4.4 Kernel function for hybird JDS-CSR format.
1: function HYBRID_JDS_CSR_KERNEL(subMatriz, z,y)
2 if subMatrix.hybrid.JDS is not empty then
3 JDS_KERNFEL(subMatriz.hybrid.JDS, z,y)
4 end if
5: if subMatrix.hybrid.CSR is not empty then
6
7
8:

CSR_KERNEL(subMatriz.hybrid.CSR, x,y)
end if

end function

52

Table 4.5: Storage format performance (measured in GFLOPs) comparison
for single precision SpMxV. For CSR format, the routine that performs best is
chosen to include OpenMP Dynamic Loop implementation. For JDS and CSR

formats, results belong to DWS routine.

CSR-02 Hybrid
. CSR-03 | JDS-03
Matrix | no-vec JDS-CSR
(best) (best) (DWS) (DWS)
3D_51448_3D 9.89 8.29 0.32 13.29
3dtube 13.06 21.84 5.29 20.51
adaptive 5.84 3.01 13.79 14.24
atmosmodd 9.09 5.97 24.78 24.59
av41092 13.02 12.13 1.07 14.49
cageld 10.94 9.65 26.91 26.24
cnr-2000 10.08 8.90 7.76 16.88
F1 13.69 23.24 16.80 22.00
Freescalel 7.15 5.16 16.71 17.48
in-2004 8.83 11.89 3.53 26.20
memchip 8.94 5.31 4.55 15.66
road_central 3.54 1.31 1.42 1.42
torsol 10.40 21.91 0.59 30.30
webbase-1M 5.01 3.55 0.33 6.46
wheel 601 3.33 2.26 2.46 3.40
geo_mean 8.15 7.10 3.74 13.51

As shown in Table 4.5, developed hybrid storage format performs more con-
sistently on wider spectrum of matrix structures and has the biggets geometric
mean by far. In most cases, it can remove the inefficiency of vectorization and

reveal additional performance which is masked in all other routines.

4.5.2 Laid Back Approach

To create a hybrid JDS-CSR sub-matrix that efectively utilizes vector unit, it is

crucial to find 'near optimum’ point from where a sub-matrix can be splitted into

93

JDS and CSR formats. Also, finding the best point depends on host architecture’s
vector unit length and precision of floating point numbers used for SpMxV (to how
many elements that can fit into built in vector unit). Considering all these, the
issue can be modelled as a bin-packing problem which is NP-hard. Additionally,
using such a sollution, even if a decent point is found, it may take a lot of time

& resources to find that point.

In Algorithm 4.5 pseudo code for overall hybrid sub-matrix extraction is

demonstrated.

Algorithm 4.5 Hybird JDS-CSR sub-matrix extraction.

1: function EXTRACT _HYBRID _SUBMATRICES(A, subMtxSize)

2 subMatrices < ROWWISE 1D_PARTITON (A,targetedSize)

3 hybridSubMatrices < NULL

4 globalOrderingArray <— NULL
5: while subMatrices is not empty do
6
7
8
9

subMatriz < subMatrices.remove()
nnz extractNonZeros(subMatriz)

nnz_sorted, ordering_info < sortForJDS(nnz)

10: cutColInd, cut RowInd <— LAID_BACK (nnz_sorted)

11: hybridSubM atrixz < CUT (nnz_sorted, cutColInd, cut RowInd)
12:

13: hybridSubM atrices.add(hybridSubM atriz)

14: globalOrdering Array.add(ordering_in fo)

15: end while
16: return hybridSubM atrices, globalOrdering Array

17: end function

4.5.2.1 Laid Back Algorithm: Reasoning

Laid back algorithm (LBA) is designed to evaluate whether it is advantageous to
execute a sub-matrix as JDS, as CSR, or as both to efficiently use vectorization.

It doesn’t find the optimal sollution and has a single assumption and a constraint.

o4

Therefore, it can also be thought of as a heuristic function.

The assumption in LBA is that “the length of wvectorization unit on

host architecture is infinite” .

Considering infinite vector unit length, LBA then finds the fewest number of
lines, drawn parallel to X and Y axis, that can traverse all non-zero elements of
sub-matrix. There is only one constraint, “once changed the direction of
line from Y to X (or vise versa) it cannot be changed back” (shown in
Figure 4.3).

Figure 4.3: Constraint violation in LBA is described.

Since,

e sub-matrix non-zeros are ordered for JDS format,

e and hardware vectorization unit has infinite length,
finding lines by ruleset defined above, is equal to finding an hybrid JDS-CSR
format that can be executed by the fewest number of vector instructions, which

is also equal to finding a square with the biggest perimeter that can completely

fit into 'zero space’. As shown in Figure 4.4, problem turns into seaching for

95

maximum (x + y). Lines drawn parallel to Y axis will be converted to JDS, and

parallel to X axis will be converted to CSR structure.

CSR

JDS

Figure 4.4: LBA in action.

LBA can be implemented using CSR formed much like JDS, JDS, or some
structure that keeps non-zero elements ordered in JDS fashion. Therefore, it is not
mandatory to previously create storage formats to extract this hybrid structure.
However, because of simplicity, JDS and CSR implementation of LAID _BACK
algorithm is given in Algorithm 4.6 and 4.7.

o6

Algorithm 4.6 JDS implementation of LBA to find the optimum cut for infinite

vector unit length.

1: function LAID_BACK_JDS(jds)

2:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:

cutColumnindex < 0
cut RowIndex < 0
max Perimeter <— 0
for i = 0;1 < jds.idiagLength; + + i do
y + jds.rowCount — (jds.idiagli + 1] — jds.idiagli])
x 4 jds.colCount — i
perimeter <— x +y
if maxPerimeter < perimeter then
mazxPerimeter < perimeter
cutColumniIndex < i
cut RowInd < jds.rowCount —y
end if

end for

y < jds.rowCount

x < jds.colCount — i

perimeter <— x +y

if max Perimeter < perimeter then
max Perimeter < perimeter
cutColumniIndex < i

cut RowInd < jds.rowCount —y
end if

return cutColumnlind, cut RowInd

26: end function

o7

Algorithm 4.7 CSR implementation of LBA to find the optimum cut for infinite

vector unit length.

1: function LAID _BACK_CSR(csr)

2:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:

cutColumnindex < 0
cut RowIndex < 0
max Perimeter <— 0
for : = 0;1 < esr.rowCount; + + i do
x < csr.colCount — (csr.rowPtr[i + 1] — csr.rowPtrli])
y < jds.rowCount — 1
perimeter <— x +y
if maxPerimeter < perimeter then
mazxPerimeter < perimeter
cutColumniIndex < csr.colCount — x
cut RowInd <1
end if

end for

x 4 csr.colCount

y < csr.rowCount — i

perimeter <— x +y

if max Perimeter < perimeter then
max Perimeter < perimeter
cutColumniIndex < csr.colCount — x
cutRowInd <1

end if

return cutColumnlind, cut RowInd

26: end function

Despite being identical in number of lines drawn, both JDS and CSR imple-

mentation have different results. See Figure 4.5 for the sample output of CSR

implementation for same input matrix depicted in Figure 4.4.

o8

- CSR

JDS

Figure 4.5: Sample output for CSR implementation of LBA.

4.5.2.2 Laid Back Algorithm: Complexity

Worst case complexity of laid back algorithm (for the implementation above) is
O(n) where n is the number of columns in a sub-matrix. However, in reality
sub-matrices rarely have a row full with non-zeros. For most cases, n is the max
number of non-zeros a row has in the sub-matrix. For JDS format, this is equal

to the idiag-length and for CSR format it is populated row count.

4.5.3 Possible Improvements & Performance Analysis

There are 2 minor elements that can hinder performance for Hybrid JDS-CSR

format, both of which are explained below.

1. Sparse matrix formats are accessed sequentially. So, prefetchers can easily
capture their data access patterns. In hybrid format both JDS and CSR
are stored seperately. The arrays stored in those formats are allocated
in arbitrary memory segments. As a results, application kernel can be

intervened by 2 times the stalling prefetch issue for regular storage formats

29

in order to access those arrays.

2. Application kernel uses both JDS and CSR kernels’ code seperately. As a

results the code grows bigger with additional for loops.

These are somewhat hazardous side-effects, however they will be the case
for every sub-matrix. The former can be addressed by allocating single array
structures for both JDS and CSR together and using pointers to access as depicted
in Figure 4.6.

JDS CSR
idiag] | rowPtr [|
dj[] values |
jdiag]| | collnd |

Figure 4.6: Possible improvement for hybrid JDS-CSR format to avoid extra

prefetch issues.

However, because of the latter, this sollution will most likely create peel loops
as addressed in [3] due to alignement issues. To solve these issues, it is mandatory
to create a ’true hybrid storage format’ that can process both JDS and CSR alike.

These issues are not inspected further in this study.

4.5.4 Choosing optimum partition size and decomposition

algorithm

Since each core can run up to 4 threads, initialy 128KB is choosen for each thread

to fit in L2 cache (for a total of 512KB). However, for smaller SpMs, partition

60

count may be less than 240 (which is supported hardware thread count). In
this case smaller matrix sizes work better. Additionally, smaller sub-matrix sizes
produce better load balance, thus perform faster. But, for matrices which are
denser and quiet capable of filling SIMD unit, with rowwise 1-D partitioning
algorithm, it is observed that small partition sizes can be restrictive. Most of the
time, causing hybrid storage format to act as CSR. More importantly, to ensure
SIMD unit slots are filled, the more iterations in inner most loop, meaining bigger
sub-matrix sizes are required. Therefore, sub-matrix size is chosen as 64KB per
thread (for a total of 256 KB).

4.5.5 Effect of Hypergraph Partitioning: Analyzed

As briefly explained in Chapter 2, hypergraph partitioning tries to exploit tem-
poral data-locality for X vector entries by reordering matrix rows & columns. As
mentioned in Chapter 2, hypergraph partitioning tool used throughout this study
is PATOH [11].

In this section, most of ordering and blocking routines are tested to investigate
the effect of data-locality on bidirectional ring based communication subsystem
of Xeon Phi. In Table 4.6 results of this test (using hybrid JDS-CSR storage

format) is presented.

Choosing the victim or execution order with OpenMP Task routine per-
forms poorly. DWS-Ring routines using chunk distribution method performs
consistently better than most other routines. However, for SpMs that benefit
from hypergraph partitioning, scatter distribution method or tree work stealing
model can perform better (as can be seen in road_central). Also, in one instance
(3D_51448_3D), static chunk routine runs faster than DWS chunk routine. This
can be caused by either interruptions on warm-up phase, ruined data-locality,
or false-sharing. While the third one being more probable, this predicament is

worth further investigation.

Since it is the most consistent (load balance), reliable (can use hypergraph

61

partitioning but doesn’t depend on it), and has biggest geometric mean for spon-
taneous use, DWS routine with chunk distribution model is choosen for further

comparisons in Chapter 5.

62

9L°9¢ 86'8C | 96'9¢ L0'6¢ | 09'8C C6'8C | LE'8C 0€0€ | OV'Ac L0'6C | 10°€c L80C | LO'IG 86'CC | 609 8S'1¢ | ¢€Lc 0¥V'Ic | XVIN
9¢'9T 8¢0T | 9L¥vT €8¢l | 6991 ¢LCIl | ¥9°9T 19°€T | SO'€T 0901 | 8401 1€'8 | L6'TT 606 | OI'9T 80'L ov'vyL LT'L NVHN-OHD
€8¢ 0’1 89°¢ 'l 29 69T eV vl 80°¢ 8Vl 6y 'l 0¢'¢ 66T qre 8L°0 1¢°¢ 490 | NI

01’8 8C'¢ 9T'L 60°¢ §0'9 1¢°¢ c0'8 0v'e 80°¢ [4x¢ o6y ¥6'C 0¢'¢g ¥a'e 96°¢ 9€'¢C 98°L GL'C vO'T | 109 [eoYm
€CLT 099 Gevl ¥0'8 | 9¢°LI 61°L 6V°L1 9¥'9 | L8CI e L 0¢'8 16°¢G 1€°6 gc’9 | 9691 869 | 69°L1 80°¢ GO'T | INT-9seqqom
9L'9¢ 86'8¢ | 96'9¢ L0'6C | 098¢ ¢6'8C | LE'8C 0€°0¢ | OVl L0'6¢ | 10°€C L80C | LO'IE €0°0¢ | 6¢°S¢ 8S'I¢ | ¢€'L¢ OV'I¢ | T0'T | T0S10%
9T’ ot ¥0'1 12°6 71 €IVl 691 eV’ (47! L6'6 8¥'L 1e'g 71 9¢'¢g 66T 89°Cl 8L0 | €8¢l L9°0 | 91'C | [elU9o7prOL
98°¢c 0001 | S6'cc €991 | 99°€Cc ¥C'€T | €v'e€c 99°¢l | L8Cc 6V'LL | 6181 g 10°61 ¢Ly | 6V°6C 6LE 1¢°¢ 9¢'¢ | ¥0'T | diygowet
¥0'9¢ ¢c'0T | 8L°9¢ 9V'Ve | 80'9¢ 80'¢c | 00°L¢ 0T'9¢ | ¢v'éc ¢S'€c | ¥O'Ie 0€'81 | 99°0c ¥S°0C | 99°%¢c LEVL | 19%¢ €9°€l | ¥O'T | ¥OOG-Ul
8%'¢c €601 | 8¢'¢c 09LT | L&€C OCLL | 16'€c 8V'LT | 9¢'6c S9°LT | T6°61 ¥¥'Sl | ¥9°0c ST'9T | L6 ¥€'9 | L9FC 8T'¢G 60°T | T9[eosedlq
8€'¢c ¢891 | 9¢'1c OI'61 | ¥€1¢ LL8L | €9°¢¢ 00¢¢ | 86°0c F¥O'61 | €€°8L G89L | 9€°0¢c 6V'61 | GL°0c €88 | L6'T¢c 1901 | 1.1 | Td
6691 €6°ST | TT'8T 90°9T | 99°LT O08'GT | 99T 8891 | €9°€T 9¢°¢T | 1L°0T 106 | ¢I'0T €9'8 10'8T 8S'IT | ¢O'LT OV'¢l | ¥O'T | 000g-TUo
€8¢ 60°6 89°¢ 60°7C ¢9'¢ 69'¢C €8'¢ ¥8'9¢ 9v°q 9’8 ge'g LLL 99'¢ 86'¢C are ve'9 Le°G 99'9 | ¥9°0 | p1o3ed
09'€c 8V'€l | L8 ¥¢'€l | 1¢'¢c ¥8'Cl | 6L°¢CC 6VFT | 8L 1T L6°0T | 9%'IT 6L°01 | ¥8'€1 GI'6 | 8¢'¢c 86'€l | ¥€'€C 10¥L | €T'T | C60IvA®R
1¢°0¢ 19'¢¢c | G¢°LT 106 | 9981 6€'€¢ | €661 69¥¢ | ¥6°ST 9¥'6C | TL'¢T 8C'LT | 69°6T 9891 | 88'LT ¢G'SGT | €661 8L9T | S6'0 | ppowsounye
09'8 189 8¢'L L9°€1 | 9¢°0c <961 | 16'0c Ve'vl L0'9 89°¢ Gl 8T°¢ QWA 10°¢ 99°0c L0V er9 €07 | 60T | Pandepe
L&°0¢c 19°0¢ | OT'9T €8'LT | L9°9T 9T°LT | €0'cc 19°0C | Sv'vl LoVI 02’8 876 06’6 980T | 8991 0¢'IT | ¥S8L ¥9°GT | 96°0 | °2qnIpg
99%L 0L°0T | 9¢'I1T L¥O1 | Tg'¢l LLTIT | 6071 6C°€L g8'8 6L0T | 9¥'IL 048 186 ¥9°01 | ¥9°0T ¢L'0T | SS¥VI ¢l'el | L6°0 | A 8YVIS dE

dy ds dy ds dy ds dy ds dy ds dy ds dy ds dy ds dy ds s -

"S°M 9917, anenf)-pareys 1917808 sfuny) SMD 1917808 spuny) 1917808 sfuny)

SMa SMD ASBL-dINO RISLE)
sdo[D

ur pojuasold ore SHMNSOY "PIYSA) SI POYIOW UOTINLIISIP JUNYD ATUO ‘SOUTINOI SUIRIIS JIOM 991} ¢ JO () "UNI [erjuenbas

snoosuejuods I9A0 oUIINOI [erjuanboes poseq suruongryred ydeisiedAy jo dn peads o1y st ns, -opowt guruonred ydersredAy 10y

Ay, spiym ‘epowr snousuejuods 10] spurgs ds, *SISMPSYDS JUISHIP U0 PAAISSO ST joope Suruoniired ydeisredA :9°F a[qe],

63

Chapter 5

Experimental Results and Future
Work

In this chapter,

specifications of hardware used in testing,

information about data sets,

details of test environment,

results of test runs,

discussions on proposed algorithms’ scalability & performance

are provided.

64

5.1 Test Environment

e Test runs are taken using Xeon Phi native execution model.

e Balanced affinity model (explained in chapter 2) is used for thread to core

assignment.

5.2 Hardware Specifications

Tables 5.1, 5.2, and 5.3 show specifications of Xeon and Xeon Phi systems used

in tests.

Table 5.1: CPU and memory specifications of Xeon Phi model used in tests.

Xeon Phi CPU and Memory Specifications ‘

Clock Frequency | 1.053 GHz
Number of Cores | 60
Memory Size/Type | 8GB / GDDR5
Memory Speed | 5.5 GT/sec
Peak Memory Bandwidth | 352 GB/sec

Table 5.2: Cache specifications of Xeon Phi model used in tests.

Xeon Phi Cache Specifications

L1 L2
Size | 32 KB + 32 KB 512 KB
Associativity 8-way 8-way
Line Size 64 Bytes 64 Bytes
Banks 8 8
Access Time 1 cycle 11 cycles
Policy pseudo LRU pseudo LRU

65

Table 5.3: CPU and memory specifications of Xeon model used in tests.

Xeon Processor, Memory, and Cache Specifications

Model | 2 x Intel(R) Xeon(R) CPU E5-2643 0 @ 3.30GHz
Clock Frequency | 3.30 GHz
Number of Cores | 16 (8 x 2 CPUs)
Memory Size/Type | 128 GB / DDR3
Memory Speed | 1600 MHz
L2 Cache | 2 x (4 x 256 KB)
L3 Cache | 2 x (10 MB)

5.3 Test Data

Below DWS routines and Math Kernel Library’s CSR based cblas functions [24]
are compared. Total of 243 SpMs are tested, all of which are taken from [21]. In
spontaneous SpMxV for both single and double precision, in 201 instances, default
DWS (DWS-RING) algorithm outperformed MKL, and in 42 behind by usually
a small margin as shown in. Moreover, it uses blocking information better, thus
runs faster utilizing hypergraph partitioning model. Properties of those matrices

as well as results, are presented in Tables 5.4 and 5.5 accordingly.

There is only one condition for choosing matrices. They have to have atleast
240 (max Xeon Phi thread capacity) sub-matrices when partitioned. Partition

size for a sub-matrix is chosen to be 64 KB as explained in Chapter 4.

66

abod jToU U0 PINUIUOY)

RISSEL N ov 971 N ov 971 4 1LTEVIE G9L¥1C G9L¥TG qpTu
SLIjoWIWAS 8 11 0 8 11 0 COVIPEL €679899 €679899 | wso Arej
SLpowAS 630 0921 T 622L 0921 1 88€8908T 0veERT oveEvT goudg ureTINY
oLIjowIAS 6E6L 12011 1 6E6L 1°L0T1T 1 €796997¢C €8330 €8330 Touas-uewny
SLIjouIAS € 4 0 € 4 0 T9L8ETHT T6LTTIL T6LTTIL | 0T000-or1308Ny
oLIjowAS € 4 0 € 4 0 EV68LTET G9LT6S9 G9.36S9 | 0T000-oL8ny
SLIjoMAS € 4 0 € 4 0 T6VTFITT $SSPE8S PSSHZ8S | 00000-ou3e8ny
SLIjeurAs € 4 0 € 4 0 78L6916 78788¢S1 78¥88GF | 00000-0ovIR8NY
RISSEL N) 11 0 9 1T 0 TIT6LG8 TTREELL TCREELL | wsoTure)LIq-Yesls
RISUEL] 4 11 0 01 11 0 LIG6STET CPR]PCTT CPR|PCIT | wiso Aueuniog
SrrjewruiAs €% g 0 €0 S 0 EVIL60C TOSV6IF TOSW6I¥ | gou Avunesp
oLIjowIAS €2 S 0 €C S 0 $99G8F0T CGTL60C TSTL60Z | Tgu Aeuneop
SLIjouIAS 6T g 0 61 S 0 8G€159C 88C¥ TS 88TVLS 61U Aeunersp
oLIjowIAS 662¢ ¥'ag 0 662€ ¥'ag 0 0L60966¢ 98%0¥S 9870%S dT1dgsiedegos
SLIjoWIAS 8811 6°CL 0 8811 6'CL 0 8EE6EITE TOTVEY T0TPEY | Ieesejrpsiodeoo
SLpowAS L3551 92 0 8L0T 9L 0 66,7708 G6789¢ G6789C 1998991 UOIYRIID
RISl 6 ¢1 0 8 48 0 G798G91T S6CTITVT G6CIPFT | wso wnis[aq
RISUEL] aapee ¥4 0 agree 1cl 0 I8T¥670C SI¥9691 GTP969T | I033NS-se
dLIjowAS ¥ € 0 iZ € 1 968TEV0C FFLSI89 FFLGIRY | eandepe
oLIjowAS 9z 6'€T e 9C 6'€l iZ LETV00G 679V 1 (247! 44
ydean) pajoaaipu) :o0dAJ, waqoid
RISl i € 0 4 € 1 TTLSVIE 9LG8VOT 9LG8V0T | 8T7D™199p
SLIjoMIAS 0% 7’8 4 0% 78 4 L9S6VET 9€66.L0 9€66.L8 99-ogy-3ygdo
SLIjeuItAs L3 9'eT € %4 9'€T € GTE9TRE 9€66.L5 9€66L5 | Log-ogy-gdo
EBOGxQD nmwQ%rHL E@Tu—o.un_”
91N JONIYS XTIjeun oxXeuwr o8AR ourux JIxeun 13ae Jurua 7 zuu mQQ::OU SMOI NTEHNE

‘sod Ay wepqoad 1oy £q podnols oIe soInjoni)s XLjew Iy} pue

‘[09/mo1 1od ZNN Xeur/3ae/urua ‘ZNN ‘JUN0d uwnjod 2y mol ‘saurinol pesodord 1s9) 03 pesn s]NAS oY) [[e 104 :F'G S[qe],

67

2bDd 1T2U U0 PINULIUOY)

SLrjeuIAsun 6748 48 T ¢Lc0T [4qs 0 V1CLERG 818028 8.8028 LPIg
orewmAsun C¢e689 €'CC T G869 €'Ce 0 0V1G€ETO61 799298 799298 G00¢-Mo
oLjewASUN GETRT 6'6 T 9T.LC 6°6 0 CST191CE L994Ce L9G94Ce 000¢-1ud
SrrjeuIAsun 6LL 4% 0 0LL vy 0 87681991 89LVLLE 89LVLLE sjuaje -0
SLIjowAS L€ 8°¢T T VA 8°€T 0 LCS08T9 S6987V G6987T omne
oLjewASUN 162 7’8 0 (018 '8 0 88ELBEE 76€£€07 76€£€0¥7 T09Quozewre
oLjowAsun 09.¢ (] 0 ot ¢'8 0 ¥C894€€ 9€C0TV 9€C0TV gogQuozeure
ornewmAsun LVLT 8 T (018 8 0 0¥¥700cC€e LTLO0V LTLO0V c¢lgouozewre
SLrjeuIAsun 9.0T L T ot L 0 88ERATY €CEGEL €CEGEL 800¢-uozewe
ydear) pajoaar :odAJ, wsjqoag
OLIjOUIUAS L€ 8¢T 0 Lg 8¢T 0 8E88L897 CSTL60C CSTL60T | 0ST1g ¢ U SSa
SrrjeuruiAs 9€ T°ct1 0 9¢€ 1'ct 0 799V€ELCT 9LG8701 9LG8701 08™0g ¢ u 831
OLIjOMIIAS 0€ g1 0 0€ gT1 0 VPTS109 88TVTS 88CFCS | 0S617¢ U951
SLIjowIwAS 1€ 80T 0 1€ 80T 0 CTVTERT ¥v129¢T ¥v129¢T 0881 g U 381
ydein wiopuey pajoaaipu() :2dAJ, we[qoid
OLIjOUIIAS v0g €611 8T 70T €611 8T QOLVTEY L179€ LT179€ SAHTqPd
SrIjeurAs ce08 €°¢r9 T ce08 €'¢r9 T T16CL968¢C TOTSY TOTSY ouag-asnow
ydear) pajySiop\ pooaaipup) :adAJ, we[qoad
ojouImAS ¥ 3 o | ¥ € T | 2o.epie 9L98FOT 9LGRPOT | 199p
aousnbag ydean pejosiipu) :adAJ, ws[qoid
Tensue)oal 0cve 6°9C T 7 qggaeL CVI8T T 7 LTLYTITT CTITL8 TLVCT 7 Tyjuowg T
ydean oqrpredig pojoaaipup) :0dAJ, wa[qoidq
dLIjowIAS [4qs 81 0 ¢l 8T 0 LE66VTC €8EE6ET €8EE6ET XIL-1°Npeol
OLIjOWIAS 8 81 0 8 8T 0 9.L8T661 0260601 0260601 Vd-1oNpeol
SrrjeurAs 0T 81 0 ot 8T 0 €€6T99€ T8CTLGT T8CTL6T VO-19Npeol
RISl 8¢09 SV8Y 6 8¢09 S8y 6 CEVETEL [ag4ons Va6l Turagyed
OLIjoWIWAS 8T €91 0 8T €91 0 7€90€8¢¢ CY98SV1T CY98SYV1CT 0809-00TX00TX00g-Sunped
SLpowIAS L ¢l 0 9 c'1 0 88L599¢ 88991¢¢ 88991¢¢ WISO™SpUe[Ia}ouU
2INnjonals Xrjyeu oXeuwr o8ae ourm IXeuw 13w Jurua zuu suwnjoos SMOI XLIJeIN

abod snowaid wouf panuuoy) — F'G 9[qR],

68

2bDd 1T2U U0 PINULIUOY)

wa[qo1d 921A3(J Jojonpuodiweg jusnbasqng :odAJ, ws[qoig

orewmAsun 9LLS 8¢ 0T 928 87e 01 84CICES 92TeST 92TeST p-ered
oLjowIAsun 1€0L Lee 01 1€0L Lee 01 890808¢ 9L0€TT 9L0ETT g-gIotireq
SLewwASUn 1€0L Lee 0T 1€0L L'€€ 01 890208¢ 9L0€TT 9L0€TT g-gIotLIeq
woﬁmﬂcwm E®~h—0.~nm ®Qm>®AH hOGUH—vﬂOUmEQm "®Q~A,HL Ewﬁn—o.nn.—
oLeWASUN 1€69 Lve 8 1€69 Lve 8 8GEITHS ¥56SCT ¥269ST 6-ered
oLjowAsun 17ve 19 G1 18723 19 a1 GPGE90TT EFEISI EVET8T gouto
ornewmAsun 129 g0z e1 L50% g'0g 41 08G12TG 0e7€0T 0€7€0T 6" X113RW
wa[qodd 921A3(Jojonpuodiweg :20dAJ, wivqoad
Te[nsuejoor 0681 (% 0 7ee1 88 0 €oVE8LE 80£968 0v¥8cy | dANI
ydean) oqipredig :odAJ, wiajqoag
oLjewAs GL908 128 0 GL908 128 0 89986067 88TFCS 88¢¥cS | 61u80[-00gS oL
SLIjowAS €9167 L6L 0 €9167 L'6L 0 00€7060C ¥¥1¢9% 71598 8TUS0[-00GS UOLY
SLIjowIwAS G0T9% LL 0 G088T L2 0 8L9.600T cLoTeT TLOTET L Tu80[-00g8 uoI]
dLIjowIAS 866L1 22 0 866.LT 22 0 092.L78% 9€299 9€2¢9 9TuS0[-00GS UoIy
Qgﬁhwm‘:ﬂz UOGU@.N:UED nOQ%,H_ EQTU—O.H&”
SLewwASun G89I8T e T 00L¥ 1€ 1 9€GG0TE S00000T G00000T | INT-Oseqqam
oLewmAsun ¥ 81 g ¥ 81 S 6VE0ETLE S8LSOCT GRLGOCT | ¥1o8eo
oLjowmAsun 6¢ 891 e 68 891 € EVE6LTL GTECHY GIECHy | £198ed
oLjeASUN €e 9'GT g €e 9'¢r g 9€G2€0% 8GC0ET 8CC0ET g1o8ed
H—QN&U ﬁmaﬁwmw\(r ﬁmaowhmm NQQ%H E@TMO&&”
oLjowAsun 9098¢ z'8 0 elere 78 0 L6VEIET €0618% €06T8C | PIojuelg-qom
oLjowAsUn 92€9 9 0 9g¥ 9'¢ 0 6€020TS 8CTV916 8CF916 | 9[300D-qam
oLjewAsun 8028 11 0 672 11 0 665009 022289 0£2G89 | uelgIeg-qom
SLjewwASun 67¢ 111 0 |TIes 11 0 9LEE8CL 97E89 9vre’9 | AopedIogpiojuelg
oLewmAsun elere z'8 0 9098¢ 78 0 L6VEIET €0618% €0618¢ | Pplojuelg
oLjowIAsun z9. i4 0 9¢ i 0 L9L0L6FT 89LFLLE 89LFLLE | sjuojed
oLjeASUN 9981¢ el 0 €GLL (A4 0 €80LT69T 806C¢8ET 806C8ET | ¥00g-ul
2INjodNIys u&hpwa oxeuwr o8AR UQME Ixeuw 18ae HEWE zuau mEQE:OU SMOI MEH&E

abod snowaid wouf panuuoy) — F'G 9[qR],

69

2bd 1T2U U0 PINULIUOY)

dLIjowIAS 8% L3 g 8% L3 g cL9¥0L8¢ 00¥C90T 0072901 | 08¥pid[u
SLIjowAS 16L% 9'LC 4 16L¥ 9°L2 4 LTLIFHT £7e8s £7e88 T-H30u
RISUEL] 18¢ L1 € 18% av) € 002121E 0cSey 0cSey 0GTI0u
dLIjowIAS 1€% 0L € 1€¢ zoL € 00%.LL8T 02.L9¢ 02.L9¢ Ggl1IeuU
SLIjoMIAS 181 89 e 18T 89 € 002££0% 02663 02663 00T130U
oLIjowmAs G6£99 8'¢QT i G6£99 8'GST iZ 6182S€0T €9799 €9799 Tdru
orewmAsun ias 9'¢T 17 ! 9'¢T 14 00109¢S 0G007¥ 0c00Vy | siseqaSre|
orjewwAs 96 6'9 0 96 69 1 TOILETFT ¥67€90% P67£90C | Tomod i3y
dLIjowAS c1760¢ 68 g c1v60€ 6'8 g P8VISLT cI760¢8 c1v60€ gsut
SLIjowAS TLIFT felefele] ee TLIPT eyelele ee LTVETE6 £829T €829T gejdns
orjewwAs €18 6’89 € €1v8 G'89 € 9828Vl 79029 %9029 geydns
dLIjowIAS €178 189 € €178 189 € 012791% 7081¢ c081¢ Teydns
OLIjOWIAS €0GT z'8LE € €0ST z'8Le e 10$692¢ 1009 1009 1 ejepxo
SLpowAS 8LG6T 89 c 8LG6T 89 4 TT0T¥€S I8%4ti%3 Tveeve | Siq-o
E®~D—O.~n~ QOmn«deEmon "QQ%,H\ Ewﬁﬂo.un.—
oLjowmAsun 1€69 Lve 8 1€69 Lve 8 8GEITHS ¥26SCT ¥265ST g-ered
oLjewmAsun 1€69 Lve 8 1€69 Lve 8 8GEITHS ¥069CT ¥269CT L-ered
orrewmAsun 1€69 Lve 8 169 Lve 8 8GEITHS ¥268CT ¥265ST 9-ered
oLjowAsun 1€69 Lve 8 1€69 Lve 8 8GEITHS ¥06SCT ¥269ST g-ered
oLIjewASUn 1€69 Lve 8 1€69 LvE 8 8GEITHS ¥069CT ¥069ST o1-ered
SLrjewASUN LEF8 Lee 8 LE¥8 Lee 8 1GGL68¢E GZICTI GZISTT 6-gIotLIRq
SrrjetASUn 1€0L Lee 0T 1€0L L'€€ 01 890208¢ 9L0€TT 9L0€TT p-gIotireq
oLewmAsun LEV8 L'€¢ 8 LEV8 L€g 8 LGGL68E Gg9STI GZISTT ¢l-gletireq
oLjowIAsun LEV8 Lee 8 LEV8 Lee 8 LGGL68E GZ9CTI GZOCTT T1-gIorLreq
SrrjetASUN 1€0L L€e 0T 1€0L L'€€ 01 890208¢ 9L0€TT 9L0€TT T-gIotLIRq
2INjodNIys NE@@E oxeuwr o8AR UQME Ixeuw 18ae HEWE zuau mEESMOU SMOI MEH&E

abod snowaid wouf panuuoy) — F'G 9[qR],

70

2bDd 1T2U U0 PINULIUOY)

dLjouIAs 4 14 4 i 4 ¢ Gcc001e Gc849cs GeR8GTY 1depgowt
OLIjoUIIAS 6 L ¥ 6 L 4 GE61V.LT LGCT6¢E LGCT6¢E £0pgueY
oLjouIwAs g g € g g € 1669667 666666 666666 | gA30[00d
SLjowUIAS g g € g g € 000966¥ 0000001 0000001 14801009
OLIjOMIIAS 6% 8V¢ 6 67 8¢ 6 6799€9¢ 689971 689971 gerooqn
orrjouuIds L g 0 L g T 967ST61 ¥.868¢€ ¥.868¢ €004o1ep
OLIjOUIUAS 18 ¢'1c 0 18 ¢'1e 0 3866090 ¢611¢1 C611CI v 0gdoo
oLjewIAs 18 T°cL 1 18 1T°cL T 0870109 Peees Peees ydsuod
SLpowAS 8L ¢'v9 1 8L c'v9 T £€8€L00¥7 16729 TSVC9 uaed
OLIjoUIIAS 125 g'es T ¥4 g'eg 1 9670STET VL8G¥C V.L8G¥ e JAL N ICLES
we[qoxd g/azg :odAJ, weqoig
dLIjomUIAS 6V.LC 9°CcL S 6V.LC 9'cL G1 €0G€E8CTT 1€€9ST 1664641 ¢O'S
OLIjOMIIAS 19¢ vy LT 19¢€ vy LT T€9T990T 69€0¥¢ 69€0¥¢ 9LHLS!S
orrjourIds 299 608 €1 99 6°08 €1 G9¢TT0ST 6€9481 669481 CLHIVODIVIS
OLIjOUIIAS 114 8¢S L1 67 8¢S LT 6LE9STG 6956 6956 9EHVEIS
OLIjOUIIAS L€ 1T'ee ¥1 LE Tee v1 9€L91¢¢ ¥20.L9 ¥20.L9 OcH
drjouIAs 697 8L L 697 8L L G6ETSTS G86¢T1 G86CTI 00TH66°D
OLIjOUIIAS 697 6°69 L 697 6°69 L G61C68L G86¢CI1 G86¢T1 9LHL89D
oLrjowuIAs 991 1°6¢ o ! 9791 1°6¢ G1 60818€E 67€T9 6VET9 9HSV®D
dLjowUIAS c0L 69 81 0L 69 81 9.L788781 96089¢ 96089¢ CLHIVSVIVRD
OLIjOMIIAS [q4)s €26 g1 (448 €26 q1 L760L6G 6VET9 6VET9 CTHESVERD
orrjouuIds L69 99 a1 L69 L'99 G1 687888 €CIeET €CIEET CVH6TSV61%D
OLIjOUIIAS 869 've L 869 178 L €€94119 180€TT 180€TT 0€HOTSVOTI®D
OLIjOUIIAS €1€ LVE g1 €1e Lve G1 LG09992 6111¢CC 6111¢CC 0D
we[qoad Arjsturay)) wnjueng)/resrjadoay, :2dAJ, weiqoig
oLjewAs 1T L T 1T L 1 £1€0848 G¥08¢cl Gy08¢cl gleuat}
SLjemuIAsun LT 9€e ¢l Le 9°€e 4 00€687¢€ 006471 006471 clemeyy qeTINHA
we[qoad [ewaay,J, :odAJ, ws[qoig
9INJONI)S XLIJRTX OXBUI o8ae outux Ixeuw 1Sae suwnjod SMOI XLIYRIA

Jurua 7 zZuu

abod snowaid wouf panuuoy) — F'G 9[qR],

71

2bDd 1T2U U0 PINULIUOY)

SLpowAS qe 87¢ ST g€ 8V¢ ST GL90GGLT Gg9€09g Gc9€e0s TOT 173e
oLrjewAs qe 87¢ ST qe 87VE q1 GL90G9GLT §gc9e0s 4c9€e0s TOT07J®
wv[qodd [eanjonalys NQQ\A,H_ w[qoiqg
SrrjeuIAsun SvL 6 T 829 6 T C8T6969 £€€0699 £€€0699 goid
wId[qodd uolje[nuilg 3Imoaarn :mmgoglxnozm:.—vwh’m "QQ%-H. w[qoidq
oLjewASUN [4s1al €V T [4s14s (4 T €4291€0C ¢000697 ¢000697 1geler
oLjowAsun IWLYSY 9'6 T IWLYSY 96 T LLESLTY ¥66€79 ¥66€79 ogreler
ornewmAsun 96¢S0T Vg T 962501 ¥'a T GETRY6T CLI8SE CLI8SGE pyeler
SLrjeuIAsun 0L¥00T 9V T 689811 97 T 0LEE68T 9L9T1¥V 9L9T11¥V Tgyeler
orewmAsun LC qg'g T LT q'g 4 ¢0c0187T ¥CGL0LC ¥CGL0LC drypureta
Tengue)dar 9.8999 ¢9 T i €C T T0CTV6¥ VLET08 VAITTIC o[, 199y a8 re]
SrrjetASUn 6 8¢ 14 9 8¢ 4 cvevises 09€LVV1 09€LVV1 golTure
SLIjowAS 9 87V (4 9 8V 4 9280992 8LV48GT 8LVG8GT HNDI™ED
SrrjeuAsUn 14 q'q T LT a'qg T LVE0T68T GGLRTVE GGL8TVE Toreos99.]
SLjewmAsun 14 g T LT ¥'a T €6TIV616T LTEETSE LTEETSE OPTINGHNOIID
orewAsun 012 7'e T 01¢ e T 9L16T€C CT.LTR9 CT1LT89 SN089"DISV
SrrjetASUn 69CS6€ LS T 69CS6E L9 T €LLTLRE 98289 C98C89 H089"DISV
oLjeuwrAsun ¢y L'g T (4% LG T L08LZ8T 1.91¢€ 1.91¢€E SH0CE™ OISV
orrjeuIAsUn 008€0¢ '8 T 008€0¢C [T 79€9€9¢ 1281¢¢ 1281¢E A0CE™ OISV
we[qoId uorne[nuwig 3moar) :2dAJ, weiqoad
SLIjowAS L g 0 L g T 96VSV61 V.868¢ V.868¢ coporrewt
woeqoid dg/dag 2yednqng :odAJ, weiqoig
oLjowAsUn yeal €'€L 8 €9¢€ €'€L 6 0099168 8GTI9TT 8GTI9TT 10810}
orewAsun (44 [t 9 61 At L 879120€ 09¢€1C 09¢€1C oreumols
SLpoTAS 484 C'€8¢ 0€T Vig C'€8¢ 0€T 9TEL689 0008T 0008T A9pu
ToLIjowIAS q1g ¥'v9e LCT SIS 7'v9€ LCT 0696.¢€ 0006 0006 Aepu
SLIjowIAS 0cs 8'86¢ 01T 0cs 8'86¢ 0TT 7E€99T.LRT 0002L 0002. Ayepu
SLpowIAS 61¢ G6¢ 9¢1 61S G6€ 9¢1 9760Ccr1T 0009€ 0009¢ AcIpu
2INnjonals Xrjyeu oXeuwr o8ae ourm IXeuw 13w Jurua zuu suwnjoos SMOI XLIJeIN

abod snowaid wouf panuuoy) — F'G 9[qR],

72

2bDd 1T2U U0 PINULIUOY)

dLjouIAs 9.¢ 8'8¥% ¢l 9.¢ 8'8¥ [4s VeELLIT 0L87¢ 0L87¢ qiseseu
oLrjewAs LL L'8Y 8¢ LL L8y 8¢ G€607c0c €98GTY €98GTY loopsut
SLIjowIAS LET 00T 87 LET 00T 8V 0LG€GL6 8LGL6 8LGL6 T3 W
SLrjemAsun €78 R 81 €78 T°€L 81 CrE9T189¢E ¢1LE0S CILE0S Teutut
oLjewIAS LL 881 1C LL 8'8¥ 1¢ 9€¥89.L0T crs0ce [4ags(V44 pooy
orrjouuIds 0ct ¢'qe 4! 0ct [[4s TC8LYETT LTI9VCC LT9VCC areq
OLIjOUIUAS 66 1°6S 9 66 169 9 ¥0¥0806 IVLESGT IVLEST xoqress
oLjewIAs 44! 8'8¢ 8T 44t 8'8¢ 8T LLOSOLTT L8T66T L8T66T quny
drjouIAs 96 9¢ LC 96 9¢ LT 9TEVECTT ¢e810T ¢ae810¢T gdpuooy
oLrjewAs 81¢ 87y GI1 81¢ 8Ty a1 Y947 198¢ ¢088¢€9 2088¢€9 6€9HIB
SLIjoMIAS qve 12 [44 125 2 (44 G8CY6CS G0STL G0STL cd
SLpowIAS gev 1'8L ve gev 1°8L ve €T1TLEBIT 16LEVE T6LEVE T4
oLjewAs 64T 8'C¢ 6 64T 8'CE 6 €L090LV TLGEVT TLGEVT oursus
orrjourIds LG vy qT LS vy a1 90¢S00T¥ 9€TET6 9€TET6 €6 eIy
OLIjOUIIAS L0T 9'1¢ 4 0T 9'1¢ 4 £97869¢ 6¢€CS 6¢€CS J1s0c¥°
oLrjewIAs €CVe 9'1¢¢C 87 £€ere 9'1¢¢T 8V 8G88VIVI 8€8€E9 8€8€E9 ¢ Sosyuem
drjouIAs €0LC T0C 87 €0LT 102 8V 0TCV190T ¥08¢¢ ¥08¢S T~Fosyuetd
oAU 18 6'8.L 6 12189 6'8L 6 T9LLLES 12189 12189 PASUSAQaT)
SLIjowIAS T6€ Q1L ¥e TG€ g1 14 c00¥v90T 0LL8VT 0LL8VT T eIomuuq
SLpowIAS gev 6'1¢ T Gev 6'1¢ T L996€€L LVETVT LVETVT T7¥s,mumq
oLjewAs 9€€ L6V 4 9¢€ L6V 4 0€988CTT C9ELTT C9€LTT ¢ gmuq
orrjouuIds €9 Ly 4! €9 LV [48 ¥62680¢ CLLIV CLLIV 6£39880q
OLIjOUIIAS 61¢C L°0L ¥ 61¢ L'0L 4 c67EV0C ¥268¢ ¥¢68¢ 0€31880q
oLrjewIAs 8 L9 ¥ 8 L9 i 0L8LISY 9LTGTL 9LIGTL goyoede
drjouIAs Ge 87¢ qT1 ge 8V¢ a1 GLI0GGLT §Gc9e0s Gc9e0s 10T 67
oLjewAs ae 87¢ G1 ge 8V¢E a1 GLI0GGLT §Gc9c0s Gc9e0s 10T 7 e
oLrjowuIAs ge 87¢ qT ge 8VE a1 GL90GGLT §Gc9e0s Gg9e0s 10T €7
dLjowUIAS ge 87¢ G1 ge 87¢ a1 GLI0GGLT §Gc9e0s Gc9e0s 101 ¢ IR
9INJONI)S XIIjeut oxeu o8ae ourw IXeu 18ae Ut zZuu SUWN]0d SMOI XLIYeIN

abod snowaid wouf panuuoy) — F'G 9[qR],

73

2bDd 1T2U U0 PINULIUOY)

dLjouIAs ov 87¢ 0c ov 87e 0¢ GL888GLT Ga8v09 Ga8y0s LTPYsTJe
OLIjoUIIAS ov 87¢ 0c ov 87e 0¢ GL888GLT Ga8¥0¢ Qa8y0s IlPysI®
oLrjewuIAs ov 87¢ 0c or 87¢E 0c GL888GLT Ga8v09 Ga8y0s GleysJe
SLjowUIAS ov 87¢ 0c or 87e 0¢ GL888GLT Ga8v0s Ga8y0s viPusJie
OLIjOMIIAS oy 87e 0T or 87ve 0¢ GL888GLT Ga8709 Ga8y0s gleysye
orrjouuIds ov 87¢ 0¢ ov 87€ 0¢ GL888GLT Ga8v09 Ga8v0s clPysje
we[qoid [eanjonals jusnbesqng :adAf, wsqoig
OLIOUIIAS or 87e 0T or 87eE 0¢ GL888GLT Ga8v09 Ga8y0s Teysje
adouanbag wv[qoad [einjonajs :20dAJ, wvqoag
OLIjoUIIAS 0LS 6°€S 9¢e 0L¢ 6°€S 9¢ ¢S1896¢ veevs veevs 191s
SLIjoMIAS viv 91 4% Vv V1 48 V8IEGLE 0TLST 0TLSC jaas
SrrjetASUn (01 €L 114 sov €L 144 9898V 1€ 0€6cy 0€6cy odgaws
oLrjeuwrAsun gve 9'1L ¥e ave 9'1L ¥e £90180¢ L9062 19062 qggews
orrjourIds cel 6°LS a1 (438 6°LG G1 66€£€£999 616711 61671 gooasdrys
OLIjOUIIAS 9¢1 ¢'9¢ ¢l 9¢1 99 4 960€T10T 098641 098641 goesdiys
oLrjewIAs c01 g'qg ¥e [0} ggg ¥e YOveEI8L VL80V1 VL8OV To9sdrys
drjouIAs 44! 799 81 24t ¥'99 81 ¥€09808 8¢LICI 8CLICI €00 drys
OLIjOUIIAS 8¢V €el 81 8¢V €el 81 0€cvv9v 0c67E 026vE 100-dwys
oLrjowuIAs v ¢y L 47 g1y L 19¥€GLE 67706 67706 cugppes
dLjowUIAS 2 €'€eg €1 2 €'€g €1 1680287 67706 67706 guybypgs
oLjewAs 08T 'es 4 08T ¥eg 4 Yerye9lt 816.L1¢ 8T6.L1¢ Hymd
orrjouuIds €€E L'L6 cl €ee L'L6 [48 ¥0G9€87 1 9c61ST 9C61ST PIsnd
OLIjOUIIAS 00€ L'69 81 00€ L'69 81 L289T199 £6876 £6876 g1snd
OLIjOUIIAS IV V6L ¢l VIV V6L [4t LTETTGL £9976 £9976 grsnd
drjouIAs cel v'6g 81 (438 ¥'64 81 CI6L1CS 0818 70818 Trsd
OLIjOUIIAS 06 7'es 0€ 06 ¥es 0¢ ¥8680€¥ 9,908 9,908 o19snd
oLrjowuIAs 0T 9'1¢ 4 L0¢ 9'1¢ 4 £97869¢ 62€CS 62€CS Jnsogrod
dLjowUIAS 0L 8'8¥% 8¢ 0L 887 8¢ 88TL6SE CSLEL CALEL ued[io
9INJONI)S XLIJRTX OXBUI o8ae outux Ixeuw 1Sae Iurua Zuu suwnjod SMOI XLIYRIA

abod snowaid wouf panuuoy) — F'G 9[qR],

74

2bDd 1T2U U0 PINULIUOY)

Terngue)dar [4qs €01 T 8199 7€9¢C 4 ¢eOV8CTT 7689601 143147 y8cyirel
Tensue)oal [4) L8 T v6aclL 860¢ 4 CIETTO8 692€C6 984¢ 984GcIreL
Tengue)dar 6€¢C i T 0879 i € ¥20950¢ CE8BTY 602C1S gsoau
Tepngue)dar 8T €¢I L 6,0¥29 '€V ¥ 8CALTIS SI¥699 TOGS8T owgop
Tensue)oal L LT T g L€ € 666C8€S 76E£T961 6698971 [TT3U0d
Terngue)dar 8666.LCT L€ T g L€ € 6661€0L 9641261 66€8T6T [T3uoo
we[qoid Sutwweirdord Jesul] :odAJ, wie[qoad
SLIjoMIAS 68T VI T 68T VI T 68€900TC LETSGIVT LETSGIVT GOV T-A203S
SLrjeuIAsun vl L°09 14 vl L709 ¥ TO0V.LET GER’IT GER’IT OTewLt
orewmAsun v ¢'86 T G6¢C ¢'86 T cI67IVLE 68918¢€ 68918¢€ HL0NY
oLIjoWIWIAS 0.2 €0LT id 0.2 €'0LT av ¢9€998¢T 0€89T 0€89T gooSeurer
SrrjeuIrAsun 88 8'09 g ¢6 8'09 T 9€TG8I8 0207191 0207191 Hcodd
orrewmAsun vl L'LT 9 141 L'LT 9 6V67.LET £2948 £2948 qgguosstod
SLIjowIwAS L L € L L € GTIv.L9€E §g2R84cTy Gg849Ts wey-otoqered
SLjewmAsun Va1 999 1T ST 999 1T 7059661 LG66¢C LG66¢ MauTyueIXIud
SLrjewASUN 68 1.8 € 68 1.9 T LL0EEVE €LTL9 €LTL9 ggionpTreuture|
SLpowAS 0€ 14 8 0€ 14 8 868.L80€ 0vveet 0vveet PR
oLewmAsun L 69 14 L 69 ¥ 09L6T€0T CGLE8TT CGL68VT wpouwsouye
orrjeuIAsUn L 69 14 L 69 ¥ 09L6T€0T CGL68TT CGL68TT [powusounye
SrrjeuIAsun L 69 14 L 69 ¥ 0887188 cEVOLLT CcEVOLLT (powsourye
orrewmAsun L 69 14 L 6'9 ¥ 0887188 cEV0LTT cEV0LTT ppowsouje
SLIpowAS 79€C 6°0L (028 79€¢C 6°0L (018 8T9€1CE 0€€ST 0€EsT aqunipg
we[qoid sorwreud pinjq reuorjpendwo)) :odAJ, wisjqoad
OLIjOWIAS 1¢ €91 g 1€ €91 g €L9Tvey 68L69C 68L649C oloysgo
SrrjeurAs 90T 6'9¢ 4 90T 6°9¢ 14 VC68SGLTT IV689 IVT689 168901 ws3
we[qoid sd1jouleuroa)od[y :odAJ, wisjqoid
SLIjowIAS oy 87¢ 0¢ (0% 8V¢ 0¢ GL88YGLT ga8709 Ga8Y09 6lPYsTJe
SLpowIAS oy 8V¢ 0¢ (Vi% 8VE 0¢ GL888GLT Ga8709 Ga8y0s 8[eYsje
9INJONI)S XIIjeut oxewt o8ae ourw Ixeur 18ae Ut Zuu SUWN]0d SMOI XLIYeIN

abod snowaid wouf panuuoy) — F'G 9[qR],

75

Iemngue)oar € € 4 ¢c09 ¥'e T V180LT1¢C g09€cL €01¢06 T097[eoym
Iemsuejool [4) 7’6 L (018 (018 (018 08499981 963861 894981 69-9o7u
Terngue)dar 9¢ 0T 0 1014 9'€C 4 000T14C8 G608 EVV6TEe CCPLTID
Tensue)oal 9€ 9'Cl 0 96¢ 1'¢c T GLLVLIST LVGLEVT CC6Ca8 1CPLTO
Tengue)dar €V 99T 0 96¢ 8°0T 0 780£686¢C 0€TTTI6T LVSLEVT 0ZPLTO
Tepngue)dar 2] T°6T 0 TCT g'61 € GCLTTELE 60€5G96T OETTI6T 6TPLTD
Tensue)oal 69 €C 0 €L ¢'81 T 07<0655¢ 099871 60€9G961T 8TPLTD
Tengue)dar 76 ¢'LT 0 69 89T 0 8608L64¢C 8CT19%6 0998751 LIPLTO
Iemgue)oar LET g'ge 0 8¢ C¢El 0 T8€0809 GLETLT 192097 STPLTD
Tengue)oal 6 6 6 9 9 9 08898¢€€ 0C€9.LE 087799 Gq-8-8Y>
SrrjeuIAsun 8 8 8 9 9 9 091074¢ 0CSL1E 09€€Ty G9-6-LY>
we[qoid [errojeurquio)) :odAJ, weiqoid
OLIjoWIWAS fan! ¥'qc 8 48 ¥'9C 8 6LTLOLT LEVIOT LEVIOT ey
SrrjeuruiAs 18 8'CS 48 18 8'CY [4) CATSTL9 yeelLel yeelLel Toseuoq
wo[qOoi UoIonpay [OPOIA :odAJ, wid[qoid
Tengue)dar 76€9891 G'80T 4 14 6'¢ T 70€¥089 6CLC9 CCI8VLT SIS
Iemgue)oar 80T 6°0L 0€ 14 6'¢ T 89TT6.LL 00660T G88LLET Toony
OLIjOWIAS 060CT T'69T 0 61 7’81 8 6€£66109 0€8.L¢ ¢90LCE D0OSH
wa[qoad soaenbg jseory :adAJ, wa[qoig
Tensue)oal €101 a'c T 8V 99 0 188657€ 90€LLET G818¢S 0001 gOwI09s
Tengue)dar 145 € T 09.L€ 86 L6 9ELLTEE 08LETTT 178¢e €968
Iemngueoor 4 € T [4545 186 L6 ¥81¢48¢ CEVLG6 68062 cA96YRIS
9INJONI)S XIIjeut oxewt o8ae ourw Ixeur 18ae Ut Zuu SUWN]0d SMOI XLIYeIN

abod snowaid wouf panuuoy) — F'G 9[qR],

76

abvd)xoU U0 PINULIUO))

9¢'8 ey 8G'T (47! Ge'T | S6FVT V19 6L°1 G9'1 vl | LLLT 960% | 00000-011398ny
g9'8 €8¢ 691 €'l 19'T | €¢°ST 00°¢ €81 99’1 9¢'T | 6661 8¥0T | 00000-92€1123NY
269 9¢°'g YT 80'T | LT'T | I8CT LSL ve'1l 92’1 60'T | 0CST 8¥0T | wsoTurejLq-1ears
LT°L G0’ 1¢'1 YT’ T1€'T | 0S°€T 06'9 €e'T 121 ve'T | ¢1€C 960F | wso Auewied
6T°TT LTS 9z°¢ 6L¢ | VI'T | €6'1¢ SI'TL 66°¢ L9°¢ | 9T'T | 918¢ 960% | ggu Aeunepdp
LL0T CTL 0e'e LTE€ | €T'T | 96°0c 99'8 €6'¢ g8'e IT'T | 80FVT 8%0C | Tguw Aeuneop
v'6 (4R A 61°C IT'T | ¢0'0c S6'C 67 gg'c | OT'T cse ¢Ig | 61U Aeunepep
LG€T PLIT | 2L°01 6€6 | 1€T | 128 66FT | T0ST SV'ET | ¢€'T | 069¢ 960% | dTdsiededod
1¢'8T LT'ST | 62%T 66CT | LT | 81°9¢ 6€LT | IT°0¢ LE8T | 8¢'T | 688¢ PIIF | 109s9gr)siodeqod
GL'c €C'1 061 IT'1 16'c | oV'¥y 6L°1 L8°C VT | L6°C 99¢ CIG | 199893I)uolje}Id
¥0'9 0s'v ST'1 ST'T 1¢T | LT°ST 199 €C'1 8C'1 66°0 162 gIg | wso wmnispq
9T'L 0€°'g 1€¢ 09'¢c | €9°T | TO'TT CL'L LGV cS'e | T9T | 909C 696€ | I9IB[S-se
€811 098 L2C 96°1 GT'T | 19°0¢ <O7I 99°¢ 99°'¢ | 60T | TI6C 960F | dandepe
049 98¢ €99 L2°C | 90°€ | 90¢T S¢S | 002T 9L€ | 6L°1 1254 cIs | vl
ydean) pejoaaipu) :o0dAJ, wa[qoidg
069 <901 (434 ¢L'c | LLO | TV'OT 80°LI 99°¢ G0'e | 6470 8¥¥ 86S | 817D I99p
L8'8 ar'8 LLG ¥G'9 | 00T | L98T 6191 €L'9 7L | 201 ¥0€ g1g | 90-ogyu-gdo
19°0T 60°0T Gc'9 GL0T | ¥O'T | 89°0¢ 8L9T | 9L°€T 8G'IT | €0'T €87 CIG | LoG-ogy-gdo
umouxu) :2dAJ, weqoIg
p1o un 7 p1o un p1o un 7 pio un
sma | mIn " sma | mIn " oday ods | xuery
UOISIORIJ S[qNo(] UOISIOR1] 9[3ulg

“UO9I3 UL SOTISIIRYS [[RISAO PUR ‘DN Ul POIYSI[YSIY o1e sdnoid woe(qord I0] sO13s19eIs ‘Pol Ul PojySI[USIY ST MOI S XIIJRUL

1e7[} ‘suoisioa uoIsald 9[qnop Io J[3Uls ISl Ul TN Uey} osiom suriojiad aumnol GA\(‘@poul snosuejuods Ul ‘XLIyeul

® IOT ‘IT -ournol Terpuonbas Juruuni ofiym osn snousueiuods 19a0 osn Jutuoniyred-ydeidiodAy jo dn poads st ns, -qunoo
| I [el ! L ot} 7 17 p L s,

uonryred opowr Suruonyryred-yderdiodAy 10y oddy, o[mym ‘gunoo (xuyew-quns /) uonrjred opowr snosuejuods 10] spueys ods,

punmnol (HNIY-SMA) SMA Nejep pue TN Ueemiaq pareduwod pue sdo[fr) Ul paInseswl SI 9dURULIOLS] :G'G S[qR],

77

abvd 1x2U U0 PINULIUO))

¥¢' 9T LO°LT | 9€°61 VT 61 ¥€'9¢ 8€'9C | ¢6'VC €LTVC | XVIN

L8CT VEVI | T¥VIT CTEl Gv'€¢ C9'€C | 06'LT G9L6T | NVHIN-OAD

02'0T ¢0°CT €L°9 60°6 88'0¢ L6°0C | G8CT LLST | NIIN

¥¢' 9T LO'LT | 9€°61 PC'6T | 66°0 | ¥€9C 8E9C | ¢67C¢ €LT¥C | 660 €€g %201 | SAHTqpd

0g'0T <0°Ct €L°9 60°6 L0'T | 88°02 L6°0C | G8TT ALGT | GO'T | 88ge Lgey | oudS esnowr
ydein) poySiop pojoaaipu) :0dAJ, ws[qoid

089 801 | ogc 29w |40 | 1eTr 9gur | 99z voe | 080 | svp 86¢ | 1q9p
aouanbag ydear) pajoaaripun :adAJ, wa[qoig

eve 10 | .60 eL1 [ort | e68 co® [o1 zoe | L1 | €92 8L6C | Tyhuower
ydear) ajrypredig poajyoaarpup) :adAJ, we[qoid

8L'6T 67'0C | 6CF¥T 66°CT 96'8C 96'6C¢ | IT°0C¢ ALT'CC | XVIN

06'8 LL°G €6°C v'e 9091 0’8 VL€ €€ NVHN-OHD

GL'C €C'T VI'T 80T (4% 6L°T €C'T 12T NIN

669 69°9 09T €V'1 G0'T | TOVI 18°6 cL'1 69T 68°0 8¢ a8 XIL-1PNpeol

9¢'9 (AR €91 08T G0'T | CE€l 8€'6 <Ll 69T 96°0 0T¢ (48 Vd-1eNPpeol

€9 81°¢ L9°T 791 60°'T | €C°CI ¥8'8 8L'T 9IL'T G0'T 96¢ ¥C0T | VO-1eNPpeol

ceTT OV'IT 6L 9€'8 10T | L&°0c T96T | €4%T L6°9T | 86°0 | OPIT 9%0¢ | Turejyed

av'er LC9T 069 99°L G6°0 | CL'SC 96'8¢C €€°6 02°0T | 86°0 | 68TF 2618 | 0S09-00TX00TX00G-Sursped

689 V'V 8T'T 9T'T 60'T | L67T 8L'9 ce'1 1€°T c0'T 9% 7COT | wsoTspuelIoyjou

088 66°C ¥9°L 06T ¥9'C | €871 LV'E €901 ov'e 19°C L6€ (48 qpru

L0°L 919 9T'T €T'T 60'T | 69°CT €96 0€'T 1€°1T GO'T | GOET 8%0C | wso Arey

8L'6T 67°0C T8 LTTIT | €0°T | LL°8C S6°6C | L&'ST €61 | ¥O'T | 90gc 199€ | gPueS uewny

6L°LT 80°LT | 8L°0T L¥VCl | 61°'T | 96'8C €L8C | ¥I'61 L1'C¢ | 90°'T | ¢I0€ €€Gy | Toued uewny

T8 AN VT (4t 9€'C | L971 6L°C 69T 71 1¢°C | ¢LTc 960% | 0T000-°L13e8ny

128 81°C 87T vC'1 0€¢C | LCTI 8T 69T Sint 6€¢ | 110z 960% | 0T000-oL138NY

pio un pio un s pio un pio un s

Sma TN SMda TN oddy ods | xmjeIy
UOTSIOI 9[qNO(T UOISIAIJ S[SuIg

abod snowaid wouf panuuoy) — GG I[qR],

78

abod 1T2U U0 PINULIUOY)

€9°C (4t GL0 280 L0V 09T €9°'T 8¢€'T NIIN
69°8 SI'C LTV 81°C 80°G | 9691 0S'c 91°9 0€'c 0S°g 662 [qn projuejg-qom
98’8 €9°T o'y LV'T 8¢9 | 6C°CI 09°1T 99°g 791 €6°9 6.9 7G0T | °[800D)-qom
T€'E€T V8CI 0L 299 ¢O0'T | ALT'CC T19LT 9’8 ar'8 €0'T 696 GCOT | uelSHIog-gqom
LT°C1 76'8 L6°€ 8L¢ 66°0 | €8°6T GL€T 78'¢ ¥9'q 00T L96 CITT | Ad[as{Ieg-piojue)g
€9°C [4ant gL 0 280 1ev 1¢°¢ 60T €91 6€°T 6€°V 00¢ 8LV plojuels
LT°E LV'T 87T 0c'1T 9L'C L0V LT GL'T 8¢€'T 96'c | 8%0% 960% | sjusjed
69°9T 8L¢GT '8 68°L €0'T | 80°L¢ €89c | ¢S90T €T°0T | GO'T | OSTEc S60% | V0OOc-ul
vev €C'¢ gg'c AN 69T 909 9¢°¢ cL'e 4R (4|t T6CT S¥0T | PP
TevT ¥6°Cl 60°6 1€'8 91'T | €9'%¢ 00'I¢ | §9¢T 8S'IT | PI'T | 00FVC 960% | S00g-1me
£€49'8 ¢ 01 61°9 c0'9 €0°'T | L9°9T 8LGT 67'8 ¥1'8 70T (4874 c1s 000g-1ud
61°€ 87T 161 (4t 6L°C v cL'1 8L'T ov'1 90°¢ | LPCC 960% | siuaejed-3o
81°8 vv'e G6°C €€'C G9'¢ | €€7¢I 12°¢ €0'¥ LE°€ 60°¢ 8L ¥c0T | one
VLG €8°C 8’y 29°C 6€°C €V'6 06°C 07’9 60°¢ 6L°C (357 an T09Quozeure
(4 08°C 8¢’V 84°C 79°C 78'8 09°¢c 91°9 68°C 6S9°C 1974 [qn gogQuozeure
CEORC LL°C 997 gv'c 9€'C €06 16°¢C €6°9 c8'C 8¢ 91V (a8 ¢regQuozeure
69°¢ 809 €8¢ 66°¢ 4t 116 VL L 6€°V 787V 161 .9 7201 | 800g-uozewre
ydean) pejoaarq :0dAJ, ws[qoid
66'CT 6C°TT LL°9 G6°9 6V’ V¢ €C°€C | 18'TT ¥6°8 XVIN
I8'IT 89°0T 299 LL°E ¢C'cc 99°0c €26 19°9 NVHN-OHD
L2°0T €L°6 979 70°€ 99'6T OT'LT ce'8 (G NIIN
9LCT 0011 L9 20°€ €0°'T | 67'7C €T€T c9'8 67’V 0T | 0TPE 960% | 0S"1g g U831
66'CT 6C'TT LL9 cre TO'T | 8T'FC €8'CC 0L'8 96'7 YO'T | 619T 8%0C | 0S5 0g ¢ U831
EV'IT 9L°01 97’9 70°'€ T0°'T | ¥6°0¢ 9961 ce'8 L6V ¥0'T 291 %201 | 0561 ¢ U881
L2001 €L°6 0.9 G96'9 TO'T | 99°6T OT'AT | I8'IT 76°8 G0'T c9¢ a8 0™ 81 ¢ U 831
ydeisn wopuey pajoaaipu() :2dAJ, ws[qoad

pIo un 7 pIo un paIo un 7 pIo un

sma | mIn * sma | mIn " oday ods | xuery

UOISI8IJ d[qno(J

UOISIAIJ S[SuIg

abod snowaid wouf panuuoy) — GG I[qR],

79

abvd JxoU U0 PINULIUO))

G9'TT c9'8 OT'TT 8C 'L 00'T¢ OF'E€T | €L9T ¥ICl | NVAN-OdD
89°0T cv'9 LT°0T €€°g 0T'6T 29°0T | 09 %T €L0T | NIIN
89°0T 9 TE€'TT €€'9 GE'T | T€TC L90T | 998T €L°0T | IC'T T.9 7201 | 6-ered
80°¢T 0LCT | 88'IT Gqz'6 G0°'T | PL'CC G®LT | T€LT LOPI | €0°T | C9€T 8POC | ¢ouyo
€E'TT 98°L LT°0T €8°L ¥6'0 | OT'6T ¥9°CT | OGS ¥T 98'IT | €60 99¢ (48 6" XIIjewa
wWB[qOIJ 921A(] Jojonpuodiwiag :2dAy, wejqoid
29T 66T | 860 0gT | ALz | 8L 291 | 98T se'T | or'e | 88y 6001 | dAWI
ydein) oqijredig :odAJ, wiejqoad
Ve 'L CcL'Y 68T €TV 9L'TT GaL9 c9'¢ 8¢9 XVIN
€6°¢ 81°¢ 60T 1€°¢C 1€°9 891 ¢6'T 09°¢ NVHN-OHD
€9°C e (4t} 6G°T Sv'e 86°C 89°0 102 NIN
€9°C ¥v'e €C'T 69T 60T av'e 86°C a’'T 10°C LT'T | 9828 089L | 61USO[-00GS UOIY
0z'e 88'C Sv'1 8L'T 60T 7'e ¢y G6'C GqL'e 8€'T | L99¢ 8¢6E | 8TuS0[-00gS wony
06°¢ 60°¢ 68T 8¢'C 8C'T 1L 089 [4°RS 787V 1€°1T 92T 6661 | ATUSO[-00GS uoLy]
Ve L oLy cvo €Ty TLT | 9L°1T GqL9 890 8¢9 8T'C 969 Z00T | 9TUSO[-00gS8 uoIy]
ydea3iymiN pojoaaipu) :odAJ, we[qoid
62°6 0L°€T gg9 €C'8 ¢9'LT G0'Lc €96 €0°0T | XVIN
veL 86 18°€ 991 60°€T 6991 qc'g 809 NVHN-OHD
g9 16°G ov'e 8L°T 9T'TT 9.°9 €0°¢ €C°C NIN
62°6 16°¢ 0v'e 8L'T G0'T | ¢9°LT 9.9 €0'¢ €C'C T0°T 1844 0cs INT-9seqqom
899 0L°€T 09°¢ 8L'G 790 | 9T'TT S0°LC 187 ¥1'8 €9°0 | €0¥€ 960¥ | ¥195ed
8¢'L 9z°¢l 96°¢ 6G°9 €L°0 | 09'TT 7¥0°'CT 4 16°L GqL o 176 $20T | gro8e
ce9 LT6 gg9 €08 €8°0 | 8%CT GCT61 €96 €0°0T | 98°0 YA a8 g1o8ed
ydean) pejy3iop\ pejoaai :odAJ, we[qoid
69°9T 8L¢GI 60°6 1¢°8 80°LC €¥'9C | 99CI B8S'IT | XVIN
989 68°€ L9°€ 08¢ 00°'TT 96°% 00°G ag'¢ NVHN-OHD
pio un pio un s pio un pio un s
Sma TN SMda TN oddy ods | xmjeIy

UOISI8IJ d[qno(J

UOISIAIJ S[SuIg

abod snowaid wouf panuuoy) — GG I[qR],

80

abvd JxoU U0 PINULIUO))

886 6L°0T VLT 0L'T 680 | 89T TIIVI 9T'¢ 8C'¢ 06°0 92 097 Teydns
01'2¢ 99'L1 €1'8 GL°0T | 960 | 89'T¥ T1€GC | LV'ET €691 | 860 8LC 687 T ejepxo
V.L'8 66V 167 Ge'c ST'T | 69T c9'8 €19 18°¢€ G0'T L0€ 0T1¢g 81q-o
we[qoad uoryeziwiydQ :odAT, ws[qoig
L0°CT 69 CC'1l L9°G L€'T¢ CI'TT | 6961 7901 | XVIN
¢10T 6€°9 GL'6 9¢°g G0'ST 19°6 G891 9¢°6 NVHN-OHD
T0'8 €8°9 70'8 20°G €¢ a1 Ce'8 TEVT 089 NIIN
L0°CT 0.9 16°0T vva GE'T | LE'TC av'6 6961 089 6€°'T 1.9 7201 | 8-ered
7801 679 €101 (450 €€'T | 86'ST LLOT | I8< ¥90T | 1T'1 1.9 ¥g01 | L-ered
69°0T 69 8801 L9°¢ T€T | LL°AT CI'IT | 9981 0201 | 1C'T 1.9 7201 | 9-ered
7.°0T 0¥'9 [44uni Gge'g 9¢'T | 06T OO0°TT | AL89T 6T0T | ¢C'T T.9 ¥c01 | ¢-ered
T0°CT 8L9 ¢6°0T 67°¢ CV'T | €€°0C €LO0T | 96°AT G9°0T | €21 1.9 %201 | Or-ered
6.°0T 119 L9'8 20°G ov'T | 87'8I ¢ce'8 i4an! LT°8 ¥E'T 133474 S1G 6-¢IoLLreq
78 £€8°9 6€°0T 67°G ov'T | AT9T LT°6 €9'8T 8C0T | ST'T Ly an -¢loLLreq
07’6 06°G 70'8 0€°g 8€'T | L09T Gqg'8 IE€EVT 8E0T | ¢C'1 133474 SIS ¢l-gIotireq
126 129 €49'8 20°G vl | 9RLI L9°8 7871 09°6 LTT €8 S1G [T-gIsLreq
T0'8 799 9¢°8 L9°G Ge'T | €C4GT 70°6 Ge91 849°6 6C°'T Ly an T-¢IslLreq
wa[qoid 921A3(J Jojdonpuodiweg jusnbasqng :odAJ, we[qoig
0L°TT 099 66°0T €2°9 20¢¢ 180T | TT°'6T 9T°0T | XVIN
£€8°6 209 17°6 90°¢ 60°8T GqL'6 8991 68°6 NVHN-OHD
TL'L VLG 87'8 787V STVl 02°6 9T°GT av'6 NIIN
[4<N0) 099 66°0T €C'9 9€'T | 46'ST 180T | IT'6T 60°0T | ST'T 099 €001 | p-ered
0L°TT VLG €6°8 787V 79T | L0°CC 0Z°6 ¢0'91 av'6 6C'T LY [qn g-¢lalireq
15, 68°G 87'8 cr'g T | STVI 1€°6 9T°GT 9T0T | ¢C'T cLy (a8 GiGIRLLR]
2ouanbag wA[qOIJ 921A9(] JI0jonpuodiweg :odAJ, welqoid

80°€T 0L°CT | 88'IT Gg'6 VL'¢c GRLT | 9987 LOVI | XVIN
pio un pio un s pio un pio un s

Sma TN SMda TN oddy ods | xmjeIy

UOISI8IJ d[qno(J

UOISIAIJ S[SuIg

abod snowaid wouf panuuoy) — GG I[qR],

81

abvd JxoU U0 PINULIUO))

LLVT PR'GT | PT'OT 69°IT | 160 | €2°9C 9€'9C | 69°GST 80'BT | ¥6'0 | ¥LZC 960V | TLHIVSVIVED
€8¢l 9971 99 17’8 G6'0 | ¥9'¢c 19°€C 6.8 LLYVT | 9670 €E€L ¥¢0T | CIHESVERD
6C°€T 0CVI GL'6 ST'IT | 160 | L1T'CC 8V'€C | 8F'ST 8E'LT | 960 | €60T 8¥0C | CYH6ISV6I®D
9v'eT IVCl 00°6 0g0T | €60 | 8€'IC ¥I'IC | 6€FT 0091 | 960 7Sl ¥¢0T | OEHOTSYOT®D
T0'¢cT 8v'cl ce'L 97’8 ¢6'0 | 9L°1¢ €1°¢c | 8v'0T 08'IT | ¥6°0 096 ¥¢o1T | OD
wa[qord AJjsiuay) wnjueng)/Tesrgaaoay,y, :odAy, weiqoid
60'FT €9CT | S6'CT LLTI 98°LC 9€CC | I69T 8V'0C | XVIN
6L°CT 7’8 86°9 96°9 80°GC 6L€T 08'8 c0'6 NVHN-OHD
¢9'1l 62°9 9L°¢ 8C'¢ 8G°CC 09'8 84V L6°€ NIIN
¢9'Tl 62°9 9L°¢ 8¢'¢ T€'T | 89'CC 09’8 84V L6°€ T1¢°'T | ¢CIT 8V0C | clewtLy}
60F7T C9°¢Cl | 96°CT LLVI | 96°0 | 98°AC 9€CC | 1691 8¥'0C | 660 157 (48] clrewoyy Qg INH A
wa[qoad Tewaay], :odAJ, wa[qoig
0T'2¢ €961 | ¥¢'0T IV'IT 89Ty €9°¢¢ | OT'AT TOLAT | XVIN
Gc ot 86 VLY 96°¢ €ELT 0€91 €9°L 169 NVHN-OHD
€9°C cEe'T 7.0 92°0 GeTV Iy cc'l avo NIIN
vOv1T 1691 6’8 I7'11 | €60 | L&'6c €9°¢¢ | 06'TT TI¥ST | 16°0 | 699 9607 | 08¥Pidiu
06'9 669 LV L6°0 T0°T | I6'FPT ¥8'CI L8°L a’'T c0'1T 70¢ a8 T-y3ou
LL'8 6€°0T €9°L 60'8 TLO0 | L8'ET €V'8T | LECT €9CT | 6L°0 8¢ [qn 0gT1Iou
618 8L'6 S VC'6 GL0 | €ET¥I 66'FI | T€CT LEGT | 880 2 (48] Ggridu
16°6 8L'8 0€L 88°6 I8°0 | 89°ST AT'IT | 9L°IT TO'LZT | 1670 T6¢ L8G¢C 00T3U
2891 I¥'LT | ¥COI Ggg'8 760 | 99°9¢ 99°.% | OT'ZT ¥%O%T | ¢6°0 | 8921 ¥€0g | Tdru
LELT 8TVI 9.°6 GT°0T | 960 | S¥'9C ¥L'€C | 8V'ST 9L°€T | 6670 904 $20T | siseqodre|
699 0L°¢ 89°C €V'e LL°0 | 80°0T 06°€T 0€'e 61°¢ 1.0 | 698T 870g | Tomod iy
€9°C cEe'T .0 9¢°0 76°0 GeY 1Ty (4t avo 96°0 Ggge Vv ¢sut
L8'6T €961 8¢9 209 96'0 | 60'8c LT0¢ | Tg'TT 6L°0T | 86°0 | OFPIT g9LI | geydns
68°0T 6611 86'T c0'C I8°0 | #¥¥'8T ¥0'1C [4°RS 8L°¢ €80 €208 688 geydns
pio un pio un s pio un pio un s
Sma TN SMda TN oddy ods | xmjeIy
UOTSIOI 9[qNO(T UOISIAIJ S[SuIg

abod snowaid wouf panuuoy) — GG I[qR],

82

abod 1T2U U0 PINULIUOY)

€0°'T¢ L8'6T | L89T 999T | 96°0 | 80'TE€ 9T°6C | OV'GC 6C°9C | 00'T ¥v8 ¥co1 | 9pu

0c'0c €L8T | VI'Ic 69°0¢ | 66°0 | 9T'T¥ GT'I€ | LO0'€C 99°€C | 00'T 0V (48] AEpu

LG°€C 98°€C | ¥P'ST €T'6T | ¢6°0 | 86°9€ 89'GE | €€°LC C9°LC | 960 | 609€ 960% | ycpu

C¢¢'CG¢ L6'CC | 9V'LT 06°LT | ¥6°0 | ¢6'CE TG'€E | 699C¢ G9°9¢ | L6°0 | 6ELT 8V0CT | CIPU

LT'IT O8'TT ¢6'C 18°'¢ 660 | ¥€'CCc 6C°€C 98°¢ LTV 66°0 68¢ (48] 1depgotw

SY'IT QLY €€ 60°C CI'T | 86'¥%¢C ¢6'C 119 9¢'C (M 64€ (48] €0pgwRY

OT'€T 09°€T G6'C 8¢V 660 | ¢c¢'cc VI'Ce ¥9'v 89°¢ 66°0 1.9 ¥¢0T | gASo1009

19'¢T 89'€l L9°¢ 119 00T | ¢c€0c 88'1¢ QL'V 109 00T 1.9 7201 | 14307000

TC€T 97’'L 68°TT 1€°€ OT'T | €6°€C cl'L 6L°GT a8'g 80°T €4 (48] geaooqn

8L'6 or'e €L'¢ L8'C ¥9'T | ¢0'T¢ 9T°¢ 88'F e e (414 (48] €004o1ep

786 90°G 8L €L°€ | 86'T | 66°LT 989 | 66°CI T4 | VLT gce ¢1s | v ogdoo

88°CT ¢6%I | T¥PPT 98¥%I | L6°0 | 60°€C T¥¥0C | 86'¢cc 08T | L6°0 6€L 7601 | ydsuoo

Ce'TT TIV'€T | 8€'9T 8¥'6L | 96°0 | ¢L'0c 8CLT | T¥'ACc 008 | 96°0 6V (48] yued

9L°LT 8LCT | ¢V'9T VL'9T | 96°0 | 68'8C G9°AC | ¢6'ICc €€CC | 960 | TC9T 8Y0T | TIYdS[HUSH

we[qoxd g/ag :odAy, weqoig

LLYVT P8ST | 9€¢T 16°1T1 66°Gc 8L°Lc | GC'LT LT'61 | XVIN
¥9'Cl CCET 96°L 786 81°¢¢ GE€'¢C | 8LCl ¢SSl | NVHIN-OHD
c9'8 c9'8 8¢'€ L€9 T¢°LT 9991 €19 0911 | NI

6T¥T P84T €C°L 8’8 €6°0 | ¢¢'9c 8LLT | 8V'IT G®€ET | ¥6'0 | LBET 8V0C | COIS

Cr'IT WPET 008 €9'6 160 | 90°0¢ 90°¢c | ¢6'IT ST'¥VI | ¥6°0 | LTET 8¥0T | 9LHLSIS

¥O¥T 69°ST | GP'0T 8P'IT | 160 | 66'GC 8LLC | SCTLT 9¥'8T | ¥6°0 | #¥P8T 8¥0C | CLHIVOOIVIS

06'IT 90°CT €79 68°6 ¥6°0 | €V'IC 99°8T | 99°TT LT9T | 860 9€9 Y201 | 9EHVEIS

c9'8 c9'8 9€'¢T 90°IT | 96'0 | TC'ZT 9991 | 8€'9T €LTI | 860 GLC (48] OcH

GO'€T 0€°€CT 1.6 LL°0T | 86°0 | ¢O'T¢c 1¥'¢c | 86°ST LI'6T | 860 | 6601 GC0OC | O0TH66°90D

L6°€T 8V'€T | GL°0T TI6°IT | 96°0 | T¢'€C 61'¢C | TTLT ST'8T | 860 1.6 ¥C0T | 9LHL8D

€9'TT 96'TT 8¢'€ LE9 ¥6'0 | 09°cc VE6I €19 0911 | L6°0 LTV (48] 9HSVED

pio un pio un pio un pio un
ns ns

SMa TIN SMa TSIN oddy ods | xuyepy

UOISI8IJ d[qno(J UOISIAIJ S[SuIg

abod snowaid wouf panuuoy) — GG I[qR],

83

abvd ToU UO PaNUUO))

80F%T CV'VI vI'g E1E CL'VC TTVe 62°L 0LV XVIN
8C 'L L8°G LV'T 0€'c ET°ET V.6 1€°€ 80°¢ NVHN-OHD
69°C 79°¢ 68°0 OT'T 84 €9V 08T VLT NIN
9z'eT TVl g98'C QLT ¢0'T | 6C7C TTVCT RS 8V'¢ 66°0 | L9LT 960% | Tgyeler
ST°€ [4aS it 71 L6°0 €9°¢ 67°G 62°C 6C°C 66°0 6L 68 ogyeler
68°¢ €6°C 96'T €9'T €0'T 9.9 qg'g q0'€ L8°C 10°T 09¢ 78y poyeler
09°¢ TL'T €L'T qg'T 66°0 999 [N LLT qe'e 66°0 L89C 8971 Tgyeler
99°€T 1€'8 98°¢ €L'E 80°'T | L6'CC 9L€T 197 1€¥ GO'T | ¥L6T 9607 | dryowoew
€6°0T 8611 Sv'e av'e 86°0 | 8C'6T GR]LI <9'C 1.°C 060 €€L ¥C0T | °[Lseyesrer]
I8°0T 6701 8'C 00°¢ 86°0 | PT'6T C6°GT av'e L9°€ L6°0 9L ¥cOT | €orrmrey
00°cT €6'8 Sv'e [4aS €0'T | ¢9°0¢ 0871 L0V 06°¢ 70T TEO0T 8Y0T | HMDIDTEH
8071 659°6 8L°¢ 9¢€°¢ ¢r'T | €€7C TVE91 vy 6L°¢ OT'T | 61SC 9607 | To[BIS99L]
[R €8¢ [4°RS 80°'T | ¢L'¥¢ 6891 Y9V ceTV 80°'T | 699C¢ 9607 | SP INGHNOID
88°L 6L°€ 86°C 67'C G0'T | 80°LT €9V 19°¢ c8'C G6°0 Gee (48 SY089°DISV
64T 79°C cC'1 0T'T 00T 84V L9V 96°T VLT ¢6°0 q1¢ 44 0897 DISV
90'8 98y v1I'g 88'C €0°'T | 29T 9101 6C°L 0LV ¥6°0 1344 [qn SY0CE OISV
ve'e 12°¢ 68°0 6T 8C'T €9'g 9¢°g 08T ¥¢'T €C'1 (429 0S¥y H0ce OISV
66°6 7'e 197 L9°C 99°'T | 0€°LT 081 11°¢ vI'e 8¢'T [4214 [qn copotrewt
we[qoId uorne[nuiig 3moar) :20dAJ, weqoad

L9°€C 98°€T | YI'IC 69°0C 9T'T¥ 89'G¢ | T¥'iC 008 | XVIN
VYT 9’'IL 09°6 80°8 69°6¢ CI'LT | 86'¢cT 0L0T | NVAN-OdD
8L°6 ov'e ¢6'C 60°C 66°LT c6'C 98°¢ 9¢°¢c NIN
69°LT ¢c¢'0T | €101 08'8 ¢0'T | 8¢'8C 60°0¢ | PIT°9T 9L¥T | ¢O'T | 9¥0T ¥69T | TOSI03
¢8'¢l €601 0€°6 8L°6 €0°'T | TT'9C¢ €9°0C | 90°€T ¥9°6 €0'T 8¢ (a8 oremo)s
pIo un pIo un ns paIo un pIo un ns

Sma TN SMda TIIN oddy ods | xmjeIy

UOISIOaId 9[qno(J UOISIOaIq @~ME~@

abod snowaid wouf panuuoy) — GG I[qR],

84

abod 1T2U U0 PINULIUOY)

68'GT 6V'9T | ¥84GT G499l | OT'T | 99°9¢ 0L'¢c | €9'1¢c 1¢'1¢ | LO'T | ¢¥WPT 8V0C | 4ll}

G6'GT TIFP'9T | S6°ST S€9T | 86°0 | 19°GC L6¥C | 99°'1¢ €0°C¢ | 860 | G6ET 870G | gdpuody

08'ST AT¥L | #P'€T O00%T | OO'T | L89¢ €6'8C | ¢I'8T 9€'61 | 86°0 | ¢ESE 9607V | 6E€9 HNEBA

6T°€T ¥¥'IT | VO'LT 98°L 0¢'T | 66'cc VO'ST | T2¢’9¢ FO'ST | €V'T 1S9 ¥eo1T | ¢d

GE'9T 88'PI | €6°€T 98°CT | L9'T | €¢'¢cc L0'CC | GL'8T 8I'8T | OL'T | L6CE 960V | Td

L9C¢T 2001 | LVI av'g 8C'T | 99¢C¢ 0T'ST | L6'1C ce'8 St 8¢ ¥¢01 | eurduo

61T°9T 02'9T | €LC¢T 6E€T | 96°0 | 1€9¢ 606C | LT'AZT 688T | 960 | ¢90¢ <618 | €6 BIUIH

8G'TT 0€6 | 69T PL°LT | 10'T | GG'T¢ 9€9T | 9€¢Cc 8I'€c | 10T €ee ¢IS | J1s0cH?

GL0C SS°0T | 16'9T 6€9T | ¥O'T | ¢&'¢€ CLOE | €0°9¢ L1°SC | PO'T | GELT 8F0G | g Josyuerd

€7°0¢ SF'8T | ¥09T 69°ST | SO'T | 6’6 968 | ¢0°GC ©0°SC | €0°'T | 66T 8%0G | T Sossyuerd

It #8811 090 79°0 vO'T | ¢0'Te T9'LT LT'T ge'T 96°0 099 1c8 [ZSLEEACEL(o)

€8°€T T€9T | 9€'GT 8G'GT | 860 | ¢8CCE 1¢'SC | 8V'Ic €9°'1¢ | 860 | 60€T 8Y0C | T elomuuq

0L'GT <CO'€T | ¢&¥L 6I%L | T0O'T | 99'9¢c 8G'I¢ | SV'0c €€0¢ | €0'T G06 ¥cOT | TIsLmuuq

8L°GT PS¥I | €8FL I8VI | VO'T | 66'GC ¥C'€C | L&'0C 6002 | €0'T | C6ET 8Y0C | ¢ emumq

€0°¢cT 6¢°0T | 6€°GT 0S'8T | 86°0 | €€'9T 6C'8T | T09C 98°€C | 860 8G¢C (48] 6£3¥88°9

YI'0T ¥9'IT | 6€8T 6661 | 660 | ¢T'LZT GC'E€L | ¢v'€c €9'1¢ | 660 (4514 9¢¢ 0€33s82q

8C'IT ¥V'ET GL'9 92’ ¥6'0 | ST°0¢ 89°CC c8'g 60°L 160 [45¢) ¥201 | goyoede

T¢'6T G6'GT | LL'€T OV'¥PI | L6'0 | 6C°'1€ CE6C | 8O'®T ¥6'8T | 96°0 | ¥LIC 960% | 10T GJe

98'8T 0¢'9T | 88°€ET ¥¥¥I | L6'0 | GO'TE €6'8C | ¢I'8T €681 | 96°0 | ¥PLIc 9607V | TOTA ¥ Je

86'8T 9€9T | GL'€T SG¥'¥I | L6°0 | 80'IE €€6C | 8I'8T 8O'6T | 960 | VLIC 960V | TOTI €73e

9L8T TT'9T | LL'E€T €E€VL | L6°0 | €0'TE€ 90'8C | OI'8T G681 | 96°0 | ¥LIc 960V | 10T ¢e

TT'6T 69T | 08°€T GP'¥PI | L6'0 | 6€°0¢ 868C | €0'8T ¥6'8T | 96°0 | ¥LIZ 960¥ | TOTT7J®

Ge'6T ¥O'9T | L6'ET €¥VVI | L6°0 | €6°0€ ¥I'6C | 9T'8T 0C'6T | 96'0 | ¥LIC 960V | TOTM OJe

we[qoad [einjonayg :odAy, werqoig

86¢1 PSIT | 819 0¢. | 860 | orzz 6881 | 2o¢ €g0r | 10T [89 weor | gexd

wa[qoId uolje[nuiig }INdar) urewo(g-Aousanbaig :odAJ, ws[qoag

pio un 7 pio un pio un 7 pio un
ns ns

SMA _ TMIN SMAd _ TMIN oddy ods XLIYRIA

UOISI8IJ d[qno(J UOISIAIJ S[SuIg

abod snowaid wouf panuuoy) — GG I[qR],

85

abvd JxoU U0 PINULIUO))

0SFT LS°0T | 902 GZ'6T | 660 | 68°cc 8061 | 0PS¢ 8LFC | 660 | S9¢ ¢IS | 193S
€9°LT 19T | ¥¥'61 T08T | 00T | €46C 1I¥¥c | ¥v¥c 19€c | 660 | 09 ©Ig | 4ws
166 61T°¢ | 2¢9TT 0T | S0'E | 99°GT S2'9 | GL'GT 68°¢ | 80'¢ | L8e ¢TI | o(Qgows
168 0S¢ | 90°'TT ¥0F | S6'T | GL'€T 9€6 | 6LFT ©S¢9 | €31 | 9S5¢ L6F | qgeows
88FT F¢¥I | PS¥T 9TFT | 66°0 | 69°€c 600 | €9°1¢ 60°T¢ | L6°0 | 038 #g0OT | 8d9sdiys
8C'GT €¢HI | 8T'ST FI'CT | 660 | ¢0'SC G8'CZ | 9202 09°0¢ | 86°0 | 9¥¢T 8%0¢ | goosdiys
COCT EFET | L8FT 09FT | 86°0 | 9T'SC ¢g'ee | SL°0¢ 88°0% | 10T | €96 #gOT | To9sdrys
PP¥T PLGT | €8FT T8FI | 00T | 9L°€C 8L'IG | L8T1¢ S6'I¢ | 86'0 | 966 ¥gOT | €00 diys
TT'8T TL9T | 92°6T 98°6T | LO'T | ¢&'8¢ €6%¢ | LF'92 ¥I1°GC | 90T | 0.8 %201 | 100 diys
€61 GI'el | 6191 8ECT | S6°0 | LI'66 9L1¢ | ¥9°6c OF'I¢ | 860 | ¥9¥ ©IS | cwerpgs
C9ST 00¢l | IT'ZT SO6T | 960 | SG°Sc 6L61 | €961 ¥09¢ | ¥6°0 | S6G ¥gOT | guypbypgs
G9'9T G8°CT | 09T €€9T | 960 | T€8c 009z | €F'1¢ 08'T¢ | 86°0 | €8FT 8%0¢ | Xmd
6C°LT SP'8T | 8¢°9T 19T | 00'T | LL'LG 8T'LC | €7°€C 19°CC | 660 | 1887 8%0¢ | wIssnsd
8%'€T $0°GT | ¢L'€T €S€T | T0T | 99°¢c L€0Z | 60°T¢ %S0T | 10T | $I8 $TOT | erspsnsd
69°CT 99°GT | 088 ¥&OT | 66°0 | 99°Gc 1€€¢ | €FFT T6'ST | 00T | €26 980T | grsmsnsd
SVFT 6S°E€T | 99°9T LLFT | TOT | 80°€C CL0C | #8'LC L6'CC | 00T | €79 ¥gOT | TTasnyd
9LFT €€1T | $&'ST €0ST | TOT | 98°€c 9€°LT | ¥0'L& 6L'€C | TOT | T€S $oOT | Orspsnsd
GRTT €76 | 9981 GVLAT | GO'T | 6T°0c G8GT | TL8T GG'€¢ | 00T | €€¢ &Ig | Jusogidd
L6FT CVOL | cL61 €6'8L | 86°0 | 667¢ €I8T | #6'€6 VL'€C | L60 | ¥FF ©Ig | uwed[o
IT6T SF'6 | SSAT 98T | 860 | 92'T¢ OT'AT | 06°Sc ¢LGG | 860 | 186 gIG | qiseseu
PPAT 90T | ¥8FT G6'FT | ST'T | 19°.C 8€'€C | ¥L'61T €50% | #I'T | 96%¢ 960% | Ioopswt
1Z°8T ¥8'8T | 8T'9T 6€9T | L6°0 | 69°8C 9€'8C | 1¢¥¢ L6'€C | 66°0 | L6IT 8F0T | Ty w
G8LT G6'9T | 6°CT GLFT | 1C'T | €8°6C ©€€9¢ | L8C¢ 8SV'Tc | LT'T | SebT G6I8 | T ourul
66°GT G9¢L | ¢6€T 80FI | ¥I'T | 80°G6c 1S6T | G881 668L | PI'T | LEET 8%0C | Pooy
GE'9T 6T°CT | 66'CT TI8CT | €0'T | 60'8c 9€°G¢ | €F'1¢ 12'T¢ | €0'T | 92ST 8¥0C | WYy
ST'FT 8T'€T | 6T°ST 60°CT | 86°0 | L9Cc 9€°0¢ | ¢€'1¢ GO'T¢ | 86°0 | 8IIT 870 | X0qIess
UMO un UHO un ns _UMO un _UHO un ns
SMA TIIN SMA TIIN oddy ods | xuyey

UOISI8IJ d[qno(J

uoIsalg 9[3urg

abod snowaid wouf panuuoy) — GG I[qR],

86

abvd JxoU U0 PINULIUO))

06°'TT TT'GT 0T'v €4V 68°0

96°61

L9°V¢C

8’ 99°g

L6°0

12188

870T

ppousouiye

L0°€T 8GCI | 67 %I 0991 | €60

1¢°1¢

9€°02

9¢'1c ¢9'€T

G6°0

96€

(48]

oqnypg

we[qoid sorureud(q pinfg reuoryenduwoy) :odAJ, we[qoag
12T LT°9 €€'6 9¢°¢ LV'Ce 86 €0VI €C'8 XVIN
T1€°0T 69°¢ LG°L (4574 9G°8T 87°6 (4 NE 69°9 NVIN-OHD
0.8 §c'q €T°9 68°€ CE'ST G1'6 626 (478 NIIN
048 Ge's €€'6 9¢'¢ LE'T | C€GT GT'6 €0VT €¢'8 T€'T 1254 ¥¢0T | oIoysgo
1¢¢l LT°9 €19 68°¢€ c0'€ | LV'Ce 86 6¢°6 e €6'C | €692 9607 | LG890T ws3

we[qoad sorjeudewoayosy :0dAJ, wis[qoid

VI'6T 8C9T | €8°C€L 1971 TT'TE €€6¢ | €I'8T €I61T | XVIN

08'8T 80'9T | WLE€T 6V¥I 97'0€ €8'8C | V08T V061 | NVHIN-OHD

808T 96°GT | 69°€T 9E€TI 0T'8C 6V'AC | 86'LT L6'8T | NI

G8'8T 66°GT | TL'€T C¥VL | L6°0 | 9V'0€E 89'8C | 00'8T €T'61 | 960 | 8LIC 960V | 6lPUSI®
96'8T 96°GT | PA'€T 0S¥VI | L6°0 | OT'8C 16'8C | €08 ¥O'6T | 960 | 8LIC 960V | SIPUSJ®
808T 96°GT | 69'€T 8YVIL | L6°0 | PO'TE €C'6C | €T'8T G061 | L6'0 | 8LIC 960¥ | LlPUSJ®
78'8T G0'9T | 6L°€T 8Y'¥I | L6°0 | P€0E €€6C | 90'8T T10°61 | 960 | 8LIC 960¥ | 9lPUSIE
LL8T CT'9T | 9L°€T T19%T | L6°0 | TT'TE 66'8C | G0'8T 90°6T | 960 | 8LIC 960¥ | QIPUSI®E
VI'6T 9T°9T | €8°€T 8Y'¥PI | L6°0 | 960 96'8C | TT'8T €T'6T | 96°0 | 8LIC 960¥ | VIPUSIE
T6'8T 8C'9T | 69°€T LGP | L6°0 | 6F°0E €8'8C | 86°LT L6'8T | 960 | 8LTICc 960¥ | €IPYSI®
68'8T 009T | €L'€T 9€VI | L6°0 | €6'0E 67'LC | TOBT 0061 | 960 | 8LIC 960V | clPUSJ®

we[qoid [einjonals jusnbesqng :odAf, waqoidg

GL8T 1G9 | GLET 6VFL | L6°0 |

08°0¢

2I6c | 28T 66'ST | 960 | 8L1c 960V | TneUsTE

aouanboag wv[qoad [eINjoNI}S :20dAT, wdB[qOIJ

GL'0z GS0Z | 902 98°6T TCCE TlL0€ | ¥8LE T0'9C | XVIN
80°GT S8F'ET | TOFT TOET SLVC ¥PIC | €761 €I'ST | NVAN-OAD
168 6T°S | 090 #90 GLET ST9 | LTT ST | NI
pIo un pIo un pio un pio un
ns ns
SMA TN SMAd TN oddy ods | xuyepy

UOISI8IJ d[qno(J

UOISIAIJ S[SuIg

abod snowaid wouf panuuoy) — GG I[qR],

87

abvd JxoU U0 PINULIUO))

10°6 70'8 €9 LL9 TO'T | L6°AT TL°€ET LV'L 8L 00T qay a8 0001 gHwI0}s
8L'€T GL'CT | 8L°AT 8E€9T | 860 | 9¥'9¢ 8T1'0C | VL' V¢ TO'IC | ¥6°0 807 [qn £A969eIS
6T°€T L8CT | LL'LT 89'8T | 860 | ¢6'V¢ G80C | 89¥C 8I'€C | ¥6°0 0 (48] cA969e1S
1o 1407 c0'T 121 c0'1T LS9 299 19°1 [4 8 80°'T | 8LET 6E£ST | ¥RTyIEL
999 8V'¢ c9'1T 16T 90T 0€°6 G0'8 a8'c 0y IT'T 8.6 L08 98GcIrer
6°6 ¥C'11 62’V 681 L80 | 96'0C 98'CC 8G'¥ 7'y 16°0 €8¢ 48 £809U
8¢'¢ ce'e TL'T 69T 9T'T 06°¢ €8°9 ¢6'C 88'C 12T | 7001 196 CletEle)
G¢'1IT 6€°¢CI 16'C 88'C 00'T | ¢C'6T 6481 7e'€ LV'E G6°0 LVL ¥¢O0T | ['TT13u00
89°CT L9°¢€I 60°¢ 80°¢ 00°'T | L&°0C OV'1C €9°¢ 849°¢ €6°0 9.6 870¢ | T T3u0d
we[qoid Surwwelrdord Jesaul] :odAJ, wieqoad

¥9'1¢ 9¢°0C | 1¥'0c 08'1¢C C¢C'Ie ¢c0e | €9'9¢ Lvve | XVIN
LV'CT 89'TT 0€°6 80°8 ¥9'1¢ LS9'8T | 00CT S€0T | NVHN-OID
0g'L 8€'C 207 LC°T €6°CT c0'¢ 697 €9'T NIIN
LTCT 10°€T cr9 92’9 ¢0'T | I8CC Q19T 86°L 91’8 86°0 | €99C 960V | SIVI-A°01S
80'TT 0L°0T | 00'ST OFP9T | 660 | 9¢'¢cc S8LI | 99'I¢ G¥'6T | 00T €6¢C [qn QreuL:
¥9'1¢ 9¢°0¢ | 69'9T €891 | ¢O'T | ¢¢'I€ ¢g'0€ | L9'€c 98'€C | €0'T | L6SY CO6I8 | HLONY
CL'8T 9€'8T | I¥V'0C O08°'I¢ | €60 | T9°0¢ TT1'9C | 89'€Cc L¥V'¥C | 96°0 1G6€ an gooSeurer
G6'VT 86°0T | 68°€T 6€FI | L6'0 | ¥8GC <CE'EC | 6961 LS'6T | 00T | 600T ¥2OT | Ho0Hd
0z’ L 8¢'C ge'6 LT°1 08'¢ | €6°CI (IR S8T°¢I €91 L9°€ 96¢ c1s qQguosstod
itaqt 09'8 G9°L €L’V ¥O'T | I#V'CC 9071 TL9 987V c0'T 187 7201 | weydroqered
€6°8 a8'8 T¢¥T 88°0T | 9T'T | 98°9T 756 87'¢c 88'8T | 60T e 96¢ MOUTU'B)XTUT
€T°¢T 06°CT | #P'9T €€ST | ¥6'0 | ¥80Z T100C | €9°6¢ 698T | ¢6°0 €LY anY dgionp-reurure|
Iv'et 9P'IT | TI9°TT T€CT | 860 | LEPC 0S0C | P9FT C6°'GT | 86°0 G8¢ [qn (4% 2]
06'TT L€GT 60°% €Ty 68°0 | 8¢'0¢ 8I'9C 69°% 1€°G ¢6'0 | T9ET 8Y0c¢ | wpowsourje
7RTIT VESQT (7 qc'y 06°0 | 09°6T 8T'SC 8LV 61°G 16°0 | TSET 8Y0T | [powsouwje
G6'1T 0T°qT L0V €9y 880 | 6€°0¢ CI9VC 8LV 799 160 | ¥SIT 8%0¢ | [powsourye
pIo un pIo un ns paIo un pIo un ns

Sma TN SMda TIIN oddy ods | xmjeIy

UOISI8IJ d[qno(J

UOISIAIJ S[SuIg

abod snowaid wouf panuuoy) — GG I[qR],

88

abvd JxoU U0 PINULIUO))

88T qa'T V' T 67T 0S'T Gqg'c 83T 9L'T 16°T 8€'T | 6C0T 8V0T | TCPLTIO
06T 99T 4t (4|t it LT°C 16°T 0L'T 781 7T | 692 960¥ | TCPLTID
16T 79'1 vl 8V'T IW'T 12°¢ 68T L9°1T 9L'T Ov'T | LELE 960% | 0CPLTO
18T 99T T LV'T 6€°T 91°¢C 68T 791 qL'T 9€'T | €L97 C6I8 | 6IPLTID
76T 0L'T 87’1 161 Ge'1 v1i'e 76T G9'1T 18'T LT | Y9V C61I8 | SIPLTO
00'C aLT 9q'1 8¢'T 1¢'1T ge'c 01°C 18T 96°T 9C'T | 992¢ 9607 | LIPLTID
649°C 86'T €0°C 06T 9¢'1T veV [4°RS €C'¢ 7'e 9T'T TLL ¥¢OoT | SIPLTD
66°¢ LETT cg'e S1'9 L9°0 PASRY) GG'LT 0€¥y 699 290 8V¥ (48 G9-8-81°
18°C L9°0T 10°€ 79°'¢ L9°0 4% 9T'8T 66°¢ LV'9 890 9€¢ a8 99-6-LY°
wa[qoid [errojeuiquo)) :2dAJ, wa[qoad
07T GO'PT | 9L°€T €6°CT ¥9'€C 9L°8T | 60°0¢ L2°0C | XVIN
L0'TT 80°0T | €LCT €9'IT LT'6T G691 | T€8T TL9T | NVHN-OHAD
TL'8 €C°L LLTT 796 T9°GT OV'el | 6991 €8°ET | NIN
TL'8 €C'L LLTT 79°6 €0'T | T9GT OPCT | 699T €8€CT | 10T LEE an AEIPNY
L0PT GOPT | 9L°€T €6°€T | 960 | #G'€C 9L'8T | 600 Lg0C | 9670 8C8 7¢0T | TOSPuoq
we[qoid uolonpay [OPOoJA :odAJ, wis[qoid
98'GT 09°¢CI 6L°6 0Z°6 6€'9¢ 67Cc | L&CT ¢c'el | XVIN
CEEl LC°6 197 9G¥y €V'ec 9LLT cL'S VLS NVHN-OHD
Ce'Tl €T°L 60°€ 00°¢ 988T 80°GT 8¢ 98°¢ NIN
[4anh €T°L 60°€¢ 00°¢ 0€'T | 98'8T 2991 g6'¢ 98¢ G0'T L€6 870¢C | SIS
6C°€T G8'8 €C'E cv'e 00'T | 99'¢¢ 80°'GT (43RS 10'% 00°'T | ¢L0T 8¥0¢ | Tony
98'GT 09°CI 6.6 026 66°0 | 669C¢ 67CCc | L&'CT ¢c'cl | 10°1 GGL ¥co01 | DOSH
wa[qoad saaenbg jseory :adA T, wa[qoig

8L'€T L9°€T | 8LAT 8Y'8T 9v'9¢ 98¢c | VL¥E 8T'¢€c | XVIN
LV'8 1¢°8 °6°¢ qc'v a8 7vT 99°€l 0€'g 1478 NVHN-OHD
8€°¢ ce'e c0'T 12T 06°G €89 19°1T c8'T NIIN
pio un pio un s pio un pio un s

Sma TN SMda TN oddy ods | xmjeIy

UOISI8IJ d[qno(J

UOISIAIJ S[SuIg

abod snowaid wouf panuuoy) — GG I[qR],

89

LG°€C 98°€c | VI'IE 6S°0% 89TV 89'GE | ¥8'LC 8% XVIN TIVHHEAO

¥CIT ©€6 | FT'L 8%9 €6T S9FI | €P°0T S76 | NVHAN-OTD TIVHAAO

¥y LeT1T | 8¢ $9°9 66, 9T'ST | 98°% €68 | XVIN

0S¢ 66C | L6T CE€CT L7'€ €6'€ | OFG 06C | NVAN-OAD

18T GCT 157 SR 2 ¥I'e 88T | ¥9T GLT | NI

% 80'¢ | 6F'c 80T | 90T | 664 6S°€ | Lgc ¢¥e | ST'T | Tge CIS | 109 [ooUym
€8¢ 6I'TT | 8€'¢ %99 | ¥S0 | 60L 0S9T | 98°% €68 | 990 | O¥c 93¢ | 69-92%u
UMO un Uno un ns _UMO un _UHO un ns

SMA TIIN SMA TIIN oddy ods | xuyey

UOISI8IJ d[qno(J

UOISIAIJ S[SuIg

abod snowaid wouf panuuoy) — GG I[qR],

90

5.4 Future Work

5.4.1 Experiments with hybrid JDS-CSR format

There are 3 variants of hybrid JDS-CSR sub-matrix extraction as listed below.

1. JDS-heavy: Default version of the algorithm. In certain situations where

estimated JDS and CSR vectorization costs are same, creates JDS structure.

2. JDS-heavy CSR no-vec: Everything is same with default version except
CSR kenel is not vectorized. This scheme is designed to make use not only
the vector pipeline but also the regular 2-issue pipeline contained in Xeon

Phi Cores at the same time.

3. CSR-heavy: Both kernels are vectorized. In situations where estimated
JDS and CSR vectorization costs are same, favors CSR structure. CSR
heavy LBA is implemented by changing '<’ in lines 9, 19 in Algorithm 4.6
into '<’. Below, in Figures 5.1 and 5.2, results of different senarios are given
for both JDS and CSR heavy versions.

91

JDS Heavy

JDS

CSR Heavy

CSR

Figure 5.1: Comparison of JDS-heavy CSR and CSR-heavy JDS in certain

senarios. Hybrid format doesn’t necessarily contain both JDS and CSR every-

time. In this case, cost of JDS and CSR are same. Therefore, one of them is

chosen depending on the implementaion.

JDS Heavy

JDS

CSR

CSR Heavy

JDS

Figure 5.2: Comparison of JDS-heavy CSR and CSR-heavy JDS in certain

senarios. Here, at certain points costs are the same. Depending on version of

LBA, one of them will be chosen.

92

CSR

Out of 3 versions JDS heavy version performs the best by a very close margin
(most of the time). So, only the results for that specific version is provided in
Chapter 5. However, performance comparison of all 3 structures on test data set

are given in Table 5.6.

Table 5.6: Different variants of LBA are compared. Results are taken from
single precision Static routine. Performance and measured in GFlops. Partition
size is 32KB.

Matrix | jds heavy csr no-vec | jds heavy | csr heavy
3D_51448_3D 8.42 13.12 13.4
3dtube 12.15 15.64 15.09
adaptive 4.15 4.03 7.52
atmosmodd 16.84 16.78 16.74
av41092 11.09 14.01 15.62
cageld 6.6 6.66 14.65
cnr-2000 11.2 124 12.51
F1 9.59 10.51 10.63
Freescalel 5.14 5.18 5.2
in-2004 13.36 13.53 13.68
memchip 7.71 3.56 7.75
road_central 0.72 0.67 1.2
torsol 14.8 214 21.18
webbase-1M 4.81 5.08 5.04
wheel 601 2.48 2.75 3.45
MIN 0.72 0.67 1.20
GEO-MEAN 6.89 7.27 8.95
MAX 16.84 21.40 21.18

Although, primarily used hybrid sub-matrix extraction version in this work
is JDS heavy, as can be seen from Table 5.6, the version favoring CSR is more

consistent and performs better. There are 2 possible reasons behind this;

1. Since CSR traverses single row upon completion of inner loop, only 1 write
(after y entry is read) will commence. Instead of multiple times as in JDS.

X vector entries are accessed randomly in both, but for matrices whose data

93

access patterns can be effectively regulated, JDS might perform better. The
reason behind this is the possiblity of repeatedly using same X vector entry
for different rows is higher than CSR.

2. The other reason is vector reduction instructions can be used in CSR based
scheme. Not only to perform faster, but also to decrease cache usage by

getting rid of extra writes on Y vector entries.

Judging by these results, CSR implementation of LBA described in Algorithm
4.7, should perform better than CSR heavy version of JDS implementation. It also
doesn’t incur conflicting writes when JDS and CSR packages in hybrid structure

are tried to be executed simultaneously.

5.4.2 Choosing optimum partition size and decomposition

algorithm

For matrices which are denser and quiet capable of filling SIMD unit, with rowwise
1-D partitioning algorithm, it is observed that L2 cache size of Xeon Phi can be
restrictively small. As a result, some sub-matrices become mere single rows.
To prevent this, other partitioning schemes such as 2D checkerboard are worth

implementing.

5.4.3 GPU implementation

Scheduling & Load Balancing algorithms and LBA version described in Algo-
rithm 4.7 described in this paper can be adopted by GPUs. In fact, job queues
implemented for DWS routine warm-up stage is similar to OpenCL command
queues and event system. Therefore, same environment can be simulated for
GPU. Judging from single & double precision DWS routines performance differ-
ence, LBA does effectively use vectorization. Therefore, a GPU implementation

is inevitable.

94

Chapter 6

Conclusion

In this thesis,

locality aware & architecture aware task decomposition strategies,

adaptive runtime scheduling and load balancing algorithms,

a hybrid storage scheme for sub-matrices and

a heuristic based algorithm to extract it

are developed to effciently execute SpMxV process for shared memory architec-

tures.

Developed tools can be used by both spontaneous and regulated SpMxV op-
erations. In this work, hypergraph partitioning models are used in an effort to

regulate memory access patterns of X vector entries.

In Chapter 1, Generic concepts related to Parallel Programming and High

Performance Computing are briefly introduced.

In Chapter 2, background information about SpMxV, task decomposition for
SpMxV, hypergraph model, and Xeon Phi Microarchitecture are explored.

95

In Chapter 3, scheduling algorithms used in this work and what they are

aiming for are explained in detail.

In Chapter 4, SpMxV routines are optimized to make better use of hard-
ware resources, mostly SIMD unit and tested on a sample of SpMs having differ-
ent structures. To uncover performance otherwise left hidden, a hybrid storage
scheme and Laid Back Algorithm (LBA) is presented.

In Chapter 5, Distributed Work Stealing (DWS) routine is compared to Math
Kernel Library’s (MKL) cblas routines. Also additional tests to improve hybrid
format produced by LBA are made.

In the future, As shown in Chapter 5, improvements for faster runtime and
consistent behaviour are still possible. We plan to try those variations techniques

on both Xeon Phi Coprocessors and implement a GPU version using OpenCL.

96

Bibliography

1]

[9]

Ananth Grama, Anshul Gupta, George Karypis, and Vipin Kumar, “Intro-
duction to Parallel Computing,” edition.2, 1994.

Benedict R. Gaster, Lee Howes, David R. Kaeli, Perhaad Mistry, and Dana
Schaa, “Heterogeneous Compting with OpenCL,” edition.1, 2012.

Jim Jeffers and James Reinders, Intel Xeon Phi Coprocessor High Perfor-

mance Programming, edition.1, 2013.

Mark Sabahi, “A Guide to Auto-Vectorization with Intel C++ Compilers,”
2012.

Albert Jan Yzelman, “Generalised Vectorization for Sparse Matrix Vector
Multiplication”, 2014.

Xing Liu, Mikhail Smelyanskiy, Edmond Chow, and Pradeep Dubey, “Effi-
cient Sparse Matrix Vector Multiplication on x86-Based Many-Core Proces-

sors,” 27th International Conference on Supercomputing (I1CS), 2013.

Moritz Kreutzer, Georg Hager, Gerhard Wellein, Holger Fehske, Achim Baser-
mann, and Alan R. Bishop, “Sparse matrix-vector multiplication on GPGPU

clusters: A new storage format and a scalable implementation,” 2012.

Erik Saule, Kamer Kaya, and Umit V. Cataly rek, “Performance Evaluation
of Sparse Matrix Multiplication Kernels on Intel Xeon Phi,” Parallel Process-

ing and Applied Mathematics, 2013.

Ronald W Green, “OpenMP Thread Affinity Control,” 2014.

97

[10] F. V azquez, G. Ortega, J.J. Fern andez, E.M. Garz on, “Improving the
performance of the sparse matrix vector product with GPUs,” Computer and
Information Technology (CIT), no.10, 2010.

[11] Umit V. Catalyurek and Cevdet Aykanat, “Hypergraph-Partitioning-Based
Decomposition for Parallel Sparse-Matrix Vector Multiplication,” [FEFE

Transactions on Parallel and Distributed Systems, vol.10, no.7, pp. 673 —
693, 1999.

[12] OpenMP Application Programming Interface, pp. 53 — 67, 2013.

[13] Rezaur Rahman, “Intel Xeon Phi Coprocessor Vector Micro-achitecture,”,
2013.

[14] Rezaur Rahman, “Intel Xeon Phi Micro-achitecture”, 2013.
[15] Yousef Saad, “Iterative methods for sparse linear systems,”, 2003.

[16] Andrew Witkin, Michael Kaas, “Spacetime Constraints,”, Proceeding SIG-
GRAPH 88 Proceedings of the 15th annual conference on Computer graphics
and interactive techniques, pp. 159 — 168, 1988.

[17] Natarajan Viswanathan and Chris Chong-Nuen Chu, “FastPlace: Efficient
Analytical Placement using Cell Shifting, Iterative Local Refinement and a
Hybrid Net Model,” Proceeding ISPD 04 Proceedings of the 2004 interna-
tional symposium on Physical design, pp. 26 — 33, 2004.

[18] Linux Kernel Archives, https://www.kernel.org/.

[19] Michael J. Flynn, “Some Computer Organizations and Their Effectiveness,”
Computers, IEEE Transactions on vol.C-21, Issue.9, pp. 948 — 960, 1972.

[20] R. Duncan, “A survey of parallel computer architectures,” 1990.

[21] The University of Florida Sparse Matrix Collection,
hitp://www. cise.ufl. edu/research/sparse/matrices/.

[22] GCC, the GNU Compiler Collection, https://gcc.gnu.org/.

(23] Intel C and C++ Compilers, https://software.intel.com/en-us/c-compilers.

98

[24] Intel Math Kernel Library Documentation,
https://software.intel.com /sites /products/documentation/hpc/mkl/mklman/.

[25] Intel 64 and IA-32 Architectures Software Developers Manual Combined
Volumes: 1, 2A, 2B, 2C, 3A, 3B, and 3C.

[26] Intel Xeon Phi TM Coprocessor Instruction Set Architecture Reference Man-
ual, 2012.

[27] Intel Xeon Phi Coprocessor - the Architecture, George Chrysos, 2012.

[28] Performance Obstacles for Threading: How do they affect OpenMP code?,
Paul Lindberg, 2009.

[29] Valgrind official website, http://valgrind.org/.

[30] Nicholas Nethercote and Julian Seward, “Valgrind: A Framework for Heavy-
weight Dynamic Binary Instrumentation,” Proceedings of ACM SIGPLAN
2007 Conference on Programming Language Design and Implementation

(PLDI), 2007.

[31] Nicholas Nethercote, Robert Walsh and Jeremy Fitzhardinge, “Building
Workload Characterization Tools with Valgrind,” Invited tutorial, IEEFE In-
ternational Symposium on Workload Characterization (IISWC), 2006.

[32] Nicholas Nethercote, “Dynamic Binary Analysis and Instrumentation,”,
2004.

[33] Nicholas Nethercote and Julian Seward, “How to Shadow Every Byte of
Memory Used by a Program,” Proceedings of the Third International ACM
SIGPLAN/SIGOPS Conference on Virtual Ezecution Environments (VEE),
2007.

99

