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ABSTRACT

PARALLEL SPARSE MATRIX VECTOR
MULTIPLICATION TECHNIQUES FOR SHARED

MEMORY ARCHITECTURES

Mehmet Başaran

M.S. in Computer Engineering

Supervisor: Prof. Dr. Cevdet Aykanat

September, 2014

SpMxV (Sparse matrix vector multiplication) is a kernel operation in linear

solvers in which a sparse matrix is multiplied with a dense vector repeatedly.

Due to random memory access patterns exhibited by SpMxV operation, hard-

ware components such as prefetchers, CPU caches, and built in SIMD units are

under-utilized. Consequently, limiting parallelization efficieny. In this study we

developed;

• an adaptive runtime scheduling and load balancing algorithms for shared

memory systems,

• a hybrid storage format to help effectively vectorize sub-matrices,

• an algorithm to extract proposed hybrid sub-matrix storage format.

Implemented techniques are designed to be used by both hypergraph parti-

tioning powered and spontaneous SpMxV operations. Tests are carried out on

Knights Corner (KNC) coprocessor which is an x86 based many-core architecture

employing NoC (network on chip) communication subsystem. However, proposed

techniques can also be implemented for GPUs (graphical processing units).

Keywords: SpMxV, parallelization, KNC, Intel Xeon Phi, many-core, GPU, vec-

torization, SIMD, adaptive scheduling and load balancing, Work stealing, Dis-

tributed Systems, Data Locality.
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ÖZET

PAYLAŞIMLI HAFIZA SİSTEMLERİ İÇİN PARALEL
SEYREK MATRİS - DİZİ ÇARPİM TEKNİKLERİ

Mehmet Başaran

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Prof. Dr. Cevdet Aykanat

Eylül, 2014

Seyrek matris dizi çarpımı, denklem çözücülerde kullanılan anahtar işlemdir.

Seyrek matrix tarafından yapılan düzensiz hafıza erişimleri nedeniyle, buyruk

ön yükleyicisi, işlemci ön belleği ve dizi buyrukları gibi bir çok donanım etkili

bir şekilde kullanılamamaktadır. Buda paralel verimliliğin düşmesine neden olur.

Bu çalışmada, paylaşımlı hafıza sistemlerinde kullanılmak üzere,

• Öğrenme yetisine sahip planlayıcı ve yük dengeleyici algoritmalar,

• Dizi buyruklarını etkili bir şekilde kullanmaya olanak sağlayan melez bir

seyrek veri yapısı ve

• Bu veri yapısını oluşturmada kullanılan bir algoritma

geliştirilmiştir.

Bu alşmada belirtilen teknikler, hem ön yapılandırmalı hemde direkt olarak

seyrek matrix-dizi çarpımında kullanılabilir. Testler Intel tarafından üretilen

Xeon Phi adlı, x86 tabanlı çekirdeklere ve bu çekirdekleri birbirine bağlayan halka

ağ protokolüne sahip, yardımcı kartlar üzerinde yapılmış tır. Önerilen teknikler

ekran kartlarında da kullanılabilir.

Anahtar sözcükler : Seyrek matris-dizi çarpımı, KNC, Intel Xeon Phi, çok

çekirdekli ilemciler, vektörizasyon, SIMD, öğrenebilen planlayıcı ve y¨k denge-

leyiciler, i çalma, dağıtık sistemler, veri yerelliği.
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Chapter 1

Introduction

1.1 Preliminary

Advancements in manufacturing technology made it possible to fit billions of

transistors in a single processor. At the time of this writing, a 60+ core Xeon Phi

coprocessor card has 5 billion transistor count. For a processor, higher transistor

count means more computational power. But unfortunately, more computational

power doesn’t necessarily result in better performance. Since computations are

carried out on data, processor has to keep data blocks nearby or bring it from

memory / disk when needed.

Increase in clock frequency implies an increase in data transfer penalty as

well. In current era, the time it takes to transfer data blocks from memory

dominates the time it takes to for processors to perform calculations on those data

blocks. Because of the latency caused by transfer, processors has to be stalled

frequently. Fortunately, most applications do not make entirely idenependent

memory accesses. In general, memory access patterns express some degree of

locality (classified under either temporal or spatial) [2]. Therefore CPU caches

along with prefetchers are introduced in an effort to keep data nearby for certain

senarios. Substantially reducing average time to access memory.
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On the other hand, sequential execution model reaching a point of diminish-

ing returns, paved the way for parallel programming paradigm. With this new

paradigm, problems are expressed in terms of smaller sub-problems which are

solved simultaneously. The process of dividing a workload into smaller chunks is

called task decomposition. Task decomposition takes several metrics into account,

such as load balance, data locality, and communication overhead.

Due to certain applications expressing definitive characteristics (such as pre-

dictable access patterns, being embarassingly parallel...), specialized hardware

structures are developed. In particular, vector extensions such as SSE (Stream-

ing SIMD extensions), operates on chunks of data instead of individual elements

in an effort to improve performance. This is referred as SIMD (single instruction

multiple data) in Flynn’s taxonomy [19, 20].

In this context, scalability of an application is measured by simultaneously

running threads at its peak performance. Increasing thread count further after

this point reduces overall performance which is measured in GigaFLOPs (one

billion floating point operations per second). Scalability depends on application

itself and measured on the hardware it’s running on. Therefore, effectively using;

• prefetchers and CPU cache to hide latency,

• task decomposition to improve load balance, data locality, and to relax

communication overhead, and

• hardware components built in for specific use,

increases the scalability of parallel applications.

1.2 Problem Definition

In computer science alone, linear solvers are used in various, seemingly irrelevant,

areas. Whether the aim is to dynamically animate a character while satisfying

2



certain constraints [16] or to find the best possible placement for millions of circuit

elements [17], the need to use a linear solver remains intact.

In an application, the routines that dominate the runtime, form its kernels.

Improving the performance of an application kernel, stands for improving the

application performance itself. And in linear solvers, the kernel operation is

SpMxV (sparse-matrix vector multiplication).

In this study,

• A hybrid storage format to increase the efficient usage of SIMD components,

• A heuristic based algorithm to extract proposed storage format,

• An adaptive & architecture aware runtime scheduling & load balancing

algorithms that respect data locality,

are developed.

Techniques implemented in this work are designed to be used for both hyper-

graph partitioning powered and spontaneous SpMxV operations.

Hypergraph model is used to

• implement cache blocking techniques to reduce the number of capacity

misses.

• create

– elegant task decomposition,

– data locality awareness in runtime scheduler and load balancer.

Tests are carried out on Intel’s brand new Xeon Phi High Performance Com-

puting platform which gathers NoC (network on chip) and NUMA (non-uniform

memory access) paradigms in single hardware. However, proposed routines can

also be implemented for GPUs (Graphical Processing Units).

3



1.3 Thesis Organization

The rest of this thesis is organized as follows;

• Chapter 2 provides the definition of terms and abbreviations used in this

document, background information on SpMxV, and reviews Xeon Phi High

Performance Computing Platform briefly.

• Chapter 3 describes proposed scheduling algorithms and ideas behind their

implementations.

• Chapter 4 discusses optimization techniques and proposes a data structure

& algorithm to effectively utilize SIMD components for wide spectrum of

matrices.

• Chapter 5 presents experimental results and possible areas for future work.

• Chapter 6 summarizes contributions of this work.

4



Chapter 2

Background

In this chapter,

• definitions of terms and abbreviations

• background information on SpMxV

• basic concepts of and motives behind partitioning algorithms

• an overview of Xeon Phi Architecture

are provided.
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2.1 Terms and Abbreviations

Below are the definitions of terms and abbreviations as they are used throughout

this document.

• M, N: Row, column count of a matrix.

• SpM: Sparse-matrix.

• SpMxV: Sparse-matrix vector multiplication.

• DMxV: Dense-matrix vector multiplication.

• NUMA: Non-uniform memory-access.

• NoC: Network on Chip commutnication subsystem.

• Flops: Number of floating point operations per second.

• GFlopss: GigaFlops, main metric used for measuring performance in this

study.

• MKL: Intel’s Math Kernel Library [24].

• icc: Intel C Compiler [23].

• gcc: GNU C Compiler [22].

• nnz: number of non-zero elements in a sparse-matrix.

• Cache capacity miss: Cache misses that occur due to cache’s insufficient

capacity and can be avoided if bigger cache is provided.

• Cache blocking: Converting a big computational work, into smallter

chunks that can fit into cache to reduce capacity misses. In this work,

L2 cache is chosen for cache blocking.

• Recursive bipartitioning: Dividing given data structure into two sub-

parts recursively until a certain condition is met.

6



• P, PE: Processing element.

• EX: Execution context.

• FIFO: First in first out.

• GPU: Graphical processing unit.

• GPGPU: General purpose graphical processing unit.

• SISD: Single instruction single data.

• SIMD: Single instruction multiple data.

• ALU: Arithmetic logic unit.

• SSE: Streaming SIMD extensions.

• Sub-Matrix: A small part of SpM that can be used simultaneously with

other sub-matrices.

• SMT: Simulatenous multi-threading.

• LBA: Laid back algorithm (a heuristic algorithm to find optimum cut for

hybrid JDS-CSR format).

7



2.2 Background Infomation on SpMxV

A matrix is said to be sparse if the total number of nonzeros is much less than

its row and column count multiplied (M x N). In general any number of nonzeros

per row/column remains constant. Below in Table 2.1, stats of an SpM, taken

from University of Florida sparse-matrix collection [21], are presented.

Table 2.1: Properties of Atmosmodd, it holds only 7 times the memory space

of a dense vector with same column count.

atmosmodd

number of rows 1,270,432

number of columns 1,270,432

nonzeros 8,814,880

max nonzeros per row 7

average nonzeros per row 6.9

min nonzeros per row 4

max nonzeros per column 7

average nonzeros per column 6.9

min nonzeros per column 4

In both SpMxV and DMxV (Dense matrix vector multiplication), through-

put is measured in FLOPs (number of floating operations) per second. If both

routines were implemented in the same way, effective throughput of SpMxV will

be much lower than the throughput of DMxV. Because elements with the value

zero doesn’t contribute to overall results in any way, the throughput of SpMxV

calculated in terms of non-zero elements. Using the same storage format as dense

matrix will result in wasted memory, memory bandwidth, and CPU cycles. As

a result, sparse-matrices are generally stored in compact data strucutres (only

keeping track of non-zero values) which allows traversing non-zeros in a certain

way, instead of using traditional 2D array format.

8



2.2.1 Sparse-Matrix Storage Schemes

There are various storage schemes for sparse-matrices (most fundamental ones

are explained in [15]), only 2 of those are implemented for this work and they are

stated below.

1. CSR (Compressed Storage by Rows)

2. JDS (Jagged Diagonal Storage)

Both structures facilitate efficient use of sequential access and prefetchers. In

Figure 2.1, a sample sparse-matrix with dimensions 8 x 8 is shown in 2D array

representation to be converted into CSR, and JDS counterparts in the following

two sections.

M5,5 =



4 0 0 0 0

0 −1 0 6 2

0 0 −2 0 0

1 0 0 0 0

0 0 −4 1 2


Figure 2.1: Sample matrix in 2D array representation.

2.2.1.1 CSR (Compressed Row Storage) Format

The CSR format consists of 3 arrays; values, columns, and row-ptr. The sparse-

matrix in Figure 2.1 is presented in CSR format in Figure 2.2.

9



index 0 1 2 3 4 5 6 7 8

values 4 -1 6 2 -2 1 -4 1 2

colInd 0 1 3 4 2 0 2 3 4

rowPtr 0 1 4 5 6 9

Figure 2.2: CSR representation of SpM in figure 2.1.

Given that an SpM has enough non-zero elements per row, CSR scheme can

benefit from vectorization. If average non-zero elements per row is significantly

smaller than the number of elements that can fit into SIMD unit, vectorization

is inefficient since most SIMD slots will be left empty.

2.2.1.2 JDS (Jagged Diagonal Storage) Format

The JDS format is formed by 4 arrays and designed to be used by GPUs and

SSE components. Conversion steps of matrix in 2.1 to JDS format is depicted in

figures 2.3, 2.4, and 2.5.

M5,5 =



0 −1 0 6 2

0 0 −4 1 2

4 0 0 0 0

0 0 −2 0 0

1 0 0 0 0


Figure 2.3: Matrix rows are sorted by their non-zero count in descending

order.
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M8,8 =



−1 6 2

−4 1 2

4

−2
1


Figure 2.4: All non-zeros are shifted to left.

index 0 1 2 3 4 5 6 7 8

dj -1 -4 4 -2 1 6 1 2 2

jdiag 1 2 0 2 0 3 3 4 4

idiag 0 5 7 9

perm 1 4 0 2 3

Figure 2.5: JDS representation of SpM in Figure 2.1.

In JDS format, much like in CSR, because they are continuous in memory,

both y vector entries and dj & jdiag arrays can be brought into cache with single

high performance load instruction (vector load). It differs from CSR in that, all

non-zero elements are shifted to left regardless of their column indices to create

longer chunks of SpM elements which will be traversed in the innermost for loop

(see sections 2.4.1.3 and 4.3 for more information). Only x vector entries need

additional gather and pack instructions. Also, for JDS, vectorization is more

efficient for matrices that have similar amount of non-zeros per row (in this case,

matrix assumes more of a rectangle rather than jagged array).
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2.2.2 Space Requirements

Algorithms presented in this work aim to make use of data residing in cache and

reduce the number of times processor has to go to memory to fetch blocks of data.

Because of this, data structures are compact and their space requirements are cru-

cial. The formulas that calculate matrix storage schemes’ space requirements, for

a single sub-matrix, are given below. Size of X vector entries is discarded because

of no particular way to calculate it using rowwise 1-D partitioning algorithm

(which is the partitioning algorithm utilized in this study).

• CSR Storage Scheme

sizeof(REAL) * NNZ + // values array

sizeof(INTEGER) * NNZ + // colInd array

sizeof(INTEGER) * ROW-COUNT // rowPtr array

sizeof(REAL) * Y VECTOR LENGTH // y entries used by sub-matrix

• JDS Storage Scheme

sizeof(REAL) * NNZ + // dj array

sizeof(INTEGER) * NNZ + // jdiag array

sizeof(INTEGER) * LONGEST-ROW-LENGTH + // idiag array

sizeof(INTEGER) * ROW-COUNT // permutation array

sizeof(REAL) * Y VECTOR LENGTH // y entries used by sub-matrix
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2.2.3 Task decomposition techniques for SpMxV

Depending on the computation, decomposition may be induced by partitioning

the input, output, or intermediate data [1]. In following sections, 3 of the task

decomposition schemes for SpMxV are explained.

2.2.3.1 Rowwise 1-D Block Partitioning

As shown in Figure 2.6, output vector Y is partitioned among 4 PEs which

resulted in dividing matrix in row slices and broadcasting input vector X to all

processing elements. Rowwise 1-D block partitioning algorithm incurs shared

reads on X vector on shared memory architectures.

A YX

P2

P3

P4

P1

P2

P3

P4

P1

Figure 2.6: Rowwise 1-D Block Partitioning algorithm for 4 PEs.

2.2.3.2 Columnwise 1-D Block Partitioning

Parallel algorithm for columnwise 1-D block partitioning is similar to rowwise,

except this time input vector X is partitioned among PEs which resulted in par-

titioning matrix in column slices and collective usage of output vector Y. Paral-

lel SpMxV using this type of decomposition incurs conflicting writes and must

provide a synchronization infrastructure to guarantee the correctness of results.

Columnwise 1-D partitioning algorithm is depicted in Figure 2.7.
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A YX

P1 P2 P3 P4

P1

P2

P3

P4

Figure 2.7: Columnwise 1-D Block Partitioning algorithm for 4 PEs.

2.2.3.3 2-D Block Partitioning

Also known as checkerboard, 2-D block partitioning algorithm directly divides

given matrix into blocks in way that both input vector X and output vector Y

can be partitioned among all PEs. Both shared reads and conflict writes incurred

in this decomposition type. Figure 2.8 shows this scheme in action for 16 PEs.

A YX

P1 P2 P3 P4

P5 P6 P7 P8

P9 P10 P11 P12

P13 P14 P15 P16

Figure 2.8: 2-D Block Partitioning algorithm for 16 PEs.

It is stated in [1] that DMxV multiplication is more scalable with 2-D parti-

tioning algorithm. In addition, for SpMxV multiplication, cache blocking tech-

niques can be used with checkerboard partitioning.
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This work uses only rowwise 1-D decomposition algorithm.

2.3 Partitioning & Hypergraph model explored

In this study, hypergraph partitioning model [11] serves is used to sort matrix

rows and columns so that case misses induced by X vector entries are reduced.

In a single iteration of SpMxV multiplication, SpM entries are used only

once. On the other hand, dense vector entries are used multiple times. When

combined SpM, Y, and X size is bigger than targeted cache size, vector entries

can be evicted from and transferred back to cache due to its limited capacity.

Hypergraph partitioning model is utilized to order SpM rows and columns such

that vector entries are used multiple times before they are finally evicted from

cache.

Secondly, in parallel systems where performance can be hindered by commu-

nication and uneven work distribution between PEs (processing elements), with

the help of hypergraph partitioning model;

• elegant task decomposition which reduces inter-process comminication,

• locality aware scheduling and load balancing algorithms,

can be implemented. PATOH (Partitioning Tool for Hypergraphs) [11] is used

throughout this work. Two of PATOH’s partitioning models are explained below.

2.3.1 Column-Net Model & Interpretation

In the column-net model [11], matrix columns are represented as nets (hypern-

odes) and rows as vertices. Ordering & Partitioning decisions are made using cut

nets which represent columns that cannot be fully assigned to single PE, therefore

has to be shared.
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In this work, column-net model is used with rowwise 1-D partitioning algo-

rithm which is previously explained in this chapter. SpM entries on borders incur

collective reads on shared memory architectures.

When using column-net interpretation, partitioning a matrix into 2 sub-

matrices incurs one column border. In Figure 2.9, sample structure of a sparse

matrix partitioned using column-net model is depicted. A1 and A2 are dense

blocks (which will be distributed among PEs). B is border which has all the cut

nets (columns that cannot be fully assinged to single PE).

Figure 2.9: Column-net interpretation incurs vertical border.

2.3.2 Row-Net Model & Interpretation

In the row-net model [11], matrix rows are used as nets (hypernodes) and columns

as vertices. Ordering & Partitioning decisions are made using cut nets which

represent rows that cannot be fully assigned to single PE, therefore has to be

shared.

When using row-net interpretation, partitioning a matrix into 2 sub-matrices

incurs one row border. In Figure 2.10, sample structure of a sparse matrix par-

titioned using row-net model is depicted.
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Figure 2.10: Row-net interpretation incurs horizontal border.

Row-net model is not used throughout this work.

2.3.3 Recursive Bipartitioning

PATOH recursively divides a matrix into two sub-matrices until the total size of

data structures (required to multiply sub-matrix in question) falls below targeted

size (determined by user input). Generally, targeted size is either below or equal

to the local cache size of a processor core. This way, number of cache capacity

misses are reduced.

Total size of the sub-matrix data structure denpends on the underlying storage

format and explained in section 2.2.2

• Rowwise 1-D partitioning algorithm when used with column-net partition-

ing model & interpretation,

• Columnwise 1-D partitioning algorithm when used with row-net partition-

ing model & interpretation (not used in this work),

produces better load balance and parallel scalability.

In Figures 2.11 and 2.12, both algorithms are depicted in action accordingly.

Matrices are partitioned using bipartitioning scheme explained earlier in this

chapter.
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A YX

P2

P3

P4

P1

P2

P3

P4

P1

Figure 2.11: A SpM is recursively reordered and divided into four parts using

column-net recursive bipartitioning scheme. And sub-matrix to PE assignment

is done using rowwise 1-D partitioning algorithm.

As can be seen from Figure 2.11, using ordering, number of shared reads are

reduced compared to Figure 2.6 (Shared portion of X vector are weaved denser).

A YX

P1 P2 P3 P4

P1

P2

P3

P4

Figure 2.12: An SpM is recursively reordered and divided into 4 parts using

row-net recursive bipartitioning scheme. Sub-matrix to processor assignment

is done by using columnwise 1-D partitioning algorithm.

Column parallel SpMxV using row net partitioning scheme, as shown in Figure

2.12, reduces the number of conflicting writes (weaved denser), thus the synchro-

nization overhead, compared to SpMxV in Figure 2.7 is minimized.
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2.4 A high level overview of Intel’s Xeon Phi

High Performance Computing Platform

Covering the whole architecture of Xeon Phi cards is out of the scope of this

document. Therefore, hardware is briefly inspected and only the parts that are

crucial for this study are explained in detail.

Xeon Phi co-processor card [13, 14] is an external and independent hardware

that works in conjunction with Xeon processor [25]. It’s very similar to GPU in

that sense.

Unlike a graphics card, Xeon Phi card has very similar structure to that of a

traditional processor, making it easy to program and port existing code written

for a conventional processors [3]. Porting is done by Intel’s compiler [3, 23] (thus it

is required to program the coprocessor). As a result, using the implementations of

algorithms which are designed for traditional processors, speed-up can be attained

on Xeon Phi card.

Xeon Phi coprocessor is intended for applications where runtime is dominated

by parallel code segments. Because Xeon Phi cores have much lower frequency

compared to Xeon cores, tasks whose runtime is dominated by serial execution

segments can perform better on general purpose Xeon processors [3]. Specifica-

tions of these two products used throughout this work are given in are given in

chapter 5.

In addition to 60+ cores, Xeon Phi coprocessor cards;

• use directory based cache coherency protocol compared to Xeon’s bus based

cache coherency protocol.

• has 512bit SIMD vector unit in each core, compared to Xeon’s SSE / MMX

instructions.

• has GDDR5 memory, compared to DDR3 of Xeon procesor.
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2.4.1 5 key features of Xeon Phi Coprocessors

Covering features of Xeon Phi Coprocessors is out of the scope of this document.

Here are the 5 aspects of this hardware which carries upmost importance for this

work.

2.4.1.1 Number of threads per core

Each core has an inorder dual-issue pipeline with 4-way simultaneous multi-

threading (SMT). For applications (except the ones that are heavily memory

intensive), each core must have at least two threads to attain all the possible per-

formance from coprocessor. This is the result of coprocessor cores having 2-stage

pipeline and described in [3].

2.4.1.2 On die interconnect

All the processing elements on die are connected to each other with a bidirectional

ring which uses store and forward communication scheme (making it possible that

one or more messages can be on the ring at the same time). It is mentioned in

[3] that, because of high quality design of interconnect, data locality beyond a

single core (4 threads running on same core) usually doesn’t make any differ-

ence. Meaning the physical distance between two communicating cores doesn’t

significantly affect overall performance. See Figure 2.13 for a high level hardware

view.
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Figure 2.13: High level view of on-die interconnect on Xeon Phi Coprocessor

cards. TD (tag directory), MC (Memory Channel), L2 (Level 2 Cache), L1-

d (Level 1 Data Cache), L1-i (Level 1 Instruction Cache), HWP (hardware

prefetcher).

There are 3 type of bidirectional rings, each of which is used for different

purposes and operate independently from one another [27].

• Data block ring: Sharing data among cores.

• Address ring: Send/Write commands and memory addresses.

• Acknowledgement ring: Flow control and coherency messages.
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2.4.1.3 Vector Unit

Each core has 512bit wide SIMD instruction unit. Which means 8 double or 16

single precision floating point operations may be carried out at the same time.

It can be used in loop vectorization, however as explained in [4] loops must meet

the following criterias in order to be vectorized.

1. Countable: Loop trip count must be known at entry of a loop at runtime

and remain constant for the duration of the loop.

2. Single entry and single exit: There should be only one way to exit a loop

once entered (Use of breaks and data-dependent exit should be avoided).

3. Straight-line code: It is not possible for different iterations to have dif-

ferent control flow, in other words use of branching statements should be

avoided (However, there is an exception to this rule if branching can be

implemented as masked assignments).

4. The innermost loop of a nest: Only the innermost loop will be vec-

torized (exception being outer loops transforming into an inner loop from

through prior optimization phases).

5. No function calls: There shouldn’t be any procedure call withing a loop

(major exceptions being intrinsic math functions and functions that can be

inlined).

2.4.1.3.1 Obstacles to vectorization There are certain elements that not

necessarily prevent vectorization, but decrease their effectiveness to a point in

which whether to vectorize is questioned. Some of these elements (illustrated

detailly in [4]) are described below;

1. Data alignment: To increase the efficiency of vectorization loop data

should be aligned by the size of architecture’s cache line. This way, it can

be brought into cache using minimum amount of memory accesses.
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2. Non-contiguous memory access: Data access pattern of an application

is crucial for efficient vectorization. Consecutive loads and stores can be

accomplished using single high performance load instruction incorporated

in Xeon Phi (or SSE instructions in other architectures). If data is not

layed out continuously in memory, Xeon Phi architecture supports scatter

and gather instructions which allow manipulation of irregular data patterns

of memory (by fetching sparse locations of memory into a dense vector or

vice-versa), thus enabling vectorization of algorithms with complex data

structures [26]. However, as shown in Section 4.3.2, it is still not as efficient.

3. Data Dependencies: There are 5 cases of data dependency overall in

vectorization.

(a) No-dependency: Data elements that are written do not appear in

other iterations of the loop.

(b) Read-after-write: A variable is written in one iteration and read in

a subsequent iteration. This is also known as ’flow dependency’ and

vectorization can lead to incorrect results.

(c) Write-after-read: A variable is read in one iteration and written in

a subsequent iteration. This is also known as ’anti-dependency’ and it

is not safe for general parallel execution. However, it is vectorizable.

(d) Read-after-read: These type of situations are not really dependen-

cies and prevent neither vectorization nor parallel execution.

(e) Write-after-write: Same variable is written to in more than one

iteration. Also refered to as ’output dependency’ and its unsafe for

vectorization and general parallel execution.

(f) Loop-carried dependency: Idioms such as reduction are referred to

as loop-carried dependencies. Compiler is able to recognize such loops

and vectorize them.

As much as advatageous it may seem, significant amount of code is not data

parallel, as a result it is quite rare to fill all of the SIMD slots. Considering

SIMD instructions are slower than their regular counterparts, vectorization may

deteriorate performance when heavily under-utilized.
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2.4.1.4 Execution Models

There are 2 execution models for Xeon Phi co-processors.

1. Native Execution Model: In this model, execution starts and ends on

co-processor card. This is usually better choice for applications that doesn’t

have long serial segments and IO operations.

2. Offload Execution Model: This is designed for applications with incon-

sistent behaviors throughout their execution. Application starts and ends

on processor, but it can migrate to co-processor in between. Intends to

execute only the highly parallel segments on co-processor. Using processor

simultaneously along with co-processor is also possible in this model.

2.4.2 Thread Affinity Control

In this work, precise thread to core assignment is crucial for better spatial locality

and architecture awareness. As mentioned in [9], there are 3 basic affinity types

depicted in Figures 2.14, 2.15, and 2.16. Examples have 3 cores with each core

having 4 hardware threads, and 6 software threads in total.

Figure 2.14: Compact thread affinity control.
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Figure 2.15: Scatter thread affinity control.

Figure 2.16: Balanced thread affinity control.
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Chapter 3

Partitioning, Scheduling, and

Load Balancing Algorithms

In this chapter,

• developed SpMxV routines,

• utilized task decomposition strategies, and

• implemented scheduling and load balancing algorithms

are all explained in detail.
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All of the SpMxV routines developed for this study uses rowwise 1-D parti-

tioning algorithm and utilizes PATOH’s column net model to regulate memory

access patterns of SpMs. They are listed below.

• Ordering only routines

1. Sequential routine

2. Dynamic OMP Loop routine

• Ordering & Blocking routines

1. Static routine

(a) Chunk distribution

(b) Scatter distribution

2. OpenMP task routine

(a) Chunk distribution

(b) Scatter distribution

3. Global work stealing routine (GWS)

4. Distributed work stealing routine (DWS)

(a) Ring work stealing mode

i. Chunk distribution

ii. Scatter distribution

iii. Shared queue implementation

(b) Tree work stealing mode

i. Chunk distribution

ii. Scatter distribution

iii. Shared queue implementation

In the following sections, clarifications about those routines on the way they

work and the problems they aim to solve are made.
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3.1 Ordering Only Routines

Routines presented in this category utilize only the ordering information passed

on by hypergraph model.

3.1.1 Sequential Routine

Uses traditional sequential SpMxV algorithm on single Xeon Phi core using only

one thread. This algorithm is used as a baseline to calculate speed up of other

algorithms and forms application kernel for other routines. C style pseudo code

of this routine is provided in Algorithm 4.2 and Algorithm 4.3 for both CSR and

JDS formats in order.

3.1.2 Dynamic OMP Loop Routine

This is the parallelized version of sequential routine using OpenMP parallel for

pragma. Routine distributes sparse-matrix rows by using OpenMP runtime load

balancing algorithms (Dynamic scheduling type is chosen using 32, 64, 128 long

trip counts). Schedule types are described in [12].

Problem with using OpenMP runtime load balancing algorithms is that

• they don’t use the benefits of cache blocking done by partitioning algo-

rithms. Thus may occasionally disturb data locality.

• they can fail to balance workload in cases where a matrix has dense rows

& small row count (latter needs a change in scheduling trip count to get

fixed).

• they allow limited control over the order in which SpM entries are traversed.

Certain storage schemes cannot be implemented inside OpenMP’s parallel

for pragma.
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However, unlike routines that use blocking, dynamic implementation doesn’t

have the extra for loop (which is used for traversing SpM row slices - also ad-

dressed as sub-matrices) overhead.
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3.2 Ordering & blocking routines

In hypergraph partitioning powered use, routines in this category utilize cache

blocking techniques along with ordering. Blocking information is either passed

on by hypergraph model or created manually in spontaneous mode. Also, the

load balancing decisions and initial partitioning in these routines are locality and

architecture aware when using hypergraph model. In spontaneous mode, they

only consider underlying architecture (physical placement of EXs) before making

any scheduling decisions.

An SpM is partitioned using recursive bipartitioning algorithm explained in

chapter 2. Then load balancing decisions are extracted from resulting bipartition-

ing tree. Sample bipartitioning tree and its corresponding matrix view (ordered

using hypergraph model), shown in Figures 3.1 and 3.2, are used throughout this

chapter for more clear explanation of partitioning and scheduling algorithms.

Non-executable node Assignment node Executable node

T1 T2

T3 T4 T5

T6 T7

T8 T9 T10

T11 T12

T13 T14 T15

T16 T17

T18 T19 T20

Figure 3.1: Sample bipartitioning tree for column-net interpretation using

CSR/JDS schemes on 5 EXs.

30
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T4

T1
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T7
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T11
T12
T13
T14
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T20

P1

P2

P3

P4

P5

Figure 3.2: Sample matrix ordered by column-net model using rowwise 1-

D partitioning algorithm for task to PE assignment. There are 5 EXs and

collective reads on X vector by tasks are pointed out by density of portions’

color.

As mentioned in chapter 2, column-net interpretation is used with rowwise

1-D partitioning. Roles played by each tree node depends on underlying storage

scheme, patitioning algorithm, and execution context count as explained below.

• Assignment Node is attached to a PE. All child nodes, connected to this

node, are assigned to that PE.

• Non-Executable Node contains a sub-matrix whose total space is bigger

than targetted size. So, it is continued to be divided and ignored by PEs.

• Executable Node , in rowwise 1-D partitioning, contains a sub-matrix

whose total space is smaller than targetted size. Therefore, it isn’t divided

anymore and ready for execution. Additionally, in implementations that

have conflicting writes, inner nodes of the bipartitioning tree are also exe-

cutable and require synchronization framework. In this study, matrices are
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distributed by rowwise 1-D partitioning algorithm and underlying storage

schemes are CSR and JDS, as a result, only the leafs in Figure 3.1 are

executable.

Depicted in Figure 3.1 and 3.2, when using hypergraph model, nodes that have

more common parents, share more input dense vector entries (borders). Thus,

for each EX, executing groups of nodes that share this trait, will result in better

performance and such approach is said to be locality aware.

3.2.1 Chunk & Scatter Distribution Methods

Before describing distribution methods, it is mandatory to define a block. In this

study, Block is a group of EXs. It can have multiple EXs or single one.

3.2.1.1 Chunk Distribution

In chunk distribution, a block consists of single EX. Assignments to blocks occur

as chunks of continuous sub-matrices. For 5 EXs, assignment is the same as the

on depicted in Figures 3.1 and 3.2.

3.2.1.2 Scatter Distribution

In scatter distribution, a block can have multiple EXs. It is assumed that EXs

on the same block is physically closer to each other than other EXs. Therefore,

continuous sub-matrices are scattered among multiple EXs in a block. When

execution starts, each EX executes the sub-matrices that share the most X vector

entries, at the same time in an effort to improve temporal locality. In Figures 3.3

and 3.4 this distribution method is shown in action for 2 blocks, first containing

3 EXs, while the latter having only 2.
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Non-executable node Assignment node Executable node

T1 T2

T3 T4 T5

T6 T7

T8 T9 T10

T11 T12

T13 T14 T15

T16 T17

T18 T19 T20

Figure 3.3: Bipartitioning tree for 2 blocks.
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P2

P3

P4
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Figure 3.4: Sample matrix ordered by column-net model using rowwise 1-D

partitioning using scatter distribution method. Collective reads by task on X

vector are shown by the density of potions’ color.
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3.2.2 Static Routine

This routine makes use of cache blocking techniques to adjust size of sub-matrices

which reduces the number of cache capacity misses. Figure 3.5 shows how initial

work distribution is done in block parallel algorithm.

Non-executable node

Assignment node

Job batch

Job queue

Figure 3.5: Static routine sub-matrix distribution among 5 execution con-

texts.

When used with hypergraph partitioning, tasks who share more borders (X

vector entries) are assigned to a single PE as shown in Figures 3.2 and 3.5.

The downside of static routine is that it only uses initial work distribution

to balance load. Throughout execution no scheduling decisions are made which

causes load imbalance as shown in Figure 3.5.
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3.2.3 OpenMP Task Routine

Tries to improve static routine by adding a dynamic load balancing component.

After an EX finishes its share of load, it looks to steal from other EXs and choses

the victim randomly. Since this routine is implemented using omp task pragma,

control of the order in which sub-matrices are executed and the victim choice is

left to OpenMP runtime.

Aside from locking schemes used by OpenMP runtime, this routine tries to

improve load balance without destroying cache blocks. In this work, victim

choice can improve performace (in both hypergraph partitioning and sponta-

neous modes). However, lacking a way to control execution order, steal count

(how many matrices to steal at once), and choosing the victim randomly this

methods doesn’t allow further tuning.
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3.2.4 Global Work Stealing Routine (GWS)

GWS uses a single FIFO job queue, accessed multiple times by and EX, as a

means of dynamic load balancing structure. In GWS, all the sub-matrices are

stored in a global queue, and each EX takes the first sub-matrix from queue as

they finish the sub-matrix they are currently working on. Queue is protected by

a single spin lock which has to be obtained in order to make a change in its state.

In Figure 3.6 the way sub-matrices line up in global queue is depicted.

Non-executable node

Assignment node

Job batch

Job queue

Global
Job Queue

Figure 3.6: Global queue and the order in which sub-matrices line up.

Although using a global job queue provides perfect load balance, it also limits

scalability since all EXs are racing to obtain the same lock. It can also be argued

that it destroys data locality of initial work distribution.
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3.2.5 Distributed Work Stealing Routine (DWS)

Instead of a single FIFO queue, this algorithm keeps multiple FIFO queues, 1

per EX, each protected by its own lock. A block can have either 1 or more EXs

depending on different DWS implementations (See Chapter 4). Initial state of

the queues before execution are same as Figure 3.5. To preserve data-locality in

victim queues, successful steal attempts to a queue always removes tasks from

the back. Not front, where owner of the queue detaches tasks for itself.

Stealing in this routine happens in 2 ways.

3.2.5.1 Ring Work Stealing Scheme

This scheme is designed to make better use of ring based communication inter-

connect and it is locality aware in a sense that it checks for nearby cores first. In

Figure 3.7, it is shown in action.

n.th victim Finished PE

12 3 5

7

46

8

58 59 57 55

53

5654

52

n

Figure 3.7: Ring work stealing scheme making efficient use of bidirectional

communication ring for 60 PEs.

True data-locality awareness in ring stealing scheme comes from the hyper-

graph partitioning phase. Because of the way sub-matrices are distributed, there
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is a strong chance that nearby EX carry sub-matrices using more common input

dense vector entrice compared to a distant EX.

This algoirthm is also architecture aware since each EX prefers steal attempts

on nearby EXs (in terms of physical placement) over distant ones in an effort to

relax communication volume.

3.2.5.2 Tree Work Stealing Scheme

This scheme is more aggressive in a sense that it tries harder to steal the sub-

matrices with more common input dense vector entries. It uses bi-partitioning

tree to look for victims without any concerns for on-die interconnect. Figure 18

shows this scheme in action.

Non-executable node

Assignment node

P1 P2

P3 P4 P5

Victim Orders

P1: 2 3 5 4

P2: 1 3 5 4

P3: 2 1 5 4

P4: 5 3 2 1

P5: 4 3 2 1

Figure 3.8: Tree work stealing scheme in action.

This algorithm too is locality aware since it prefers stealing sub-matrices with

more common borders first.

Compared to GWS, DWS algorithm is more scalable because, contention for

each EXs’ lock is much less compared to global lock contention of GWS. On the
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downside, EXs still have to go through a lock for accessing their local queues

which limits application scalability.

In distributed schemes, after a victim is chosen, last half of the tasks in its

local queue are stolen. However, execution contexts don’t perform steals on

queues which has less than certain number of entries. This is called steal treshold

and is an adjustable parameter.

3.2.5.3 Shared Queue Implementation

Everything is same with chunk distribution except in shared queue implemen-

tation blocks have more than one EX sharing the same job queue and stealing

occurs between blocks. The first EX that spots the job queue is empty, will look

to steal from other blocks while other EXs in the same block stalls. After a suc-

cessful steal attempt, EX that stole sub-matrices will get itself a single sub-matrix

and free synchronization units for others to continue execution.

Much like scatter distribution, EXs on the same block are assumed be closer in

terms of physical placement and temporal data locality is tried to be exploited.

This implementation, however, is more strict from scatter distribution in that

data-locality is restricted to single block until that blocks sub-matrices are all

executed. After that, stealing can be accomplished according to both ring and

tree work stealing designs.

This implementation of DWS is designed to be used with hypergraph parti-

tioning which is employed to regulate memory access pattern of SpMs.
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Chapter 4

Implementation deltails, Porting,

and Fine tuning

In this chapter;

• high level execution course of application,

• detailed analysis of application kernels,

• optimization techniques used,

• new hybrid storage scheme for sub-matrices and an algorithm to extract it

are presented.
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4.1 Test sub-set

Peak GFlops achieved for each proposed routine on test SpM set of this work are

given in chapter 5. Because there are more than 200 test results, to demonstrate

the effects of optimizations documented in this chapter, small but diverse sub-

set of 15 matrices are chosen. Below in Table 4.1, stats of these matrices are

presented.

Table 4.1: Stats of choosen data sub-set. Row & column count, NNZ, and

max-avg-min NNZ per row/column are given.

row column

Matrix rows columns nnz min avg max min avg max

3D 51448 3D 51448 51448 1056610 12 20.5 5671 13 20.5 946

3dtube 45330 45330 3213618 10 70.9 2364 10 70.9 2364

adaptive 6815744 6815744 20432896 1 3 4 0 3 4

atmosmodd 1270432 1270432 8814880 4 6.9 7 4 6.9 7

av41092 41092 41092 1683902 2 41 2135 2 41 664

cage14 1505785 1505785 27130349 5 18 41 5 18 41

cnr-2000 325557 325557 3216152 0 9.9 2716 1 9.9 18235

F1 343791 343791 26837113 24 78.1 435 24 78.1 435

Freescale1 3428755 3428755 18920347 1 5.5 27 1 5.5 25

in-2004 1382908 1382908 16917053 0 12.2 7753 0 12.2 21866

memchip 2707524 2707524 14810202 2 5.5 27 1 5.5 27

road central 14081816 14081816 19785010 0 1.4 8 0 1.4 8

torso1 116158 116158 8516500 9 73.3 3263 8 73.3 1224

webbase-1M 1000005 1000005 3105536 1 3.1 4700 1 3.1 28685

wheel 601 902103 723605 2170814 1 2.4 602 2 3 3

Optimizations in this chapter doesn’t alter matrix structures in any way. They

are, in general, related to (parallel) programming and geared towards effective

usage of host hardware resources. To demonstrate their impact more clearly,

results are presented in between.
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4.2 General template of application behaviour

Explanations of sub-routines ,shown in Algorithm 4.1, are listed below;

1. CREATE SUB MATRICES procedure divides SpM into smaller parts

and its implemention changes with underlying storage scheme.

2. ASSIGN TO EXs procedure performs the initial assignment has different

implementation for each routine explained in chapter 3

3. ADAPTIVE WARM UP procedure adaptively balances workload be-

tween multiple execution contexts and is also differs for routines mentioned

in chapter 3.

4. EXECUTE KERNEL procedure performs SpMxV and varies depend-

ing on underlying storage scheme and task decompoisition as explained in

section 4.3.

Algorithm 4.1 General template of application behaviour.

1: A← sparse matrix

2: ▷ Cache size for sub-matrices are calculated using total size of the partial

spm strucutre and size of corresponding output vector entries

3: cacheSize← targettedsize

4: ex count← total number of execution contexts

5: sub mtx list← ROWWISE 1D PARTITION(A, cacheSize)

6: initial assignments← ASSIGN TO EXs(sub mtx list, ex count)

7: assignments← ADAPTIV E WARM UP (initial assignments, ex count)

8:

9: ParallelSection

10: ex id← ID of current execution context

11: ex subMatrices← assignments(ex id)

12: while ex-subMatrices is not empty do

13: subMatrix← ex subMatrices.remove()

14: EXECUTE KERNEL(subMatrix, x, y)

15: end while
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4.3 Application Kernels

Impelementation details and aplication kernels for CSR and JDS formats are

given in next two sections.

4.3.1 CSR format

In CSR implementation, sub-matrix structure composed only of a descriptor

which includes, starting row index, row count, starting column index, and column

count of sub-matrix itself.

Task decomposition depicted in Figure 4.1 occurs in row slices and during

multiplication process global SpM structure is used with sub-matrix descriptors.

Column count

Row countStarting Row Index
Starting Column Index

Figure 4.1: Task decomposition for CSR format.

Kernel function for CSR format is given in Algorithm 4.2. For SpMs having

only a few average non-zero elements per row (smaller than SIMD length), CSR

scheme suffers from vectorization since most of SIMD slots will be left unutilized.

However, this scheme will benefit from vector component considering SpM rows

are dense enough to effectively fill SIMD slots.

43



Algorithm 4.2 Kernel function for CSR format.

1: function CSR KERNEL(csr, x, y)

2: for i = 0; i ≤ csr.rowCount; + + i do

3: sum← 0

4: for j = csr.rowPtr[i]; j ≤ csr.rowPtr[i+ 1];+ + i do

5: sub← sum+ csr.values[j] ∗ x[csr.colInd[j]];
6: end for

7: y[i]← sum;

8: end for

9: end function

4.3.2 JDS format

As depicted in Figure 4.2 task decomposition is implemented as row slices. How-

ever, in addition to a descriptor, sub-matrix strucutres also has a part of SpM

stored in JDS format (partial JDS). And during multiplication, this structure is

used instead of global SpM.

Column count

Row countStarting Row Index
Starting Column Index

Partial JDS
idiag [ ]

jdiag [ ]

values [ ]

Figure 4.2: Task decomposition for JDS format.
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Kernel function for JDS format is given in Algorithm 4.3. As mentioned in

section 2.2.1, for well behaved matrices, JDS format can be vectorized efficiently.

On the other hand, for SpMs that have occasional dense rows and significantly

low average non-zero count per row, vectorization becomes inefficient. Because

vectorization is carried out by unrolling the innermost loop of JDS kernel, loop

will most likely have very few iterations when traversing dense rows. Therefore,

the mojority of SIMD slots will be left empty.

Algorithm 4.3 Kernel function for JDS format.

1: function JDS KERNEL(jds, x, y)

2: for i = 0; i ≤ jds.idiagLength; + + i do

3: for j = jds.idiag[i]; j ≤ jds.idiag[i+ 1];+ + j do

4: rowIndex← j − jds.idiag[i];

5: y[jds.perm[rowIndex]+ = jds.dj[j] ∗ x[jds.jdiag[j]];
6: end for

7: end for

8: end function

Application kernel for JDS can be further optimized by making memory ac-

cesses to y vector sequential. In optimized implementation permuataion array in

JDS structure is eliminated by one time sort on y vector at the end of multipli-

cation phases. Performance differences regarding the update are given in Table

4.2.
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Table 4.2: Effect of discarding permutation array from JDS format. Results

are measured in GFlops and belong to single precision spontaneous static rou-

tine with 32KB sub-matrix sizes. Gains are substantial for matrices that are

efficiently vectorizable.

jds perm jds sort

Matrix (GFlops) (GFlops)

3D 51448 3D 0.30 0.33

3dtube 1.64 1.97

adaptive 3.63 4.20

atmosmodd 13.89 16.48

av41092 0.67 0.34

cage14 5.47 6.33

cnr-2000 3.79 4.65

F1 2.58 2.90

Freescale1 3.00 3.23

in-2004 1.71 1.87

memchip 7.09 3.54

road central 0.65 0.67

torso1 0.31 0.32

webbase-1M 0.26 0.28

wheel 601 1.46 0.65
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4.4 Runtime Scheduling and Load Balance

4.4.1 Generic Warm-up Phase

Each routine, whether it is ordering only or uses both ordering and blocking, is

run 10 times to warm up CPU caches. In this work, SpMxV operation usually

takes up much more space than the space provided by CPU caches as a direct

result of huge SpM size. Therefore, SpM, X, and Y vector entries cannot reside

in cache between runs. However, generally, warm-up operation is not designed

for data-sets, but for frequently used data-structures that are small enough to fit

into cache, such as job queues. After warm-up stage, application simply settles

down on hardware.

4.4.2 Improving Application Scalability

Routines implemented using ’OpenMP for loop’ limits programmers’ control in

many ways as described in Chapter 3. Therefore, they do not allow any more

tuning in warm-up phase.

However, routines with hand coded scheduling algorithms can be optimized

during warm-up phase. When each routine is executed multiple times, frequently

used job-queue data structures, thread descriptors, and other low level primitives

such as scheduling data structures are brought into cache so that each routine

can settle down.

Routines with dynamic scheduling rely on lock and other synchronization

primitives defined by OpenMP library to ensrure correctness of results. Although

it depends on routines itself, synchronization overhead introduced by locks is

visible in every routine and significantly limits scalability of an application. Locks

affect GWS the most because of contenttion caused by all EXs racing to obtain

a single lock. As a result, it cannot scale up to 240 threads which is the most

number of threads, Xeon Phi model used in this work can simultaneously run.
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As for distributed routines, although contention per lock is greatly reduced, PEs

still have to go through their own lock to access local queue which significantly

hinders performance. There is litte improvement between 180 threads (3 per core)

and 240 (4 per core). By discarding these locks and critical sections, hardware

threads will not be stalled due to yields caused by them.

Also, locks and other sychronization primitives used by handcoded schedulers

are defined at a relatively high level (also called as application-level), which incurs

more overhead than sometimes needed (as they are designed for general use) [28].

For SpMxV, all this can be discarded through warm-up phase. Execution

starts with initial task decompositions which are defined in Chapter 3. After a

run, stolen tasks for each queue are recorded and job queues are reformed using

that info. And for the next run, same thing happens on reformed job queues.

This phase is repeated for 10 times, where each run building on the one before

it. It has been observed that after 6 - 7 runs, job queues reach to an almost

stable state, where task groups assigned to PEs, do not change despite actively

working scheduler. Consequently, number of times software threads yield due

to I/O are reduced and scalability is further enhanced. This is called adaptive

warm-up phase, since it displays a form of learning.

4.4.3 Adaptiveness: Reasoning

Previously, when performance was limited by the transistor count (calculation

power) of processor, load balance could be defined as “equally distributing

computations to each processing element”. However, today, where major-

ity of applications’ performance is determined by their memory access pattern, it

is almost mandatory to alter the definition by adding “and minimizing pro-

cessing element idle time”. To further illustrate the point, below in Table

4.3, two matrices’ stats are provided.
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Table 4.3: Row & Column count, NNZ, and max, avg, min NNZ per

row/column are given for as-Skitter and packing-500x100x100-b050.

Matrix rows columns nnz
row column

min avg max min avg max

as-Skitter 1696415 1696415 20494181 0 12.1 35455 0 12.1 35455

packing-500x
2145852 2145852 32830634 0 15.3 18 0 15.3 18

100x100-b050

From Table 4.3, it can be seen that as-Skitter has lesser NNZ. It also has

smaller row & column count which translates into Y & X vector sizes respec-

tively. Bigger Y vector also means number of writes are higher. However,

packing-500x100x100-b050 is more structured since there isn’t big difference be-

tween max/avg/min NNZ per row & column. Below in Table 4.4 results of 100

SpMxV operations for these matrices are presented for both spontaneous & hy-

pergraph powered uses for Static and DWS routines.

Table 4.4: Time measured (in seconds) for 100 SpMxV operations performed

using as-Skitter and packing-500x100x100-b050 with Static and DWS routines

both ’sp’ (spontaneous) and ’hp’ (hypergraph) modes. ’spc’ stands for spon-

taneous mode partition count while ’hpc’ for hypergraph mode patition count.

In third row, how many times faster packing-500x100x100-b050 executes com-

pared to as-Skitter is shown. (A hybrid storage format, proposed later in this

chapter, is used to take these runs).

Matrix spc hpc
static DWS

sp hp sp hp

as-Skitter 3959 2606 1.589 0.577 0.531 0.372

packing-500x100x100-b050 8192 4139 0.378 0.279 0.227 0.255

comparison - speedup 4.20 2.06 2.33 1.45

Compared to packing-500x100x100-b050, as-Skitter also has much less par-

tition count. However, because of its complex structure, as-Skitter’s memory
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access pattern cannot be captured (thus require more memory access / data

fetch issues from processor). As shown in Table 4.4, despite being much bigger

matrix, packing-500x100x100-b050 runs multiple times faster. In spontaneous

mode, DWS runs almost 3 times faster than Static routine for as-Skitter. Which

means it has severe load imbalance as well.

Problems are said to be memory bound, if the time it takes to complete is

primarily determined by memory operations. SpMxV is a memory bound problem

as well. And from the experiment above, it can be inferred that for applications

which are memory bounded, load balancing doesn’t necessarily mean physical

load (computation) balance. It can also mean, cache miss count, cache miss rate,

memory latency, write cost, read cost, how they are implemented, and so on.

Therefore, for SpMxV, load balancing algorithms should also take many other

factors into acount.

As stated in previous section, in warm-up phase each run is built on top of

the one before it and overall workload is tried to be balanced in a limited time

interval. It starts with physical workload sizes, however, because of its adaptive

nature, after that, it’s not the computation sizes that are tried to be balanced.

It is the active runtime for each EX that is tried to be balanced and it includes

all the things that are mentioned above.
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4.5 Overcoming deficiencies related to storage

format

Both CSR and JDS formats are compact and compressed. Therefore, they are

naturally optimized to benefit from vectorization using high performance load

& store instructions through data alignment and continuous memory accesses.

However, loop vectorization occurs when innermost loops in CSR and JDS appli-

cation kernels (shown in Figures 4.2 and 4.3 can be unrolled. And a loop can be

unrolled as many times as there are iterations. In conclusion, iteration count of

the innermost loops significantly effects efficiency of vectorization (Other factors

to consider for vectorization are described in chapter 2).

In CSR, average/max/min non-zero count per row can be used as a metric

to illustrate effectiveness of vectorization, the higher they are the more items

to fill ALUs in vector unit. However, max-column non-zero count of a SpM or

’not-so-rare’ dense columns can equally effect vectorization of a CSR structure.

In such situtations, vector unit will be severely under utilized most of the time,

sometimes even operating on only 1 element.

In JDS, similarly, higher average/max/min non-zero count per column can be

thought as a possitive sign for vectorization, while high max-row non-zero count

of an SpM or ’not-so-rare’ dense rows can hinder it.

Above, ’not-so-rare’ idiom means occasional but at the same time not occa-

sional enough to keep avg non-zero per row/column high. When vectorization

unit is severely under-utilized, depending on the architecture and the length of

vectorization unit, computations are carried out much slower compared to regular

SISD (single instruction single data) instructions. This is the direct result of vec-

tor instructions being slower than regular ones, however they are also forgiving

and sometimes rewarding when heavily utilized.

To efficiently vectorize even the most ill-behaved matrices, an hybrid storage

format and an algorithm to how to extract it is presented in the following two

sections.
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4.5.1 Hybrid JDS-CSR storage format

There are various SpM storage formats [6, 7, 10, 15]. One perfect storage format

for all types of SpM is still a goal versus reality. Because, they tend to fix certain

problems at the expense of performace or some other problems they introduce

themselves. This study asks the question, “Is it really necessary to put an

effort to fit a global SpM into certain data structure?”.

In current era, parallel programming paradigm is adopted, in which, problems

are expressed in terms of smaller sub-problems and solved simultaneously. More-

over, parallelism is expressed in terms of tasks (rather than threads) which helps

with scalability and load balancing. As a result, partitioning a global SpM, pro-

duces many small sub-matrices with each having different characteristics. Some

expressing parents’ ill-behaved nature while others having completely different

structure.

For the reasons stated above, a partial hybrid JDS-CSR storage format for

’sub-matrices’ - ’not for global SpM’ is implemented aiming to not only neutralize

worst case behaviour, but also attain otherwise lost performance. In Algorithm

4.4, application kernel for this new format is presented. In Table 4.5, peak GFlops

achieved by normal CSR, vectorized CSR, JDS, and hybrid JDS-CSR formats are

shown. Despite code size growing by a small portion, results show that hybrid

sub-matrix format is superior to both CSR and JDS formats. In the following

section, how to efficiently extract this hybrid structure is discussed.

Algorithm 4.4 Kernel function for hybird JDS-CSR format.

1: function HYBRID JDS CSR KERNEL(subMatrix, x, y)

2: if subMatrix.hybrid.JDS is not empty then

3: JDS KERNEL(subMatrix.hybrid.JDS, x, y)

4: end if

5: if subMatrix.hybrid.CSR is not empty then

6: CSR KERNEL(subMatrix.hybrid.CSR, x, y)

7: end if

8: end function
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Table 4.5: Storage format performance (measured in GFLOPs) comparison

for single precision SpMxV. For CSR format, the routine that performs best is

chosen to include OpenMP Dynamic Loop implementation. For JDS and CSR

formats, results belong to DWS routine.

Matrix

CSR-O2
CSR-O3 JDS-O3

Hybrid

no-vec JDS-CSR

(best) (best) (DWS) (DWS)

3D 51448 3D 9.89 8.29 0.32 13.29

3dtube 13.06 21.84 5.29 20.51

adaptive 5.84 3.01 13.79 14.24

atmosmodd 9.09 5.97 24.78 24.59

av41092 13.02 12.13 1.07 14.49

cage14 10.94 9.65 26.91 26.24

cnr-2000 10.08 8.90 7.76 16.88

F1 13.69 23.24 16.80 22.00

Freescale1 7.15 5.16 16.71 17.48

in-2004 8.83 11.89 3.53 26.20

memchip 8.94 5.31 4.55 15.66

road central 3.54 1.31 1.42 1.42

torso1 10.40 21.91 0.59 30.30

webbase-1M 5.01 3.55 0.33 6.46

wheel 601 3.33 2.26 2.46 3.40

geo mean 8.15 7.10 3.74 13.51

As shown in Table 4.5, developed hybrid storage format performs more con-

sistently on wider spectrum of matrix structures and has the biggets geometric

mean by far. In most cases, it can remove the inefficiency of vectorization and

reveal additional performance which is masked in all other routines.

4.5.2 Laid Back Approach

To create a hybrid JDS-CSR sub-matrix that efectively utilizes vector unit, it is

crucial to find ’near optimum’ point from where a sub-matrix can be splitted into
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JDS and CSR formats. Also, finding the best point depends on host architecture’s

vector unit length and precision of floating point numbers used for SpMxV (to how

many elements that can fit into built in vector unit). Considering all these, the

issue can be modelled as a bin-packing problem which is NP-hard. Additionally,

using such a sollution, even if a decent point is found, it may take a lot of time

& resources to find that point.

In Algorithm 4.5 pseudo code for overall hybrid sub-matrix extraction is

demonstrated.

Algorithm 4.5 Hybird JDS-CSR sub-matrix extraction.

1: function EXTRACT HYBRID SUBMATRICES(A, subMtxSize)

2: subMatrices← ROWWISE 1D PARTITON(A, targetedSize)

3: hybridSubMatrices← NULL

4: globalOrderingArray ← NULL

5: while subMatrices is not empty do

6: subMatrix← subMatrices.remove()

7: nnz ← extractNonZeros(subMatrix)

8: nnz sorted, ordering info← sortForJDS(nnz)

9:

10: cutColInd, cutRowInd← LAID BACK(nnz sorted)

11: hybridSubMatrix← CUT (nnz sorted, cutColInd, cutRowInd)

12:

13: hybridSubMatrices.add(hybridSubMatrix)

14: globalOrderingArray.add(ordering info)

15: end while

16: return hybridSubMatrices, globalOrderingArray

17: end function

4.5.2.1 Laid Back Algorithm: Reasoning

Laid back algorithm (LBA) is designed to evaluate whether it is advantageous to

execute a sub-matrix as JDS, as CSR, or as both to efficiently use vectorization.

It doesn’t find the optimal sollution and has a single assumption and a constraint.
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Therefore, it can also be thought of as a heuristic function.

The assumption in LBA is that “the length of vectorization unit on

host architecture is infinite”.

Considering infinite vector unit length, LBA then finds the fewest number of

lines, drawn parallel to X and Y axis, that can traverse all non-zero elements of

sub-matrix. There is only one constraint, “once changed the direction of

line from Y to X (or vise versa) it cannot be changed back” (shown in

Figure 4.3).

Figure 4.3: Constraint violation in LBA is described.

Since,

• sub-matrix non-zeros are ordered for JDS format,

• and hardware vectorization unit has infinite length,

finding lines by ruleset defined above, is equal to finding an hybrid JDS-CSR

format that can be executed by the fewest number of vector instructions, which

is also equal to finding a square with the biggest perimeter that can completely

fit into ’zero space’. As shown in Figure 4.4, problem turns into seaching for
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maximum (x + y). Lines drawn parallel to Y axis will be converted to JDS, and

parallel to X axis will be converted to CSR structure.

y

x

JDS

CSR

Figure 4.4: LBA in action.

LBA can be implemented using CSR formed much like JDS, JDS, or some

structure that keeps non-zero elements ordered in JDS fashion. Therefore, it is not

mandatory to previously create storage formats to extract this hybrid structure.

However, because of simplicity, JDS and CSR implementation of LAID BACK

algorithm is given in Algorithm 4.6 and 4.7.
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Algorithm 4.6 JDS implementation of LBA to find the optimum cut for infinite

vector unit length.

1: function LAID BACK JDS(jds)

2: cutColumnIndex← 0

3: cutRowIndex← 0

4: maxPerimeter ← 0

5: for i = 0; i ≤ jds.idiagLength; + + i do

6: y ← jds.rowCount− (jds.idiag[i+ 1]− jds.idiag[i])

7: x← jds.colCount− i

8: perimeter ← x+ y

9: if maxPerimeter ≤ perimeter then

10: maxPerimeter ← perimeter

11: cutColumnIndex← i

12: cutRowInd← jds.rowCount− y

13: end if

14: end for

15:

16: y ← jds.rowCount

17: x← jds.colCount− i

18: perimeter ← x+ y

19: if maxPerimeter ≤ perimeter then

20: maxPerimeter ← perimeter

21: cutColumnIndex← i

22: cutRowInd← jds.rowCount− y

23: end if

24:

25: return cutColumnInd, cutRowInd

26: end function
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Algorithm 4.7 CSR implementation of LBA to find the optimum cut for infinite

vector unit length.

1: function LAID BACK CSR(csr)

2: cutColumnIndex← 0

3: cutRowIndex← 0

4: maxPerimeter ← 0

5: for i = 0; i ≤ csr.rowCount; + + i do

6: x← csr.colCount− (csr.rowPtr[i+ 1]− csr.rowPtr[i])

7: y ← jds.rowCount− i

8: perimeter ← x+ y

9: if maxPerimeter ≤ perimeter then

10: maxPerimeter ← perimeter

11: cutColumnIndex← csr.colCount− x

12: cutRowInd← i

13: end if

14: end for

15:

16: x← csr.colCount

17: y ← csr.rowCount− i

18: perimeter ← x+ y

19: if maxPerimeter ≤ perimeter then

20: maxPerimeter ← perimeter

21: cutColumnIndex← csr.colCount− x

22: cutRowInd← i

23: end if

24:

25: return cutColumnInd, cutRowInd

26: end function

Despite being identical in number of lines drawn, both JDS and CSR imple-

mentation have different results. See Figure 4.5 for the sample output of CSR

implementation for same input matrix depicted in Figure 4.4.
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y

x

JDS

CSR

Figure 4.5: Sample output for CSR implementation of LBA.

4.5.2.2 Laid Back Algorithm: Complexity

Worst case complexity of laid back algorithm (for the implementation above) is

O(n) where n is the number of columns in a sub-matrix. However, in reality

sub-matrices rarely have a row full with non-zeros. For most cases, n is the max

number of non-zeros a row has in the sub-matrix. For JDS format, this is equal

to the idiag-length and for CSR format it is populated row count.

4.5.3 Possible Improvements & Performance Analysis

There are 2 minor elements that can hinder performance for Hybrid JDS-CSR

format, both of which are explained below.

1. Sparse matrix formats are accessed sequentially. So, prefetchers can easily

capture their data access patterns. In hybrid format both JDS and CSR

are stored seperately. The arrays stored in those formats are allocated

in arbitrary memory segments. As a results, application kernel can be

intervened by 2 times the stalling prefetch issue for regular storage formats
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in order to access those arrays.

2. Application kernel uses both JDS and CSR kernels’ code seperately. As a

results the code grows bigger with additional for loops.

These are somewhat hazardous side-effects, however they will be the case

for every sub-matrix. The former can be addressed by allocating single array

structures for both JDS and CSR together and using pointers to access as depicted

in Figure 4.6.

JDS

dj [ ]

jdiag[ ]

idiag[ ]
CSR

values [ ]

colInd [ ]

rowPtr [ ]

Figure 4.6: Possible improvement for hybrid JDS-CSR format to avoid extra

prefetch issues.

However, because of the latter, this sollution will most likely create peel loops

as addressed in [3] due to alignement issues. To solve these issues, it is mandatory

to create a ’true hybrid storage format’ that can process both JDS and CSR alike.

These issues are not inspected further in this study.

4.5.4 Choosing optimum partition size and decomposition

algorithm

Since each core can run up to 4 threads, initialy 128KB is choosen for each thread

to fit in L2 cache (for a total of 512KB). However, for smaller SpMs, partition
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count may be less than 240 (which is supported hardware thread count). In

this case smaller matrix sizes work better. Additionally, smaller sub-matrix sizes

produce better load balance, thus perform faster. But, for matrices which are

denser and quiet capable of filling SIMD unit, with rowwise 1-D partitioning

algorithm, it is observed that small partition sizes can be restrictive. Most of the

time, causing hybrid storage format to act as CSR. More importantly, to ensure

SIMD unit slots are filled, the more iterations in inner most loop, meaining bigger

sub-matrix sizes are required. Therefore, sub-matrix size is chosen as 64KB per

thread (for a total of 256KB).

4.5.5 Effect of Hypergraph Partitioning: Analyzed

As briefly explained in Chapter 2, hypergraph partitioning tries to exploit tem-

poral data-locality for X vector entries by reordering matrix rows & columns. As

mentioned in Chapter 2, hypergraph partitioning tool used throughout this study

is PATOH [11].

In this section, most of ordering and blocking routines are tested to investigate

the effect of data-locality on bidirectional ring based communication subsystem

of Xeon Phi. In Table 4.6 results of this test (using hybrid JDS-CSR storage

format) is presented.

Choosing the victim or execution order with OpenMP Task routine per-

forms poorly. DWS-Ring routines using chunk distribution method performs

consistently better than most other routines. However, for SpMs that benefit

from hypergraph partitioning, scatter distribution method or tree work stealing

model can perform better (as can be seen in road central). Also, in one instance

(3D 51448 3D), static chunk routine runs faster than DWS chunk routine. This

can be caused by either interruptions on warm-up phase, ruined data-locality,

or false-sharing. While the third one being more probable, this predicament is

worth further investigation.

Since it is the most consistent (load balance), reliable (can use hypergraph
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partitioning but doesn’t depend on it), and has biggest geometric mean for spon-

taneous use, DWS routine with chunk distribution model is choosen for further

comparisons in Chapter 5.
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Chapter 5

Experimental Results and Future

Work

In this chapter,

• specifications of hardware used in testing,

• information about data sets,

• details of test environment,

• results of test runs,

• discussions on proposed algorithms’ scalability & performance

are provided.

64



5.1 Test Environment

• Test runs are taken using Xeon Phi native execution model.

• Balanced affinity model (explained in chapter 2) is used for thread to core

assignment.

5.2 Hardware Specifications

Tables 5.1, 5.2, and 5.3 show specifications of Xeon and Xeon Phi systems used

in tests.

Table 5.1: CPU and memory specifications of Xeon Phi model used in tests.

Xeon Phi CPU and Memory Specifications

Clock Frequency 1.053 GHz

Number of Cores 60

Memory Size/Type 8GB / GDDR5

Memory Speed 5.5 GT/sec

Peak Memory Bandwidth 352 GB/sec

Table 5.2: Cache specifications of Xeon Phi model used in tests.

Xeon Phi Cache Specifications

L1 L2

Size 32 KB + 32 KB 512 KB

Associativity 8-way 8-way

Line Size 64 Bytes 64 Bytes

Banks 8 8

Access Time 1 cycle 11 cycles

Policy pseudo LRU pseudo LRU
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Table 5.3: CPU and memory specifications of Xeon model used in tests.

Xeon Processor, Memory, and Cache Specifications

Model 2 x Intel(R) Xeon(R) CPU E5-2643 0 @ 3.30GHz

Clock Frequency 3.30 GHz

Number of Cores 16 (8 x 2 CPUs)

Memory Size/Type 128 GB / DDR3

Memory Speed 1600 MHz

L2 Cache 2 x (4 x 256 KB)

L3 Cache 2 x (10 MB)

5.3 Test Data

Below DWS routines and Math Kernel Library’s CSR based cblas functions [24]

are compared. Total of 243 SpMs are tested, all of which are taken from [21]. In

spontaneous SpMxV for both single and double precision, in 201 instances, default

DWS (DWS-RING) algorithm outperformed MKL, and in 42 behind by usually

a small margin as shown in. Moreover, it uses blocking information better, thus

runs faster utilizing hypergraph partitioning model. Properties of those matrices

as well as results, are presented in Tables 5.4 and 5.5 accordingly.

There is only one condition for choosing matrices. They have to have atleast

240 (max Xeon Phi thread capacity) sub-matrices when partitioned. Partition

size for a sub-matrix is chosen to be 64 KB as explained in Chapter 4.
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5.4 Future Work

5.4.1 Experiments with hybrid JDS-CSR format

There are 3 variants of hybrid JDS-CSR sub-matrix extraction as listed below.

1. JDS-heavy: Default version of the algorithm. In certain situations where

estimated JDS and CSR vectorization costs are same, creates JDS structure.

2. JDS-heavy CSR no-vec: Everything is same with default version except

CSR kenel is not vectorized. This scheme is designed to make use not only

the vector pipeline but also the regular 2-issue pipeline contained in Xeon

Phi Cores at the same time.

3. CSR-heavy: Both kernels are vectorized. In situations where estimated

JDS and CSR vectorization costs are same, favors CSR structure. CSR

heavy LBA is implemented by changing ’≤’ in lines 9, 19 in Algorithm 4.6

into ’<’. Below, in Figures 5.1 and 5.2, results of different senarios are given

for both JDS and CSR heavy versions.
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JDS CSR

JDS Heavy CSR Heavy

Figure 5.1: Comparison of JDS-heavy CSR and CSR-heavy JDS in certain

senarios. Hybrid format doesn’t necessarily contain both JDS and CSR every-

time. In this case, cost of JDS and CSR are same. Therefore, one of them is

chosen depending on the implementaion.

JDS

CSR

JDS

CSR

JDS Heavy CSR Heavy

Figure 5.2: Comparison of JDS-heavy CSR and CSR-heavy JDS in certain

senarios. Here, at certain points costs are the same. Depending on version of

LBA, one of them will be chosen.
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Out of 3 versions JDS heavy version performs the best by a very close margin

(most of the time). So, only the results for that specific version is provided in

Chapter 5. However, performance comparison of all 3 structures on test data set

are given in Table 5.6.

Table 5.6: Different variants of LBA are compared. Results are taken from

single precision Static routine. Performance and measured in GFlops. Partition

size is 32KB.

Matrix jds heavy csr no-vec jds heavy csr heavy

3D 51448 3D 8.42 13.12 13.4

3dtube 12.15 15.64 15.09

adaptive 4.15 4.03 7.52

atmosmodd 16.84 16.78 16.74

av41092 11.09 14.01 15.62

cage14 6.6 6.66 14.65

cnr-2000 11.2 12.4 12.51

F1 9.59 10.51 10.63

Freescale1 5.14 5.18 5.2

in-2004 13.36 13.53 13.68

memchip 7.71 3.56 7.75

road central 0.72 0.67 1.2

torso1 14.8 21.4 21.18

webbase-1M 4.81 5.08 5.04

wheel 601 2.48 2.75 3.45

MIN 0.72 0.67 1.20

GEO-MEAN 6.89 7.27 8.95

MAX 16.84 21.40 21.18

Although, primarily used hybrid sub-matrix extraction version in this work

is JDS heavy, as can be seen from Table 5.6, the version favoring CSR is more

consistent and performs better. There are 2 possible reasons behind this;

1. Since CSR traverses single row upon completion of inner loop, only 1 write

(after y entry is read) will commence. Instead of multiple times as in JDS.

X vector entries are accessed randomly in both, but for matrices whose data
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access patterns can be effectively regulated, JDS might perform better. The

reason behind this is the possiblity of repeatedly using same X vector entry

for different rows is higher than CSR.

2. The other reason is vector reduction instructions can be used in CSR based

scheme. Not only to perform faster, but also to decrease cache usage by

getting rid of extra writes on Y vector entries.

Judging by these results, CSR implementation of LBA described in Algorithm

4.7, should perform better than CSR heavy version of JDS implementation. It also

doesn’t incur conflicting writes when JDS and CSR packages in hybrid structure

are tried to be executed simultaneously.

5.4.2 Choosing optimum partition size and decomposition

algorithm

For matrices which are denser and quiet capable of filling SIMD unit, with rowwise

1-D partitioning algorithm, it is observed that L2 cache size of Xeon Phi can be

restrictively small. As a result, some sub-matrices become mere single rows.

To prevent this, other partitioning schemes such as 2D checkerboard are worth

implementing.

5.4.3 GPU implementation

Scheduling & Load Balancing algorithms and LBA version described in Algo-

rithm 4.7 described in this paper can be adopted by GPUs. In fact, job queues

implemented for DWS routine warm-up stage is similar to OpenCL command

queues and event system. Therefore, same environment can be simulated for

GPU. Judging from single & double precision DWS routines performance differ-

ence, LBA does effectively use vectorization. Therefore, a GPU implementation

is inevitable.
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Chapter 6

Conclusion

In this thesis,

• locality aware & architecture aware task decomposition strategies,

• adaptive runtime scheduling and load balancing algorithms,

• a hybrid storage scheme for sub-matrices and

• a heuristic based algorithm to extract it

are developed to effciently execute SpMxV process for shared memory architec-

tures.

Developed tools can be used by both spontaneous and regulated SpMxV op-

erations. In this work, hypergraph partitioning models are used in an effort to

regulate memory access patterns of X vector entries.

In Chapter 1, Generic concepts related to Parallel Programming and High

Performance Computing are briefly introduced.

In Chapter 2, background information about SpMxV, task decomposition for

SpMxV, hypergraph model, and Xeon Phi Microarchitecture are explored.
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In Chapter 3, scheduling algorithms used in this work and what they are

aiming for are explained in detail.

In Chapter 4, SpMxV routines are optimized to make better use of hard-

ware resources, mostly SIMD unit and tested on a sample of SpMs having differ-

ent structures. To uncover performance otherwise left hidden, a hybrid storage

scheme and Laid Back Algorithm (LBA) is presented.

In Chapter 5, Distributed Work Stealing (DWS) routine is compared to Math

Kernel Library’s (MKL) cblas routines. Also additional tests to improve hybrid

format produced by LBA are made.

In the future, As shown in Chapter 5, improvements for faster runtime and

consistent behaviour are still possible. We plan to try those variations techniques

on both Xeon Phi Coprocessors and implement a GPU version using OpenCL.
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