
EFFICIENT RESULT CACHING
MECHANISMS IN SEARCH ENGINES

a thesis

submitted to the department of computer engineering

and the graduate school of engineering and science

of bilkent university

in partial fulfillment of the requirements

for the degree of

master of science

By

Fethi Burak Sazoğlu

September, 2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bilkent University Institutional Repository

https://core.ac.uk/display/52927285?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Prof. Dr. Özgür Ulusoy (Advisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Asst. Prof. Dr. İsmail Sengör Altıngövde (Co-advisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Prof. Dr. Uğur Güdükbay

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Prof. Dr. Ahmet Coşar

Approved for the Graduate School of Engineering and Science:

Prof. Dr. Levent Onural
Director of the Graduate School

ii

ABSTRACT

EFFICIENT RESULT CACHING MECHANISMS IN
SEARCH ENGINES

Fethi Burak Sazoğlu

M.S. in Computer Engineering

Supervisors: Prof. Dr. Özgür Ulusoy and Asst. Prof. Dr. İsmail Sengör Altıngövde

September, 2014

The performance of a search engine depends on its components such as

crawler, indexer and processor. The query latency, accuracy and recency of the

results play crucial role in determining the performance. High performance can

be provided with powerful hardware in the data center, but keeping the opera-

tional costs restrained is mandatory for search engines for commercial durability.

This thesis focuses on techniques to boost the performance of search engines by

means of reducing both the number of queries issued to the backend and the cost

to process a query stream. This can be accomplished by taking advantage of the

temporal locality of the queries. Caching the result for a recently issued query

removes the need to reprocess this query when it is issued again by the same or

different user. Therefore, deploying query result cache decreases the load on the

resources of the search engine which increases the processing power. The main

objective of this thesis is to improve search engine performance by enhancing pro-

ductivity of result cache. This is done by endeavoring to maximize the cache hit

rate and minimizing the processing cost by using the per query statistics such as

frequency, timestamp and cost. While providing high hit rates and low process-

ing costs improves performance, the freshness of the queries in the cache has to

be considered as well for user satisfaction. Therefore, a variety of techniques are

examined in this thesis to bound the staleness of cache results without blasting

the backend with refresh queries. The offered techniques are demonstrated to be

efficient by using real query log data from a commercial search engine.

Keywords: Query result Caching, web search engines, financial cost, time-to-live.

iii

ÖZET

ARAMA MOTORLARI İÇİN VERİMLİ
ÖNBELLEKLEME MEKANIZMALARI

Fethi Burak Sazoğlu

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Yöneticileri: Prof. Dr. Özgur Ulusoy ve Yrd. Doç. Dr. İsmail Sengör Altıngövde

Eylül, 2014

Arama motorlarının performansı indeksleyici, arka uç işlemcileri ve belge

toplama botları gibi parçalarının performansına bağlıdır. Sorguların gecikme

süresi, sorgu sonuçlarının doğruluğu ve güncellikleri performansı belirlemede

önemli rol oynar. Arama motorlarında performans, güçlü donanımlarla

sağlanabilir, fakat arama motorlarının ticari devamlılığı açısından operasyonel

giderlerin kontrol altında tutulması gerekir. Bu nedenle, bu tez arama mo-

torlarının performansını arka uca giden sorgu sayısını ve bir sorgu akımının

sonuçlarının hesaplama maliyetini azaltarak iyileştiren tekniklere odaklanır. Bu,

sorgulardaki zamansal lokalite özelliğinden yararlanılarak sağlanabilir. Yakın za-

manda verilen sorguların sonuçları önbelleklenerek, bu sorguların aynı veya farklı

kullanıcılar tarafından tekrarlanması durumunda oluşacak tekrar hesaplama

maliyeti ortadan kaldırılabilir. Dolayısıyla, sorgu sonuç önbelleği eldeki kay-

naklardaki yükü azaltarak hesaplama güçlerini artırır. Bu tez temel olarak

sonuç önbelleğinin üretkenliğini geliştirerek arama motorunun performansını

yükseltmeyi amaçlar. Frekans, sorgu zamanı ve sorgu maliyeti gibi sorgu is-

tatistikleri kullanılarak önbellek isabet oranını artırarak ve toplam maliyeti

düşürerek bu amaca ulaşılabilir. Arama motorlarının verimliliğini artırırken

önbellekteki sonuçların taze tutulması kullanıcı memnuniyeti açısından önemlidir;

bundan dolayı arama motorları tarafından gözardı edilemez. Sonuçların

tazeliğini sınırlandırmak için çeşitli teknikler önerilerek, önbelleğin performansını

düşürmeden bu çalışmada verimli çözümler bulunmaya çalışılmıştır.

Anahtar sözcükler : Sorgu sonuçlarının önbelleklenmesi, web arama motorları,

finansal maliyet, sorgu yaşam süresi.

iv

Acknowledgement

I would like to express my deepest gratitude to my advisor Prof. Dr. Özgür

Ulusoy for his invaluable guidance, support and considerateness during this re-

search. I also would like to thank my co-advisor Asst. Prof. Dr. İsmail Sengör

Altıngövde for his guidance, encouragement and effort during the preparation of

this thesis.

I would like to thank my committee members Prof. Dr. Uğur Güdükbay and

Prof. Dr. Ahmet Coşar for their feedbacks and comments on the thesis.

I would like to thank Asst. Prof. Dr. Rıfat Özcan for his support and guid-

ance during this research and Dr. Berkant Barla Cambazoğlu for his advice and

feedback during my intership with him. I would like to acknowledge TÜBİTAK

for their financial support within National Scholarship Programme for M.Sc. Stu-

dents.

Moreover, I would like to thank my friends Ahmet Çınar and Mehmet

Güvercin for their friendship and support. Finally, I would like to express my

gratitude to my parents and my brothers Zahid and Erdem for their constant

support.

v

Contents

1 Introduction 1

2 Related Work 4

3 Strategies for Setting TTL Values for Search Engine Result

Caching 11

3.1 Introduction . 11

3.2 TTL Approaches . 13

3.2.1 Basic Approaches . 13

3.2.2 Hybrid Approaches . 14

3.3 Setup . 15

3.4 Results . 16

3.5 Conclusions . 20

4 Similarity based TTL Approach to Search Engine Result

Caching 25

4.1 Introduction . 25

vi

CONTENTS vii

4.2 Motivation . 26

4.3 Similarity-based TTL Algorithms 27

4.4 Experimental Setup . 29

4.5 Experimental Results . 30

4.6 Conclusion . 32

5 A Financial Cost Metric for Result Caching 35

5.1 Introduction . 35

5.2 Financial Cost Metric . 36

5.3 Result Caching Techniques . 37

5.4 Experiments . 41

5.5 Conclusion . 45

6 A Financial Cost Approach to Query Freshness in Query Result

Caches 46

6.1 Introduction . 46

6.2 Query Expiration Techniques . 47

6.2.1 Lazy Techniques . 48

6.2.2 Eager Techniques . 50

6.3 Experiments . 51

6.4 Results . 52

6.5 Conclusion . 57

CONTENTS viii

7 Conclusion 58

A Query Log Data 64

List of Figures

3.1 The points at which the results of a query are expired in different

TTL approaches (the query results are assumed to be cached at

time t=0). 12

3.2 Stale traffic and false positive ratios for basic approaches over all

queries . 16

3.3 Stale traffic and false positive ratios for basic approaches over head

queries . 17

3.4 Stale traffic and false positive ratios for basic approaches over tail

queries . 18

3.5 Stale traffic and false positive ratios for conjunction-based hybrid

approaches over all queries. 19

3.6 Stale traffic and false positive ratios for conjunction-based hybrid

approaches over head queries. 20

3.7 Stale traffic and false positive ratios for conjunction-based hybrid

approaches over tail queries. 21

3.8 Stale traffic and false positive ratios for disjunction-based hybrid

approaches over all queries. 22

ix

LIST OF FIGURES x

3.9 Stale traffic and false positive ratios for disjunction-based hybrid

approaches over head queries. 23

3.10 Stale traffic and false positive ratios for disjunction-based hybrid

approaches over tail queries. 24

4.1 Stale traffic and false positive ratios for BasicScore DirectExpiration

Algorithm. 31

4.2 Stale traffic and false positive ratios for AgeScore DirectExpiration

Algorithm. 32

4.3 Stale traffic and false positive ratios for BasicScore IndirectExpiration

Algorithm. 33

4.4 Stale traffic and false positive ratios for AgeScore IndirectExpiration

Algorithm. 34

5.1 Hourly query traffic volume distribution and hourly variation in

electricity prices. 36

5.2 Financial cost evaluation of caching policies assuming variable

query processing time costs. 41

5.3 Hit rates of caching policies assuming variable query processing

time costs. 43

5.4 Financial cost evaluation of caching policies assuming fixed query

processing time costs. 44

5.5 Hit rates of caching policies assuming fixed query processing time

costs. 45

6.1 Stale traffic and false positive cost ratios for lazy techniques . . . 52

6.2 Stale traffic and false positive cost ratios for lazy techniques - zoomed 54

LIST OF FIGURES xi

6.3 Average age over a week for Time TTL 55

6.4 Average processing cost over a week for Time TTL 55

6.5 Average age over a week for the eager case - refreshing with uniform

and nonuniform cost . 56

6.6 Average processing cost over a week for the eager case - refreshing

with uniform and nonuniform cost 56

List of Tables

4.1 Similarity Algorithms. 30

4.2 Similarity Algorithms Result Comparison as Gain in Percentage. . 34

xii

Chapter 1

Introduction

As the number of websites increases, finding content across web relies more upon

commercial search engines, which has the task to collect information about web-

sites and present a portion of them to its users concerning their search terms. The

increasing number of websites presents challenges to the search engines such as

efficient and effective allocation of their resources for query processing while en-

suring user satisfaction. Users are content as long as they reach fast and accurate

search results. Since commercial search engines relies on user data to constantly

improve their search algorithms, number of users a search engine has is essential.

However, maintaining a web search engine includes tasks such as crawling, pars-

ing, indexing of the web pages, partitioning them into clusters and populating

the caches which have a vital role in the success of the query search results and

eventually the search engine.

Search engine caches are one of the crucial components as they mitigate the

burden on search engine backend by serving the readily available results in the

cache without calculating the result in the backend from scratch. Therefore,

search engines endeavor to maximize the search queries served from the cache.

However, this comes with the overhead of keeping the cache fresh as the web

pages are not static, updated frequently. In order for search engines to provide

up to date results, they are required to reflect these changes in their indices to

the result caches. While too much update of the entries in the caches may render

1

them redundant, very little update may degrade user satisfaction by serving them

stale results. Thus, it is crucial to optimize this process with respect to hardware

and cache algorithms. With the cheap production costs of necessary hardware,

cache size is considered insignificant and assumed to be infinite. Recent research

has focused more on cache algorithms that maximizes served fresh results from

cache and minimizing unnecessary processing of search results at the backend

rather than giving them from the cache.

Caching policies take care of cache admission and eviction operations for fi-

nite caches. Prefetching of query results and cache invalidation mechanisms are

deployed by search engines for keeping the query results fresh. Cache invalidation

algorithms determine possible cache entries which are stale and invalidate them

so that when a hit occurs in an invalidated entry, the result is served from the

backend and the corresponding cache entry is updated accordingly. The basic

cache invalidation algorithm is time-to-live (TTL). It is a query-agnostic algo-

rithm which sets an upper bound on the staleness of query results. The first part

of our thesis is devoted to examine this strategy by combining them with different

TTL mechanisms.

Power consumption of the commercial search engines constitutes another vital

component of the companies. These search engines deploy massive data centers

in order to handle searches coming from all over the world with minimum latency.

Search engine result caching can also lower this power consumption by eliminating

the need to reprocess the search queries and providing previously available results.

In the second part of our thesis, we take this notion one step further and consider

not only the power consumption but also the electricity prices when conducting

caching operations. This work utilizes hourly available electricity prices to alter

caching policies accordingly and lower the electricity bills consequently.

The rest of this thesis is organized as follows. In Chapter 2 we provide the

related work about search engine caching and give information about the work

done so far, and the motivations for these works. In Chapter 3, we investigate a

number mechanisms for setting TTL values of the result caches. In Chapter 4,

similarity based TTL approach is analyzed. In Chapter 5, we introduce a cost

2

metric for result caching and compare the effects of different caching mechanisms

on the cost of processing a query log. Chapter 6 combines cost and freshness

factors and interprets the tradeoff between these metrics. Chapter 7 concludes

the thesis.

3

Chapter 2

Related Work

Caching of query result is not a new concept for search engines. They deploy

caches for Web pages in proxies which are referred when the cached page is

requested by the same user or different users. Same logic is applied to the search

engine result caches which are mostly employed at the backend of the search

engines. The main objective of a result cache is to take advantage of the temporal

locality of queries. In this technique, the results of previously processed user

queries are stored in a cache. The results for the subsequent occurrences of a query

are served by this cache, eliminating the need to process the query and generate

its results using the computational resources in the backend search system. This

technique helps reducing the query processing workload incurred on the search

engine while reducing the response time for queries whose results are cached.

Markatos [1] was the first to demonstrate the temporal locality of queries and

suggest that caching query results can lead to improvements in the performance

of search engines by eliminating the need to reprocess recently submitted queries

and decreasing the time to return query results to users. This implies lower

loads on the search engine backend and increased throughput of user queries.

Markatos examines traces of EXCITE search engine and finds out that 20-30%

of the queries consists of re-submitted queries. In this work, Markatos compares

static and dynamic caching methods. In static cache, the cache is filled with

most popular queries and the cached queries are fixed, in the sense that when

4

a new query is issued to the search engine the content does not change. If the

cache contains the result for a query it is returned to the user, but in case of

absence, the query is redirected to the backend and cache content is not altered.

However, in dynamic caching issued queries affect the content of the cache. Query

result is returned by the cache when the cache contains the query (hit), whereas

absence of the query in the cache (miss) requires replacement of a victim query

with this query in case the cache is full. Markatos experiments with replacement

algorithms such as LRU, FBR, LRU/2 and SLRU. His experiments reveal that

static cache outperforms dynamic cache for small cache sizes and dynamic cache

gets better as the cache size increases.

The research on search engine result caching focused on what to cache and

how to cache in order to improve the performance of the cache by boosting cache

hit rates, which is the rate of items readily available in the cache when a request

for this item is made. Fagni et al. alter how the items are cached by proposing

a hybrid caching technique called Static and Dynamic Cache (SDC) [2]. The

static part of the cache serves the results for most frequent queries, while the

dynamic part steps in if the static part causes a cache miss. In case the dynamic

part does not contain this query, the query is processed at the search backend

and query admission and eviction policies are applied at the dynamic cache.

Fagni et al. investigate temporal and spatial locality too. While the findings

for temporal locality is parallel with [1], the query logs examined showed limited

spatial locality, that is only a small portion of the users request two or more pages

of query results. The experiments with different static cache size ratio shows

that for some values, SDC outperforms only static and only dynamic caches. It

achieves this by handling long-term popular queries with the static part, while

serving short-term popular queries from its dynamic part.

There are other works in this area focusing on what to cache instead of how

to cache, as in [1, 2]. This works consider caching the inverted lists alongside

with the query results. Saraiva et al. [3] are the first to propose caching inverted

lists in their two-level rank preserving caching architecture. The result cache

resides between the client and query processor as in previous works. The query

is first looked up in this cache and if the query is not in the result cache then

5

query processor computes the result for this query. The second level cache resides

between the query processor and inverted lists database and holds the inverted

lists for popular queries. Since the posting lists for popular terms is long, this

work uses index pruning to restrict the space allocated to popular terms. The

motivation to cache inverted lists is to utilize term locality which is asserted to be

greater than query locality. The experiments compare the two-level cache with

only query result cache and only inverted lists cache. The two-level cache attains

query throughput 52% higher than the only invert lists case and 36% higher than

the only query result case.

Baeza-Yates et al. [4] offer a three-level memory organization by capitalizing

on real empirical data which is the query logs of a commercial search engine. The

three-level memory organization consists of a cache of precomputed answers and

part of an inverted index in the main memory and the remaining inverted lists

in the secondary memory. They find an optimal split in the main memory for

query results and part of the inverted lists by mathematically modeling the size

of the inverted file and time to process a query using the size of the vocabulary

and documents.

As an extension to [4], Long et al. propose another three-level cache in [5]

which has the same result and list caching levels as well as another level for cache

of posting list intersection. This cache level stores pairwise intersections of the

index in the secondary memory (20% or 40 % of disk space of inverted index).

This method searches for the available posting list intersection if the query result

cache does not have the results. The last level which is the cache of popular

inverted lists is applied if a miss occurs in intersection cache. They achieve 25%

decrease in the CPU cost, which implies 33% increase in query throughput in

their experimental setting that uses query logs from a search engine.

The works mentioned above assumes finite cache sizes, however today in prac-

tice, commercial web search engines deploy result caches that are large enough to

store practically all query results computed in the past by the search engine [6].

Having a very large result cache renders basic caching techniques unnecessary

(e.g., admission of queries [7], eviction of old cache entries [8], or prefetching of

6

successive result pages [9]). In case of very large result caches, the main problem

is to preserve the freshness of cached query results. This is because commercial

web search engine indexes are frequently updated as more recent snapshots of the

Web are crawled and new pages are discovered. Eventually, the cached results

of a query may differ from the actual results that can be obtained by evaluating

the query on the current version of the index. Queries whose cached results are

not consistent with those that would be provided by backend search system are

referred to as stale queries. Identifying such queries and improving the overall

freshness of a result cache is crucial because presenting stale query results to

the users may have a negative effect on the user satisfaction for certain types of

queries [10]. So far, two different lines of techniques addressed the freshness issue

mentioned above: refreshing [6, 11] and invalidation [12, 13, 14, 15].

In the first set of techniques, cached query results that are predicted to be

stale are refreshed by evaluating the associated queries at the search backend. The

main motivation behind these techniques is to use the idle cycles of the backend

search system to recompute the results of a selected set of supposedly stale queries.

In general, the techniques based on refreshing are easy to implement as they do

not require any interaction between the result cache and the backend search

system when deciding which queries to refresh. On the other hand, identification

of stale queries is a rather difficult task and this leads to an increase in the

volume of queries whose results are redundantly recomputed at the backend with

no positive impact on the freshness of the cache.

In the second set of techniques, the result cache is informed by the indexing

system about the recent updates on the index. This information is then exploited

at the cache side to identify cached query results that are potentially stale. More

specifically, upon an update on the index, an invalidation module located in

the backend system transfers these changes to the result caching module. This

module then decides for every cached query result if the received changes on the

index may render the results of the query stale, in which case the query is marked

as invalid, i.e., considered to be not cached.

In all techniques mentioned above, the staleness decision for a query is given

7

via heuristics that do not yield perfect accuracy. Some stale queries may not

be identified on time although their results have changed. Consequently, certain

queries may remain in the cache for a long period with stale results. As a remedy

to this problem, all of the above-mentioned techniques rely on a complementary

mechanism known as time-to-live (TTL). In this mechanism, the validity of se-

lected cache entries are expired based on a fixed criterion with the aim of setting

an upper-bound on the possible staleness of a cache entry. In fact, on its own,

this simple mechanism can provide freshness to a certain degree in the absence

of more sophisticated refreshing or invalidation techniques.

The invalidation techniques use query statistics such as query cache age (the

time passed since the query is cached), query cache frequency (number of hits

since the query is cached) and number of clicks on the query. While this tech-

niques use the statistics of a query to decide on its expiration, other queries or

their posting lists can help evaluating this query too. [5] includes an additional

level of caching in their three level caching architecture as mentioned above. In

this intersection cache, the common documents of posting lists for term pairs are

cached. Thus, exploiting the similarity of query terms across different queries by

using this cache such that a query q1 with terms t1, t2 and t3 can use the inter-

section of posting lists of terms t1 and t2 which is cached when another query q2

with terms t1 and t2 is issued.

To the best of our knowledge, utilizing query result similarity to change the

TTL values of queries has not been subject to another study in this field. In

[10], the TTL values are adaptively altered using the change of the query result

when its TTL expires as the feedback. The TTLs are altered with predetermined

functions, as a result, better stale ratio and false positive ratio values were ob-

tained compared to fixed TTL setup. Other set of studies for cache invalidation

includes [13, 14, 15]. In [15], instead of time based TTL values, frequency TTL

is employed in which queries are invalidated with respect to the number of oc-

currences in the cache (cache hits). However, similarity TTL study focuses on

altering time based TTL values using query result similarity.

8

In the literature, query result caching performances are evaluated with dif-

ferent metrics. Hit rate (or miss rate), which is a widely used metric for result

caches [16], measures the proportion of query requests that are served (or missed)

from the cache. This metric does not differentiate between queries as each miss

has the same cost. Later, it was shown through cost-aware caching policies [8, 17]

that queries have varying processing costs and the cache performance should be

measured by taking these costs into account for cache misses. Real cost of a query

can be calculated by integrating disk time for retrieval of posting lists, CPU time

to uncompress the lists and CPU time to calculate the document scores. In [8],

the cost of a query is simulated by considering the shortest posting list associated

with the query terms. In a similar study [17], the cost is computed as the sum of

the measured CPU time and simulated disk access time (under different posting

list caching scenarios) and various static, dynamic, and hybrid cost-aware caching

policies are proposed. In a more recent work [18], the performance of a hybrid

dynamic result cache is also evaluated by the query cost metric.

Commercial web search engines rely on a large number of search clusters,

each containing hundreds of nodes. Hence, they consume significant amounts of

energy when processing user queries and the electricity bills for the large data

centers form an important part of the operational costs of the search engine

companies[19]. In a recent work [20], energy-price-driven query forwarding tech-

niques are proposed to reduce the electricity bills. The main idea in that work is

to exploit the spatio-temporal variation in electricity prices and forward queries

to data centers that consume the cheapest electricity under certain performance

constraints. This work considers that the data centers have varying processing

capacities and query workloads. Being inspired by that work, a financial cost

metric for evaluating the performance of query result caches is proposed. This

new metric measures the total electricity cost incurred to the search engine com-

pany due to cache misses and assumes there is no interaction between different

data centers. Since the electricity prices and the query traffic of the search en-

gine both show high volatility within a day, it is important to analyze the overall

financial cost of query result caching techniques in terms of real electric price.

The most similar metric to our financial cost metric is the power consumption

9

metric used in [21]. In that work, a cache hierarchy consisting of result and list

caches is evaluated in terms of the power consumption. Our financial cost metric

considers not only power consumption but also the hourly electricity price rates

and presents a more realistic financial cost evaluation.

10

Chapter 3

Strategies for Setting TTL Values

for Search Engine Result Caching

3.1 Introduction

Query result caching is a commonly used technique in web search engines [16].

In this technique, the results of previously processed user queries are stored in

a cache. The results for the subsequent occurrences of a query are served by

this cache, eliminating the need to process the query and generate its results

using the computational resources in the backend search system. This technique

helps reducing the query processing workload incurred on the search engine while

reducing the response time for queries whose results are cached. However, as the

cache sizes increase with the cheap hardware used, the focus has been shifted to

keeping the cache entries fresh.

As the index of the search engine is altered with the updates conducted on

document set by addition, deletion and update operations on documents, it be-

comes crucial to keep the index and the result cache in sync. In other words,

as index updates results of some queries, the results may change rendering the

results in the cache useless. The user satisfaction is heavily depended on re-

sult freshness, especially for informational queries whose results prone to change

11

q q q qq q

t=0 t=1 t=2 t=3 Time

Expiration by
time-based
TTL (T=3)

Expiration by
frequency-based

TTL (F=3)

Expiration by
click-based
TTL (C=3)

q

q

An occurrence of the query (at least one result is clicked)

An occurrence of the query (no results are clicked)

Figure 1: The points at which the results of a query
are expired in different TTL approaches (the query
results are assumed to be cached at time t=0).

stale results. As a remedy to this problem, all of the above-
mentioned techniques rely on a complementary mechanism
known as time-to-live (TTL). In this mechanism, the validity
of selected cache entries are expired based on a fixed crite-
rion with the aim of setting an upper-bound on the possible
staleness of a cache entry. In fact, on its own, this sim-
ple mechanism can provide freshness to a certain degree in
the absence of more sophisticated refreshing or invalidation
techniques.

The focus of this work is on mechanisms for setting the
TTL values of entries in result caches. We consider three al-
ternative approaches, time-based TTL [8], frequency-based
TTL [7], and click-based TTL. We evaluate the performance
of these alternatives in terms of attained cache freshness and
redundant query workload incurred to the backend. More-
over, we propose hybrid approaches that combine the above-
mentioned basic approaches. Our results indicate that the
best performance can be achieved when time-based TTL is
combined with frequency-based TTL.

The rest of the paper is organized as follows. In Section 2,
we present the competing TTL approaches and the proposed
combinations. The details of our experimental setup are pre-
sented in Section 3. Section 4 provides the experimental re-
sults. A brief survey of related work is provided in Section 5.
We conclude the paper in Section 6.

2. TTL APPROACHES

2.1 Basic Approaches
In this section, we present three different strategies for

expiring the results of a cached query: Time-based TTL [2,
6, 8], frequency-based TTL [7], and click-based TTL. The
functioning of these three strategies are illustrated in Fig. 1.
Throughout the section, we assume that the presented
strategies are not accompanied by more sophisticated re-
freshing or invalidation mechanisms.

Time-based TTL. Time-based TTL is commonly used
in result caches in search engines [8] as well as other types
of caching systems. In this approach, every cached query
result is associated with a fixed lifetime T . Given a query
whose results are computed and cached at time t, the cached
results are expired at time point t+T . Hence, the expiration
point for the query results are known at the time of caching.

The results of the query are considered to be invalid beyond
time point t + T (if the query results are not refreshed or
already invalidated before that time by some other mecha-
nism) and any request for the results leads to a cache miss.
The time-based TTL strategy is especially useful for bound-
ing the staleness of the results associated with infrequent
(tail) queries. In general, larger T values increases the frac-
tion of stale results served by the cache while smaller values
lead to a larger fraction of queries whose results are redun-
dantly computed. In Fig 1, the results of query q are expired
T =3 time units after they are cached.

Frequency-based TTL. A recently employed alterna-
tive is the frequency-based TTL (or virtual TTL) ap-
proach [7]. In this approach, unlike the time-based TTL
approach where the expiration point (i.e., t + T) is fixed,
the expiration point for the results of a query is determined
depending on the recent occurrences of the query. In par-
ticular, the results of a query are assumed to be expired if
the query was issued to the search engine F times since its
results were cached. The frequency-based TTL approach is
effective in bounding the staleness of very frequent (head)
queries. In Fig 1, the results of query q are expired after the
query is issued to the search engine F =3 times.

Click-based TTL. To best of our knowledge, the click-
based TTL strategy is not proposed before. This approach is
somewhat similar to the frequency-based TTL approach in
that it relies on the recent occurrence pattern of the query.
In this approach, however, the expiration is determined only
by occurrences in which no search results are clicked by the
user. In particular, the results of a query are expired after C
occurrences with no clicks (such occurrences do not have to
be consecutive). The rationale here is to use the absence of
clicks on search results as an indication of the staleness. In a
sense, every occurrence of the query with no clicks on search
results increases the confidence on that the query results are
not fresh. In Fig 1, the results of query q are expired when
the query results do not receive any click for C=3 times.

2.2 Hybrid Approaches
Conjunction.
Disjunction.
Ratio.
Linear.

3. SETUP
Data.
Metrics.

4. RESULTS

5. RELATED WORK
Refreshing.
Invalidation.
Time-to-live.
Adaptive TTL [2] Virtual TTL [7]

6. CONCLUSIONS

7. REFERENCES
[1] S. Alici, I. S. Altingovde, R. Ozcan, B. B. Cambazoglu,

and O. Ulusoy. Timestamp-based result cache

Figure 3.1: The points at which the results of a query are expired in different
TTL approaches (the query results are assumed to be cached at time t=0).

constantly.

The focus of the work in this chapter1 is on mechanisms for setting the TTL

values of entries in result caches. We consider three alternative approaches, time-

based TTL [6], frequency-based TTL [15], and click-based TTL. We evaluate

the performance of these alternatives in terms of attained cache freshness and

redundant query workload incurred to the backend. Moreover, we propose hybrid

approaches that combine the above-mentioned basic approaches. Our results

indicate that the best performance can be achieved when time-based TTL is

combined with frequency-based TTL.

In this chapter, we first present the competing TTL approaches and the pro-

posed approaches for combining them. We then provide the details of our exper-

imental setup and the experimental results.

1(Fethi Burak Sazoğlu, B. Barla Cambazoğlu, Rıfat Özcan, İsmail Sengör Altıngövde, and
Özgür Ulusoy. 2013. Strategies for setting time-to-live values in result caches. In Proceedings
of the 22nd ACM international conference on Conference on information & knowledge man-
agement (CIKM ’13). ACM, New York, NY, USA, 1881-1884. DOI=10.1145/2505515.2507886
http://doi.acm.org/10.1145/2505515.2507886. Reprinted by permission with licence number
3458780725689.)

12

3.2 TTL Approaches

3.2.1 Basic Approaches

In this section, we present three different strategies for expiring the results of a

cached query: Time-based TTL [10, 14, 6], frequency-based TTL [15], and click-

based TTL. The functioning of these three strategies are illustrated in Figure

3.1. Throughout the section, we assume that the presented strategies are not

accompanied by more sophisticated refreshing or invalidation mechanisms.

Time-based TTL. Time-based TTL is commonly used in result caches in

search engines [6] as well as other types of caching systems. In this approach,

every cached query result is associated with a fixed lifetime T . Given a query

whose results are computed and cached at time t, the cached results are expired

at time point t+T . Hence, the expiration point for the query results are known at

the time of caching. The results of the query are considered to be invalid beyond

time point t + T (if the query results are not refreshed or already invalidated

before that time by some other mechanism) and any request for the results leads

to a cache miss. The time-based TTL strategy is especially useful for bounding

the staleness of the results associated with infrequent (tail) queries. In general,

larger T values increases the fraction of stale results served by the cache while

smaller values lead to a larger fraction of queries whose results are redundantly

computed. In Fig 3.1, the results of query q are expired T = 3 time units after

they are cached.

Frequency-based TTL. A recently employed alternative is the frequency-

based TTL (or virtual TTL) approach [15]. In this approach, unlike the time-

based TTL approach where the expiration point (i.e., t+T) is fixed, the expiration

point for the results of a query is determined depending on the recent occurrences

of the query. In particular, the results of a query are assumed to be expired if

the query was issued to the search engine F times since its results were cached.

The frequency-based TTL approach is effective in bounding the staleness of very

frequent (head) queries. In Fig 3.1, the results of query q are expired after the

13

query is issued to the search engine F =3 times.

Click-based TTL. To best of our knowledge, the click-based TTL strategy is

not proposed before. This approach is somewhat similar to the frequency-based

TTL approach in that it relies on the recent occurrence pattern of the query. In

this approach, however, the expiration is determined only by occurrences in which

no search results are clicked by the user. In particular, the results of a query are

expired after C occurrences with no clicks (such occurrences do not have to be

consecutive). The rationale here is to use the absence of clicks on search results

as an indication of the staleness. In a sense, every occurrence of the query with

no clicks on search results increases the confidence on that the query results are

not fresh. In Fig 3.1, the results of query q are expired when the query results

do not receive any click for C=3 times.

3.2.2 Hybrid Approaches

In this section, we describe two hybrid approaches that set the TTL based on a

combination of the two or more of the basic TTL approaches presented in the pre-

vious section. We evaluate two logical operators in the combination: conjunction

and disjunction. We experimented with other operators (e.g., multiplication),

but the results were not better. Hence, we prefer to omit them herein.

Conjunction. In case of conjunction, all TTL approaches used in the com-

bination should agree that the cached results should be expired. In a sense,

this hybrid approach seeks for consensus to make an expiration decision. For

instance, when the frequency- and time-based approaches are combined in the

example given in Figure 3.1, the cached results will be expired at time point

t=3, once both the query frequency reaches three and the age of the cache entry

reaches three time units.

Disjunction. The disjunction approach is more aggressive with respect to

the conjunction approach in that the results are expired as soon as one of the

combined approaches raises a flag. Using the same example before, the cached

14

results are expired right before time point t = 1 because the frequency of the

query reached three.

3.3 Setup

Data. We use a subset of a query log including the queries submitted to Spanish

front-end of a commercial search engine. This constitutes to a set of 2,044,531

queries in timestamp order. We use the first half of the queries as the training set

(i.e., to warm-up the cache) and remaining half as the test set. In our experiments,

in addition to using this entire query stream, we also provide a more detailed

performance analysis for the head and tail queries. To this end, we sort all unique

queries in our query set by their submission frequencies, and label those in top-

1% and bottom-90% as head and tail queries, respectively; and then construct

the corresponding query streams that only include these identified queries. As

before, we also make a 50/50 split of these streams for training and testing.

Simulation setup. We assume an infinitely large cache so that we can

evaluate the proposed strategies independently from the other parameters such

as the cache size and eviction strategies, as in [10]. We assume that for a query-

timestamp pair (q, t), the top-k (k <= 10) URLs stored in the query log serve as

the ground truth result R∗t (i.e., the fresh answer for q at time t is R∗t). During

the simulations, when a query is first encountered, say at time t, its result R∗t

is cached. In a subsequent submission of the same query at time t′, if the TTL

assigned to this result has not yet expired, we assume this cached result is served;

otherwise we refresh the result by taking the result R∗t′ from the query log. The

result R served from cache at a time point t is said to be stale if it differs from the

result in the query log, R∗t . As in [12, 14] we consider any two results as different

if they don’t have exactly the same URLs in the same order.

Evaluation Metrics. We evaluate the basic and hybrid TTL approaches

in terms of the stale traffic (ST) ratio versus the false positive (FP) ratio (as

in [12, 14]). Stale traffic ratio is the percentage of the queries for which the result

15

served from the cache turns out to be stale. False positive ratio is the percentage

of redundant query executions, i.e., the fraction of the queries for which the

refreshed result is found to be the same as the previous result that was already

cached. As we aim to minimize both of these metrics, in the following results we

report the performance for the parameter combinations that yield the minimum

total value of the ST and FP ratios.

3.4 Results

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 0.05 0.1 0.15 0.2 0.25

S
ta

le
 tr

af
fic

 r
at

io

False positive ratio

Basic Approaches-All Queries

Time (T ∈  3,9..51)
Freq. (F ∈  2,10,20..50)

Click (C ∈  2,4,8)

Figure 3.2: Stale traffic and false positive ratios for basic approaches over all
queries

Figure 3.2 shows the simulation results for the basic approaches over the

entire query stream (referred to as all queries hereafter). In this case, time-based

TTL is superior to frequency- and click-based approaches, as both of the latter

yield higher ST ratios than time-based TTL for the FP ratios larger than 2%,

as a consequence non of frequency- and click-based TTL approach is better than

16

time-based TTL on their own.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 0.05 0.1 0.15 0.2 0.25

S
ta

le
 tr

af
fic

 r
at

io

False positive ratio

Basic Approaches-Head Queries

Time (T ∈  3,9..45)
Freq. (F ∈  10,20..50)
Click (C ∈  2,4,8..32)

Figure 3.3: Stale traffic and false positive ratios for basic approaches over head
queries

In contrast, for the head queries, we see that time- and click-based TTLs

are comparable and the frequency-based TTL outperforms both of the latter

(Figure 3.3). This is an intuitive finding; since the head queries are extremely

popular, setting a fixed time interval as the TTL cannot capture the sudden

updates on the underlying index, which yields lots of stale results for head queries.

Frequency-based TTL applies an upper bound on the number of stale results

that can be served from the cache (indeed, this is the underlying motivation for

proposing the frequency-based TTL approach in [15]). This expiration mechanism

allows expired queries to have different results from the cache, which results in

less unnecessary query processing (fp ratio).

In our third experiment, we investigate the performance for the tail queries

(Figure 3.4). We find that both of the frequency- and click-based approaches fail

to improve the performance for the tail queries, and that is why they are inferior

17

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 0.05 0.1 0.15 0.2 0.25

S
ta

le
 tr

af
fic

 r
at

io

False positive ratio

Basic Approaches-Tail Queries

Time (T ∈  3,9..51)
Freq. (F ∈  2, 10)

Click (C ∈  2, 4)

Figure 3.4: Stale traffic and false positive ratios for basic approaches over tail
queries

to time-based TTL in the overall case, i.e., for the all queries (see Figure 3.2). This

latter finding is caused by the fact that the submission frequency of tail queries is

very low, hence the next time this tail query is submitted to the search engine its

result will change. This situation leads to very long time periods until when an

expiration decision can be made by the frequency- and click-based TTL strategies,

even for the smallest values of F and C parameters (see the corresponding points

for F and C are equal to 2 in Figure 3.4). And during this long time period,

the underlying index and query results are likely to be updated, which yield very

high ST ratios at the end.

Next we explore the performance for the hybrid approaches. While doing

so we take the best basic strategy from Figures 3.2 to 3.4 as the baseline (i.e.,

time-based TTL for the all and tail query streams, and frequency-based TTL

for the head queries). We create the conjunction and disjunction of the pairs

of strategies, i.e., (time-based, frequency-based) and (time-based, click-based),

18

as well as all three of them. We discard the pair (frequency-based, click-based)

for the readability of the plots, as it is found to be inferior to all other hybrid

approaches anyway.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 0.05 0.1 0.15 0.2 0.25

S
ta

le
 tr

af
fic

 r
at

io

False positive ratio

Conjunction-All Queries

Time (T ∈  3,6..51)
Time (T ∈  3,9..51) AND Freq. (F = 2) AND Click(C=2)

Time (T ∈  3,9..51) AND Freq. (F = 2)
Time (T ∈  3,9..51) AND Click(C=2)

Figure 3.5: Stale traffic and false positive ratios for conjunction-based hybrid
approaches over all queries.

In Figures 3.5 to 3.7, we present the results for the conjunction of the expira-

tion decisions from the basic TTL approaches for the all, head and tail queries,

respectively. It turns out that none of the hybrid approaches can outperform

the baseline basic approach for any of these query sets. In other words, seeking

a consensus among these approaches seems to delay the expiration decision and

likely to cause more stale results.

For the hybrid approaches based on the disjunction of individual expiration

decisions, the picture is different. Figure 3.8 shows that these hybrid methods

can considerably outperform the baseline time-based TTL approach for the entire

query stream. Figures 3.9 and 3.10 explain why this happens. In Figure 3.9, we

see that all hybrid versions are also superior to the baseline also for the head

19

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 0.05 0.1 0.15 0.2 0.25

S
ta

le
 tr

af
fic

 r
at

io

False positive ratio

Conjunction-Head Queries

Freq. (F ∈  10,20..50)
Time (T ∈  0,9..33) AND Freq. (F=2) AND Click(C=2)

Time (T ∈  3,9..45) AND Freq. (F=10)
Time (T ∈  0,9..33) AND Click (C=2)

Figure 3.6: Stale traffic and false positive ratios for conjunction-based hybrid
approaches over head queries.

queries, the best one (i.e., with the lowest ST ratios) being the strategy (time-

based TTL OR frequency-based TTL). While doing so, these hybrid strategies

do not degrade the performance for the tail queries (see Figure 3.10) and thus the

improvements for the head queries are also reflected to the entire query stream. In

other words, using a disjunction of decisions from the time- and frequency-based

TTL strategies, we combine the best of two worlds: we improve the performance

for the head queries without any adverse effects on the tail queries, and thus we

end up with a better overall performance.

3.5 Conclusions

We evaluated the performance of three basic time-to-live (TTL) approaches for

result caching: time-based TTL, frequency-based TTL, and click-based TTL.

20

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 0.05 0.1 0.15 0.2 0.25

S
ta

le
 tr

af
fic

 r
at

io

False positive ratio

Conjunction-Tail Queries

Time (T ∈  3,9..51)
Time (T ∈  3,9..51) AND Freq. (F=2) AND Click(C=2)

Time (T ∈  3,9..51) AND Freq. (F=2)
Time (T ∈  3,9..51) AND Click(C=2)

Figure 3.7: Stale traffic and false positive ratios for conjunction-based hybrid
approaches over tail queries.

We further proposed hybrid TTL techniques that combine the basic approaches.

We measured the attained stale query traffic ratio and redundant computation

overhead via simulations on a real-life query log obtained from a commercial web

search engine. Our experimental results indicate that the best performance is

achieved when time-based TTL is combined with frequency-based TTL using a

disjunction of the expiration decisions from these two approaches. We also found

that combining click-based TTL with the latter two strategies do not bring further

improvement in practice.

21

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 0.05 0.1 0.15 0.2 0.25

S
ta

le
 tr

af
fic

 r
at

io

False positive ratio

Disjunction-All Queries

Time (T ∈  3,9..51)
Time (T ∈  3,9..51) OR Freq. (F=20) OR Click(C=8)

Time (T ∈  3,9..51) OR Freq. (F=10)
Time (T ∈  3,9..51) OR Click(C=4)

Figure 3.8: Stale traffic and false positive ratios for disjunction-based hybrid
approaches over all queries.

22

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 0.05 0.1 0.15 0.2 0.25

S
ta

le
 tr

af
fic

 r
at

io

False positive ratio

Disjunction-Head Queries

Freq. (F ∈  10,20..50)
Time (T ∈  3,9..51) OR Freq. (F = 10) OR Click (C=8)

Time (T ∈  3,9..51) OR Freq. (F=10)
Time (T ∈  3,9..51) OR Click (C=4)

Figure 3.9: Stale traffic and false positive ratios for disjunction-based hybrid
approaches over head queries.

23

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 0.05 0.1 0.15 0.2 0.25

S
ta

le
 tr

af
fic

 r
at

io

False positive ratio

Disjunction-Tail Queries

Time (T ∈  3,9..51)
Time (T ∈  3,9..51) OR Freq. (F=10) OR Click(C=4)

Time (T ∈  3,9..51) OR Freq. (F=10)
Time (T ∈  3,9..51) OR Click(C=4)

Figure 3.10: Stale traffic and false positive ratios for disjunction-based hybrid
approaches over tail queries.

24

Chapter 4

Similarity based TTL Approach

to Search Engine Result Caching

4.1 Introduction

Commercial search engines make use of different cache invalidation approaches for

the freshness issue in result caches. In the previous chapter, basic approaches as

well as their different combinations have been covered. The techniques discussed

there utilize some query statistics such as query frequency (virtual TTL), number

of clicks per result set (click TTL) which are obtained from the query log and con-

stant time intervals that bound the staleness of query results (time-based TTL).

The motivation for similarity-based TTL arises from the same source which is

the search engine query log, however the statistics to exploit are slightly different

than those used by the previous approaches. The similarity-based approach takes

advantage of the result similarity of cached queries. It allows an expired query

to signal this information to the similar queries in the cache.

25

4.2 Motivation

Query results are calculated by processing the query terms in the clusters of a

search engine. Search engines use document and term partitioning to increase

their processing power. The results are calculated at each node and merged to

constitute the final result set. The posting lists of the documents in these clusters

are used to give term-document similarity score to the queries which are sorted

to prepare the result set. The posting lists contain the documents for terms and

their frequencies term-wise.

There are two possible methods to determine similarity of queries, which are

query text similarity and query result similarity. Query text similarity may be

accounted for the similarity between the query results. However, query text

similarity is not a reliable method to be used in assigning TTL values, as it cannot

safely reflect the index updates. Therefore, query result similarity is employed in

this chapter which can reliably propagate index changes to similar queries. The

similarity between the results of two queries gives clues about how much their

posting lists overlap. When the document set is modified by addition, deletion

or update of a document, the underlying index is also updated which changes

the query results. Queries affected from this change should decrement its TTL,

because the results provided from cache would be rendered as stale. When a

query is expired and its results change, which means the underlying index has

been changed, it can alter the TTL values of its similar queries regarding query

results. Since similar queries (in terms of query results) share common postings,

consequently common documents; this change of query result probably occurs in

the similar queries as well. Similarity based TTL method conveys this query result

change information to its similar queries in the proportion of their similarity. If

the similarity between two queries is low, then the propagated score due to this

similarity is also small. The following sections have detailed description of the

algorithms used for similarity based expiration of queries.

The experiments in this chapter uses time-based TTL [6] as the base method-

ology. The performance of similarity caching is evaluated in terms of cache fresh-

ness and redundant query workload incurred to the backend. In this chapter, the

26

algorithms are differentiated by their expire mechanism and the similarity score

they use. All the queries keep a score for the queries. This score is updated when

a similar query expires, and when it exceeds a certain threshold, either the TTL

of the query is updated or the query is directly expired.

The rest of this chapter is organized as follows. In Section 4.3, the competing

similarity TTL approaches are presented. The details of the experimental setup

are presented in Section 4.4. Section 4.5 provides the experimental results. We

conclude the chapter in Section 4.6.

4.3 Similarity-based TTL Algorithms

There are four algorithms presented in this chapter. According to the expiration

mechanism, the algorithms are named by the effect of similarity score on expi-

ration, which are direct expire and indirect expire. If the TTL is updated

using the score and expired by only the TTL method, the algorithm will be re-

ferred as indirect expire algorithm. Otherwise, if the query is expired by TTL

or similarity score the algorithm will be called direct expire, meaning that the

query is expired if query age exceeds the TTL or the score exceeds the threshold

value given as parameter.

For each of these methods two different types of scores are calculated. The

first type is simply the similarity of two queries,

V alue(q1) = similarity(q1, q2) (4.1)

This similarity type will be referred as basic score in the algorithms. The

other score type incorporates the cache ages of the queries into the score. Consider

two queries q1 and q2 which are cached at times t1 and t2, respectively, and have

query result similarity of s. Assume that q1 expires at time t and it will update

the similarity scores of its similar queries and q2 is one of these similar queries.

Assume that at the expiration time cache age of q1 is t− t1, and cache age of q2

27

is t − t2. In the second type of score, it is assumed that as the cache age of q1

increases its effect to the score of q2 diminishes. Similarly, the effect of the cache

age of q2 is assumed to have positive impact on its score. This score is calculated

as follows:

V alue(q2) = similarity(q1, q2)×
1

cache age(q1)
× cache age(q2) (4.2)

The query result similarity for queries q1 and q2 with respective results R1

and R2 is calculated using Jaccard similarity, which is

Similarity(q1, q2) =
R1 ∩R2

R1 ∪R2

(4.3)

The cache age of the query q1 is the time spent between query caching time

(t1) and the current time (t), which is

CacheAge(q1) = t− t1 (4.4)

This score will be mentioned as age score in the following algorithms.

The Algorithms. Query log is processed in the order of the timestamps. The

cache is assumed to have infinite size. When a query is received, if it is not in the

cache, it is stored in the cache alongside with its timestamp and top 10 most sim-

ilar queries in the cache. If the cache contains the query, it is expired according to

the rules explained above and if its result is changed, scores of its similar queries

are incremented using the formulas above. The first half of the log is used for

training and the second half is used for testing in which fp, tp , fn and tn statistics

are calculated. Note that, the scores for similar queries are not decremented when

the result of a query stays the same. The score is set to 0, when the query expires.

The algorithms are named by combining expiration mechanism with the query

score, as BasicScore DirectExpiration, BasicScore IndirectExpiration,

AgeScore DirectExpiration and AgeScore IndirectExpiration.

28

Input: q: query, C: Cache, TS: similarity threshold,
tq: submission time of q, cq: caching time of query q, sq: score of query q.

Rq ← ∅ . initialize the result set of q;

if q 6∈ C then /* Not Cached */

evaluate q over the backend and obtain Rq;
insert Rq into C ;

else if q ∈ C then /* Cached */

get Rq from C;
if tq − cq ≥ TTL or sq ≥ TS then /* Query Expires */

increment scores of similar queries (using 4.2 and 4.3);
update statistics of q in C ;

else if tq − cq < TTL and sq < TS then /* Query Not Expires */
update statistics of q in C

return Rq;

Algorithm 1: Similarity Algorithm DirectExpiration.

Table 4.1 categorizes the algorithms according to their expiration mechanisms

and score calculation approach.

4.4 Experimental Setup

Data. In this chapter the same data from the previous chapter, which is the

query log of the queries submitted to Spanish front-end of a commercial search

engine, is used. The query log is split into two equal portions for training and

testing purposes. The detailed information about the data can be found in the

Appendix.

Simulation setup. Similar to the previous chapter, an infinitely large cache

is assumed and for a query-timestamp pair (q, t), the top-k (k <= 10) URLs

stored in the query log serve as the ground truth result R∗t (i.e., the fresh answer

for q at time t is R∗t). The same simulation setup from the previous chapter is

employed for experiments.

Evaluation Metrics. The evaluation is done in terms of the stale traffic

(ST) ratio versus the false positive (FP) ratio (as in [12, 14]).

29

Input: q: query, C: Cache, TS: similarity threshold,
tq: submission time of q, cq: caching time of query q, sq: score of query q,
q1: similar query for query q, sq1: score of query q1.

Rq ← ∅ . initialize the result set of q;

if q 6∈ C then /* Not Cached */

evaluate q over the backend and obtain Rq;
insert Rq into C ;

else if q ∈ C then /* Cached */

get Rq from C;
if tq − cq ≥ TTL or sq ≥ TS then /* Query Expires */

increment scores of similar queries (using 4.2 and 4.3), decrement
TTLs for queries q1 where sq1 ≥ TS ;
update statistics of q in C ;

else if tq − cq < TTL and sq < TS then /* Query Not Expires */
update statistics of q in C

return Rq;

Algorithm 2: Similarity Algorithm IndirectExpiration.

Expiration by TTL or
score exceeds threshold

Expiration by Only TTL

Score is query similarity BasicScore DirectExp. BasicScore IndirectExp.

Score is query similarity
with query age

AgeScore DirectExp. AgeScore IndirectExp.

Table 4.1: Similarity Algorithms.

4.5 Experimental Results

Inclusion of similarity TTL does not yield significant difference when compared

with time TTL. The implications of this result are twofold. The first one is the

query log data used in the experiments. The similarity of the queries may not

be sufficient for the similarity feedback mechanism in the algorithms. The other

implication would be the underlying time TTL utilized in the similarity TTL

algorithms. The time TTL may eliminate the need for feedback from similar

queries by invalidating (expiring) queries before similar queries give feedback to

expiring queries. Comparing the results with the time TTL values shows that

stale traffic ratio values diminish. Therefore, similarity TTL can be used to

decrease proportion of stale results in cases where the TTL values stay the same.

30

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 0.05 0.1 0.15 0.2 0.25

S
ta

le
 tr

af
fic

 r
at

io

False positive ratio

BasicScore_DirectExpiration
Time (T ∈  3..51)

Time (T ∈  3..51), Similarity Threshold (S = 0.02)

Figure 4.1: Stale traffic and false positive ratios for
BasicScore DirectExpiration Algorithm.

Table 4.2 shows the comparison of 4 similarity TTL algorithms in more detail.

For each TTL value, the performance results are presented in terms of the gain

in st and fp sums as percentage. Assume that sts and fps are stale traffic and

false positive ratios for similarity TTL, and stf and fpf are stale traffic and false

positive ratios for time TTL. Then, the gain as percentage is calculated as;

Gain =
(sts + fps)− (stf + fpf)

(stf + fpf)
× 100 (4.5)

This formula assumes that the impact of stale traffic and false positive ratios

are the same for the performance. However, from commercial search engine’s

point of view lowering stale traffic ratios is more important than lowering false

positive ratios as serving stale results is worse than redundant result computation

at the backend in terms of user satisfaction. As Figures 4.1, 4.2, 4.3, and 4.4

indicate, the similarity TTL is more effective on decreasing stale traffic ratios

than decreasing false positive ratios.

31

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 0.05 0.1 0.15 0.2 0.25

S
ta

le
 tr

af
fic

 r
at

io

False positive ratio

AgeScore_DirectExpiration
Time (T ∈  3..51)

Time (T ∈  3..51), Similarity Threshold (S = 0.02)

Figure 4.2: Stale traffic and false positive ratios for AgeScore DirectExpiration

Algorithm.

4.6 Conclusion

The result cache is a crucial component of search engines. The contribution

of every correctly invalidated cache entry is twofold from search engines point

of view. It can first deliver the query result without any processing directly

from the cache that reduces the response size. Secondly, it discards the backend

when processing such queries which decreases both the load on the backend and

the power consumption of the data centres. Similarity TTL can be applied to

any type of TTL such as time-based TTL and frequency-based TTL. The main

idea is to incorporate the query result similarity to the existing result expiration

methods. In case of an index update, this information can be propagated to the

other similar queries proportional to the similarity.

The algorithms evaluated in this chapter could not decrease the false positive

and stale traffic ratios when the time TTL curve is considered. However, if

the experimental results are compared TTL-wise, the stale traffic ratios decrease

dramatically. Therefore, for the same TTL values, similarity scores expire the

32

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 0.05 0.1 0.15 0.2 0.25

S
ta

le
 tr

af
fic

 r
at

io

False positive ratio

BasicScore_IndirectExpiration
Time (T ∈  3..51)

Time (T ∈  3..51), Similarity Threshold (S = 0.016)

Figure 4.3: Stale traffic and false positive ratios for
BasicScore IndirectExpiration Algorithm.

queries correctly to prevent the search engine return more stale results. Thus,

this method can be employed as a supplementary to other TTL techniques to

decrease false positive and stale traffic ratios without changing TTL values.

33

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 0.05 0.1 0.15 0.2 0.25

S
ta

le
 tr

af
fic

 r
at

io

False positive ratio

AgeScore_IndirectExpiration
Time (T ∈  3..51)

Time (T ∈  3..51), Similarity Threshold (S = 0.008)

Figure 4.4: Stale traffic and false positive ratios for
AgeScore IndirectExpiration Algorithm.
PPPPPPPPPTTL

Alg.
Basic Dir.Exp. Age Dir.Exp. Basic In.Exp. Age In.Exp.

0 0 0 0 0
3 -1.28615 0.565008 -0.734622 0.660112
6 -1.42111 2.25798 0.163838 2.58879
9 1.6461 5.53375 3.51272 5.51923
12 3.74574 6.33509 5.17047 6.8085
15 2.81806 4.63897 6.74739 6.37709
18 4.4994 7.09973 7.76227 8.92459
21 9.27627 11.7569 11.1364 10.3542
24 9.08804 12.2731 11.6274 12.0738
27 15.194 16.2393 15.6015 14.4704
30 26.134 22.1339 24.5124 24.1398
33 20.7351 21.9942 23.6592 24.2981
36 15.4061 15.2683 17.6225 16.1344
39 25.1787 26.2944 24.2339 28.2288
42 25.4186 27.8357 29.0419 27.9313
45 26.1094 25.4527 25.6711 25.8273
48 27.8268 27.6122 28.7488 28.8271
51 33.924 34.0936 31.7792 33.2333

Table 4.2: Similarity Algorithms Result Comparison as Gain in Percentage.

34

Chapter 5

A Financial Cost Metric for

Result Caching

5.1 Introduction

Commercial web search engines cache query results for efficient query process-

ing. The main purpose of result caching is to exploit temporal locality of search

queries. Search engine result caching exploits the idea that a query submitted

to the search engine will be resubmitted by the same or a different user in close

proximity.

The main contributions of the work in this chapter1 are the following. First,

a financial cost metric is offered for query result caches. Second, the state-of-the-

art static, dynamic, and hybrid caching techniques in the literature are evaluated

using this new metric. Finally, a financial-cost-aware version of the well-known

LRU strategy is proposed and shown to be superior to the original LRU strategy

1(Fethi Burak Sazoğlu, B. Barla Cambazoğlu, Rıfat Özcan, İsmail Sengör Altıngövde, and
Özgür Ulusoy. 2013. A financial cost metric for result caching. In Proceedings of the
36th international ACM SIGIR conference on Research and development in information re-
trieval (SIGIR ’13). ACM, New York, NY, USA, 873-876. DOI=10.1145/2484028.2484182
http://doi.acm.org/10.1145/2484028.2484182. Reprinted by permission with licence number
3458780850476.)

35

0

10

20

30

40

50

60

70

80

90

100

El
ec

tri
c

pr
ic

e
($

/M
W

h)

Electric price

0 3 6 9 12 15 18 21
Hour of the day (UTC)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

Q
ue

ry
 v

ol
um

e
(%

)
Query volume

Figure 5.1: Hourly query traffic volume distribution and hourly variation in elec-
tricity prices.

under this metric.

5.2 Financial Cost Metric

Cost-aware caching strategies [8, 17] consider the time overhead of processing

cache misses. The financial cost metric goes one step forward and computes the

cost of electricity consumed when processing cache misses. The underlying mo-

tivation here is that the electricity prices show temporal variation and hence the

financial cost of processing a query varies in time. In practice, the electricity price

changes mainly based on supply-demand rates and certain seasonal effects [22].

The query traffic received by a search engine also rises and falls irregularly de-

pending on time. As an example, Figure 5.1 shows the hourly electricity prices

36

taken from an electricity provider located in New York and the distribution of

the query traffic received by Yahoo! web search. The electricity prices and query

volume are normalized by the their respective mean value.

Our financial cost metric simply computes the processing time of the query as

given in [17] weighted by the electricity price at the time of processing the query.

Since only hourly electricity price is available, momentary electricity price cannot

be obtained. Instead electricity price in that hour is taken.

Cache hits are assumed to incur no financial cost in terms of query processing.

Proposed financial cost metric is defined as follows

Cq = Tq × P [t], (5.1)

where q is a query submitted at time t, P [t] is the electricity price at time t, and

Tq is the time needed to process q. P [t] is taken as the price in that hour.

5.3 Result Caching Techniques

We evaluate the most well-known policies in terms of our financial cost metric. A

new financial cost aware caching policy, which provides improvement over LRU

algorithm by exploiting hourly variance of electricity price, is designed. In the

remaining sections of this chapter, the frequency of a query q is denoted as Fq.

Each caching policy is briefly described below.

Most Frequent (MostFreq): This policy basically fills the static cache with

the results of the most frequent queries in the query log. Thus, the value of a

cache item is simply determined as follows:

V alue(q) = Fq. (5.2)

Frequency and Cost (FC): This policy [17] combines the frequency and cost

of queries in a static caching setting. The value of a cached query is determined

37

by the product of its (boosted) frequency and cost:

V alue(q) = Cq × (Fq)
K , (5.3)

where K > 1.

Least Recently Used (LRU): This well-known dynamic caching policy

chooses the least recently requested query as the victim for eviction.

Least Frequently Used (LFU): In this policy, each cache item has a fre-

quency value that shows how many times the cache item is requested. The cache

item with the lowest frequency value is replaced when the cache is full.

Least Frequently and Costly Used (LFCU): This policy [17] is the dynamic

version of the FC static caching policy. When the cache is full, the item with the

lowest value (determined by its frequency and cost in Equation (5.3)) is evicted.

Greedy Dual Size (GDS): This policy [23] computes a so-called H value

metric for each cached query q as

H value(q) =
Cq

Sq

+ L. (5.4)

This value combines the cost and size of the item with an aging factor L. This

aging factor creates an effect similar to the recency component in the LRU policy.

The cache item with the lowest H value is chosen as the victim for eviction. In

this work size is taken as 1.

Greedy Dual Size Frequency (GDSF): This policy [24] is a slightly modified

version of the GDS policy. It further considers the frequency of the cache item

when computing the H value. We also boost the frequency component with a

power coefficient K as in [17].

H value(q) = (Fq)
K × Cq

Sq

+ L. (5.5)

Static Dynamic Cache (SDC): SDC [2] is a hybrid caching policy that re-

serves a portion of the cache space for static caching and the remaining space for

38

dynamic caching. Static cache is populated with the most frequent queries over

a period of time. Popular queries are served from this component of SDC while

its dynamic component is included to capture the changes in query stream in

short time intervals. Dynamic part is vital for serving queries that stays popular

for short periods such as news queries. In SDC it is important to fine tune the

proportion of sizes of static and dynamic parts to maximize the hit rates.

It is shown that this strategy outperforms both purely static and purely dy-

namic caches. Static cache alone cannot handle sudden changes in the query

stream while pure dynamic cache has to constantly evict and readmit popular

queries to make room for queries possibly with small frequencies depending on

its size due. The policy of dynamic cache that keeps the most recent queries in

the cache drops the hit rate comparing to its hybrid version.

Two-Part LRU Cache (2P LRU): A two-part LRU cache (similar to [18]) is

proposed to optimize the result cache performance in terms of the financial cost

metric. The main motivation of this strategy is to take advantage of financial cost

variation to make the cache cost-aware. This strategy combines the segmented

LRU idea (evaluated in [1]) with an admission control mechanism based on a

financial cost threshold. Algorithm 3 presents the pseudocode for the 2P LRU

policy, which reserves a certain portion of the cache space for queries submitted

in the high financial cost period (i.e., expensive cache (E)) and the rest for those

submitted in the low cost period (i.e., cheap cache (C)).

We decide on the expensive and cheap time periods based on a financial cost

threshold (T P). If the current financial cost (T q × P [t]) is less (greater) than

this threshold, we say that the query is submitted in the cheap (expensive) time

period, respectively. The partitioning of 2P LRU cache is to keep the expensive

queries in the cache as long as possible as the space permits, while cheap portion

of the cache are reserved for queries that can be reevaluated due to its cheap

processing cost. The 2P LRU policy realizes this as follows: If the result of a

requested query q is not found in the expensive and cheap caches, it is evaluated

at the backend and then inserted into the cheap cache (incurs a financial cost of

T q × P [t]) regardless of the financial cost of the query, i.e., cheap or expensive

39

Input: q: query, E: Expensive cache, C: Cheap cache,
TP : financial cost threshold, tq: submission time of q,
Tq: time cost of q, P [t]: price at time t, Cq: financial cost of q

Rq ← ∅ . initialize the result set of q;

if q 6∈ E and q 6∈ C then /* Cq =Tq × P [tq] */

evaluate q over the backend and obtain Rq;
insert Rq into C (if full, evict the LRU item);

else if q ∈ E then /* Cq =0 */

get Rq from E;
update statistics of q in E;

else if q ∈ C and Tq × P [tq] < TP then /* Cq =0 */

get Rq from C;
update statistics of q in C;

else if q ∈ C and Tq × P [tq] ≥ TP then /* Cq =0 */

evict Rq from C and insert into E (if full, evict LRU item);

return Rq;

Algorithm 3: Two-part LRU caching algorithm.

periods. The intuition behind this choice is that, as there is a high chance for a

query to be singleton (i.e., submitted only once) due to the power law distribution

of the query stream, we do not want to waste the expensive cache capacity without

having enough evidence that the query will be re-submitted. If the query result

is found in the cheap cache, then we check the current financial cost of the query

and determine the time period. If we are in the cheap period, we simply serve

from the cheap cache and update the query access statistics (i.e., housekeeping

for LRU). Otherwise, we evict the query result from the cheap cache and insert it

into the expensive cache (i.e., after seeing that the query is not a singleton). If the

expensive cache is full, the least recent query is evicted from expensive cache and

inserted to the most recent portion of cheap cache. This gives a second chance

to the evicted expensive cache item to reenter to the expensive cache. Finally, if

the query result is found in the expensive cache, it is served from the cache and,

again, the statistics are updated.

40

 9500

 10000

 10500

 11000

 11500

 12000

 12500

1K 10K 20K 30K 40K 50K 60K 70K 80K 90K 100K 125K

T
o

ta
l P

ro
ce

ss
in

g
 P

ri
ce

Cache Size

Variable Time Cost

FC
MostFreq

LRU
LFU

LFCU
2P_LRU

GDS
GDSF

SDC_MostFreq_LRU
SDC_MostFreq_GDSF

Figure 5.2: Financial cost evaluation of caching policies assuming variable query
processing time costs.

5.4 Experiments

We evaluate the performance via a simulation using a subset of the AOL query

log [25], which contains around 20 million queries. We use 2.2 million pages

crawled from the Open Directory Project Web directory (http://www.dmoz.org)

as our document collection. These pages are indexed using the Zettair search

engine (http://www.seg.rmit.edu.au/zettair/) and a 1.1M query subset from

the AOL query log is processed. We remove queries with no results. After this

process, we end up with a stream of 809,795 queries over a period of six weeks.

We reserve 446,952 queries (253,961 unique) submitted in the first three weeks as

the training set and use this set to fill the static caches and/or to warm up the

dynamic caches. The remaining 362,843 (209,636 unique) queries form the test

set, and the hit rate and financial cost metrics are computed over this set.

Our experiments consider two different cases. In the first case, query process-

ing times of queries (Tq) are assumed to be variable. These times are measured

41

as CPU times using the Zettair search engine. We refer to this case as “nonuni-

form (variable) time costs”. In the second set of experiments, we consider only

the price rate at the hour of the query submission (P [tq]) and set the process-

ing cost of queries to 1 (i.e., Tq = 1 for all queries). We refer to this case as

“uniform (fixed) time costs”. This latter scenario is motivated by the fact that

search engines limit the time spent processing a query [20], i.e., we assume that

the processing times of queries are nearly the same and close to this limit.

In our static cache simulation, when we compute the cost (Tq × P [t]) for a

query, we use the average electricity price observed in the training set when the

query is processed at different times. For the dynamic caching setup, we consider

the last time the query is issued and use the electricity price at that time point.

We set various parameters as follows: For the FC, LFCU, and GDSF policies, K is

set to 2.5 [17]. When dividing the cache space in SDC, %20 is reserved for the

static portion and the rest is for the dynamic portion (tuned empirically). We

also experimentally tune the 2P LRU policy and allocate %60 of the cache space

for the cheap cache, and the remaining %40 for the expensive cache. We set the

financial cost threshold (TP) parameter to 0.02 and 0.9 in the variable and fixed

time cost scenarios, respectively.

Figs. 5.2 and 5.3 present the performance of caching policies for the variable

time cost scenario, in terms of the financial cost and hit rate metrics, respectively.

For a typical large cache (90K or 100K), the policies can be ordered according to

their performance as follows:

• Financial cost: LFU ∼= MostFreq > FC > LRU > 2P LRU > SDC MostFreq LRU

> GDS ∼= LFCU > GDSF ∼= SDC MostFreq GDSF.

• Hit rate: GDS < LFCU < FC < GDSF ∼= LFU < MostFreq < 2P LRU ∼=
SDC MostFreq GDSF < LRU < SDC MostFreq LRU.

It is interesting to note that even though LRU and SDC MostFreq LRU poli-

cies are the best-performing policies, according to the hit rate metric, they are

outperformed by the cost-based policies (LFCU, GDS, SDC MostFreq GDSF, GDSF)

in terms of the financial cost metric. The proposed 2P LRU policy incurs lower

financial costs than the LRU policy. The reductions in financial cost reach up to

42

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

1K 10K 20K 30K 40K 50K 60K 70K 80K 90K 100K 125K

H
it

R
a

te

Cache Size

Variable Time Cost

FC
MostFreq

LRU
LFU

LFCU
2P_LRU

GDS
GDSF

SDC_MostFreq_LRU
SDC_MostFreq_GDSF

Figure 5.3: Hit rates of caching policies assuming variable query processing time
costs.

3.8% and 1% for small and large cache sizes, respectively. The best policies, based

on the financial cost metric, namely GDSF and SDC MostFreq GDSF, outperform

LRU by around 4%.

In the second set of experiments, uniform time costs for queries are assumed.

In this case, cost is determined only by the current price rate. Figures 5.4 and 5.5

present the plots for the evaluation of caching strategies based on the financial

cost and hit rate metrics, respectively.

Figures 5.4 and 5.5 show the performance for the fixed time cost scenario. For

large caches, ordering of policies in decreasing financial cost and increasing hit

rate are as follows:

• Financial cost: LFU > MostFreq ∼= FC ∼= LFCU > GDS ∼= LRU > 2P LRU ∼=
SDC MostFreq LRU > GDSF ∼= SDC MostFreq GDSF.

• Hit rate: LFU < MostFreq ∼= FC ∼= LFCU < GDS ∼= LRU < 2P LRU ∼=
SDC MostFreq LRU < GDSF ∼= SDC MostFreq GDSF.

43

 200000

 220000

 240000

 260000

 280000

 300000

 320000

 340000

1K 10K 20K 30K 40K 50K 60K 70K 80K 90K 100K 125K

T
o

ta
l P

ro
ce

ss
in

g
 P

ri
ce

Cache Size

Fixed Time Cost

FC
MostFreq

LRU
LFU

LFCU
2P_LRU

GDS
GDSF

SDC_MostFreq_LRU
SDC_MostFreq_GDSF

Figure 5.4: Financial cost evaluation of caching policies assuming fixed query
processing time costs.

We note that, in this case, the two orderings are the same. This is because,

when only the electricity price is considered as the cost, the variation between

the costs of different queries is not high. Let P (q) be the probability that query q

leads to a cache hit. In this case, the objective function is to minimize the sum of

all (1−P (q))×Cq values, i.e., the cost of all cache misses. If the variation between

the Cq values of different queries is not high, then the objective becomes similar

to minimizing the (1 − P (q)) function, i.e., increasing the hit rate. Therefore,

the hit rate and financial cost metrics are highly correlated in this case. In this

experiment setting, the proposed 2P LRU strategy is only outperformed by hybrid

caches and the GDSF strategy.

44

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

1K 10K 20K 30K 40K 50K 60K 70K 80K 90K 100K 125K

H
it

R
a

te

Cache Size

Fixed Time Cost

FC
MostFreq

LRU
LFU

LFCU
2P_LRU

GDS
GDSF

SDC_MostFreq_LRU
SDC_MostFreq_GDSF

Figure 5.5: Hit rates of caching policies assuming fixed query processing time
costs.

5.5 Conclusion

We proposed the financial cost as a new evaluation metric for query result caches

in web search engines. We evaluated the well-known static, dynamic, and hy-

brid result caching strategies using this metric.In general, we observed that the

improvement of cost based strategies in terms of the financial cost metric over

cost-unaware strategies is more emphasized when there is a sufficient variation be-

tween the costs of queries. The proposed financial-cost-aware LRU cache, 2P LRU,

outperforms the original LRU strategy. For fixed time costs, 2P LRU achieves

performance results that are very close to the best performing policies, GDSF and

SDC MostFreq GDSF. However, in practice, 2P LRU could be a better option since

only LRU housekeeping mechanisms are performed in 2P LRU strategy while

GDSF strategy requires a priority queue structure that results in higher compu-

tational complexity.

45

Chapter 6

A Financial Cost Approach to

Query Freshness in Query Result

Caches

6.1 Introduction

The chapters 3 and 4 examined query result freshness in the cache while chap-

ter 5 analyzed a financial cost metric to minimize the financial cost of processing

a query stream. Keeping the query results in the cache fresh comes with the

financial cost to refresh them regularly. Therefore, the work in this chapter is

conducted to delve into the tradeoff between query freshness and query processing

cost.

In the previous chapter, it is mentioned that commercial search engines strive

to lower their electricity bills which constitutes one of the biggest economical

challenge for their commercial entity. On one hand, reducing processing costs by

obtaining the results from the cache seems to provide an improvement for their

financial operations. On the other hand, this diminishes user satisfaction as the

results given by the cache becomes stale when the underlying index is updated

due to the changes in the document set. Thus, it is imperative for search engines

46

to pay regard to this tradeoff while administering result caches.

The evaluation metrics used in previous chapters become useless, as they do

not reflect cost and freshness at the same time. For this reason a different metric

namely ST and FP cost ratio is employed in this chapter. ST ratio demonstrates

the ratio of the queries supplied from the cache whose results are stale, while FP

cost ratio is the rate of the cost of the queries which are processed at the backend

vainly (if the cache holds the same result as the backend) over total processing

cost. FP cost ratio is the cost of redundant query processing of the expiration

techniques. In other words, not expiring the queries for these cases will not lead

to any performance degradation. In this chapter, two expiration techniques are

discussed in terms of their effects to query result freshness and financial cost of

processing.

6.2 Query Expiration Techniques

Query expiration techniques in this chapter can be described as lazy methods and

eager methods. The lazy methods invalidate a query using some statistics (cache

age, frequency, query cost etc.) about a query when the query is issued, and set

the value of the parameters such as TTL with respect to those values and current

state of the cache, which are explained in the previous chapters in more detail.

The eager methods do not wait for the re-submission of a cached query to make

expiration and refreshing decisions. They make use of the idle cycles at the query

backend to selectively refresh queries. These methods consider user satisfaction

more by keeping the query results fresh by exploiting idle cycles.

In their work [6], Cambazoglu et al. selectively refresh queries in the cache

at every tic (1 or 2 seconds) to keep the results as fresh as possible and com-

pare their method with the techniques such as TTL and flushing. They conduct

experiments for different PST (peak sustainable throughput) values as well as

different MRA (minimum refresh age, the minimum cache age for a query to be

refreshed) values. Their proposed refreshing technique calculates a target number

47

of queries to process at each cycle to find the number of queries to refresh at this

cycle by subtracting the queries issued at this cycle from the target number. This

number has a lower and an upper bound to keep it in a sustained range. This

cyclic refresh uses tick latency (the average latency for all queries issued at this

cycle), to calculate the target number for the next tick. Since the data used in

this chapter do not have processing times of the queries, the tick latencies cannot

be calculated, thus constant PST values will be used to bound number of queries

processed at each cycle.

The selection of queries to refresh at each cycle is decided by sorting them

according to their cache age and frequency. The expired queries are given priority

for refreshing and the remaining slot is allocated to queries with higher frequency

and cache age. The implementation for this methodology is not given in full

detail in the paper and electricity cost is out of scope of the paper. Therefore, the

refreshing methodology in this chapter is a slight modification of the methodology

mentioned in [6].

6.2.1 Lazy Techniques

Lazy techniques alter TTL values only at the time of the submission of the query

to the search engine. Some of the techniques classify the hourly time slots as

expensive and cheap. If the electricity price of a time slot is above the price

threshold, that time slot is referred to as expensive time slot, otherwise it is

called cheap time slot. Since the electricity prices are available for each hour,

each time slot is an hour long.

Time TTL: A constant TTL value is used to expire queries. A query expires

if the time it is in the cache exceeds this value.

Time TTL or Frequency TTL (Disjunction): A frequency TTL is aug-

mented to the time TTL, which expires a query when the cache hit count for the

query exceeds frequency TTL. In this technique, the query is expired if one of

these TTLs expires as explained in chapter 3.

48

Energy Proactive: The expiration mechanism is similar to the Time TTL

or Frequency TTL (Disjunction) technique. There is one more frequency TTL for

the projected frequency, which is the estimated frequency of a query submitted in

an expensive time slot until the closest cheap time slot. In other words, if a query

q is issued in an expensive time slot, at this time the cache age of the query is A

seconds, query frequency is F , and the next cheap slot is TC seconds away, then,

the projected frequency until the next cheap time slot is calculated as follows.

ProjectedFrequency(q) =
F

A
× TC (6.1)

The query is expired if this value exceeds the second frequency TTL or the

other TTLs(Time TTL, Frequency TTL) expire.

Energy Separate TTLs: Each hour is labeled as expensive or cheap hour

according to a threshold value given as a parameter. Namely, if the price in

that hour is greater(smaller) than the threshold, then this hour is labeled expen-

sive(cheap). In this technique, there are two separate time TTL and frequency

TTL values for expensive and cheap slots. The motivation is to do the processing

in cheap time as much as we can, in order to reduce total processing cost. There-

fore, setting high(low) time and frequency TTL values for expensive(cheap) time

slots causes most of the query expirations to occur in cheap time.

Energy Skip: This technique labels the query issue time as expensive and

cheap using a cost threshold. If the electricity cost in a time slot(an hour in this

case) is lower (higher) than the threshold, it is labeled as cheap (expensive) time.

In this technique, the queries are expired as in Time TTL or Frequency TTL

(Disjunction) method, however if the expiration occurs in an expensive time slot,

the refreshing of the query is skipped until it is reissued in a cheap time. That

is, no query is expired in an expensive time slot.

Energy GDSF: This technique keeps a score for each query q calculated by

using the GDSF formula used in previous chapters. Assume the cache age of the

query is L, electricity cost at the time the query issued is C, and query frequency

F (the frequency of the query since the last time it is cached), then the score is:

49

Score(q) = L + C × F (6.2)

The query is expired if this score exceeds a threshold given as parameter.

6.2.2 Eager Techniques

This methodology is more proactive in refreshing the queries. The previous lazy

methods take action at the time of the submission of the queries to make refresh

decisions by taking advantage of the query statistics. However, eager techniques

do not wait for cache hit, instead selectively refresh certain number of queries

depending on hardware and time constraints. This way, the empty cycles in

search engine backend are utilized in order to provide fresh results for future

requests.

The eager methods are derived from the refreshing notion mentioned in [6],

in which queries are selectively refreshed in constant time periods (ticks). The

main objective is to take advantage of idle cycles in search engine backend. The

algorithm in [6] assumes a peak sustainable throughput (PST) for each tick in

which all the queries are served within the query latency constraints. This work

sets lower and upper bounds for PST and makes estimations within this range. At

each tick, this technique calculates a target query throughput for the next cycle

using query latency statistics from the current tick and after the queries issued

in this tick are processed, the remaining budget that is calculated by subtracting

the number of processed queries from the target number is used to issue refresh

queries. The expired queries are given precedence, and the remaining slot is used

to refresh most frequent queries that are issued less recently, considering that

popular queries with high cache age should be refreshed first.

The approach followed in this work differs from [6] in including electricity

price to refresh decisions. Since we do not have a production setting as in [6],

we do not use a target throughput for each tick, as this requires monitoring

the query latency values at each tick. Instead we use a fixed peak sustainable

50

throughput(PST) for each tick. First, the issued queries at each tick are processed

and then the remaining slot is used for refresh queries. The number of refresh

queries is calculated by subtracting the number of issued queries from the fixed

PST value. The expired queries are processed first and then the refresh queries

are issued. The refresh queries are selected associating a score calculated by using

the GDSF formula given in Equation 6.2. The queries are sorted with respect to

this score and queries with higher values are refreshed first to give precedence to

the popular queries which are issued in hours with higher electricity prices and

have higher cache age.

6.3 Experiments

Data. The data used in this chapter are the same as the data as used in Chapters

3 and 4, which are explained in detail in the Appendix. The first half of the data

is used for warming the cache and the other half is used for calculating the results.

Setup. The data do not include the processing time for the queries, only

electricity cost is taken into consideration when calculating the processing cost.

Search engines set an upper bound on the processing times for the queries not to

delay the return of the result set and await user for the results. Therefore, it is

safe to assume that the variance among the processing time of the queries is not

very high and electricity price is adequate for the financial cost of processing a

query.

In chapter 3, the combination of time TTL and frequency TTL in disjunction

mode was the best performing techniques in terms of stale traffic and false positive

ratio and selected as the baseline for lazy techniques. The hourly electricity prices

used in the experiments are the same prices from Chapter 5, which are normalized

by the average value. The parameters for electricity price threshold starts with

0.7 and ends with 1.3, with regard to these normalized values.

For eager techniques, we present results with normalized electricity prices

(uniform cost) as well as for the case where electricity cost is set to 1 (nonuniform

51

cost). In this case we observe the result of removing the impact of price on

selecting which queries to refresh. The time TTL, frequency TTL and various

threshold values for the parameters in all techniques are given empirically and

the best outcomes are presented in the results, except for the time TTL values

for eager case which are based on the values from [6]

Evaluation Metric. We use stale traffic ratio and false positive cost ratio to

evaluate the results. Stale traffic ratio captures the freshness while false positive

cost ratio captures the cost of redundant calculations. False positive cost ratio is

calculated by dividing the cost of false positive cases to the total cost of processing

the entire query stream.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

S
ta

le
 tr

af
fic

 r
at

io

False positive cost ratio

Lazy Methods
Time (T ∈  3..51)

Time (T ∈  3..51) OR Freq. (F = 10)

Energy Proactive

Energy Separate TTLs

Energy Skip

Energy GDSF

Figure 6.1: Stale traffic and false positive cost ratios for lazy techniques

6.4 Results

The results for lazy methods are given in Figure 6.1. The parameter values for

some of the techniques are not included in Figure 6.1 and 6.2 due to insufficient

space for legends in the plots and excess of parameters. The values for parameters

52

for lazy techniques are as follows. In the energy proactive technique, the cost

threshold value is 1.3, frequency TTL value is 20 and the second frequency TTL

value 10. In energy separate TTLs technique, for the cheap time slots the time

TTL value is 6 and the frequency TTL value is 21; while for the expensive time

slot the parameter values for time TTL are 5, 15, 25, 35 and 45, and the frequency

TTL is 60. For this case electricity cost threshold value is 0.9. In energy skip

technique, the frequency TTL value is 10 and the cost threshold value is 1.2. For

the energy GDSF technique the parameter values start from 6 and end at 54 with

an increment of 6.

Energy Skip and time TTL techniques are the worst performing techniques.

Energy Skip technique gives better results than time TTL technique for high TTL

values. The false positive cost ratio was expected to be lower as energy skip case

does not perform any processing in expensive time slots. However, not expiring

queries in expensive time slots results in higher stale traffic ratios. In addition to

these techniques, Energy Proactive technique performs worse than the baseline

technique Time TTL or Frequency TTL (Disjunction). Energy GDSF method

performs the best and energy separate TTLs method performs very close. In

energy separate TTLs case the time TTL and frequency TTL values for expensive

time slot are significantly higher when compared to the values for cheap time slot.

This reduces processing cost by conducting the majority of the query expirations

in cheap time slots. Considering computational overhead of energy GSDF method

to reorder query scores at each score update, energy separate TTLs seems to be

a better alternative for our baseline.

For the eager techniques, since the number of queries is relatively low, exper-

imenting with various PST values did not give much different results. Therefore,

results for different PST values are only presented for time TTL case. Figure 6.3

shows average cache age values for different TTL values. As expected, average

age increases as the TTL value increases. For TTL values of 6, 12 and 18, aver-

age age values oscillate around 2.5, 5 and 7, respectively. Average cost values are

demonstrated in Figure 6.4, and the values decrease as TTL increases and the

results show correlation with expensive and cheap time slots.

53

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 0.05 0.1 0.15 0.2

S
ta

le
 tr

af
fic

 r
at

io

False positive cost ratio

Lazy Methods - Zoomed
Time (T ∈  3..51)

Time (T ∈  3..51) OR Freq. (F = 10)
Energy Proactive

Energy Separate TTLs
Energy Skip

Energy GDSF

Figure 6.2: Stale traffic and false positive cost ratios for lazy techniques - zoomed

Figures 6.5 and 6.6 show the average age and processing cost for eager tech-

niques. The average age values are very close in uniform and nonuniform cost

cases. It is probably because the frequency part of the score formula dominates

the cost. Therefore, when refresh queries are issued, similar set of queries are

selected by both methods. Figure 6.6 shows that the average processing cost for

variable cost case oscillates as in Figure 6.4 and converges to 1, but the values in

Figure 6.4 are lower.

54

 0

 2

 4

 6

 8

 10

 0 20 40 60 80 100 120 140 160

A
vg

. C
ac

he
 A

ge
 -

 (
H

ou
r)

Time - (Hour)

Time TTL
Time (T = 6)

Time (T = 12)

Time (T = 18)

Figure 6.3: Average age over a week for Time TTL

 0.98

 0.99

 1

 1.01

 1.02

 1.03

 0 20 40 60 80 100 120 140 160

A
vg

. P
ro

ce
ss

in
g

C
os

t (
N

or
m

al
iz

ed
)

Time - (Hour)

Time TTL
Time (T = 6)

Time (T = 12)

Time (T = 18)

Figure 6.4: Average processing cost over a week for Time TTL

55

 2.1

 2.15

 2.2

 2.25

 2.3

 2.35

 2.4

 2.45

 2.5

 2.55

 0 20 40 60 80 100 120 140 160

A
vg

. C
ac

he
 A

ge
 -

 (
H

ou
r)

Time - (Hour)

Eager case

Time (T = 6, PST = 100 - Uniform Cost

Time (T = 6, PST = 100 - Nonuniform Cost

Figure 6.5: Average age over a week for the eager case - refreshing with uniform
and nonuniform cost

 0.9

 0.95

 1

 1.05

 1.1

 0 20 40 60 80 100 120 140 160

A
vg

. P
ro

ce
ss

in
g

C
os

t

Time - (Hour)

Eager case

Time (T = 6, PST = 100 - Uniform Cost

Time (T = 6, PST = 100 - Nonuniform Cost

Figure 6.6: Average processing cost over a week for the eager case - refreshing
with uniform and nonuniform cost

56

6.5 Conclusion

We examined the tradeoff between cost and freshness in result caching. Lazy and

eager methodologies have been evaluated. The experiments demonstrated that

for lazy techniques, even keeping separate TTL values for cheap and expensive

time slots can improve cache performance. The best lazy technique was energy

GDSF technique which combines cache age, frequency and cost in query scores

and uses this to expire queries. These techniques performed better than the

baseline technique which is time or frequency TTL (Disjunction) case explained

in Chapter 3. However, the eager case did not show much improvement. The main

reason for this result is the number of queries in the query log and the low variance

of electricity costs. The limited number of queries results in limited number of

refresh queries to be issued. Since the query age and frequency dominates the

selection of refresh queries, the set of refresh queries become quite similar, which

yields the results in this chapter.

57

Chapter 7

Conclusion

The overall performance of a search engine is impacted by metrics such as op-

erational costs, financial costs and user satisfaction. The dependencies among

this metrics have to be taken into consideration while developing the search en-

gine. Improving user satisfaction is favourable for the search engine, but it has

adverse effects on operational and financial costs. Thus, the search engines must

be cautious in determining the correct measures for identifying its performance,

and such a measure should not leave out any metric.

We both discussed the techniques to improve search engine performance and

investigated the evaluation criteria to meet the requirements of each technique.

We demonstrated that making use of the correct subset of query statistics in

invalidating cache entries results in fast and accurate query results with minimal

overload on storage and processing power. Although maximizing cache hit rate

is perceived as decreased load on backend and increased query throughput, the

user satisfaction component of the search engine performance criteria is nega-

tively affected by this. Therefore, we examined various time-to-live mechanisms

to maximize cache hit rate without returning results that contradicts with the

current index. In addition to query specific feedback, other queries in the cache

are taken into consideration to correctly invalidate a cache entry.

The latter part of the thesis investigated impacts of considering financial cost

58

for result caching. A new financial cost metric was proposed to contain the

cost component. A memory friendly novel algorithm was compared with a state

of the art algorithm that considers computation power and concluded that low

processing costs can be obtained at the expense of some processing power which

poses another contradiction among the metrics for overall performance of the

search engine.

The last part of the thesis examined the tradeoff between processing cost

and query freshness. Lazy and eager techniques were evaluated to find out how

the processing cost can be minimized without affecting query freshness. The

common feature of all the chapters is that they make use of the statistics in the

query log. Even experiments including click data of the queries were conducted.

From several query statistics in the query log it is crucial to combine them in the

right way. We experimented with different combinations to find out the best one.

As a future work, we plan to further extend our analysis on the query log to

find more feedback to invalidate cache entries, because invalidating cache entries

without peeking at the index may not provide the most accurate feedback. There-

fore, it becomes imperative to maximize the feedback from query log in order to

selectively invalidate cache entries without too much processing overhead.

59

Bibliography

[1] E. P. Markatos, “On caching search engine query results,” Computer Com-

munications, vol. 24, no. 2, 2001.

[2] T. Fagni, R. Perego, F. Silvestri, and S. Orlando, “Boosting the performance

of web search engines: Caching and prefetching query results by exploiting

historical usage data,” ACM Transactions on Information Systems, vol. 24,

pp. 51–78, Jan. 2006.

[3] P. C. Saraiva, E. Silva de Moura, N. Ziviani, W. Meira, R. Fonseca, and

B. Riberio-Neto, “Rank-preserving two-level caching for scalable search en-

gines,” in Proceedings of the 24th Annual International ACM SIGIR Con-

ference on Research and Development in Information Retrieval, SIGIR ’01,

(New York, NY, USA), pp. 51–58, ACM, 2001.

[4] R. Baeza-Yates and F. Saint-Jean, “A three level search engine index based

in query log distribution,” in String Processing and Information Retrieval

(M. Nascimento, E. de Moura, and A. Oliveira, eds.), vol. 2857 of Lecture

Notes in Computer Science, pp. 56–65, Springer Berlin Heidelberg, 2003.

[5] X. Long and T. Suel, “Three-level caching for efficient query processing in

large web search engines,” in Proceedings of the 14th International Confer-

ence on World Wide Web, WWW ’05, (New York, NY, USA), pp. 257–266,

ACM, 2005.

[6] B. B. Cambazoglu, F. P. Junqueira, V. Plachouras, S. Banachowski, B. Cui,

S. Lim, and B. Bridge, “A refreshing perspective of search engine caching,”

60

in Proceedings of the 19th International Conference on World Wide Web,

WWW ’10, (New York, NY, USA), pp. 181–190, ACM, 2010.

[7] R. Baeza-Yates, F. Junqueira, V. Plachouras, and H. F. Witschel, “Admis-

sion policies for caches of search engine results,” in Proceedings of the 14th

International Conference on String Processing and Information Retrieval,

SPIRE’07, (Berlin, Heidelberg), pp. 74–85, Springer-Verlag, 2007.

[8] Q. Gan and T. Suel, “Improved techniques for result caching in web search

engines,” in Proceedings of the 18th International Conference on World Wide

Web, WWW ’09, (New York, NY, USA), pp. 431–440, ACM, 2009.

[9] R. Lempel and S. Moran, “Predictive caching and prefetching of query results

in search engines,” in Proceedings of the 12th International Conference on

World Wide Web, WWW ’03, (New York, NY, USA), pp. 19–28, ACM,

2003.

[10] S. Alici, I. S. Altingovde, R. Ozcan, B. B. Cambazoglu, and O. Ulusoy,

“Adaptive time-to-live strategies for query result caching in web search en-

gines,” in Proceedings of the 34th European Conference on Advances in In-

formation Retrieval, ECIR’12, (Berlin, Heidelberg), pp. 401–412, Springer-

Verlag, 2012.

[11] S. Jonassen, B. B. Cambazoglu, and F. Silvestri, “Prefetching query results

and its impact on search engines,” in Proceedings of the 35th International

ACM SIGIR Conference on Research and Development in Information Re-

trieval, SIGIR ’12, (New York, NY, USA), pp. 631–640, ACM, 2012.

[12] S. Alici, I. S. Altingovde, R. Ozcan, B. B. Cambazoglu, and O. Ulusoy,

“Timestamp-based result cache invalidation for web search engines,” in Pro-

ceedings of the 34th International ACM SIGIR Conference on Research and

Development in Information Retrieval, SIGIR ’11, (New York, NY, USA),

pp. 973–982, ACM, 2011.

61

[13] X. Bai and F. P. Junqueira, “Online result cache invalidation for real-time

web search,” in Proceedings of the 35th International ACM SIGIR Confer-

ence on Research and Development in Information Retrieval, SIGIR ’12,

(New York, NY, USA), pp. 641–650, ACM, 2012.

[14] R. Blanco, E. Bortnikov, F. Junqueira, R. Lempel, L. Telloli, and

H. Zaragoza, “Caching search engine results over incremental indices,” in

Proceedings of the 33rd International ACM SIGIR Conference on Research

and Development in Information Retrieval, SIGIR ’10, (New York, NY,

USA), pp. 82–89, ACM, 2010.

[15] E. Bortnikov, R. Lempel, and K. Vornovitsky, “Caching for realtime search,”

in Proceedings of the 33rd European Conference on Advances in Information

Retrieval, ECIR’11, (Berlin, Heidelberg), pp. 104–116, Springer-Verlag, 2011.

[16] R. Baeza-Yates, A. Gionis, F. Junqueira, V. Murdock, V. Plachouras, and

F. Silvestri, “The impact of caching on search engines,” in Proceedings of

the 30th Annual International ACM SIGIR Conference on Research and

Development in Information Retrieval, SIGIR ’07, (New York, NY, USA),

pp. 183–190, ACM, 2007.

[17] R. Ozcan, I. S. Altingovde, and O. Ulusoy, “Cost-aware strategies for query

result caching in web search engines,” ACM Transactions on the Web, vol. 5,

pp. 9:1–9:25, May 2011.

[18] I. S. Altingovde, R. Ozcan, B. B. Cambazoglu, and O. Ulusoy, “Second

chance: a hybrid approach for dynamic result caching in search engines,”

in Proceedings of the 33rd European Conference on Advances in Information

Retrieval, ECIR’11, (Berlin, Heidelberg), pp. 510–516, Springer-Verlag, 2011.

[19] A. Barroso Luiz and U. Hölzle, The Datacenter as a Computer: An Intro-

duction to the Design of Warehouse-Scale Machines. Synthesis Lectures on

Computer Architecture, Morgan & Claypool, 2009.

[20] E. Kayaaslan, B. B. Cambazoglu, R. Blanco, F. P. Junqueira, and

C. Aykanat, “Energy-price-driven query processing in multi-center web

62

search engines,” in Proceedings of the 34th international ACM SIGIR con-

ference on Research and development in Information Retrieval, SIGIR ’11,

(New York, NY, USA), pp. 983–992, ACM, 2011.

[21] M. Marin, V. Gil-Costa, and C. Gomez-Pantoja, “New caching techniques

for web search engines,” in Proceedings of the 19th ACM International Sym-

posium on High Performance Distributed Computing, HPDC ’10, (New York,

NY, USA), pp. 215–226, ACM, 2010.

[22] A. Qureshi, R. Weber, H. Balakrishnan, J. Guttag, and B. Maggs, “Cutting

the electric bill for internet-scale systems,” in Proceedings of the ACM SIG-

COMM 2009 Conference on Data Communication, SIGCOMM ’09, (New

York, NY, USA), pp. 123–134, ACM, 2009.

[23] P. Cao and S. Irani, “Cost-aware www proxy caching algorithms,” in Pro-

ceedings of the USENIX Symposium on Internet Technologies and Systems

on USENIX Symposium on Internet Technologies and Systems, USITS’97,

(Berkeley, CA, USA), pp. 18–18, USENIX Association, 1997.

[24] M. Arlitt, L. Cherkasova, J. Dilley, R. Friedrich, and T. Jin, “Evaluating

content management techniques for web proxy caches,” SIGMETRICS Per-

formance Evaluation Review, vol. 27, pp. 3–11, Mar. 2000.

[25] G. Pass, A. Chowdhury, and C. Torgeson, “A picture of search,” in Proceed-

ings of the 1st International Conference on Scalable Information Systems,

InfoScale ’06, (New York, NY, USA), ACM, 2006.

63

Appendix A

Query Log Data

Strategies for setting TTL values for the methods described in Chapters 3, 4

and 6 use the same query log data. The subset of a query log of a commercial

search engine is employed for the simulation of the search engine with the settings

explained in the respective chapters. The subset is generated by applying some

heuristics that are coherent with the nature of the experimental setting. The

heuristics are as follows:

• Only the first page of the query results are included. The query results are

compared to each other for stale ratio calculation purposes and to make

this comparison correctly only the first pages are considered (most of the

query result pages are 1).

• Page size for the results should be 10. Page sizes other than 10 make query

result comparison more complicated. When comparing query results, differ-

ent page sizes are counted as different results without further consideration.

• Number of matching results of a query should be at least half of the number

of matching results returned to the last occurrence of the same query (by

same query, it is suggested that the query terms are the same). When the

total number of matching results drops dramatically, it usually implies that

not all the clusters are able to contribute to the final result set, possibly

64

due to the limitations on the query response time. In such a situation,

comparing top 10 query results of this case with a normal case does not

produce healthy results for the simulations conducted. Thus, this heuristic

is applied to eliminate this case.

• User location and data center are the same across the whole query log.

Again, this is for the sake of the comparison of query results. Different data

centers and user locations contribute to the customisation of query results,

which change the result of the same query terms making the comparison of

their results harder.

• For the query terms, the query normalized by the search engine is employed.

This is safer, since user query terms may include some typo which obstruct

distinguishing queries.

The queries submitted to Spanish front-end of the commercial search engine

are taken for the experiments. This constitutes to a set of 2,044,531 queries in

timestamp order, when the heuristics above are applied to the query log. The

first half of the queries are used as the training set (i.e., to warm-up the cache)

and remaining half is used as the test set. In the experiments, in addition to

using this entire query stream, a more detailed performance analysis for the head

and tail queries are also provided. To this end, all unique queries in the query

set are sorted by their submission frequencies, and label those in top-1% and

bottom-90% as head and tail queries, respectively; and the rest as torso. Then

the query streams that only include these identified queries are constructed using

the corresponding labels. As before, the stream is split as 50/50 for training and

testing.

65

