
SOLUTION METHODOLOGIES FOR DEBRIS
REMOVAL DURING DISASTER RESPONSE

PHASE

a thesis

submitted to the department of industrial engineering

and the graduate school of engineering and science

of bilkent university

in partial fulfillment of the requirements

for the degree of

master of science

By

Nihal Berktaş

July, 2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bilkent University Institutional Repository

https://core.ac.uk/display/52926417?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Assoc. Prof. Bahar Yetiş Kara(Advisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a dissertation for the degree of Doctor of Philosophy.

Assoc. Prof. Oya Karaşan(Co-Advisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Assoc. Prof. Osman Oğuz

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Asst. Prof. M. Alp Ertem

Approved for the Graduate School of Engineering and Science:

Prof. Dr. Levent Onural
Director of the Graduate School

ii

ABSTRACT

SOLUTION METHODOLOGIES FOR DEBRIS
REMOVAL DURING DISASTER RESPONSE PHASE

Nihal Berktaş

M.S. in Industrial Engineering

Supervisor: Assoc. Prof. Bahar Yetiş Kara

Co-Supervisor: Assoc. Prof. Oya Karaşan

July, 2014

During the disaster response phase of the emergency relief, the aim is to reduce

loss of human life by reaching disaster affected areas with relief items as soon as

possible. Debris caused by the disaster blocks the roads and prevents emergency

aid teams to access the disaster affected regions. Deciding which roads to clean in

order to transport relief items is crucial to diminish the negative impact of a dis-

aster on human health. Despite the significance of the problem during response,

in the literature debris removal is mostly studied in recovery or reconstruction

phases of a disaster. The aim of this study is providing solution methodologies for

debris removal problem in response phase. In particular, debris removal activities

on certain blocked arcs have to be scheduled in order to reach a set of critical

nodes such as schools and hospitals. Two mathematical models are developed

with different objectives. The first model aims to minimize the total time spent

to reach all critical nodes whereas the second minimizes weighted sum of visiting

times where weights indicate the priorities of critical nodes. Since obtaining solu-

tions quickly is important in the early post-disaster, heuristic algorithms are also

proposed. Two data sets belonging to Kartal and Bakırköy districts of İstanbul

are used to test the mathematical models and heuristics.

Keywords: Debris management, debris removal, relief transportation, node rout-

ing.

iii

ÖZET

AFET MÜDAHALE SAFHASINDA ENKAZ YÖNETİMİ
İÇİN ÇÖZÜM YÖNTEMLERİ

Nihal Berktaş

Endüstri Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Doç. Dr. Bahar Yetiş Kara

Eş-Tez Yöneticisi: Doç. Dr. Oya Karaşan

Temmuz, 2014

Afetten etkilenen bölgelere yardım ekibinin ve acil yardım malzemelerinin

ulaştırılması afet lojistiğinin en önemli safhalarından birini oluşturmaktadır.

Afetin sebep olduğu enkaz, afetzedelere ulaşımı zorlaştırarak barınma, beslenme

ve sağlık hizmetlerini geciktirmekte, can kayıplarını artırmaktadır. Literatürde

çoğunlukla afet yönetiminin iyileştirme ve yeniden inşa safhasında çalışılmış enkaz

kaldırma problemi, bu çalışmada müdahale safhasında incelenmiştir. Afet son-

rasında popülâsyonu ve önemi yüksek olan hastane, okul gibi kritik noktalara

en kısa sürede ulaşılmasını amaçlayan ve temizlenecek ayrıtlara karar vererek

kritik noktalar arasında rota oluşturan matematiksel modeller geliştirilmiştir.

Geliştirilen ilk modelde amaç fonksiyonu en son ulaşılan kritik noktanın varış za-

manını enazlamaktır. Kritik noktalara ağırlıklar atanarak, ağırlıklı toplam varış

zamanını enazlamayı amaçlayan ikinci bir model geliştirilmiştir. Bu modellerin

testinde Kartal ve Bakırköy ilçelerinin verileri kullanılmıştır. Afet ortamında hızlı

karar almak büyük önem arz ettiğinden, kısa sürede iyi çözümler üretebilecek

sezgisel yöntemler geliştirilmiş, veri setleri üzerinde test edilmiştir.

Anahtar sözcükler : Afet yönetimi, enkaz kaldırma, acil yardım ulaştırma, düğüm

rotalama.

iv

Acknowledgement

I would like to express my gratitude to my advisor Assoc. Prof. Bahar Yetiş

Kara for her guidance, patience and being there whenever I needed her. I would

like to thank my co-advisor Assoc. Prof. Oya Karaşan for her valuable ideas and

support. It has been a grate experience to work with them.

I am grateful to Assoc. Prof. Osman Oğuz and Asst. Prof. M. Alp Ertem

for accepting to read this thesis and for their valuable comments. I would like to

thank Halenur Şahin and Fırat Kılcı for their support in this research.

I would like to acknowledge the financial support of The Scientific and Tech-

nological Research Council of Turkey (TUBITAK).

I would like to thank Özüm Korkmaz for her invaluable friendship and support

on every subject during these last two years. I will never forget the sleepless

nights we spent with her and Nil Karacaoğlu who made the hard times bearable

with her laughter. I would like to thank my dearest friend Merve Meraklı for

her love and support. I am grateful to my friends Hüseyin Gürkan and Oğuz

Çetin for the patience they have shown to all of my questions for the last five

years. I am grateful to Burcu Tekin for the joy she brought during our study.

I would like to thank Ramez Kian, Gizem Özbaygın, Esra Koca, Ece Demirci,

İrfan Mahmutoğulları, Meltem Peker, Sinan Bayraktar for their friendship and

support during our graduate studies. I am also thankful to my homemate Bihter

Dağlar for her moral support.

I am most grateful to my family; my mother and my role model Hatice Berktaş

for her eternal love and support, my father İzzet Berktaş who motivates me with

his spirit, my sister Seda Sezgin Berktaş for her helpful advice and encouragement,

and my brother İhsan Berktaş although he will be judgmental about the language

of this thesis.

Last but not least, I am deeply grateful to Mesut Kaya for his love, patience

and understanding.

v

Contents

1 Introduction and Problem Definition 1

2 Literature Review 8

2.1 General Routing Problems . 8

2.1.1 Arc Routing Problems . 9

2.1.2 Node Routing Problems 11

2.2 Relief Transportation/Distribution 12

2.3 Debris Removal . 14

3 Model Development 17

3.1 First Model: Minimize Total Time 23

3.2 Second Model: Minimize Weighted Sum of Visiting Times 27

4 Heuristic Algorithms 31

4.1 Constructive Heuristics . 32

4.1.1 Minratio Heuristic . 32

vi

CONTENTS vii

4.1.2 Weighted Shortest Distance Heuristic 37

4.2 Improvement Heuristics . 39

5 Data and Computational Analysis 42

5.1 Data . 42

5.2 Computational Analysis . 46

5.2.1 Analyses on the First Model 46

5.2.2 Analyses on the Second Model 57

5.2.3 Performance of Minratio Heuristic 68

5.2.4 Performance of Weighted Shortest Distance Heuristic . . . 73

6 Conclusion 76

List of Figures

1.1 Disaster Management Cycle . 2

1.2 Debris Related Operations in Disaster Timeline 4

1.3 Seismic zone map of Turkey [1] 5

2.1 Framework for disaster operations and associated facilities and

flow [2] . 12

3.1 Original network G = (N,A) (left), new network (right) G′ =

(N ′, A′) where dotted nodes and arcs are artificial. 19

3.2 An example of revisiting a critical node where k, l,m ∈ C, i, j ∈ NC 26

4.1 A simple network where dashed edges show the shortest path be-

tween each node . 33

4.2 Flowchart of Algorithm Minratio 35

4.3 Flowchart of Algorithm Weighted Shortest Distance 38

4.4 An example of 2-opt applied on a feasible route 39

4.5 Procedures used in improvement algorithms 41

viii

LIST OF FIGURES ix

5.1 The location of supply node and critical nodes in Kartal 44

5.2 The location of supply node and critical nodes in Bakırköy 44

5.3 Optimal routes of instances K1,K2,K3,K4,K5 for MTT 48

5.4 Example of constructing transportation network and T matrix . . 56

5.5 Optimal route of instance K7 for both of the mathematical models 62

5.6 Optimal route of B2′ (schools) by MTT 66

5.7 Optimal route of B2′ (schools) by MWSVT 66

List of Tables

1.1 Debris Amount of Recent Disasters 4

4.1 An example of Minratio Algorithm 34

5.1 Features of the data set . 43

5.2 Severity of earthquake, corresponding BAR values and BAR values

used in Kartal and Bakırköy instances. 45

5.3 Performance of the first model on Kartal instances with higher

cleaning times . 47

5.4 Performance of the first model on Kartal instances with lower

cleaning times . 49

5.5 CPU times of models Minimize Total Effort [3] and Minimize Total

Time (in seconds) . 49

5.6 Performance of the first model on Bakırköy instances with higher

and lower cleaning times with SOE=1 51

5.7 Performance of the first model on Bakırköy instances with higher

and lower cleaning times with SOE=2 52

5.8 Performance of the first model on Bakırköy instances with higher

and lower cleaning times with SOE=3 53

x

LIST OF TABLES xi

5.9 Performance of the first model on Bakırköy instances with higher

and lower cleaning times with SOE=4 54

5.10 Performance of the first model on Bakırköy instances with lower

cleaning times and 15 critical nodes 55

5.11 Performances of Cplex 12.6 and Gurobi 5 in terms of CPU times

on Kartal instances with higher cleaning times with complete and

transportation networks . 57

5.12 Performances of Cplex 12.6 and Gurobi 5 on Kartal instances with

higher cleaning times for the second model 58

5.13 Performance of the second model on Kartal instances with higher

cleaning times . 59

5.14 Performance of the second model on Kartal instances with lower

cleaning times . 60

5.15 Weights of the critical nodes in Kartal data set 60

5.16 Total route times of optimal solutions obtained from the mathe-

matical models using Kartal instances with higher cleaning times 61

5.17 Weights of the critical nodes in Bakırköy (hospitals on the left,

schools on the right) . 62

5.18 Performance of the second model on Bakırköy instances (hospitals)

with higher cleaning times . 63

5.19 Performance of the second model on Bakırköy instances (hospitals)

with lower cleaning times . 64

5.20 Performance of the second model on Bakırköy instances (schools)

with higher cleaning times . 65

LIST OF TABLES xii

5.21 Performance of the second model on Bakırköy instances (schools)

with lower cleaning times . 67

5.22 Comparison of Minratio, Maxratio and Avgratio on Kartal in-

stances with higher cleaning times 69

5.23 Performance of Minratio heuristic on Kartal instances with higher

and lower cleaning times . 70

5.24 Performance summary and comparison of Minratio heuristics with

the heuristic by Şahin [3] on Kartal instances 70

5.25 Performance of Minratio heuristic on Bakırköy instances with

higher and lower cleaning times, critical nodes are schools 71

5.26 Performance summary and comparison of Minratio heuristics with

the heuristic by Şahin [3] on Bakırköy instances (schools) 71

5.27 Performance of Minratio heuristic on Bakırköy instances with

higher and lower cleaning times, critical nodes are hospitals 72

5.28 Performance summary and comparison of Minratio heuristics with

the heuristic by Şahin [3] on Bakırköy instances (hospitals) 72

5.29 Performance of Weighted Shortest Distance(WSD) heuristic on

Kartal instances with higher and lower cleaning times 73

5.30 Performance of Weighted Shortest Distance(WSD) heuristic on

Bakırköy instances (hospitals) with higher and lower cleaning times 74

5.31 Performance of Weighted Shortest Distance(WSD) heuristic on

Bakırköy instances (schools) with higher and lower cleaning times 75

Chapter 1

Introduction and Problem

Definition

Disaster operations include activities that are carried out before, during and after

a disaster in order to reduce loss of human life, minimize the economical damage

and restore the normal state or well-being of the community. Disasters could

be natural and man-made; their timing and/or place might be known before-

hand. While accidents and terrorist attacks fall into the man-made category,

earthquakes and hurricanes are natural disasters for which the locations are pre-

dictable. Regardless of the type of the disaster, the operations can be classified

as pre-disaster and post-disaster operations. Disaster management cycle which

includes these operations is mostly analyzed in four stages: mitigation, prepared-

ness, response and recovery as in Figure 1.1. Mitigation consists of precautionary

measures to avoid disaster or reduce its impact so mitigation activities take place

both before and after a disaster. The purpose of preparedness activities is gaining

the ability to respond and rescue when disaster strikes so it includes the activ-

ities prior to a disaster. Response is the stage where resources are utilized to

reach disaster area, save lives and prevent further economical and environmental

damage. This stage is more complex since it takes place just after the disaster

where resources should be activated immediately to reach affected people, re-

alize the severity of the situation and plan accordingly. Recovery involves the

1

post-disaster activities to return to a normal state and provide stable life to the

disaster victims [4].

Mitigation

Preparedness

Recovery

Response

Disaster

Figure 1.1: Disaster Management Cycle

Despite all kinds of precautions, disasters, especially natural ones are inevitable.

Therefore planning disaster relief operations before it happens, and implementing

them in early post-disaster phases are significant to diminish its impact. As stated

by Wassenhove [5], huge part of disaster relief operations is about logistics. Hence

to re-establish normal living conditions with the minimum loss of life and property

we need to lead and carry out logistics operations effectively.

Sheu [6] defines emergency logistics as a process of planning, managing and con-

trolling the flow of resources in order to provide relief and urgent services to

affected people. Emergency logistics differs from the commercial supply chain

due to the unique and extraordinary circumstances caused by disaster [7]. One

of the challenges in emergency logistics is lacking capable resources to handle

the situation or not being able to reach and activate them on time. During Haiti

earthquake in 2010 the limited ramp space of the airport and lack of fuel prevented

humanitarian flights from entering the country [8]. Furthermore the uncertain-

ties about demand may result in wrong or excessive donations which complicate

2

handling and storage operations. For example, in Japan Earthquake in 2011 it

is reported that too much blankets and clothing are donated. After the Joplin

tornado happened in the same year, huge number of donations overwhelmed the

storage and became an obstacle for distribution of actual needs [9].

Damage in communication systems and other infrastructure such as roads in-

creases the complexity and difficulty in logistics. Again in Haiti earthquake the

port was damaged and could not handle large ships so delivery of the emergency

aids transported via ships were planned accordingly. Involvement of many parties

to control these resources creates another challenge since they have to commu-

nicate and coordinate efficiently. This challenge was sadly proved by Hurricane

Mitch in 1998 when it took weeks for The International Federation of Red Cross

and Red Crescent Societies (IFRC) to coordinate and distribute the donated

reliefs [10].

When governments and institutions are not able to overcome these challenges,

the effects of the disaster last for a long period of time, like in example of Haiti

earthquake; 98% of the debris remained after six months from the earthquake

and made the transportation impossible for the most part of the capital city [11].

Debris are caused by destruction of structures and vegetation and they block the

roads and prevent accessibility to disaster affected areas. There are different type

of debris; construction, vegetative, hazardous waste, properties such as white

goods, vehicles etc. [12]. Hence debris differs from the normal waste in terms of

content and amount as Hurricane Katrina proved it by producing more than fifty

times the annual amount of daily solid waste in the U.S. in few hours [13].

The magnitude, type and place of a disaster change the characteristics of debris.

For instance debris caused by an earthquake on an urban area mostly consists of

ruins of buildings where hurricane debris contains trees, part of structures such as

fences and rooftops, and other properties. Some of the recent worldwide disasters

which caused high volume of debris can be seen in Table 1.1.

3

Table 1.1: Debris Amount of Recent Disasters

Year Event Debris Amount

2011 Japan Earthquake and Tsunami 250 million ton [14]
2008 Wenchuan Earthquake, China 380 million ton [15]
2005 Hurricane Katrina, USA 76 million m3 [16]
2004 Indian Ocean Tsunami 10 million m3 (Only Indonesia) [17]
2004 Hurricane Charley, USA 14 million m3 [18]
1999 Marmara Earthquake, Turkey 13 million ton [19]
1999 Chi-Chi Earthquake, Taiwan 20 million m3 [20]
1995 Kobe Eartquake,Japan 15 million m3 [21]
1995 Hyogoken-Nambu Eartquake, Japan 2 billion ton [22]

There are different operations related to debris through the disaster timeline. In

the pre-disaster phase considering possible disaster scenarios volume and char-

acteristics of debris are estimated. Based on these estimations debris collection

strategy is established. Recycling and collection sites are determined in this phase

and necessary equipment is obtained. Just after the disaster, debris clearance

starts in order to access affected areas and transport relief. Complete collec-

tion and recycling of debris are the post-disaster operations which usually take

months. Çelik et al. [23] summarize these operations in Figure 1.2.

Figure 1.2: Debris Related Operations in Disaster Timeline

4

Clearance of debris after a disaster is a must to normalize the life of the victims.

Debris have significant impact on people’s health both physically and mentally.

While hazardous wastes threaten victims’ lives directly, living near the wreckages

affects people’s psychology. These issues are the concerns of complete removal

and recycle of debris in the post-disaster phase. Due to the nature of the response

phase, the aim and characteristics of debris related activities are different. In this

phase, the main purpose is to reach disaster affected areas in order to deliver relief.

By relief we mean all kind of emergency aid items such as food and medicine.

Hence the debris removal operations during this phase are only performed if it is

necessary to reach an area and deliver relief as soon as possible.

In this study we focus on the debris removal or clearance operations in the re-

sponse phase of a disaster, more precisely an earthquake. Earthquakes are not

rare events; average annual number of earthquakes occurred worldwide in the

last decade is 28 [24]. As it can be seen from the seismic zone map, Turkey is

an earthquake prone country. Statistics show that in every 8 months a serious

earthquake occurs in Turkey [25].

Figure 1.3: Seismic zone map of Turkey [1]

5

Coordination and execution of operations related to debris removal fall under

responsibility of Republic of Turkey Prime Ministry Disaster and Emergency

Management Presidency (T.C Afet ve Acil Durum Yönetim Başkanlığı)(AFAD).

According to Turkey Disaster Intervention Plan published on May 2013 by AFAD,

there are two main solution partners concerning these operations. Ministry of

Transport, Maritime Affairs and Communication is responsible for providing fast

and safe transportation to disaster areas by clearing debris, especially on the

main roads. The duties of Ministry of Environment and Urban Planning are

mostly related to the recovery phase such as debris removal after search and

rescue operations, determining debris collection areas and destroying damaged

buildings. There are other supportive ministries and sectors which coordinate

with and provide equipments and personnel to AFAD.

Since the aim in disaster response phase is distributing relief to the people as soon

as possible, the debris removal operations in this phase do not intend to clean

all the blocked roads. Especially after a severe earthquake in a vulnerable area,

unblocking all the road may take months. However people affected by the disaster

need food, medicine, treatment, shelter etc. within minutes to fulfill basic needs.

We call all of these needs as emergency aid or relief and in order to minimize

the devastating effects of the disaster, these relief items must be delivered to the

disaster affected people as soon as possible. For that purpose, complete clearance

of the debris should be postponed to the post-disaster phase and roads should

be cleaned only when it is necessary to use that road to enable accessibility a

disaster affected region.

Reaching all the settlement areas of the disaster affected region in a short amount

of time is not possible after a serious earthquake. Therefore we focus on a subset

of them. This subset is called critical and it includes areas which are densely

populated and consequently having an urgent need of relief items such as schools.

Moreover, some areas are accepted as critical, such as hospitals and shelter areas,

not only because they need urgent relief distribution but also they should stay

open to public access. To enable transportation to these critical districts we

have to decide which blocked roads to clean. Based on these concerns, Debris

Removal Problem in Response Phase is defined as reaching a set of predetermined

6

critical disaster affected nodes as soon as possible by traversing arcs which may

be blocked due to debris [3]. Hence to visit a critical node, we may chose to use

a blocked arc but to be able to use a blocked arc we need to remove the debris

on it in expense of some effort.

We assume that there is depot or supplier from which a vehicle departs and visits

each critical node to deliver relief items. Once debris on a blocked arc are removed

the arc remains clean. Thus, when a blocked arc is traversed for the first time,

debris are removed with some effort which is measured in terms of time, and no

debris removal effort is spent in the subsequent traversals of the arc. Hence the

problem is constituting a travel path from supplier to critical nodes by deciding

which arcs to use, which arcs to clean and visiting order of critical nodes. While

constituting this path, we focus on two objectives. The first one is minimizing

the total time spent to visit all critical nodes and the second is minimizing sum

of weighted visiting times where the weights determine the priority relationship

among the critical nodes. Therefore we have two problems and according to the

objectives we refer to these problems as Debris Removal in Response (DRR) and

Prioritized Debris Removal in Response (PDRR), respectively. While construct-

ing solution methodologies we investigate these problems separately.

Our problems have a set of nodes required to be visited as in node routing prob-

lems. They also possess some characteristics of arc routing problems because of

the presence of unblocked arcs. Thus they can be seen as a variant of general

routing problem and defined as one by Şahin [3]. Her study provides a com-

prehensive search on general routing problems, focusing on arc routing in more

detail. In the next chapter, we expand this research on general routing problems

and present literature on relief transportation and debris removal. This literature

review shows that for the disaster response phase, debris removal is an under-

researched area which highlights the contribution of this study. In chapters 3 and

4, mathematical models and heuristic methodologies which are developed for the

problems DDR and PDRR are explained, respectively. Computational results of

these solution techniques are represented in Chapter 5. A conclusion and possible

future research directions are given in Chapter 6.

7

Chapter 2

Literature Review

We examine the literature in three sections titled as General Routing Problems,

Relief Transportation and Debris Removal. The first part aims to illustrate the

similarities and differences of our problem with various types of Arc and Node

Routing Problems defined in the literature. Since the main purpose of the study

is to deliver relief items to disaster affected people, Relief Transportation litera-

ture is also investigated. Finally studies on Debris Removal is summarized and

contribution aimed by this thesis is stated in the last section.

2.1 General Routing Problems

General Routing Problem (GRP) was first defined by Orloff as the problem of

finding a minimum cost tour which passes through all required nodes and edges

at least once [26]. Required nodes and edges are subset of all nodes and edges

respectively. When the required node set is empty GRP reduces to Arc Routing

Problem (ARP). If there is no edge required to be traversed then GRP reduces to

Node Routing Problem (NRP). Different types of these problems are examined

in the following subsections.

8

2.1.1 Arc Routing Problems

In ARP, the aim is to determine a least-cost traversal of a required subset

of arcs/edges, which starts and ends at the same node under possible con-

straints [27]. ARP arises in a variety of areas and different types are defined

and studied in the literature according to the definition of the required set, the

characteristics of the network and additional constraints. The primary ARPs are

Chinese postman problem (CPP), rural postman problem (RPP) and capacitated

arc routing problem (CARP). In CPP all arcs/edges are required to be traversed

whereas in RPP a subset of them is required. Different than CPP and RPP, there

is a set of vehicles with capacities in CARP and in addition to the cost, demand

or weight is defined for each required edge.

2.1.1.1 Chinese Postman Problem

CPP was first defined as finding a minimum cost tour which traverses all the arcs

of a connected graph at least once. Applications of CPP include waste collection,

street sweeping, and snow plowing operations.

The problem is polynomially solvable when the graph is directed or undirected.

If the graph is mixed, having both arcs and edges, then the problem is NP-

hard [27]. There is another variation of CPP, windy postman problem, which is

defined on an undirected graph but the cost of edge is different for each travel

direction [28] [29] [30]. In hierarchical postman problem priority relationships

among the arcs are taken into consideration by grouping the arcs according to

their priority levels. The arcs with higher priority must be serviced before the

lower ones but they can re-traversed [27]. In priority constrained Chinese postman

problem nodes have different priorities and the aim is to find minimum cost route

which traverses all edges at least once and visits the higher priority nodes as early

as possible [31].

There are other variations of CPP where there is a fixed k number of postmen

performing totally k tours and each edge should be traversed by at least one

9

tour. If the graph is mixed and the aim is to minimize total cost by all tours

the problem is called k-CPP [32]. If the objective is to minimize the longest tour

then it is called min-max k-CPP [33].

Two main differences of our problem from CPP are the existence of the required

node set and not being obliged to traverse all arcs.

2.1.1.2 Rural Postman Problem

RRP aims to find a least-cost traversal of required subset of edges [26]. Both

directed and undirected versions of RPP is proved to be NP-hard [34]. When

RPP is defined on a mixed graph and the required subset consist of directed arcs

it is called stacker crane problem which is also NP-hard [32]. By defining a profit

function for each edge that can be collected on the first traversal, another version

of RPP is introduced. It is called privatized RRP where the purpose is to find

a cycle with maximum profit and least cost and it is also NP-hard [35]. When

there is a specified time until each edge should be served, the problem is called

RRP with deadline classes [36].

When the required set is a subset of all edges in windy postman problem, the

problem is called windy RRP and several algorithms are suggested by Benavent

et al. [37]. Another variation of this problem is min-max k-vehicles windy RRP

where the aim is to minimize the longest tour while maintaining a balanced tour

for the vehicles [38]. RRP has applications in street sweeping, snow plowing,

garbage collection, mail delivery and school bus routing.

2.1.1.3 Capacitated Arc Routing Problem

CARP aims to minimize traversal of all arcs by vehicles with same capacities and

the total demand or weight of all arcs served by any vehicle cannot exceed the

capacity. It is applicable to areas including winter gritting, refuse collection and

police patrolling. There are many variations of CARP and review on them can

be found in the study by Şahin [3].

10

2.1.2 Node Routing Problems

NRP contains traveling salesman problem (TSP)-like problems where there is

required set of nodes to be visited. Vehicle routing is one the most famous node

routing problems and it has a broad literature because of the many variants and

their application areas. Multiple vehicle, time windows, pick and delivery, vehicle

capacities are some of the common constraints added the standard VRP.

Our problem can be seen as a VRP with blocked arcs which can used after

blockages are cleaned. Therefore, in the VRP literature we focus on the studies

on blocked networks, namely Canadian traveler problem (CTP).

2.1.2.1 Canadian Traveler Problem

CTP is a kind of shortest path problem in which some edges of the graph are

blocked and they are not known in advance by the traveler. It is assumed that if

the blocked edges are removed from the graph, the network is still connected. In

original problem each edge is blocked with some probability known by traveler

however the status is not known until visiting an adjacent node. Furthermore,

when an arc is blocked it remains blocked forever in the first definition of the

problem [39].

There are some variants of CTP in which some of the constraints in the classical

version is relaxed. For example in recoverable CTP, blocked edges adjacent to

same node have the same recovery times. In the stochastic version each edge has

a blockage probability whereas in the deterministic version there is limit on the

total number of blocked edges. If there is a parameter k defined as the maximum

number of blocked edges and they cannot be opened, then the problem is called

k-CTP [40]. In CTP with sensing, the traveler can obtain information about an

edge by incuring a cost. The cost can be dependent on the edge and/or the current

node [41]. In repeated CTP there are multiple travelers but one cannot start his

tour until the previous tour ends [42]. However in multi-agent CTP, travelers

start together and they can communicate about the status of the edges [43].

11

One of major differences of our problem with CTP is the presence of required

node set in contrast to the single node targeted in CTP. Moreover, our problem

is defined under the assumption that the blocked edges are known in advance.

To the best of authors’ knowledge there is no variant of general routing problem

which reflects characteristics of Debris Removal Problem in Response Phase.

2.2 Relief Transportation/Distribution

In their review on optimization models used in emergency logistics Caunhye et

al. [2] point out the difference of business and emergency logistics. They empha-

size the lack of suggestions on future research directions in the related studies

and also the need of focused reviews. In their review they categorize the opera-

tions as pre-disaster and post-disaster, and they illustrate the relations between

operations and facilities as in the Figure 2.1.

Figure 2.1: Framework for disaster operations and associated facilities and flow [2]

They classify these operations in two main categories which are facility location,

and relief distribution and casualty transportation. In the literature there are

location models that include operations on evacuation, stock pre-positioning and

relief distribution. Relief distribution models involve resource allocation which

is basically assigning tasks and equipment, and commodity flow which requires

12

determining the quantity of commodities and the roads used for the flow. Since

our problem aims to enable access to critical disaster-affected area in order to

deliver relief we focus on the studies belong to the second category which is relief

distribution.

One of the studies included in this review by Caunhye et al. [2] is done by

Viswanath and Peeta [44]. The aim of the study is to determine critical routes

during response phase of an earthquake and they formulate a multi-commodity

maximal covering network design problem with two objectives; minimizing total

time traveled and maximizing total population covered with a limited budget.

This budget is spent on using a link, possible damaged and can be repaired.

There is a demand associated with demand centers in the network and there is a

set links from which a demand center can be reached. The problem is tested on

a network from southwest Indiana and solved using branch and cut algorithm.

Another multi-objective model for relief distribution is developed by Tzeng et

al. [45] with objectives minimizing total cost, travel time and and maximizing

the minimal satisfaction. They only consider disaster affected areas which can

be accessed through current road network. The formulation has a periodic struc-

ture and satisfaction is calculated by parameters depend on the location and the

commodity.

Yan and Shih [46] divide roadway network repair after a disaster into two ,i.e,

long and short term. Their study is on the short term in which the time con-

straint is stronger and they focus on urban areas. A multi-objective, multiple

commodity network flow model is developed in order to repair necessary roads

and to transport relief items as soon as possible. They define two networks and

two flow variables for emergency repair and relief distribution but the repair and

relief operations are considered together. They define repair points as the dam-

aged roads that cannot be bypassed by using another road. Hence one of the

important assumptions of the study is that a road is only repaired to reconnect

roadway network, and these repair points are known. Demand points are the

areas that need relief and a minimum percentage of their demand must be sat-

isfied. Although the existence of the demand points are similar to our problem,

13

the knowledge about the repair points creates a significant difference because in

our problem the model decides which roads to clean.

Another review on disaster relief routing is written by Torre et al. [47]. They

examined the models in terms of their objectives, characteristic of the information

on supply and demand, type of the commodity, depot and vehicles. The possible

damage in transportation network is handled by stochasticity in travel times in

studies of Shen et al. [48], Mete and Zabinsky [49], Rawls and Turnquist [50],

Van Hentercyk et al. [51].

2.3 Debris Removal

As stated in the Introduction there are different operations carried on in the

different phases of disaster and we are interested in the response phase. When

we examine the literature on humanitarian and emergency logistics, although

there are many studies on the activities which take place in the response phase,

studies including debris removal are not common. The studies on debris removal

literature is mostly focused on recovery phase of the disaster management cycle

and below we give some recent studies focused on debris removal.

Fetter and Rakes [52] highlight the difference of managing disaster debris with

daily solid waste and point out that the disposal of debris constitutes big part of

disaster costs. They state that the disaster debris cleanup operations are com-

monly divided in two phases. The first phase aims to clear debris to ensure access

to the disaster-affected area as in our problem and the second phase includes all

operations related to debris collection, separation and recycling. They mention

that with a change in the disaster disposal policies by the U.S. Federal Emergency

Management Agency (FEMA), the recycling of debris is encouraged and parallel

to that policy, a facility location model which aims to maximize recycling with

minimum cost is suggested in their study. The model decides where to locate

temporary disposal and storage reduction (TDSR) facilities among a set of pos-

sible locations. TDSRs may posses different technologies and they incur fixed

14

and technological cost which are minimized together with cost of collecting and

transporting debris. Revenue obtained from the sales of the reduced debris is also

included in the objective together with or without the fixed and variable costs.

Different than the other studies, Hu and Sheu [53] incorporate psychological ef-

fects of debris. They state that studies on the waste management focuses mostly

on physical health, the socio-economic and psychological impacts are paid seldom

attention. They also point out that the post-disaster debris management liter-

ature lacks quantitative studies. They develop a multi-objective model which

includes three conflicting costs; logistical, risk-induced and psychological. Lo-

gistical costs consist of operational costs related to transportation and recycling

of debris. Risk-induced cost includes environmental risks associated with uncol-

lected debris, storages and transportation. In psychological cost both disaster

victims and people working in the recovery operations are considered. The pro-

posed system is applied to a case study on Wenchuan Earthquake.

Pramudita et al. [54] summarize the important issues on the debris collection

operations as having appropriate disposal sites, providing necessary equipment

especially vehicles and transportation cost. For debris collection after disaster

they suggest a model which is variant of Location-Capacitated Vehicle Routing

Problem by transforming arc routing to vehicle routing. The aim is to service all

required arcs, after the transformation they become nodes and the objective func-

tion minimizes total distance traveled together with opening cost of intermediate

depots where vehicles unload. A matrix called access possibility is defined and

it takes value one if vehicle can go from one node to another. The values of this

matrix should be updated each time a required node is visited and it is referred

as a dynamic constraint. The flow is defined between depot, required nodes and

the shortest path distances between these nodes include travel and service costs

and assumed to be known. Our problem differs in terms of the main goal which

is reaching a set of nodes with a possibility of cleaning blocked arcs whereas in

their study Pramudita et al. [54] aim to clean all blocked roads and in their test

data all arcs are blocked. They also assume that the shortest path between two

nodes are the only path that exists in the network. To solve the problem they

develop an algorithm which uses the mathematical model.

15

Although debris removal is commonly stated among the operations in the response

phase or short-term recovery, there are not many studies on these phases. For

example Holgúın-Veras et al. [55] mention debris removal among the operations

which take place in short-term recovery or in transitional stage between response

and long-term recovery [56]. However to the authors’ knowledge, the only study

which considers debris removal in the response or short-term recovery phase is

done by Şahin [3] who also define Debris Removal Problem in Response Phase.

In her study three mathematical models are suggested under the assumption that

the blocked arcs and the time required to clean them are known. All models aim

to reach some required or critical nodes as soon as possible. The first model min-

imizes visiting times of critical nodes whereas the second model aims to minimize

total distance traveled under a given time limit. This time constraint is included

in the second model by setting an upper bound to the visiting times which cor-

respond to the objective function of the first model. Thus, the second model is

a variation of the first one. To decrease computational time, a third mathemati-

cal model, called Minimize Total Effort is introduced and analysis are performed

with this model using two data sets. To suggest fast solution methodologies which

provide near optimal solutions, constructive and improvement heuristics are also

developed in this study [3].

To the best of our knowledge, our study is the second one which focuses on debris

removal in the response phase to enable access to a set of nodes. In our problem

setting, although the blocked arcs are known they are not obliged to be cleaned

and the decision on which arcs to clean is made by the model. These are the

most important differences of our study from the others on debris removal and

road repair. Moreover this study is first one which incorporates weights of the

nodes into the problem. In studies with multi-commodity models, the differences

among the critical nodes or demand points are reflected in terms of their demand

amount. In our study we assign weights to the critical nodes and these weights are

not related to the commodities, and they directly affect the time that a critical

node is reached.

16

Chapter 3

Model Development

Experiences in the past disasters sadly show that reaching disaster affected areas

in a short period of time is crucial to reduce the loss of lives. To the best of the

authors’ knowledge there is no systematic way utilized by governments to deter-

mine the paths to visit critical areas and decide which roads to clean immediately

after an earthquake. As stated in the previous chapter the studies on debris re-

moval in the post disaster phase mostly focus on complete removal of debris and

recycling operations. In order to suggest solutions to the problems Debris Re-

moval in Response and Prioritized Debris Removal in Response we develop two

mathematical models for each. The first model treats each critical node equally

in terms of importance and its objective is to minimize the total time spent to

visit all the critical nodes. This model is called Minimize Total Time (MTT) and

the objective value also corresponds to the visiting time of the last visited node.

The second model, called Minimize Weighted Sum of Visiting Times (MWS)is de-

veloped for PDRR. Its objective is minimizing the sum of weighted visiting times

so as to take priority relationship among the critical nodes into consideration.

These models are developed under the setting explained below.

Let G = (N,A) be a complete and symmetric graph where N is the node set,

including critical nodes set C and noncritical node set NC, and A constitutes

the arc set of the network. s denotes the supply node and s ∈ C. Time required

for traversing arc (i, j) ∈ A is tij and parameter Iij takes value 0 if the arc (i, j)

17

is blocked. The arcs are blocked because of the wreckages caused by the disaster

and they must be cleaned in order to be used. The effort spent on cleaning a

blocked arc is measured in terms of time and it is denoted by cij for arc (i, j).

Thus the time required to traverse a blocked arc (i, j) for the first time is tij +cij.

Since the network is symmetric if (i, j) is blocked so is (j, i) and removing debris

on one of them makes both of them clean. Furthermore, it is assumed that an

unblocked arc cannot be blocked again so for the next usages of the arc only tij

time is spent.

Critical nodes and arcs adjacent to these nodes are duplicated for the mathemat-

ical models. This is required to allow revisiting a critical node as an intermediate

node and the necessity of these artificial nodes and arcs will be explained in detail

after we introduce the model. Hence, each critical node k ∈ C has a duplicated

version k′ and these artificial nodes are represented by set C ′.

The arcs adjacent to the critical nodes are duplicated as well and included in set A′

defined as A′ = A ∪ {(k′, j),(j, k′) : k′ ∈ C ′, j ∈ N} ∪ (k′, l′) : k′, l′ ∈ C ′, k′ 6= l′}.
These artificial arcs have the same parameter values with the original ones so if

the original arc (k, j) is blocked then all of them are blocked. However cleaning

one of the original or artificial arcs once is sufficient to use these arcs. The

set NC ′ contains these artificial critical nodes and original noncritical nodes;

NC ′ = NC∪C ′. N ′ is the set of all original and artificial nodes, i.e., N ′ = C∪NC ′

so the new network is G′ = (N ′, A′).

In the figure below an example of duplication of nodes and arcs in a small network

is illustrated. The nodes k and l are critical where node i is noncritical. The

dotted nodes and arcs are the artificial ones included in the new network.

18

k l

i

k l

i

k′ l′

(k, l)

(l, k)

(i, l)

(i, l)(k, i)

(i, k)

Figure 3.1: Original network G = (N,A) (left), new network (right) G′ = (N ′, A′)

where dotted nodes and arcs are artificial.

As indicated earlier, Debris Removal Problem in Response Phase is studied by

Şahin [3] and she suggested three mathematical models for the problem. Due to

the periodic structure they possess, the first two models have found to be compu-

tational intractable so a third mathematical model, called Minimize Total Effort

(MTE) is introduced. Since this model is found to be more efficient compared to

the first two, the computational analyses are performed using this model. Yet, for

some instances optimal solutions cannot be reached within hours. In this thesis,

we first provide a more efficient mathematical model for the problem proposed

by Şahin. Our model has a higher efficiency enabled by changing the decision

variables. Before introducing our models, in order to clarify this alteration, the

third model developed by Şahin [3] is represented below.

The same sets and parameters which are defined on the original network G =

(N,A) are used in this formulation and the decision variables are as follows:

19

ykl =1 if l ∈ C is visited right after k ∈ C , and 0 otherwise

xklij =1 if (i, j)∈A is traversed while going from node k∈C to l∈C, and 0 otherwise

Ckl = travel time spent to reach critical node l ∈ C\{s} from the critical node

k ∈ C if l is visited right after k (time required for debris removal not

included)

Bij =1 if (i, j) ∈ A is cleaned, and 0 otherwise

pk = time that node k ∈ C is reached (time required for debris removal not

included)

TT = total travel time spent to visit all critical nodes (time required for debris

removal not included)

The model Minimize Total Effort (MTE) [3] is as follows:

min TT +
∑

i,j∈N :i<j

Bijcij (3.1)

s.t. ∑
l∈C: l 6=k

ylk = 1 ∀k ∈ C\{s} (3.2)

∑
l∈C: l 6=k

ykl = 1 ∀k ∈ C\{s} (3.3)

∑
l∈C\{s}

ysl = 1 (3.4)

∑
j∈N

xklkj −
∑
j∈N

xkljk = ykl ∀k, l ∈ C (3.5)

∑
j∈N

xkllj −
∑
j∈N

xkljl = −ykl ∀k, l ∈ C (3.6)

∑
j∈N

xklij −
∑
j∈N

xklji = 0 ∀k, l ∈ C ∀i ∈ N, i 6= k, i 6= l (3.7)

ps = 0 (3.8)

pl ≥ pk + Ckl − (1− ykl)M ∀k ∈ C, l ∈ C\{s} (3.9)

TT ≥ pk ∀k ∈ C\{s} (3.10)

20

∑
i,j∈N

xklij ≤ |N |ykl ∀k, l ∈ C (3.11)

Ckl =
∑
i,j∈N

xklij tij ∀k, l ∈ C (3.12)

∑
k,l∈C

xklij +
∑
k,l∈C

xklji ≤(Bij+Iij)|C\{s}| ∀i, j∈Ni<j (3.13)

TT ≥ 0 (3.14)

pk ≥ 0 ∀k ∈ C (3.15)

Ckl ≥ 0 ∀k, l ∈ C (3.16)

xklij ∈ {0, 1} ∀i, j ∈ N ∀k, l ∈ C (3.17)

ykl ∈ {0, 1} ∀k, l ∈ C (3.18)

Bij ∈ {0, 1} ∀i, j ∈ N (3.19)

This model minimizes total time spent to visit all the critical nodes which is also

the objective of our first model. Constraints 3.2 and 3.3 ensure that each critical

node except the supply node has exactly one predecessor and successor critical

node in order to form a visiting order. Constraint 3.4 guarantees that supply

node is predecessor of exactly one of the critical nodes. These three assignment

constraints construct a closed tour. Since constraint 3.8 makes the visiting time

of the supply node equal to zero, it ensures that the tour starts from the supply

node. Although the constraints imply that the vehicle returns to the supply

node, the time spent to return to the supply node is not included in the objective

function.

Constraints 3.5, 3.6 and 3.7 are flow balance constraints between each critical

node. If critical node l is visited right after critical node k, constraint 3.5 ensures

that the total flow leaving k minus entering k equals to 1. Similarly constraint

3.6 implies that total flow entering l minus leaving l equals to 1 if l comes right

after k. Total flow entering and leaving is forced to be zero for any node other k

and l by constraint 3.7.

Constraint 3.12 calculates time spent to go from critical node k to l only in terms

of traveling time. Constraint 3.9 assigns visiting times of critical nodes again

21

excluding the time spent on debris removal. This constraint also prevents sub-

tours among critical nodes. Constraint 3.10 and the objective together force TT

to be equal to the visiting time of the last visited critical node.

Constraint 3.11 guarantees that no arc is traversed to go from critical node k to

critical node l if l is not visited right after k. Constraint 3.13 ensures that an

edge can be used between any critical node pair if it is already open or debris is

cleaned.

Instead of binary variable xklij used in this model, we define binary variable xkij

which takes value 1 if arc (i, j) is traversed while going to critical node k from

the predecessor critical node of k. Also the variable Cl is introduced to replace

Ckl with the same definition which is the travel time spent to reach node l from

the predecessor critical node of l. This reduction in number of indices is the main

factor in the efficiency of our first model since it reduces the number of variables

and constraints. This is also the reason of creating artificial nodes and arcs, which

will be explained in detail after the introduction of our first model and discussion

of the constraints.

In the next section we introduce formulation of our first model. Then our second

model called Minimize Weighted Sum of Visiting Times is explained. The decision

variables that are used in both mathematical models we developed are as follows:

ykl =1 if l ∈ C is visited right after k ∈ C , and 0 otherwise

xkij =1 if (i, j) ∈ A′ is traversed while going to critical node k from the previous

critical node

Ck = time spent to reach critical node k ∈ C \ S from the previous critical node

(the time required for debris removal not included)

22

3.1 First Model: Minimize Total Time

The additional decision variables used in the first model which minimizes total

time required to visit all critical nodes are as follows:

Bij =1 if (i, j) ∈ A′ is cleaned, and 0 otherwise

cbij =1 if (i, j) ∈ A is cleaned, and 0 otherwise

pk = time that node k ∈ C is reached (debris removal not included)

TT = total travel time spent to visit all critical nodes (debri removal not

included)

The formulation of the first model (MTT) is as follows:

min TT +
∑

i,j∈N :i<j

cijcbij (3.20)

s.t. ∑
l∈C: l 6=k

ylk = 1 ∀k ∈ C\{s} (3.21)

∑
l∈C: l 6=k

ykl = 1 ∀k ∈ C\{s} (3.22)

∑
l∈C\{s}

ysl = 1 (3.23)

∑
j∈NC′∪{l}

xlkj = ykl ∀k, l ∈ C k 6= l (3.24)

∑
i∈N ′

xkij −
∑

h∈NC′∪{k}

xkjh = 0 ∀k ∈ C ∀j ∈ NC ′ (3.25)

∑
i∈N ′

xlil = 1 ∀l ∈ C\{s} (3.26)

Cl =
∑
i,j∈N ′

xlijtij ∀l ∈ C\{s} (3.27)

ps = 0 (3.28)

pl ≥ pk + Cl − (1− ykl)µ ∀k ∈ C, l ∈ C\{s} (3.29)

TT ≥ pk ∀k ∈ C (3.30)

ykl + ylk ≤ 1 ∀k, l ∈ C, k 6= l (3.31)

Bij ≤ 1− Iij ∀i, j ∈ N ′ : i < j (3.32)

23

∑
l∈C\S

(xlij + xlji) ≤ |C|(Bij + Iij) ∀i, j ∈ N ′ : i < j (3.33)

Bij +Bij′ +Bi′j′ +Bji′ ≤ 4cbij ∀i, j ∈ C (3.34)

Bij +Bij′ ≤ 2cbij ∀i ∈ NC, j ∈ C : i < j (3.35)

Bji +Bij′ ≤ 2cbij ∀i ∈ NC, j ∈ C : i > j (3.36)

Bij ≤ cbij ∀i, j ∈ N : i < j (3.37)

xkij ∈ (0, 1) ∀i, j ∈ N ′, ∀k ∈ C (3.38)

ykl ∈ (0, 1) ∀k, l ∈ C (3.39)

Bij ∈ (0, 1) ∀i, j ∈ N ′ (3.40)

cbij ∈ (0, 1) ∀i, j ∈ N (3.41)

TT ≥ 0 pk, Ck ≥ 0 ∀k ∈ C (3.42)

Constraints 3.21-3.23 and 3.28 have the same meaning with constraints 3.2-3.4

and 3.15 in MTE so they construct a route starting and ending at the supply

node by ensuring each critical node has a predecessor and successor critical node.

Again the time spent while returning to the supply node is not included in the

objective function.

In both of the problems in this study, the critical nodes are allowed to be used as

intermediate nodes. For example while going from critical node k to critical node

l, another critical node m can be visited. In MTE, the flow balance constraints

allow other critical nodes to be used on the path between two consecutive critical

node. Thus, nodes i and j in constraint 3.5-3.7 can be critical.∑
j∈N

xklkj −
∑
j∈N

xkljk = ykl ∀k, l ∈ C 3.5∑
j∈N

xkllj −
∑
j∈N

xkljl = −ykl ∀k, l ∈ C 3.6∑
j∈N

xklij −
∑
j∈N

xklji = 0 ∀k, l ∈ C ∀i ∈ N, i 6= k, i 6= l 3.7

When ykl equals to 1 for some critical node k and l, it means l is visited right

after k and for both them it is the first time that vehicle reaches them. Thus,

when a critical node m is traversed on the path between k and l, it means m is

visited earlier and it is revisited while going from k to l.

24

Flow balance constraint in our formulation does not allow a critical node to be

revisited if we do not create artificial critical nodes. Without duplication of the

critical nodes, the flow balance constraint in MTT become as follows:∑
j∈N

xlkj = ykl ∀k, l ∈ C k 6= l 3.24′

∑
i∈N

xkij −
∑
h∈N

xkjh = 0 ∀k ∈ C ∀j ∈ N 3.25′

∑
i∈N

xlil = 1 ∀l ∈ C\{s} 3.26′

In the constraints above, for critical nodes k and l such that ykl = 1, let node j

be a node traversed while going from k to l. Node j cannot be a critical node

because then xlkj would be equal to 1 and constraint 3.25′ forces xljh to be 1 for

some node h. Then due to constraint 3.24′ yjl would be equal to 1 which means

critical node l is visited right after critical node j and this is not possible since

critical node l already has a predecessor which is critical node k.

To be able to use the critical nodes as intermediate nodes, we create artificial

critical nodes that behave like noncritical nodes. Constraint 3.24 ensures that if

critical node l is visited right after critical node k then an arc (k, j) is traversed

to go from k to l where node j can be a regular noncritical node, an artificial

critical node or critical node l. Thus either vehicle goes to critical node l directly

or it goes to an intermediate node.∑
j∈NC′∪{l}

xlkj = ykl ∀k, l ∈ C k 6= l 3.24∑
i∈N ′

xkij −
∑

h∈NC′∪{k}
xkjh = 0 ∀k ∈ C ∀j ∈ NC ′ 3.25∑

i∈N ′
xlil = 1 ∀l ∈ C\{s} 3.26

Constraint 3.25 ensures that for each intermediate node j traversed while going

to critical node k, total flow entering and leaving j must be equal. Node j might

be reached from any node, that is why i ∈ N ′ in the first sum. In other words

i can be a critical node, meaning that it is the predecessor of k or it can be

an intermediate node. In the second sum h can be an intermediate node or the

25

destination itself, i.e, critical node k. Constraint 3.26 guarantees that there is

exactly one entering arc (i, l) to each critical node l where i can be any node.

Constraint 3.27 ensures that if an arc is traversed to reach critical node l then its

travel time but not debris cleaning time is added to Cl value, similar to constraint

3.12 in MTE. Constraint 3.29 eliminates sub-tours between critical nodes and as-

signs visiting times again excluding the time spent on debris removal. Constraint

3.30 is same as constraint 3.10 in MTE. Constraint 3.31 means that if k ∈ C is

visited before l ∈ C then the opposite cannot be true. This is a valid inequality

and it is implied by the sub-tour elimination constraint.

Constraint 3.32 ensures that only a blocked arc can be cleaned. Constraint 3.33

guarantees that an edge can be used only if it is clean or cleaned, similar to

3.13 in MTE. Constraints 3.34-3.37 assure that debris on (i, j) ∈ A is removed

if the original arc or one of the corresponding artificial arcs is cleaned. The

actual variable indicating whether an arc is cleaned or not is cbij where i, j ∈ A.

Therefore when one or more artificial arcs are cleaned it actually means the

original arc is cleaned. By defining and using variable cbij in the objective function

instead of Bij we prevent spending cleaning time for the same arc more than once.

To explain the necessity of artificial nodes and arcs, assume that optimal solution

has a partial path as shown in the figure where k, l,m ∈ C , i, j ∈ NC and the

arcs are numbered with respect to the order of travel.

k i j

m

l

k′
5

1 2

34

6

Figure 3.2: An example of revisiting a critical node where k, l,m ∈ C, i, j ∈ NC

26

The visiting order between critical nodes is k, l,m but node k is revisited to reach

node m. Thus ykl and ylm take value 1 while ykm is 0. If we do not duplicate

the critical nodes, since arc (k, i) is used to reach node m, xmki should take value

1. However due to the constraint 3.24 and ykm being equal to 0, xmki cannot take

value 1. As stated in the problem definition in the first chapter, a critical node

can be used as an intermediate node as in this path and without artificial nodes

we cannot have this type of paths in the solution. To go from l to m, artificial

node k′ is used so instead of xmki, x
m
k′i takes value 1. Furthermore assuming arc

(k, i) is blocked and cleared while going from k to l, the variable Bki takes value

1 due to constraint 3.33. Since artificial arc (k′i) is also used, Bk′i has to be equal

to 1 because of the same constraint. However (k, i) and (k′i) correspond to the

same arc so we need to consider only the first debris removal. This is guaranteed

by variable cbki which is linked with Bki and Bk′i by constraints 3.34-3.37 for all

possible node sets.

3.2 Second Model: Minimize Weighted Sum of

Visiting Times

Treating each critical node equally might not be realistic since the characteristics

of the nodes differ. It is reasonable to give some nodes priority if they are highly

populated or more vulnerable. When the amount of debris, number of blocked

arcs and number of critical nodes are high, time spent to reach all nodes may

take hours. Therefore considering the weights or priorities of critical nodes and

reaching the higher weighted ones sooner increase the overall benefit. For that

purpose we have developed a second model which minimizes weighted sum of

visiting times. The weights of the critical nodes are denoted by wk for k ∈ C for

this model.

In the first model we have variable pk which is the visiting time of node k but

only considering the traveling times. In order to minimize weighted visiting times

we need the actual time that a critical node is reached so if an arc (i, j) is cleaned

while going to critical node k, the time required for debris removal should be

27

included. Therefore we need to know which arc is cleaned to reach a specific

critical node. Since arc remains open once it is cleaned, spending debris removal

time on that arc in the next usages must be prevented. To ensure that we need

to know whether a critical node is visited earlier or later than another critical

node and guarantee that a blocked arc is cleaned on its first usage.

Additional decision variables used in this model are as follows:

akl =1 if l ∈ C is visited after k ∈ C , and 0 otherwise

vkij =1 if (i, j) is cleaned to reach node k ∈ C , and 0 otherwise

rk = time that node k ∈ C is reached

The variable akl is different than ykl since it takes value 1 if critical node k is

visited any time before critical node l, not only when they are consecutively vis-

ited. Because of this variable, the vehicle starts from the supply node but does

not return to it so the path finishes when the last critical node is visited. The

second model is as follows:

min
∑

k∈C\{s}

wkrk (3.43)

s.t.∑
k∈C: k 6=l

ykl = 1 ∀l ∈ C\{s} (3.44)

∑
k∈C,l∈C\{s}: k 6=l

ykl = |C\{s}| (3.45)

∑
l∈C: l 6=k

ykl ≤ 1 ∀k ∈ C (3.46)

akl ≥ ykl ∀k, l ∈ C (3.47)

akl + alk = 1 ∀k, l ∈ C, k 6= l (3.48)

aml ≥ amk + ykl − 1 ∀k, l,m ∈ C, k 6= l (3.49)

asl = 1 ∀l ∈ C\{s} (3.50)∑
j∈NC′∪{l}

xlkj = ykl ∀k, l ∈ C\{s} k 6= l

(3.51)∑
i∈N ′

xkij −
∑

h∈NC′∪{k}

xkjh = 0 ∀k ∈ C\{s} ∀j ∈ NC ′ (3.52)

28

∑
i∈N ′

xlil = 1 ∀l ∈ C\{s} (3.53)

Cl =
∑

i,j∈N ′

xlijtij ∀l ∈ C\{s} (3.54)

rs = 0 (3.55)

rl ≥ rk + Cl +
∑

i,j∈N :i<j

vkijcij + (1− ykl)M ∀k ∈ C ∀l ∈ C\{s} (3.56)

ykl + ylk ≤ 1 ∀k, l ∈ C, k 6= l (3.57)∑
l∈C\{s}

vlij ≤ 1− Iij ∀i, j ∈ N : i < j (3.58)

2− vlij ≥ xkij + xkji + xki′j + xkji′+

xkj′i + xkij′ + xki′j′ + xkj′i′ + akl ∀i, j, k, l ∈ C : i < j, Iij = 0, k 6= l (3.59)

2− vlij ≥ xkij + xkji + xki′j + xkji′ + akl ∀i, k, l∈C, j∈ NC : i<j, Iij =0, k 6= l (3.60)

2− vlji ≥ xkij + xkji + xki′j + xki′j + akl ∀i, k, l∈C, j∈ NC : i>j, Iij =0, k 6= l (3.61)

2− vlij ≥ xkij + xkji + akl ∀k,l∈C, i, j∈NC : i<j, Iij =0, k 6= l (3.62)

|C\{s}|
∑

k∈C\{s}

vkij ≥
∑

k∈C\{s}

(xkij + xkji + xki′j + xkji′ + xkj′i + xkij′ + xki′j′ + xkj′i′)

∀i, j∈C\{s} : Iij = 0, i<j (3.63)

|C\{s}|
∑

k∈C\{s}

vkij≥
∑

k∈C\{s}

(xkij+xkji+xki′j+xkji′)

∀i∈C\{s}, j∈NC : Iij =0, i<j (3.64)

|C\{s}|
∑

k∈C\{s}

vkji≥
∑

k∈C\{s}

(xkij+xkji+xki′j+xkji′)

∀i∈C\{s}, j∈NC : Iij =0, i>j (3.65)

|C\{s}|
∑

k∈C\{s}

vkij ≥
∑

k∈C\{s}

(xkij + xkji) ∀i, j ∈ NC : Iij = 0, i < j (3.66)

xkij ∈ (0, 1) ∀i, j ∈ N ′, ∀k ∈ C (3.67)

vkij ∈ (0, 1) ∀i, j ∈ N, ∀k ∈ C (3.68)

akl, ykl ∈ (0, 1) ∀k, l ∈ C (3.69)

rk, Ck ≥ 0 ∀k ∈ C (3.70)

Constraint 3.44 ensures that each critical node except the supply node has a

predecessor critical node same as in MTE and MTT. Constraint 3.45 limits the

29

total number of assignments to the number of critical nodes that we need to

reach. Constraint 3.46 implies that a critical node may have a successor critical

node or not. These are different than the assignment constraints of the previous

formulation because the vehicle does not return to the supply node. This is

needed because of the variable akl and constraint 3.48 which assures either k ∈ C
is visited before l ∈ C or vice versa.

Constraint 3.47 implies that if k ∈ C is visited just before l ∈ C then k is visited

before l and with constraint 3.49 we satisfy that any critical node m which is

visited before k is also visited before l. The supply node is guaranteed to be the

start node with constraints 3.50 and 3.55.

Constraints 3.50-3.53 are flow balance constraints identical to 3.25-3.27 and con-

straint 3.54 is same as 3.27 in MTT. Constraint 3.56 eliminates sub-tours between

critical nodes and assigns visiting times including the time spent on debris re-

moval. Thus if an arc (i, j) is cleaned while going to critical node k, its cleaning

time cij is added to rk. Constraint 3.57 is the same valid inequality at 3.31.

Constraint 3.58 implies that an arc is cleaned only once and only if it is blocked.

Constraints 3.41-3.44 prevent a blocked arc from being cleaned in latter usage.

For example if a blocked arc (i, j) or one of its artificial version have traversed

while going to critical node k and if k is visited before critical node l, then (i, j)

cannot be cleaned while going to critical node l. Constraints 3.63-3.66 ensure that

a blocked arc is cleaned while going to a critical node in order to be traversed to

reach any critical node. Hence a blocked arc (i, j) is cleaned if it is used at least

once. These last constraints 3.58-3.66 together guarantee that a blocked arc is

cleaned once if it is used and debris is removed on its first usage.

30

Chapter 4

Heuristic Algorithms

The number of noncritical and critical nodes, their locations and the severity of

the earthquake cause variations in the solution times of both mathematical mod-

els. With higher dimensions and different parameter values, reaching optimality

may take several hours. Since the aim of the problem is finding a route to reach

critical nodes and visiting them as soon as possible, waiting for an optimal solu-

tion for hours conflicts with the essence of the problem. Therefore, for the cases

where finding an optimal solution takes longer than a reasonable amount of time,

in order to get a feasible route sooner, little deviations from optimality can be

bearable.

In order to obtain near optimal solutions quickly we have developed two con-

structive heuristic algorithms for both of the problems we defined earlier. Hence,

the first constructive heuristic aims to minimize the total time where the second

aims to find a route with minimum sum of weighted visiting times. To decrease

the optimality gaps, improvement heuristic is applied to solutions obtained from

these constructive heuristics. The constructive heuristics utilize Dijkstra’s algo-

rithm and the improvement heuristic is based on 2-opt algorithm [57]. In the

following subsections the constructive heuristics and the use of 2-opt algorithm

are described in detail.

31

4.1 Constructive Heuristics

We have developed two algorithms, called Minratio and Weighted Shortest Dis-

tance for the first and second problem respectively. The aim of the first one is to

find a predecessor and successor for each critical node so as to form a route with

minimum total time as a solution to the problem Debris Removal in Response.

With the second algorithm we try to find a route which gives the minimum

weighted sum of visiting times for the problem Prioritized Debris Removal in

Response.

4.1.1 Minratio Heuristic

This heuristic first finds the shortest paths between critical nodes with Dijkstra’s

algorithm. Then for each critical node k it calculates a ratio dividing the distance

from k to its closest critical node by average distance from k to all other critical

nodes. We denote the distance of shortest path from k to each critical node l as

c(k, l) and mink is the distance of the closest critical node to k. If we call the

average shortest path distances from k to all eligible critical nodes avgk then the

ratio for k is ratiok = mink / avgk. For a critical node other than supply node,

eligibility means having a degree less than 2 in the current subgraph. The supply

node is eligible if it has a degree zero in other words if it is not paired with any

critical node. We define set E which consist of eligible critical nodes so ratiok

is calculated ∀k ∈ E considering all distances c(k, l) where l ∈ E and l is not

connected k.

After calculating these ratios for all critical eligible nodes, the node which gives

the minimum ratio is chosen. Say critical node k is chosen and assume that

closest critical node to k is l. Then the algorithm connects nodes k and l using

the shortest path with the value mink, which equals to c(k, l), meaning that either

k is visited just before l or vice versa. Until there is no unconnected critical node,

the algorithm continues to calculate the ratios, pick the one giving the minimum

and connects it to the closest critical node.

32

Smaller ratio for a critical node k indicates that the difference between mink and

the other distances to the critical nodes except the closest one to k, is larger with

respect to the other critical nodes. By choosing the node with minimum ratio

we aim to find and benefit from most advantageous path. In other words, we

try to consider all critical nodes together and connect the most distant one to

its closest. This makes our algorithm less myopic compared to Nearest Neighbor

(NN) because NN algorithm starts from the supply node, visits the closest critical

node until all nodes are visited so it considers one critical node at each iteration.

By a simple example we can illustrate how Minratio works and its difference to

NN algorithm. In Figure 4.1 there are 4 critical nodes where s is the supply node

and the dashed edges show the shortest paths among the critical nodes so they

might be sharing some arc which can be blocked. For simplicity, we have only

one blocked arc with 1 unit cleaning time and it is used in the shortest paths

between k − l and k − m. When we apply NN algorithm to construct a route,

the vehicle visits k first since it is closest one to s, then it visits m and since we

clean the blocked arc we update the shortest path distance between k − l. Thus

c(k, l) drops to 6. Since the current source node is m, node l is visited after m

and route is completed with a total cost of 4 + 4 + 10 = 18.

s

k

l

m

4

5
4

7

10

5

Figure 4.1: A simple network where dashed edges show the shortest path between

each node

Instead of forming a route starting from the supply node, Minratio chooses critical

nodes to connect and construct sub-routes. Average distances from a critical node

to all other eligible critical node are calculated at each iteration to find the pair

giving the minimum ratio.

33

As seen in Table 4.1, in each iteration the critical node which gives the smallest

ratio is chosen and connected to the closest critical node so node m is chosen in the

first iteration and paired with node k. Then the shortest paths between eligible

nodes recalculated by considering cleaned arcs. A blocked arc is cleaned between

the path m and k, and as stated earlier it is also used in the shortest path between

nodes k and l. Thus we need to update the shortest distance between these node

because a blocked arc does not require cleaning more than once. Therefore, c(k, l)

(and c(l, k)) is reduced 1 unit and becomes 6. After computing new ratios node

m is chosen again in the next iteration. After connecting node m with s, both of

them become ineligible. Then l is chosen and connected to node k or vice versa in

the last iteration. Thus the route is constructed with total cost of 4 + 5 + 6 = 15.

Table 4.1: An example of Minratio Algorithm

Iteration 1 s k l m min avg ratio

s - 4 5 5 4 4.67 0.86
k 4 - 7 4 4 5 0.80
l 5 7 - 10 5 7.33 0.68

m* 5 4 10 - 4 6.33 0.63

Node m connected to node k

Iteration 2 s k l m min avg ratio

s - 4 5 5 4 4.67 0.86
k 4 - 6 - 4 5 0.80
l 5 6 - 10 5 7 0.71

m* 5 - 10 - 5 7.5 0.67

Node m connected to node s

Iteration 3 s k l m min avg ratio

s - - - - - - -
k - - 6 - 6 6 1
l* - 6 - - 6 6 1
m - - - - - - -

Node l connected to node k

The flowchart of our first constructive algorithm, Minratio, is given in Figure 4.2

and the pseudo-code of the algorithm is presented below.

34

Initializations:

totalij = tij + cij(1 − Iij)
count = 0 , E = C

count < |C| − 1

Find all pair shortest

paths ∀k, l ∈ C

using totalij

compute ratiok ∀k ∈ E

Find

m = argmink∈E ratiok

Connect m to the closest

eligible node, uncon-

nected to m, say m̂

Iij = 1 ∀(i, j) used on

path between m to m̂

totalij = tij + cij(1 − Iij)

routetime = routetime + c(m, m̂)

count = count + 1

Remove m (m̂) from

E, if it has a degree 2

or it is the supply node

stop

yes

no

Figure 4.2: Flowchart of Algorithm Minratio

35

Algorithm 1: Minratio Algorithm

Data: Sets N,C, parameters tij, cij, Iij
1 initialize:
2 totalij = tij + cij(1− Iij) for all (i, j) ∈ A ;
3 Set of eligible nodes E = C ;
4 count = 0 , routetime = 0, route = ∅
5 while count < |C| − 1 do
6 forall the critical nodes k and l do
7 Find shortest path using totalij ;
8 Keep shortest distances c(k, l) , c(l, k) and paths, path(k, l),

path(l, k)
9 end

10 Compute ratiok ∀k ∈ E, considering only eligible and unconnected
nodes to k;

11 Find m = argmink∈E ratiok ;
12 Connect m to m̂ such that m̂=argminm̂∈E c(m, m̂) and not connected

to m ;
13 routetime = routetime+ c(m, m̂) ;
14 Iij = 1 ∀ (i, j) in path(m,̂m) and path(m̂,m) ;
15 totalij = tij + cij(1− Iij) for all (i, j) ∈ A ;
16 Connect m and m̂ ;
17 count = count+ 1
18 if m has degree 2 in the current constructed subgraph or m = s then
19 E = E \m
20 end
21 if m̂ has degree 2 in the current constructed subgraph or m̂ = s then
22 E = E \ m̂
23 end

24 end
Output: route, routetime

36

4.1.2 Weighted Shortest Distance Heuristic

For the second objective which is minimizing sum of weighted visiting times,

as introduced in the previous chapter, we have developed another mathemati-

cal model. Since we need to know the exact visiting times of the critical nodes

and blocked arcs cleaned to reach these nodes, we need extra variables and con-

straints which increase the computational times. Therefore, we propose another

constructive heuristic which aims to minimize the sum of weighted visiting times.

The previous model connects critical nodes without considering the times they

are reached since the objective is minimizing total time. However, for our second

objective, we should focus on the individual visiting times for each critical node.

Therefore, we develop Weighted Shortest Distance Heuristic which is basically a

weighted version of NN algorithm with some modifications. The algorithm starts

from the supply node, choose one critical node to visit, travels there and treating

this critical node as the current source node, finds the next critical node until all

of them are reached.

To choose which critical node to visit next, first we apply Dijkstra’s algorithm

and find the shortest paths to the current source node. Having these shortest

distances for all critical nodes that are not visited yet, we find a ratio dividing

these values by the weights of the nodes.

Say mink is the shortest path from k to the current source node, dividing it

by wk we obtain a ratio, say wratiok. The critical node giving the minimum

value among these ratios is picked and visited next. The aim of choosing the

one with the minimum wratio value is to visit relatively close and high priority

critical nodes first. The flowchart of the algorithm is given in Figure 4.3 and the

pseudo-code of the algorithm can be seen below.

37

Initializations:

totalij = tij + cij(1 − Iij)
V = {s} , U = C \ s

source =s

|V | < |C|

Find shortest paths from source

to nodes k ∈ U using totalij

Compute wratiok ∀k ∈ U

Find m = argmink∈U wratiok
V = V ∪m, U =

U \m and source = m

Iij = 1 for all arc (i, j)

used on path to m

totalij = tij + cij(1 − Iij)

routetime = routime + minm

vm = routetime

wroutetime = wroutetime+wmvm

stop

yes

no

Figure 4.3: Flowchart of Algorithm Weighted Shortest Distance

Algorithm 2: Weighted Shortest Distance Algorithm
Data: Sets N,C, parameters tij , cij , Iij , wk

1 initialize:
2 totalij = tij + cij(1− Iij) ∀(i, j) ∈ A ;
3 Set of visited nodes V = {s}, set of unvisited nodes U = C \ s ;
4 source = s, wroutetime = 0, route = ∅
5 while |V | < |C| do
6 forall the critical nodes in U do
7 find the shortest paths and distance to node using totalij ;
8 Keep paths pathk and shortest distances mink ∀k ∈ U ;
9 wratiok = mink / wk ∀k ∈ U

10 end
11 Find m = argmink∈U wratiok ;
12 V = V ∪m, U = U \m ;
13 source = m ;
14 add pathm to route ;
15 Iij = 1 ∀ (i, j) in pathm ;
16 totalij = tij + cij(1− Iij) ∀(i, j) ∈ A ;
17 routetime = routime + minm ;
18 visiting time of node m, vm = routetime;
19 wroutetime = wroutetime + wmvm
20 end

Output: route, wroutetime

38

4.2 Improvement Heuristics

In order to increase the quality of the solution, we apply the 2-opt algorithm to

the solutions obtained from the constructive heuristics. 2-opt is a local search

algorithm proposed for traveling salesman problem and it is applicable to many

routing problems.

The algorithm basically takes a feasible route, chooses a pair of nodes and reverses

the path between them, and repeats this process until a better path cannot be

found. For a complete search all possible pairs are swapped and results are

compared. For our problem, a swap pair can only be chosen among the critical

nodes except the supply node. In the figure below, an iteration applied on a

feasible route is illustrated where kn s are critical nodes and in s are intermediate

nodes. Critical nodes k2 and k4 are chosen as a pair and the path between them

is reversed.

Figure 4.4: An example of 2-opt applied on a feasible route

In order to compare the routes obtained by applying 2-opt with each other and

with the starting solution we need to calculate the objective values. While calcu-

lating the total time or weighted sum of visiting times we need to check the usage

of the blocked arcs. For example, in the figure above, if arc (i1, k2) is blocked

and not cleaned earlier, then the debris on it is removed while going from k1 to

k2 in the first route. However the arc is not used in the second route obtained

by 2-opt so to calculate the times correctly we need to subtract this cleaning

39

time. Similarly, if arc (k2, i5) is blocked and not cleaned before, it is required to

include the debris removal time in the second route. If it is cleaned in the earlier

visitations then debris removal time should not be considered while going from

k2 to some other critical node.

The pseudo-code of improvement algorithms applied to the constructions heuris-

tics are presented below. The swap procedure is the same for both improvement

algorithms but the calculation of times are different. In the first improvement al-

gorithm RouteTime calculates the total time required to complete the new route

formed by swap procedure as the purpose is minimizing total time. In the sec-

ond improvement algorithm since we try to find a route with minimum sum of

weighted visiting times, RouteTimeWeighted calculates this time after each swap

procedure. These procedures can be seen in Figure 4.5.

The pseudo-code of improvement heuristics 2-opt and 2-optWeighted is as follows:

Algorithm 3: 2-opt/2-optWeighted Algorithms

Data: Sets N,C, parameters tij , cij , Iij
1 initialize:
2 newroutetime = 0
Input: route,routetime

3 while newroutetime ≤ routetime do
4 forall the k, l ∈ C \ {s} do
5 Find newroute by swap(k,l) ;
6 Compute newroutetime by RouteTime/RouteTimeWeighted ;
7 if newroutetime < routetime then
8 routetime = newroutetime ;
9 newroute = route ;

10 end

11 end

12 end
Output: newroute, newroutetime

40

Procedure swap(k,l).

Input: route
1 if k comes before l in route then
2 i = k , j = l
3 end
4 else
5 i = l , j = k
6 end
7 add nodes to newroute up to node i excluding i;
8 add nodes between i and j to newroute in reverse order ;
9 add nodes after j to newroute

Output: newroute

Procedure RouteTime(route).

Input: route
1 i = 0 , j = 1 ;
2 l = route length -1 ;
3 while i < l do
4 newroutetime = newroutetime+ tij + cij ∗ (1− Iij) ;
5 Update Iij = 1 ;
6 i = i+ 1 , j = j + 1

7 end
Output: newroutetime

Procedure RouteTimeWeighted(route).

Input: route
1 i = 0 , j = 1 , p0 = 0 ;
2 l = route length -1 ;
3 while i < l do
4 routetime = routetime+ tij + cij ∗ (1− Iij) ;
5 pj = routetime ;
6 Update Iij = 1 ;
7 i = i+ 1 , j = j + 1

8 end
9 newroutetime =

∑
k∈C

pk ∗ wk ;

Output: newroutetime

Figure 4.5: Procedures used in improvement algorithms

41

Chapter 5

Data and Computational

Analysis

In this study, we define two problems and develop two mathematical models both

of which aims to find a route to visit some set of required nodes. While the first

problem, Debris Removal in Response, focuses on the total time, the second, Pri-

oritized Debris Removal in Response, aims to minimize sum of weighted visiting

times. Although the mathematical models provide optimal solutions, when the

dimensions increase and the parameters change, it may take too much time to

solve the problems. Therefore we propose two constructive heuristics followed

by an improvement algorithm to obtain near optimal solutions quickly. For the

test of these solution methodologies and to be able to compare the performances

we use two different networks under different settings. In the following sections

the information about these data sets is given. The computational studies on

mathematical models and heuristics are presented in the subsequent sections.

5.1 Data

We test our models and algorithms using two different data sets based on two

districts of İstanbul, Turkey. The first set, Kartal, has 45 nodes, 7 of which

42

are critical. The second set, Bakırköy, has 73 nodes including 15 critical nodes.

Hereafter by critical nodes we refer to the critical nodes excluding the supply

node. In the data sets the critical nodes correspond to the neighborhoods which

are close to schools and hospitals. Detailed information about these data sets can

be found in the studies by Kılcı [58] and Şahin [3]. The features of the data sets

are summarized in Table 5.1.

Table 5.1: Features of the data set

Kartal Bakırköy

of nodes 45 73

of critical nodes 7 15

Supply Node 16-Marmara Region
Disaster Center of
Turkish Red Cresent

7-Disaster Coordination Center

Node numbers of
critical nodes

14,21,22,26,33,41,43 5,15,16,17,18,19,20,21,22,34,36,47,55,65,67

Node numbers of
only schools

14,21,22 5,15,34,36,47,55,65,67

Node numbers of
only hospitals

26,33,41,43 16,17,18,19,20,21,22

The maps in Figure 5.1 and 5.2 show the locations of supply nodes and criti-

cal nodes in Kartal and Bakırköy, respectively. In both, red triangle represents

the supply node, yellow circles correspond to schools and green circles are the

locations of the nodes near hospitals.

For the computational analyses same parameters and instance are used as in the

study by Şahin [3]. Travel times between each node are calculated using distance

matrices and assuming that the vehicle has a speed of 20km/hour. These time

matrices are symmetric and satisfy triangular inequality. Both of the networks

are complete.

Four degrees of earthquake severity (SOE) are used where 4 is the most severe one.

The blocked arc ratio (BAR) corresponding to these severity degree is accepted

as in Table 5.2 and blocked arcs are randomly assigned by taking value 0 in I

matrix according to the blocked arc ratios.

43

Figure 5.1: The location of supply node and critical nodes in Kartal

Figure 5.2: The location of supply node and critical nodes in Bakırköy

44

Table 5.2: Severity of earthquake, corresponding BAR values and BAR values
used in Kartal and Bakırköy instances.

SOE BAR BAR value for Kartal BAR value for Bakırköy
1 0-20% 12.5% 19%
2 20-50% 44.5% 23%
3 50-80% 58% 54%
4 80-100% 81.9% 82%

The time required to remove debris on an arc is calculated in two different ways,

both depend on the severity of the earthquake and the travel time of the arc. cij

denotes the higher cleaning time and c′ij denotes the lower. They are calculated

as follows:

cij = SOE ∗ ti,j + U [0, argmax
(i,j)∈A

tij]

c′ij = SOE ∗ ti,j

For each degree of severity, 5 instances are generated with the same BAR value

so they have the same number of blocked arcs but the location of the blocked arcs

are different. These instances are solved using two different cleaning times given

above. Hence, for Kartal data set for both cleaning times we have 20 instances, 5

for each SOE. For example K1, K2, K3, K4, K5 has the same number of blocked

arc but in different locations and the cleaning time cij is used. K5 and K5′ use

the same I matrix but different debris removal times. For Bakırköy instances 3

different critical node sets are used as only schools, only hospitals and all critical

nodes.

For the second model, to determine the weights assigned to each critical node,

population of neighborhoods to which each critical node belongs is used. The

population of the neighborhoods are obtained form Turkish Statistical Institute

and they are normalized so that each critical node has a weight value out of 100,

and sum of all weights is equal to 100. The normalization is done only for the

nodes included in the set for the related instance. Thus when the critical nodes

are only schools in Bakırköy instances, the hospitals are not considered in the

calculation of the weights.

45

5.2 Computational Analysis

Using the instances explained in the previous section, we test both of our models

and heuristics. The experiments on mathematical models are conducted using

CPLEX 12.6 and Gurobi 5 on a 4XAMD Opreton Interlagos 16C 6282SE 2.6G

16M 6400MT computer. The heuristic algorithms are coded in Java and ran on

a personal computer with a processor Intel Core i5 CPU at 2.4 GHz and 4 GB of

RAM. Since the heuristics take less than a second, CPU times for them are not

reported.

5.2.1 Analyses on the First Model

For each earthquake severity from 1 to 4, and for higher and lower cleaning

efforts, 5 different instances in terms of blocked arcs’ locations are used. For

Kartal instances we consider all the critical nodes and since Bakırköy is a larger

network the experiments are conducted with different critical node sets; only

schools, only hospitals and all critical nodes. In Tables 5.3 and 5.4 results of the

first model are illustrated with higher and lower cleaning efforts respectively. In

these tables, instance features, optimal values and the CPU times of our first

model (MTT) and the third model (MTE) developed by Şahin [3] can be seen

and in the last column number of cleaned arcs is given for each instance. As

summarized in Table 5.5 CPU times are lowered drastically for Kartal instances

by our model MTT.

Parallel to our intuitions, as the severity of the earthquake increases, the CPU

times increase as well. This is due to increase in the number of blocked arcs. In

other words, deciding which arcs to clean becomes more important when their

number rises. When we focus on the instances with the same severity level, we

observe that the locations of the blocked arcs also have an impact on the path

and CPU times. For example instances K17 and K20 have the same number of

blocked arcs however the blocked arcs are not identical. This causes differences

in optimal values, number of cleaned arcs and also CPU times.

46

Table 5.3: Performance of the first model on Kartal instances with higher cleaning
times

Instances
Features

Instance #
optimal
value

CPU time (Cplex) # of cleaned
arcsMTT MTE [3]

K1 44 39.07 221.41 0
K2 43 50.25 186.73 0
K3 44 51.13 190.82 0
K4 43 43.04 178.4 0

SOE=1,
of critical

nodes=7,
cleaning

effort : cij K5 43 42.63 183.2 0

K6 48 49.25 223.26 0
K7 50 56.34 235.96 0
K8 51 58.22 270.41 0
K9 49 68.92 225.46 0

SOE=2,
of critical

nodes=7,
cleaning

effort : cij K10 48 41.44 261.39 0

K11 53 71.55 315.37 0
K12 63 162.14 495.63 0
K13 68 114.85 381.4 0
K14 46 57.72 196.96 0

SOE=3,
of critical

nodes=7,
cleaning

effort : cij K15 47 58.17 186.72 0

K16 109 616.1 5167.18 1
K17 82 372.72 3319.8 0
K18 110 551.87 9136.87 1
K19 90 348.14 2915.86 1

SOE=4,
of critical

nodes=7,
cleaning

effort : cij K20 101 490.14 4541.84 3

When we look at the number of cleaned arcs for each instance, we observe that

cleaning is needed when the number of blocked arcs increases. Since the cleaning

times are also higher for the instances where the blocked arcs are many, the

optimal value increases as it can be easily seen when SOE equals to 4.

In the first 5 instances of Kartal, no arcs are cleaned and the optimal paths

have slight differences. In the Figure 5.3 these paths are illustrated. From these

optimal paths we see that cleaning is not needed since the number of blocked arcs

are low and a path which does not include any blocked arcs with a low total time

can be found. For example in the solution of instance K2, the vehicle goes from

node 26 to node 14 directly but in K1 since that arc is blocked the vehicle uses

node 15 as an intermediate node between 26 and 14. This change in the path

increases the total time only by one unit as it can be seen in the optimal values

of instances K1 and K2 in Table 5.3.

47

(a) Optimal route of K1 (b) Optimal route of K2

(c) Optimal route of K3 (d) Optimal route of K4 and K5

Figure 5.3: Optimal routes of instances K1,K2,K3,K4,K5 for MTT

When we compare instances for higher and lower debris cleaning times, we ob-

serve that when the cleaning times are lower, it is more preferable to clean arcs.

For example, instances K16 and K16′ have the same severity level, number and

location of blocked arcs, the only difference is the time required to clean blocked

arcs. This difference increases the number of blocked arcs from 1 to 3 between

K16 and K16′ while the total time drops from 109 to 97. The effect of clean-

ing times can also be realized by comparing instances K18 and K18′. When the

cleaning is lower the optimal value decreases from 110 to 95 while the number of

blocked arcs increase from 1 to 3 for these instances. Furthermore, time needed

to reach optimal solution for K18′ is less than half of the time needed for K18.

Although the average CPU time of the instances with lower cleaning times is

less than the average CPU time of the ones with higher cleaning times, the main

decrease is observed when the SOE is high.

48

Table 5.4: Performance of the first model on Kartal instances with lower cleaning
times

Instances
Features

Instance #
optimal
value

CPU time(Cplex) # of cleaned
arcsMTT MTE [3]

K1′ 44 48.37 219.89 0
K2′ 43 45.05 213.25 0
K3′ 44 43.73 192.61 0
K4′ 43 51.62 156.37 0

SOE=1,
of critical

nodes=7,
cleaning

effort : c′ij K5′ 43 51.45 152.9 0

K6′ 48 55.27 231.4 0
K7′ 49 67.33 210.34 1
K8′ 51 70.75 282.31 0
K9′ 49 79.59 259.62 0

SOE=2,
of critical

nodes=7,
cleaning

effort : c′ij K10′ 48 66.77 210.25 0

K11′ 51 91.29 214.86 1
K12′ 63 125.43 316.91 0
K13′ 67 145.93 336.34 1
K14′ 46 66.84 198.85 0

SOE=3,
of critical

nodes=7,
cleaning

effort : c′ij K15′ 47 62.44 184.67 0

K16′ 97 488.17 4864.74 3
K17′ 78 119.8 2422.78 1
K18′ 95 513.36 3791.44 3
K19′ 81 120.31 2794.34 2

SOE=4,
of critical

nodes=7,
cleaning

effort : c′ij K20′ 80 373.64 3258.78 3

The performance of the two mathematical models, MTT and MTE are summa-

rized in Table 5.5 where it can be seen that for all instances from Kartal, same

optimal solutions are reached 8 times faster on the average by our model MTT.

Table 5.5: CPU times of models Minimize Total Effort [3] and Minimize Total

Time (in seconds)

Minimize Total Effort [3] Minimize Total Time

Instances min avg max min avg max

K1 ... K20 178.4 1441.73 9136.87 39.07 167.18 616.1

K1′ ... K20′ 152.9 1025.63 4864.74 43.73 134.36 513.36

49

The analyses on Bakırköy instances with the first model, MTT, lead to similar

conclusions. When the severity of the earthquake increases, and consequently the

number of blocked arcs and time required for debris removal increase, CPU times

and optimal values rise. As seen in Tables 5.6, 5.7, 5.8 and 5.9, the amount of

increase in the optimal values and CPU times vary according to the number of

critical nodes and their locations. For example when the severity rises from 1

to 4, the increase in the objective function is higher for the instances where the

critical node set consist of schools compared to the instances where only hospitals

are critical.

When we compare the instances concerned with the schools and hospitals, we see

that the location of the schools results in higher CPU time. For example, with

instance B6 the optimal is reached in 454.17 seconds for schools and in 242.55

seconds for hospital with MTT formulation as seen in Table 5.6. This difference

in the CPU times increases when SOE becomes 4 as in the instance B16-B20.

The average CPU for these instances where SOE equals to 4 is 4058 seconds for

schools and 677 seconds for hospitals. Therefore the location of the critical nodes

has a significant effect on the CPU times.

The decrease in the cleaning times has relatively inconsistent effect on the CPU

times for Bakırköy instances compared to Kartal. For example from Table 5.6 we

see that when the critical set only includes schools, CPU times of B2′ and B4′ are

lower than B2 and B4, however B1, B3 and B5 are lower than B1′, B3′ and B5′

respectively. Furthermore not just the number of critical nodes but the size and

features of network have an effect on CPU times. When we look at the instance

of Kartal and Bakırköy with 7 critical nodes, namely instances K1-K5 and B1-B5

for hospitals, we see that the average CPU time of these Bakırköy instances is 4

times of that of Kartal.

50

Table 5.6: Performance of the first model on Bakırköy instances with higher and

lower cleaning times with SOE=1

Instance # of critical Instance

#

Optimal CPU times (Cplex) # of

Features nodes value MTT MTE [3] cleaned arcs

SOE=1

cleaning

effort cij

8 (schools)

B1 52 454.17 1981.32 -

B2 61 766.38 3433.06 1

B3 52 463.86 2586.69 -

B4 54 528.97 2235.72 -

B5 52 480.68 1753.38 -

7 (hospitals)

B1 41 242.55 921.03 -

B2 38 215.5 761.61 -

B3 39 235.79 646.14 -

B4 40 293.67 821.21 -

B5 40 338.96 728.84 -

SOE=1

cleaning

effort c′ij

8 (schools)

B1′ 52 775.45 1920.36 -

B2′ 58 517.7 2834.09 1

B3′ 52 563.33 1849.6 -

B4′ 54 357.18 2194.44 -

B5′ 52 883.73 1638.53 -

7 (hospitals)

B1′ 41 297.92 736.43 -

B2′ 38 214.37 706.57 -

B3′ 39 245.09 768.61 -

B4′ 40 238.23 649.6 -

B5′ 40 224.49 845.63 -

Results of models MTT and MTE are illustrated when SOE equals to 1 and

critical node sets are schools and hospitals separately in Table 5.6. Similar to

Kartal results we see that no blocked arc is cleaned when the severity of the

earthquake is low except the instances B2 and B2′ where the critical nodes are

only schools.

As the severity increases the number of cleaned arcs increases in these instances

similar to Kartal. For the cases where hospitals are critical, blocked arcs are

cleaned only when the severity is at the highest level. However, in Bakırköy

instances where the critical nodes are only schools, we see that cleaning occurs

at each SOE level from the Tables 5.6, 5.7, 5.8 and 5.9.

51

When SOE becomes 2, as seen in Table 5.7 MTE reports a gap for instance

B7 where critical nodes are only schools. The best objective found by MTE is

actually the optimal solution but the optimality cannot be assured by this model

in 4 hours. Our model, MTT, finds optimal solution for this instance in less than

an hour.

Table 5.7: Performance of the first model on Bakırköy instances with higher and

lower cleaning times with SOE=2

Minimize Total Time Minimize Total Effort [3]

Instance

features

Instance

#

Best

obj.

Gap

%

CPU

time

of

cleaned

arcs

Best

obj.

Gap

%

CPU

time

of

cleaned

arcs

SOE=2

cleaning

effort cij , 8

(schools)

B6 52 0.00 1389.95 - 52 0.00 1647.38 -

B7 60 0.00 2549.11 - 60 0.00 13108.3 -

B8 52 0.00 1050.84 - 52 0.00 2126.97 -

B9 60 0.00 1877.6 - 60 0.00 12207.8 -

B10 52 0.00 425.77 - 52 0.00 12236.8 -

SOE=2

cleaning

effort cij , 7

(hospitals)

B6 39 0.00 207.74 - 39 0.00 762.91 -

B7 39 0.00 165.41 - 39 0.00 686.03 -

B8 40 0.00 197.05 - 40 0.00 889.07 -

B9 42 0.00 294.85 - 42 0.00 647.82 -

B10 38 0.00 173.02 - 38 0.00 600.08 -

SOE=2

cleaning

effort c′ij , 8

(schools)

B6′ 52 0.00 501.47 - 52 0.00 2785.6 -

B7′ 56 0.00 2432.34 1 56 26.79 14400 1

B8′ 52 0.00 437.61 - 52 0.00 2245.7 -

B9′ 56 0.00 2175.61 1 56 0.00 12997 1

B10′ 52 0.00 1502.76 - 52 0.00 1971.1 -

SOE=2

cleaning

effort c′ij , 7

(hospitals)

B6′ 39 0.00 189.75 - 39 0.00 744.54 -

B7′ 39 0.00 180.87 - 39 0.00 708.93 -

B8′ 40 0.00 349.11 - 40 0.00 794.42 -

B9′ 42 0.00 239.42 - 42 0.00 729.86 -

B10′ 38 0.00 218.22 - 38 0.00 760.88 -

When SOE increases to 3, MTE reports gaps for all instances where schools are

the critical nodes and our model MTT reaches optimal solution in less than an

hour as seen in Table 5.8. These results again prove the effectiveness of our model

52

MTT and also highlight the importance of the critical nodes’ locations with the

great difference in the CPU times of the instances where the critical node sets

are different.

Table 5.8: Performance of the first model on Bakırköy instances with higher and

lower cleaning times with SOE=3

Minimize Total Time Minimize Total Effort [3]

Instance

features

Instance

#

Best

obj.

Gap

%

CPU

time

of

cleaned

arcs

Best

obj.

Gap

%

CPU

time

of

cleaned

arcs

SOE=3

cleaning

effort cij , 8

(schools)

B11 71 0.00 1439.26 - 71 0.00 12711 -

B12 80 0.00 2770.89 - 80 43.77 14400 -

B13 74 0.00 1038.03 - 74 0.00 13736.36 -

B14 71 0.00 731.99 - 71 0.00 12507.97 -

B15 77 0.00 2460.8 - 77 33.77 14400 -

SOE=3

cleaning

effort cij , 7

(hospitals)

B11 39 0.00 136.22 - 39 0.00 461.74 -

B12 42 0.00 190.2 - 42 0.00 550.53 -

B13 46 0.00 206.05 - 46 0.00 580.23 -

B14 48 0.00 203.78 - 48 0.00 744.75 -

B15 43 0.00 172.18 - 43 0.00 540.02 -

SOE=3

cleaning

effort c′ij , 8

(schools)

B11′ 67 0.00 3112.28 1 67 34.0 14400 1

B12′ 74 0.00 3456.95 2 75 60.0 14400 2

B13′ 73 0.00 2717.89 1 73 57.5 14400 1

B14′ 69 0.00 1747.06 1 69 27.5 14400 1

B15′ 75 0.00 1128.25 1 75 50.7 14400 1

SOE=3

cleaning

effort c′ij , 7

(hospitals)

B11′ 39 0.00 227.11 - 39 0.00 618.33 -

B12′ 42 0.00 203.41 - 42 0.00 644.19 -

B13′ 46 0.00 239.16 - 46 0.00 818.27 -

B14′ 48 0.00 291.72 - 48 0.00 1370.15 -

B15′ 43 0.00 252.89 - 43 0.00 703.36 -

Similar to the results in Kartal instances when SOE is at the highest level, the

CPU times are also the highest. As seen in Table 5.9, MTE again reports gaps

while our model MTT finds optimal solutions in 2 hours for the instances where

the critical nodes are only schools. For all instances where the critical nodes are

hospitals, both models are able to reach optimality in 2 hours. When the severity

is the highest, the cleaning effort is low and the critical nodes are only hospitals,

the average CPU time of MTE is 4963 seconds where our model solves instances

optimally in 580 seconds on the average.

53

Table 5.9: Performance of the first model on Bakırköy instances with higher and

lower cleaning times with SOE=4

Minimize Total Time Minimize Total Effort [3]

Instance

features

Instance

#

Best

obj.

Gap

%

CPU

time

of

cleaned

arcs

Best

obj.

Gap

%

CPU

time

of

cleaned

arcs

SOE=4

cleaning

effort cij , 8

(schools)

B16 96 0.00 5271.01 - 96 71.01 14400 -

B17 78 0.00 1971.88 - 78 31.71 14400 -

B18 112 0.00 6974.84 - 112 74.64 14400 -

B19 84 0.00 2974.57 - 84 45.24 14400 -

B20 87 0.00 3098.48 - 87 63.22 14400 -

SOE=4

cleaning

effort cij , 7

(hospitals)

B16 61 0.00 1197.11 - 61 0.00 7279.04 -

B17 58 0.00 1437.28 - 58 0.00 7653.28 -

B18 51 0.00 211.69 - 51 0.00 1162.77 -

B19 59 0.00 329.28 - 59 0.00 6006.05 -

B20 52 0.00 208.13 - 52 0.00 848.49 -

SOE=4

cleaning

effort c′ij , 8

(schools)

B16′ 87 0.00 5118.85 3 91 69.71 14400 1

B17′ 78 0.00 2633.39 - 78 37.18 14400 -

B18′ 104 0.00 6676.95 4 105 73.69 14400 3

B19′ 79 0.00 3649.5 1 79 44.07 14400 1

B20′ 83 0.00 2826.31 2 83 67.85 14400 2

SOE=4

cleaning

effort c′ij , 7

(hospitals)

B16′ 59 0.00 444.2 1 59 0.00 7433.39 1

B17′ 57 0.00 497.27 1 57 0.00 7577.35 1

B18′ 51 0.00 375.97 - 51 0.00 1352.84 -

B19′ 55 0.00 1189.86 1 55 0.00 7261.47 1

B20′ 52 0.00 393.92 - 52 0.00 1191.86 -

For the instances where the critical nodes are only schools or hospitals, the im-

provement of MTT in the CPU times compared to MTE is obvious. However

when all the critical nodes are included, both of the models cannot find optimal

solutions in a reasonable amount of time as seen in Table 5.10. When the number

of critical nodes is 15, for most of the instances MTT finds better objective values

however there is no consistency. Even when only schools are concerned, if the

severity of the earthquake is high, reaching optimal may take almost 2 hours as

in the instance B18 and B18′. Therefore, for Bakırköy instances with 15 critical

nodes, we only use the ones with the lower cleaning effort and see that optimality

cannot be reached in 2 hours by MTT.

54

Table 5.10: Performance of the first model on Bakırköy instances with lower

cleaning times and 15 critical nodes

Minimize Total Time Minimize Total Effort [3]

Instance

features

Instance

#

Best

obj.

Gap

%

CPU

time

of

cleaned

arcs

Best

obj.

Gap

%

CPU

time

of

cleaned

arcs

SOE=1

cleaning effort

cij. critical

nodes 15

B1 76 90.79 7200 - 74 91.9 14400 -

B2 78 92.31 7200 1 84 92.9 14400 2

B3 74 90.54 7200 - 78 92.3 14400 -

B4 73 89.04 7200 - 80 92.5 14400 -

B5 74 90.54 7200 - 73 91.8 14400 -

SOE=2

cleaning effort

cij. critical

nodes 15

B6 82 85.37 7200 - 75 92.0 14400 -

B7 79 93.67 7200 - 80 90.0 14400 1

B8 90 95.56 7200 - 77 92.2 14400 -

B9 109 100.00 7200 - 81 92.6 14400 1

B10 80 88.75 7200 - 76 92.1 14400 -

SOE=3

cleaning effort

cij. critical

nodes 15

B11 97 93.81 7200 - 95 91.6 14400 -

B12 97 94.85 7200 - 98 91.8 14400 1

B13 96 95.44 7200 - 100 92.0 14400 -

B14 104 97.12 7200 - 98 90.8 14400 1

B15 95 94.74 7200 1 99 90.9 14400 1

SOE=4

cleaning effort

cij. critical

nodes 15

B16 115 100.00 7200 1 135 92.6 14400 -

B17 122 100.00 7200 - 131 100.0 14400 -

B18 125 96.00 7200 2 165 95.2 14400 -

B19 114 94.52 7200 - 134 99.3 14400 -

B20 114 94.64 7200 1 328 99.7 14400 6

Analyses on the Transportation Network and Solvers

As stated in Data section complete networks are used in the test of our first

model MTT. Because of the completeness there are more than one path with the

same distance between same nodes. While keeping the original path we eliminate

the arc with the same distances to find the transportation network. For example

if the shortest path between nodes i and j is i − k − l − j with distance d, we

eliminate the arc (i, j) if its travel distance is d and we keep it if it less than d.

The aim is to decrease the size of the data set and compare the effect of using

complete network and transportation network.

To decide which arcs to eliminate and which to keep first we find the minimum

spanning tree of the complete network by Prim algorithm. Then, shortest path

55

among all nodes are found by Floyd-Warshall algorithm. We compare the distance

matrix obtained from the shortest path with the distance matrix of the complete

network to construct an incidence matrix T . If the distance between i-j in the

first matrix equal to the distance between i-j in the complete network and if arc

(i, j) is not in the spanning tree we make Tij = 0 and else Tij = 0. This way we

eliminate arc (i, j) and (j, i) in the transportation network. A small example on

a network with 3 nodes can be seen in Figure 5.4.

(a) Complete network
(b) Transportation
network

T =

0 0 1
0 0 1
1 1 0

(c) T matrix

Figure 5.4: Example of constructing transportation network and T matrix

To test our first model with the transportation network we add the following

constraints to the model so that an arc which is not included in T matrix cannot

be traversed and cleaned.

∑
k∈C

xkij ≤ |C|Tij ∀i, j ∈ N ′ (5.1)

Bij ≤ Tij ∀i, j ∈ N ′ (5.2)

cbij ≤ Tij ∀i, j ∈ N (5.3)

In order to see the effect of using the transportation network, we solve Kartal

instances with higher cleaning effort, K1-K20, with the modified MTT. Further-

more, we test original MTT and modified version with the transportation network

both with Cplex 12.6 and Gurobi 5. As seen in Table 5.11 a clear improvement

cannot be observed in the CPU times by using transportation network. Moreover

for the first model Cplex 12.6 reaches optimality faster than Gurobi therefore all

analyses are conducted with the complete network using Cplex 12.6 for the first

problem.

56

Table 5.11: Performances of Cplex 12.6 and Gurobi 5 in terms of CPU times

on Kartal instances with higher cleaning times with complete and transportation

networks

Instance Complete Network Transportation Network

Cplex 12.6 Gurobi 5 Cplex 12.6 Gurobi 5

K1 39.07 73.15 42.05 258.36

K2 50.25 99.6 48.69 80.3

K3 51.13 90.35 52.98 129.52

K4 43.04 102.52 52.67 121.23

K5 42.63 101.1 55.94 119.47

K6 49.25 91.41 55.81 112.85

K7 56.34 74.78 93.9 118.76

K8 58.22 98.11 62.45 132.24

K9 68.92 124.66 73.6 125.01

K10 41.44 140.03 53.05 93.57

K11 71.55 97.92 66.74 109.87

K12 162.14 190.53 130.2 230.07

K13 114.85 203.25 126.82 199.63

K14 57.72 122.43 84.93 149.74

K15 58.17 66.82 59.04 127.61

K16 616.1 582.98 709.7 804.06

K17 372.72 290.53 157.77 327.16

K18 551.87 525.37 597.62 425.53

K19 348.14 393.91 394.65 500

K20 490.14 623.4 227.77 410.32

5.2.2 Analyses on the Second Model

For the second model same data sets and instances are used by assigning appro-

priate weights to the critical nodes as explained in the Data section.

Our preliminary analyses show that for the second model Gurobi gives better

CPU times than Cplex. The instance K1-K20 are solved for 2 hours using both

solvers. Out of 20 instances Cplex finds 18 optimal solutions in 2 hours while

Gurobi reaches all optimal solutions with average CPU time of 683 seconds as

57

seen in Table 5.12. Therefore only Gurobi 5 is used for the test of the second

model.

Table 5.12: Performances of Cplex 12.6 and Gurobi 5 on Kartal instances with

higher cleaning times for the second model

Instance Cplex 12.6 Gurobi 5

Gap % CPU time Gap % CPU time

K1 0.00 70.25 0.00 77.9

K2 0.00 94.15 0.00 79.92

K3 0.00 88.21 0.00 170.13

K4 0.00 60.27 0.00 180.57

K5 0.00 60.57 0.00 173

K6 0.00 476.06 0.00 381.84

K7 0.00 314.06 0.00 336.59

K8 0.00 332.62 0.00 340.94

K9 0.00 741.95 0.00 423.35

K10 0.00 430.96 0.00 384.81

K11 0.00 1460.1 0.00 490.67

K12 0.00 311.29 0.00 503.7

K13 0.00 1246.04 0.00 721.46

K14 0.00 379.09 0.00 654.75

K15 0.00 245.1 0.00 709.89

K16 0.00 5874.1 0.00 1668.84

K17 0.00 4067.4 0.00 1536.69

K18 90.12 7200 0.00 2187.08

K19 91.59 7200 0.00 1334.81

K20 0.00 2286.1 0.00 1298.63

The results of the second model, MWSVT, on Kartal instances with higher and

lower cleaning efforts are presented in Tables 5.13 and 5.14 respectively. From

these tables we see that debris removal occurs when the severity of the earthquake

is higher. When the cleaning effort is high, blocked arcs are cleaned only when

SOE equals to 4. When the cleaning effort is low, more blocked arcs are cleaned.

For example in the solution of instance K19 only 1 arc is cleaned where 3 arcs

are cleaned in K19′. Furthermore, similar to the previous results, when SOE

increases, the CPU times and optimal values increase as well as seen in the test

58

of the second model on Kartal instances.

Table 5.13: Performance of the second model on Kartal instances with higher
cleaning times

Instances
Features

Instance #
optimal
value

CPU time
Gurobi

of
cleaned arcs

K1 2035 77.9 -
K2 1949 79.92 -
K3 2035 170.13 -
K4 1949 180.57 -

SOE=1,
of critical

nodes=7,
cleaning

effort : cij K5 1949 173 -
K6 2123 381.84 -
K7 2135 336.59 -
K8 2258 340.94 -
K9 2197 423.35 -

SOE=2,
of critical

nodes=7,
cleaning

effort : cij K10 2123 384.81 -
K11 2698 490.67 -
K12 2862 503.7 -
K13 3225 721.46 -
K14 2169 654.75 -

SOE=3,
of critical

nodes=7,
cleaning

effort : cij K15 2128 709.89 -
K16 5376 1668.84 1
K17 4684 1536.69 -
K18 5273 2187.08 1
K19 4909 1334.81 1

SOE=3,
of critical

nodes=7,
cleaning

effort : cij K20 4301 1298.63 1

In the previous subsection from Tables 5.3 and 5.4 we see that when SOE is 1

and 2, the optimal values are the same for the same instances where only the

cleaning effort differs, i.e, objective values of instances K1-K10 are the same with

K1′-K10′. The optimal values start to differ when SOE equals to 3 and become

completely different when SOE is 4. We see the same pattern in the results of

the second model with Kartal instances from Tables 5.13 and 5.14, i.e., with the

first two SOE value the objective values are identical and they are completely

different when SOE is highest.

59

Table 5.14: Performance of the second model on Kartal instances with lower
cleaning times

Instances
Features

Instance #
optimal
value

CPU time
Gurobi

of
cleaned arcs

K1′ 2035 95.83 -
K2′ 1949 124.7 -
K3′ 2035 102.15 -
K4′ 1949 99.36 -

SOE=1,
of critical

nodes=7,
cleaning

effort : c′ij K5′ 1949 137.65 -
K6′ 2123 387.9 -
K7′ 2135 426.63 -
K8′ 2258 431.03 -
K9′ 2197 358.51 -

SOE=2,
of critical

nodes=7,
cleaning

effort : c′ij K10′ 2123 422.57 -
K11′ 2564 722.86 1
K12′ 2860 806.2 1
K13′ 3225 624.41 1
K14′ 2169 605.93 -

SOE=3,
of critical

nodes=7,
cleaning

effort : c′ij K15′ 2128 513.3 -
K16′ 4775 1741.48 2
K17′ 4320 1495.75 2
K18′ 4759 1956.3 3
K19′ 4321 1717.03 1

SOE=3,
of critical

nodes=7,
cleaning

effort : c′ij K20′ 3502 1615.06 2

To be able to see the effect of the weights, we compare the total times and routes

given by two mathematical models for instances K1-K20. The weights of the

critical nodes for Kartal instances can be seen in Table 5.15.

Table 5.15: Weights of the critical nodes in Kartal data set

critical nodes 14 21 22 26 33 41 43

weights 22 15 15 8 17 17 5

The total route times of the optimal solutions found by both models are presented

in Table 5.16. From this table we see that for each level of SOE some values are

the same with the first model and some are higher. This implies that the change

in the route and total route time in the weighted case, significantly depends on

60

the locations of the blocked arcs together with the weights. For example, the

only difference in instance K11 and K13 are the location of the blocked arcs but

for the first one both of the models reach optimal solutions with total route time

equal to 53 while for instance K13, the total route times are 68 and 72 for first

and second problem respectively.

Table 5.16: Total route times of optimal solutions obtained from the mathemat-
ical models using Kartal instances with higher cleaning times

Instances
Features

Instance #
Total time of the
route by MTT

Total time of the
route by MWSVT

K1 44 44
K2 43 44
K3 44 47
K4 43 44

SOE=1,
of critical

nodes=7,
cleaning

effort : cij K5 43 44
K6 48 48
K7 50 63
K8 51 52
K9 49 49

SOE=2,
of critical

nodes=7,
cleaning

effort : cij K10 48 48
K11 53 53
K12 63 75
K13 68 82
K14 46 46

SOE=3,
of critical

nodes=7,
cleaning

effort : cij K15 47 52
K16 109 117
K17 82 85
K18 110 110
K19 90 93

SOE=4,
of critical

nodes=7,
cleaning

effort : cij K20 101 115

When we look at the instances K1 and K3, from Table 5.16 we see that the total

route times are different; 44 and 47 respectively. However, from Table 5.14 it can

be seen that the optimal values for the weighted case for these instances are the

same which is 2035. This shows that same objective value for the second model

does not necessarily imply that the optimal solutions have the same route and/or

total route time.

61

Out of 20 instances of Kartal with high cleaning effort, optimal routes found by

the first and second model are the same for 7 of them. Instance K7 is one of them

with different optimal routes and its solutions are presented in Figure 5.5. Node

14 is relatively far from other critical nodes and from the supply node, and it is

usually the last visited node for Kartal instance. However in the weighted version

of the problem, node 14 is visited in the 5th order instead of 7th for instance K7.

Hence, the weights, together with the other features of the network, can change

the optimal route.

(a) Optimal route of K7 for MTT (b) Optimal route of K7 for MWSVT

Figure 5.5: Optimal route of instance K7 for both of the mathematical models

The second model is also tested by Bakırköy data set. In the analyses on the

first model, we see that taking both schools and hospitals as critical increases the

complexity and optimal solutions cannot be reached in reasonable time. Since

the second model is larger than first one, hospitals and schools are taken in the

critical node set separately for the analyses on the second model. The weights of

the critical nodes for Bakırköy instances are represented in Tables 5.17.

Table 5.17: Weights of the critical nodes in Bakırköy (hospitals on the left, schools

on the right)

critical nodes 16 17 18 19 20 21 22

weights 13 22 13 13 22 13 4

critical nodes 5 15 34 36 47 55 65 67

weights 17 15 4 5 17 24 5 14

62

Tables 5.18 and 5.19 show optimal value and CPU times of Bakırköy instances in

which only hospitals are critical. We see that in the most of cases the CPU times

are lower when the cleaning effort is lower; when SOE is less than 4, all of the

instances with lower cleaning times are solved faster than the ones with higher

cleaning times.

The optimal values between high and low cleaning times only differ when the

severity of the earthquake is at the highest value. Out of 20 instances, only

3 of them are affected from the change in the cleaning effort, namely instance

B16, B17, B19 have different objective values than instance B16′, B17′, B19′

respectively.

Table 5.18: Performance of the second model on Bakırköy instances (hospitals)

with higher cleaning times

Instance Instance Optimal CPU time # of

Features # value Gurobi cleaned arcs

SOE=1

cleaning

effort cij , 7

(hospitals)

B1 1979 338 -

B2 1876 355.64 -

B3 1884 531.34 -

B4 1862 534.37 -

B5 1920 318.56 -

SOE=2

cleaning

effort cij , 7

(hospitals)

B6 1884 403.22 -

B7 1907 541.26 -

B8 1924 642.64 -

B9 1897 722.25 -

B10 1876 704.38 -

SOE=3

cleaning

effort cij , 7

(hospitals)

B11 1875 2241.83 -

B12 1884 1663.46 -

B13 2169 1925.84 -

B14 2362 2419.83 -

B15 1970 2080.29 -

SOE=4

cleaning

effort cij , 7

(hospitals)

B16 2430 4135.24 -

B17 2671 4890.86 -

B18 2361 4833.86 -

B19 2672 6275.62 -

B20 2483 4944.91 -

63

When the cleaning times are higher, no blocked arc is cleaned in the optimal

paths as seen in Table 5.18. When the cleaning times are lower, one blocked arc

is cleaned in the optimal solutions of the instances B16′, B17′, B19′ as seen in

Table 5.19.

Table 5.19: Performance of the second model on Bakırköy instances (hospitals)

with lower cleaning times

Instance Instance Optimal CPU time # of

Features # value Gurobi cleaned arcs

SOE=1

cleaning

effort c′ij , 7

(hospitals)

B1′ 1979 316.54 -

B2′ 1876 294.52 -

B3′ 1884 335.47 -

B4′ 1862 255.17 -

B5′ 1920 287.19 -

SOE=2

cleaning

effort c′ij , 7

(hospitals)

B6′ 1884 348.97 -

B7′ 1907 444.67 -

B8′ 1924 410.58 -

B9′ 1897 438.99 -

B10′ 1876 371.99 -

SOE=3

cleaning

effort c′ij , 7

(hospitals)

B11′ 1875 1394.25 -

B12′ 1884 1330.03 -

B13′ 2169 1254.56 -

B14′ 2362 1145.38 -

B15′ 1970 1210.83 -

SOE=4

cleaning

effort c′ij , 7

(hospitals)

B16′ 2426 4963.48 1

B17′ 2655 4981.34 1

B18′ 2361 4518.54 -

B19′ 2570 5621.99 1

B20′ 2483 6060.65 -

When we compare the total route times of Bakırköy instances where critical nodes

are only hospitals and the cleaning effort is high, we see that 5 out of 20 instances

have the same total route time for models MTT and MWSVT. Thus we can say

that the weights have an impact in most of the instances where the critical set

consists of hospitals.

64

When the critical nodes become only schools it gets harder to reach optimality.

As seen in Table 5.20, optimal solutions are found for 9 out of 20 instances when

the cleaning effort is high and from Table 5.21 we see that half of instances are

solved to optimality when the cleaning effort is low. As stated in the analyses of

the first model, the locations of schools have a tremendous effect on the solutions

times. For the second model, the optimal solutions cannot be reached in 2 hours

especially when the severity level is high.

Table 5.20: Performance of the second model on Bakırköy instances (schools)

with higher cleaning times

Instance Instance Best Gap CPU time # of

Features # objective % Gurobi cleaned arcs

SOE=1

cleaning

effort cij , 8

(schools)

B1 2779 0.00 1721.08 -

B2 3439 0.00 3738.91 1

B3 2779 0.00 2442.78 -

B4 2847 0.00 3051.61 -

B5 2779 0.00 6052.22 -

SOE=2

cleaning

effort cij , 8

(schools)

B6 2779 0.00 3605.48 -

B7 3591 77.28 7200 -

B8 2779 0.00 4499.47 -

B9 3556 0.00 5646.93 -

B10 2779 0.00 3676.88 -

SOE=3

cleaning

effort cij , 8

(schools)

B11 3802 90.90 7200 -

B12 4376 89.90 7200 -

B13 4131 91.43 7200 -

B14 4017 89.15 7200 -

B15 4199 92.99 7200 -

SOE=4

cleaning

effort cij , 8

(schools)

B16 5125 95.82 7200 -

B17 3928 97.66 7200 -

B18 6105 98.33 7200 -

B19 4426 100.00 7200 -

B20 4030 96.87 7200 -

We investigate the routes and the total route times of the instances for which

the optimal solutions are found and we compare them with the solutions of the

first model. This comparison shows that the total route times are the same for

65

the instances we solve to optimality. When the cleaning effort is low the optimal

solutions of the first 10 instances by both models have the same total route time.

However this does not necessarily mean that the reported solutions are the same.

For example in the solution of instance B2′ with low cleaning time by the first

model there is one cleaned arc as presented in Table 5.6, however, in the solution

of the same instance by the second model there are two cleaned arcs as seen in

Table 5.21. Although the number of cleaned arcs are different, both solutions have

a total route time which equal to 58 so there are alternative optimal solutions

for the first model. These solutions are also alternative optimal solutions for the

second model if the visiting times of the critical nodes are the same in these

paths, and they are for instance B2′. These alternative optimal paths are shown

in Figure 5.6 and 5.7.

Figure 5.6: Optimal route of B2′ (schools) by MTT

Figure 5.7: Optimal route of B2′ (schools) by MWSVT

66

Table 5.21: Performance of the second model on Bakırköy instances (schools)

with lower cleaning times

Instance Instance Best Gap CPU time # of

Features # objective % Gurobi cleaned arcs

SOE=1

cleaning

effort c′ij , 8

(schools)

B1′ 2779 0.00 1629.69 -

B2′ 3136 0.00 2778.12 2

B3′ 2779 0.00 2711.83 -

B4′ 2847 0.00 1793.75 -

B5′ 2779 0.00 2862.37 -

SOE=2

cleaning

effort c′ij , 8

(schools)

B6′ 2779 0.00 1946.02 -

B7′ 3183 0.00 3475.90 1

B8′ 2779 0.00 3490.22 -

B9′ 3183 0.00 3325.31 1

B10′ 2779 0.00 3347.79 -

SOE=3

cleaning

effort c′ij , 8

(schools)

B11′ 3802 83.90 7200 -

B12′ 4232 86.51 7200 2

B13′ 4045 88.23 7200 1

B14′ 3898 81.35 7200 1

B15′ 4028 84.51 7200 2

SOE=4

cleaning

effort c′ij , 8

(schools)

B16′ 4927 97.16 7200 1

B17′ 3725 99.19 7200 1

B18′ 5303 98.08 7200 3

B19′ 4452 97.87 7200 3

B20′ 4194 96.76 7200 2

A similar example occurs in the instance B9 in which the critical nodes are schools

and cleaning effort is high. The optimal solutions of this instance by first and

second model have the same total route time but the routes are different. Since

the visiting time of the critical nodes are different in these route, it implies that

the routes are alternative optimal solutions for the first model but not for the

second model. When we calculate the objective function of MWSVT using the

optimal route for MTT, we get 3697 while the optimal solution for MWSVT is

3556 as seen in Table 5.20.

67

5.2.3 Performance of Minratio Heuristic

As the network enlarges and the number of critical nodes increase it is not pos-

sible to reach optimal solution in a reasonable amount of time for some cases.

Computational studies on Bakırköy show that the number of critical nodes and

their locations have a direct effect on the CPU times. Moreover especially with

the higher severity degrees solvers cannot find optimal solutions and they report

large gaps in 2 hours for some of the instances.

For Debris Removal Problem in Response Phase in order to find near-optimal

solutions quickly we develop an algorithm called Minratio. As explained in the

previous chapter, the algorithm calculates a ratio for each critical node k, by

dividing mink by avgk; mink is the distance of the closest critical node to k and

avgk is the average distance from k to all eligible critical nodes. Minratio chooses

the critical node giving the minimum ratio and connects it to its closest critical

node. To decide which critical node to choose, different rules can be generated

and in addition to Minratio, two different algorithms are generated and tested

with Kartal data set. The first one is Maxratio which picks the critical node

giving the maximum ratio and the other one is Avgratio which picks the critical

node giving the minimum or maximum ratio whichever is the more far from the

average of the ratios. Performances of these heuristics are presented in Table 5.22

using Kartal instances with higher cleaning effort. Since Minratio gives better

solutions compared to the others, the rest of the analyses are conducted with

Minratio heuristic.

68

Table 5.22: Comparison of Minratio, Maxratio and Avgratio on Kartal instances
with higher cleaning times

Instance Optimal Minratio Maxratio Avgratio
value value value Value

K1 44 44 63 44
K2 43 43 43 43
K3 44 44 60 61
K4 43 43 43 43
K5 43 43 43 43
K6 48 48 53 51
K7 50 50 50 50
K8 51 51 69 59
K9 49 49 74 74
K10 48 48 49 58
K11 53 53 59 55
K12 63 66 83 83
K13 68 68 82 74
K14 46 46 64 64
K15 47 47 50 50
K16 109 112 134 127
K17 82 82 115 99
K18 110 110 139 118
K19 90 90 102 102
K20 101 109 136 136

Table 5.23 illustrates the performance of Minratio algorithm for all Kartal in-

stances. From this results we see that as SOE increases, the solutions found by

the heuristics go far from the optimal. Except instance K20 and especially K20′

the heuristics either find the optimal solution or a near one with gaps less than

3%.

As summarized in Table 5.24 the algorithm finds the optimal solutions for 85%

and 70% of Kartal instances with higher and lower cleaning efforts respectively.

From the same table it can be seen that Minratio heuristic finds one more optimal

solution compared to the heuristic developed by Şahin [3]. The maximum gaps

are the same for both heuristics but Minratio outperforms in terms of average

gaps.

69

Table 5.23: Performance of Minratio heuristic on Kartal instances with higher
and lower cleaning times

Optimal Minratio Heuristic
Instance # Value Value Gap %

K1 44 44 0.00
K2 43 43 0.00
K3 44 44 0.00
K4 43 43 0.00
K5 43 43 0.00
K6 48 48 0.00
K7 50 50 0.00
K8 51 51 0.00
K9 49 49 0.00
K10 48 48 0.00
K11 53 53 0.00
K12 63 66 4.76
K13 68 68 0.00
K14 46 46 0.00
K15 47 47 0.00
K16 109 112 2.75
K17 82 82 0.00
K18 110 110 0.00
K19 90 90 0.00
K20 101 109 7.92

Optimal Minratio Heuristic
Instance # Value Value Gap %

K1′ 44 44 0.00
K2′ 43 43 0.00
K3′ 44 44 0.00
K4′ 43 43 0.00
K5′ 43 43 0.00
K6′ 48 48 0.00
K7′ 49 49 0.00
K8′ 51 51 0.00
K9′ 49 51 4.08
K10′ 48 48 0.00
K11′ 51 51 0.00
K12′ 63 63 0.00
K13′ 67 68 1.49
K14′ 46 46 0.00
K15′ 47 47 0.00
K16′ 97 99 2.06
K17′ 78 78 0.00
K18′ 95 97 2.10
K19′ 81 82 1.23
K20′ 80 95 18.75

When the cleaning effort is higher, heuristic by Şahin [3] finds 16 optimal solutions

while Minratio finds 17. If these heuristics are used together, 19 instances would

be solved optimally out of 20. When the cleaning effort is lower, these heuristics

together solves 15 instances optimally. Hence the optimal ratios would rise to

95% and 75% if the heuristics are combined.

Table 5.24: Performance summary and comparison of Minratio heuristics with
the heuristic by Şahin [3] on Kartal instances

Heuristic by Şahin [3] Minratio heuristic

Instances avg gap max gap optimum ratio % avg gap max gap optimum ratio %
K1 ... K20 1.28 7.92 80 0.77 7.92 85

K1′ ... K20′ 2.2 18.75 65 1.49 18.75 70

Similar results are observed with Bakırköy instances in which the critical nodes

are only schools. In Table 5.25, we see that when SOE is 1 or 2, all instances are

solve to optimality by Minratio heuristic. With the increase in SOE, the solutions

found by the heuristics start to go far from the optimal.

70

Table 5.25: Performance of Minratio heuristic on Bakırköy instances with higher
and lower cleaning times, critical nodes are schools

Optimal Minratio Heuristic
Instance # Value Value Gap %

B1 52 52 0.00
B2 61 61 0.00
B3 52 52 0.00
B4 54 54 0.00
B5 52 52 0.00
B6 52 52 0.00
B7 60 60 0.00
B8 52 52 0.00
B9 60 60 0.00
B10 52 52 0.00
B11 71 72 1.41
B12 80 85 6.25
B13 74 74 0.00
B14 71 72 1.41
B15 77 78 1.3
B16 96 103 7.3
B17 78 78 0.00
B18 112 120 7.1
B19 84 89 5.95
B20 87 88 1.15

Optimal Minratio Heuristic
Instance # Value Value Gap %

B1′ 52 52 0.00
B2′ 58 58 0.00
B3′ 52 52 0.00
B4′ 54 54 0.00
B5′ 52 52 0.00
B6′ 52 52 0.00
B7′ 56 56 0.00
B8′ 52 52 0.00
B9′ 56 56 0.00
B10′ 52 52 0.00
B11 67 72 7.46
B12′ 74 75 1.35
B13′ 73 73 0.00
B14′ 69 71 2.9
B15′ 75 76 1.34
B16′ 87 92 5.75
B17′ 78 78 0.00
B18′ 104 110 5.77
B19′ 79 86 8.86
B20′ 83 83 0.00

For Bakırköy instances where the critical nodes are only schools, we again com-

pare our heuristic with the one developed by Şahin [3]. As seen from Table 5.26,

for both cleaning levels Şahin’s heuristic finds one more optimal solutions com-

pared to Minratio. However, both average and maximum gaps of the solutions

found by Minratio are lower than Şahin’s. Hence we can say that Minratio outper-

forms in terms of gaps. Furthermore, if these heuristics are combined they would

report 14 and 15 optimal solutions for high and low cleaning efforts respectively.

Table 5.26: Performance summary and comparison of Minratio heuristics with
the heuristic by Şahin [3] on Bakırköy instances (schools)

Heuristic by Şahin [3] Minratio heuristic

Instances avg max optimum avg max optimum
schools gap fap ratio % gap fap ratio %

B1 ... B20 1.95 19.05 65 1.60 7.29 60
B1′ ... B20′ 2.25 24.05 70 1.67 8.86 65

71

The results of Minratio heuristics on Bakırköy instances in which the critical

nodes are only hospitals is shown in Table 5.27.

Table 5.27: Performance of Minratio heuristic on Bakırköy instances with higher
and lower cleaning times, critical nodes are hospitals

Optimal Minratio Heuristic
Instance # Value Value Gap %

B1 41 41 0.00
B2 38 38 0.00
B3 39 39 0.00
B4 40 41 2.50
B5 40 40 0.00
B6 39 39 0.00
B7 39 39 0.00
B8 40 40 0.00
B9 42 42 0.00
B10 38 38 0.00
B11 39 41 5.13
B12 42 42 0.00
B13 46 46 0.00
B14 48 48 0.00
B15 43 48 11.63
B16 61 62 1.64
B17 58 58 0.00
B18 51 52 1.96
B19 59 61 3.39
B20 52 55 5.77

Optimal Minratio Heuristic
Instance # Value Value Gap %

B1′ 41 41 0.00
B2′ 38 38 0.00
B3′ 39 39 0.00
B4′ 40 41 2.50
B5′ 40 40 0.00
B6′ 39 39 0.00
B7′ 39 39 0.00
B8′ 40 40 0.00
B9′ 42 42 0.00
B10′ 38 38 0.00
B11′ 39 41 5.13
B12′ 42 42 0.00
B13′ 46 46 0.00
B14′ 48 48 0.00
B15′ 43 48 11.63
B16′ 59 62 5.08
B17′ 57 58 1.75
B18′ 51 52 1.96
B19′ 55 58 5.45
B20′ 52 55 5.77

For Bakırköy instances where critical nodes are hospitals Minratio finds 12 opti-

mal solutions out of 20 for both cleaning times while the heuristic developed by

Şahin reaches 8 optimal solutions for both cleaning times as seen in Table 5.28.

For these sets Minratio outperforms in terms of the number of optimal solutions

found and also in terms of the average and maximum gaps.

Table 5.28: Performance summary and comparison of Minratio heuristics with
the heuristic by Şahin [3] on Bakırköy instances (hospitals)

Heuristic by Şahin [3] Minratio heuristic

Instances avg max optimum avg max optimum
hospitals gap fap ratio % gap fap ratio %

B1 ... B20 3.74 16.28 40 1.60 11.63 60
B1′ ... B20′ 3.94 16.28 40 1.96 11.63 60

72

5.2.4 Performance of Weighted Shortest Distance Heuris-

tic

In order to minimize weighted sum of visiting times, we need additional variables

and constraint which increase the CPU times. To find near optimal solutions

faster we develop Weighted Shortest Distance heuristic. Its performance on Kar-

tal instances can be seen in Table 5.29. Average gap for Kartal instances with

higher cleaning effort is 4% and with lower is 5%.

6 and 5 cases are solved optimally by the algorithm from Kartal instances with

high and low cleaning times respectively. With higher SOE values the quality of

the solution obtained from WSD decreases. The gap from optimal is larger for

instances K17, K19 which indicates impact of the blocked arcs’ location.

Table 5.29: Performance of Weighted Shortest Distance(WSD) heuristic on Kartal
instances with higher and lower cleaning times

Optimal WSD Heuristic
Instance # Value Value Gap %

K1 2035 2040 0.25
K2 1949 1949 0.00
K3 2035 2040 0.25
K4 1949 1949 0.00
K5 1949 1949 0.00
K6 2123 2240 5.51
K7 2135 2171 1.67
K8 2258 2273 0.66
K9 2197 2197 0.00
K10 2123 2240 5.51
K11 2698 2826 4.74
K12 2862 2862 0.00
K13 3225 3225 0.00
K14 2169 2169 0.00
K15 2128 2275 6.91
K16 5376 5376 0.00
K17 4684 5324 13.66
K18 5273 5482 3.96
K19 4909 5622 14.52
K20 4301 4301 0.00

Optimal WSD Heuristic
Instance # Value Value Gap %

K1′ 2035 2040 0.25
K2′ 1949 1949 0.00
K3′ 2035 2040 0.25
K4′ 1949 1949 0.00
K5′ 1949 1949 0.00
K6′ 2123 2228 4.95
K7′ 2135 2171 1.69
K8′ 2258 2273 0.66
K9′ 2197 2197 0.00
K10′ 2123 2240 5.51
K11′ 2564 2726 6.32
K12′ 2860 2860 0.00
K13′ 3225 3225 0.00
K14′ 2169 2169 0.00
K15′ 2128 2275 6.91
K16′ 4775 4775 0.00
K17′ 4320 5088 17.78
K18′ 4759 4935 3.70
K19′ 4321 5307 22.82
K20′ 3502 3713 6.03

73

As shown in Table 5.20, for Bakırköy instances where critical nodes are only

hospitals, WSD finds 4 and 5 optimal solutions for the instances with high and

low cleaning efforts respectively. The average gap for the high cleaning effort

is 3.9 and for the low one it is 3.87. Results of these instances are better than

Kartal’s in terms of average gaps but the optimal ratio is low for both data sets.

Table 5.30: Performance of Weighted Shortest Distance(WSD) heuristic on
Bakırköy instances (hospitals) with higher and lower cleaning times

Instance Optimal WSD Heuristic
Value Value Gap %

B1 1979 2108 6.52
B2 1876 1923 2.51
B3 1884 1884 0.00
B4 1862 1923 3.28
B5 1920 1961 2.14
B6 1884 1892 0.42
B7 1907 1907 0.00
B8 1924 2048 6.44
B9 1897 1897 0.00
B10 1876 1923 2.51
B11 1875 1875 0.00
B12 1884 1945 3.24
B13 2169 2264 4.38
B14 2362 2373 0.47
B15 1970 1970 0.00
B16 2430 2782 14.49
B17 2671 2923 9.43
B18 2361 2613 10.67
B19 2672 2829 5.88
B20 2483 2621 5.56

Instance Optimal WSD Heuristic
Value Value Gap %

B1′ 1979 2108 4.70
B2′ 1876 2009 2.51
B3′ 1884 2009 0.00
B4′ 1862 2009 3.28
B5′ 1920 2073 2.14
B6′ 1884 1953 0.42
B7′ 1907 2009 0.00
B8′ 1924 2109 6.44
B9′ 1897 2013 0.00
B10′ 1876 2009 2.51
B11′ 1875 1927 0.00
B12′ 1884 1945 3.24
B13′ 2169 2297 2.40
B14′ 2362 2373 0.47
B15′ 1970 1970 0.00
B16′ 2426 2794 15.17
B17′ 2655 2923 10.09
B18′ 2361 2613 10.67
B19′ 2570 2769 7.74
B20′ 2483 2621 5.56

In Tables 5.31, results of WSD heuristic on Bakırköy instances where the critical

nodes are only schools are presented. The second model, MWSVT, cannot find

optimal solutions for half of the instance in 2 hours. This is why there are some

negative values in gaps which means that WSD heuristic finds better objective

values for these instances.

74

Table 5.31: Performance of Weighted Shortest Distance(WSD) heuristic on
Bakırköy instances (schools) with higher and lower cleaning times

Instance Best objective WSD Heuristic
Value Value Gap %

B1 2779 3103 11.66
B2 3439 3705 7.73
B3 2779 3103 11.66
B4 2847 3189 12.01
B5 2779 3103 11.66
B6 2779 3103 11.66
B7 3591 3834 6.77
B8 2779 3103 11.66
B9 3556 3591 0.98
B10 2779 3103 11.66
B11 3802 4271 12.34
B12 4376 4765 8.89
B13 4131 4195 1.55
B14 4017 4017 0.00
B15 4199 4202 0.07
B16 5125 5656 10.36
B17 3928 4408 12.22
B18 6105 5525 -9.50
B19 4426 4426 0.00
B20 4030 4343 7.77

Instance Best objective WSD Heuristic
Value Value Gap %

B1′ 2779 3103 11.66
B2′ 3136 3434 9.50
B3′ 2779 3103 11.66
B4′ 2847 3189 12.01
B5′ 2779 3103 11.66
B6′ 2779 3103 11.66
B7′ 3183 3834 20.45
B8′ 2779 3103 11.66
B9′ 3183 3834 2.168
B10′ 2779 3103 11.66
B11′ 3802 4271 12.34
B12′ 4232 4610 8.93
B13′ 4045 4195 3.71
B14′ 3898 4017 3.05
B15′ 4028 4202 4.32
B16′ 4927 4998 1.44
B17′ 3725 4321 16.00
B18′ 5303 5463 3.02
B19′ 4452 4414 -0.85
B20′ 4194 4252 1.38

75

Chapter 6

Conclusion

In this study, we propose solution methodologies for Debris Removal Problem in

Response Phase defined by Şahin [3]. We investigate the problem with two dif-

ferent objectives therefore we define two problems. The aim of the first problem,

Debris Removal in Response (DRR), is to find a route which starts from a supply

node and visits a predetermined set of critical nodes as soon as possible. The

second problem, Prioritized Debris Removal in Response (PDRR), takes weights

of the critical nodes into account and the objective is to minimize weighted sum

of visiting times.

The critical nodes consist of areas close to schools and hospitals which are densely

populated and have an urgent need of relief items. Although relief transportation

is one of the most popular areas in emergency logistics, debris removal is not an

operation commonly incorporated in relief transportation/distribution problem.

Debris removal is mostly studied on late post-disaster phase with recycling in-

centives. In recovery and reconstruction phases the aim is to remove all debris

and recycle properly while in the response phase blocked roads are cleaned from

debris in order to reach critical areas. Since the purpose is to reach disaster af-

fected people and deliver relief as soon as possible, time is of the essence during

response phase. Therefore debris removal in the response phase requires different

solution methodologies than the ones applied in the recovery phase.

76

For the defined problems, we develop two MIP models. The first one, Minimize

Total Time (MTT), treats each node as equally important and minimizes the vis-

iting time of the last visited node. A model with the same objective is proposed

by Şahin [3] and in the computational analysis we show that our model is more

efficient in terms of CPU consumption. For the second problem another MIP

model, Minimize Weighted Sum of Visiting Times (MWSVT), is developed. This

model calculates the visiting time of each critical node considering all traveling

and cleaning times and minimizes weighted sum of them. Because of the addi-

tional variables and constraints, the second model results in larger CPU times.

The preliminary analysis on the mathematical models indicates that reaching

optimal solution may take hours for data sets with higher dimensions. Waiting

for a solution for hours conflicts with the essence of the problem since the goal

is to reach people as soon as possible. Therefore we propose heuristic solution

methodologies for both of the problems.

The first heuristic, Minratio, constructs a tour by connecting two critical nodes

in each iteration. It decides which nodes to connect by a ratio and uses the

shortest paths between the critical nodes. The ratio helps to benefit from the

most advantageous shortest path by connecting the most distant critical node to

its closest. An improvement algorithm based on 2-opt is applied to the solution

obtained from the first part. The second heuristic, Weighted Shortest Distance,

is weighted version of Nearest Neighbor Algorithm and same improvement algo-

rithm is applied to the solution obtained from the constructive part.

Using two data sets belonging to the districts of İstanbul, we conduct compu-

tational study for all the solution methodologies. The analyses show that when

the number of blocked arcs increases in the case of severe earthquakes, cleaning

blocked arcs becomes inevitable. Together with the number of blocked arcs and

cleaning times, the location of these blocked arcs has an important effect on the

solution times for the mathematical models. Heuristic algorithms however, give

solutions less than a second. For the first problem Minratio algorithm finds op-

timal solutions more than half of the instances but the gap from the optimal is

higher for the second problem especially when the severity of the earthquake is

77

higher.

Our main contribution to the literature is the second problem and corresponding

model. To the best of the author’ knowledge, debris removal during response

phase is an under-researched area and there is no study considering node priorities

in this problem.

A possible future direction would be having more than one vehicle departing

from several supply nodes. Moreover by conducting parametric analysis with

different data sets, different functions related the the weights can be generated

and analyzed for the heuristic solutions methodologies of the second problem.

78

Bibliography

[1] B. Özmen, M. Nurlu, and H. Güler, “Analysis of earthquake zones with

geographical information system,” Republic of Turkey Ministry of Public

Works and Settlement, 1997.

[2] A. M. Caunhye, X. Nie, and S. Pokharel, “Optimization models in emergency

logistics: A literature review,” Socio-Economic Planning Sciences, vol. 46,

no. 1, pp. 4–13, 2012.

[3] H. Şahin, “Debris Removal During Disaster Response Phase: a Case for

Turkey,” Master’s thesis, Bilkent University, Ankara, 2013.

[4] N. Altay and W. G. Green III, “Or/ms research in disaster operations

management,” European Journal of Operational Research, vol. 175, no. 1,

pp. 475–493, 2006.

[5] L. N. Van Wassenhove, “Humanitarian aid logistics: supply chain manage-

ment in high gear,” Journal of the Operational Research Society, vol. 57,

no. 5, pp. 475–489, 2006.

[6] J.-B. Sheu, “Challenges of emergency logistics management,” Transportation

research part E: logistics and transportation review, vol. 43, no. 6, pp. 655–

659, 2007.

[7] B. Balcik and B. M. Beamon, “Facility location in humanitarian relief,”

International Journal of Logistics, vol. 11, no. 2, pp. 101–121, 2008.

[8] D. Murphy, “Haiti earthquake: Small port-au-prince airport strained by aid

demand.” http://www.csmonitor.com/World/Global-News/2010/0115/

79

Haiti-earthquake-Small-Port-au-Prince-airport-strained-by-aid-demand,

2010. Visited February 2014.

[9] J. Holgúın-Veras, “The donations sandy’s victims don’t

need.” http://articles.latimes.com/2012/nov/03/opinion/

la-oe-holguin-veras-hurricane-donations-20121104, 2012. Vis-

ited February 2014.

[10] R. Samii, L. N. Van Wassenhove, K. Kumar, and I. Becerra-Fernandez,

“Choreographer of disaster management: preparing for tomorrows disas-

ters,” INSEAD, Fontainebleau,France, 2002. No.06 /2002-5039.

[11] T. Lush, “98 % of haiti quake debris remains.” http://www.chinapost.

com.tw/international/americas/2010/09/14/272484/98-of.htm, 2010.

Visited April 2014.

[12] FEMA, “Public assistance debris monitoring guide.” http://www.fema.

gov/pdf/government/grant/pa/fema_327_debris_monitoring.pdf,

2010. Visited June 2014.

[13] J. Stephenson, Hurricane Katrina: continuing debris removal and disposal

issues. DIANE Publishing, 2008.

[14] O. Norio, T. Ye, Y. Kajitani, P. Shi, and H. Tatano, “The 2011 eastern

Japan great earthquake disaster: Overview and comments,” International

Journal of Disaster Risk Science, vol. 2, no. 1, pp. 34–42, 2011.

[15] J. Xiao, H. Xie, and C. Zhang, “Investigation on building waste and re-

claim in wenchuan earthquake disaster area,” Resources, Conservation and

Recycling, vol. 61, pp. 109–117, 2012.

[16] L. Luther, “Disaster debris removal after hurricane Katrina: status and as-

sociated issues,” Congressional Research Service, Library of Congress, 2006.

[17] M. Bjerregaard, “Msb/undp debris management guidelines,” Disaster Waste

Recovery, 2009.

80

[18] FEMA, “Hurricane charley recovery by the numbers.” http://www.fema.

gov/news-release/2009/08/03/hurricane-charley-recovery-numbers,

2009. Visited June 2014.

[19] F. Baycan, “Emergency planning for disaster waste: A proposal based on

the experience of the Marmara earthquake in Turkey,” in 2004 International

Conference and Student Competition on post-disaster reconstruction” Plan-

ning for reconstruction” Coventry, UK, 2004.

[20] C.-P. Yang, “Composition of demolition wastes from chi-chi earthquake-

damaged structures and the properties of their inert materials,” Canadian

Geotechnical Journal, vol. 46, no. 4, pp. 470–481, 2009.

[21] F. Baycan and M. Petersen, “Disaster waste management-c&d waste,” in

Annual conference of the international solid waste association, pp. 8–12,

2002.

[22] H. Hayashi and T. Katsumi, “Generation and management of disaster

waste,” Soils and foundations, pp. 349–358, 1996.

[23] M. Çelik, O. Ergun, and P. Keskinocak, “Post disaster debris clearance with

incomplete information,” International IIE Conference. İstanbul,Turkey,

2013.

[24] U. o. L. B. EM-DAT, CRED, “Disasters in numbers.” /http://www.cred.

be/sites/default/files/Disasters-in-numbers-2013.pdf, 2013. Vis-

ited June 2014.

[25] Tübitak, “Türkiye ulusal deprem araştırmaları programı.” http:

//www.tubitak.gov.tr/tubitak_content_files/ARDEB/kamag/

Turkiye_Ulusal_Deprem_Arastirmalari_Programi.pdf, 2005. Vis-

ited June 2014.

[26] C. Orloff, “A fundamental problem in vehicle routing,” Networks, vol. 4,

no. 1, pp. 35–64, 1974.

81

[27] H. A. Eiselt, M. Gendreau, and G. Laporte, “Arc routing problems, part i:

The chinese postman problem,” Operations Research, vol. 43, no. 2, pp. 231–

242, 1995.

[28] Z. Win, “On the windy postman problem on eulerian graphs,” Mathematical

Programming, vol. 44, no. 1-3, pp. 97–112, 1989.

[29] P. Brucker, “The chinese postman problem for mixed graphs,” in Graphthe-

oretic Concepts in Computer Science, pp. 354–366, Springer, 1981.

[30] M. Guan, “On the windy postman problem,” Discrete Applied Mathematics,

vol. 9, no. 1, pp. 41–46, 1984.

[31] T. Kramberger and J. Žerovnik, “Priority constrained chinese postman prob-

lem,” Logistics & Sustainable Transport, vol. 1, no. 1, 2007.

[32] G. N. Frederickson, M. Hecht, and C. Kim, “Approximation algorithms for

some routing problems,” SIAM Journal on Computing, vol. 7, no. 2, pp. 178–

193, 1978.

[33] D. Ahr and G. Reinelt, “A tabu search algorithm for the min–max¡ i¿

k¡/i¿-chinese postman problem,” Computers & Operations Research, vol. 33,

no. 12, pp. 3403–3422, 2006.

[34] J. K. Lenstra and A. Kan, “On general routing problems,” Networks, vol. 6,

no. 3, pp. 273–280, 1976.

[35] J. Aráoz, E. Fernández, and C. Zoltan, “Privatized rural postman problems,”

Computers & operations research, vol. 33, no. 12, pp. 3432–3449, 2006.

[36] A. Letchford and R. Eglese, “The rural postman problem with deadline

classes,” European Journal of Operational Research, vol. 105, no. 3, pp. 390–

400, 1998.

[37] E. Benavent, A. Carrotta, A. Corberán, J. M. Sanchis, and D. Vigo, “Lower

bounds and heuristics for the windy rural postman problem,” European jour-

nal of operational research, vol. 176, no. 2, pp. 855–869, 2007.

82

[38] E. Benavent, A. Corberán, I. Plana, and J. M. Sanchis, “Min-max k-vehicles

windy rural postman problem,” Networks, vol. 54, no. 4, pp. 216–226, 2009.

[39] C. H. Papadimitriou and M. Yannakakis, “Shortest paths without a map,”

in Automata, Languages and Programming, pp. 610–620, Springer, 1989.

[40] A. Bar-Noy and B. Schieber, “The canadian traveller problem,” in Proceed-

ings of the second annual ACM-SIAM symposium on Discrete algorithms,

pp. 261–270, Society for Industrial and Applied Mathematics, 1991.

[41] Z. Bnaya, A. Felner, and S. E. Shimony, “Canadian traveler problem with

remote sensing.,” in IJCAI, pp. 437–442, 2009.

[42] D. Fried, S. E. Shimony, and A. Felner, “Optimal policies for special cases

of the canadian traveler problem,”

[43] Z. Bnaya, A. Felner, D. Fried, O. Maksin, and S. E. Shimony, “Repeated-task

canadian traveler problem,” in Fourth Annual Symposium on Combinatorial

Search, 2011.

[44] K. Viswanath and S. Peeta, “Multicommodity maximal covering network

design problem for planning critical routes for earthquake response,” Trans-

portation Research Record: Journal of the Transportation Research Board,

vol. 1857, no. 1, pp. 1–10, 2003.

[45] G.-H. Tzeng, H.-J. Cheng, and T. D. Huang, “Multi-objective optimal plan-

ning for designing relief delivery systems,” Transportation Research Part E:

Logistics and Transportation Review, vol. 43, no. 6, pp. 673–686, 2007.

[46] S. Yan and Y.-L. Shih, “Optimal scheduling of emergency roadway repair and

subsequent relief distribution,” Computers & Operations Research, vol. 36,

no. 6, pp. 2049–2065, 2009.

[47] L. E. de la Torre, I. S. Dolinskaya, and K. R. Smilowitz, “Disaster relief rout-

ing: Integrating research and practice,” Socio-economic planning sciences,

vol. 46, no. 1, pp. 88–97, 2012.

83

[48] Z. Shen, M. M. Dessouky, and F. Ordóñez, “A two-stage vehicle routing

model for large-scale bioterrorism emergencies,” Networks, vol. 54, no. 4,

pp. 255–269, 2009.

[49] H. O. Mete and Z. B. Zabinsky, “Stochastic optimization of medical supply

location and distribution in disaster management,” International Journal of

Production Economics, vol. 126, no. 1, pp. 76–84, 2010.

[50] C. G. Rawls and M. A. Turnquist, “Mark a. turnquist. pre-position of emer-

gency supplies for disaster response,” Transportation Research Part E, 2009.

[51] P. Van Hentenryck, R. Bent, and C. Coffrin, “Strategic planning for disaster

recovery with stochastic last mile distribution,” in Integration of AI and OR

techniques in constraint programming for combinatorial optimization prob-

lems, pp. 318–333, Springer, 2010.

[52] G. Fetter and T. Rakes, “Incorporating recycling into post-disaster debris

disposal,” Socio-Economic Planning Sciences, vol. 46, no. 1, pp. 14–22, 2012.

[53] Z.-H. Hu and J.-B. Sheu, “Post-disaster debris reverse logistics management

under psychological cost minimization,” Transportation Research Part B:

Methodological, vol. 55, pp. 118–141, 2013.

[54] A. Pramudita, E. Taniguchi, and A. G. Qureshi, “Location and routing prob-

lems of debris collection operation after disasters with realistic case study,”

Procedia-Social and Behavioral Sciences, vol. 125, pp. 445–458, 2014.

[55] J. Holgúın-Veras, M. Jaller, L. N. Van Wassenhove, N. Pérez, and T. Wach-

tendorf, “On the unique features of post-disaster humanitarian logistics,”

Journal of Operations Management, vol. 30, no. 7, pp. 494–506, 2012.

[56] J. Holgúın-Veras, N. Pérez, M. Jaller, L. N. Van Wassenhove, and F. Aros-

Vera, “On the appropriate objective function for post-disaster humanitarian

logistics models,” Journal of Operations Management, vol. 31, no. 5, pp. 262–

280, 2013.

[57] G. Croes, “A method for solving traveling-salesman problems,” Operations

Research, vol. 6, no. 6, pp. 791–812, 1958.

84

[58] F. Kılcı, “A decision support system for shelter site selection with gis in-

tegration: Case for Turkey,” Master’s thesis, Bilkent University, Ankara,

2012.

85

