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ABSTRACT

CARBON RESTRICTED NEWSVENDOR PROBLEM
UNDER CVAR OBJECTIVE AND RESOURCE

CONSTRAINTS

Özüm Korkmaz

M.S. in Industrial Engineering

Supervisor: Prof. Dr. Ülkü Gürler

July, 2014

Newsboy problem has been studied in the literature extensively. The classical

newsvendor, representing the risk neutral decision maker, determines the optimal

order/production quantity by maximizing the expected profit or minimizing the ex-

pected total cost of a single period with stochastic demand. This approach is not

suitable if one also aims to reduce the chances of facing unexpected losses due to

demand uncertainty. In this thesis, two problems are investigated with a single prod-

uct newsvendor under CVaR maximization objective. The first problem addresses

the newsvendor model with two different carbon emission reduction policies, namely,

mandatory emission allowance and carbon emission trading mechanism. In the sec-

ond problem, as an extension of the first one, a newsvendor with multiple resource

constraints is considered for the cases where the resources have quotas with trade op-

tions. Analytical expressions for optimal order/production quantities are determined

together with the optimal trading policy and numerical examples are provided.

Keywords: Newsvendor, CVaR, Carbon Emissions, Cap and Trade.
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ÖZET

KOŞULLU RİSKE MARUZ DEĞER AMACI VE KAYNAK
KISITLARI ALTINDA KARBON SINIRLI GAZETECİ

ÇOCUK PROBLEMİ

Özüm Korkmaz

Endüstri Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Prof. Dr.Ülkü Gürler

Temmuz, 2014

Gazeteci çocuk problemi literatürde kapsamlı bir şekilde çalışılmıştır. Riske duyarsız

karar alıcıyı temsil eden klasik gazeteci çocuk tek dönemli rassal talebe ait bekle-

nen karı veya maliyeti en iyileyen üretim/sipariş miktarını belirler. Bu yöntem talep

kesinsizliğinden kaynaklanan beklenmeyen kayıplarla karşılaşma ihtimalini azaltma

amacına uygun değildir. Bu çalışmada, koşullu riske maruz değer en büyüklemesi

amacı altında tek ürünlü gazeteci çocuk modeli iki problemde incelenmiştir. Bir-

inci problem gazeteci çocuk modelini iki farklı karbon emisyonu azaltma politikası

olan katı emisyon kotası ve emisyon üst sınırı ticareti ile ele almaktadır. Birinci

problemin uzantısı olarak görülebilen ikinci problemde birden fazla kaynak kısıtı

olan gazeteci çocuk problemi kaynakların alım-satımının yapıldığı durumlar için in-

celenmiştir. Problemi en iyileyen üretim/sipariş miktarları ve en uygun alım-satım

politikaları belirlenmiş ve rakamsal örnekler verilmiştir.

Anahtar sözcükler : Gazeteci Çocuk Problemi, Koşullu Riske Maruz Değer, Karbon

Emisyonu, Emisyon Üst Sınırı Ticareti .
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Prof. Dr. Emre Berk for their valuable guidance, continuous support, caring, pa-

tience for conducting this research. Throughout these three years we have been like

a research family and I have gained invaluable experiences with their help.

I would like to thank Assist. Prof. Dr. Özlem Çavuş for reading my thesis, her
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Chapter 1

Introduction

Greenhouse gas emissions have become one of the biggest threats of ecological sys-

tem and humankind, among which carbon dioxide contributing the high percentage.

The observations provided in the Intergovernmental Panel on Climate Change(IPCC)

report declares that the increase in carbon dioxide emissions mainly originates from

human activities, fossil fuel burning and activities related with land use [1]. Besides,

European Commission’s findings show that the road transportation is responsible for

20% of the carbon dioxide emissions of European Union [2]. As carbon dioxide emis-

sions increase, the balance of nature changes and as a result of this, climate changes,

extinction of animal species can be observed. When the increasing carbon dioxide

emissions and their severe consequences are considered, it is understood that this

problem is a big threat to the world which should not be underestimated [3].

There is a global consensus that the carbon dioxide emission problem must be

intervened and some precautions must be taken at intergovernmental level in order

to deal with this life threatening problem and mitigate carbon emissions. As a first
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step IPCC was founded by World Meteorological Organization (WMO) and United

Nations Environment Programme (UNEP) in 1988 in order to have scientific infor-

mation on climate change. As a result of the first report of the IPCC, the United

Nations Framework Convention on Climate Change (UNFCCC) was established in

May 1992. After several conventions of the parties (COP) to the UNFCCC a con-

sensus was reached on Kyoto Protocol in 1997 providing the countries “flexibility

mechanisms” to reduce the emissions efficiently. While helping to mitigate emissions,

the mechanisms defined in the protocol also provide an economic perspective. The

Kyoto Protocol has three mechanisms: emission trading, joint implementation and

clean development mechanism.

Via an emissions trading mechanism; emission reductions are encouraged by

market-based actions in which countries or corporations whose emissions are beyond

the given carbon emission allowance can buy extra credits or the ones emitting less

than given emission permission can sell their unused credits in domestic, regional or

international markets.

Joint Implementation (JI) is a project-based mechanism which is carried out be-

tween two member countries of Kyoto Protocol as follows. One country makes an

investment on an emission reduction project conducted in the other country in order

to gain the emission reduction units (ERUs), which corresponds to one tonne of car-

bon dioxide, resulting from the project and use them towards increasing its emission

capacity. JI can also be used within a country between two firms willing to curb their

carbon emissions.

Clean Development Mechanism (CDM) is also a project-based mechanism en-

abling a member country of the Kyoto Protocol to conduct an emission reduction
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project in developing countries. The resulting emission reduction credits, called cer-

tified emission reduction credits (CERs), can be sold in the carbon market [4].

Commitments made at the intergovernmental level to mitigate carbon emissions

have had impacts on companies’ decision making processes. The firms investigat-

ing the ways to reduce their emissions came up with two alternatives: replacing the

existing technology with more energy efficient and at the same time expensive one

or adjusting their operations management decisions by means of production quan-

tites, inventory levels and transportation mode selection. The general conclusion of

the studies in the literature which have been conducted so far is that the reduction

in carbon emission percentage is higher than the percentage increase in cost when

companies modify their operations management activities.

The significance of operating policies mainly comes from inventory management

mode of the companies, such as economic order quantity, just in time, lean produc-

tion or single period production policies each of which has different contributions to

carbon emissions. Hence; distinguishing the proper mode of inventory management

is an important issue for those firms with the aim of curbing their carbon emissions.

The awareness of the importance of inventory management choices of firms lead the

researchers to consider joint implementation of inventory management and carbon

emission reduction actions. Consequently, a growing research area is emerging with

the basic interest of optimizing the inventory management activities together with

the carbon emission restriction. As a part of this research area, we study the carbon

emission restriction within a newsvendor model.

The recent studies show that the firms are in a quest to find new perspectives to
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the newsboy problem to take the possible losses into account which are due to the un-

certainty of demand. Hence the risk measures are introduced to the newsvendor prob-

lem by means of objective function or constraints. The risk settings under which the

newsboy problem has been examined in the literature so far are the satisfaction proba-

bility, expected utility maximization, mean-variance analysis, value-at-risk(VaR) and

conditional value-at-risk(CVaR).

In this thesis we consider the CVaR criterion to study the newsboy problem with

demand uncertainty. CVaR can be defined as the maximization of conditional ex-

pected profit falling below a certain level or minimization of conditional expected loss

exceeding a threshold.

In our first problem, we combine both the risk averse behavior and carbon emis-

sions reduction concerns of a newsvendor. The risk-aversion is introduced by altering

the objective function as conditional value at risk (CVaR) maximization while the

carbon emission reduction is analyzed under two carbon emissions control policies:

strict carbon cap and cap and trade mechanism. Therefore, the first problem is

analyzed by two sub-models investigating the single product newsvendor model for

strict carbon cap policy and for cap and trade mechanism with the aim of CVaR

maximization. In strict carbon cap policy the newsvendor cannot exceed the given

carbon emission threshold and cannot turn the unused carbon emission credits into

cash if there is any, whereas in the cap and trade mechanism one can sell its unused

carbon capacity or buy any extra credits for fixed prices from the market. In both

sub-problems, our aim is to find the optimal production quantity, threshold value for

profit, VaR, and the trading amount maximizing CVaR. The analytical expressions

of the optimal production quantity and VaR are determined. The trading behavior of

the newsvendor is directly determined according to the optimal production quantity.
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In the second problem, the newsvendor model with multiple resource constraints

is investigated under CVaR maximization setting for the cases where resources have

caps with trade options at pre-defined prices; which is a generalization of the first

problem. A solution method is developed to find the optimal production quantity

and the corresponding threshold for profit, VaR. The optimal solution of the problem

under resources with strict caps setting is also determined as a special case.

In our numerical study, we basically investigate the impacts of changing prob-

lem parameters on the optimal decision variables and the corresponding CVaR, VaR,

expected profit and service level values. We provide our findings from numerical ex-

periment in three sections. First, we discuss the effect of the newsvendor problem pa-

rameters on the optimal order/production quantity of the unconstrained CVaR maxi-

mization problem in order to pick a reasonable parameter set for further analysis of the

first and second problems. In this analysis, we see that the optimal order/production

quantity and risk aversion level relation directly depends on the parameter setting.

The optimal order/production quantity increases as the newsvendor becomes more

risk averse at higher values of lost sales cost, which is a counter-intuitive outcome.

Then, with a parameter set enabling high service levels, we study the first problem in

order to determine the impact of increasing carbon cap tightness, which is the per-

centage reduction from the emission released at the unconstrained optimal solution,

risk aversion level and carbon trading prices on CVaR, VaR, expected profit and ser-

vice level values. The general outcome is that the CVaR increases with decreasing risk

averse behavior while the behavior of expected profit for changing risk aversion level

value depends on the relationship between optimal order/production quantity and

risk aversion level. If the optimal order/production quantity decreases with increas-

ing risk aversion level value then the expected profit decreases also. However, CVaR

5



increases with increasing risk aversion level value since the higher the risk aversion

value the less risk averse the newsvendor is. Another characteristic of the problems

we observe is that the percentage decrease in CVaR is more sensitive to carbon cap

tightness than percentage decrease in expected profit at a fixed risk aversion level. For

example, under the strict cap policy decreasing the carbon emission by 6% and 10%

causes 10.13% and 100.18% decreases in CVaR while the expected profit decreases by

0.81% and 6.14%, respectively. More drastical changes are observed as the tightness

increases. The impact of increasing carbon prices is seen as high decreases in emission

with respect to the emission of unconstrained order/production level while leading to

low customer service levels. Changing carbon prices impacts the optimal policy that

is determined at a fixed carbon cap tightness, also. The impact of risk aversion level

is also analyzed for given carbon cap values at fixed carbon prices. Our observations

are supported by graphs and detailed analyses are provided in tables in the numerical

study section. Lastly, we provide a brief analysis for the second problem. We set the

number of limited resources as two. The problem is examined under different risk

aversion levels and the impacts of changing resource limits at a fixed risk aversion

level are discussed.

The rest of this thesis is organized as follows: In Chapter 2, we briefly review the

literature on the classical newsvendor problem, risk-averse newsvendor problem and

inventory management problems with carbon emission consideration. In Chapter 3,

we provide a preliminary study for the unconstrained and carbon constrained clas-

sical newsvendor problem and the mathematical background for VaR and CVaR are

introduced together with their interpretations. In Chapter 4, a detailed analysis of

the newsboy problem with the CVaR maximization objective under carbon emission

reduction concerns is provided. Analytical expressions of the optimal policies for the
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unconstrained CVaR maximization, carbon constrained CVaR maximization prob-

lems are determined. In Chapter 5, the multiple resource constrained problem under

the CVaR maximization setting is investigated and the optimal solution method is

provided. In Chapter 6, the results of the numerical experiment regarding the two

problems and unconstrained CVaR maximization problem are provided. Finally, in

Chapter 7 we give the concluding remarks.
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Chapter 2

Literature Review

In this section we provide our findings in the literature about the newsvendor prob-

lem under three categories named as classical newsvendor problem with extensions,

risk-averse newsvendor models and carbon restricted inventory management.

In the first subsection we will briefly go through the single-item newsvendor model

extensions that have been incorporated to literature ever since the introduction of the

newsvendor problem.

In the second part, we will briefly review the studies in which the newsvendor

problem is investigated under risk-aversion approach.

In the last section, the inventory management problems considering carbon emis-

sion policies will be presented.
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2.1 Classical Newsvendor Problem with Exten-

sions

The newsvendor problem is a single period inventory management problem with

stochastic demands, in which the trade-off between the holding and lost sales cost is

optimized. For each unsold item a unit holding cost is incurred and for each unsatisfied

demand a unit lost sales cost is incurred. The main goal of the newsvendor is to find

the optimal order quantity which maximizes the expected profit or minimizes the

expected total cost.

The emergence of the newsvendor problem, one of the keystones of the inventory

management framework, dates back to 1955 (see Whitin [5]). Since then many ex-

tensions of it are investigated in the literature. Khouja [6] provides a broad literature

survey and categorizes the extensions to the single period stochastic demand problem.

The extensions considered by means of different objective functions, pricing policies

of supplier or newsvendor, discounting structures, multiple product with constraints

or substitutions, multi-location models and different demand structures. Khouja [6]

is a repository to gain insights about what had been done about the newsvendor

model. We mention below some recent studies regarding the newsboy problem under

different settings.

Chung et al. [7] analyze the newsvendor model under in-season price adjustment

setting and stochastic demand environment with the aim of expected profit maxi-

mization for a fixed time horizon. Once the newsvendor orders an amount of product

before the selling season starts, he cannot make orders during the season. The uncer-

tain demand is observed for a pre-specified time interval starting from the beginning
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of the selling season in order to predict the unrealized demand better and modify

the selling price accordingly. The demand is taken random during the observation

period, after that it is approximated linearly by using demand-price curve. The de-

cision variables are the optimal retailer price and the order quantity to be decided

at the beginning of the season. The optimal price and a solution strategy to deter-

mine the optimal order quantity are provided. A heuristic method is also given as an

alternative to obtain the optimal order quantity.

Grubbström [8] discusses the newsboy problem where the demand is considered as

a compound renewal process. Under this setting, the optimal order quantity, maxi-

mizing the expected net present value (NPV) of the payments involved is determined

explicitly. The surprising conclusion arrived at in this study is that the classical

newsvendor problem and this special problem have the same solution under a specific

demand distribution process.

Wu et al. [9] consider a framework which enables the newsvendor to set the price

internally and assumes that product arrival has a quoted lead-time. This is the case

for firms purchasing semi-processed products which will be customized according to

the preferences of the customer. The stochasticity is introduced by the randomness

of demand and the quoted lead-time with demand being linearly dependent upon

the price of the good and as well as the quoted-lead time. A multiplicative model is

set for the lead time distribution which is basically the product of the mean demand

during the selling season and a random variable independent of demand. The decision

variables in the problem are selected to be optimal order quantity, selling price and the

quoted lead-time under the objective of maximizing expected profit. The analytical

expressions of the decision variables are provided. Managerial insights about the

effect of demand uncertainty and lead time are provided. The effect of lead time is

10



analyzed for two cases where the demand is taken as certain and uncertain. They

conclude that taking the loss arising from random demand into account causes an

increase in optimal quoted lead time and mean demand while it leads to a decrease

in optimal selling price and expected profit. Besides, random lead time results in an

increase in optimal price while uncertain demand with an additive random error term

brings about a decrease in optimal price.

Yu et al. [10] consider the stochastic price-dependent demand of the newsvendor

model by enforcing a fuzzy price-dependent demand structure. With the aim of max-

imizing expected profit the optimal price and order quantity expressions are derived

for certain cases where the problem is convex. The mathematical interpretation of the

fuzzy price-dependent demand is discussed. Since the demand is assumed to be fuzzy,

the profit is also a fuzzy number. Hence a solution algorithm is established by imple-

menting the method of ranking fuzzy numbers with integral value. The model under

consideration is compared with the one with price-dependent deterministic demand

by analytically and numerically. In numerical experiment, the impacts of market po-

tential, price sensitivity of the demand, wholesale price, salvage value and shortage

cost are investigated for both models and the results are compared. An immediate re-

sult of the numerical analysis is that the fuzzy price-dependent demand model results

in a higher expected profit than the price dependent deterministic demand model.

Jammernegg and Kischka [11] investigate a newsvendor model which is subject

to financial and non-financial constraints under classical newsvendor and price-setter

newsvendor settings. In particular, they consider service level constraints and prob-

ability bounds on negative profit. For the newsvendor model, the necessary circum-

stance that guarantees the existence of the optimal solution is provided. The optimal

order quantity is determined and the effect of demand variability is discussed. In
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the price setting case, the price-dependent demand is assumed to have multiplica-

tive structure. The optimal price and stocking amount are selected as the decision

variables to be determined. The necessary condition for admissible solutions to exist

is discussed and an algorithm to find optimal solution is developed. The impact of

demand variability is investigated.

2.2 Risk-averse Newsvendor Models

Analyzing the newsvendor model under a risk averse approach is another diversi-

fication of the classical newsvendor model.

Satisfaction probability and expected utility maximization are the first adjust-

ments to the classical newsvendor problem in order to take the risk-averse behavior

into account. Recently, financial risk measures such as the value at risk (VaR) and

conditional value at risk (CVaR) are commonly being considered as objective func-

tions in inventory management problems.

Satisfaction probability is defined as the probability of going beyond a specified

profit level which company aims to reach. The satisfaction probability maximization

is discussed by Lau [12], Lau and Lau [13], Li et al.[14], [15] and Parlar and Weng

[16]. Lau [12] and Lau and Lau [13] investigate the solution strategies for single

and two-product newsvendor problems so as to maximize the satisfaction probability,

respectively. Moreover, Li et al. [14], [15] provide analytical solutions of two-product

newsvendor problem for both exponentially and uniformly distributed demand with

the aim of satisfaction probability maximization. The study of Parlar and Weng [16]

differs in this setting in terms of target profit since they replace the target profit with
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the expected profit.

Yang et al. [17] increase the complexity of the satisfaction probability maximiza-

tion context by examining a price setter newsvendor who specifies the profit and

revenue level probability of accomplishing which are maximized simultaneously. The

decision variables to be determined at optimality are the order quantity and selling

price. They indicate that the proportionate magnitudes of the profit margin and

profit target to revenue target ratio have decisive role on probability of accomplishing

both goals at the same time. Analytical expressions of the decision variables and the

optimal target levels are also provided.

In the expected utility maximization framework for newsvendor problem, Bouakiz

and Sobel [18] analyze the newsvendor problem under exponential utility setting and

base-stock policy is shown to be optimal.

Dohi et al. [19] investigate the newsvendor model with the goal of utility maxi-

mization under two different contexts. First, they implement Taylor approximation

to the logarithmic utility function which will be maximized under newsvendor setting.

In their second model the objective is adjusted as maximizing the upper and lower

bounds of the expected utility. The practical applicabilities of the two models are

supported by the numerical examples.

Agrawal and Seshadri [20] determine the optimal price and order quantity of the

risk-averse newsvendor aiming to maximize the expected utility. The price-dependent

demand is assumed to be concave in selling price and two price-dependent demand

models, namely additive and multiplicative demand models, are investigated. A so-

lution method reducing the number of decision variables to one is developed. The

optimal solutions are determined for both additive and multiplicative demand models
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and the comparisons of two models with the risk-neutral newsvendor are provided.

The results conclude that under the multiplicative demand model assumption the

newsvendor sets a higher price and orders less while under additive demand model

assumption he sets a lower price as compared to the classical risk-neutral newsven-

dor. The associated impacts of the findings are investigated for products that differ

in price dependency characteristics.

Mean-risk model is another concept of risk aversion in newsvendor setting. The

choice of “risk ”function is up to the newsvendor. Choi and Ruszczynski [21] suggest

the mean-risk model as a unique formulation of risk-averse newsvendor problem where

the risk measures are required to be law invariant and coherent. They conclude that

the optimal order quantity is inversely proportinal to the risk aversion significance.

Under profit maximization setting, value at risk (VaR) is defined as the maximum

value of the profit the probability of the expected profit falling below which is the fixed

confidence level. In loss minimization VaR can be defined as the threshold for the

loss such that the probability that loss will be lower than the threshold is the chosen

confidence level. VaR can be utilized as an objective function or the constraint of the

risk-averse newsvendor.

Özler et al. [22] construct a multi-product newsvendor model with a VaR con-

straint with the objective of maximizing the expected profit. The VaR constraint

puts an upper bound to the probability of obtaining a profit that is less than a tar-

get value. Since the VaR constraint is represented as the probability distribution

of the profit, deriving the profit distribution is one of the main works. To begin

with, two-product newsvendor problem is examined then the problem is extended to

multiple-product case. The distribution of the profit is derived under the assumption
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that two products have a joint demand distribution. In the multi-product case deter-

mining the profit distribution is the main challenge. The total profit distribution is

approximated as a normal distribution by making use of central limit theorem with

the assumption that the demand of each product is independently distributed. Fea-

sibility of the both problems are discussed and a mathematical programming method

is applied to solve each problem. A numerical experiment is conducted to observe

the results of the two-product problem under independent exponentially distributed

demand and bivariate exponentially distributed demand settings. For the multiple-

product case the results for the exponentially distributed demand are illustrated with

the corresponding graphs. In addition, a numerical experiment analyzing the effects

of problem parameters and the precision of the method developed for multi-product

case is provided.

Chiu and Choi [23] find the price and order quantity maximizing the profit of the

newsvendor which lies in the pre-defined quantile. In other words, the VaR is utilized

as the objective of the newsvendor. The value of the quantile of the profit represents

the risk aversion level of the newsvendor. The optimal order quantity and selling price

are the decision variables to be determined simultaneously. Demand is assumed to

be price-dependent. The optimal solutions of risk-averse price-setter newsvendor are

provided for both linear and multiplicative demand models. The results are compared

with the risk-neutral newsvendor case. They also investigate the connection between

the confidence level and the customer service level in an analytical manner.

Recently, CVaR, which is derived from VaR, is introduced as a risk measure in

financial risk management field. CVaR is defined as the conditional expected loss

that is beyond the threshold given by VaR or the conditional expected profit which

stays below the threshold given by VaR.
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Gotoh and Takano [24] analyze the newsvendor model under CVaR minimization

setting where the aim is to minimize the losses going beyond the threshold value.

For the loss minimization concept, they define two distinct loss functions: net loss

(negative profit) and total cost. The single-product unconstrained newsvendor model

is investigated in the context of net loss CVaR minimization, total cost CVaR min-

imization and mean-CVaR maximization. In the first two problems, the CVaR is

the objective function of the newsvendor. The optimal order quantity and the corre-

sponding threshold for loss are derived analytically for these two cases and they are

compared by the help of a numerical study. In the mean-CVaR maximization prob-

lem mean is taken as the expected profit of the newsvendor and the risk is introduced

as CVaR which takes the negative profit as the loss function. The optimal solution

for this problem is searched in three different cases depending on the value of the

threshold for loss. An algorithm to solve the problem is provided. They extend the

mean-CVaR model to multi-product multiple constrained case where the constraints

are represented as a set of linear inequalities. The demand distribution is taken as

discrete and represented by a finite number of scenarios. The LP formulation of the

problem and numerical analysis supporting the efficiency of the findings are provided.

Zhou et al. [25] discuss the multi-product stochastic demand newsvendor problem

under risk averse approach. The newsvendor is also subjected to a budget constraint

and the order quantity is bounded below and above. Risk aversion is controlled in

the context of CVaR. A linear program minimizing the negative profit and subject

to a CVaR constraint together with the budget and order quantity constraints is

written for the multi-product newsvendor problem to determine the optimal order

quantities of each product. A case study is conducted for the different values of the

upper bound of the CVaR constraint in order to determine the impacts of the risk
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tolerance on the optimal order quantities, and expected profit values. The findings of

the risk- averse multiple product newsvendor problem and classical multiple product

newsvendor problem are compared.

Chahar and Taaffe [26] introduce CVaR as the objective function of the newsven-

dor who faces stochastic demands from multiple markets and chooses the demands

to be satisfied. The selling price of the good is assumed to be unique for each mar-

ket. Demand realization is assumed to behave as a Bernoulli experiment, where the

demand is either realized at a pre-specified value with some probability or will not be

realized at all, which is called all-or-nothing (AON) orders in the literature. There

is a set of unconfirmed demands some of which will be met. The demands to be

satisfied and the order quantity of the newsvendor are the decision variables which

will maximize the CVaR. A mixed-integer linear programming model is written for

both expected profit and CVaR maximization problems under the AON demand se-

lection setting. A sensitivity analysis investigating the impacts of significance level,

salvage value, material cost and shortage cost is provided to gain insights about the

results. They also analyze the mean-CVaR model by investigating the problem under

three different settings. The first problem is a convex combination of the expected

profit and the CVaR formulated as a mean-CVaR maximization model. In the second

problem, the newsvendor aims to maximize the expected profit under a CVaR con-

straint which puts a lower bound on the worst-case profit and this problem is called

minimum acceptable CVaR level. In the third problem, a risk minimizer firm aiming

to minimize the profits falling below a certain level is considered. The analysis of the

three problems are supported by numerical results.

Chen et al. [27] determine the optimal price and the order quantity of the newsven-

dor aming to maximize CVaR. The price-dependent demand is represented by additive
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and multiplicative demand models for which the existence and uniqueness of the opti-

mal policy are obtained under some conditions. They discuss the impacts of changes

in the unit acquisition cost, salvage value and the risk aversion level on the decision

variables for both demand models under CVaR and risk-neutral settings. The find-

ings are also compared with the utility maximization approach. We use the same

objective function with the one given in this study.

Ma et al. [28] investigate the risk-averse retailer’s optimal order quantity in a

multiple retailer and one supplier environment under a CVaR objective function.

Most of the papers presented so far, investigate the impact of incorporating one

risk measure into newsvendor model on the decision variables and make comparison

with the classical newsvendor approach. We next provide two studies that compare

the results obtained under different risk measure settings.

Arcelus et al. [29] determine the optimal ordering and pricing policies of the

newsvendor under four different objective function settings for varying risk aversion

levels. The objectives are: maximization of risk adjusted expected profit, maximiza-

tion of minimum guaranteed profit, maximization of the probability of exceeding

expected profit and maximization of the expected profit under the constraint enforc-

ing a lower bound for the probability of the profit to be higher than a target profit.

The main properties of each problem are discussed analytically and numerically in

order to make comparisons across the models.

Katariya et al. [30] determine the link between the traditional and risk-averse

newsvendor in terms of optimal order quantities via utilizing three different risk mea-

sures, namely, expected utility maximization (EU), mean-variance (MV) analysis and
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CVaR minimization. By investigating special cases, they show that the general un-

derstanding from risk-aversion that the risk-averse newsvendor orders less than risk

neutral one is not valid all the time. Dependence of order quantity to problem param-

eters, demand distribution, decision criterion is revealed by analytical and numerical

findings. Additionally, the consistency between the risk measures is observed under

some circumstances.

2.3 Carbon Restricted Inventory Management

It has not been so long that the carbon emission reduction initiatives are inves-

tigated in the literature. Studies that will be reviewed in this section consider the

carbon emission reduction issues under economic order quantity (EOQ) and newsven-

dor settings. We will present the economic order quantity models and then provide

the newsvendor models concerning carbon emission reduction.

Hua et al. [3] merge the inventory management and carbon emission reduction

concerns by analyzing the EOQ setting with cap and trade mechanism which is both

economically and environmentally efficient way to constrain carbon emissions. The

optimal order quantity is derived analytically. They draw analytical and numeri-

cal conclusions about how the order quantity, carbon emissions and total cost are

influenced by carbon trade, carbon price and carbon emission allowance.

Hua et al. [31] increase the complexity of the carbon constrained EOQ model by

incorporating the selling price as an additional decision variable. The price-dependent

demand is considered by means of additive and multiplicative demand models. The

outcomes of the carbon trading on the operational decisions and emission levels are
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discussed.

Chen et al. [32] determine the optimal order quantity that minimizes cost of eco-

nomic order quantity model subject to a carbon emission constraint. The model is

investigated under four different carbon emission policies: strict carbon cap, carbon

tax, cap-and-offset and cap-and-price where the first two can be seen as special in-

stances of the third policy. Impact of carbon cap on emission and the circumstances

which enable one to reduce carbon emission without a significant increase in cost are

investigated.

Benjaafar et al. [33] approach the cost minimization of conventional deterministic

inventory management models with a carbon emission reduction concern under single

firm and multiple firms within the same supply chain settings. Carbon emission

initiatives are taken into account via different regulations such as strict carbon cap,

carbon tax, carbon cap-and-trade and carbon offsets for single firm models while

under multiple firms setting each firm is assumed to be subject to a strict carbon cap.

The corresponding mathematical programming model of each problem is provided. A

numerical experiment underlining the significance of the inventory management model

and carbon emission reduction policy on cost and carbon emissions is provided.

Hoen et al. [34] balance the trade-off between transportation, inventory holding

and carbon emission costs by considering a carbon emission sensitive transport mode

selection problem for the newsvendor model with stochastic demand. The traditional

transport mode selection problem is extended to a environmentally friendly case by

adding carbon emission concern into the framework. The paper determines the unit

carbon emission contribution of air, rail, road and water transport modes. Then, they

develop a model accounting for the transportation, inventory holding and emission
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costs for each transport mode and decision criterion for the transport mode selection

is discussed. Finally, the impacts of carbon emission policies such as strict carbon

cap, cap-and-trade and carbon tax on the emission transport mode selection problem

are provided. The insights are supported by a numerical study. It is concluded that,

despite the fact that changing the transport mode yields significant carbon emission

reductions, the major factor on carbon emission reduction decision is the regulatory

policy applied for the emissions.

Song and Leng [35] extend the single product newsvendor problem by examining

the optimal order quantity under three carbon emission reduction regulations: strict

carbon cap, carbon tax, cap-and-trade mechanism. The analytical expression of op-

timal solution for each policy is provided. The analytical solutions are supported by

a numerical study for each carbon emission regulation.

Rosic and Jammernegg [36] discuss carbon emission concern of a newsvendor who

has offshore and onshore suppliers. The problem takes the carbon emissions resulting

from the transportation into account. While constructing the problem setting it is

assumed that the onshore supplier is used only when the demand exceeds the order

quantity. The analytical expression of the optimal order quantity obtained from the

offshore supplier is provided for two emission regulations: a transport emission tax

and emission trading for transport. The analytical findings are used in a numerical

experiment to visualize the impacts of different regulations. The conclusions of both

analytical and numerical analyses are used to obtain some managerial and regulatory

insights. For both perspectives the emission trading is found to be more beneficial.

Zhang and Xu [37] bring the carbon emission reduction issue to the multi-product

newsvendor problem where each product has independent demand distribution. The
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optimal production amount and carbon trading policy is determined with the ob-

jective of expected profit maximization. The newsvendor has a resource and carbon

constraint and is allowed to buy or sell carbon credits. After providing the optimal

policy and a solution algorithm for this setting, the changes in total profit, carbon

emissions, operational decisions, shadow price of the resource constraint for changing

carbon price and carbon cap are investigated by analytical and numerical methods.

The cap-and-trade mechanism is compared with the one where a tax is imposed on

carbon emissions to give insights about each policy.

Toptal et al. [38] seek for the optimal order quantity and investment amount

on green technology that jointly minimize the total average annual cost of a retailer

operating in an EOQ environment. The classical EOQ model is enhanced by incor-

porating the carbon emission reduction investment opportunity and analyzed under

three distinct carbon emission policies: carbon cap, tax and cap-and-trade mecha-

nism. Determining the analytical expressions of the optimal solutions under each

carbon policy, they compare different carbon emission reduction policies with regard

to costs and carbon emissions. Effects of problem parameters are supported by a

numerical experiment.

To our knowledge, in the literature there is not a study incorporating the CVaR

setting to newsboy problem with carbon restrictions. In this respect, this research

aims to make a contribution to the literature.
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Chapter 3

Preliminaries

Before formally introducing the risk measures VaR and CVaR and carbon trading

system to the newsboy problem, we shall briefly review the classical newsboy problem,

the classical newsboy problem with carbon trading system which is also investigated

by Song and Leng [35] .

3.1 Classical Newsboy Problem

The derivation of optimal production quantity for the classical newsboy problem

will be reviewed briefly below. The parameters and the variables of the classical single-

period newsboy problem are defined as follows: unit ordering cost c, unit selling price

p, unit salvage value s, unit lost sales cost l, random demand X, order quantity Q,

profit function π(X,Q), probability distribution function of the demand f(x) and the

cumulative distribution function of the demand F (x).
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Throughout this thesis in the newsvendor model it is assumed that p− s < l.

The profit function, π(X,Q), and its expectation, E[π(X,Q)] are determined as fol-

lows:

π(X,Q) = (p− c)Q− (p− s)(Q−X)+ − l(X −Q)+ (3.1)

where, (A)+ = A if A > 0, zero otherwise for A ∈ R.

E[π(X,Q)] =

∞∫
0

[(p− c)Q− (p− s)(Q− x)+ − l(x−Q)+]dF (x) (3.2)

= (p− c)Q− (p− s)
Q∫

0

(Q− x)dF (x)− l
∞∫
Q

(x−Q)dF (x) (3.3)

≡ ENW [π(X,Q)] (3.4)

As the objective is to maximize the expected profit.The unconstrained maximiza-

tion problem of the newsvendor is given as follows:

MaxQ E[π(X,Q)] (3.5)

Concavity of the expected profit function of the newsvendor leads the first or-

der condition to imply optimality (see Khouja [6]). The corresponding analytical

expression of optimal order quantity is given as follows:

Q∗ = F−1

(
p− c+ l

p− s+ l

)
(3.6)
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3.2 The Classical Newsvendor Problem with Cap

and Trade Mechanism

In this section, the carbon emission restriction is taken into consideration within

the classical newsboy problem. In literature, carbon emission restriction is combined

with the newsboy problem in three cases: “Mandatory Carbon Emissions Capacity,

”“Carbon Emissions Tax, ”and “Cap-and-Trade ”(see Song and Leng [35]). In the first

policy, the newsvendor has to set the production quantity so that the carbon emission

is strictly less than or equal to the given emission allowance. In carbon emissions tax

policy, the newsvendor pays a tax per unit produced which is responsible from carbon

emission. In the cap-and-trade mechanism, the firms are provided by some free carbon

allowances, denoted by K, which they can trade in a carbon market. The difference

of this policy from mandatory carbon emissions policy is that the firms are allowed to

sell the excess allowances if they emit less carbon than K or buy extra carbon units

if they want to produce more. When the classical newsvendor problem is analyzed

under cap-and-trade mechanism for a given carbon emission restriction, one shall find

the optimal decision, buying or selling carbon credits, which maximizes the expected

profit and determine the order quantity accordingly. In the literature, this problem

is analyzed by Song and Leng [35] and here their findings will be revealed concisely.

For the newsvendor problem with cap and trade mechanism there are additional

parameters coming into equation such as unit carbon buying cost, cb, unit carbon

selling price, cs, and it is assumed that cb > cs, and the carbon cap, K.

It is assumed that each unit produced emits a carbon amount of α units. There-

fore, the emission amount for an arbitrary order quantity Q will be calculated as Qα.
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As the given carbon emission allowance is K, if Qα > K then the amount of carbon

bought is (Qα − K) else the amount of carbon sold is (K − Qα). Throughout all

the calculations in this thesis, it is assumed that p − c + l > cbα, that is the cost

of underage is greater than the cost of buying carbon credits to produce one unit

product.

The profit of the newsvendor and its expectation, which is the objective function,

is expressed as follows:

π(X,Q,K) = (p− c)Q− (p− s)(Q−X)+− l(X−Q)+− cb(Qα−K)+ + cs(K−Qα)+

(3.7)

E[π(X,Q,K)] =

∞∫
0

[(p− c)Q− (p− s)(Q− x)+ − l(x−Q)+

−cb(Qα−K)+ + cs(K −Qα)+]dF (x)

=

∞∫
0

(p− c)QdF (x)−
Q∫

0

(p− s)(Q− x)dF (x)−
∞∫
Q

l(x−Q)dF (x)

−cb(Qα−K)+ + cs(K −Qα)+ (3.8)

Rearranging the objective function results in :

E[π(X,Q,K)] = (p− c)Q− (p− s)
Q∫

0

(Q− x)dF (x)− l
∞∫
Q

(x−Q)dF (x)

−cb(Qα−K)+ + cs(K −Qα)+

= ENW [π(X,Q)]− cb(Qα−K)+ + cs(K −Qα)+

≡ ECT [π(X,Q)] (3.9)
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The expected profit can be rewritten in three regions with respect to the quantity,

Q.

E[π(X,Q,K)] =


ENW [π(X,Q)] + cs(K −Qα) if Q < K/α

ENW [π(X,Q)] if Q = K/α

ENW [π(X,Q)]− cb(Qα−K) if Q > K/α

≡ ENW [π(X,Q)] + cs(K −Qα)I(K > Qα)− cb(Qα−K)I(Qα > K) (3.10)

The newsboy problem with carbon trading mechanism for a given carbon emission

level K is given as follows:

MaxQ E[π(X,Q,K)] (3.11)

Proposition 3.2.1 For a given carbon emission allowance K, E[π(X,Q,K)] is

concave in Q.

Proof. First we shall prove that E[π(X,Q,K)] is piecewise concave. The piecewise

concavity is proven by analyzing the functions of three regions.

Region 1: Q < K/α. The corresponding function is ENW [π(X,Q)]+cs(K−Qα). In

order to show that the function is concave in Q the second derivative of the function

with respect to Q must satisfy the relation d2E[π(X,Q,K)]
dQ2 ≤ 0. The first derivative is
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found by applying Leibniz Rule as follows:

dE[π(X,Q,K)]

dQ
= p− c− (p− s)

Q∫
0

dF (x) + l

∞∫
Q

dF (x)− csα

= p− c− csα− (p− s)F (Q) + l[1− F (Q)]

= p− c+ l − csα− (p− s+ l)F (Q) (3.12)

Then the second derivative of the function w.r.t. Q is determined as:

d2E[π(X,Q,K)]

dQ2
= −(p− s+ l)f(Q) < 0 (3.13)

Hence, ENW [π(X,Q)] + cs(K −Qα) is concave in Q.

Region 2: Q = K/α. The corresponding function is ENW [π(X,Q)] which is the

expected profit function of the classical newsvendor. Since the expected profit of the

classical newsvendor is concave in Q, we can directly say that the function is concave

in Q in the second region.

Region 3: Q > K/α. The corresponding function is ENW [π(X,Q)] − cb(K − Qα).

The first derivative is again found by applying Leibniz Rule as:

dE[π(X,Q,K)]

dQ
= p− c− (p− s)

Q∫
0

dF (x) + l

∞∫
Q

dF (x)− cbα

= p− c− cbα− (p− s)F (Q) + l[1− F (Q)]

= p− c+ l − cbα− (p− s+ l)F (Q) (3.14)

and the second derivative is:

d2E[π(X,Q,K)]

dQ2
= −(p− s+ l)f(Q) < 0 (3.15)
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Hence, ENW [π(X,Q)]− cb(K −Qα) is concave in Q.

Therefore, E[π(X,Q,K)] is piecewise concave in Q. In order for E[π(X,Q,K)] to be

concave in Q the following relation must hold:

dE[π(X,Q,K)]

dQ

∣∣
Q=(K/α)+

<
dE[π(X,Q,K)]

dQ

∣∣
Q=(K/α)−

(3.16)

We shall determine the right and left derivatives of E[π(X,Q,K)] w.r.t. Q at Q =

K/α and ensure that the above inequality holds.

dE[π(X,Q,K)]

dQ

∣∣
Q=(K/α)+

= p− c+ l − cbα− (p− s+ l)F ((K/α)+) (3.17)

dE[π(X,Q,K)]

dQ

∣∣
Q=(K/α)−

= p− c+ l − csα− (p− s+ l)F ((K/α)−) (3.18)

F ((K/α)+) > F ((K/α)−) and cb > cs imply equation(3.16).

Proposition 3.2.2 For a given carbon emission allowance K, the optimal order

quantity belongs to the following set:

Q∗ ∈
(
F−1

(
p− c+ l − csα

p− s+ l

)
, K/α, F−1

(
p− c+ l − cbα

p− s+ l

))
(3.19)

Proof. Concavity of E[π(X,Q,K)] in Q guarantees that there is a unique maximizer

in one of the three regions. Since E[π(X,Q,K)] is piecewise concave, the unique root

of the corresponding function in each region is candidate for optimal solution. The

roots of the functions in regions where Q < K/α and Q > K/α are found from first

order conditions while in the second case Q = K/α is directly set.

If Q < K/α, then the candidate for optimal solution is found from the first order

condition of the corresponding objective function which is given in equation (3.12)
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and by equating the first order condition to 0 we have:

F (Q) =

(
p− c+ l − csα

p− s+ l

)
(3.20)

Hence the corresponding order quantity when Q < K/α is given by:

Q = F−1

(
p− c+ l − csα

p− s+ l

)
(3.21)

The derivation of the root of the objective function when Q > K/α follows exactly

the same steps as shown above and the expression of it is given as:

Q = F−1

(
p− c+ l − cbα

p− s+ l

)
(3.22)

Let Qdown, Qup be the solution of the first order condition given in equations

(3.12) and (3.14), respectively, and Kdown, Kup be the corresponding carbon emission

quantities given by:

Qdown = F−1

(
p− c+ l − csα

p− s+ l

)
(3.23)

Qup = F−1

(
p− c+ l − cbα

p− s+ l

)
(3.24)

Kdown = Qdownα (3.25)

Kup = Qupα (3.26)

From the non-decreasing property of cumulative distribution function, F, and the

assumption that cb > cs we immediately have the following result: Qup < Qdown, and

30



Kup < Kdown.

The objective of the newsvendor is to determine the optimal order quantity and

trading amounts according to given carbon emission allowance, K. The following

theorem gives the optimal policy of the newsvendor under carbon cap and trade

mechanism.

Theorem 3.2.1 The optimal policy of the risk neutral newsvendor for a given carbon

emission allowance, K, and carbon market prices cb and cs is given as:

Q∗ =


Qup if K < Kup

K/α if Kup ≤ K ≤ Kdown

Qdown if K > Kdown

(3.27)

Proof. As it is given in Proposition 3.2.1 there are three critical points: Qdown, Qup

and Q = K/α. The optimal policy is determined by studying three cases for a given

K.

Case 1: K < Kup ≡ K/α < Qup < Qdown

ENW [π(X,Q)]+cs(K−Qα) is concave and maximized at Qdown. Hence it is increasing

in (−∞, Qdown). K/α < Qup < Qdown implies that ENW [π(X,Q)] + cs(K − Qα) is

also increasing in (−∞, K/α).

ENW [π(X,Q)]− cb(Qα−K) is concave and maximized at Qup. Hence it is increasing

in (K/α,Qup) and decreasing in (Qup,∞).

Thus, E[π(X,Q,K)] is increasing in (−∞, Qup) and decreasing in (Qup,∞). This

implies that E[π(X,Q,K)] is maximized at Q = Qup.

Case 2: Kup ≤ K ≤ Kdown ≡ Qup ≤ K/α ≤ Qdown

ENW [π(X,Q)]+cs(K−Qα) is concave and maximized at Qdown. Hence it is increasing
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in (−∞, Qdown). K/α < Qdown implies that ENW [π(X,Q)]+ cs(K−Qα) is increasing

in (−∞, K/α).

ENW [π(X,Q)]− cb(Qα−K) is concave and maximized at Qup. Hence it is decreasing

in (Qup,∞). Qup ≤ K/α implies that it is also decreasing in (K/α,∞).

Thus, E[π(X,Q,K)] is increasing in (−∞, K/α) and decreasing in (K/α,∞). This

implies that E[π(X,Q,K)] is maximized at Q = K/α.

Case 3: K > Kdown ≡ K/α > Qdown

ENW [π(X,Q)]+cs(K−Qα) is concave and maximized at Qdown. Hence it is increasing

in (−∞, Qdown) and decreasing in (Qdown, K/α) since (K/α > Qdown).

ENW [π(X,Q)]− cb(Qα−K) is concave and maximized at Qup. Hence it is decreasing

in (Qup,∞). Since Qup < Qdown it is also decreasing in (Qdown,∞).

Thus, E[π(X,Q,K)] is increasing in (−∞, Qdown) and decreasing in (Qdown,∞). This

implies that E[π(X,Q,K)] is maximized at Q = Qdown.

3.3 VaR and CVaR

We next introduce VaR and CVaR concepts formally. We shall start with the

analysis of VaR and CVaR with loss minimization concept which is derived in Rock-

afellar and Uryasev [39], [40] in detail. Then we will provide the expressions for profit

maximization case. The following mathematical representations are taken from Rock-

afellar and Uryasev [40].

Loss Minimization

Let X and Q represent random vector and the decision vector, respectively, where

X is assumed to be independent of Q. The loss function for the random vector
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X is defined as l(X,Q) which is assumed to be continuous in Q, and has a finite

expectation for each Q. Then, for a given Q the distribution function of the loss is

written as:

Ψ(Q,ω) = P{l(X,Q) ≤ ω} (3.28)

For a specified confidence level α ∈ (0, 1) the α-V aR is given by:

α-V aR(Q) = ωα(Q) = inf{ω|Ψ(Q,ω) ≥ α} (3.29)

With the assumption of a continuous loss distribution equation (3.29) is written as:

α-V aR(Q) = ωα(Q) = min{ω|Ψ(Q,ω) ≥ α} (3.30)

The assumption that l(X,Q) is continuous in Q guarantees that the distribution

function of loss Ψ(Q,ω) is also continuous and increasing. This implies that there is

a unique minimum at which we observe Ψ(Q,ω) = α. For a risk aversion level α,

continuous and discrete loss distributions and the corresponding α-V aR values are

represented in the following figures.
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Figure 3.1: Distribution functions ,Ψ(Q,ω), V aR values at α, ωα(Q), for continuous
and discrete loss functions l(X,Q), respectively.

By definition, α-CVaR is the expectation of the α-tail distribution. Let Ψα(Q,ω)

denote the α-tail distribution of the loss l(X,Q), consider the following analysis:

Ψα(Q,ω) = P (l(X,Q) ≤ ω|l(X,Q) ≥ ωα(Q))

=
P (ωα(Q) ≤ l(X,Q) ≤ ω)

P (l(X,Q) ≥ ωα(Q))
=
P (l(X,Q) ≥ ωα(Q))− P (l(X,Q) > ω)

1− α

=
1− P (l(X,Q) > ω)− [1− P (l(X,Q) ≥ ωα(Q))]

1− α

=
(P (l(X,Q) ≤ ω)− P (l(X,Q) < ωα(Q))

1− α
=
P (l(X,Q) ≤ ω)− α

1− α

=
Ψ(Q,ω)− α

1− α
(3.31)

which reduces the α-tail distribution to the following:

Ψα(Q,ω) =


0 for ω < ωα(Q)

[Ψ(Q,ω)− α] / [1− α] for ω ≥ ωα(Q)

(3.32)
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Rockafellar and Uryasev [40] also define the following relation:

E [l(X,Q)|l(X,Q) ≥ ωα(Q)] ≤ φα(Q) ≤ E [l(X,Q)|l(X,Q) > ωα(Q)] (3.33)

which basically implies that the α-CV aR can be approximated by taking the expec-

tation of the α-tail distribution of the loss.

The expected value of the α-tail distribution is given as:

φα(Q) =

∞∫
ωα(Q)

udΨα(Q, u) = −
∞∫

ωα(Q)

udΨ̄α(Q, u) = −
∞∫

ωα(Q)

u
dΨ̄(Q, u)

1− α
(3.34)

Applying integration by parts leads to :

−
∞∫

ωα(Q)

u
dΨ̄(Q, u)

1− α
=

−1

1− α

(
uΨ̄(Q, u)−

∞∫
ωα(Q)

Ψ̄(Q, u)du

)∣∣∣∣∣
∞

ωα(Q)

=
−uΨ̄(Q, u)

1− α

∣∣∣∞
ωα(Q)

+
1

1− α

∞∫
ωα(Q)

Ψ̄(Q, u)du

=
ωα(Q)Ψ̄(Q,ωα(Q))

1− α
+

1

1− α

∞∫
ωα(Q)

Ψ̄(Q, u)du

= ωα(Q) +
1

1− α

∞∫
ωα(Q)

Ψ̄(Q, u)du (3.35)

For any distribution function F we will use F̄ ≡ 1 − F which leads to Ψ̄(ωα(Q)) =

1−Ψ(ωα(Q)) = 1− α.

Next we consider the expected value of the positive part of a random variable. In
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particular, let

Y = (L− α)+ =


L− α if L > α

0 o.w.

(3.36)

where L is a random variable with distribution function F . Then,

E[Y ] = −
∞∫
α

(u− α)dF̄ (u)

E[Y ] = E[(L− α)+] =

∞∫
α

F̄ (u)du (3.37)

which follows by applying integration by parts.

Using Equations (3.35) and (3.37), φα(Q) is given as follows:

φα(Q) = ωα(Q) +
1

1− α
E
[
[l(X,Q)− ωα(Q)]+

]
(3.38)

Since the α-V aR is obtained as a by product of α-CV aR, the above expression is

represented as an auxiliary function depending on two variables: ω and Q. Rockafellar

and Uryasev [40] provide the following auxiliary function for the loss minimization.

Fα(Q,ω) = ω +
1

1− α
E
[
[l(X,Q)− ω]+

]
(3.39)

Value at risk, VaR, and conditional value at risk, CVaR, are two commonly used

risk measures, particularly used for portfolio investments in financial management.

These tools are also encountered in operations management problems in which risk

aversion is under consideration.
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As a financial risk tool, VaR is defined as the maximum loss that can be observed

on a portfolio over a fixed time horizon, at a specified confidence level (Luciano

et al. [41]). With the loss minimization objective, the term α-V aR refers to the

threshold below which the loss will fall with probability α (Rockafellar and Uryasev

[40]). Therefore, the bigger the α the more risk averse we are.

VaR gives the information about the threshold value for loss at the specified

confidence levels. Therefore, by using VaR one cannot predict what will happen

beyond the threshold value. For instance, by using VaR as a risk tool a manager is

not prepared for the losses above it.

CVaR is defined as the conditional average loss given that the loss is beyond the

threshold. It gives information about the values that loss function can take beyond

VaR. As the interpretation of it implies, the CVaR originates from VaR. Computation

of CVaR gives VaR as a by-product. CVaR is interpreted as the conditional expected

loss when the loss is greater than α-V aR. Therefore; if the loss is in the 1−α quantile

then the conditional expected loss gives α-CV aR. Moreover; CVaR minimization

problem amounts to expected profit maximization when α = 0.

Profit Maximization

Based on the results of Rockafellar and Uryasev [40] we next formulate the correspond-

ing expressions for profit maximization. The rationale behind the above expression

can be expressed as follows.

First note that if the loss function is replaced with the reward function then

the threshold represents the maximum expected value of the reward that can be

attained. Under this setting, the expected value of the reward function falling below

the threshold is maximized. Let π(X,Q) denote the reward (profit) function where
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X represents the random demand and Q is the order quantity, the decision variable.

In the profit maximization setting η is chosen to represent the risk aversion level in

the literature. (see Chen et al [27]). Throughout our calculations η will be used as

risk aversion parameter. The following observations are done by analogy of the ones

provided in the loss minimization analysis.

For a given Q the distribution function of the profit is written as:

Ψ(Q,ω) = P{π(X,Q) ≤ ω} (3.40)

For η ∈ (0, 1] the α-V aR is given by:

η-V aR(Q) = ωη(Q) = inf{ω|Ψ(Q,ω) ≥ η} (3.41)

With the assumption of a continuous profit distribution equation (3.41) is written as:

η-V aR(Q) = ωη(Q) = min{ω|Ψ(Q,ω) ≥ η} (3.42)

The assumption that π(X,Q) is continuous in Q guarantees that the distribution

function of profit Ψ(Q,ω) is also continuous and increasing. This implies that there

is a unique minimum at which we observe Ψ(Q,ω) = η. For a risk aversion level η,

continuous and discrete profit distributions and the corresponding η-V aR values are

represented in the following figures.
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Figure 3.2: Distribution functions ,Ψ(Q,ω), V aR values at η, ωη(Q), for continuous
and discrete profit functions π(X,Q), respectively.

In order to determine η-CV aR we shall take the expectation of the η-tail distri-

bution. Let Ψη(Q,ω) denote the η-tail distribution of the profit π(X,Q), consider

the following analysis:

Ψ̄η(Q,ω) = P (π(X,Q) > ω|π(X,Q) ≤ ωη(Q))

=
P (ω < π(X,Q) ≤ ωη(Q))

P (π(X,Q) ≤ ωη(Q))
=
P (π(X,Q) > ω)− P (π(X,Q) > ωη(Q))

η

=
Ψ̄(Q,ω)− (1− η)

η
=

1−Ψ(Q,ω)− (1− η)

η

=
−Ψ(Q,ω) + η

η
(3.43)

which reduces the η-tail distribution to the following:

Ψη(Q,ω) =


Ψ(Q,ω)

η
for ω < ωη(Q)

0 for ω ≥ ωη(Q)

(3.44)
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The expected value of the η-tail distribution is given as:

φη(Q) =

ωη(Q)∫
−∞

udΨη(Q, u) = −
ωη(Q)∫
−∞

udΨ̄η(Q, u) =

ωη(Q)∫
−∞

u
dΨ(Q, u)

η
(3.45)

Applying integration by parts leads to :

ωη(Q)∫
−∞

u
dΨ(Q, u)

η
=

1

η

(
uΨ(Q, u)−

ωη(Q)∫
−∞

Ψ(Q, u)du

)∣∣∣∣∣
ωη(Q)

−∞

=
uΨ(Q, u)

η

∣∣∣ωη(Q)

−∞
− 1

η

ωη(Q)∫
−∞

Ψ(Q, u)du

=
ωη(Q)Ψ(Q,ωη(Q))

η
− 1

η

ωη(Q)∫
−∞

Ψ(Q, u)du

= ωη(Q)− 1

η

ωη(Q)∫
−∞

Ψ(Q, u)du (3.46)

Next we consider the expected value of the negative part of a random variable. In

particular, let

Y = (L− α)− =


L− α if L < α

0 o.w.
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where L is a random variable with distribution function F . Then,

E[Y ] = −
α∫

−∞

(u− α)dF (u)

E[Y ] = E[(L− α)−] = −
α∫

−∞

F (u)du (3.47)

which follows by applying integration by parts.

Using Equations (3.46) and (3.47), φη(Q) is given as follows:

φη(Q) = ωη(Q) +
1

η
E
[
[π(X,Q)− ωη(Q)]−

]
(3.48)

The auxiliary function given in Equation (3.39) can be rewritten for the profit maxi-

mization setting as:

Fη(Q,ω) = ω +
1

η
E
[
[π(X,Q)− ω]−

]
(3.49)

In operations management VaR represents a threshold for profit at a pre-specified

confidence level. When the objective is to maximize the profit, VaR represents the

η quantile of the profit distribution where η is the confidence level. Hence, η-V aR is

the value, below which the profit falls with probability η. For this setting, the smaller

the η the more risk averse we are.

CVaR is defined as the conditional average profit given that the profit is below the

threshold. It gives information about the values that profit function can take below

VaR. CVaR is the conditional expected value of the profit given that it falls below

the η-V aR. Therefore; if the profit is in the η quantile, then the conditional expected
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profit gives the η-CV aR value and the probability that the expected profit will be

higher than the threshold is 1-η. CVaR maximization problem amounts to expected

profit maximization when η = 1.

The CVaR is a coherent risk measure meeting the desirable convexity, mono-

tonicty, subadditivity, translation equivariance and positive homogeneity properties

(Artzner et al. [42]).

The papers of Rockafellar and Uryasev, Optimization of Conditional Value at Risk

[39], [40] are the keystones in the literature for CVaR and its minimization, CVaR

and VaR relation.

Proposition 3.3.1 The equation (3.49) is concave in Q and ω.

Proof. If the reward function, π(X,Q), is concave with respect to Q, then φη(Q) is

concave with respect to Q, as well. Certainly, in this case Fη(Q,ω) is jointly concave

in Q and ω (See Rockafellar and Uryasev, [40]). Now, we shall prove that the profit

function π(X,Q) is concave in Q for a realized demand x.

The profit function π(X,Q) can be written in three regions with respect to the order

quantity, Q for a demand realization x.

π(x,Q) =


(p− c)Q− l(x−Q) if Q < x

(p− c)Q if Q = x

(p− c)Q− (p− s)(Q− x) if Q > x

(3.50)

The piecewise profit function is linear in Q in each region which implies piecewise

concavity. In order to guarantee the concavity of the overall profit function the
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following relation must be satisfied:

dπ(x,Q)

dQ

∣∣∣
Q=x+

<
dπ(x,Q)

dQ

∣∣∣
Q=x−

(3.51)

where; dπ(x,Q)
dQ

∣∣∣
Q=x+

= −(c− s) and dπ(x,Q)
dQ

∣∣∣
Q=x−

= (p− c+ l).

−(c− s) < (p− c+ l) imply concavity of the profit function .

Computing CVaR by the help of equation (3.49) eases the computation and helps

to determine analytical expressions for order quantity and the η-V aR which will be

represented as ωη in our problem. Throughout this paper equation (3.49) will be used

for optimization of CVaR.

43



Chapter 4

Problem 1: Newsvendor Problem

in the CVaR Maximization

Objective with Carbon Emission

Concerns

Before moving on to carbon emission restrictions, it is useful to examine the

newsvendor problem under unconstrained CVaR maximization setting. As discussed

earlier, CVaR is the expected value of the function under consideration which falls

below a threshold value for a fixed risk aversion level, η ∈ (0, 1] in the maximization

setting. The threshold value for profit is also a decision variable which is determined

simultaneously with the order/production quantity.
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4.1 Newsvendor Problem Under Unconstrained

CVaR Maximization

The unconstrained CVaR maximization problem for the newsvendor at a fixed

risk aversion level η ∈ (0, 1] is given as follows:

MaxQ,ω∈< {ω +
1

η
E
[
[(π(X,Q)− ω]−

]
} (4.1)

where π(X,Q) is the profit function of the classical newsvendor problem given in

equation (3.1) in Chapter 3. The explicit form of the unconstrained problem is written

as follows:

MaxQ,ω∈< {ω +
1

η

∫ ∞
0

[
(p− c)Q− (p− s)(Q− x)+ − l(x−Q)+ − ω

]−
dF (x)}

(4.2)

where ω represents the threshold for profit in η quantile and the optimal ω value

corresponds to the η-V aR.

The loss minimization version of the above problem is provided in Gotoh and

Takano [24]. Here we obtain the analogous result for our optimization problem.

Proposition 4.1.1 At a fixed risk aversion level η the optimal solution of equation

(4.2) is (Qunc,ωunc) where;

Qunc =
( l

p− s+ l

)
F−1

(p− c+ l + (c− s)(1− η)

p− s+ l

)
+
( p− s
p− s+ l

)
F−1

((p− c+ l)(η)

p− s+ l

)
(4.3)

ωunc =
((p− s)(p− c+ l)

p− s+ l

)
F−1

((p− c+ l)η

p− s+ l

)
−
( l(c− s)
p− s+ l

)
F−1

(p− c+ l + (c− s)(1− η)

p− s+ l

)
(4.4)
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Proof. The concavity of CVaR in Q and ω is proven in Proposition 3.3.1 which implies

existence of a unique pair (Q,ω) maximizing CVaR. In order to find the optimal Q

and ω we make use of the first order conditions of the objective function w.r.t. Q and

ω, which imply optimality.

First, we shall rewrite the equation (4.2) explicitly and investigate it.

CV aRη(Q,ω) = ω+
1

η

 ∞∫
0

[(p− c)Q− (p− s)(Q− x)+ − l(x−Q)+ − ω]−dF (x)


= ω+

1

η

 Q∫
0

[(p− c)Q− (p− s)(Q− x)− ω]−dF (x) +

∞∫
Q

[(p− c)Q− l(x−Q)− ω]−dF (x)


Note that (p− c)Q− (p− s)(Q− x)− ω ≤ 0 if x ≤ (c− s)Q+ ω

p− s
= U

and (p− c)Q− l(x−Q)− ω ≤ 0 if x ≥ (p− c+ l)Q− ω)

l
= V

Then, by rearranging the limits of integral we have:

CV aRη(Q,ω) = ω+
1

η

 U∫
0

[−(c− s)Q+ (p− s)x− ω]dF (x) +

∞∫
V

[(p− c+ l)Q− lx− ω]dF (x)


(4.5)

Taking the first derivative of the equation above with respect to Q and ω we have:

∂CV aRη(Q,ω)

∂Q
=

1

η

(
(p− c+ l)[1− F (V )]− (c− s)F (U)

)
(4.6)

∂CV aRη(Q,ω)

∂ω
= 1− 1

η

(
1− F (V ) + F (U)

)
(4.7)

Equating equations (4.6) and (4.7) to zero and solving them simultaneously gives the
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result.

Corollary 4.1.1: As we discussed in Chapter 3, Section 3.3, the CVaR maximiza-

tion problem amounts to expected profit maximization at η=1. When η=1 is inserted

in equations (4.3) and (4.4) the equations reduces to the following expressions:

Qunc = F−1
(p− c+ l

p− s+ l

)
ωunc = (p− c)F−1

(p− c+ l

p− s+ l

)
(4.8)

4.2 Newsvendor Problem Under CVaR Maximiza-

tion and Mandatory Carbon Cap Policy

Mandatory Cap policy is one of the common initiatives to curb carbon emissions

of the companies. In this policy, firms are given a carbon emission quota and not

allowed to exceed it. The carbon emission level of the company can at most be

the given quota, which is also called the mandatory cap, and if there is any unused

carbon credits the company cannot trade them. In this problem, the newsvendor’s

optimal order/production quantity is investigated under this setting with the aim of

maximizing CVaR.

π(X,Q) which is the well-known profit function of the newsvendor given as follows:

π(X,Q) = (p− c)Q− (p− s)(Q−X)+ − l(X −Q)+ (4.9)
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For a fixed risk aversion level η ∈ (0, 1] and given strict carbon cap, K, the optimiza-

tion problem of the newsvendor is given as follows:

MaxQ,ω∈< {ω +
1

η
E[[π(X,Q)− ω]−]}

s.t.

Qα ≤ K (4.10)

The carbon emission constraint can be moved to the objective function with a

positive Lagrange multiplier, λ, which can be interpreted as the shadow price of

producing one more unit that results in exceeding the carbon cap. The new problem

which is equivalent to the one given in equation (4.10) is given as:

MaxQ,ω,λ∈< {ω +
1

η
E[[π(X,Q, λ,K)− ω]−]} (4.11)

where;

π(X,Q, λ,K) = (p− c)Q− (p− s)(Q−X)+ − l(X −Q)+ − λ(Qα−K) (4.12)

The objective function can explicitly be written as:

CV aRη(Q,ω, λ,K) = ω+
1

η

( ∞∫
0

[(p−c)Q−(p−s)(Q−x)+−l(x−Q)+−λ(Qα−K)−ω]−dF (x)

)

(4.13)
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Proposition 4.2.1 For a given λ, the optimal order/production quantity and thresh-

old for profit maximizing equation (4.11) are:

Q(λ) =
( l

p− s+ l

)
F−1

((p− s+ l)− (c− s+ λα)η

p− s+ l

)
+
( p− s
p− s+ l

)
F−1

((p− c− λα + l)η

p− s+ l

)
(4.14)

ω(λ) =
((p− s)(p− c− λα + l

p− s+ l

)
F−1

((p− c− λα + l)η

p− s+ l

)
−
( l(c− s+ λα)

p− s+ l

)
F−1

((p− s+ l)− (c− s+ λα)η

p− s+ l

)
+ λK(4.15)

where at the optimal solution λ∗ satisfies K/α=Q.

Proof. The concavity of CVaR in Q and ω is proven in Proposition 3.3.1. In this

case we add a term, λ(Qα−K), to CVaR which does not violate concavity since the

term is linear in Q. Hence the optimal Q and ω are obtained from the FOC given as

follows:

∂CV aRη(Q,ω,K)

∂Q
=

1

η

(
(p− c− λα + l)[1− F (V )]− (c− s+ λα)F (U)

)
(4.16)

∂CV aRη(Q,ω,K)

∂ω
= 1− 1

η

(
1− F (V ) + F (U)

)
(4.17)

where U and V are given as:

U =
(c− s+ λα)Q− λK + ω

p− s
and V =

(p− c− λα + l)Q+ λ− ω
l

Equating the equations (4.16) and (4.17) to zero and solving them simultaneously

gives Q(λ) and ω(λ).
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Remark 1: Note that Q(λ) is optimal if and only if the given carbon cap, K, is

less than the emission level of the unconstrained optimal order/production quantity,

Kunc=Quncα.

Remark 2: Let Qc = K/α, then it must hold that Qc = Q(λ) for the cases where

K < Kunc.

4.3 Newsvendor Problem under CVaR Maximiza-

tion and Cap and Trade Mechanism

In this problem a risk-averse newsvendor determines the optimal order/production

quantity and threshold for the profit that maximizes the conditional expectation

of the profit given that it is below the threshold with probability η with a carbon

emission restriction. The newsvendor is given a carbon quota denoted by K. He is

allowed to trade carbon if the given carbon quota is insufficient to produce the optimal

amount or if excess carbon is left after the optimal amount is produced. The carbon

trading setting is the same as the one given in the classical newsvendor problem in

the preliminaries section.

The profit of the newsvendor is the same as the profit function given in equation

(3.7) in classical newsvendor with cap and trade mechanism section which is:

π(X,Q,K) = (p− c)Q− (p− s)(Q−X)+ − l(X −Q)+ − cb(Qα−K)+ + cs(K −Qα)+

(4.18)
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The objective function of the carbon restricted risk-averse newsvendor is given as:

MaxQ,ω∈< {ω +
1

η
E
[
[π(X,Q,K)− ω]−

]
} (4.19)

Note that here in the profit function cb can be interpreted as the penalty of emitting

one unit more than the given carbon emission cap and cs can be interpreted as the gain

from emitting one unit less than the given carbon emission cap, K. In that sense the

interpretation of cb and cs are the same as the interpretation of the Lagrange multipler

λ defined in the previous section. Also, the assumption that cb > cs given in Chapter

3, Section 3.2 holds in this setting.

Throughout this thesis, the problems are investigated for the case where p−c+l ≥

cbα > csα.

The explicit form of the objective function can be given as:

CV aRη(Q,ω,K) = ω +
1

η

( ∞∫
0

[(p− c)Q− (p− s)(Q− x)+ − l(x−Q)+

− cb(Qα−K)+ + cs(K −Qα)+ − ω]−dF (x)

)
(4.20)

Proposition 4.3.1 For a given carbon emission quota K and a demand realization

x, π(X,Q,K) given in equation (4.18) is concave in Q.

Proof. The profit function π(x,Q,K) can be written in three regions with respect to
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the order/production quantity, Q for a given carbon emission quota, K.

π(x,Q,K) =


(p− c)Q− (p− s)(Q− x)+ − l(x−Q)+ + cs(K −Qα) if Q < K/α

(p− c)Q− (p− s)(Q− x)+ − l(x−Q)+ if Q = K/α

(p− c)Q− (p− s)(Q− x)+ − l(x−Q)+ − cb(Qα−K) if Q > K/α

(4.21)

In order to prove concavity of equation (4.21) in Q, we shall examine the three regions

specified with respect to a demand realization x as : Q < x, Q = x, Q > x.

Region 1: Q < x

In this region equation (4.21) reduces to:

π(x,Q,K) =


(p− c)Q− l(x−Q) + cs(K −Qα) if Q < K/α

(p− c)Q− l(x−Q) if Q = K/α

(p− c)Q− l(x−Q)− cb(Qα−K) if Q > K/α

(4.22)

equation (4.22) is piecewise concave in Q since the function in each region is linear

in Q. In order to show overall concavity it must be satisfied that:

dπ(x,Q,K)

dQ

∣∣∣
Q=(K/α)+

<
dπ(x,Q,K)

dQ

∣∣∣
Q=(K/α)−

(4.23)

where; dπ(x,Q,K)
dQ

∣∣∣
Q=(K/α)+

= (p− c+ l− cbα) and dπ(x,Q,K)
dQ

∣∣∣
Q=(K/α)−

= (p− c+ l− csα).

The assumption that cbα > csα implies the concavity of π(x,Q,K) for the case Q < x

respect to Q.
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Region 2: Q = x

Rewriting the equation (4.21) gives:

π(x,Q,K) =


(p− c)Q+ cs(K −Qα) if Q < K/α

(p− c)Q if Q = K/α

(p− c)Q− cb(Qα−K) if Q > K/α

(4.24)

Piecewise concavity of equation (4.24) is guaranteed with the same reasoning as in

Case 1. The concavity is satisfied by:

dπ(x,Q,K)

dQ

∣∣∣
Q=(K/α)+

<
dπ(x,Q,K)

dQ

∣∣∣
Q=(K/α)−

(4.25)

where; dπ(x,Q,K)
dQ

∣∣∣
Q=(K/α)+

= (p− c− cbα) and dπ(x,Q,K)
dQ

∣∣∣
Q=(K/α)−

= (p− c− csα).

The assumption that cbα > csα implies the concavity of π(x,Q,K) for the case Q = x

respect to Q.

Region 3: Q > x

The equation (4.21) is rearranged as:

π(x,Q,K) =


(p− c)Q− (p− s)(Q− x) + cs(K −Qα) if Q < K/α

(p− c)Q− (p− s)(Q− x) if Q = K/α

(p− c)Q− (p− s)(Q− x)− cb(Qα−K) if Q > K/α

(4.26)

Piecewise concavity of equation (4.26) is guaranteed with the same reasoning as in

Case 1 and 2. The concavity is satisfied by:

dπ(x,Q,K)

dQ

∣∣∣
Q=(K/α)+

<
dπ(x,Q,K)

dQ

∣∣∣
Q=(K/α)−

(4.27)
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where; dπ(x,Q,K)
dQ

∣∣∣
Q=(K/α)+

= −(c− s+ cbα) and dπ(x,Q,K)
dQ

∣∣∣
Q=(K/α)−

= −(c− s+ csα).

The assumption that cbα > csα implies the concavity of π(x,Q,K) for the case Q > x

respect to Q.

Concavity in each three region implies concavity of equation π(x,Q,K) in Q.

Proposition 4.3.2 For a given carbon emission quota, K, CV aRη(Q,ω,K) is

jointly concave in Q and ω.

Proof. In Proposition 4.3.1 it is shown that π(x,Q,K) is concave in Q. Hence, Propo-

sition 3.3.1 implies that CV aRη(Q,ω,K) is concave in Q and ω.

The objective function can be rewritten in three regions given below with respect

to the order/production quantity Q as follows:

CV aRη(Q,ω,K) =



ω + 1
η

( ∞∫
0

[(p− c)Q− (p− s)(Q− x)+ − l(x−Q)+

+cs(K −Qα)− ω]−dF (x)
)

if Q < K/α

ω + 1
η

( ∞∫
0

[(p− c)Q− (p− s)(Q− x)+

−l(x−Q)+ − ω]−dF (x)
)

if Q = K/α

ω + 1
η

( ∞∫
0

[(p− c)Q− (p− s)(Q− x)+ − l(x−Q)+

−cb(Qα−K)− ω]−dF (x)
)

if Q > K/α

(4.28)

Proposition 4.3.3 For a given carbon emission cap, K, and at a fixed risk aver-

sion level, η, the optimal order/production quantity and threshold for profit belong

54



to the following set:

(Q∗, ω∗) ∈
(

(Qup, ωup), (Q = K/α, ω(K/α), (Qdown, ωdown)
)

(4.29)

where;

Qup =

(
l

p− s+ l

)
F−1

(
(p− s+ l)− (c− s+ cbα)η

p− s+ l

)
+

(
p− s

p− s+ l

)
F−1

(
(p− c− cbα + l)η

p− s+ l

)
(4.30)

ωup =

(
(p− s)(p− c− cbα + l

p− s+ l

)
F−1

((p− c− cbα + l)η

p− s+ l

)
−
(
l(c− s+ cbα)

p− s+ l

)
F−1

((p− s+ l)− (c− s+ cbα)η

p− s+ l

)
+ cbK (4.31)

Q = K/α and ω(K/α) is the solution of

Maxω∈< {ω +
1

η
E
[[

(p− c)Q− (p− s)(Q− x)+ − l(x−Q)+ − ω
]−]} (4.32)

satisfying the relation:

F
((p− c+ l)Q− ω

l

)
− F

((c− s)Q+ ω

p− s

)
= 1− η (4.33)
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Qdown =

(
l

p− s+ l

)
F−1

(
(p− s+ l)− (c− s+ csα)η

p− s+ l

)
+

(
p− s

p− s+ l

)
F−1

(
(p− c− csα + l)η

p− s+ l

)
(4.34)

ωdown =

(
(p− s)(p− c− csα + l

p− s+ l

)
F−1

((p− c− csα + l)η

p− s+ l

)
−
(
l(c− s+ csα)

p− s+ l

)
F−1

((p− s+ l)− (c− s+ csα)η

p− s+ l

)
+ csK (4.35)

Proof. Concavity of CV aRη(Q,ω,K) in Q guarantees the piecewise concavity in Q in

each region which implies that each region has a unique maximizer. The unique root

of the corresponding function in each region is candidate for the optimal solution.

The roots of the functions in regions where Q < K/α and Q > K/α are found from

the first order conditions while in the second region Q = K/α is directly set.

For the region where Q < K/α the corresponding first order conditions w.r.t. Q and

ω are determined by using the Leibniz’ rule. The first derivative of the objective

function w.r.t. Q and ω when Q < K/α are determined as:

∂CV aRη(Q,ω,K)

∂Q
=

1

η

(
(p− c+ l − csα)[1− F (V )]− (c− s+ csα)F (U)

)
(4.36)

∂CV aRη(Q,ω,K)

∂ω
= 1 +

1

η

(
F (V )− F (U)− 1

)
(4.37)

where; V = (c−s+csα)Q−csK+ω
p−s and U = (p−c+l−csα)Q+csK−ω

l
.

Equating the equations (4.36) and (4.37) to zero and solving simultaneously gives

(Qdown, ωdown).

Solution of the region in which Q > K/α can be found by changing the objective
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function with the one given in the equation (4.28) and following the same steps given

above.

When the order/production quantity is set Q = K/α then the corresponding optimal

threshold for profit, ω(K/α) which maximizes the equation (4.32) is found from the

first order condition.

∂CV aRη(Q,ω,K)

∂ω
= 1− 1

η

(
1− F

((p− c+ l)Q− ω
l

)
+ F

((c− s)Q+ ω

p− s

))

Hence the optimal ω(K/α) when Q = K/α satisfies:

F
((p− c+ l)Q− ω

l

)
− F

((c− s)Q+ ω

p− s

)
= 1− η (4.38)

Let Kup and Kdown represent the corresponding emission levels of the cases Q >

K/α and Q < K/α, respectively, given by:

Kup = Qupα and Kdown = Qdownα (4.39)

(Qup, ωup), and (Qdown, ωdown) are inversely proportional to cb and cs, respectively and

the distribution function of demand is a non-decreasing function. These properties

help us conclude that Qup < Qdown , ωup < ωdown and Kup < Kdown for non-negative

values of cb and cs.

The optimal policy of the risk-averse newsvendor for a given carbon emission cap,

K, is provided in the following Theorem.
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Theorem 4.3.1 The optimal policy of the risk averse newsvendor for a given car-

bon emission allowance, K, at the specified risk aversion level, η, and carbon market

prices cb , cs is given as:

(Q∗, ω∗) =


(Qup, ωup) if K < Kup

(Q = K/α, ω(K/α)) if Kup ≤ K ≤ Kdown

(Qdown, ωdown) if K > Kdown

(4.40)

where ω(K/α) satisfies the relation given in equation (4.33) provided in Proposition

4.3.2.

Proof. As it is given in Proposition 4.3.3 there are three critical points: (Qdown, ωdown),

(Qup, ωup) and (Q = K/α, ω(K/α)). The optimal policy is determined by studying

three cases for a given K.

Let us rewrite the objective function given in equation (4.28) in a shorter represen-

tation:

CV aRη(Q,ω,K) =


(CV aRsell)η(Q,ω,K) if Q < K/α

(CV aRnotrade)η(Q,ω,K) if Q = K/α

(CV aRbuy)η(Q,ω,K) if Q > K/α

(4.41)

Case 1: K < Kup ≡ K/α < Qup

(CV aRsell)η(Q,ω,K) is concave and maximized at Qdown. Hence it is increasing

in (−∞, Qdown). K/α < Qup < Qdown implies that (CV aRsell)η(Q,ω,K) is also

increasing in (−∞, K/α).

(CV aRbuy)η(Q,ω,K) is concave and maximized at Qup. Hence it is increasing in
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(K/α,Qup) and decreasing in (Qup,∞).

Thus, CV aRη(Q,ω,K) is increasing in (−∞, Qup) and decreasing in (Qup,∞). This

implies that CV aRη(Q,ω,K) is maximized at Q = Qup.

Case 2: Kup ≤ K ≤ Kdown ≡ Qup ≤ K/α ≤ Qdown

(CV aRsell)η(Q,ω,K) is concave and maximized at Qdown. Hence it is increasing

in (−∞, Qdown). K/α < Qdown implies that (CV aRsell)η(Q,ω,K) is increasing in

(−∞, K/α).

(CV aRbuy)η(Q,ω,K) is concave and maximized at Qup. Hence it is decreasing in

(Qup,∞). Qup ≤ K/α implies that it is also decreasing in (K/α,∞).

Thus, CV aRη(Q,ω,K) is increasing in (−∞, K/α) and decreasing in (K/α,∞). This

implies that CV aRη(Q,ω,K) is maximized at Q = K/α.

Case 3: K > Kdown ≡ K/α > Qdown

(CV aRsell)η(Q,ω,K) is concave and maximized at Qdown. Hence it is increasing in

(−∞, Qdown) and decreasing in (Qdown, K/α) since (K/α > Qdown).

(CV aRbuy)η(Q,ω,K) is concave and maximized at Qup. Hence it is decreasing in

(Qup,∞). Since Qup < Qdown it is also decreasing in (Qdown,∞).

Thus, CV aRη(Q,ω,K) is increasing in (−∞, Qdown) and decreasing in (Qdown,∞).

This implies that CV aRη(Q,ω,K) is maximized at Q = Qdown.

Remark: Note that we previously defined Kup=Qupα, Kdown=Qdownα and

K=Q(λ)α. Analytical expressions imply that for a continuous demand distribu-

tion Qup, Qdown, and Q(λ) are decreasing functions of cb, cs and λ, respectively,

since the cumulative distribution function is a one to one and non-decreasing func-

tion. Therefore; Q(λ) < Qup implies λ > cb, Q(λ) > Qdown implies cs > λ and

Qup < Q(λ) < Qdown implies cb > λ > cs.
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According to the relations above, Kup, Kdown and K are also decreasing functions

of cb, cs and λ, respectively. Therefore, we can say that the rationale behind the

policy given in Theorem 4.3.1 comes from the comparison of the relation between

carbon buying price, cb, carbon selling price, cs and the Lagrange multiplier value, λ,

of the order/production quantity when the strict cap policy is implemented.

Corollary 4.3.1: Comparison of the given carbon cap, K with the thresholds

Kup and Kdown is similar to the comparison of the carbon prices with the Lagrange

multiplier value of using strictly the given cap. Then the following relation holds:

i) if K < Kup then Q(λ) < Qup which implies λ > cb

ii) if Kup ≤ K ≤ Kdown then Qup ≤ Q(λ) ≤ Qdown which impliescs ≤ λ ≤ cb

iii) if K > Kdown then Q(λ) > Qdown which implies cs > λ

A special case occurs when cb = cs. Since the pairs (Qup, ωup) and (Qdown, ωdown)

given in Proposition 4.3.3 are the functions of cb and cs, respectively, in the special

case of cb = cs it is observed that Qup = Qdown and ωup = ωdown. Accordingly

Kup = Kdown. Let QT = Qup = Qdown, ωT = ωup = ωdown and KT = Kup = Kdown.

Corollary 4.3.2: The optimal policy for the special case of cb = cs is given as

follows:

(Q∗, ω∗) = (QT , ωT ) ∀ K (4.42)

Proof. Since Kup = Kdown, the region for given carbon emission quota, K, between

Kup and Kdown is reduced to a point which is KT = Kup = Kdown. Hence we analyze

the optimal policy for a given carbon cap, K for the cases K < KT , K > KT and
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K = KT as follows:

(Q∗, ω∗) =


(Q = K/α = QT , ω(K/α) = ωT ) if K = KT

(QT , ωT ) o.w.

(4.43)

The proof follows from the proof of Theorem 4.3.1.

Remark: Recall that at the beginning of this section we make the assumption

that p − c + l ≥ cbα > csα. All the analytical expressions of Q and ω we determine

in this section can be calculated for a parameter set satisfying this assumption. Oth-

erwise, when cbα > csα > p − c + l or cbα > p − c + l > csα, we cannot calculate

the analytical expressions of Q and ω since in these cases the expression written in

the inner side of the inverse cumulative distribution function obtains negative values,

(see expressions of Qup, Qdown, ωup, ωdown), and these are ill-defined cases.
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Chapter 5

Problem 2: Newsvendor Problem

under CVaR Maximization with

Multiple Constraints

In the previous problem the carbon emission restriction can be thought as a re-

source restriction and the newsvendor is allowed to buy or sell the resource according

to his optimal policy. In this section, the newsvendor problem is analyzed under

multiple resource constraints where all the resources can be traded at pre-specified

trading prices with the aim of CVaR maximization.

Suppose that the newsvendor has N limited resources which he can trade at

fixed prices. At a fixed risk-aversion level η ∈ (0, 1], our aim is to find the optimal

production quantity, Q, and the threshold for profit, ω, that maximize the conditional

value at risk and accordingly the optimal trading behavior is determined.
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Let i, i = 1, 2, ..N correspond to the index of N resources. The maximum amount

of resource i that can be used in production is represented by Ki. The set of limited

resources is represented by K̄, where K̄ = {K1, K2, ..KN}. The unit acquisition and

selling prices of resource i are defined as cib and cis, respectively, with the assumption

of cib > cis. It is assumed that αi is the amount of resource i required to produce a

unit product. The profit of the newsvendor, π(X,Q, K̄), is given as:

π(X,Q, K̄) = (p−c)Q−(p−s)(Q−X)+−l(X−Q)+−
N∑
i=1

cib(Qαi−Ki)
++

N∑
i=1

cis(Ki−Qαi)+

(5.1)

The objective function of the newsvendor is written as:

CV aRη(Q,ω, K̄) = ω +
1

η

( ∞∫
0

[(p− c)Q− (p− s)(Q− x)+ − l(x−Q)+

−
N∑
i=1

cib(Qαi −Ki)
+ +

N∑
i=1

cis(Ki −Qαi)+ − ω]−dF (x)

)
(5.2)

Under this setting the optimization problem of the newsvendor is given as:

MaxQ,ω∈< {ω +
1

η
E
[[
π(X,Q, K̄)− ω

]−]} (5.3)

In order to find the optimal production quantity and threshold for profit maximiz-

ing the Equation (5.2), the newsvendor needs to find the best trading option among

the possible choices.

Solution Method for Binding Constraints

This problem is an extension of the one with mandatory cap policy which is
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discussed earlier. Let Q(i) = Ki/αi be the binding production quantity of resource i

and ω(i) be η-V aR value for the corresponding profit distribution. Since the resources

are binding, the optimal production quantity will be either the mini{Q(i)} or the

unconstrained solution, Qunc whichever is smaller.

Solution Method for Trading Option

Consider the ordered binding production quantities of resources as Q(1) < Q(2) <

.. < Q(N) where the resource giving the minimum binding production quantity is

labelled as (1) and the one giving the maximum binding production quantity is la-

belled as (N). The resource caps and production coefficients, K(i), and α(i), are also

labelled accordingly as K(1), K(2), .., K(N) and α(1), α(2), .., α(N). It is assumed that

Q(0) is the point Q = 0. The set of binding production quantities is represented by

B = {Q(1), Q(2), .., Q(N)}. Consider the following action set:

Ai = {buy resources (j) for j ≤ i, sell of resources (j) for j > i; i=0,1,N} (5.4)

where i = 0 corresponds to the action of selling all resources and i = N corresponds

to the action of buying from all of the resources, while i = k is the case of buying

from the resources (1) to (k) and selling the resources (k + 1) to (N).

The objective function under action i is written as:

CV aRi
η(Q,ω, K̄) = ω +

1

η

( ∞∫
0

[(p− c)Q− (p− s)(Q− x)+ − l(x−Q)+

−
(i)∑

j=(1)

cjb(Qαj −Kj) +

(N)∑
j=(i+1)

cjs(Kj −Qαj)− ω]−dF (x)

)
(5.5)

where a sum is set to zero if lower index is bigger than the upper index.
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Proposition 5.1.1 For given ordered resource quotas K(i), i = 1, .., N and a demand

realization of x, Equation (5.1) is concave in Q.

Proof. The profit function π(x,Q, K̄) can be written in N + 1 regions with respect

to the ordered resource quotas K(i), i = 1, .., N as:

π(x,Q, K̄) =


(p− c)Q− (p− s)(Q− x)+ − l(x−Q)+ +

∑(N)
i=(1)

cis(Ki −Qαi) if Q ≤ K(1)/α(1)

(p− c)Q− (p− s)(Q− x)+ − l(x−Q)+ − c(1)b (Qα(1) −K(1)) +
∑(N)
i=(2)

cis(Ki −Qαi) if K(1)/α(1) < Q ≤ K(2)/α(2)

(p− c)Q− (p− s)(Q− x)+ − l(x−Q)+ −
∑(N)
i=(1)

cib(Qαi −Ki) if Q > K(N)/α(N)

(5.6)

In order to prove concavity of Equation (5.1) in Q, we shall examine three regions

specified with respect to a demand realization of x as : Q < x, Q = x, Q > x.

Region 1: Q < x

In this region Equation (5.6) reduces to:

π(x,Q, K̄) =


(p− c)Q− l(x−Q) +

∑(N)
i=(1)

cis(Ki −Qαi) if Q ≤ K(1)/α(1)

(p− c)Q− l(x−Q)− c(1)b (Qα(1) −K(1)) +
∑(N)
i=(2)

cis(Ki −Qαi) if K(1)/α(1) < Q ≤ K(2)/α(2)

(p− c)Q− l(x−Q)−
∑(N)
i=(1)

cib(Qαi −Ki) if Q > K(N)/α(N)

(5.7)

Equation (5.7) is piecewise concave in Q since the function in each region is linear in

Q. In order to show overall concavity it must be satisfied that:

dπ(x,Q,K)

dQ

∣∣∣
Q=(Ki/αi)+

<
dπ(x,Q,K)

dQ

∣∣∣
Q=(Ki/αi)−

(5.8)

for all i = (1), .., (N).

For i=1;
dπ(x,Q,K)

dQ

∣∣∣
Q=(K(1)/α(1))

+
= (p−c+l−c(1)

b α(1)−
∑(N)

i=(2) c
i
sαi) and dπ(x,Q,K)

dQ

∣∣∣
Q=(K(1)/α(1))

−
=

(p− c+ l −
∑(N)

i=(1) c
i
sαi).

The assumption that c
(1)
b α(1) > c

(1)
s α(1) implies the concavity.

This logic holds for all boundary points: (K(1)/α(1)), .., (K(N)/α(N)).

For i=N;
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dπ(x,Q,K)
dQ

∣∣∣
Q=(K(N)/α(N))

+
= (p− c+ l−

∑(N)
i=(1) c

i
bαi) and dπ(x,Q,K)

dQ

∣∣∣
Q=(K(N)/α(N))

−
= (p−

c+ l −
∑(N)

i=(2) c
i
bαi − c

(N)
s α(N).

The assumption that c
(N)
b α(N) > c

(N)
s α(N) implies the concavity. Hence; π(x,Q, K̄) is

concave in Q for the case Q < x.

Region 2: Q = x

Rewriting the Equation (5.6) gives:

π(x,Q, K̄) =


(p− c)Q+

∑(N)
i=(1)

cis(Ki −Qαi) if Q ≤ K(1)/α(1)

(p− c)Q− c(1)b (Qα(1) −K(1)) +
∑(N)
i=(2)

cis(Ki −Qαi) if K(1)/α(1) < Q ≤ K(2)/α(2)

(p− c)Q−
∑(N)
i=(1)

cib(Qαi −Ki) if Q > K(N)/α(N)

(5.9)

Piecewise concavity of Equation (5.9) is guaranteed with the same reasoning in Case

1. The concavity requirements are checked by the same methodology given in Case

1. Hence; π(x,Q, K̄) is concave in Q for the case Q = x

Region 3: Q > x The Equation (5.6) is rearranged as:

π(x,Q, K̄) =


(p− c)Q− (p− s)(Q− x) +

∑(N)
i=(1)

cis(Ki −Qαi) if Q ≤ K(1)/α(1)

(p− c)Q− (p− s)(Q− x)− c(1)b (Qα(1) −K(1)) +
∑(N)
i=(2)

cis(Ki −Qαi) if K(1)/α(1) < Q ≤ K(2)/α(2)

(p− c)Q− (p− s)(Q− x)−
∑(N)
i=(1)

cib(Qαi −Ki) if Q > K(N)/α(N)

(5.10)

Piecewise concavity of Equation (5.10) is guaranteed with the same reasoning in Case

1 and 2. The concavity is satisfied by again following the same path given in Case

1. Hence; π(x,Q, K̄) is concave in Q for the case Q > x. Concavity of π(x,Q,K) in

each three region implies concavity of Equation (5.1) in Q.
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Proposition 5.1.2 For given resource limits K(i), i = 1, 2, ..N , the optimal solu-

tion of action i is (Qi, ωi) where;

Qi =

(
l

p− s+ l

)
F−1

(
(p− s+ l)− (c′ − s)η

p− s+ l

)
+

(
p− s

p− s+ l

)
F−1

(
(p− c′ + l)η

p− s+ l

)

ωi =

(
(p− s)(p− c′ + l)

p− s+ l

)
F−1

(
(p− c′ + l)η

p− s+ l

)
−
(
l(c′ − s)
p− s+ l

)
F−1

(
(p− s+ l)− (c′ − s)η

p− s+ l

)
+

i∑
j=1

cjbKj +
N∑

j=i+1

cjsKj (5.11)

where c′ = c+
∑(i)

j=(1) c
j
bαj +

∑(N)
j=(i+1) c

j
sαj.

Proof. Concavity of Equation (5.1) implies the concavity of Equation 5.2) and accord-

ingly the concavity of Equation (5.5) which follows from Proposition 4.3.2. Hence,

the objective function under action i is concave in Q and ω ensuring that there is a

unique maximizer of action i which will be obtained from the first order conditions.

The first derivatives of the objective function w.r.t. Q and ω are given as:

∂CV aRi
η(Q,ω,Ki)

∂Q
=

1

η

(
(p− c′)[1− F (V )]− (c′ − s)F (U)

)
(5.12)

∂CV aRi
η(Q,ω,Ki)

∂ω
= 1 +

1

η

(
F (V )− F (U)− 1

)
(5.13)

where;

U =
(c− s+

∑(i)
j=(1) c

j
bαj +

∑(N)
j=(i+1) c

j
sαj)Q−

∑(i)
j=(1) c

j
bKj −

∑(N)
j=(i+1) c

j
sKj + ω

p− s

V =
(p− c−

∑(i)
j=(1) c

j
bαj −

∑(N)
j=(i+1) c

j
sαj + l)Q+

∑(i)
j=(1) c

j
bKj +

∑(N)
j=(i+1) c

j
sKj − ω

l

c′ = c+

(i)∑
j=(1)

cjbαj +

(N)∑
j=(i+1)

cjsαj
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Equating equations (5.12) and (5.13) and solving simultaneously gives Qi and ωi.

Remark: The expressions given in equation 5.11 are determined with the assump-

tion that the relation p−c+ l ≥ maxi{
∑(i)

j=(1) c
j
bαj+

∑(N)
j=(i+1) c

j
sαj} where i=0, 1, .., N

holds.

The optimal production quantity Qi is determined for the action i which refers

to the action of buying from the resources (j) ≤ i and selling the resources (j) > i

according to actions set Ai. This implies that the amounts of the resources (j) ≤ i

are insufficient and there is more than enough of the resources (j) > i to produce

the optimal amount Qi. As the resources (j) ≤ i are insufficient and the resources

(j) > i have excess to produce Qi, one intuitively expects that the binding production

quantities of the resources (j) ≤ i will be less than Qi since these resources are

inadequate, and the binding production quantities of the resources (j) > i will be

greater than Qi since they have excess credits. Hence, for each Qi the requirement

that Qi ∈ (Q(i), Q(i+1)) must be checked in order not to face a contradiction. Suppose

that Qi /∈ [Q(i), Q(i+1)] and Qi > Q(i+2). This means that the given credits of resource

(i + 2) is inadequate to produce Qi and the newsvendor buys extra credits from the

resource (i + 2) to produce Qi. However, Qi is determined according to the actions

set Ai implying that the newsvendor sells unused credits of the resource (i+ 2). This

creates a contradiction. Hence, Qi is an infeasible production quantity under this

setting.

Let (Qif , ωif ) = (Qi, ωi) if Qi ∈ [Q(i), Q(i+1)]. This implies that the action i and

the corresponding optimal production quantity are feasible under the given setting.

Let T be the set of optimal production quantities of the actions set Ai, i = 1, .., N

68



that are feasible which is represented as follows:

T = {(Qif , ωif )|(Qif , ωif ) = (Qi, ωi) if Qi ∈ [Q(i), Q(i+1)], i = 0, 1, .., N} (5.14)

The sets B and T are the two feasible sets of production quantities that can be

searched to find the optimal solution. Let S represent the set of feasible production

quantities and the corresponding optimal thresholds for profit which is formally given

as:

S = B ∪ T

S = {(Q(i), ω(i)); i = 1, .., N, (Qif , ωif ); i = 0, .., N} (5.15)

Optimal Policy

In order to find the optimal policy the objective function value is determined at

each element of the feasible set S. Then, the optimal production quantity, Q∗, and

the corresponding threshold for profit, ω∗, of the risk-averse newsvendor is found by

picking the (Q,ω) pair with the maximum objective function value. The optimal

policy can be summarized as:

(Q∗, ω∗) = {(Q′, ω′)|CV aRη

∣∣∣
(Q′,ω′)∈S

> CV aRη

∣∣∣
(Q,ω)∈S−(Q′,ω′)

} (5.16)

Let us consider the following numerical example in order to gain some insight about

the solution method.

Numerical Example: Let the risk-averse problem parameters be: p=2, c=1,

s=0.8, l=3, η=0.01 and demand to be normally distributed with mean=500 and
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variance=10000. Suppose that the newsvendor has two limited resources: carbon

and cash. Let the resource related parameters are given as carbon buying price=1.4,

carbon selling price=1.33, production coefficient (α) of carbon=1, carbon cap=600,

cash buying price=1.125, cash selling price=1.1, production coefficient (α) of cash=1,

cash limit=650. We shall find the optimal production quantity under this setting.

According to the solution method discussed earlier, we shall first find the binding

production quantities of carbon and cash. Then, the resources and resource related

parameters, decision variables are labelled as 1 and 2 according to the ordered binding

production quantities.

• The binding production quantity of carbon resource is 600/1 = 600

• The binding production quantity of cash resource is 650/1 = 650

Since 600 < 650, we label carbon as resource 1, cash as resource 2 and the set of

binding production quantities is B = {600, 650}.

Next, we shall consider the trading actions by analyzing the actions set Ai given

in Equation (5.4). According to Ai, the possible actions of this problem and their

corresponding production quantities are listed as:

• Q0: The optimal production quantity when the newsvendor sells both carbon

and cash.

• Q1: The optimal production quantity when the newsvendor buys from carbon

and sells cash.

• Q2: The optimal production quantity when the newsvendor buys both from

carbon and cash.
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By using Equation (5.11) we calculate the optimal production quantities of trading

actions as Q0 = 601.9, Q1 = 600.8, Q2 = 600.4. In order to determine the set

T given in Equation (5.14) which includes the optimal production quantities of the

corresponding trading actions which are feasible the following relations must hold:

• Q0 is feasible ↔ Q0 ∈ [Q(0), Q(1)] ≡ Q0 ∈ [0, 600)

• Q1 is feasible ↔ Q1 ∈ [Q(1), Q(2)] ≡ Q1 ∈ (600, 650)

• Q2 is feasible ↔ Q2 ∈ [Q(2), Q(3)] ≡ Q2 ∈ (650,∞)

Recall that we set Q(0) = 0 in the solution method part. The following figure clarifies

the requirements defined above as follows:
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Resource (1)=Carbon Resource (2)=Cash 

Q (1)=600 Q (2)=650 

Feasible region for 

selling both carbon , 

resource (1) , and 

cash, resource (2). 

Feasible region for buying  

from carbon , resource (1) , 

and selling cash, resource (2). 

Feasible region for 

buying from both 

carbon , resource (1) , 

and cash, resource (2). 

Q-axis 

0 ∞ 

Figure 5.1: Feasible regions for optimal production quantities of actions set Ai.

The feasibility results are summarized by the table given below.

Table 5.1: Trading Actions, Optimal Production Quantities of Actions and Their
Feasiblity

Action Optimal Production Quantity Feasibility Requirement Feasibility Check

0 601.9 601.9 ∈ [0, 600) Infeasible
1 600.8 600.8 ∈ (600, 650) Feasiblee
2 600.4 600.4 ∈ (650,∞) Infeasible

According to the Table 5.1, T = {600.8}. Then, the set of feasible production

quantities S is determined as S = B ∪ T = {600, 600.8, 650}. The corresponding

objective function values of the production quantities given in the set S are tabulated

as follows:
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Table 5.2: Feasible Production Quantities and Corresponding Objective Function
Values

Feasible Production Quantity Objective Function Value

600 134.3308
600.8 134.3529
650 70.223

According to Table 5.2, the optimal production quantity is Q1 = 600.8 giving the

maximum objective function value. The corresponding V aR value which is denoted

by ωi can be calculated from Equation (5.11).

73



Chapter 6

Numerical Study

In this chapter, we provide the results of the numerical experiments conducted to

analyze the impacts of problem parameters on the optimal policies of the problems

we discussed in previous chapters. The numerical study findings and discussions are

provided under three sections.

In section 6.1, the effects of the problem parameters on the optimal or-

der/production quantity, Q∗, and the corresponding service level, SL∗, of the un-

constrained newsvendor model under CVaR maximization objective are investigated.

Then, for specified sets of problem parameters the impact of changing risk aversion

level on Q∗ and the optimal value of the objective function, CV aR∗ are determined.

In Section 6.2, we study the sensitivity of the newsvendor model with CVaR

maximization objective and carbon emission concerns to changing parameters. In

Sections 6.2.1 and 6.2.2 we provide and discuss the results of the mandatory carbon

cap policy and cap and trade policy, respectively. The changes in Q∗, optimal carbon
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policy and the optimal values of objective function, CV aR∗, value-at-risk, ω∗, and

the expected profit, EP ∗ for changing risk aversion level, η, carbon buying and selling

prices, cb and cs respectively, given carbon cap, K and carbon cap tightness, τ are

provided.

In Section 6.3, we examine the newsvendor problem with CVaR maximization

objective and multiple resource constraints for a case where the number of limited

resources is 2. We conduct a numerical experiment in order to observe the changes

in the optimal production strategy with respect to risk aversion level for the binding

resource constraints and resources with trading option. We also analyze the optimal

strategy for tradeable resources for changing resource limits.

We obtained the closed form expressions for the optimal values of the decision

variables in the previous chapters. In our numerical experiment we implement those

expressions in MATLAB and calculate the values for changing problem parameters.

6.1 Unconstrained CVaR Maximization

Before conducting a numerical experiment for our problems we first need to select

reasonable parameter sets. For this reason we determine the customer service level

at different parameter settings. First, for a normally distributed demand with µ=500

and σ2=1002 we specify the selling price to acquisition cost ratio, p/c, as 1.25, 1.5,

1.75, and 2 where c=1. Then, at a fixed η we determine Q∗ and SL∗ values of the

unconstrained CVaR maximization problem for changing salvage, s, and lost sales

cost, l, values. We consider s as the percentages of c. The set of salvage values

we consider are s=0.7c, 0.75c, 0.8c, 0.85c and 0.85c. Since c = 1 throughout all
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calculations, the set of salvage values are s=0.7, 0.75, 0.8, 0.85 and 0.85. The values

of l are determined as the multiples of profit mark-up. For each p/c value the set

of l values is fixed as l=0, (p − c), 2(p − c),and 3(p − c). We calculate Q∗ and SL∗

for η=0.01, 0.1, and 0.25. Hence we examine 4 × 5 × 4 × 3=240 Q∗ and SL∗ values

which are provided in Tables 6.1, 6.2 and 6.3. For a fixed η, we observe that Q∗ and

SL∗ increases with increasing l and s. The same outcome is valid for increasing p/c

value. For example, in Table 6.1 we see that at p=1.25, c=1, s=0.7 and l=0 setting

Q∗=239.14, SL∗=0.0045 while increasing s value to 0.9 under the same setting gives

Q∗=255, SL∗=0.0071. Also, at p=2, c=1, s=0.7 and l=0 we see that Q∗=257.68,

SL∗=0.0077. As can be seen in Tables 6.2 and 6.3 this result is valid for each η.

When the impact of risk aversion is investigated, intuitively one expects Q∗ to

increase with decreasing risk aversion, meaning increasing η value. However, Q∗

and η relation comes out to be parameter sensitive which is parallel with findings of

Katariya et al. [30]. As can be observed in Tables 6.1, 6.2, 6.3 this relation depends

on l value. Q∗ increases with increasing η under the settings with small values of l

while it increases with decreasing η with high values of l. In order to focus on this

behavior we analyze the following settings:

1) p=1.5, c=1, s=0.8 for l=0.5, 1, and 1.5

2) p=1.75, c=1, s=0.8 for l=0.75, 1.5, and 2.25

3) p=2, c=1, s=0.8 for l=1, 2, and 3

for a normally distributed demand with µ=500 and σ2=1002.

Figures 6.1, 6.2, and 6.3 summarize the impact of risk aversion level on Q∗ and

CV aR∗ values for each set defined above, respectively. The corresponding data of the
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figures are tabulated in Tables 6.4, 6.5 and 6.6. In Figures 6.1, 6.2, and 6.3 we see that

Q∗ and η relation affirms the intuition of obtaining higher order quantities at higher

η values when l=p− c, where p− c is the profit mark-up value. The counter-intuitive

result is observed for the cases where l=2(p − c) and 3(p − c). According to Tables

6.4, 6.5 and 6.6 Q∗ increases when η decreases from 0.1 to 0.01 and when η increases

from 0.1 to 1 for the settings with l=2(p− c) while it increases when η decreases from

0.4 to 0.01 and when η increases from 0.4 to 1 for the settings with l=3(p− c). Also,

we see that when l=3(p − c) Q∗ at η=0.01 is greater than the Q∗ value at the risk

neutral case , at η = 1 which is another counter-intuitive result.

Since CVaR maximization problem amounts to expected profit maximization at

η = 1, one expects CVaR to increase with increasing η value for any parameter setting.

This expectation is verified by Figures 6.1, 6.2 and 6.3.

6.2 CVaR Maximization with Carbon Emission

Concerns

The optimal order quantity and customer service level analysis we provide in the

previous section helps us to pick a justifiable parameter setting for a detailed inves-

tigation. By the help of data provided in Tables 6.1, 6.2, 6.3, we set the newsvendor

problem parameters as p=2, c=1, s=0.8, l=3 giving SL∗=0.9545, 0.9303 and 0.9209

at η=0.01, 0.1, 0.25, respectively, for a normally distributed demand with µ=500 and

σ2=1002. We set the carbon emission coefficient α=1. Therefore for the strict cap

and cap and trade analyses we have three parameter sets:

77



1) p=2, c=1, s=0.8, l= 3, α=1, η=0.01

2) p=2, c=1, s=0.8, l= 3, α=1, η=0.1

3) p=2, c=1, s=0.8, l= 3, α=1, η=0.25

All of the calculations in the numerical experiment of this thesis are conducted

for a normally distributed demand with µ=500 and σ2=1002.

In order to investigate the impact of carbon cap on the optimal solution we consider

a given carbon cap tightness which can be defined as the percentage reduction of the

carbon cap that is emitted at the unconstrained optimal solution. Let τ , Kunc and

K represent the carbon cap tightness, carbon emission at the unconstrained optimal

solution and the given carbon cap, respectively, then K=(1− τ)Kunc.

6.2.1 CVaR Maximization with Strict Cap Policy

As we discussed earlier, under the mandatory cap policy the newsvendor cannot

emit more than the given cap. Hence, for a given carbon cap, K, Q∗=min(Qunc, K/α)

where Qunc is the optimal solution of the unconstrained problem. For all values of

K > Kunc, where Kunc=Quncα, Q∗=Qunc. In order to investigate the impact of K, we

study the cases where K < Kunc by introducing carbon cap tightness, τ , explained

above.

In this section we study the impacts of increasing τ on CV aR∗, SL∗ and EP ∗

at η=0.01, 0.1, 0.25. For the same risk aversion levels we also study %Decrease

in CV aR∗, %Decrease in EP ∗, %Decrease in CV aR∗ / %Decrease in Q∗, and %

Decrease in EP ∗ / %Decrease in Q∗ and τ relation.
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SL∗, CV aR∗, and EP ∗ versus τ relations are illustrated in Figures 6.4, 6.5 and

6.6 for η=0.01, 0.1, 0.25, respectively. The general conclusion is that the tighter the

given cap, the less value SL∗, CV aR∗, and EP ∗ obtain.

Tables 6.7, 6.8 and 6.9 provides the data of Figures 6.4, 6.5 and 6.6 and % Decrease

in Q∗, CV aR∗, EP ∗, %Decrease in CV aR∗ / %Decrease in Q∗, and % Decrease in

EP ∗ / %Decrease in Q∗ for further analysis.

In Tables 6.7, 6.8 and 6.9 the range of τ values investigated are different. Recall

that the τ is defined as the percentage reduction from the emission level of the un-

constrained CVaR maximization problem which is a function of η. At each η we first

determine the emission level of unconstrained CVaR maximization problem and then

determine the carbon cap values corresponding to each τ value. Since the carbon

emission coefficient per unit production,α, is set to be 1, those carbon cap values are

the optimal production quantities also. As given in Chapter 4, Section 4.2, producing

according to a binding constraint incurs a Lagrange multiplier value, λ. In order to

determine the V aR∗ and accordingly CV aR∗ we determine the λ values of each τ for

a fixed η by the help of FMINCON function in MATLAB to solve the problem:

Min λ

s.t. Q(λ) = Kα

The optimal λ values can take the values up to the cost of underage value, p− c+ l

since when λ = p − c + l the Q(λ) given in Equation (4.14) in Chapter 4, converges

to −∞ for a demand distribution with a domain of (−∞,∞). At each η , the τ value

at which Q(λ) approaches to −∞ and λ = p− c+ l is different. Hence we observe τ

up to 22 at η = 0.01, τ up to 29 at η = 0.1 and τ up to 34 at η = 0.25.
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In Table 6.4 we see that % Decrease in CV aR∗ > %Decrease in EP ∗ for all τ at

η=0.01. However; Tables 6.5 and 6.6 show that at η=0.1 % Decrease in CV aR∗ <

%Decrease in EP ∗ for τ=1 and 2 and at η=0.25 % Decrease in CV aR∗ < %Decrease

in EP ∗ for τ=1, 2, .., 5. For higher values of τ we see % Decrease in CV aR∗ >

%Decrease in EP ∗.

From a managerial perspective we shall examine the trade off between the %

Decrease in carbon emission and % Decrease in CV aR∗ or % Decrease in carbon

emission and % Decrease in EP ∗. Tables 6.7, 6.8 and 6.9 signify that if a manager

tolerates only a small % Decrease in CV aR∗, then the % Decrease in carbon emission

will be small which is supported by the following instances taken from them:

For η=0.01:

a) % Decrease in Emission = 4, % Decrease in CV aR∗= 3.67, % Decrease in

EP ∗=0.53

b) % Decrease in Emission = 5, % Decrease in CV aR∗= 6.35, % Decrease in

EP ∗=0.31

c) % Decrease in Emission = 22, % Decrease in CV aR∗= 247.58, % Decrease in

EP ∗=19.13

For η=0.1:

a) % Decrease in Emission = 5, % Decrease in CV aR∗= 2.35, % Decrease in

EP ∗=1.41

b) % Decrease in Emission = 7, % Decrease in CV aR∗= 5.32, % Decrease in

EP ∗=2.49
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c) % Decrease in Emission = 22, % Decrease in CV aR∗= 102.27, % Decrease in

EP ∗=25.19

For η=0.25:

a) % Decrease in Emission = 5, % Decrease in CV aR∗= 1.57, % Decrease in

EP ∗=1.74

b) % Decrease in Emission = 10, % Decrease in CV aR∗= 8.34, % Decrease in

EP ∗=5.56

c) % Decrease in Emission = 22, % Decrease in CV aR∗= 64.30, % Decrease in

EP ∗=27.19

It is obvious that CVaR is more sensitive to increasing τ than the expected profit

is. If a manager allows reduction in emission by considering % Decrease in CV aR∗

then the reduction will be small. However if one takes % Decrease in EP ∗ as a basis

then higher reductions in emission will be possible as the given instances imply. Note

that % Decrease in CV aR∗ decreases as η increases. This allows us to conclude that

a less risk-averse newsvendor can make more reduction in emissions with a relatively

less % Decrease in CV aR∗ under strict cap policy.

In addition, %Decrease in EP ∗ for increasing τ increases when η increases from

0.01 to 0.25 while %Decrease in CV aR∗for increasing τ decreases in the same range

of η. The reason for this consequence is our parameter set. As we discussed in Section

6.1, under this settingQ∗ increases as η decreases from 0.4 to 0.01 in order to maximize

CVaR. Hence, intuitively we expect to see the CVaR to increase with increasing η.

However, we have Q∗|η=0.01 > Q∗|η=0.25 causing the % Decrease in EP ∗ to increase

81



when η increases from 0.01 to 0.25. The reason for this is the fact that EP is concave

in Q and increases with increasing Q for Q < Qopt where Qopt is the maximizer of

the expected profit. With a parameter set where l is equal to profit mark-up we can

observe the results that are parallel to our intuition. In order to support this claim

we make the same analysis for the set p=2, c=1, s=0.8, l= 1 for the same demand

distribution and η range. The results of the analysis are illustrated in Figures 6.7,

6.8 and 6.9 and the corresponding data are available in Tables 6.10, 6.11 and 6.12. It

is seen in the tables that Q∗ increases with increasing η and accordingly % Decrease

in EP ∗ decreases with increasing η. % Decrease in CV aR∗ again decreases with

increasing η is it is in the previous parameter set.

%Decrease in CV aR∗ / %Decrease in Q∗, and % Decrease in EP ∗ / %Decrease in

Q∗ and τ relations for the parameter sets p=2, c=1, s=0.8, l= 3 and p=2, c=1, s=0.8,

l= 1 at η=0.01, 0.1 and 0.25 are represented in Figures 6.10 and. 6.11, respectively.

6.2.2 CVaR Maximization with Cap and Trade Policy

In the cap and trade policy the newsvendor searches the optimal production policy

according to relation between the given cap and the thresholds of emission under

carbon trading. As it is claimed in Chapter 4 under Section 4.3, the rationale behind

this analysis comes from comparison of the Lagrange multiplier, λ, cb and cs values.

The parameter settings that will be used throughout the calculations in this section

in order to investigate the optimal policy for specified cb and cs values are given as:

1) p=2, c=1, s=0.8, l= 3, α=1, η=0.01

2) p=2, c=1, s=0.8, l= 3, α=1, η=0.1
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3) p=2, c=1, s=0.8, l= 3, α=1, η=0.25

for a normally distributed demand with µ=500 and σ2=1002.

We determine the cb and cs values as the percentages of the cost of underage value,

p−c+ l, by setting cb=(p−c+ l)∆ and cs=0.95cb for ∆=0.02, 0.10, 0.35, 0.50 and 0.9.

Hence the cb and cs values we analyzed under each parameter setting given above are

(cb, cs)=(0.08, 0.076), (0.4, 0.38), (1.4, 1.33), (2, 1.9), (3.6, 3.42) for ∆=0.02, 0.10, 0.35,

0.50 and 0.9, respectively.

As shown in Section 6.1, Q∗ vs. η relation is parameter sensitive. In order to see

the impact of carbon trading prices on this relation we first analyze Qup, the opti-

mal production quantity when the newsvendor buys carbon, and Qdown, the optimal

production quantity when the newsvendor sells carbon, vs. η relation for changing

carbon prices. We make this analysis for the following parameter sets:

1) p=2, c=1, s=0.8, l= 3, α=1, for (cb, cs)=(0.08, 0.076), (0.4, 0.38),

(0.8, 0.76), (1.4, 1.33), (3, 2.85), (3.6, 3.42)

2) p=2, c=1, s=0.85, l= 1, α=1, for (cb, cs)=(0.08, 0.076), (0.2, 0.19),

(0.4, 0.38), (0.8, 0.76), (1.4, 1.33)

The data of the first set is tabulated in Table 6.13 and the Qup, Qdown vs. η

relation is illustrated in Figures 6.12 and 6.13 for the carbon price set given above.

Recall that, the newsvendor problem parameters, p, c, s and l are the same as the ones

give the counter-intuitive Q∗ vs. η behavior in Section 6.1. Hence we expect Qup and

Qdown to decrease with increasing η up to a certain η and then start to increase up to

η = 1. In Figures, we clearly see that the Qup, Qdown vs. η relation is also parameter
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sensitive. For carbon prices (cb, cs)=(0.08, 0.076), (0.4, 0.38), (0.8, 0.76), the Qup and

Qdown first decrease with increasing η up to a certain η and then they increase with

increasing η which is parallel with our expectation. However, when carbon prices are

further increased we see that Qup and Qdown decrease with increasing η as illustrated

in Figure 6.13.

The similar analysis is conducted for the second parameter set at which Q∗ in-

creases with increasing η for the unconstrained CVaR Maximization problem. In

this setting we expect the Qup, Qdown to increase with increasing η at a fixed carbon

price, however we again see the counter intuitive impact of carbon prices. The Qup,

Qdown data for each η at a fixed carbon price are available in Table 6.14. In Figures

6.14 and 6.15 we observe that Qup and Qdown increase with increasing η at carbon

prices (cb, cs)=(0.08, 0.076), (0.2, 0.19), (0.4, 0.38), (0.8, 0.76) while they decrease with

increasing η at (cb, cs)=(1.4, 1.33).

Analyses of both parameter sets show that the impact of carbon trading prices is

similar to the one of lost sales cost observed in Section 6.1. Hence, we again see that

the optimal production quantity and risk aversion level relation directly depends on

our choice of problem parameters.

The Lagrange multiplier values which are calculated in the strict cap policy section

are compared with the specified carbon prices in order to find the optimal policy. We

have 3 parameter sets and 5 different carbon price values, hence we make analysis of

3 × 5 = 15 cases. We provide the detailed analysis of the cap and trade policy in

Tables 6.15, 6.16,..,6.23. We present the results of the cases with (cb, cs)=(0.08, 0.076),

(1.4, 1.33), (3.6, 3.42). We pick minimum, moderate and maximum values of the

carbon prices in order to gain a general understanding. The data provided in the
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tables imply that for a fixed η the Q∗ value at a fixed τ decreases with increasing cb

and cs. For example from Tables 6.15, 6.16 and 6.17 we see that at η = 0.01 and τ = 1;

Q∗=662.3, 620.5, 584.6 for (cb, cs)=(0.08, 0.076), (1.4, 1.33), (3.6, 3.42), respectively.

However, the CV aR∗, ω∗ and EP ∗ depends on the trading action. Hence in order to

draw a conclusion we must take the optimal action into consideration and compare

the optimal values on the same basis with respect to optimal action. For example

at η = 0.01 and τ = 5 the newsvendor buys carbon at (cb, cs)=(0.08, 0.076) while he

sells carbon at (cb, cs)=(1.4, 1.33), (3.6, 3.42). Here we can compare the cases where

(cb, cs)=(1.4, 1.33), (3.6, 3.42) and it is obvious that CV aR∗, ω∗ and EP ∗ increases

with increasing cs. The opposite is valid for the case where the newsvendor buys

carbon. CV aR∗, ω∗ and EP ∗ decreases with increasing cb.

CV aR∗, ω∗ and EP ∗ versus τ relation for (cb, cs)=(0.08, 0.076), (1.4, 1.33), (3.6, 3.42)

is represented in Figures 6.16, 6.17, and 6.18. In Figures, the left y-axis represents

CV aR∗, ω∗ and the right y-axis gives the EP ∗ values. From the Figures 6.16, 6.17,

and 6.18 and Tables 6.15, 6.16 to 6.23 it is clear that the relation EP ∗ > CV aR∗ > ω∗

holds at each parameter setting and (cb, cs) value.

More detailed investigation of CV aR∗ and τ relation for the parameter set-

tings defined in the begining of the section under the set of carbon prices (cb, cs)=

=(0.08, 0.076), (0.4, 0.38), (1.4, 1.33), (2, 1.9), (3.6, 3.42) are represented in Figure 6.19.

The corresponding data of the Figures are available in Tables 6.24, 6.25 and 6.26.

In this analysis we see that the range of CV aR∗ values realized within the spre-

cified τ range increases with increasing cb and cs. For instance the difference

CV aR|τ=1-CV aR|τ=22 at (cb, cs)=(0.08, 0.076) is less than CV aR|τ=1-CV aR|τ=22 at

(cb, cs)=(3.6, 3.42) as Tables 6.24, 6.25 and 6.26 imply.
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The impact of changing cb and cs on CV aR∗ is further analyzed by

studying % Decrease in CV aR∗ for increasing τ at the set of carbon prices

(cb, cs)=(0.08, 0.076), (0.4, 0.38), (1.4, 1.33), (2, 1.9), (3.6, 3.42) which is summarized by

Figure 6.20. The data related to figure is provided in Tables 6.27, 6.28 and 6.29.

While calculating the % Decrease in CV aR∗ we take the τ=0 as a reference point.

For a specified (cb, cs) value, we first determine the optimal action and corresponding

CV aR∗ at each τ . Then, at τ=t the % Decrease in CV aR∗ is calculated as:

% Decrease in CV aR∗=
(
CV aR∗|τ=0−CV aR∗|τ=t

CV aR∗|τ=0

)
× 100

At higher carbon prices we observe higher % Decrease in CV aR∗ at each τ value.

This consequence is parallel with our conclusion in CV aR∗ carbon price observation in

the previous paragraph. Since increasing the carbon tightness forces the newsvendor

to buy carbon up to the corresponding threshold value, the negative gain increases

with increasing cb and CV aR∗ decreases, accordingly the % Decrease in CV aR∗

increases.

All the observations we provide up to this point are based on the carbon cap

tightness. Since the tightness is considered as the percentage reduction from the

emission released at the unconstrained optimal solution, τ = t corresponds to different

K values at each risk aversion level. In order to examine the risk aversion level

impact on the CV aR∗ under cap and trade policy exactly, we consider the problem

at different K values. For the set of (cb, cs)=(0.08, 0.076), (1.4, 1.33), (3.6, 3.42) we

calculate CV aR∗ by determining the optimal action and corresponding Q∗ values for

K=300,325,..,1000 at η=0.01, 0.1 and 0.25. The CV aR∗ values at each K for specified

carbon prices are available in Table 6.30 and illustrated in Figure 6.21. As the data

and the Figure indicate that higher values of CV aR∗ are attained at higher η values

for each K and (cb, cs) couple which is an intuitive result since CV aR increases with
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decreasing risk aversion, increasing η.

Next, we consider the % Decrease in Emission with respect to the emission released

at unconstrained optimal solution at the given K values with the carbon prices of

(cb, cs)=(0.08, 0.076), (1.4, 1.33), (3.6, 3.42) at each η we specified. At a fixed η, for

each (cb, cs) the newsvendor has different threshold values of carbon to decide whether

to buy, sell or use all carbon without trading. For each of K=300,325,..,1000 the

newsvendor finds the optimal policy implying to buy carbon up to Kup if K < Kup ,

sell carbon down to Kdown if K > Kdown and otherwise use all carbon without trading.

Hence the newsvendor emits: Kup for K < Kup , K for Kup < K < Kdown, and Kdown

for K > Kdown. Note that Kup and Kdown values depend on the carbon price as it

is discussed earlier. First, we determine the carbon buying and selling thresholds for

each carbon price couple at the specified η values. Then the % Decrease in Emission

is calculated as follows:

1 )K < Kup: %DecreaseinEmission=
(
Kunc−Kup

Kunc

)
× 100

2)Kup ≤ K ≤ Kdown: %DecreaseinEmission=
(
Kunc−K
Kunc

)
× 100

3) K > Kdown: %DecreaseinEmission=
(
Kunc−Kdown

Kunc

)
× 100

The % Decrease in Emission and CV aR∗ value realized at each given carbon cap,

K, for different carbon prices and risk aversion level analysis for the parameter set

given at the beginning of this section is illustrated by Figures 6.22, 6.23 and 6.24.

According to the figures higher values of % Decrease in Emission are attained at

higher η values for a fixed (cb, cs) couple. In addition at a fixed η value % Decrease

in Emission increases with increasing carbon prices since the optimal order quantity

is inversely proportional to carbon prices. The range of the values CV aR∗ attains

within the K=[300, 1000] interval increases as the carbon prices increases for a fixed

η. Tables 6.31, 6.32, 6.33 providing the data of Figures 6.22, 6.23 and 6.24 can be
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analyzed for detailed information.

The same experiment is conducted for the parameter set p=2, c=1, s=0.85, l= 1,

α=1, for (cb, cs)=(0.08, 0.076), (1.4, 1.33) and the same conclusions are reached. The

% Decrease in Emission and CV aR∗ vs. K relations are provided in Figures 6.25,

6.26 and 6.27 and the corresponding data is available in Tables 6.34, 6.35 and 6.36.

In Figures 6.28, 6.29 and 6.30 we examine the trade-off between the customer

satisfaction and environmental welfare by determining the %SL∗ and % Decrease in

Emission with respect to the emission level of unconstrained optimal order/production

quantity that correspond to each given carbon cap, K=300, 325, .., 1000. This study is

conducted for three carbon trading prices (cb, cs)=(0.08, 0.076), (1.4, 1.33), (3.6, 3.42)

at each η=0.01, 0.1 and 0.25 with p=2, c=1, s=0.8, l= 3, α=1. The calculation

method is as follows. At a specified carbon trading price and risk aversion level we

calculate the thresholds Kup and Kdown. Then, for each given carbon cap, K, the

optimal policy is determined according to relation between K, Kup and Kdown as

given in Theorem 4.3.1. Determining the optimal policy provides the optimal or-

der/production quantity and the corresponding carbon emission level values directly.

Therefore, we calculate the %SL∗ at the optimal order/ production quantity and

% Decrease in Emission with respect to the emission level of unconstrained optimal

order/production quantity as it is explained in the previous analysis.

According to Figures 6.28, 6.29 and 6.30, we see that at a fixed η, increasing the

carbon trading prices provides the opportunity of decreasing carbon emissions, how-

ever; it decreases the customer satisfaction at the same time. For example, according

to Figure 6.28 we see that at (cb, cs)=(0.08, 0.076), %SL∗ changes in [94.74, 94.77] and

% Decrease in Emission takes values in [1.01, 1.05] while at (cb, cs)=(3.6, 3.42), %SL∗
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changes in [78.85, 80.12] and % Decrease in Emission takes values in [12.6, 13.3].

Since the optimal order/production quantity decreases from η=0.01 to η=0.4 un-

der our parameter setting, as discussed in Section 6.1, we see that at a fixed car-

bon price the %SL∗ decreases and % Decrease in Emission increases when η is in-

creased from 0.01 to 0.1 and 0.25. For instance, at (cb, cs)=(0.08, 0.076), %SL∗ is in

[94.74, 94.77] and % Decrease in Emission is in [1.01, 1.05] at η=0.01, while %SL∗ is

in [90.52, 90.6] and % Decrease in Emission is in [1.47, 1.54] at η=0.25. Therefore, we

conclude that there is a trade-off between being environmentally friendly and satis-

fying the customers. If one wants to emit less then he must takes the risk of losing

some of the customers. For further information Tables 6.37, 6.38 and 6.39 can be

analyzed which tabulates the data related to Figures 6.28, 6.29 and 6.30.

This analysis is made also for the parameter set p=2, c=1, s=0.85, l= 1, α=1, for

(cb, cs)=(0.08, 0.076), (1.4, 1.33) which is summarized by the Figures 6.31, 6.32 and

6.33. The corresponding data is provided in Tables 6.40, 6.41 and 6.42. Contrary to

the outcomes of previous parameter set, in this analysis we see that a less risk averse

newsvendor can increase the customer service level and decrease the carbon emission

at the same time at the carbon trading prices (cb, cs)=(0.08, 0.076) since the optimal

production quantity increases with increasing η. However for (cb, cs)=(1.4, 1.33) the

customer service level first increases when η increases from 0.01 to 0.1 and then

it decreases when η increases from 0.1 to 0.25. However, % Decrease in Emission

increases with increasing η for both (cb, cs)=(0.08, 0.076) and (1.4, 1.33).

Lastly, for the cap and trade problem we discuss the effect of cb on the service level

and % Decrease in Emission. As discussed above each cb gives a Kup value at a fixed

η which is always less than Kunc. Hence, imposing a cap and trade policy decreases
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the carbon emission level even when the newsvendor buys carbon. The logic of the

% Decrease in Emission calculation is the same as case given above for K < Kup. In

order to gain some managerial insights on the cap and trade policy we also consider

the customer service level values corresponding to each cb value. The summary of

this analysis is provided by Figure 6.34 and Table 6.43. In this analysis there is a

trade-off between high % Decrease in emission and service level since increasing cb

decreases service level while decreasing the emission level with respect to the case

where carbon emissions are not taken into consideration.

6.3 CVaR Maximization with Multiple Resource

Constraints

In this section we provide a basic analysis of a multiple resource constrained

problem by analyzing the response of the optimal policy and the objective value to

changing η and resource limits. We first make the analysis of the impact of η on Q∗

and CV aR∗ for the binding resources model and tradeable resources model. For the

sake of simplicity we consider 2 limited resources: carbon allowance and cash.

The impact of η on Q∗ and CV aR∗ under the binding resources model is examined

by using two parameter sets given below:

1) p=2, c=1, s=0.8, l= 3, αcarbon=1, αcash=1, ccarbonb =1.4, ccarbons =1.33, ccashb =1.125,

ccashs =1.1, Kcarbon=600, Kcash=650.

2) p=2, c=1, s=0.8, l= 1, αcarbon=1, αcash=1, ccarbonb =1.4, ccarbons =1.33, ccashb =1.125,

ccashs =1.1, Kcarbon=450, Kcash=510 for a normally distributed demand with µ=500

and σ2=1002.
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The Q∗ and CV aR∗ versus η relation at the binding resource cap model for two

parameter sets given above are illustrated in Figures 6.35 and 6.36,respectively. The

corresponding data is available in Tables 6.44 and 6.45. For both of the data sets ′use

all carbon′ action is optimal and it is clear that CV aR∗ increases with increasing η.

Also, the Q∗ and CV aR∗ versus η relation under the tradeable resources model is

demonstrated in Figure 6.37. Again, we see that the CV aR∗ increases with increasing

η. The detailed analysis of the problem is provided in Tables 6.46. We also see that

Q∗ decreases with increasing η in both binding resource cap and tradeable resources

models which is the outcome of our parameter setting.

We also consider the CVaR maximization problem with tradeable resources under

the same parameter setting given above for changing resource limits at η=0.01 and

0.1. The values of carbon and cash caps at which we investigate the optimal policy

are given as Kcarbon=550, 580, 600, 620 and Kcash=550, 580, 610, 625. When we

consider the impact of changing carbon cap we fix Kcash=650 and Kcarbon=600 is

fixed while analyzing the changing cash cap values. The optimal policy analyses of

the changing resource cap under trading policy are provided in Tables 6.47, 6.48 and

6.49, 6.50 for changing Kcarbon and Kcash, at η=0.01 and 0.1 respectively. The Q∗ and

CV aR∗ values obtained for changing Kcarbon and Kcash is illustrated in Figures 6.38,

6.39 and 6.40, 6.41. In both cases we observe that at Q∗|η=0.1 < Q∗|η=0.01 however

CV aR∗|η=0.1 > CV aR∗|η=0.01. The reason for the Q∗ to decrease with increasing η

is the parameter setting as discussed in Section 6.1. For each case it is valid that

CV aR∗ increases with increasing η. Also it is understood that changing the resource

caps changes the optimal trading policy as the changing carbon cap analysis implies.

In Table 6.47 we see that for Kcarbon=550, 580, 600 the optimal policy is buy carbon
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sell cash while increasing the cap to Kcarbon= 620 changes the optimal policy as sell

carbon sell cash. Besides, if we consider a carbon cap K > 650 in this case we will

see that feasibility of buying carbon and selling cash option is not considered as it

is done for the cap values K < 650. Hence the optimal policy may change. This

case is observed in cash cap change analysis(see Table 6.49). For the cash cap values

Kcash=550, 580 feasibility of the action buy cash sell carbon is considered while for

Kcash=610, 625 feasibility of buy carbon sell cash action is considered. The feasibility

of buying and selling from two of the resources is always checked. However, the

feasibility of other actions in the action set depends on the ordering of resources.

92



FIGURES OF THE NUMERICAL STUDY 
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Figure 6.1: Q∗ and CV aR∗ vs. η at p=1.5, c=1, s=0.8 with l=0.5, 1, and 1.5 under
Unconstrained CVaR Maximization.
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Figure 6.2: Q∗ and CV aR∗ vs. η at p=1.75, c=1, s=0.8 with l=0.75, 1.5, and 2.25
under Unconstrained CVaR Maximization.
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Figure 6.3: Q∗ and CV aR∗ vs. η at p=2, c=1, s=0.8 with l=1, 2, and 3 under
Unconstrained CVaR Maximization.
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Figure 6.9: SL∗,CV aR∗ and EP ∗ vs. τ at p=2, c=1, s=0.8, l=1, η=0.25 under Strict
Cap Policy.
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Figure 6.12: Qup and Qdown vs. η at p=2, c=1, s=0.8, l=3 for
(cb, cs)=(0.08, 0.076), (0.4, 0.38), (0.8, 0.76) under Cap and Trade Policy.
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Figure 6.13: Qup and Qdown vs. η at p=2, c=1, s=0.8, l=3 for
(cb, cs)=(1.4, 1.33), (3, 2.85), (3.6, 3.42) under Cap and Trade Policy.
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Figure 6.14: Qup and Qdown vs. η at p=2, c=1, s=0.85, l=1 for
(cb, cs)=(0.08, 0.076), (0.2, 0.19), (0.4, 0.38) under Cap and Trade Policy.
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Figure 6.15: Qup and Qdown vs. η at p=2, c=1, s=0.85, l=1 for
(cb, cs)=(0.8, 0.76), (1.4, 1.33) under Cap and Trade Policy.
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(cb, cs)=(0.08, 0.076), (1.4, 1.33), (3.6, 3.42) under Cap and Trade Policy.
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Figure 6.17: CV aR∗, ω∗ and EP ∗ vs. τ at p=2, c=1, s=0.8, l=3, η=0.1 for
(cb, cs)=(0.08, 0.076), (1.4, 1.33), (3.6, 3.42) under Cap and Trade Policy.
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Figure 6.18: CV aR∗, ω∗ and EP ∗ vs. τ at p=2, c=1, s=0.8, l=3, η=0.25 for
(cb, cs)=(0.08, 0.076), (1.4, 1.33), (3.6, 3.42) under Cap and Trade Policy.
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Figure 6.19: CV aR∗ vs. τ at p=2, c=1, s=0.8, l=3, η=0.01, 0.1, 0.25 for
(cb, cs)=(0.08, 0.076), (0.4, 0.38), (1.4, 1.33), (2, 1.9), (3.6, 3.42) under Cap and Trade
Policy.

111



 

 

 

 

 

 

0 

20 

40 

60 

80 

100 

120 

140 

160 

180 

0 5 10 15 20 25 

%
 D

e
cr

e
as

e
 in

 C
V

aR
*  

 

Carbon Cap Tightness, τ 

% Decrease in CVaR* vs. Carbon Cap Tightness, η=0.01 

c_b=0.08, 
c_s=0.076 
c_b=0.4, 
c_s=0.38 
c_b=1.4, 
c_s=1.33 
c_b=2, 
c_s=1.9 
c_b=3.6, 
c_s=3.42 

0 

20 

40 

60 

80 

100 

120 

140 

0 5 10 15 20 25 30 35 

%
 D

e
cr

e
as

e
 in

 C
V

aR
*  

 

Carbon Cap Tightness, τ 

% Decrease in CVaR* vs. Carbon Cap Tightness, η=0.1 c_b=0.08, 
c_s=0.076 

c_b=0.4, 
c_s=0.38 

c_b=1.4, 
c_s=1.33 

c_b=2, 
c_s=1.9 

c_b=3.6, 
c_s=3.42 

0 

20 

40 

60 

80 

100 

120 

140 

0 10 20 30 40 

%
 D

e
cr

e
as

e
 in

 C
V

aR
*  

 

Carbon Cap Tightness, τ 

% Decrease in CVaR*  vs. Carbon Cap Tightness, η=0.25 

c_b=0.08, 
c_s=0.076 

c_b=0.4, 
c_s=0.38 

c_b=1.4, 
c_s=1.33 

c_b=2, 
c_s=1.9 

c_b=3.6, 
c_s=3.42 

Figure 6.20: % Decrese in CV aR∗ vs. τ at p=2, c=1, s=0.8, l=3, η=0.01, 0.1,
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Trade Policy.
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Figure 6.21: CV aR∗ vs. K at p=2, c=1, s=0.8, l=3, η=0.01, 0.1, 0.25 for
(cb, cs)=(0.08, 0.076), (1.4, 1.33), (3.6, 3.42) under Cap and Trade Policy.
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Figure 6.22: CV aR∗ and % Decrease in Emission vs. K at p=2, c=1, s=0.8, l=3,
η=0.01 for (cb, cs)=(0.08, 0.076), (1.4, 1.33), (3.6, 3.42) under Cap and Trade Policy.
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Figure 6.23: CV aR∗ and % Decrease in Emission vs. K at p=2, c=1, s=0.8, l=3,
η=0.1 for (cb, cs)=(0.08, 0.076), (1.4, 1.33), (3.6, 3.42) under Cap and Trade Policy.
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Figure 6.24: CV aR∗ and % Decrease in Emission vs. K at p=2, c=1, s=0.8, l=3,
η=0.25 for (cb, cs)=(0.08, 0.076), (1.4, 1.33), (3.6, 3.42) under Cap and Trade Policy.
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Figure 6.25: CV aR∗ and % Decrease in Emission vs. K at p=2, c=1, s=0.85, l=1,
η=0.01 for (cb, cs)=(0.08, 0.076), (1.4, 1.33) under Cap and Trade Policy.
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Figure 6.26: CV aR∗ and % Decrease in Emission vs. K at p=2, c=1, s=0.85, l=1,
η=0.1 for (cb, cs)=(0.08, 0.076), (1.4, 1.33) under Cap and Trade Policy.
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Figure 6.27: CV aR∗ and % Decrease in Emission vs. K at p=2, c=1, s=0.85, l=1,
η=0.25 for (cb, cs)=(0.08, 0.076), (1.4, 1.33) under Cap and Trade Policy.
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Figure 6.28: SL∗ and % Decrease in Emission vs. K at p=2, c=1, s=0.8, l=3, η=0.01
for (cb, cs)=(0.08, 0.076), (1.4, 1.33), (3.6, 3.42) under Cap and Trade Policy.
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Figure 6.29: SL∗ and % Decrease in Emission vs. K at p=2, c=1, s=0.8, l=3, η=0.1
for (cb, cs)=(0.08, 0.076), (1.4, 1.33), (3.6, 3.42) under Cap and Trade Policy.
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Figure 6.30: SL∗ and % Decrease in Emission vs. K at p=2, c=1, s=0.8, l=3, η=0.25
for (cb, cs)=(0.08, 0.076), (1.4, 1.33), (3.6, 3.42) under Cap and Trade Policy.
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Figure 6.31: SL∗ and % Decrease in Emission vs. K at p=2, c=1, s=0.85, l=1,
η=0.01 for (cb, cs)=(0.08, 0.076), (1.4, 1.33) under Cap and Trade Policy.
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Figure 6.32: SL∗ and % Decrease in Emission vs. K at p=2, c=1, s=0.85, l=1, η=0.1
for (cb, cs)=(0.08, 0.076), (1.4, 1.33) under Cap and Trade Policy.
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Figure 6.33: SL∗ and % Decrease in Emission vs. K at p=2, c=1, s=0.85, l=1,
η=0.25 for (cb, cs)=(0.08, 0.076), (1.4, 1.33) under Cap and Trade Policy.
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Figure 6.34: SL∗ and % Decrease in Emission vs. cb at p=2, c=1, s=0.8, l=3, η=0.01,
0.1, 0.25 and cb=(0.08, 0.2, 0.4, 0.8, 1.4, 2, 3, 3.6) under Cap and Trade Policy.
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Figure 6.36: Q∗ and CV aR∗ vs. η at p=2, c=1, s=0.8, l= 1, αcarbon=1, αcash=1,
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Binding Resources Policy.
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Figure 6.37: Q∗ and CV aR∗ vs. η at p=2, c=1, s=0.8, l= 3, αcarbon=1, αcash=1,
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Resource Trading Policy.
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Figure 6.38: Optimal Policy analysis at Kcarbon=550, 580, 600, 620 at p=2, c=1,
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Kcash = 650, η=0.01 under Resource Trading Policy.
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Figure 6.39: Optimal Policy analysis at Kcarbon=550, 580, 600, 620 at p=2, c=1,
s=0.8, l= 3, αcarbon=1, αcash=1, ccarbonb =1.4, ccarbons =1.33, ccashb =1.125, ccashs =1.1,
Kcash = 650, η=0.1 under Resource Trading Policy.
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Figure 6.40: Optimal Policy analysis at Kcash=550, 580, 610, 625 at p=2, c=1, s=0.8,
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Figure 6.41: Optimal Policy analysis at Kcash=550, 580, 610, 625 at p=2, c=1, s=0.8,
l= 3, αcarbon=1, αcash=1, ccarbonb =1.4, ccarbons =1.33, ccashb =1.125, ccashs =1.1, Kcarbon =
600, η=0.1 under Resource Trading Policy.
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TABLES OF THE NUMERICAL STUDY

 

p=1.25, 
c=1 

 
l=0 

 
l=p-c 

 
l=2(p-c) 

 
l=3(p-c) 

s Q* SL* Q* SL* Q* SL* Q* SL* 

0.7 239.14 0.0045 411.84 0.189 503.27 0.5131 560.91 0.7288 

0.75 242.42 0.005 425.45 0.228 518.73 0.5743 576.33 0.7774 

0.8 246.08 0.0056 441.21 0.2783 536.29 0.6417 593.68 0.8256 

0.85 250.23 0.0062 459.83 0.344 556.67 0.7145 613.61 0.872 

0.9 255.00 0.0071 482.65 0.4311 581.21 0.7916 637.47 0.9154 

 

p=1.5, 
c=1 

 
l=0 

 
l=p-c 

 
l=2(p-c) 

 
l=3(p-c) 

s Q* SL* Q* SL* Q* SL* Q* SL* 

0.7 250.23 0.0062 459.83 0.344 556.67 0.7145 613.61 0.872 

0.75 252.53 0.0067 470.59 0.3843 568.28 0.7526 624.91 0.8942 

0.8 255.00 0.0071 482.65 0.4311 581.21 0.7916 637.47 0.9154 

0.85 257.68 0.0077 496.46 0.4859 595.95 0.8313 651.80 0.9355 

0.9 260.60 0.0083 512.92 0.5514 613.56 0.8719 669.03 0.9545 

 

p=1.75, 
c=1 

 
l=0 

 
l=p-c 

 
l=2(p-c) 

 
l=3(p-c) 

s Q* SL* Q* SL* Q* SL* Q* SL* 

0.7 255.00 0.0071 482.65 0.4311 581.21 0.7916 637.47 0.9154 

0.75 256.76 0.0075 491.62 0.4666 590.79 0.818 646.78 0.9289 

0.8 258.63 0.0079 501.58 0.5063 601.42 0.8448 657.13 0.9419 

0.85 260.60 0.0083 512.92 0.5514 613.56 0.8719 669.03 0.9545 

0.9 262.71 0.0088 526.41 0.6041 628.18 0.9 683.51 0.9668 

 

p=2, 
c=1 

 
l=0 

 
l=p-c 

 
l=2(p-c) 

 
l=3(p-c) 

s Q* SL* Q* SL* Q* SL* Q* SL* 

0.7 257.68 0.0077 496.46 0.4859 595.95 0.8313 651.80 0.9355 

0.75 259.11 0.008 504.27 0.517 604.29 0.8515 659.94 0.9451 

0.8 260.60 0.0083 512.92 0.5514 613.56 0.8719 669.03 0.9545 

0.85 262.17 0.0087 522.76 0.59 624.20 0.8929 679.54 0.9637 

0.9 263.81 0.0091 534.53 0.6351 637.14 0.9149 692.51 0.9729 
 

Table 6.1: Q∗ and SL∗ values obtained at η=0.01 under Unconstrained CVaR Maxi-
mization.
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p=1.25, 
c=1 

 
l=0 

 
l=p-c 

 
l=2(p-c) 

 
l=3(p-c) 

s Q* SL* Q* SL* Q* SL* Q* SL* 

0.7 330.94 0.0455 450.17 0.3091 513.83 0.555 554.70 0.7078 

0.75 335.51 0.05 461.06 0.3485 526.02 0.6027 567.02 0.7486 

0.8 340.68 0.0556 473.74 0.3964 540.08 0.6557 581.14 0.7914 

0.85 346.59 0.0625 488.93 0.4559 556.76 0.7148 597.81 0.836 

0.9 353.48 0.0714 507.99 0.5319 577.56 0.781 618.56 0.8821 

 

p=1.5, 
c=1 

 
l=0 

 
l=p-c 

 
l=2(p-c) 

 
l=3(p-c) 

s Q* SL* Q* SL* Q* SL* Q* SL* 

0.7 346.59 0.0625 488.93 0.4559 556.76 0.7148 597.81 0.836 

0.75 349.89 0.0667 497.85 0.4914 566.49 0.747 607.52 0.8588 

0.8 353.48 0.0714 507.99 0.5319 577.56 0.781 618.56 0.8821 

0.85 357.39 0.0769 519.88 0.5788 590.55 0.8174 631.54 0.9058 

0.9 361.70 0.0833 534.53 0.6351 606.68 0.857 647.78 0.9303 

 

p=1.75, 
c=1 

 
l=0 

 
l=p-c 

 
l=2(p-c) 

 
l=3(p-c) 

s Q* SL* Q* SL* Q* SL* Q* SL* 

0.7 353.48 0.0714 507.99 0.5319 577.56 0.781 618.56 0.8821 

0.75 356.05 0.075 515.68 0.5623 585.95 0.805 626.94 0.8978 

0.8 358.78 0.0789 524.38 0.5963 595.48 0.8302 636.49 0.9139 

0.85 361.70 0.0833 534.53 0.6351 606.68 0.857 647.78 0.9303 

0.9 364.83 0.0882 547.06 0.681 620.70 0.8863 662.05 0.9474 

 

p=2, 
c=1 

 
l=0 

 
l=p-c 

 
l=2(p-c) 

 
l=3(p-c) 

s Q* SL* Q* SL* Q* SL* Q* SL* 

0.7 357.39 0.0769 519.88 0.5788 590.55 0.8174 631.54 0.9058 

0.75 359.49 0.08 526.76 0.6055 598.09 0.8367 639.12 0.9179 

0.8 361.70 0.0833 534.53 0.6351 606.68 0.857 647.78 0.9303 

0.85 364.03 0.087 543.62 0.6686 616.82 0.8786 658.09 0.943 

0.9 366.48 0.0909 554.88 0.7084 629.60 0.9025 671.21 0.9566 

 

Table 6.2: Q∗ and SL∗ values obtained at η=0.1 under Unconstrained CVaR Maxi-
mization.
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p=1.25, 
c=1 

 
l=0 

 
l=p-c 

 
l=2(p-c) 

 
l=3(p-c) 

s Q* SL* Q* SL* Q* SL* Q* SL* 

0.7 379.26 0.1136 471.75 0.3888 521.54 0.5853 554.05 0.7056 

0.75 384.97 0.125 481.61 0.427 532.35 0.6268 565.03 0.7422 

0.8 391.47 0.1389 493.13 0.4726 544.94 0.6734 577.77 0.7816 

0.85 399.00 0.1563 507.05 0.5281 560.11 0.7261 593.08 0.824 

0.9 407.92 0.1786 524.77 0.5978 579.43 0.7865 612.60 0.8699 

 

p=1.5, 
c=1 

 
l=0 

 
l=p-c 

 
l=2(p-c) 

 
l=3(p-c) 

s Q* SL* Q* SL* Q* SL* Q* SL* 

0.7 399.00 0.1563 507.05 0.5281 560.11 0.7261 593.08 0.824 

0.75 403.26 0.1667 515.30 0.5608 569.09 0.7552 602.14 0.8465 

0.8 407.92 0.1786 524.77 0.5978 579.43 0.7865 612.60 0.8699 

0.85 413.06 0.1923 536.02 0.6406 591.78 0.8206 625.11 0.8945 

0.9 418.78 0.2083 550.14 0.6919 607.45 0.8587 641.09 0.9209 

 

p=1.75, 
c=1 

 
l=0 

 
l=p-c 

 
l=2(p-c) 

 
l=3(p-c) 

s Q* SL* Q* SL* Q* SL* Q* SL* 

0.7 407.92 0.1786 524.77 0.5978 579.43 0.7865 612.60 0.8699 

0.75 411.29 0.1875 532.02 0.6256 587.38 0.8089 620.65 0.8862 

0.8 414.89 0.1974 540.32 0.6566 596.53 0.8328 629.94 0.9031 

0.85 418.78 0.2083 550.14 0.6919 607.45 0.8587 641.09 0.9209 

0.9 422.98 0.2206 562.47 0.7339 621.38 0.8876 655.43 0.9399 

 

p=2,  
c=1  

l=0 l=p-c l=2(p-c) l=3(p-c) 

s Q* SL* Q* SL* Q* SL* Q* SL* 

0.7 413.06 0.1923 536.02 0.6406 591.78 0.8206 625.11 0.8945 

0.75 415.84 0.2 542.61 0.665 599.06 0.8391 632.51 0.9074 

0.8 418.78 0.2083 550.14 0.6919 607.45 0.8587 641.09 0.9209 

0.85 421.90 0.2174 559.06 0.7226 617.49 0.88 651.41 0.935 

0.9 425.21 0.2273 570.31 0.759 630.38 0.9039 664.78 0.9503 

 

Table 6.3: Q∗ and SL∗ values obtained at η=0.25 under Unconstrained CVaR Maxi-
mization.
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p=1.5, c=1, 
s=0.8 

 
l=0.5 

 
l=1 

 
l=1.5 

η Q* CVaR*  Q* CVaR * Q* CVaR*  

0.01 482.65 64.11 581.21 43.71 637.47 32.08 

0.02 488.91 79.77 579.59 60.93 631.69 50.13 

0.03 493.00 89.53 578.78 71.65 628.30 61.36 

0.04 496.14 96.76 578.30 79.60 625.91 69.69 

0.05 498.74 102.58 577.99 85.99 624.07 76.38 

0.06 500.98 107.47 577.79 91.36 622.58 82.01 

0.07 502.98 111.71 577.66 96.03 621.34 86.90 

0.08 504.79 115.47 577.59 100.16 620.28 91.23 

0.09 506.45 118.86 577.56 103.89 619.36 95.13 

0.1 507.99 121.96 577.56 107.29 618.56 98.69 

0.2 519.98 143.99 578.56 131.53 613.79 124.09 

0.3 529.19 158.66 580.46 147.68 611.84 141.03 

0.4 537.42 170.21 582.93 160.42 611.26 154.41 

0.5 545.35 180.04 585.95 171.30 611.64 165.84 

0.6 553.40 188.83 589.59 181.06 612.88 176.13 

0.7 561.93 196.97 594.05 190.15 615.07 185.73 

0.8 571.41 204.73 599.69 198.87 618.49 195.00 

0.9 582.53 212.33 607.25 207.52 623.88 204.26 

1 596.74 220.02 618.68 216.47 633.52 214.01 
 

 

 

 

 

 

Table 6.4: Q∗ and CV aR∗ values at p=1.5, c=1, s=0.8 for l=0.5, 1, and 1.5 for
changing η under Unconstrained CVaR Maximization.

 

 

 

 

 

p=1.75, 
c=1, s=0.8 

 
l=0.75 

 
l=1.5 

 
l=2.25 

η Q* CVaR*  Q* CVaR * Q* CVaR*  

0.01 501.58 118.76 601.42 98.06 657.13 86.55 

0.02 507.07 140.70 599.11 121.54 650.82 110.82 
0.03 510.70 154.38 597.89 136.18 647.12 125.94 

0.04 513.52 164.54 597.12 147.04 644.51 137.17 
0.05 515.87 172.70 596.59 155.77 642.51 146.19 

0.06 517.92 179.57 596.20 163.12 640.89 153.79 

0.07 519.74 185.54 595.93 169.50 639.53 160.38 
0.08 521.41 190.83 595.72 175.17 638.38 166.24 

0.09 522.94 195.60 595.58 180.27 637.37 171.51 
0.1 524.38 199.96 595.48 184.93 636.49 176.33 

0.2 535.70 231.08 595.84 218.23 631.26 210.75 
0.3 544.63 251.89 597.42 240.52 629.08 233.80 

0.4 552.77 268.34 599.71 258.17 628.35 252.07 

0.5 560.76 282.43 602.64 273.32 628.65 267.76 
0.6 569.04 295.11 606.29 286.99 629.86 281.95 

0.7 578.02 306.95 610.88 299.80 632.09 295.28 
0.8 588.31 318.35 616.87 312.22 635.68 308.26 

0.9 600.96 329.69 625.27 324.72 641.57 321.41 

1 618.68 341.47 639.42 338.02 653.41 335.65 
 

 

 

 

 

 

Table 6.5: Q∗ and CV aR∗ values at p=1.75, c=1, s=0.8 for l=0.75, 1.5, and 2.25 for
changing η under Unconstrained CVaR Maximization.
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p=2, c=1, 
s=0.8 

  
l=1 

  
l=2 

 
l=3 

η Q* CVaR*  Q* CVaR * Q* CVaR*  

0.01 512.92 174.90 613.56 154.03 669.03 142.57 

0.02 518.03 203.04 610.95 183.69 662.51 173.00 

0.03 521.45 220.59 609.56 202.19 658.70 191.97 

0.04 524.12 233.62 608.67 215.92 656.02 206.06 

0.05 526.36 244.10 608.05 226.96 653.95 217.39 

0.06 528.31 252.93 607.60 236.27 652.29 226.93 

0.07 530.06 260.60 607.26 244.35 650.90 235.22 

0.08 531.66 267.41 607.01 251.52 649.72 242.58 

0.09 533.14 273.55 606.82 257.99 648.69 249.21 

0.1 534.53 279.15 606.68 263.89 647.78 255.27 

0.2 545.58 319.24 606.82 306.15 642.44 298.62 

0.3 554.41 346.13 608.30 334.50 640.21 327.72 

0.4 562.55 367.45 610.55 357.02 639.47 350.85 

0.5 570.62 385.77 613.48 376.40 639.78 370.77 

0.6 579.06 402.31 617.18 393.94 641.02 388.82 

0.7 588.34 417.83 621.88 410.45 643.30 405.86 

0.8 599.15 432.87 628.10 426.55 647.01 422.52 

0.9 612.87 447.99 637.07 442.90 653.25 439.54 

1 633.52 464.01 653.41 460.65 666.84 458.34 
 

 

 

 

 

 

 

Table 6.6: Q∗ and CV aR∗ values at p=2, c=1, s=0.8 with l=1, 2, and 3 for changing
η under Unconstrained CVaR Maximization.
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η= 0.01 

 
τ 

 
Q

* 
 

CVaR
* 

 
VaR

*
, 

ω
* 

 
EP

* 
 

SL
*
 

% 
Decrease 

in Q
* 

% 
Decrease 

in EP
* 

% 
Decrease 
in CVaR

*
 

(% Decrease 
in CVaR

*
)/ 

(% Decrease 
in Q

*
) 

(% Decrease in 
EP

*
)/ 

(% Decrease in 
Q

*
) 

0 669.02 142.57 184.84 458.33 0.95 0.00 0.00 0 - - 

1 662.34 142.33 185.33 458.30 0.95 1.00 0.01 0.17 0.17 0.01 

2 655.65 141.51 185.52 458.06 0.94 2.00 0.06 0.74 0.37 0.03 

3 648.96 139.92 185.32 457.60 0.93 3.00 0.16 1.86 0.62 0.05 

4 642.26 137.34 184.63 456.90 0.92 4.00 0.31 3.67 0.92 0.08 

5 635.57 133.51 183.29 455.92 0.91 5.00 0.53 6.35 1.27 0.11 

6 628.88 128.13 181.13 454.64 0.90 6.00 0.81 10.13 1.69 0.13 

7 622.19 120.87 177.92 453.04 0.89 7.00 1.15 15.22 2.17 0.16 

8 615.51 111.38 173.39 451.08 0.88 8.00 1.58 21.88 2.74 0.20 

9 608.82 99.37 167.19 448.74 0.86 9.00 2.09 30.30 3.37 0.23 

10 602.13 84.61 158.90 445.98 0.85 10.00 2.69 40.65 4.07 0.27 

11 595.44 67.03 148.05 442.77 0.83 11.00 3.39 52.98 4.82 0.31 

12 588.75 46.74 134.18 439.09 0.81 12.00 4.20 67.22 5.60 0.35 

13 582.05 24.13 116.98 434.90 0.79 13.00 5.11 83.07 6.39 0.39 

14 575.36 -0.25 96.56 430.18 0.77 14.00 6.14 100.18 7.16 0.44 

15 568.67 -25.80 73.48 424.90 0.75 15.00 7.29 118.10 7.87 0.49 

16 561.98 -52.00 48.60 419.02 0.73 16.00 8.58 136.47 8.53 0.54 

17 555.31 -78.47 22.75 412.54 0.71 17.00 9.99 155.04 9.12 0.59 

18 548.62 -105.12 -3.63 405.40 0.69 18.00 11.55 173.73 9.65 0.64 

19 541.99 -131.62 -30.02 397.67 0.66 18.99 13.24 192.32 10.13 0.70 

20 535.46 -157.73 -56.09 389.39 0.64 19.96 15.04 210.63 10.55 0.75 

21 528.43 -185.85 -84.20 379.73 0.61 21.01 17.15 230.36 10.96 0.82 

22 522.29 -210.4 -108.7 370.65 0.59 21.93 19.13 247.58 11.29 0.87 

 

 

 

Table 6.7: Q∗, CV aR∗, ω∗, EP ∗, SL∗, % Decrease in Q∗, % Decrease in EP ∗,
% Decrease in CV aR∗, % Decrease in CV aR∗/% Decrease in Q∗, % Decrease in
EP ∗/% Decrease in Q∗ for changing τ at p=2, c=1, s=0.8, l=3, η=0.01 under Strict
Cap Policy.
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η= 0.1 

 
τ 

 
Q

* 
 

CVaR
* 

 
VaR

*
, 

ω
* 

 
EP

* 
 

SL
*
 

% 
Decreas
e in Q

* 

% 
Decrease 

in EP
* 

% 
Decrease 
in CVaR

*
 

(% Decrease 
in CVaR

*
)/ 

(% Decrease 
in Q

*
) 

(% Decrease in 
EP

*
)/ 

(% Decrease in 
Q

*
) 

0 647.78 255.27 313.34 457.50 0.93 0.00 0.00 0 - - 

1 641.31 255.09 313.67 456.78 0.92 1.00 0.16 0.07 0.07 0.16 

2 634.83 254.50 313.76 455.79 0.91 2.00 0.37 0.30 0.15 0.19 

3 628.35 253.41 313.57 454.53 0.90 3.00 0.65 0.73 0.24 0.22 

4 621.87 251.71 313.03 452.95 0.89 4.00 0.99 1.39 0.35 0.25 

5 615.39 249.28 312.10 451.04 0.88 5.00 1.41 2.35 0.47 0.28 

6 608.92 245.99 310.72 448.77 0.86 6.00 1.91 3.64 0.61 0.32 

7 602.44 241.69 308.80 446.11 0.85 7.00 2.49 5.32 0.76 0.36 

8 595.96 236.24 306.27 443.04 0.83 8.00 3.16 7.45 0.93 0.40 

9 589.48 229.48 303.04 439.52 0.81 9.00 3.93 10.10 1.12 0.44 

10 583.01 221.27 299.00 435.53 0.80 10.00 4.80 13.32 1.33 0.48 

11 576.53 211.46 294.06 431.04 0.78 11.00 5.78 17.16 1.56 0.53 

12 570.05 199.92 288.07 426.03 0.76 12.00 6.88 21.68 1.81 0.57 

13 563.57 186.57 280.89 420.47 0.74 13.00 8.09 26.91 2.07 0.62 

14 557.09 171.33 272.33 414.33 0.72 14.00 9.44 32.88 2.35 0.67 

15 550.62 154.21 262.19 407.60 0.69 15.00 10.91 39.59 2.64 0.73 

16 544.14 135.26 250.25 400.25 0.67 16.00 12.51 47.01 2.94 0.78 

17 537.66 114.60 236.29 392.26 0.65 17.00 14.26 55.11 3.24 0.84 

18 531.18 92.43 220.11 383.61 0.62 18.00 16.15 63.79 3.54 0.90 

19 524.71 69.03 201.65 374.30 0.60 19.00 18.19 72.96 3.84 0.96 

20 518.23 44.64 180.98 364.30 0.57 20.00 20.37 82.51 4.13 1.02 

21 511.75 19.61 158.46 353.61 0.55 21.00 22.71 92.32 4.40 1.08 

22 505.27 -5.80 134.59 342.24 0.52 22.00 25.19 102.27 4.65 1.15 

23 498.80 -31.47 109.76 330.15 0.50 23.00 27.84 112.33 4.88 1.21 

24 492.34 -57.22 84.45 317.39 0.47 24.00 30.63 122.42 5.10 1.28 

25 485.82 -83.23 58.65 303.83 0.44 25.00 33.59 132.60 5.30 1.34 

26 479.33 -109.17 32.79 289.61 0.42 26.00 36.70 142.77 5.49 1.41 

27 472.99 -134.53 7.47 275.05 0.39 26.98 39.88 152.70 5.66 1.48 

28 465.04 -166.35 -24.33 255.87 0.36 28.21 44.07 165.17 5.85 1.56 

29 460.83 -183.19 -41.17 245.32 0.35 28.86 46.38 171.76 5.95 1.61 

 

 

Table 6.8: Q∗, CV aR∗, ω∗, EP ∗, SL∗, % Decrease in Q∗, % Decrease in EP ∗,
% Decrease in CV aR∗, % Decrease in CV aR∗/% Decrease in Q∗, % Decrease in
EP ∗/% Decrease in Q∗ for changing τ at p=2, c=1, s=0.8, l=3, η=0.1 under Strict
Cap Policy.
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η= 0.25 

 
τ 

 
Q

* 
 

CVaR
* 

 
VaR

*
, 

ω
* 

 
EP

* 
 

SL
*
 

% 
Decrease 

in Q
* 

% 
Decrease 

in EP
* 

% 
Decrease 
in CVaR

*
 

(% Decrease 
in CVaR

*
)/ 

(% Decrease 
in Q

*
) 

(% Decrease in 
EP

*
)/ 

(% Decrease in 
Q

*
) 

0 641.09 314.21 386.29 456.75 0.92 0 0 0 - - 

1 634.67 314.05 386.43 455.77 0.91 1.00 0.21 0.05 0.05 0.21 

2 628.26 313.55 386.34 454.51 0.90 2.00 0.49 0.21 0.10 0.25 

3 621.85 312.64 385.98 452.95 0.89 3.00 0.83 0.50 0.17 0.28 

4 615.44 311.25 385.32 451.06 0.88 4.00 1.25 0.94 0.24 0.31 

5 609.03 309.29 384.34 448.82 0.86 5.00 1.74 1.57 0.31 0.35 

6 602.63 306.69 382.98 446.20 0.85 6.00 2.31 2.39 0.40 0.39 

7 596.21 303.35 381.21 443.17 0.83 7.00 2.97 3.46 0.49 0.42 

8 589.80 299.19 379.00 439.70 0.82 8.00 3.73 4.78 0.60 0.47 

9 583.39 294.10 376.31 435.78 0.80 9.00 4.59 6.40 0.71 0.51 

10 576.98 287.99 373.10 431.37 0.78 10.00 5.56 8.34 0.83 0.56 

11 570.57 280.78 369.32 426.45 0.76 11.00 6.63 10.64 0.97 0.60 

12 564.16 272.36 364.92 421.00 0.74 12.00 7.83 13.32 1.11 0.65 

13 557.75 262.67 359.87 414.98 0.72 13.00 9.15 16.40 1.26 0.70 

14 551.34 251.63 354.09 408.38 0.70 14.00 10.59 19.92 1.42 0.76 

15 544.93 239.19 347.53 401.17 0.67 15.00 12.17 23.88 1.59 0.81 

16 538.51 225.30 340.10 393.34 0.65 16.00 13.88 28.30 1.77 0.87 

17 532.10 209.95 331.71 384.88 0.63 17.00 15.74 33.18 1.95 0.93 

18 525.69 193.12 322.23 375.76 0.60 18.00 17.73 38.54 2.14 0.99 

19 519.28 174.85 311.55 365.97 0.58 19.00 19.88 44.35 2.33 1.05 

20 512.87 155.21 299.49 355.51 0.55 20.00 22.17 50.60 2.53 1.11 

21 506.46 134.28 285.90 344.37 0.53 21.00 24.60 57.26 2.73 1.17 

22 500.05 112.18 270.60 332.54 0.50 22.00 27.19 64.30 2.92 1.24 

23 493.64 89.08 253.45 320.02 0.47 23.00 29.94 71.65 3.12 1.30 

24 488.38 69.49 237.95 309.23 0.45 23.82 32.30 77.88 3.27 1.36 

25 480.82 40.58 213.51 292.92 0.42 25.00 35.87 87.09 3.48 1.43 

26 474.41 15.59 191.07 278.36 0.40 26.00 39.06 95.04 3.66 1.50 

27 467.99 -9.71 167.39 263.12 0.37 27.00 42.39 103.09 3.82 1.57 

28 461.60 -35.10 142.93 247.28 0.35 28.00 45.86 111.17 3.97 1.64 

29 455.20 -60.62 117.91 230.78 0.33 29.00 49.47 119.29 4.11 1.71 

30 448.78 -86.23 92.55 213.63 0.30 30.00 53.23 127.44 4.25 1.77 

31 442.44 -111.57 67.33 196.07 0.28 30.99 57.07 135.51 4.37 1.84 

32 435.77 -138.26 40.69 176.99 0.26 32.03 61.25 144.00 4.50 1.91 

33 430.08 -161.02 17.95 160.23 0.24 32.91 64.92 151.25 4.60 1.97 

34 423.06 -189.11 -10.13 138.96 0.22 34.01 69.58 160.19 4.71 2.05 

 
Table 6.9: Q∗, CV aR∗, ω∗, EP ∗, SL∗, % Decrease in Q∗, % Decrease in EP ∗,
% Decrease in CV aR∗, % Decrease in CV aR∗/% Decrease in Q∗, % Decrease in
EP ∗/% Decrease in Q∗ for changing τ at p=2, c=1, s=0.8, l=3, η=0.25 under Strict
Cap Policy.
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η= 0.01 

 
τ 

 
Q

* 
 

CVaR
* 

 
VaR

*
, 

ω
* 

 
EP

* 
 

SL
*
 

% Decrease 
in Q

* 
% Decrease 

in EP
* 

% Decrease 
in CVaR

*
 

0 522.76 188.10 225.95 433.07 0.59 0.00 0.00 0.00 

1 517.53 187.95 225.42 429.13 0.57 1.00 0.91 0.08 

2 512.30 187.44 224.46 424.96 0.55 2.00 1.87 0.35 

3 507.07 186.47 222.97 420.56 0.53 3.00 2.89 0.87 

4 501.84 184.93 220.87 415.92 0.51 4.00 3.96 1.69 

5 496.62 182.74 218.11 411.05 0.49 5.00 5.08 2.85 

6 491.39 179.80 214.62 405.95 0.47 6.00 6.26 4.41 

7 486.16 176.06 210.37 400.61 0.45 7.00 7.49 6.40 

8 480.93 171.47 205.36 395.04 0.42 8.00 8.78 8.84 

9 475.71 166.04 199.61 389.24 0.40 9.00 10.12 11.73 

10 470.48 159.79 193.15 383.21 0.38 10.00 11.51 15.05 

11 465.25 152.78 186.02 376.96 0.36 11.00 12.96 18.78 

12 460.02 145.10 178.29 370.49 0.34 12.00 14.45 22.86 

13 454.80 136.82 170.03 363.80 0.33 13.00 16.00 27.26 

14 449.57 128.05 161.31 356.89 0.31 14.00 17.59 31.93 

15 444.34 118.88 152.22 349.79 0.29 15.00 19.23 36.80 

16 439.11 109.36 142.79 342.48 0.27 16.00 20.92 41.86 

17 433.89 99.61 133.12 334.98 0.25 17.00 22.65 47.05 

18 428.65 89.64 123.23 327.28 0.24 18.00 24.43 52.35 

19 423.44 79.57 113.23 319.43 0.22 19.00 26.24 57.70 

20 418.19 69.33 103.05 311.36 0.21 20.00 28.10 63.14 

21 412.95 59.03 92.79 303.12 0.19 21.00 30.01 68.62 

22 407.77 48.78 82.57 294.81 0.18 22.00 31.92 74.07 

 

 

 

Table 6.10: Q∗, CV aR∗, ω∗, EP ∗, SL∗, % Decrease in Q∗, % Decrease in EP ∗,
% Decrease in CV aR∗, % Decrease in CV aR∗/% Decrease in Q∗, % Decrease in
EP ∗/% Decrease in Q∗ for changing τ at p=2, c=1, s=0.8, l=1, η=0.01 under Strict
Cap Policy.
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η= 0.1 

 
τ 

 
Q

* 
 

CVaR
* 

 
VaR

*
, 

ω
* 

 
EP

* 
 

SL
*
 

% Decrease 
in Q

* 
% Decrease in 

EP
* 

% Decrease in 
CVaR

*
 

0 543.62 289.19 341.39 446.54 0.67 0.00 0.00 0.00 

1 538.18 289.07 340.64 443.37 0.65 1.00 0.71 0.04 

2 532.74 288.65 339.53 439.96 0.63 2.00 1.47 0.19 

3 527.30 287.89 337.99 436.31 0.61 3.00 2.29 0.45 

4 521.87 286.72 336.00 432.42 0.59 4.00 3.16 0.85 

5 516.43 285.09 333.52 428.27 0.57 5.00 4.09 1.42 

6 511.00 282.94 330.53 423.88 0.54 6.00 5.07 2.16 

7 505.56 280.22 327.01 419.24 0.52 7.00 6.11 3.10 

8 500.13 276.89 322.97 414.35 0.50 8.00 7.21 4.25 

9 494.69 272.93 318.39 409.20 0.48 9.00 8.36 5.62 

10 489.25 268.31 313.29 403.79 0.46 10.00 9.57 7.22 

11 483.82 263.05 307.66 398.14 0.44 11.00 10.84 9.04 

12 478.38 257.13 301.53 392.23 0.41 12.00 12.16 11.09 

13 472.94 250.59 294.89 386.08 0.39 13.00 13.54 13.35 

14 467.51 243.46 287.79 379.69 0.37 14.00 14.97 15.81 

15 462.07 235.77 280.22 373.05 0.35 15.00 16.46 18.47 

16 456.64 227.57 272.22 366.18 0.33 16.00 18.00 21.31 

17 451.20 218.91 263.82 359.08 0.31 17.00 19.59 24.30 

18 445.76 209.83 255.03 351.74 0.29 18.00 21.23 27.44 

19 440.33 200.42 245.91 344.20 0.28 19.00 22.92 30.70 

20 434.89 190.69 236.47 336.43 0.26 20.00 24.66 34.06 

21 429.45 180.72 226.77 328.47 0.24 21.00 26.44 37.51 

22 424.02 170.55 216.85 320.31 0.22 22.00 28.27 41.02 

 

 

 

Table 6.11: Q∗, CV aR∗, ω∗, EP ∗, SL∗, % Decrease in Q∗, % Decrease in EP ∗, %
Decrease in CV aR∗, % Decrease in CV aR∗/% Decrease in Q∗, % Decrease in EP ∗/%
Decrease in Q∗ for changing τ at p=2, c=1, s=0.8, l=1, η=0.1 under Strict Cap Policy.
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η= 0.25 

 
τ 

 
Q

* 
 

CVaR
* 

 
VaR

*
, 

ω
* 

 
EP

* 
 

SL
*
 

% Decrease 
in Q

* 
% Decrease in 

EP
* 

% Decrease in 
CVaR

*
 

0 559.06 342.22 407.14 454.32 0.72 0.00 0.00 0.00 

1 553.46 342.11 406.13 451.71 0.70 1.00 0.60 0.03 

2 547.88 341.74 404.76 448.87 0.68 2.00 1.26 0.14 

3 542.28 341.07 403.01 445.78 0.66 3.00 1.97 0.34 

4 536.69 340.06 400.86 442.46 0.64 4.00 2.74 0.63 

5 531.10 338.67 398.30 438.88 0.62 5.00 3.56 1.04 

6 525.52 336.86 395.33 435.05 0.60 6.00 4.45 1.57 

7 519.92 334.59 391.94 430.96 0.58 7.00 5.39 2.23 

8 514.33 331.84 388.14 426.61 0.56 8.00 6.40 3.03 

9 508.74 328.57 383.92 421.98 0.53 9.00 7.47 3.99 

10 503.15 324.77 379.31 417.10 0.51 10.00 8.59 5.10 

11 497.56 320.43 374.31 411.94 0.49 11.00 9.78 6.37 

12 491.97 315.54 368.91 406.52 0.47 12.00 11.04 7.80 

13 486.38 310.09 363.12 400.83 0.45 13.00 12.35 9.39 

14 480.79 304.09 356.96 394.88 0.42 14.00 13.73 11.14 

15 475.20 297.56 350.43 388.66 0.40 15.00 15.16 13.05 

16 469.61 290.52 343.52 382.19 0.38 16.00 16.66 15.11 

17 464.02 282.97 336.25 375.45 0.36 17.00 18.21 17.31 

18 458.42 274.95 328.61 368.46 0.34 18.00 19.83 19.66 

19 452.84 266.51 320.63 361.24 0.32 19.00 21.49 22.12 

20 447.25 257.65 312.29 353.76 0.30 20.00 23.22 24.71 

21 441.65 248.43 303.62 346.06 0.28 21.00 25.00 27.41 

22 436.07 238.89 294.64 338.13 0.26 22.00 26.83 30.19 

 

 Table 6.12: Q∗, CV aR∗, ω∗, EP ∗, SL∗, % Decrease in Q∗, % Decrease in EP ∗,
% Decrease in CV aR∗, % Decrease in CV aR∗/% Decrease in Q∗, % Decrease in
EP ∗/% Decrease in Q∗ for changing τ at p=2, c=1, s=0.8, l=1, η=0.25 under Strict
Cap Policy.

141



 

 

 

 

 
(cb,cs) 

(0.08,0.076) 
(cb,cs) 

(0.4,0.38) 
(cb,cs) 

(0.8,0.76) 
(cb,cs) 

(1.4,1.33) 
(cb,cs) 

(3,2.85) 
(cb,cs) 

(3.6,3.42) 

η Qup Qdown Qup Qdown Qup Qdown Qup Qdown Qup Qdown Qup Qdown 

0.1 639.04 639.42 617.31 618.34 600.59 602.01 582.69 584.54 545.63 549.16 528.57 534.54 

0.2 632.88 633.30 608.77 609.93 589.85 591.47 569.19 571.35 525.64 529.78 505.87 512.71 

0.3 630.04 630.49 604.11 605.37 583.42 585.20 560.47 562.87 511.25 515.94 489.12 496.72 

0.4 628.79 629.26 601.24 602.59 578.92 580.86 553.82 556.47 499.08 504.31 474.58 482.93 

0.5 628.60 629.10 599.52 600.95 575.61 577.70 548.38 551.27 487.93 493.75 460.88 470.06 

0.6 629.36 629.88 598.71 600.24 573.18 575.43 543.74 546.88 477.19 483.65 447.19 457.33 

0.7 631.13 631.67 598.78 600.40 571.49 573.90 539.70 543.11 466.38 473.60 432.78 444.12 

0.8 634.21 634.78 599.82 601.56 570.53 573.12 536.14 539.84 455.10 463.25 416.67 429.71 

0.9 639.47 640.09 602.19 604.07 570.37 573.19 533.01 537.04 442.83 452.19 397.08 412.91 

1 650.11 650.85 606.76 608.89 571.24 574.36 530.30 534.70 428.76 439.87 369.08 391.11 

 

 

 

 

Table 6.13: Qup and Qdown vs. η at p=2, c=1, s=0.8, l=3,
(cb, cs)=(0.08, 0.076), (0.4, 0.38), (0.8, 0.76), (1.4, 1.33), (3, 2.85), (3.6, 3.42) under
Strict Cap Policy.
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(cb,cs) 

(0.08,0.076) 
(cb,cs) 

(0.2,0.19) 
(cb,cs) 

(0.4,0.38) 
(cb,cs) 

(0.8,0.76) 
(cb,cs) 

(1.4,1.33) 

η Qup Qdown Qup Qdown Qup Qdown Qup Qdown Qup Qdown 

0.1 535.07 535.45 525.58 526.28 513.48 514.57 494.16 495.98 465.63 469.35 

0.2 544.97 545.39 534.21 535.01 520.28 521.54 497.69 499.82 464.29 468.60 

0.3 552.97 553.42 541.15 542.03 525.67 527.08 500.25 502.66 462.66 467.49 

0.4 560.39 560.88 547.57 548.53 530.59 532.14 502.44 505.11 460.82 466.13 

0.5 567.78 568.31 553.93 554.97 535.40 537.10 504.45 507.39 458.72 464.53 

0.6 575.53 576.10 560.54 561.68 540.32 542.19 506.38 509.61 456.32 462.67 

0.7 584.05 584.67 567.71 568.95 545.55 547.59 508.31 511.85 453.55 460.48 

0.8 593.94 594.62 575.84 577.21 551.29 553.55 510.29 514.18 450.28 457.88 

0.9 606.34 607.12 585.57 587.14 557.83 560.36 512.38 516.65 446.34 454.75 

1 624.28 625.29 598.31 600.21 565.63 568.55 514.63 519.36 441.44 450.88 

 

 

 

 

 

Table 6.14: Qup and Qdown vs. η at p=2, c=1, s=0.85, l=1,
(cb, cs)=(0.08, 0.076), (0.2, 0.19), (0.4, 0.38), (0.8, 0.76), (1.4, 1.33) under Strict Cap
Policy.
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cb=0.08, cs=0.076, η=0.01 

 
τ 

 
λ 

 
λ, cb, cs  

comparison 

Optimal 
Action 

 
Q* 

 
CVaR* 

 
VaR*, ω* 

 
EP* 

0 0.000 c_b>c_s >λ Sell 662.3 142.8 185.8 458.8 

1 0.076 c_b>c_s = λ Sell 662.3 142.3 185.3 458.3 

1.02 0.077 c_b> λ >c_s No Trade 662.2 142.3 185.3 458.3 

1.03 0.078 c_b> λ >c_s No Trade 662.1 142.3 185.3 458.3 

1.04 0.079 c_b> λ >c_s No Trade 662.1 142.3 185.3 458.3 

2 0.175 λ >c_b>c_s  Buy 661.9 141.8 184.8 457.8 

3 0.305 λ >c_b>c_s  Buy 661.9 141.3 184.3 457.2 

4 0.471 λ >c_b>c_s Buy 661.9 140.7 183.8 456.7 

5 0.680 λ >c_b>c_s Buy 661.9 140.2 183.2 456.2 

6 0.937 λ >c_b>c_s Buy 661.9 139.7 182.7 455.6 

7 1.244 λ >c_b>c_s Buy 661.9 139.1 182.2 455.1 

8 1.600 λ >c_b>c_s Buy 661.9 138.6 181.6 454.6 

9 1.997 λ >c_b>c_s Buy 661.9 138.0 181.1 454.0 

10 2.418 λ >c_b>c_s Buy 661.9 137.5 180.6 453.5 

11 2.837 λ >c_b>c_s Buy 661.9 137.0 180.0 453.0 

12 3.218 λ >c_b>c_s Buy 661.9 136.4 179.5 452.4 

13 3.528 λ >c_b>c_s Buy 661.9 135.9 179.0 451.9 

14 3.746 λ >c_b>c_s Buy 661.9 135.4 178.4 451.4 

15 3.878 λ >c_b>c_s Buy 661.9 134.8 177.9 450.8 

16 3.947 λ >c_b>c_s Buy 661.9 134.3 177.3 450.3 

17 3.979 λ >c_b>c_s Buy 661.9 133.8 176.8 449.8 

18 3.992 λ >c_b>c_s Buy 661.9 133.2 176.3 449.2 

19 3.997 λ >c_b>c_s Buy 661.9 132.7 175.7 448.7 

20 3.999 λ >c_b>c_s Buy 661.9 132.2 175.2 448.2 

21 3.9997 λ >c_b>c_s Buy 661.9 131.6 174.7 447.6 

22 3.9999 λ >c_b>c_s Buy 661.9 131.1 174.2 447.1 

 

Table 6.15: λ, (λ, cb, cs) comparison, Optimal Action, Q∗, CV aR∗, ω∗, EP ∗, for
changing τ at p=2, c=1, s=0.8, l=3, cb = 0.08, cs = 0.76, η=0.01 under Cap and
Trade Policy.
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cb=1.4, cs=1.33, η=0.01 

 
τ 

 
λ 

 
λ, cb, cs  

comparison 

Optimal 
Action 

 
Q* 

 
CVaR* 

 
VaR*, ω* 

 
EP* 

0 0.000 c_b>c_s >λ  Sell 620.5 183.2 241.5 517.1 

1 0.076 c_b>c_s >λ Sell 620.5 174.3 232.6 508.2 

2 0.175 c_b>c_s >λ Sell 620.5 165.4 223.7 499.3 

3 0.305 c_b>c_s >λ Sell 620.5 156.5 214.8 490.4 

4 0.471 c_b>c_s >λ Sell 620.5 147.6 205.9 481.5 

5 0.680 c_b>c_s >λ Sell 620.5 138.7 197.0 472.6 

6 0.937 c_b>c_s >λ Sell 620.5 129.8 188.1 463.7 

7 1.244 c_b>c_s >λ Sell 620.5 120.9 179.2 454.8 

7.31 1.350 c_b> λ >c_s No Trade 620.1 118.2 176.7 452.5 

7.37 1.370 c_b> λ >c_s No Trade 619.7 117.6 176.4 452.4 

7.43 1.390 c_b> λ >c_s No Trade 619.3 117.1 176.2 452.2 

8 1.600 λ >c_b>c_s  Buy 619.2 111.7 170.9 447.1 

9 1.997 λ >c_b>c_s  Buy 619.2 102.4 161.6 437.7 

10 2.418 λ >c_b>c_s  Buy 619.2 93.0 152.2 428.4 

11 2.837 λ >c_b>c_s  Buy 619.2 83.6 142.8 419.0 

12 3.218 λ >c_b>c_s  Buy 619.2 74.3 133.5 409.6 

13 3.528 λ >c_b>c_s  Buy 619.2 64.9 124.1 400.3 

14 3.746 λ >c_b>c_s  Buy 619.2 55.5 114.7 390.9 

15 3.878 λ >c_b>c_s  Buy 619.2 46.2 105.4 381.5 

16 3.947 λ >c_b>c_s  Buy 619.2 36.8 96.0 372.2 

17 3.979 λ >c_b>c_s  Buy 619.2 27.5 86.7 362.8 

18 3.992 λ >c_b>c_s  Buy 619.2 18.1 77.3 353.5 

19 3.997 λ >c_b>c_s  Buy 619.2 8.8 68.0 344.2 

20 3.999 λ >c_b>c_s  Buy 619.2 -0.3 58.9 335.0 

21 3.9997 λ >c_b>c_s  Buy 619.2 -10.2 49.0 325.2 

22 3.9999 λ >c_b>c_s  Buy 619.2 -18.8 40.4 316.6 

 

Table 6.16: λ, (λ, cb, cs) comparison, Optimal Action, Q∗, CV aR∗, ω∗, EP ∗, for
changing τ at p=2, c=1, s=0.8, l=3, cb = 1.4, cs = 1.33, η=0.01 under Cap and
Trade Policy.
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cb=3.6, cs=3.42, η=0.01 

 
τ 

 
λ 

 
λ, cb, cs  

comparison 

Optimal 
Action 

 
Q* 

 
CVaR* 

 
VaR*, ω* 

 
EP* 

0 0.000 c_b>c_s >λ  Sell 584.6 321.7 412.7 725.3 

1 0.076 c_b>c_s >λ  Sell 584.6 298.8 389.8 702.4 

2 0.175 c_b>c_s >λ  Sell 584.6 276.0 366.9 679.6 

3 0.305 c_b>c_s >λ  Sell 584.6 253.1 344.0 656.7 

4 0.471 c_b>c_s >λ  Sell 584.6 230.2 321.1 633.8 

5 0.680 c_b>c_s >λ  Sell 584.6 207.3 298.3 610.9 

6 0.937 c_b>c_s >λ  Sell 584.6 184.4 275.4 588.0 

7 1.244 c_b>c_s >λ  Sell 584.6 161.6 252.5 565.1 

8 1.600 c_b>c_s >λ  Sell 584.6 138.7 229.6 542.3 

9 1.997 c_b>c_s >λ  Sell 584.6 115.8 206.7 519.4 

10 2.418 c_b>c_s >λ  Sell 584.6 92.9 183.9 496.5 

11 2.837 c_b>c_s >λ  Sell 584.6 70.0 161.0 473.6 

12 3.218 c_b>c_s >λ  Sell 584.6 47.1 138.1 450.7 

12.83 3.480 c_b> λ >c_s No Trade 583.2 28.2 120.2 435.7 

13 3.528 c_b> λ >c_s No Trade 582.1 24.1 117.0 434.9 

13.21 3.580 c_b> λ >c_s No Trade 580.7 19.2 113.0 434.0 

14 3.746 λ >c_b>c_s  Buy 580.1 0.1 94.3 416.5 

15 3.878 λ >c_b>c_s  Buy 580.1 -24.0 70.2 392.4 

16 3.947 λ >c_b>c_s  Buy 580.1 -48.1 46.1 368.3 

17 3.979 λ >c_b>c_s  Buy 580.1 -72.1 22.1 344.3 

18 3.992 λ >c_b>c_s  Buy 580.1 -96.2 -2.0 320.2 

19 3.997 λ >c_b>c_s  Buy 580.1 -120.0 -25.9 296.3 

20 3.999 λ >c_b>c_s  Buy 580.1 -143.5 -49.4 272.8 

21 3.9997 λ >c_b>c_s  Buy 580.1 -168.9 -74.7 247.5 

22 3.9999 λ >c_b>c_s  Buy 580.1 -190.9 -96.8 225.4 

 

Table 6.17: λ, (λ, cb, cs) comparison, Optimal Action, Q∗, CV aR∗, ω∗, EP ∗, for
changing τ at p=2, c=1, s=0.8, l=3, cb = 3.6, cs = 3.42, η=0.01 under Cap and
Trade Policy.
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cb=0.08, cs=0.076, η=0.1 

 
τ 

 
λ 

 
λ, cb, cs  

comparison 

Optimal 
Action 

 
Q* 

 
CVaR* 

 
VaR*, ω* 

 
EP* 

0 0.000 c_b>c_s >λ  Sell 639.4 255.6 314.4 457.2 

1 0.057 c_b>c_s >λ  sell 639.4 255.1 313.9 456.7 

1.31 0.077 c_b> λ >c_s No Trade 639.3 255.0 313.7 456.5 

1.32 0.078 c_b> λ >c_s No Trade 639.2 255.0 313.7 456.5 

1.34 0.079 c_b> λ >c_s No Trade 639.1 254.9 313.7 456.5 

2 0.127 λ >c_b>c_s  Buy 639.0 254.6 313.4 456.1 

3 0.213 λ >c_b>c_s  Buy 639.0 254.1 312.9 455.6 

4 0.316 λ >c_b>c_s  Buy 639.0 253.6 312.4 455.1 

5 0.438 λ >c_b>c_s  Buy 639.0 253.0 311.8 454.6 

6 0.582 λ >c_b>c_s  Buy 639.0 252.5 311.3 454.1 

7 0.748 λ >c_b>c_s  Buy 639.0 252.0 310.8 453.5 

8 0.938 λ >c_b>c_s  Buy 639.0 251.5 310.3 453.0 

9 1.152 λ >c_b>c_s  Buy 639.0 251.0 309.8 452.5 

10 1.388 λ >c_b>c_s  Buy 639.0 250.5 309.2 452.0 

11 1.645 λ >c_b>c_s  Buy 639.0 249.9 308.7 451.5 

12 1.919 λ >c_b>c_s  Buy 639.0 249.4 308.2 450.9 

13 2.206 λ >c_b>c_s  Buy 639.0 248.9 307.7 450.4 

14 2.498 λ >c_b>c_s  Buy 639.0 248.4 307.2 449.9 

15 2.787 λ >c_b>c_s  Buy 639.0 247.9 306.7 449.4 

16 3.062 λ >c_b>c_s  Buy 639.0 247.3 306.1 448.9 

17 3.312 λ >c_b>c_s  Buy 639.0 246.8 305.6 448.4 

18 3.526 λ >c_b>c_s  Buy 639.0 246.3 305.1 447.8 

19 3.696 λ >c_b>c_s  Buy 639.0 245.8 304.6 447.3 

20 3.820 λ >c_b>c_s  Buy 639.0 245.3 304.1 446.8 

21 3.901 λ >c_b>c_s  Buy 639.0 244.8 303.5 446.3 

22 3.950 λ >c_b>c_s  Buy 639.0 244.2 303.0 445.8 

23 3.976 λ >c_b>c_s  Buy 639.0 243.7 302.5 445.2 

24 3.989 λ >c_b>c_s  Buy 639.0 243.2 302.0 444.7 

25 3.996 λ >c_b>c_s  Buy 639.0 242.7 301.5 444.2 

26 3.998 λ >c_b>c_s  Buy 639.0 242.2 301.0 443.7 

27 3.999 λ >c_b>c_s  Buy 639.0 241.7 300.4 443.2 

28 3.9998 λ >c_b>c_s  Buy 639.0 241.0 299.8 442.5 

29 3.9999 λ >c_b>c_s  Buy 639.0 240.7 299.5 442.2 

 

 
Table 6.18: λ, (λ, cb, cs) comparison, Optimal Action, Q∗, CV aR∗, ω∗, EP ∗, for
changing τ at p=2, c=1, s=0.8, l=3, cb = 0.08, cs = 0.76, η=0.1 under Cap and
Trade Policy.
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cb=1.4, cs=1.33, η=0.1 

 
τ 

 
λ 

 
λ, cb, cs  

comparison 

Optimal 
Action 

 
Q* 

 
CVaR* 

 
VaR*, ω* 

 
EP* 

0 0.000 c_b>c_s >λ  Sell 584.5 307.5 384.2 520.6 

1 0.057 c_b>c_s >λ  Sell 584.5 298.9 375.5 512.0 

2 0.127 c_b>c_s >λ  Sell 584.5 290.2 366.9 503.4 

3 0.213 c_b>c_s >λ  Sell 584.5 281.6 358.3 494.8 

4 0.316 c_b>c_s >λ  Sell 584.5 273.0 349.7 486.2 

5 0.438 c_b>c_s >λ  Sell 584.5 264.4 341.1 477.6 

6 0.582 c_b>c_s >λ  Sell 584.5 255.8 332.5 468.9 

7 0.748 c_b>c_s >λ  Sell 584.5 247.2 323.8 460.3 

8 0.938 c_b>c_s >λ  Sell 584.5 238.5 315.2 451.7 

9 1.152 c_b>c_s >λ  Sell 584.5 229.9 306.6 443.1 

9.85 1.350 c_b> λ >c_s No Trade 584.0 222.6 299.7 436.2 

9.93 1.370 c_b> λ >c_s No Trade 583.5 221.9 299.3 435.8 

10.01 1.390 c_b> λ >c_s No Trade 583.0 221.2 299.0 435.5 

11 1.645 λ >c_b>c_s  Buy 582.7 212.2 290.2 426.7 

12 1.919 λ >c_b>c_s  Buy 582.7 203.1 281.1 417.6 

13 2.206 λ >c_b>c_s  Buy 582.7 194.1 272.0 408.6 

14 2.498 λ >c_b>c_s  Buy 582.7 185.0 263.0 399.5 

15 2.787 λ >c_b>c_s  Buy 582.7 175.9 253.9 390.4 

16 3.062 λ >c_b>c_s  Buy 582.7 166.9 244.8 381.4 

17 3.312 λ >c_b>c_s  Buy 582.7 157.8 235.7 372.3 

18 3.526 λ >c_b>c_s  Buy 582.7 148.7 226.7 363.2 

19 3.696 λ >c_b>c_s  Buy 582.7 139.7 217.6 354.2 

20 3.820 λ >c_b>c_s  Buy 582.7 130.6 208.5 345.1 

21 3.901 λ >c_b>c_s  Buy 582.7 121.5 199.5 336.0 

22 3.950 λ >c_b>c_s  Buy 582.7 112.5 190.4 326.9 

23 3.976 λ >c_b>c_s  Buy 582.7 103.4 181.3 317.9 

24 3.989 λ >c_b>c_s  Buy 582.7 94.3 172.3 308.8 

25 3.996 λ >c_b>c_s  Buy 582.7 85.2 163.2 299.7 

26 3.998 λ >c_b>c_s  Buy 582.7 76.1 154.1 290.6 

27 3.9993 λ >c_b>c_s  Buy 582.7 67.3 145.2 281.7 

28 3.9998 λ >c_b>c_s  Buy 582.7 56.1 134.1 270.6 

29 3.9999 λ >c_b>c_s  Buy 582.7 50.2 128.2 264.7 

 

 
Table 6.19: λ, (λ, cb, cs) comparison, Optimal Action, Q∗, CV aR∗, ω∗, EP ∗, for
changing τ at p=2, c=1, s=0.8, l=3, cb = 1.4, cs = 1.33, η=0.1 under Cap and Trade
Policy.
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cb=3.6, cs=3.42, η=0.1 

 
τ 

 
λ 

 
λ, cb, cs  

comparison 

Optimal 
Action 

 
Q* 

 
CVaR* 

 
VaR*, ω* 

 
EP* 

0 0 c_b>c_s >λ  Sell 534.5 491.4 616.1 775.5 

1 0.057 c_b>c_s >λ Sell 534.5 469.2 593.9 753.3 

2 0.127 c_b>c_s >λ Sell 534.5 447.1 571.8 731.2 

3 0.213 c_b>c_s >λ Sell 534.5 424.9 549.6 709.0 

4 0.316 c_b>c_s >λ Sell 534.5 402.8 527.5 686.9 

5 0.438 c_b>c_s >λ Sell 534.5 380.6 505.3 664.7 

6 0.582 c_b>c_s >λ Sell 534.5 358.5 483.2 642.6 

7 0.748 c_b>c_s >λ Sell 534.5 336.3 461.0 620.4 

8 0.938 c_b>c_s >λ Sell 534.5 314.2 438.8 598.2 

9 1.152 c_b>c_s >λ Sell 534.5 292.0 416.7 576.1 

10 1.388 c_b>c_s >λ Sell 534.5 269.8 394.5 553.9 

11 1.645 c_b>c_s >λ Sell 534.5 247.7 372.4 531.8 

12 1.919 c_b>c_s >λ Sell 534.5 225.5 350.2 509.6 

13 2.206 c_b>c_s >λ Sell 534.5 203.4 328.1 487.5 

14 2.498 c_b>c_s >λ Sell 534.5 181.2 305.9 465.3 

15 2.786 c_b>c_s >λ Sell 534.5 159.1 283.8 443.2 

16 3.062 c_b>c_s >λ Sell 534.5 136.9 261.6 421.0 

17 3.312 c_b>c_s >λ Sell 534.5 114.8 239.5 398.9 

17.77 3.480 c_b> λ >c_s No Trade 532.7 97.7 224.1 385.7 

18.01 3.526 c_b> λ >c_s No Trade 531.1 92.2 220.0 383.5 

18.29 3.580 c_b> λ >c_s No Trade 529.3 85.7 215.0 381.0 

19 3.696 λ >c_b>c_s  Buy 528.6 69.2 199.0 366.0 

20 3.819 λ >c_b>c_s  Buy 528.6 45.9 175.7 342.7 

21 3.901 λ >c_b>c_s  Buy 528.6 22.6 152.4 319.4 

22 3.949 λ >c_b>c_s  Buy 528.6 -0.7 129.1 296.1 

23 3.976 λ >c_b>c_s  Buy 528.6 -24.0 105.8 272.8 

24 3.989 λ >c_b>c_s  Buy 528.6 -47.3 82.5 249.5 

25 3.996 λ >c_b>c_s  Buy 528.6 -70.8 59.0 226.0 

26 3.998 λ >c_b>c_s  Buy 528.6 -94.1 35.7 202.7 

27 3.999 λ >c_b>c_s  Buy 528.6 -117.0 12.8 179.9 

28 3.9998 λ >c_b>c_s  Buy 528.6 -145.6 -15.8 151.2 

29 3.9999 λ >c_b>c_s  Buy 528.6 -160.8 -30.9 136.1 

 

 

 

Table 6.20: λ, (λ, cb, cs) comparison, Optimal Action, Q∗, CV aR∗, ω∗, EP ∗, for
changing τ at p=2, c=1, s=0.8, l=3, cb = 3.6, cs = 3.42, η=0.1 under Cap and Trade
Policy.
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cb=0.08, cs=0.076, η=0.25 

 
τ 

 
λ 

 
λ, cb, cs  

comparison 

Optimal 
Action 

 
Q* 

 
CVaR* 

 
VaR*, ω* 

 
EP* 

0 0.000 c_b>c_s >λ Sell 631.6 314.6 387.1 455.9 

1 0.049 c_b>c_s >λ Sell 631.6 314.1 386.6 455.4 

1.49 0.077 c_b> λ >c_s No Trade 631.53 313.9 386.4 455.2 

1.51 0.078 c_b> λ >c_s No Trade 631.42 313.8 386.4 455.2 

1.52 0.079 c_b> λ >c_s No Trade 631.31 313.8 386.4 455.1 

2 0.108 λ >c_b>c_s  Buy 631.2 313.6 386.2 454.9 

3 0.178 λ >c_b>c_s Buy 631.2 313.1 385.7 454.4 

4 0.259 λ >c_b>c_s Buy 631.2 312.6 385.1 453.9 

5 0.353 λ >c_b>c_s Buy 631.2 312.1 384.6 453.3 

6 0.461 λ >c_b>c_s Buy 631.2 311.5 384.1 452.8 

7 0.583 λ >c_b>c_s Buy 631.2 311.0 383.6 452.3 

8 0.719 λ >c_b>c_s Buy 631.2 310.5 383.1 451.8 

9 0.871 λ >c_b>c_s Buy 631.2 310.0 382.6 451.3 

10 1.037 λ >c_b>c_s Buy 631.2 309.5 382.1 450.8 

11 1.217 λ >c_b>c_s Buy 631.2 309.0 381.6 450.3 

12 1.410 λ >c_b>c_s Buy 631.2 308.5 381.0 449.8 

13 1.615 λ >c_b>c_s Buy 631.2 308.0 380.5 449.2 

14 1.830 λ >c_b>c_s Buy 631.2 307.4 380.0 448.7 

15 2.053 λ >c_b>c_s Buy 631.2 306.9 379.5 448.2 

16 2.281 λ >c_b>c_s Buy 631.2 306.4 379.0 447.7 

17 2.510 λ >c_b>c_s Buy 631.2 305.9 378.5 447.2 

18 2.738 λ >c_b>c_s Buy 631.2 305.4 378.0 446.7 

19 2.959 λ >c_b>c_s Buy 631.2 304.9 377.5 446.2 

20 3.168 λ >c_b>c_s Buy 631.2 304.4 376.9 445.7 

21 3.360 λ >c_b>c_s Buy 631.2 303.9 376.4 445.1 

22 3.530 λ >c_b>c_s Buy 631.2 303.3 375.9 444.6 

23 3.673 λ >c_b>c_s Buy 631.2 302.8 375.4 444.1 

24 3.768 λ >c_b>c_s Buy 631.2 302.4 375.0 443.7 

25 3.869 λ >c_b>c_s Buy 631.2 301.8 374.4 443.1 

26 3.926 λ >c_b>c_s Buy 631.2 301.3 373.9 442.6 

27 3.960 λ >c_b>c_s Buy 631.2 300.8 373.4 442.1 

28 3.980 λ >c_b>c_s Buy 631.2 300.3 372.8 441.6 

29 3.991 λ >c_b>c_s Buy 631.2 299.7 372.3 441.0 

30 3.996 λ >c_b>c_s Buy 631.2 299.2 371.8 440.5 

31 3.998 λ >c_b>c_s Buy 631.2 298.7 371.3 440.0 

32 3.999 λ >c_b>c_s Buy 631.2 298.2 370.8 439.5 

33 3.9997 λ >c_b>c_s Buy 631.2 297.7 370.3 439.0 

34 3.9999 λ >c_b>c_s Buy 631.2 297.2 369.8 438.5 

 

Table 6.21: λ, (λ, cb, cs) comparison, Optimal Action, Q∗, CV aR∗, ω∗, EP ∗, for
changing τ at p=2, c=1, s=0.8, l=3, cb = 0.08, cs = 0.76, η=0.25 under Cap and
Trade Policy.
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cb=1.4, cs=1.33, η=0.25 

 
τ 

 
λ 

 
λ, cb, cs  

comparison 

Optimal 
Action 

 
Q* 

 
CVaR* 

 
VaR*, ω* 

 
EP* 

0 0.000 c_b>c_s >λ Sell 566.7 374.8 465.6 522.1 

1 0.049 c_b>c_s >λ Sell 566.7 366.2 457.1 513.6 

2 0.108 c_b>c_s >λ Sell 566.7 357.7 448.6 505.1 

3 0.178 c_b>c_s >λ Sell 566.7 349.2 440.1 496.5 

4 0.259 c_b>c_s >λ Sell 566.7 340.7 431.5 488.0 

5 0.353 c_b>c_s >λ Sell 566.7 332.1 423.0 479.5 

6 0.461 c_b>c_s >λ Sell 566.7 323.6 414.5 471.0 

7 0.583 c_b>c_s >λ Sell 566.7 315.1 406.0 462.5 

8 0.719 c_b>c_s >λ Sell 566.7 306.6 397.4 453.9 

9 0.871 c_b>c_s >λ Sell 566.7 298.0 388.9 445.4 

10 1.037 c_b>c_s >λ Sell 566.7 289.5 380.4 436.9 

11 1.217 c_b>c_s >λ Sell 566.7 281.0 371.9 428.3 

11.70 1.350 c_b> λ >c_s No Trade 566.10 275.0 366.3 422.7 

11.80 1.370 c_b> λ >c_s No Trade 565.45 274.2 365.9 422.1 

11.90 1.390 c_b> λ >c_s No Trade 564.80 273.3 365.4 421.6 

12 1.410 λ >c_b>c_s  Buy 564.5 272.4 364.7 420.8 

13 1.615 λ >c_b>c_s  Buy 564.5 263.4 355.7 411.9 

14 1.830 λ >c_b>c_s  Buy 564.5 254.4 346.8 402.9 

15 2.053 λ >c_b>c_s  Buy 564.5 245.4 337.8 393.9 

16 2.281 λ >c_b>c_s  Buy 564.5 236.5 328.8 384.9 

17 2.510 λ >c_b>c_s  Buy 564.5 227.5 319.8 376.0 

18 2.738 λ >c_b>c_s  Buy 564.5 218.5 310.9 367.0 

19 2.959 λ >c_b>c_s  Buy 564.5 209.5 301.9 358.0 

20 3.168 λ >c_b>c_s  Buy 564.5 200.6 292.9 349.0 

21 3.360 λ >c_b>c_s  Buy 564.5 191.6 283.9 340.1 

22 3.530 λ >c_b>c_s  Buy 564.5 182.6 275.0 331.1 

23 3.673 λ >c_b>c_s  Buy 564.5 173.6 266.0 322.1 

24 3.768 λ >c_b>c_s  Buy 564.5 166.3 258.6 314.7 

25 3.869 λ >c_b>c_s  Buy 564.5 155.7 248.0 304.2 

26 3.926 λ >c_b>c_s  Buy 564.5 146.7 239.1 295.2 

27 3.960 λ >c_b>c_s  Buy 564.5 137.7 230.1 286.2 

28 3.980 λ >c_b>c_s  Buy 564.5 128.8 221.1 277.3 

29 3.991 λ >c_b>c_s  Buy 564.5 119.8 212.2 268.3 

30 3.996 λ >c_b>c_s  Buy 564.5 110.8 203.2 259.3 

31 3.998 λ >c_b>c_s  Buy 564.5 102.0 194.3 250.4 

32 3.999 λ >c_b>c_s  Buy 564.5 92.6 185.0 241.1 

33 3.9997 λ >c_b>c_s  Buy 564.5 84.7 177.0 233.1 

34 3.9999 λ >c_b>c_s  Buy 564.5 74.8 167.2 223.3 

 

Table 6.22: λ, (λ, cb, cs) comparison, Optimal Action, Q∗, CV aR∗, ω∗, EP ∗, for
changing τ at p=2, c=1, s=0.8, l=3, cb = 1.4, cs = 1.33, η=0.25 under Cap and
Trade Policy.
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cb=3.6, cs=3.42, η=0.25 

 
τ 

 
λ 

 
λ, cb, cs  

comparison 

Optimal 
Action 

 
Q* 

 
CVaR* 

 
VaR*, ω* 

 
EP* 

0 0.000 c_b>c_s >λ Sell 504.3 594.8 748.7 808.3 

1 0.049 c_b>c_s >λ Sell 504.3 572.8 726.8 786.3 

2 0.108 c_b>c_s >λ Sell 504.3 550.9 704.9 764.4 

3 0.178 c_b>c_s >λ Sell 504.3 529.0 683.0 742.5 

4 0.259 c_b>c_s >λ Sell 504.3 507.1 661.1 720.6 

5 0.353 c_b>c_s >λ Sell 504.3 485.1 639.1 698.6 

6 0.461 c_b>c_s >λ Sell 504.3 463.2 617.2 676.7 

7 0.583 c_b>c_s >λ Sell 504.3 441.3 595.3 654.8 

8 0.719 c_b>c_s >λ Sell 504.3 419.4 573.3 632.9 

9 0.871 c_b>c_s >λ Sell 504.3 397.4 551.4 610.9 

10 1.037 c_b>c_s >λ Sell 504.3 375.5 529.5 589.0 

11 1.217 c_b>c_s >λ Sell 504.3 353.6 507.6 567.1 

12 1.410 c_b>c_s >λ Sell 504.3 331.7 485.7 545.2 

13 1.615 c_b>c_s >λ Sell 504.3 309.7 463.7 523.2 

14 1.830 c_b>c_s >λ Sell 504.3 287.8 441.8 501.3 

15 2.053 c_b>c_s >λ Sell 504.3 265.9 419.9 479.4 

16 2.281 c_b>c_s >λ Sell 504.3 244.0 397.9 457.5 

17 2.510 c_b>c_s >λ Sell 504.3 222.0 376.0 435.5 

18 2.738 c_b>c_s >λ Sell 504.3 200.1 354.1 413.6 

19 2.959 c_b>c_s >λ Sell 504.3 178.2 332.2 391.7 

20 3.168 c_b>c_s >λ Sell 504.3 156.3 310.2 369.8 

21 3.360 c_b>c_s >λ Sell 504.3 134.3 288.3 347.8 

21.69 3.480 c_b> λ >c_s No Trade 502.05 336.3 275.6 119.2 

21.98 3.528 c_b> λ >c_s No Trade 500.16 332.7 270.9 112.6 

22.33 3.580 c_b> λ >c_s No Trade 497.96 328.5 265.2 104.7 

23 3.673 λ >c_b>c_s  Buy 497.1 89.2 250.5 314.4 

24 3.768 λ >c_b>c_s  Buy 497.1 70.3 231.6 295.5 

25 3.869 λ >c_b>c_s  Buy 497.1 43.0 204.3 268.3 

26 3.926 λ >c_b>c_s  Buy 497.1 20.0 181.3 245.2 

27 3.960 λ >c_b>c_s  Buy 497.1 -3.1 158.2 222.1 

28 3.980 λ >c_b>c_s  Buy 497.1 -26.1 135.2 199.1 

29 3.991 λ >c_b>c_s  Buy 497.1 -49.2 112.1 176.0 

30 3.996 λ >c_b>c_s  Buy 497.1 -72.3 89.0 153.0 

31 3.998 λ >c_b>c_s  Buy 497.1 -95.1 66.2 130.1 

32 3.999 λ >c_b>c_s  Buy 497.1 -119.1 42.2 106.1 

33 3.9997 λ >c_b>c_s  Buy 497.1 -139.6 21.7 85.6 

34 3.9999 λ >c_b>c_s  Buy 497.1 -164.9 -3.6 60.3 
 

Table 6.23: λ, (λ, cb, cs) comparison, Optimal Action, Q∗, CV aR∗, ω∗, EP ∗, for
changing τ at p=2, c=1, s=0.8, l=3, cb = 3.6, cs = 3.42, η=0.25 under Cap and
Trade Policy.
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η=0.01 
cb=0.08 
cs=0.076 

cb =0.4          
cs=0.38 

cb =1.4           
cs=1.33 

cb =2               
cs=1.9 

cb =3.6           
cs=3.42 

τ CVaR* CVaR* CVaR* CVaR* CVaR* 

0 142.84 147.67 183.23 213.85 321.72 

1 142.33 145.12 174.33 201.14 298.83 

2 141.79 142.58 165.43 188.43 275.96 

3 141.26 140.04 156.53 175.72 253.07 

4 140.72 137.44 147.64 163.00 230.19 

5 140.19 134.76 138.74 150.29 207.31 

6 139.65 132.08 129.84 137.59 184.44 

7 139.12 129.41 120.94 124.87 161.55 

8 138.58 126.73 111.74 112.16 138.67 

9 138.05 124.05 102.38 99.37 115.79 

10 137.51 121.38 93.01 85.99 92.91 

11 136.98 118.70 83.64 72.61 70.03 

12 136.44 116.03 74.28 59.23 47.15 

13 135.91 113.35 64.91 45.85 24.13 

14 135.37 110.68 55.55 32.47 0.12 

15 134.84 108.00 46.18 19.09 -23.97 

16 134.30 105.32 36.81 5.71 -48.06 

17 133.77 102.65 27.47 -7.64 -72.09 

18 133.23 99.98 18.11 -21.01 -96.16 

19 132.70 97.32 8.82 -34.28 -120.04 

20 132.18 94.71 -0.32 -47.34 -143.55 

21 131.62 91.90 -10.17 -61.40 -168.86 

22 131.13 89.45 -18.76 -73.67 -190.95 

 

 

 

 

Table 6.24: CV aR∗ vs. τ at p=2, c = 1, s=0.8, l=3, η=0.01 for (cb, cs)=(0.08, 0.076),
(0.4, 0.38), (1.4, 1.33), (2, 1.9), (3.6, 3.42) under Cap and Trade Policy
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η =0.1 
cb=0.08 
cs=0.076 

cb =0.4            
cs=0.38 

cb =1.4           
cs=1.33 

cb =2               
cs=1.9 

cb =3.6           
cs=3.42 

τ CVaR* CVaR* CVaR* CVaR* CVaR* 

0 255.60 261.67 307.47 347.62 491.39 

1 255.11 259.21 298.86 335.32 469.24 

2 254.60 256.75 290.24 323.00 447.07 

3 254.08 254.29 281.63 310.70 424.94 

4 253.57 251.82 273.01 298.39 402.78 

5 253.05 249.31 264.39 286.08 380.61 

6 252.53 246.72 255.78 273.78 358.47 

7 252.01 244.13 247.16 261.46 336.30 

8 251.49 241.54 238.55 249.16 314.16 

9 250.97 238.95 229.93 236.85 292.00 

10 250.46 236.36 221.27 224.54 269.84 

11 249.94 233.77 212.20 212.23 247.69 

12 249.42 231.18 203.14 199.92 225.54 

13 248.90 228.59 194.07 187.04 203.39 

14 248.38 225.99 185.00 174.08 181.23 

15 247.86 223.40 175.93 161.13 159.08 

16 247.35 220.81 166.86 148.17 136.92 

17 246.83 218.22 157.79 135.22 114.77 

18 246.31 215.63 148.72 122.26 92.43 

19 245.79 213.04 139.66 109.31 69.22 

20 245.27 210.45 130.58 96.35 45.88 

21 244.76 207.85 121.51 83.39 22.55 

22 244.24 205.27 112.45 70.45 -0.73 

23 243.72 202.68 103.39 57.50 -24.05 

24 243.20 200.09 94.34 44.57 -47.32 

25 242.68 197.49 85.22 31.55 -70.76 

26 242.16 194.89 76.13 18.56 -94.13 

27 241.65 192.35 67.25 5.88 -116.96 

28 241.02 189.17 56.11 -10.03 -145.61 

29 240.68 187.49 50.22 -18.45 -160.76 

 

 Table 6.25: CV aR∗ vs. τ at p=2, c = 1, s=0.8, l=3, η=0.1 for (cb, cs)=(0.08, 0.076),
(0.4, 0.38), (1.4, 1.33), (2, 1.9), (3.6, 3.42) under Cap and Trade Policy
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η =0.25 
cb=0.08 
cs=0.076 

cb =0.4            
cs=0.38 

cb =1.4           
cs=1.33 

cb =2               
cs=1.9 

cb =3.6           
cs=3.42 

τ CVaR* CVaR* CVaR* CVaR* CVaR* 

0 314.58 321.50 374.78 422.23 594.76 

1 314.09 319.06 366.25 410.04 572.82 

2 313.60 316.62 357.73 397.87 550.91 

3 313.08 314.19 349.20 385.69 528.98 

4 312.57 311.75 340.68 373.51 507.07 

5 312.06 309.31 332.15 361.33 485.14 

6 311.54 306.80 323.63 349.15 463.23 

7 311.03 304.23 315.10 336.97 441.30 

8 310.52 301.67 306.57 324.79 419.37 

9 310.01 299.10 298.05 312.61 397.45 

10 309.49 296.54 289.52 300.43 375.52 

11 308.98 293.98 280.99 288.25 353.60 

12 308.47 291.41 272.36 276.07 331.67 

13 307.95 288.85 263.39 263.89 309.74 

14 307.44 286.28 254.41 251.70 287.81 

15 306.93 283.72 245.44 239.23 265.89 

16 306.42 281.15 236.46 226.41 243.96 

17 305.90 278.59 227.49 213.59 222.05 

18 305.39 276.02 218.51 200.77 200.12 

19 304.88 273.46 209.54 187.94 178.19 

20 304.36 270.89 200.56 175.12 156.26 

21 303.85 268.33 191.59 162.30 134.34 

22 303.34 265.77 182.61 149.48 112.18 

23 302.83 263.20 173.64 136.66 89.21 

24 302.40 261.10 166.27 126.14 70.26 

25 301.80 258.07 155.68 111.01 43.04 

26 301.29 255.51 146.71 98.19 19.96 

27 300.77 252.94 137.73 85.37 -3.13 

28 300.26 250.39 128.78 72.58 -26.14 

29 299.75 247.83 119.82 59.77 -49.19 

30 299.24 245.26 110.84 46.95 -72.28 

31 298.73 242.72 101.96 34.27 -95.10 

32 298.20 240.06 92.62 20.92 -119.13 

33 297.74 237.78 84.65 9.54 -139.61 

34 297.18 234.97 74.82 -4.51 -164.90 

 
Table 6.26: CV aR∗ vs. τ at p=2, c = 1, s=0.8, l=3, η=0.25 for (cb, cs)=(0.08, 0.076),
(0.4, 0.38), (1.4, 1.33), (2, 1.9), (3.6, 3.42) under Cap and Trade Policy
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η=0.01 
cb=0.08 
cs=0.076 

cb =0.4            
cs=0.38 

cb =1.4           
cs=1.33 

cb =2               
cs=1.9 

cb =3.6           
cs=3.42 

τ 
%Decrease in 

CVaR* 
%Decrease in 

CVaR* 
%Decrease in 

CVaR* 
%Decrease in 

CVaR* 
%Decrease in 

CVaR* 

0 0 0 0 0 0 

1 0.36 1.72 4.86 5.95 7.12 

2 0.73 3.44 9.71 11.89 14.22 

3 1.10 5.17 14.57 17.83 21.34 

4 1.48 6.93 19.43 23.78 28.45 

5 1.85 8.74 24.28 29.72 35.56 

6 2.23 10.55 29.14 35.66 42.67 

7 2.60 12.37 33.99 41.61 49.78 

8 2.98 14.18 39.01 47.55 56.90 

9 3.35 15.99 44.13 53.53 64.01 

10 3.73 17.80 49.24 59.79 71.12 

11 4.10 19.61 54.35 66.05 78.23 

12 4.48 21.43 59.46 72.30 85.34 

13 4.85 23.24 64.57 78.56 92.50 

14 5.23 25.05 69.68 84.81 99.96 

15 5.60 26.86 74.80 91.07 107.45 

16 5.98 28.68 79.91 97.33 114.94 

17 6.35 30.48 85.01 103.57 122.41 

18 6.72 32.29 90.12 109.83 129.89 

19 7.10 34.09 95.19 116.03 137.31 

20 7.46 35.86 100.18 122.14 144.62 

21 7.86 37.77 105.55 128.71 152.49 

22 8.20 39.43 110.24 134.45 159.35 

 

 

 
Table 6.27: % Decrese in CV aR∗ vs. τ at p=2, c=1, s=0.8, l=3, η=0.01 for
(cb, cs)=(0.08, 0.076), (0.4, 0.38), (1.4, 1.33), (2, 1.9), (3.6, 3.42) under Cap and Trade
Policy.
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η=0.1 
cb=0.08 
cs=0.076 

cb =0.4            
cs=0.38 

cb =1.4           
cs=1.33 

cb =2               
cs=1.9 

cb =3.6           
cs=3.42 

τ 
%Decrease in 

CVaR* 
%Decrease in 

CVaR* 
%Decrease in 

CVaR* 
%Decrease in 

CVaR* 
%Decrease in 

CVaR* 

0 0 0 0 0 0 

1 0.19 0.94 2.80 3.54 4.51 

2 0.39 1.88 5.61 7.08 9.02 

3 0.59 2.82 8.41 10.62 13.52 

4 0.80 3.76 11.21 14.16 18.03 

5 1.00 4.72 14.01 17.70 22.54 

6 1.20 5.71 16.81 21.24 27.05 

7 1.41 6.70 19.62 24.79 31.56 

8 1.61 7.69 22.42 28.32 36.07 

9 1.81 8.68 25.22 31.87 40.58 

10 2.01 9.67 28.04 35.41 45.09 

11 2.22 10.66 30.98 38.95 49.59 

12 2.42 11.65 33.93 42.49 54.10 

13 2.62 12.64 36.88 46.19 58.61 

14 2.83 13.63 39.83 49.92 63.12 

15 3.03 14.62 42.78 53.65 67.63 

16 3.23 15.61 45.73 57.38 72.14 

17 3.43 16.60 48.68 61.10 76.64 

18 3.64 17.60 51.63 64.83 81.19 

19 3.84 18.59 54.58 68.55 85.91 

20 4.04 19.58 57.53 72.28 90.66 

21 4.24 20.57 60.48 76.01 95.41 

22 4.45 21.56 63.43 79.73 100.15 

23 4.65 22.55 66.38 83.46 104.89 

24 4.85 23.53 69.32 87.18 109.63 

25 5.06 24.53 72.28 90.93 114.40 

26 5.26 25.52 75.24 94.66 119.16 

27 5.46 26.49 78.13 98.31 123.80 

28 5.71 27.71 81.75 102.89 129.63 

29 5.84 28.35 83.67 105.31 132.72 

 

 
Table 6.28: % Decrese in CV aR∗ vs. τ at p=2, c=1, s=0.8, l=3, η=0.1 for
(cb, cs)=(0.08, 0.076), (0.4, 0.38), (1.4, 1.33), (2, 1.9), (3.6, 3.42) under Cap and Trade
Policy.
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η=0.25 
cb=0.08 
cs=0.076 

cb =0.4            
cs=0.38 

cb =1.4           
cs=1.33 

cb =2               
cs=1.9 

cb =3.6           
cs=3.42 

τ 
%Decrease in 

CVaR* 
%Decrease in 

CVaR* 
%Decrease in 

CVaR* 
%Decrease in 

CVaR* 
%Decrease in 

CVaR* 

0 0 0 0 0 0 

1 0.15 0.76 2.28 2.89 3.69 

2 0.31 1.52 4.55 5.77 7.37 

3 0.48 2.27 6.83 8.66 11.06 

4 0.64 3.03 9.10 11.54 14.74 

5 0.80 3.79 11.38 14.42 18.43 

6 0.97 4.57 13.65 17.31 22.12 

7 1.13 5.37 15.92 20.19 25.80 

8 1.29 6.17 18.20 23.08 29.49 

9 1.45 6.96 20.47 25.96 33.18 

10 1.62 7.76 22.75 28.85 36.86 

11 1.78 8.56 25.02 31.73 40.55 

12 1.94 9.36 27.33 34.62 44.24 

13 2.11 10.16 29.72 37.50 47.92 

14 2.27 10.95 32.12 40.39 51.61 

15 2.43 11.75 34.51 43.34 55.29 

16 2.60 12.55 36.91 46.38 58.98 

17 2.76 13.35 39.30 49.41 62.67 

18 2.92 14.14 41.70 52.45 66.35 

19 3.09 14.94 44.09 55.49 70.04 

20 3.25 15.74 46.49 58.53 73.73 

21 3.41 16.54 48.88 61.56 77.41 

22 3.57 17.33 51.27 64.60 81.14 

23 3.74 18.13 53.67 67.63 85.00 

24 3.87 18.79 55.64 70.13 88.19 

25 4.06 19.73 58.46 73.71 92.76 

26 4.23 20.52 60.85 76.74 96.64 

27 4.39 21.32 63.25 79.78 100.53 

28 4.55 22.12 65.64 82.81 104.40 

29 4.72 22.91 68.03 85.84 108.27 

30 4.88 23.71 70.43 88.88 112.15 

31 5.04 24.50 72.79 91.88 115.99 

32 5.21 25.33 75.29 95.05 120.03 

33 5.35 26.04 77.41 97.74 123.47 

34 5.53 26.91 80.04 101.07 127.73 

 

Table 6.29: % Decrese in CV aR∗ vs. τ at p=2, c=1, s=0.8, l=3, η=0.25 for
(cb, cs)=(0.08, 0.076), (0.4, 0.38), (1.4, 1.33), (2, 1.9), (3.6, 3.42) under Cap and Trade
Policy.
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cb=0.08, cs=0.076 cb =1.4, cs=1.33 cb =3.6, cs=3.42 

 
K 

CVaR* 

(η=0.01) 
CVaR* 

(η =0.1) 
CVaR* 

 (η =0.25) 
CVaR* 

(η=0.01) 
CVaR* 

(η =0.1) 
CVaR* 

 (η =0.25) 
CVaR* 

(η=0.01) 
CVaR* 

(η =0.1) 
CVaR* 

 (η =0.25) 

300 113.3 227.8 287.3 -330.0 -174.9 -97.5 -991.2 -739.7 -607.9 

325 115.3 229.8 289.3 -295.0 -139.9 -62.5 -901.2 -649.7 -517.9 

350 117.3 231.8 291.3 -260.0 -104.9 -27.5 -811.2 -559.7 -427.9 

375 119.3 233.8 293.3 -225.0 -69.9 7.5 -721.2 -469.7 -337.9 

400 121.3 235.8 295.3 -190.0 -34.9 42.5 -631.2 -379.7 -247.9 

425 123.3 237.8 297.3 -155.0 0.1 77.5 -541.2 -289.7 -157.9 

450 125.3 239.8 299.3 -120.0 35.1 112.5 -451.2 -199.7 -67.9 

475 127.3 241.8 301.3 -85.0 70.1 147.5 -361.2 -109.7 22.1 

500 129.3 243.8 303.3 -50.0 105.1 182.5 -271.2 -19.7 112.2 

525 131.3 245.8 305.3 -15.0 140.1 217.5 -181.2 70.3 197.7 

550 133.3 247.8 307.3 20.0 175.1 252.5 -91.2 157.0 283.2 

575 135.3 249.8 309.3 55.0 210.1 286.9 -1.2 242.5 368.7 

600 137.3 251.8 311.3 90.0 243.9 320.1 85.6 328.0 454.2 

625 139.3 253.8 313.3 124.7 277.2 353.4 171.1 413.5 539.7 

650 141.3 255.8 315.3 157.9 310.4 386.6 256.6 499.0 625.2 

675 143.3 257.7 317.2 191.2 343.7 419.9 342.1 584.5 710.7 

700 145.2 259.6 319.1 224.4 376.9 453.1 427.6 670.0 796.2 

725 147.1 261.5 321.0 257.7 410.2 486.4 513.1 755.5 881.7 

750 149.0 263.4 322.9 290.9 443.4 519.6 598.6 841.0 967.2 

775 150.9 265.3 324.8 324.2 476.7 552.9 684.1 926.5 1052.7 

800 152.8 267.2 326.7 357.4 509.9 586.1 769.6 1012.0 1138.2 

825 154.7 269.1 328.6 390.7 543.2 619.4 855.1 1097.5 1223.7 

850 156.6 271.0 330.5 423.9 576.4 652.6 940.6 1183.0 1309.2 

875 158.5 272.9 332.4 457.2 609.7 685.9 1026.1 1268.5 1394.7 

900 160.4 274.8 334.3 490.4 642.9 719.1 1111.6 1354.0 1480.2 

925 162.3 276.7 336.2 523.7 676.2 752.4 1197.1 1439.5 1565.7 

950 164.2 278.6 338.1 556.9 709.4 785.6 1282.6 1525.0 1651.2 

975 166.1 280.5 340.0 590.2 742.7 818.9 1368.1 1610.5 1736.7 

1000 168.0 282.4 341.9 623.4 775.9 852.1 1453.6 1696.0 1822.2 

 

Table 6.30: CV aR∗ vs. K at p=2, c=1, s=0.8, l=3, η=0.01, 0.1, 0.25 for
(cb, cs)=(0.08, 0.076), (1.4, 1.33), (3.6, 3.42) under Cap and Trade Policy.
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Eta=0.01 
Qup=661.99 

Qdown=662.29 
(cb,cs)=(0.08,0.076) 

Qup=619.15 
Qdown=620.48 

(cb,cs)=(1.4, 1.33) 

Qup=580.13 
Qdown=584.59 

(cb,cs)=(3.6, 3.42) 

Carbon 
Cap 

CVaR* 
%Decrease in 

Emission 
CVaR* 

%Decrease 
in Emission 

CVaR* 
%Decrease 
in Emission 

300 113.34 1.05 -329.97 7.46 -991.20 13.29 

325 115.34 1.05 -294.97 7.46 -901.20 13.29 

350 117.34 1.05 -259.97 7.46 -811.20 13.29 

375 119.34 1.05 -224.97 7.46 -721.20 13.29 

400 121.34 1.05 -189.97 7.46 -631.20 13.29 

425 123.34 1.05 -154.97 7.46 -541.20 13.29 

450 125.34 1.05 -119.97 7.46 -451.20 13.29 

475 127.34 1.05 -84.97 7.46 -361.20 13.29 

500 129.34 1.05 -49.97 7.46 -271.20 13.29 

525 131.34 1.05 -14.97 7.46 -181.20 13.29 

550 133.34 1.05 20.04 7.46 -91.20 13.29 

575 135.34 1.05 55.04 7.46 -1.20 13.29 

600 137.34 1.05 90.04 7.46 85.60 12.62 

625 139.34 1.05 124.67 7.26 171.10 12.62 

650 141.34 1.05 157.92 7.26 256.60 12.62 

675 143.29 1.01 191.17 7.26 342.10 12.62 

700 145.19 1.01 224.42 7.26 427.60 12.62 

725 147.09 1.01 257.67 7.26 513.10 12.62 

750 148.99 1.01 290.92 7.26 598.60 12.62 

775 150.89 1.01 324.17 7.26 684.10 12.62 

800 152.79 1.01 357.42 7.26 769.60 12.62 

825 154.69 1.01 390.67 7.26 855.10 12.62 

850 156.59 1.01 423.92 7.26 940.60 12.62 

875 158.49 1.01 457.17 7.26 1026.10 12.62 

900 160.39 1.01 490.42 7.26 1111.60 12.62 

925 162.29 1.01 523.67 7.26 1197.10 12.62 

950 164.19 1.01 556.92 7.26 1282.60 12.62 

975 166.09 1.01 590.17 7.26 1368.10 12.62 

1000 167.99 1.01 623.42 7.26 1453.60 12.62 

 

 

 

Table 6.31: CV aR∗ and % Decrease in Emission vs. K at p=2, c=1, s=0.8, l=3,
η=0.01 for (cb, cs)=(0.08, 0.076), (1.4, 1.33), (3.6, 3.42) under Cap and Trade Policy.
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Eta=0.1 
Qup=639.04 

Qdown=639.42 
(cb,cs)=(0.08,0.076) 

Qup=582.68 
Qdown=584.54 

(cb,cs)=(1.4, 1.33) 

Qup=528.57 
 Qdown=534.54 

(cb,cs)=(3.6, 3.42) 

Carbon 
Cap 

CVaR* 
%Decrease in 

Emission 
CVaR* 

%Decrease 
in Emission 

CVaR* 
%Decrease 
in Emission 

300 227.82 1.35 -174.94 10.05 -739.70 18.40 

325 229.82 1.35 -139.94 10.05 -649.70 18.40 

350 231.82 1.35 -104.94 10.05 -559.70 18.40 

375 233.82 1.35 -69.94 10.05 -469.70 18.40 

400 235.82 1.35 -34.94 10.05 -379.70 18.40 

425 237.82 1.35 0.06 10.05 -289.70 18.40 

450 239.82 1.35 35.06 10.05 -199.70 18.40 

475 241.82 1.35 70.06 10.05 -109.70 18.40 

500 243.82 1.35 105.06 10.05 -19.70 18.40 

525 245.82 1.35 140.06 10.05 70.30 18.40 

550 247.82 1.35 175.06 10.05 157.00 17.48 

575 249.82 1.35 210.06 10.05 242.50 17.48 

600 251.82 1.35 243.92 9.76 328.00 17.48 

625 253.82 1.35 277.17 9.76 413.50 17.48 

650 255.77 1.29 310.42 9.76 499.00 17.48 

675 257.67 1.29 343.67 9.76 584.50 17.48 

700 259.57 1.29 376.92 9.76 670.00 17.48 

725 261.47 1.29 410.17 9.76 755.50 17.48 

750 263.37 1.29 443.42 9.76 841.00 17.48 

775 265.27 1.29 476.67 9.76 926.50 17.48 

800 267.17 1.29 509.92 9.76 1012.00 17.48 

825 269.07 1.29 543.17 9.76 1097.50 17.48 

850 270.97 1.29 576.42 9.76 1183.00 17.48 

875 272.87 1.29 609.67 9.76 1268.50 17.48 

900 274.77 1.29 642.92 9.76 1354.00 17.48 

925 276.67 1.29 676.17 9.76 1439.50 17.48 

950 278.57 1.29 709.42 9.76 1525.00 17.48 

975 280.47 1.29 742.67 9.76 1610.50 17.48 

1000 282.37 1.29 775.92 9.76 1696.00 17.48 

 

 

 

Table 6.32: CV aR∗ and % Decrease in Emission vs. K at p=2, c=1, s=0.8, l=3,
η=0.1 for (cb, cs)=(0.08, 0.076), (1.4, 1.33), (3.6, 3.42) under Cap and Trade Policy.
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Eta=0.25 
Qup=631.01 

Qdown=631.64 
(cb,cs)=(0.08,0.076) 

Qup=564.47 
Qdown=566.76 

(cb,cs)=(1.4, 1.33) 

Qup=497.08 
Qdown=504.31 

(cb,cs)=(3.6, 3.42) 

Carbon 
Cap 

CVaR* 
%Decrease in 

Emission 
CVaR* 

%Decrease 
in Emission 

CVaR* 
%Decrease 
in Emission 

300 287.33 1.54 -97.46 11.95 -607.90 22.46 

325 289.33 1.54 -62.46 11.95 -517.90 22.46 

350 291.33 1.54 -27.46 11.95 -427.90 22.46 

375 293.33 1.54 7.54 11.95 -337.90 22.46 

400 295.33 1.54 42.54 11.95 -247.90 22.46 

425 297.33 1.54 77.54 11.95 -157.90 22.46 

450 299.33 1.54 112.54 11.95 -67.90 22.46 

475 301.33 1.54 147.54 11.95 22.10 22.46 

500 303.33 1.54 182.54 11.95 112.20 21.34 

525 305.33 1.54 217.54 11.95 197.70 21.34 

550 307.33 1.54 252.54 11.95 283.20 21.34 

575 309.33 1.54 286.89 11.59 368.70 21.34 

600 311.33 1.54 320.14 11.59 454.20 21.34 

625 313.33 1.54 353.39 11.59 539.70 21.34 

650 315.26 1.47 386.64 11.59 625.20 21.34 

675 317.16 1.47 419.89 11.59 710.70 21.34 

700 319.06 1.47 453.14 11.59 796.20 21.34 

725 320.96 1.47 486.39 11.59 881.70 21.34 

750 322.86 1.47 519.64 11.59 967.20 21.34 

775 324.76 1.47 552.89 11.59 1052.70 21.34 

800 326.66 1.47 586.14 11.59 1138.20 21.34 

825 328.56 1.47 619.39 11.59 1223.70 21.34 

850 330.46 1.47 652.64 11.59 1309.20 21.34 

875 332.36 1.47 685.89 11.59 1394.70 21.34 

900 334.26 1.47 719.14 11.59 1480.20 21.34 

925 336.16 1.47 752.39 11.59 1565.70 21.34 

950 338.06 1.47 785.64 11.59 1651.20 21.34 

975 339.96 1.47 818.89 11.59 1736.70 21.34 

1000 341.86 1.47 852.14 11.59 1822.20 21.34 

 

 

 

Table 6.33: CV aR∗ and % Decrease in Emission vs. K at p=2, c=1, s=0.8, l=3,
η=0.25 for (cb, cs)=(0.08, 0.076), (1.4, 1.33), (3.6, 3.42) under Cap and Trade Policy.
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Eta=0.01 
Qup=516.11 

Qdown=516.39 
(cb,cs)=(0.08,0.076) 

Qup=465.56 
Qdown=468.27 

(cb,cs)=(1.4,1.33) 

Carbon 
Cap 

CVaR* 
% Decrease in 

Emission 
CVaR* 

% Decrease in 
Emission 

300 170.56 1.27 -78.57 10.94 

325 172.56 1.27 -43.57 10.94 

350 174.56 1.27 -8.57 10.94 

375 176.56 1.27 26.43 10.94 

400 178.56 1.27 61.43 10.94 

425 180.56 1.27 96.43 10.94 

450 182.56 1.27 131.43 10.94 

475 184.56 1.27 165.87 10.42 

500 186.56 1.27 199.12 10.42 

525 188.53 1.22 232.37 10.42 

550 190.43 1.22 265.62 10.42 

575 192.33 1.22 298.87 10.42 

600 194.23 1.22 332.12 10.42 

625 196.13 1.22 365.37 10.42 

650 198.03 1.22 398.62 10.42 

675 199.93 1.22 431.87 10.42 

700 201.83 1.22 465.12 10.42 

725 203.73 1.22 498.37 10.42 

750 205.63 1.22 531.62 10.42 

775 207.53 1.22 564.87 10.42 

800 209.43 1.22 598.12 10.42 

825 211.33 1.22 631.37 10.42 

850 213.23 1.22 664.62 10.42 

875 215.13 1.22 697.87 10.42 

900 217.03 1.22 731.12 10.42 

925 218.93 1.22 764.37 10.42 

950 220.83 1.22 797.62 10.42 

975 222.73 1.22 830.87 10.42 

1000 224.63 1.22 864.12 10.42 

 

 

 

Table 6.34: CV aR∗ and % Decrease in Emission vs. K at p=2, c=1, s=0.85, l=1,
η=0.01 for (cb, cs)=(0.08, 0.076), (1.4, 1.33) under Cap and Trade Policy.
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Eta=0.1 
Qup=535.07 

 Qdown=535.45 
(cb,cs)=(0.08,0.076) 

Qup=465.63 
 Qdown=469.35 

(cb,cs)=(1.4,1.33) 

K CVaR* 
% Decrease in 

Emission 
CVaR* 

% Decrease in 
Emission 

300 270.06 1.57 8.98 14.35 

325 272.06 1.57 43.98 14.35 

350 274.06 1.57 78.98 14.35 

375 276.06 1.57 113.98 14.35 

400 278.06 1.57 148.98 14.35 

425 280.06 1.57 183.98 14.35 

450 282.06 1.57 218.98 14.35 

475 284.06 1.57 253.45 13.66 

500 286.06 1.57 286.70 13.66 

525 288.06 1.57 319.95 13.66 

550 290.00 1.50 353.20 13.66 

575 291.90 1.50 386.45 13.66 

600 293.80 1.50 419.70 13.66 

625 295.70 1.50 452.95 13.66 

650 297.60 1.50 486.20 13.66 

675 299.50 1.50 519.45 13.66 

700 301.40 1.50 552.70 13.66 

725 303.30 1.50 585.95 13.66 

750 305.20 1.50 619.20 13.66 

775 307.10 1.50 652.45 13.66 

800 309.00 1.50 685.70 13.66 

825 310.90 1.50 718.95 13.66 

850 312.80 1.50 752.20 13.66 

875 314.70 1.50 785.45 13.66 

900 316.60 1.50 818.70 13.66 

925 318.50 1.50 851.95 13.66 

950 320.40 1.50 885.20 13.66 

975 322.30 1.50 918.45 13.66 

1000 324.20 1.50 951.70 13.66 

 

 

 

Table 6.35: CV aR∗ and % Decrease in Emission vs. K at p=2, c=1, s=0.85, l=1,
η=0.1 for (cb, cs)=(0.08, 0.076), (1.4, 1.33) under Cap and Trade Policy.
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Eta=0.25 
Qup=549.09 

 Qdown=549.53 
(cb,cs)=(0.08,0.076) 

Qup=463.50 
 Qdown=468.08 

(cb,cs)=(1.4,1.33) 

K CVaR* 
% Decrease in 

Emission 
CVaR* 

% Decrease in 
Emission 

300 321.91 1.78 53.35 17.09 

325 323.91 1.78 88.35 17.09 

350 325.91 1.78 123.35 17.09 

375 327.91 1.78 158.35 17.09 

400 329.91 1.78 193.35 17.09 

425 331.91 1.78 228.35 17.09 

450 333.91 1.78 263.35 17.09 

475 335.91 1.78 297.71 16.27 

500 337.91 1.78 330.96 16.27 

525 339.91 1.78 364.21 16.27 

550 341.91 1.70 397.46 16.27 

575 343.81 1.70 430.71 16.27 

600 345.71 1.70 463.96 16.27 

625 347.61 1.70 497.21 16.27 

650 349.51 1.70 530.46 16.27 

675 351.41 1.70 563.71 16.27 

700 353.31 1.70 596.96 16.27 

725 355.21 1.70 630.21 16.27 

750 357.11 1.70 663.46 16.27 

775 359.01 1.70 696.71 16.27 

800 360.91 1.70 729.96 16.27 

825 362.81 1.70 763.21 16.27 

850 364.71 1.70 796.46 16.27 

875 366.61 1.70 829.71 16.27 

900 368.51 1.70 862.96 16.27 

925 370.41 1.70 896.21 16.27 

950 372.31 1.70 929.46 16.27 

975 374.21 1.70 962.71 16.27 

1000 376.11 1.70 995.96 16.27 

 

Table 6.36: CV aR∗ and % Decrease in Emission vs. K at p=2, c=1, s=0.85, l=1,
η=0.25 for (cb, cs)=(0.08, 0.076), (1.4, 1.33) under Cap and Trade Policy.
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Eta=0.01 
Qup=661.99 

 Qdown=662.29 
(cb,cs)=(0.08,0.076) 

Qup=619.15 
Qdown=620.48 

(cb,cs)=(1.4, 1.33) 

Qup=580.13  
Qdown=584.59 

(cb,cs)=(3.6, 3.42) 

Carbon 
Cap 

%Decrease 
in Emission 

%SL* 
%Decrease 
in Emission 

%SL* 
%Decrease in 

Emission 
%SL* 

300 1.05 94.74 7.46 88.33 13.29 78.85 

325 1.05 94.74 7.46 88.33 13.29 78.85 

350 1.05 94.74 7.46 88.33 13.29 78.85 

375 1.05 94.74 7.46 88.33 13.29 78.85 

400 1.05 94.74 7.46 88.33 13.29 78.85 

425 1.05 94.74 7.46 88.33 13.29 78.85 

450 1.05 94.74 7.46 88.33 13.29 78.85 

475 1.05 94.74 7.46 88.33 13.29 78.85 

500 1.05 94.74 7.46 88.33 13.29 78.85 

525 1.05 94.74 7.46 88.33 13.29 78.85 

550 1.05 94.74 7.46 88.33 13.29 78.85 

575 1.05 94.74 7.46 88.33 13.29 78.85 

600 1.05 94.74 7.46 88.33 12.62 80.12 

625 1.05 94.74 7.26 88.59 12.62 80.12 

650 1.05 94.74 7.26 88.59 12.62 80.12 

675 1.01 94.77 7.26 88.59 12.62 80.12 

700 1.01 94.77 7.26 88.59 12.62 80.12 

725 1.01 94.77 7.26 88.59 12.62 80.12 

750 1.01 94.77 7.26 88.59 12.62 80.12 

775 1.01 94.77 7.26 88.59 12.62 80.12 

800 1.01 94.77 7.26 88.59 12.62 80.12 

825 1.01 94.77 7.26 88.59 12.62 80.12 

850 1.01 94.77 7.26 88.59 12.62 80.12 

875 1.01 94.77 7.26 88.59 12.62 80.12 

900 1.01 94.77 7.26 88.59 12.62 80.12 

925 1.01 94.77 7.26 88.59 12.62 80.12 

950 1.01 94.77 7.26 88.59 12.62 80.12 

975 1.01 94.77 7.26 88.59 12.62 80.12 

1000 1.01 94.77 7.26 88.59 12.62 80.12 

 

 

 

Table 6.37: SL∗ and % Decrease in Emission vs. K at p=2, c=1, s=0.8, l=3, η=0.01
for (cb, cs)=(0.08, 0.076), (1.4, 1.33), (3.6, 3.42) under Cap and Trade Policy.
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Eta=0.1 
Qup=639.04 

 Qdown=639.42 
(cb,cs)=(0.08,0.076) 

Qup=582.68 
Qdown=584.54 

(cb,cs)=(1.4, 1.33) 

Qup=528.57 
Qdown=534.54 

(cb,cs)=(3.6, 3.42) 

Carbon 
Cap 

%Decrease 
in Emission 

%SL* 
%Decrease 
in Emission 

%SL* 
%Decrease    
in Emission 

%SL* 

300 1.35 88.33 10.05 79.58 18.40 61.24 

325 1.35 88.33 10.05 79.58 18.40 61.24 

350 1.35 88.33 10.05 79.58 18.40 61.24 

375 1.35 88.33 10.05 79.58 18.40 61.24 

400 1.35 88.33 10.05 79.58 18.40 61.24 

425 1.35 88.33 10.05 79.58 18.40 61.24 

450 1.35 88.33 10.05 79.58 18.40 61.24 

475 1.35 88.33 10.05 79.58 18.40 61.24 

500 1.35 88.33 10.05 79.58 18.40 61.24 

525 1.35 88.33 10.05 79.58 18.40 61.24 

550 1.35 88.33 10.05 79.58 17.48 63.51 

575 1.35 88.33 10.05 79.58 17.48 63.51 

600 1.35 88.33 9.76 80.11 17.48 63.51 

625 1.35 88.33 9.76 80.11 17.48 63.51 

650 1.29 88.59 9.76 80.11 17.48 63.51 

675 1.29 88.59 9.76 80.11 17.48 63.51 

700 1.29 88.59 9.76 80.11 17.48 63.51 

725 1.29 88.59 9.76 80.11 17.48 63.51 

750 1.29 88.59 9.76 80.11 17.48 63.51 

775 1.29 88.59 9.76 80.11 17.48 63.51 

800 1.29 88.59 9.76 80.11 17.48 63.51 

825 1.29 88.59 9.76 80.11 17.48 63.51 

850 1.29 88.59 9.76 80.11 17.48 63.51 

875 1.29 88.59 9.76 80.11 17.48 63.51 

900 1.29 88.59 9.76 80.11 17.48 63.51 

925 1.29 88.59 9.76 80.11 17.48 63.51 

950 1.29 88.59 9.76 80.11 17.48 63.51 

975 1.29 88.59 9.76 80.11 17.48 63.51 

1000 1.29 88.59 9.76 80.11 17.48 63.51 

 

 

 

Table 6.38: SL∗ and % Decrease in Emission vs. K at p=2, c=1, s=0.8, l=3, η=0.1
for (cb, cs)=(0.08, 0.076), (1.4, 1.33), (3.6, 3.42) under Cap and Trade Policy.
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Eta=0.25 
Qup=631.01 

 Qdown=631.64 
(cb,cs)=(0.08,0.076) 

Qup=564.47 
Qdown=566.76 

(cb,cs)=(1.4, 1.33) 

Qup=497.08 
Qdown=504.31 

(cb,cs)=(3.6, 3.42) 

Carbon 
Cap 

%Decrease 
in Emission 

%SL* 
%Decrease 
in Emission 

%SL* 
%Decrease 
in Emission 

%SL* 

300 1.54 90.52 11.95 74.05 22.46 48.84 

325 1.54 90.52 11.95 74.05 22.46 48.84 

350 1.54 90.52 11.95 74.05 22.46 48.84 

375 1.54 90.52 11.95 74.05 22.46 48.84 

400 1.54 90.52 11.95 74.05 22.46 48.84 

425 1.54 90.52 11.95 74.05 22.46 48.84 

450 1.54 90.52 11.95 74.05 22.46 48.84 

475 1.54 90.52 11.95 74.05 22.46 48.84 

500 1.54 90.52 11.95 74.05 21.34 51.72 

525 1.54 90.52 11.95 74.05 21.34 51.72 

550 1.54 90.52 11.95 74.05 21.34 51.72 

575 1.54 90.52 11.59 74.78 21.34 51.72 

600 1.54 90.52 11.59 74.78 21.34 51.72 

625 1.54 90.52 11.59 74.78 21.34 51.72 

650 1.47 90.60 11.59 74.78 21.34 51.72 

675 1.47 90.60 11.59 74.78 21.34 51.72 

700 1.47 90.60 11.59 74.78 21.34 51.72 

725 1.47 90.60 11.59 74.78 21.34 51.72 

750 1.47 90.60 11.59 74.78 21.34 51.72 

775 1.47 90.60 11.59 74.78 21.34 51.72 

800 1.47 90.60 11.59 74.78 21.34 51.72 

825 1.47 90.60 11.59 74.78 21.34 51.72 

850 1.47 90.60 11.59 74.78 21.34 51.72 

875 1.47 90.60 11.59 74.78 21.34 51.72 

900 1.47 90.60 11.59 74.78 21.34 51.72 

925 1.47 90.60 11.59 74.78 21.34 51.72 

950 1.47 90.60 11.59 74.78 21.34 51.72 

975 1.47 90.60 11.59 74.78 21.34 51.72 

1000 1.47 90.60 11.59 74.78 21.34 51.72 

 

 

 

Table 6.39: SL∗ and % Decrease in Emission vs. K at p=2, c=1, s=0.8, l=3, η=0.25
for (cb, cs)=(0.08, 0.076), (1.4, 1.33), (3.6, 3.42) under Cap and Trade Policy.
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Eta=0.01 
Qup=516.11 

Qdown=516.39 
(cb,cs)=(0.08,0.076) 

Qup=465.56 
Qdown=468.27 

(cb,cs)=(1.4,1.33) 

K 
% Decrease in 

Emiss 
%SL* 

% Decrease in 
Emiss 

%SL* 

300 1.27 56.40 10.94 36.53 

325 1.27 56.40 10.94 36.53 

350 1.27 56.40 10.94 36.53 

375 1.27 56.40 10.94 36.53 

400 1.27 56.40 10.94 36.53 

425 1.27 56.40 10.94 36.53 

450 1.27 56.40 10.94 36.53 

475 1.27 56.40 10.42 37.55 

500 1.27 56.40 10.42 37.55 

525 1.22 56.51 10.42 37.55 

550 1.22 56.51 10.42 37.55 

575 1.22 56.51 10.42 37.55 

600 1.22 56.51 10.42 37.55 

625 1.22 56.51 10.42 37.55 

650 1.22 56.51 10.42 37.55 

675 1.22 56.51 10.42 37.55 

700 1.22 56.51 10.42 37.55 

725 1.22 56.51 10.42 37.55 

750 1.22 56.51 10.42 37.55 

775 1.22 56.51 10.42 37.55 

800 1.22 56.51 10.42 37.55 

825 1.22 56.51 10.42 37.55 

850 1.22 56.51 10.42 37.55 

875 1.22 56.51 10.42 37.55 

900 1.22 56.51 10.42 37.55 

925 1.22 56.51 10.42 37.55 

950 1.22 56.51 10.42 37.55 

975 1.22 56.51 10.42 37.55 

1000 1.22 56.51 10.42 37.55 

 

 

 

Table 6.40: SL∗ and % Decrease in Emission vs. K at p=2, c=1, s=0.85, l=1, η=0.01
for (cb, cs)=(0.08, 0.076), (1.4, 1.33) under Cap and Trade Policy.
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Eta=0.1 
Qup=535.07 

 Qdown=535.45 
(cb,cs)=(0.08,0.076) 

Qup=465.63 
 Qdown=469.35 

(cb,cs)=(1.4,1.33) 

K 
% Decrease in 

Emission 
%SL* 

% Decrease in 
Emission 

%SL* 

300 1.57 63.71 14.35 36.55 

325 1.57 63.71 14.35 36.55 

350 1.57 63.71 14.35 36.55 

375 1.57 63.71 14.35 36.55 

400 1.57 63.71 14.35 36.55 

425 1.57 63.71 14.35 36.55 

450 1.57 63.71 14.35 36.55 

475 1.57 63.71 13.66 37.96 

500 1.57 63.71 13.66 37.96 

525 1.57 63.71 13.66 37.96 

550 1.50 63.85 13.66 37.96 

575 1.50 63.85 13.66 37.96 

600 1.50 63.85 13.66 37.96 

625 1.50 63.85 13.66 37.96 

650 1.50 63.85 13.66 37.96 

675 1.50 63.85 13.66 37.96 

700 1.50 63.85 13.66 37.96 

725 1.50 63.85 13.66 37.96 

750 1.50 63.85 13.66 37.96 

775 1.50 63.85 13.66 37.96 

800 1.50 63.85 13.66 37.96 

825 1.50 63.85 13.66 37.96 

850 1.50 63.85 13.66 37.96 

875 1.50 63.85 13.66 37.96 

900 1.50 63.85 13.66 37.96 

925 1.50 63.85 13.66 37.96 

950 1.50 63.85 13.66 37.96 

975 1.50 63.85 13.66 37.96 

1000 1.50 63.85 13.66 37.96 

 

 

 

Table 6.41: SL∗ and % Decrease in Emission vs. K at p=2, c=1, s=0.85, l=1, η=0.1
for (cb, cs)=(0.08, 0.076), (1.4, 1.33) under Cap and Trade Policy.
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Eta=0.25 
Qup=549.09 

 Qdown=549.53 
(cb,cs)=(0.08,0.076) 

Qup=463.50 
 Qdown=468.08 

(cb,cs)=(1.4,1.33) 

K 
% Decrease in 

Emission 
%SL* 

% Decrease in 
Emission 

%SL* 

300 1.78 68.83 17.09 35.76 

325 1.78 68.83 17.09 35.76 

350 1.78 68.83 17.09 35.76 

375 1.78 68.83 17.09 35.76 

400 1.78 68.83 17.09 35.76 

425 1.78 68.83 17.09 35.76 

450 1.78 68.83 17.09 35.76 

475 1.78 68.83 16.27 37.48 

500 1.78 68.83 16.27 37.48 

525 1.78 68.83 16.27 37.48 

550 1.70 68.98 16.27 37.48 

575 1.70 68.98 16.27 37.48 

600 1.70 68.98 16.27 37.48 

625 1.70 68.98 16.27 37.48 

650 1.70 68.98 16.27 37.48 

675 1.70 68.98 16.27 37.48 

700 1.70 68.98 16.27 37.48 

725 1.70 68.98 16.27 37.48 

750 1.70 68.98 16.27 37.48 

775 1.70 68.98 16.27 37.48 

800 1.70 68.98 16.27 37.48 

825 1.70 68.98 16.27 37.48 

850 1.70 68.98 16.27 37.48 

875 1.70 68.98 16.27 37.48 

900 1.70 68.98 16.27 37.48 

925 1.70 68.98 16.27 37.48 

950 1.70 68.98 16.27 37.48 

975 1.70 68.98 16.27 37.48 

1000 1.70 68.98 16.27 37.48 

 

 

 

Table 6.42: SL∗ and % Decrease in Emission vs. K at p=2, c=1, s=0.85, l=1, η=0.25
for (cb, cs)=(0.08, 0.076), (1.4, 1.33) under Cap and Trade Policy.
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η=0.01 
 

η =0.1 
 

η =0.25 

 
 

Carbon 
Buying Price 

 
% SL*  

 
% 

Decrease 
in 

Emission 

 
% SL* 

% 
Decrease 

in 
Emission 

 
% SL* 

% 
Decrease 

in 
Emission 

0.08 94.74 1.05 91.78 1.35 90.52 1.54 

0.2 93.85 2.21 90.19 2.86 88.50 3.28 

0.4 92.64 3.59 87.96 4.71 85.58 5.45 

0.8 90.71 5.49 84.28 7.28 80.60 8.55 

1.4 88.33 7.46 79.58 10.05 74.05 11.95 

2 86.16 9.01 75.24 12.28 67.88 14.76 

3 82.30 11.41 68.85 15.76 57.16 19.19 

3.6 78.85 13.28 61.24 18.40 48.84 22.46 

 

 

 

 

 

Table 6.43: % Decrease in Emission and SL∗ values obtained at p=2, c=1, s=0.8,
l=3, for η=0.01, 0.1, 0.25 and cb=(0.08, 0.2, 0.4, 0.8, 1.4, 2, 3, 3.6) under Cap and Trade
Policy.
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Eta=0.01 
 Production 

Quantity 
CVaR 

Qunconstrained 669 142.57 

Use all Carbon 600 134.33 
Use all Cash 650 70.22 

 

Eta=0.1 

 Production 
Quantity 

CVaR 

Qunconstrained 647.8 255.27 
Use all Carbon 600 294.78 

Use all Cash 650 185.25 
 

Eta=0.5 
 Production 

Quantity 
CVaR 

Qunconstrained 639.7 370.77 

Use all Carbon 600 418.97 
Use all Cash 650 300.46 

 

Eta=0.9 

 Production 
Quantity 

CVaR 

Qunconstrained 653.3 439.54 
Use all Carbon 600 484.65 

Use all Cash 650 369.51 
 

Eta Q* CVaR* 
0.01 600 134.33 

0.1 600 294.78 
0.5 600 418.97 

0.9 600 484.65 
 

Table 6.44: Q∗ and CV aR∗ at η=0.01, 0.1, 0.5 at p=2, c=1, s=0.8, l= 3, αcarbon=1,
αcash=1, ccarbonb =1.4, ccarbons =1.33, ccashb =1.125, ccashs =1.1, Kcarbon = 600, Kcash = 650
under Binding Resources Policy.
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Eta=0.01 
 Production 

Quantity 
CVaR 

Qunconstrained 512.9 174.9 

Use all Carbon 450 192.7 
Use all Cash 510 90.9 

 

Eta=0.1 

 Production 
Quantity 

CVaR 

Qunconstrained 534.5 279.2 
Use all Carbon 450 281.2 

Use all Cash 510 191.2 
 

Eta=0.5 
 Production 

Quantity 
CVaR 

Qunconstrained 570.6 385.7 

Use all Carbon 450 368.2 
Use all Cash 510 283.4 

 

Eta=0.9 

 Production 
Quantity 

CVaR 

Qunconstrained 612.8 447.9 
Use all Carbon 450 412.9 

Use all Cash 510 327.7 
 

Eta Q* CVaR* 
0.01 450 192.7 

0.1 450 281.2 
0.5 450 368.2 

0.9 450 412.9 
 

Table 6.45: Q∗ and CV aR∗ at η=0.01, 0.1, 0.5 at p=2, c=1, s=0.8, l= 1, αcarbon=1,
αcash=1, ccarbonb =1.4, ccarbons =1.33, ccashb =1.125, ccashs =1.1, Kcarbon = 450, Kcash = 510
under Binding Resources Policy.
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Eta=0.01 

Action Production Quantity Feasibility CVaR 

Sell Carbon Sell Cash 601.9 Infeasible - 

Buy Carbon Sell Cash 600.8 Feasible 134.35 

Buy Carbon Buy Cash 600.4 Infeasible - 

Use All Carbon 600 Feasible 134.33 

Use All Cash 650 Feasible 70.22 
 

Eta=0.1 

Action Production Quantity Feasibility CVaR 

Sell Carbon Sell Cash 558.6 Feasible 330.64 

Buy Carbon Sell Cash 557.1 Infeasible - 

Buy Carbon Buy Cash 556.5 Infeasible - 

Use All Carbon 600 Feasible 294.78 

Use All Cash 650 Feasible 185.25 
 

Eta=0.5 

Action Production Quantity Feasibility CVaR 

Sell Carbon Sell Cash 509.4 Feasible 520.94 

Buy Carbon Sell Cash 506.8 Infeasible - 

Buy Carbon Buy Cash 505.9 Infeasible - 

Use All Carbon 600 Feasible 418.97 

Use All Cash 650 Feasible 300.46 
 

Eta=0.9 

Action Production Quantity Feasibility CVaR 

Sell Carbon Sell Cash 476.5 Feasible 618.05 

Buy Carbon Sell Cash 472.6 Infeasible - 

Buy Carbon Buy Cash 471.2 Infeasible - 

Use All Carbon 600 Feasible 484.65 

Use All Cash 650 Feasible 369.51 
 

Eta Q* CVaR* 
0.01 600.8 134.35 

0.1 558.6 330.64 

0.5 509.4 520.94 
0.9 476.5 618.05 

 

Table 6.46: Q∗ and CV aR∗ at η=0.01, 0.1, 0.5, 0.9 at p=2, c=1, s=0.8, l= 3,
αcarbon=1, αcash=1, ccarbonb =1.4, ccarbons =1.33,ccashb =1.125, ccashs =1.1, Kcarbon = 600,
Kcash = 650 under Resource Trading Policy.
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Kcarbon=570 

Action Production Quantity Feasibility CVaR 

Sell Carbon Sell Cash 601.9 Infeasible - 

Buy Carbon Sell Cash 600.8 Feasible 92.35 

Buy Carbon Buy Cash 600.4 Infeasible - 

Use All Carbon 570 Feasible 67.33 

Use All Cash 650 Feasible 28.22 
 

Kcarbon =585 

Action Production Quantity Feasibility CVaR 

Sell Carbon Sell Cash 601.9 Infeasible - 

Buy Carbon Sell Cash 600.8 Feasible 106.35 

Buy Carbon Buy Cash 600.4 Infeasible - 

Use All Carbon 585 Feasible 105.84 

Use All Cash 650 Feasible 49.22 
 

Kcarbon =600 

Action Production Quantity Feasibility CVaR 

Sell Carbon Sell Cash 601.9 Infeasible - 

Buy Carbon Sell Cash 600.8 Feasible 134.35 

Buy Carbon Buy Cash 600.4 Infeasible - 

Use All Carbon 600 Feasible 134.33 

Use All Cash 650 Feasible 70.22 
 

Kcarbon =620 

Action Production Quantity Feasibility CVaR 

Sell Carbon Sell Cash 601.9 Feasible 161.05 

Buy Carbon Sell Cash 600.8 Infeasible - 

Buy Carbon Buy Cash 600.4 Infeasible - 

Use All Carbon 620 Feasible 151.02 

Use All Cash 650 Feasible 98.22 
 

Kcash Kcarbon Q* CVaR* 
650 570 600.8 92.35 

650 585 600.8 106.35 

650 600 600.8 134.35 
650 620 601.9 161.05 

 

Table 6.47: Optimal Policy analysis at Kcarbon=570, 585, 600, 620 at p=2, c=1,
s=0.8, l= 3, αcarbon=1, αcash=1, ccarbonb =1.4, ccarbons =1.33, ccashb =1.125, ccashs =1.1,
Kcash = 650, η=0.01 under Resource Trading Policy.
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Kcarbon=570 

Action Production Quantity Feasibility CVaR 

Sell Carbon Sell Cash 558.6 Feasible 290.74 

Buy Carbon Sell Cash 557.1 Infeasible - 

Buy Carbon Buy Cash 556.5 Infeasible - 

Use All Carbon 570 Feasible 287.83 

Use All Cash 650 Feasible 143.25 
 

Kcarbon =585 

Action Production Quantity Feasibility CVaR 

Sell Carbon Sell Cash 558.6 Feasible 310.69 

Buy Carbon Sell Cash 557.1 Infeasible - 

Buy Carbon Buy Cash 556.5 Infeasible - 

Use All Carbon 585 Feasible 295.46 

Use All Cash 650 Feasible 164.25 
 

Kcarbon =600 

Action Production Quantity Feasibility CVaR 

Sell Carbon Sell Cash 558.6 Feasible 330.64 

Buy Carbon Sell Cash 557.1 Infeasible - 

Buy Carbon Buy Cash 556.5 Infeasible - 

Use All Carbon 600 Feasible 294.78 

Use All Cash 650 Feasible 185.25 
 

Kcarbon =620 

Action Production Quantity Feasibility CVaR 

Sell Carbon Sell Cash 558.6 Feasible 357.24 

Buy Carbon Sell Cash 557.1 Infeasible - 

Buy Carbon Buy Cash 556.5 Infeasible - 

Use All Carbon 620 Feasible 284.08 

Use All Cash 650 Feasible 213.25 
 

Kcash Kcarbon Q* CVaR* 
650 570 558.6 290.74 

650 585 558.6 310.69 

650 600 558.6 330.64 
650 620 558.6 357.24 

 

Table 6.48: Optimal Policy analysis at Kcarbon=570, 585, 600, 620 at p=2, c=1,
s=0.8, l= 3, αcarbon=1, αcash=1, ccarbonb =1.4, ccarbons =1.33, ccashb =1.125, ccashs =1.1,
Kcash = 650, η=0.1 under Resource Trading Policy.
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Kcash=550 

Action Production Quantity Feasibility CVaR 

Sell Carbon Sell Cash 601.9 Infeasible - 

Buy Cash Sell Carbon 601.5 Infeasible - 

Buy Carbon Buy Cash 600.4 Feasible 23.09 

Use All Carbon 600 Feasible 23.08 

Use All Cash 550 Feasible -33.12 
 

Kcash=580 

Action Production Quantity Feasibility CVaR 

Sell Carbon Sell Cash 601.9 Infeasible - 

Buy Cash Sell Carbon 601.5 Infeasible - 

Buy Carbon Buy Cash 600.4 Feasible 56.84 

Use All Carbon 600 Feasible 56.83 

Use All Cash 580 Feasible 43.23 
 

Kcash=610 

Action Production Quantity Feasibility CVaR 

Sell Carbon Sell Cash 601.9 Infeasible - 

Buy Carbon Sell Cash 600.8 Feasible 90.35 

Buy Carbon Buy Cash 600.4 Infeasible - 

Use All Carbon 600 Feasible 90.33 

Use All Cash 610 Feasible 87.69 
 

Kcash=625 

Action Production Quantity Feasibility CVaR 

Sell Carbon Sell Cash 601.9 Infeasible - 

Buy Carbon Sell Cash 600.8 Feasible 106.85 

Buy Carbon Buy Cash 600.4 Infeasible - 

Use All Carbon 600 Feasible 106.83 

Use All Cash 625 Feasible 89.16 
 

Kcarbon Kcash Q* CVaR* 
600 550 600.4 23.09 

600 580 600.4 56.84 

600 610 600.8 90.35 
600 625 600.8 106.85 

 

Table 6.49: Optimal Policy analysis at Kcash=550, 580, 610, 625 at p=2, c=1, s=0.8,
l= 3, αcarbon=1, αcash=1, ccarbonb =1.4, ccarbons =1.33, ccashb =1.125, ccashs =1.1, Kcarbon =
600, η=0.01 under Resource Trading Policy.
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Kcash=550 

Action Production Quantity Feasibility CVaR 

Sell Carbon Sell Cash 558.59 Infeasible - 

Buy Cash Sell Carbon 558.05 Feasible 220.44 

Buy Carbon Buy Cash 556.49 Infeasible - 

Use All Carbon 600 Feasible 183.53 

Use All Cash 550 Feasible 218.98 
 

Kcash=580 

Action Production Quantity Feasibility CVaR 

Sell Carbon Sell Cash 558.59 Feasible 253.64 

Buy Cash Sell Carbon 558.05 Infeasible - 

Buy Carbon Buy Cash 556.49 Infeasible - 

Use All Carbon 600 Feasible 217.28 

Use All Cash 580 Feasible 243.53 
 

Kcash=610 

Action Production Quantity Feasibility CVaR 

Sell Carbon Sell Cash 558.59 Feasible 286.64 

Buy Carbon Sell Cash 557.05 Infeasible - 

Buy Carbon Buy Cash 556.49 Infeasible - 

Use All Carbon 600 Feasible 250.78 

Use All Cash 610 Feasible 232.6 
 

Kcash=625 

Action Production Quantity Feasibility CVaR 

Sell Carbon Sell Cash 558.59 Feasible 303.14 

Buy Carbon Sell Cash 557.05 Infeasible - 

Buy Carbon Buy Cash 556.49 Infeasible - 

Use All Carbon 600 Feasible 267.28 

Use All Cash 625 Feasible 217.61 
 

Kcarbon Kcash Q* CVaR* 
600 550 558.05 220.44 

600 580 558.59 253.64 

600 610 558.59 286.64 
600 625 558.59 303.14 

 

Table 6.50: Optimal Policy analysis at Kcash=550, 580, 610, 625 at p=2, c=1, s=0.8,
l= 3, αcarbon=1, αcash=1, ccarbonb =1.4, ccarbons =1.33, ccashb =1.125, ccashs =1.1, Kcarbon =
600, η=0.1 under Resource Trading Policy.
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Chapter 7

Conclusion

In this thesis we investigate two problems with a single product newsvendor under

CVaR maximization objective. In the first problem we take the carbon emission

reduction concerns of the newsvendor into consideration. In the second problem, as

an extension of the first one, multiple resource constraints are introduced under the

binding and tradable resource constraints settings.

The first problem is introduced as ” Problem under CVaR Maximization with Car-

bon Emission Concerns”. The carbon emission concerns are taken into consideration

via analyzing the strict cap and cap and trade policies. Under the strict cap policy

the order/production quantity is fixed according to the given carbon cap. The an-

alytical expressions of order /production quantity satisfying the emission constraint

and maximizing CVaR and the corresponding threshold value for profit, VaR, are

provided for this policy. For the cap and trade policy, we determine the optimal pol-

icy of the newsvendor for a given carbon emission cap. The closed form expressions

of the order/production quantity and the corresponding VaR value at the optimal
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policy are derived.

As a generalization of the first problem, in the second problem we search for

the optimal production policy of the newsvendor who is subject to multiple resource

constraints. The optimal production policy and corresponding analytical expressions

are derived for the cases with binding resource constraints and tradeable resource

constraints.

In the numerical experiment we first analyze the effects of newsvendor problem

parameters on the optimal order/production quantity versus risk aversion level rela-

tion. It is observed that the newsvendor tends to order more as he becomes more risk

averse if the lost sales cost is equal to two or three times value of the profit mark-up

which is a counter intuitive result. Then, for specified parameter settings the impact

of risk aversion level, carbon trading prices, carbon cap tightness and given carbon

cap values are analyzed for Problem 1. The strict cap policy analysis implies that

CVaR is more sensitive to carbon cap tightness than expected profit which is sup-

ported by % Decrease in CVaR and expected profit analyses. We observe that CVaR

tends to increase with increasing risk aversion level value and the range of the values

CVaR attains increases for a specified tightness interval as the carbon prices increase.

In addition, higher percentage reduction in emission with respect to the emission of

unconstrained optimal solution is observed at the higher carbon prices under the cap

and trade policy. For Problem 2 we conduct a small numerical experiment and similar

observations are made.

To our knowledge, in the literature there is not a study incorporating the CVaR

setting to newsboy problem with carbon restrictions or multiple tradable resource re-

strictions. In this respect, this research aims to make a contribution to the literature.
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As a future study our problems can be investigated under the case where the car-

bon/resource prices are random. Another extension could be analyzing the problems

with a multi- product setting. As we observe that the parameter setting affects the

optimal production amount and risk aversion level relation, it would be interesting to

search whether there is an interaction between multiple product paramaeters. Lastly,

we can propose a setting for Problem 1 where the carbon cap is also a decision vari-

able. Under this setting the problem can be considered as a two stage stochastic

optimization problem.

182



Bibliography

[1] IPCC, “Climate change 2007: The physical science basis.” http://www.ipcc.

ch/pdf/assessment-report/ar4/wg1/ar4-wg1-spm.pdf, 2007. Visited June

2014.

[2] EU, “Road transport: Reducing co2 emissions from vehicles.” http://ec.

europa.eu/clima/policies/transport/vehicles/index_en.htm, 2014. Vis-

ited June 2014.

[3] G. Hua, T. Cheng, and S. Wang, “Managing carbon footprints in inventory

management,” International Journal of Production Economics, vol. 132, no. 2,

pp. 178–185, 2011.

[4] WNA, “Policy responses to climate change.” http://

http://world-nuclear.org/info/Energy-and-Environment/

Policy-Responses-to-Climate-Change, 2014. Visited June 2014.

[5] T. M. Whitin, “Inventory control and price theory,” Management science, vol. 2,

no. 1, pp. 61–68, 1955.

[6] M. Khouja, “The single-period (news-vendor) problem: literature review and

suggestions for future research,” Omega, vol. 27, no. 5, pp. 537–553, 1999.

183



[7] C.-S. Chung, J. Flynn, and J. Zhu, “The newsvendor problem with an in-season

price adjustment,” European Journal of Operational Research, vol. 198, no. 1,

pp. 148–156, 2009.

[8] R. W. Grubbström, “The newsboy problem when customer demand is a com-

pound renewal process,” European Journal of Operational Research, vol. 203,

no. 1, pp. 134–142, 2010.

[9] Z. Wu, B. Kazaz, S. Webster, and K.-K. Yang, “Ordering, pricing, and lead-time

quotation under lead-time and demand uncertainty,” Production and Operations

Management, vol. 21, no. 3, pp. 576–589, 2012.

[10] Y. Yu, J. Zhu, and C. Wang, “A newsvendor model with fuzzy price-dependent

demand,” Applied Mathematical Modelling, vol. 37, no. 5, pp. 2644–2661, 2013.

[11] W. Jammernegg and P. Kischka, “The price-setting newsvendor with service and

loss constraints,” Omega, vol. 41, no. 2, pp. 326–335, 2013.

[12] H.-S. Lau, “The newsboy problem under alternative optimization objectives,”

Journal of the Operational Research Society, pp. 525–535, 1980.

[13] A. H.-L. Lau and H.-S. Lau, “Maximizing the probability of achieving a target

profit in a two-product newsboy problem*,” Decision Sciences, vol. 19, no. 2,

pp. 392–408, 1988.

[14] J. Li, H.-S. Lau, and A. H.-L. Lau, “Some analytical results for a two-product

newsboy problem,” Decision Sciences, vol. 21, no. 4, pp. 710–726, 1990.

[15] J. Li, H.-S. Lau, and A. H.-L. Lau, “A two-product newsboy problem with

satisficing objective and independent exponential demands,” IIE transactions,

vol. 23, no. 1, pp. 29–39, 1991.

184



[16] M. Parlar and Z. Kevin Weng, “Balancing desirable but conflicting objectives in

the newsvendor problem,” IIE Transactions, vol. 35, no. 2, pp. 131–142, 2003.

[17] S. Yang, C. V. Shi, and X. Zhao, “Optimal ordering and pricing decisions for a

target oriented newsvendor,” Omega, vol. 39, no. 1, pp. 110–115, 2011.

[18] M. Bouakiz and M. J. Sobel, “Inventory control with an exponential utility

criterion,” Operations Research, vol. 40, no. 3, pp. 603–608, 1992.

[19] T. Dohi, A. Watanabe, and S. Osaki, “A note on risk averse newsboy problem,”

RAIRO. Recherche opérationnelle, vol. 28, no. 2, pp. 181–202, 1994.

[20] V. Agrawal and S. Seshadri, “Impact of uncertainty and risk aversion on price and

order quantity in the newsvendor problem,” Manufacturing & Service Operations

Management, vol. 2, no. 4, pp. 410–423, 2000.
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[36] H. Rosič and W. Jammernegg, “The economic and environmental performance

of dual sourcing: A newsvendor approach,” International Journal of Production

Economics, vol. 143, no. 1, pp. 109–119, 2013.

[37] B. Zhang and L. Xu, “Multi-item production planning with carbon cap and trade

mechanism,” International Journal of Production Economics, vol. 144, no. 1,

pp. 118–127, 2013.
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