
EXACT SOLUTIONS AND HEURISTICS
FOR MULTI-PRODUCT INVENTORY

PRICING PROBLEM

a thesis

submitted to the department of industrial engineering

and the graduate school of engineering and science

of bilkent university

in partial fulfillment of the requirements

for the degree of

master of science

By
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ABSTRACT

EXACT SOLUTIONS AND HEURISTICS FOR
MULTI-PRODUCT INVENTORY PRICING PROBLEM

Oğuz Çetin

M.S. in Industrial Engineering

Supervisor: Assoc. Prof. Alper Şen

July, 2014

We study the multi-product inventory pricing problem under stochastic and price

sensitive demand. We have initial inventory of m resources whose different com-

binations form n products. Products are perishable and need to be sold by a

deadline. Demand for each product is modeled as a non-homogeneous Poisson

process whose intensity is a function of the current price of the product itself.

The aim is to set the price of each product over the selling period to maximize

the expected revenue. This problem is faced in various industries including re-

tail, airlines, automobile, apparel, hotels and car rentals. Our contributions are

twofold. First, we provide a closed form solution for the special case of exponen-

tial price response where the elasticity parameter of the demand function of all

products are equal. Second, we develop two classes of dynamic pricing heuris-

tics: one using the value approximation approach of dynamic programming and

the other using the deterministic version of the problem. Our numerical analysis

indicates that dynamic pricing yields significantly higher revenues compared to

fixed price policies. One of the dynamic pricing heuristics based on the determin-

istic problem provides around 5−15% additional revenue compared to fixed price

policies. Moreover, two value approximation heuristics that we suggest result in

at most ∼ 0.5% and ∼ 3.4% gaps in the expected revenue compared to the opti-

mal dynamic pricing policy for general form of exponential price response. These

additional revenues can have a profound effect on the profitability of firms, so

dynamic pricing should be preferred over fixed price policies in practice.

Keywords: Dynamic pricing, network revenue management, inventory pricing.
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ÖZET

ÇOKLU ÜRÜN FİYATLANDIRMA PROBLEMİ İÇİN
KESİN VE SEZGİSEL ÇÖZÜM YÖNTEMLERİ

Oğuz Çetin

Endüstri Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Doç. Dr. Alper Şen

Temmuz, 2014

Bu çalışmada, birden fazla tipte üründen oluşan bir envanterin, rassal talep duru-

mundaki fiyatlandırılması problemi ele alınmıştır. Başlangıçta elimizde m farklı

ara üründen belirli miktarlarda bulunmaktadır. Bu ara ürünler farklı kombi-

nasyonlarda birleşerek n farklı ürünü meydana getirmektedir. Ürünler belli bir

süre sonunda değerlerini yitirmektedir. Her bir ürün için talep, yoğunluğu za-

man içerisindeki anlık fiyata bağlı olarak değişim gösteren bir Poisson süreci

olarak modellenmiştir. Amaç, bu satış sürecinden en yüksek geliri elde etmek-

tir. Bu problem ile perakendecilik, havayolları, otomobil, giyim, otelcilik ve ki-

ralık araba işletmeciliği gibi birçok endüstride karşılaşılmaktadır. Bu konuda

çalışmamızın katkıları iki kısma ayrılabilir. İlk olarak talebin üstel fonksiyon

halinde tanımlandığı ve her bir ürüne ait esneklik parametresinin aynı olduğu özel

bir durum için analitik çözüm sunulmuştur. İkinci katkımız ise problemin çözümü

için ortaya koyduğumuz iki farklı tipteki sezgisel yöntemlerdir. Birinci tipteki

yöntemler dinamik programlamada kullanılan değer fonksiyonunun tahminini kul-

lanmaktadır. İkinci tip sezgisel yöntemler ise problemin deterministik halinden

faydalanmaktadır. Sayısal analizimiz dinamik fiyatlandırmanın, sabit fiyat poli-

tikalarına göre önemli ölçüde daha yüksek gelir sağladığını göstermektedir. De-

terministik problemi kullanan sezgisel yöntemlerden biri, farklı başlangıç envan-

terleri için ∼ %5−%15 daha yüksek gelir sağlamıştır. Ayrıca, değer fonksiyonu

tahminini kullanan sezgisel yöntemlerden ikisi, mümkün olan en yüksek ortalama

gelirden en fazla ∼ %0.5 ve ∼ %3.4 oranında daha az ortalama gelir sağlamıştır.

Dinamik fiyatlandırmanın sağladığı fazladan gelir, firmaların karlılığı açısından

önemli rol oynayabilir. Bu sebeple, uygulamada dinamik fiyatlandırma, sabit

fiyat politikalarına tercih edilmelidir.

Anahtar sözcükler : Dinamik fiyatlandırma, hasılat yönetimi, envanter fiyat-

landırma.
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Chapter 1

Introduction

1.1 Motivation

In both manufacturing and service industries, companies have the ultimate goal

of increasing their profit. They perform various activities to achieve this goal.

Increasing sales volume or market share through marketing and advertisement

activities or decreasing operating costs through quality control and more efficient

logistics can all be employed to this end. Yet another means of increasing profits

is efficient pricing, which is basically achieved by setting the price of a good or

service in a way that maximizes the profitability of the company subject to certain

constraints on supply.

According to a study by Marn et al. [1], a price rise of one percent would

generate an eight percent increase in operating profits in the average income

statement of an S&P 1500 company. This is in contrast to about a 5.4 percent

increase via decreasing variable costs by one percent, or only about a 2.5 percent

increase via increasing sales volume by one percent. Hence, it can be argued that

pricing has a profound effect on profitability.

Dynamic pricing is a strategy in which the price of a product is flexible and

controlled depending on various determinants such as customer valuation for the

1



product, inventory levels, remaining time in the selling season, prices of comple-

mentary and substitutable products and competitors’ decisions, etc. Dynamic

pricing strategy is being used extensively in different industries such as retail,

apparel, automobiles, consumer electronics and telecommunications. Sahay [2]

reports that EBay Inc. sold $20 billion worth of goods in 2005 and Ford Motor

Co. sold more than $50 billion worth of automobiles in 2003 through dynamically

pricing their products. These examples indicate how extensively dynamic pricing

is used as an important way of increasing profits in many different industries.

In apparel sector, the traditional pricing policy is to set fixed prices during

season followed by large markdowns towards the end of the season. Similar pric-

ing policies can be observed in consumer electronics. In such cases, dynamic

pricing throughout the selling period can provide higher revenues due to more

efficient demand management and customer segmentation based on willingness

to pay. An interesting example of successful demand management is provided

in Sahay [2]. They consider a hairdresser in London, who turns away customers

at weekends due to limited capacity. However, he is idle most of the time in

weekdays. They increased the price of a haircut at weekends and decreased it on

Tuesdays and Wednesdays. This practice resulted in 10% increase in the revenue

of the hairdresser which is a result of successful customer segmentation based on

willingness to pay.

As for the capacity constrained service companies such as airlines, hotels, car

rentals and cruise-lines, efficient pricing is even more important since variable

costs are relatively small in their operating activities and it is very costly or im-

possible to increase their capacities in the short run. Realization of high demand

may lead to lost sales due to the constrained capacity in which case one would

prefer increasing prices at the expense of losing some demand. On the other

hand, an increase in prices may result in unsold products, which is not desirable

especially for perishable items. Besides, there may be some considerations other

than revenue. For instance, there may be an attendance target for a concert to

be held. A striking example of pricing perishable items was the London 2012

Olympic Games where organizers had to price 8 million tickets while meeting

the revenue and attendance targets at the same time according to Bertini and

2



Gourville [3].

It is worth noting here that pricing is an indispensable part of revenue man-

agement practice which has its origins in airline industry. In particular, it can

be seen that pricing and capacity allocation problems are interrelated from the

perspective of the capacity constrained service companies. What is meant by

the capacity allocation problem may vary in different contexts. Determination

of the number of seats reserved for different fare classes in a single flight leg can

be considered as an example of this problem. Besides, in the case of an airline

network, the number of seats in a flight leg reserved for different itineraries is

another example from the same industry. The same problem is faced in hotels

and cruise-lines while determining the capacity allocated for early bookings with

lower prices. As Gallego & van Ryzin [4] point out, pricing and capacity al-

location problems are interrelated because pricing has an influence on demand

statistics which directly affect capacity allocation decisions. One can close a fare

class by setting a sufficiently high price so that the demand rate for that fare

class gets close to zero. Hence, capacity allocation problems can be studied in a

pure pricing framework, which is the approach of this thesis as well.

Dynamic pricing practice is observed in traditional brick-and-mortar retailers

as well as online retailers. Although it is difficult to update the prices of around

50,000 SKUs frequently in traditional retailing with shelf labels, it becomes more

applicable with the use of electronic shelf labels. Thompson [5] reports that in

2013, a start-up company which offers dynamic pricing solutions and electronic

shelf labels to retailers raised $ 1.7 million in venture capital funding. Retailers

employ dynamic pricing in various ways e.g., competitor based or time based

pricing. They sometimes reprice depending on the prices of their competitors.

In time based pricing, they increase the prices during the time periods with high

demand and vice versa. For instance, customers who choose online shopping

usually prefer evenings for shopping, so retailers set higher prices during evenings.

Retailers also frequently apply bundling strategy in which customers are offered

to buy bundles with prices usually lower than the sum of the prices of individual

products that constitute the bundle. In this case, one should decide on the

number of products reserved for bundles and individual sale which can be seen

3



as a capacity allocation problem.

As mentioned above, there are many different factors having influence on the

price of an item, one of which is the inventory level. Under stochastic and price

sensitive demand, one may intuitively think that excess inventory should lead to

lower prices to increase the demand and avoid unsold products. However, the

increase in demand may not compensate the negative effect of price reduction

on the revenue in some cases. This strongly depends on how demand responds

to price changes. Low inventory levels, on the other hand, would lead one to

intuitively expect higher prices in order to sell to those customers with higher

reservation prices. Again, the demand response to price changes is binding here

because the increase in price may not compensate the negative effect of demand

loss on the revenue.

The length of selling period is another factor that affects the pricing decisions.

If the selling period is relatively long, one can expect to have higher prices to

benefit from the customer surplus as much as possible. On the other hand, prices

should be set lower if the selling period is relatively shorter in order to trigger the

demand up and to sell all the products on hand in this short period. Again, the

response of consumers to price changes must be kept in mind because selling all

the products with low prices may not be the right way to maximize the revenue.

Since the 1980s, the network effects in revenue management received con-

siderable attention because the expansion of hub-and-spoke networks led to an

increase in passenger itineraries including different flight legs [6]. A new branch

of revenue management came out in this regard, namely the network revenue

management, in which a set of resources may yield multiple products, and each

resource may be demanded by different products [7]. The multiple resource - mul-

tiple product structure makes the pricing problem even more complicated. To

give an example, there are 4, 000 flights and 350, 000 passenger itineraries per day

in United/Lufthansa/SAS ORION System [6]. Due to this large problem size, it

is very difficult to find and implement optimal revenue management strategies in

practice. Consequently, we see a growing interest in academia for the study of

these problems.
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In conclusion, efficient pricing is crucial for many industries including capacity

constrained service companies and retailers. It is strongly connected to revenue

management and considered as an indispensable part of it in both practice and

theory. Determining the right price for a product is a complex task which depends

on many different factors. Network effects and large problem sizes make this task

even more difficult. All of these motivate practitioners and academicians to work

on this subject.

1.2 Contribution

We consider the problem of a seller who needs to sell a fixed inventory of multiple

items over a finite horizon. Customers arrive following a Poisson process based

on their willingness-to-pay and the current price set by the seller. Consequently,

the sales rate or demand rate can be represented as a function of the prices set by

the retailer. The objective of the seller is to maximize its expected revenue over

the horizon by changing the prices as a function of remaining time and inventory

levels. This problem is faced in many different settings, so the model and solution

approaches are aimed to be generic in the sense that they can be applied in

various industries. As the main contribution, a closed form solution when the

demand rate, or price response function is an exponential price response function

is provided. The closed form solution is then used to obtain approximations for

expected revenue under general form of exponential and linear price responses.

These approximate revenues are then used in two heuristics. In addition, two

dynamic pricing heuristics based on the deterministic version of the problem are

also proposed for large scale problem instances. The dynamic pricing heuristics,

together with two fixed price heuristics from the literature are compared in terms

of the performances on expected revenue through a substantial numerical analysis.

As a result, we emphasize the advantage of dynamic over fixed pricing since it

yields significantly higher expected revenues.

5



1.3 Overview

The rest of the thesis is organized as follows:

In Chapter 2, we review the earlier research on revenue management. First,

we consider the revenue management literature in general and then consider four

subcategories determined by McGill & van Ryzin [6]: Forecasting, overbooking,

capacity allocation and pricing. We put more emphasis on capacity allocation

and pricing since they are closely related with this study.

In Chapter 3, the problem is formulated. The required assumptions of the

model are explained. The deterministic version of the problem is also presented,

since it provides an upper bound on the optimal expected revenue of the stochastic

problem and it is also used in heuristics.

Chapter 4 is dedicated to present the closed form solution of the problem for a

special case of exponential price response where the parameter αj of the demand

function of all products are assumed to be equal. Some structural results arising

from the closed form solution are also reported here.

Heuristic methods are explained in Chapter 5. There are two types of heuris-

tics. The first type includes two heuristics both of which use value approximation

approach of dynamic programming. The second type of heuristics uses the de-

terministic version of the problem and four heuristics are included in this type.

Two of them are fixed price heuristics from earlier research and the other two are

new dynamic pricing heuristics.

Numerical analysis to examine the performance of heuristics are reported in

Chapter 6. We conclude in Chapter 7.
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Chapter 2

Literature Search

2.1 Revenue Management in General

Revenue management (or yield management) is a broad field of research. Many

authors define revenue management in their own words. According to Belobaba

[8], yield is the revenue per passenger-mile of traffic carried by an airline. Talluri

& van Ryzin [9] define revenue management as the collection of strategies and

tactics firms use to scientifically manage demand for their products and services.

Netessine & Shumsky [10] refer it as the techniques to allocate limited resources,

such as airplane seats or hotel rooms, among a variety of customers, such as

business or leisure travelers.

In this section, we will briefly review the revenue management literature,

classify it into subsections and provide some references. In particular, we are

interested in a problem where a seller needs to sell a given stock of items by a

deadline, where the demand is stochastic and price sensitive. We will focus on

this problem while reviewing the literature.

The origin of revenue management is the overbooking practice which is to sell

flight tickets beyond the capacity of the aircraft in order to prevent flights with

empty seats which was a huge problem for the airlines in 1960s. Research on

7



overbooking strategy strongly depends on the statistical information on demand,

cancellations and no-shows. Thus, overbooking led to a research interest on

forecasting. Airlines have the advantage of having considerably useful demand

data due to sophisticated software and technology which makes overbooking so

successful and popular.

In 1970s, airlines started to offer discounted flight tickets for early booking

passengers. This gave birth to the problem of capacity allocation (or seat inven-

tory control) since it is important to determine how much of the capacity should

be reserved for those customers who are willing to pay higher but book later.

This also generated a broad literature and developed information systems that

are capable of handling different classes of customers (i.e., fare classes).

We would like to follow the classification of revenue management literature

provided by McGill & van Ryzin [6]. They divide the revenue management re-

search into four broad categories: forecasting, overbooking, seat inventory control

and pricing. It is an extensive overview of revenue management literature that

refers many studies some of which we will mention here.

The forecasting category includes the publications of approaches to airline

forecasting and models for demand distributions and arrival processes. An early

example is Beckmann & Bobkowski [11] in which different probability distribu-

tions for total number of passengers are tested and Gamma distribution is used

to propose an overbooking level. In the seminal work of Littlewood [12], methods

of passenger forecasting are described. It also introduces the idea of maximizing

revenue instead of number of passengers carried which is accepted and followed

in many of the subsequent studies in revenue management literature.

As a relatively more recent work, Mcgill [13] studies data censoring in re-

gression analysis of multiple classes of demand that are subjected to a common

resource constraint. Censoring of the data arise from the fact that demand is

not recorded after all seats are sold, i.e., historical booking data reveals sales

information rather than demand. They achieved to provide maximum likelihood

estimates of the parameters of the demand model under censorship.

8



In overbooking category, early research dealt with limiting the probability of

denied boardings through nondynamic approaches which ignore cancellations and

reservations after the overbooking decision is made. Beckmann [14] uses Gamma

distribution again to model cancellations and no-shows and determines sales lim-

its. Littlewood [12] describes a model to fit a probability distribution of departed

loads due to overbooking which can be used to calculate the expected number of

passengers carried and off-load. Shlifer & Vardi [15] extends overbooking models

for two fare classes and two flight legs. There are also dynamic approaches for

overbooking problem one of which is Rothstein’s [16] Ph.D. thesis, which intro-

duces a dynamic programming approach for overbooking problem for the first

time.

The remaining two categories of the literature, seat inventory control and

pricing, will be discussed in more detail in the next section. The problem we

studied is closely related with these two categories of the literature.

2.2 Pricing and Capacity Allocation

The problem of selling a given stock of items by a deadline where demand is

stochastic and price sensitive received considerable attention in the literature

since the early 1960s. Kincaid & Darling [17] was first to address this problem.

According to their model, potential buyers arrive in accordance with a Poisson

process and their reservation prices have a probability distribution which is known

by the seller. It is assumed that unsold items at the end of the selling period is

disposed with a given salvage value and no backordering is allowed. The objective

is to maximize the expected revenue. Although their work requires no background

in dynamic programming, they suggest that the problem can be formulated with

a dynamic programming approach, which is actually adopted in many of the

following studies.

Another seminal work on the same problem is Stadje [18]. They characterize

the maximum expected gain and the optimal price path as a system of differential

9



equations. Unfortunately, they state that these differential equations turn out to

have no explicit solution but must be solved numerically in many of the examples.

On the other hand, they are able to propose closed form solutions for two special

cases of the distribution function of the reservation price.

Gallego & van Ryzin [19] also study the same pricing problem. They consider a

market with imperfect competition, i.e., the firm is a price maker for the product.

The demand is modeled as a non-homogeneous Poisson process whose intensity

depends on the remaining time in the selling period and the remaining inventory.

They propose a dynamic programming formulation and give an implicit Hamilton-

Jacobi optimality condition which yields the maximum expected revenue after

solving a system of partial differential equations. As an important structural

result, they show that optimal expected revenue is strictly increasing and strictly

concave in both the length of the selling period and number of items on hand. The

optimal price is strictly increasing in the remaining time and strictly decreasing

in the number of items on hand. In addition, two fixed price heuristics based on

the solution of the deterministic version of the problem are proposed and proved

to be asymptotically optimal if both the number of items and expected demand

are large.

It should be noted here that Gallego & van Ryzin’s [19] model does not include

the notion of reservation price; however, their model does not have any loss of

generality. The reason is that they use aggregate demand functions which is

explained in more detail by Huang et al. [20]. They show that any demand model

with reservation prices following one of uniform, exponential, logistic, Weibull

and Pareto distributions can be translated into the aggregate demand functions

of type linear, log-linear, logistic, exponential and power, respectively.

Gallego & van Ryzin [19] assume that the demand rate of the arrival process

depends only on the current price, i.e., demand is a time-invariant function of the

price. Zhao & Zheng [21] relax this assumption and consider the case where the

distribution function of the reservation price changes over time. This implies that

intensity of the sales process depends on time as well as the current price. In this

case, Zhao & Zheng [21] question the previous structural results of Gallego and
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van Ryzin [19]. They show that the optimal price still decreases in the number of

items on hand, yet it may not be increasing in the remaining time. Indeed, the

optimal price is increasing in remaining time if the conditional probability that

a customer will buy at a higher price, given that she is willing to buy at a lower

price, is decreasing over time. This sufficient condition seems to hold for fashion

goods but does not hold for travel services. They also question the effectiveness of

fixed price heuristics and conclude that dynamic pricing significantly outperforms

fixed price policy even if prices are selected from a discrete and finite price set.

Although Gallego & van Ryzin [19] show that fixed price heuristics are asymp-

totically optimal and that dynamic pricing has only secondary effect on revenues,

Şen [22] further investigates the problem and obtains higher revenues via dynamic

pricing which may be of importance in practice. He proposes two practical dy-

namic pricing heuristics that continuously update prices based on the remaining

inventory and the time in the selling period. One of their heuristics, namely the

revenue approximation heuristic, provides significant improvement leading to at

most 0.2% gap compared to optimal dynamic pricing.

All of the above studies consider the pricing of one type of item. On the

other hand, the common practice in the revenue management is to offer multiple

fare classes for a single type of inventory. This practice can be viewed as a

single resource - multiple product model where different fare classes represents

the multiple products. As mentioned in Chapter 1, when there are multiple

products, capacity allocation problem must be taken into consideration as well

as the pricing problem. Lee & Hersh [23] is an example of studies considering

the capacity allocation aspect in a single resource - multiple product structure.

A similar approach for two demand classes can be found in Gerchak et al. [24].

They develop a discrete time dynamic programming model to find an optimal

booking policy. They divide the selling period into small enough intervals such

that no more than one request occur during that interval. In each interval, an

accept/reject decision is made based on the time at which request is received and

the available seats. They conclude that if there are no multiple seat bookings,

the optimal booking policy can be reduced to two sets of critical values based on

booking capacity and decision periods.
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Gallego & van Ryzin [4] study the multiple resource - multiple product ver-

sion of the problem proposed in Gallego & van Ryzin [19]. In this case, there

is a set of products that are formed by using different combinations of a set of

resources. There is a given initial stock of each resource at the beginning of the

finite selling period and the problem is to find the price path of each product

that maximizes the expected revenue. This product-resource structure is generic

in the sense that it can be applied in many different application areas of revenue

management. The distinguishing feature of their work is that capacity alloca-

tion and pricing problems are jointly solved as mentioned in Chapter 1. They

formulate the problem and provide an implicit optimality condition similar to

that of the single item case. The fixed price heuristics based on the deterministic

version of the problem are proved to be asymptotically optimal for the multiple-

product case as well. They also run some simulations to test the performance

of the heuristics numerically in different scenarios and conclude that fixed price

heuristics perform well.

Cooper [25] consider the capacity allocation problem in a multiple resource -

multiple product structure. He emphasizes the advantages of the LP-based de-

terministic allocation policy which ignores the randomness in the demand but

provides with a way of overcoming the curse of dimensionality. His primary

conclusion is that normalized revenues obtained by implementing allocation poli-

cies based on the deterministic problem converges in distribution to a constant

upper bound on the optimal value in a stochastic demand environment. He ac-

tually investigates the mechanism under the asymptotic optimality of fixed price

heuristics introduced in Gallego & van Ryzin [4]. A counterintuitive example

from their work is also worth to mention at this point. He questions the ef-

fectiveness of resolving the deterministic problem during the selling period and

updating the allocations. One may expect that resolving yields better solutions

since it includes more information which is the realized demand up to the point

of resolving. However, Cooper [25] gives an example where the expected revenue

yielded by resolving is strictly worse than solving once.

Maglaras & Meissner [26] suggest a common framework for pricing and ca-

pacity allocation problems. The problems defined in Gallego & van Ryzin [4] and
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Lee & Hersh [23] can be treated as different instances of this common framework.

They verify the structural results obtained in some previous studies by using their

formulation. They also propose heuristics based on the deterministic version of

the problem and illustrate that dynamic pricing via resolving is asymptotically

optimal in their settings contrary to Cooper’s [25] example. In their numerical

studies, dynamic pricing heuristics tend to outperform static one which highlights

the importance of dynamic pricing.
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Chapter 3

Model Description

3.1 Stochastic Problem

We will follow the notation and formulation provided in the seminal work of

Gallego & van Ryzin [4]. There are m resources and n products, where a unit of

product j consumes aij units of resource i. A = [aij] is an integer valued matrix

with no zero columns. We have xi units of initial inventory for resource i and a

selling period of length T . We will consider the problem of dynamically pricing

these n products over the time interval [0,T ]. The demand is both stochastic

and price sensitive. The arrival of the customers for each product is modeled

as a non-homogeneous Poisson process for each of the products. For product j,

the intensity of the arrival process is λj(pj) if pj is the current price of product

j. It is assumed that the demand for product j is independent of the prices of

products other than j. This is certainly a limitation of the model but is required

for analytical tractability.

We need to impose some regularity assumptions on the demand function.

The demand function for product j, λj(pj), is invertible and its inverse is pj(λj).

The revenue rate for product j is denoted by rj(λj) = λj · pj(λj), is assumed to

satisfy limλj→0 rj(λj) = 0, and is continuous, bounded, concave and has a least

maximizer denoted by λ0
j = min

{
λj : λj · pj(λj) = maxλj≥0λj · pj(λj)

}
. There
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exists a null price for all products denoted by p∞j for which limpj→p∞j pj ·λj(pj) = 0.

The price of product j is selected from a set of allowable prices Pj = [0, p∞j ).

The corresponding set of allowable rates is denoted by Λj = {λj(pj) : pj ∈Pj}.

Let the counting process N j
s denote the number of product j sold up to time

s. A pricing policy sets the price of product j at time s to a certain level which

is denoted by psj . The corresponding demand rate for product j at time s is then

λsj = λj(p
s
j). Denote by U the class of pricing policies that satisfy

n∑
j=1

∫ T

0

aij dN
j
s ≤ xi ∀i, (3.1)

psj ∈Pj ⇐⇒ λsj ∈ Λj ∀j, 0 ≤ s ≤ T. (3.2)

Given initial vector of inventory levels x = (x1, ..xm) and a deadline T , the

problem is to find the optimal pricing policy u∗ that maximizes the expected

revenue. More formally,

u∗ = arg max
u∈U

{
Eu

[
n∑
j=1

∫ T

0

psj dN
j
s

]}
(3.3)

Bremaud [27] show that one can find the Hamilton-Jacobi sufficient conditions

for optimal expected revenue to go J∗(x, s) (and the corresponding demand rates

and prices), given remaining time s and remaining inventory vector x as

∂J∗(x, s)

∂s
= sup

λ1,..,λn

{
n∑
j=1

rj(λj)−
n∑
j=1

λj
(
J∗(x, s)− J∗(x−Aj, s)

)}
(3.4)

where Aj is the jth column of A and J∗ satisfies the boundary conditions

J∗(x, s) = 0, ∀s and x : xi < aij for some i and for all j and J∗(x, 0) = 0, ∀x.

A formal proof of the above optimality condition can be found in Bremaud

[27]; however, we can justify it informally by using simple arguments. In the next

small time interval δs, we will observe one unit of demand for product j with

probability λjδs, no demand with probability (1− λjδs) and more than one unit

of demand with probability o(δs). Hence, by the Principle of Optimality, we can
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write

J∗(x, s) = sup
λ1,..,λn

{
n∑
j=1

(
λjδs

(
pj(λj) + J∗

(
x−Aj

) )
+ (1− λjδs)J∗ (x, s− δs) + o(δs)

)}
(3.5)

J∗(x, s)

δs
= sup

λ1,..,λn

{
n∑
j=1

(
λj

(
pj(λj) + J∗

(
x−Aj

) )
+
( 1

δs
− λj

)
J∗ (x, s− δs) + o(δs)

)}
(3.6)

J∗(x, s)− J∗ (x, s− δs)
δs

= sup
λ1,..,λn

{
n∑
j=1

(
rj − λj

(
J∗ (x, s− δs)

− J∗
(
x−Aj

)
+ o(δs)

))}
(3.7)

By taking the limit as δs→ 0, we obtain (3.4).

Gallego & van Ryzin [4] state that it is very difficult to find closed form

solutions to system of partial differential equations defined in (3.4). Hence, they

propose two heuristic pricing policies, namely make-to-stock (MTS) and make-

to-order (MTO) policies, which will be discussed after the deterministic version

of the problem is presented in the next section.

3.2 Deterministic Problem

In deterministic problem, there are again m resources and n products, where a

unit of product j consumes aij units of resource i. The selling period is T time

units. We have the same regularity assumptions on the demand functions as

in section 3.1. λj(s) is the deterministic demand rate of product j at time s.

The price of product j at time s is a function pj(λj(s)) of the current demand

rate of product j. The revenue rate of each product at time s is rj(λj(s), s) =
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λj(s) · pj(λj(s)). We have xi units of initial inventory for resource i that are

continuous quantities. Products can also be sold in continuous amounts. In this

setting, the deterministic problem can be formulated as follows:

JD(x, T ) = max
n∑
j=1

∫ T

0

rj(λj(s), s) ds (3.8)

s.t.
n∑
j=1

∫ T

0

aij · λj(s) ds ≤ xi ∀i,

λj(s) ∈ Λj, ∀j, 0 ≤ s ≤ T.

The solution of this problem, if one exists, is a function λD(s) : [0, T ] → Rn.

Gallego & van Ryzin [4] make a simplifying observation for this problem. Since

the revenue rate is time invariant, more formally rj(λj(s), s) = rj(λj(s)) ∀s, j,
solutions are always constant intensities (prices) and the problem reduces to the

following convex programming problem:

JD(x, T ) = max
λ1..λn

n∑
j=1

rj(λj) · T (3.9)

s.t.
n∑
j=1

aij · λj · T ≤ xi ∀i,

λj ≥ 0 ∀j.

Deterministic problem is important because it constitutes an upper bound for

the stochastic problem defined in (3.1)-(3.3) and it is stated in Theorem 1.

Theorem 1. (Gallego and van Ryzin [4], Theorem 1)

J∗(x, s) ≤ JD(x, s), ∀x ≥ 0.

This upper bound can be used to test the performance of heuristics. Şen [22]

uses it together with a lower bound to obtain a heuristic for the single product

case. In particular, it is shown that x times the optimal expected revenue obtained

by selling 1 unit of product over a period of length s/x is a lower bound on the

optimal expected revenue obtained by selling x units of product over a period of

length s. More formally, the following theorem holds:

Theorem 2. (Şen [22], Theorem 1)

x · J∗(1, s/x) ≤ J∗(x, s), ∀x ≥ 0.
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Unfortunately, the idea behind this lower bound, which is to divide the selling

season into x periods, cannot be directly generalized for the multiple product case

where initial inventory levels are denoted by the m dimensional vector x rather

than the scalar x.
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Chapter 4

Exponential Price Response with

Identical Elasticity Parameters

In this chapter, we will focus on a special case of exponential price response,

where the demand rate for product j is denoted by λj(pj) = aj e−αjpj and αj’s

are identical. The elasticity of exponential price response decreases linearly with

price. Elasticity can be defined as the ratio of the percentage change in demand to

the percentage of causative change in price. Hence, by definition, each product

has elasticity
dλj/λj
dpj/pj

= −αj · pj. In our special case, αj’s of all products are

the same. Closed form solutions to the stochastic problem (3.1)-(3.3) and some

structural results will be presented for this special case.

Assume that α1 = α2 = .. = αn. In this case, we can take αj = 1 ∀j by

changing the units of prices to p′j = αjpj. As a result, the demand rate for product

j can be denoted by λj(pj) = aj e−pj . We will now solve (3.4) and obtain closed

form representations of J∗(x, s) for any product-resource structure in general.

Theorem 3. If the demand rate for product j is given by λj(pj) = aje
−pj , the
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optimal expected revenue J∗(x, s) has the following closed form:

J∗(x, s) = ln


∑
A·i≤x
i∈Zn+

(s
e

)i1+..+in ai11 ..a
in
n

i1!..in!

 (4.1)

Consequently, optimal price and intensity as a function of x and s for product j

can be calculated as

p∗j(x, s) = 1 + J∗(x, s)− J∗(x−Aj, s), (4.2)

λ∗j(x, s) = aje
−(1+J∗(x,s)−J∗(x−Aj,s)). (4.3)

Proof. We will prove (4.1) by induction. (4.2) and (4.3) follow immediately.

Base case: The initial amounts of m resources, which is denoted by x, allow

selling only x unit of a certain type of product, say product j. In other words,

x is a positive integer multiple of jth unit vector ej . Note that Gallego & van

Ryzin [19] show that the optimal expected revenue J∗(x, s) for the single product

case is

J∗(x, s) = ln

(
x∑
i=0

(as
e

)i 1

i!

)
(4.4)

Hence, the theorem holds for any x that can be represented as x = x · ej where

x is a positive integer, since (4.1) is equivalent to (4.4).

Inductive hypothesis: Assume w.l.o.g. that A · ej ≤ x ∀j = 1..n, i.e., we assume

that there are enough resources to produce any type of product. Then, suppose

also that the theorem holds for x̄ = x −Aj for all j = 1..n. This implies that

the following holds:

J∗(x̄, s) = ln


∑
A·i≤x̄
i∈Zn+

(s
e

)i1+..+in ai11 ..a
in
n

i1!..in!

 (4.5)

Notice that by subtracting appropriate Aj ’s from any vector x, we can obtain

x̄ of the form examined in the base case (a positive integer multiple of a unit

vector).
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Inductive step: We will now argue that (4.5) holds for x . We know that the

Hamilton-Jacobi sufficient condition for optimal expected revenue is

∂J∗(x, s)

∂s
= sup

λ

{
n∑
j=1

rj(λj)−
n∑
j=1

λj(J
∗(x, s)− J∗(x−Aj, s))

}
(4.6)

One can easily show that λ∗j =
aj

e1+J
∗(x,s)−J∗(x−Aj ,s)

. By substituting it into (4.6)

we get
∂J∗(x, s)

∂s
=

n∑
j=1

aj
e1+J∗(x,s)−J∗(x−Aj ,s) (4.7)

By the inductive hypothesis, we have

∂J∗(x, s)

∂s
=

n∑
j=1

aj
∑

A·i≤x−Aj

i∈Zn+

(s
e

)i1+..+in ai11 ..a
in
n

i1!..in!

e1+J∗(x,s)

=
n∑
j=1

∑
A·i≤x
ij≥1

(s
e

)i1+..+in−1 ai11 ..a
in
n

i1!..(ij − 1)!..in!

e1+J∗(x,s)

=

∑
A·i≤x
i1≥1

i1

(s
e

)i1+..+in−1 ai11 ..a
in
n

i1!..in!
+ ...+

∑
A·i≤x
in≥1

in

(s
e

)i1+..+in−1 ai11 ..a
in
n

i1!..in!

e1+J∗(x,s)

=

∑
A·i≤x
||i||>0

(i1 + ..+ in)

e

(s
e

)i1+..+in−1 ai11 ..a
in
n

i1!..in!

eJ∗(x,s)

Now, it is easy to see that

J∗(x, s) = ln


∑
A·i≤x
i∈Zn+

(s
e

)i1+..+in ai11 ..a
in
n

i1!..in!



21



We can deduce several structural results and comparative statics by using

this closed form solution. The following corollary and conjectures are examples

of such results that provide intuitive justification and economic interpretation.

Corollary 3.1. If the demand rate for product j is given by λj(pj) = aje
−pj , the

optimal expected revenue J∗(x, s) is strictly increasing in s and non-decreasing

in all xi’s.

Proof. The first part of Corollary 3.1 follows directly from the fact that J∗(x, s)

is the natural logarithm of a polynomial in s. For the second part, define the set

Ix = {i : A · i ≤ x}. If x > x̂, then Ix ⊇ Ix̂ which implies that either Ix = Ix̂

or Ix̂ is a strict subset of Ix. If Ix = Ix̂, then J∗(x, s) = J∗(x̂, s) for 0 ≤ s ≤ T .

However, if Ix ⊃ Ix̂, then J∗(x, s) > J∗(x̂, s) for 0 ≤ s ≤ T .

Corollary 3.1 is a formal statement of the intuition that more inventory and/

or time yield higher expected revenues.

Conjecture 3.1. The optimal price of product j, p∗j(x, s), (resp., the optimal

intensity λ∗j(x, s)) is strictly increasing (resp., decreasing) in s for all j’s.

Conjecture 3.1 implies that the optimal price of product j rises for given

inventory levels if we have a longer selling period. In other words, the optimal

price of product j decreases over time between consecutive demand realizations.

A statement similar to Conjecture 3.1 for the single item case is proved in Gallego

& van Ryzin [19], Theorem 1. To the best of our knowledge, proof for the multi-

product case is not provided in the literature; however, the closed form solution

can be used to prove it for the special case of exponential price response. Although

we give this result as a conjecture here, it is verified and can be observed in all

optimal price path examples provided in Chapter 6.

Conjecture 3.2. The optimal price of product j, p∗j(x, s), is decreasing in all xi’s

with aij > 0 and increasing in all xi’s with aij = 0.

Gallego & van Ryzin [19] prove for the single item problem that the optimal

price p∗(x, s) is strictly decreasing in s. In other words, a demand realization
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which decreases the inventory level of the single product by one unit leads to an

upward jump on the optimal price path. Conjecture 3.2 is a generalization of this

argument for the multi-product case. It implies that a demand realization for

product j, which decreases the inventory levels of the resources used by product

j, causes an upward jump on the price path of products that share a resource

with product j. It conversely causes a fall on the optimal price path of the

products that do not share any resources with product j. Beyond the single item

case, this conjecture reveals the mechanics of network effects in multi-product

dynamic pricing problem. In Chapter 6, these network effects on the optimal

price paths are examined and verified by examples.
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Chapter 5

Heuristic Methods

It is very difficult, if not impossible, to obtain analytical solutions for the system

of partial differential equations in (3.4) for general price response functions. It is

possible to solve it numerically, but only for simple product-resource structures

and limited number of initial resources. Hence, heuristic methods are crucial in

such problems. We will present two types of dynamic pricing heuristics. The

first type uses the idea of approximating the value function in the Hamilton-

Jacobi equation given in (3.4). The second type of heuristics are based on the

deterministic problem.

5.1 Heuristics Using Value Approximation

An important observation is that one can write the optimal demand rate λ∗j(x, s)

(or optimal price p∗j(x, s)) at time s with remaining inventory x in terms of

J∗(x, s) and J∗(x−Aj , s) by using (3.4) which we restate here as:

∂J∗(x, s)

∂s
= sup

λ1,..,λn

{
n∑
j=1

rj(λj)−
n∑
j=1

λj
(
J∗(x, s)− J∗(x−Aj, s)

)}
(5.1)

Hence, if J∗ can be approximated in some way, then the demand rates, which are

the control variables in (5.1), can be found by using the approximated J∗, say J̃ .

In other words, the procedure we follow is:
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1. Approximate the optimal expected revenue function J∗(x, s) with a proper

function and call it J̃ .

2. Find the demand rates λ̃ by using J̃ in the maximizer of (5.1), or more

formally:

λ̃j(x, s) = arg sup
λj

{
n∑
j=1

rj(λj)−
n∑
j=1

λj

(
J̃(x, s)− J̃(x−Aj, s)

)}
(5.2)

For example, for the linear price response function λj(pj) = aj−bj p we can

obtain

λ̃j(x, s) =
aj − bj

(
J̃(x, s)− J̃(x−Aj, s)

)
2

(5.3)

and for exponential price response λj(pj) = aj e−αjpj , we have

λ̃j(x, s) =
aj

e1+αj

(
J̃(x,s)−J̃(x−Aj ,s)

) (5.4)

This is similar to the approximate dynamic programming approach used in [28]

and [29] in which the value function of Hamilton-Jacobi equation is approximated.

One can find J̃ in various ways, two of which we will discuss in the following

subsections. In 5.1.1, we will present an expression for J̃ which is indeed a

generalization of the closed form solution in (4.1) given for the special case of

exponential price response with equal αj’s. In 5.1.2 and 5.1.3, we will use (4.1)

together with two different parameter transformations (one for exponential and

the other for linear price response parameters) to find J̃ . These approaches give

us two heuristics using value approximation. A similar heuristic for the single

item problem is given by Şen [22].

5.1.1 A Generalization for Exponential Price Response

With Unequal αj’s

We can modify the closed form solution given in (4.1) for the case of general form

of exponential price-response i.e. λj(pj) = aj e−αjpj . This approach gives a good

approximation of the optimal expected revenue under general form of exponential
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price-response where αj’s are not identical. This approximation can be used as

J̃ and is expressed as follows:

J̃(x, s) = ln

 ∑
A∗i=x
i∈Zn+

( i1∑
k1=0

(
s a1

e

)k1
k1!

) 1
α1

...

(
in∑

kn=0

(
s an

e

)kn
kn!

) 1
αn


 (5.5)

This expression is basically a more general form of (4.1). When αj = 1 ∀j, (5.5) is

equivalent to (4.1). If we plug this expression into (5.1) in order to check whether

it is the solution of the system of differential equations, we unfortunately see that

it is not. However, it gives very close results for the optimal expected revenue

when compared with the numerical solutions.

After finding J̃ , corresponding λ̃j values can be found as explained in the

second step of the procedure above. The expected revenue obtained by this

heuristic is denoted with JRA1 in the numerical analysis provided in Chapter 6.

JRA1 can be calculated by plugging λ̃j’s in (5.1), or more formally

∂JRA1(x, s)

∂s
=

n∑
j=1

rj(λ̃j)−
n∑
j=1

λ̃j
(
JRA1(x, s)− JRA1(x−Aj, s)

)
(5.6)

5.1.2 Using Closed Form Solution in General Form of Ex-

ponential Price Response

In the exponential price response with equal αj’s, we write the demand function

as λj(p) = aje
−p, so we have only one parameter for each product, namely aj.

On the other hand, the demand function is λj(p) = aje
−αjp in the general form

of exponential price response with unequal αj’s. So, we have two parameters for

each product in this case, namely aj and αj. In order to use (4.1) as J̃ when

the actual demand is exponential with unequal αj’s, we need to find the single

parameter aj of the special case of exponential price response in some way. Hence,

our aim is to find a correspondence between the single parameter of the special

case, aj (a′j hereafter to avoid confusion), and two parameters of the general case,

aj and αj.
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In Table 5.1, maximizers λ0 and p0 of the revenue rate r(λ) for exponential

and linear price responses are shown . We will build the correspondence between

a′j and (aj, αj) by equalizing the maximum instantaneous revenue rates rj(λ
0
j) of

special and general forms of exponential price response. Hence, we find a′j by the

following transformation:

rj(λ
0
j) =

aj
e

1

αj
=
a′j
e
⇒ a′j =

aj
αj

(5.7)

Then, J̃ is calculated as

J̃(x, s) = ln


∑
A·i≤x
i∈Zn+

(s
e

)i1+..+in (a′1)i1 ..(a′n)in

i1!..in!

 (5.8)

Table 5.1: Maximizers λ0 and p0 of revenue rate function r(λ)

λ(p) p(λ) λ0 p0

Exponential ae−αp
ln(a)− ln(λ)

α

a

e

1

α

Linear a− bp a− λ
b

a

2

a

2b

Again, λ̃j’s can be calculated by using J̃ . The performance of this heuristic

is further discussed in Chapter 6 with some numerical results. We denote the

expected revenue obtained by this heuristic as JRA2 which can be calculated

similar to JRA1.

5.1.3 Using Closed Form Solution in General Price Re-

sponse

The same idea of using the closed form solution of the special case to approximate

the value function J∗ can be applied for any price response in general. The only
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difference is in the conversion of the parameters. Here, we will explain how it is

done for linear price response. We will again equalize maximum revenue rates

rj(λ
0
j) but we have different parameters in this case. If we denote the parameters

of the linear price response with aLj ’s and bj’s and the single parameter of the

special case of exponential price response with aEj ’s, then the conversion is as

follows:

r(λ∗j) =
aLj
2

aLj
2b

=
aEj
e
⇒ aEj =

(aLj )2e

2b
(5.9)

Now, J̃ can be calculated as

J̃(x, s) = ln


∑
A·i≤x
i∈Zn+

(s
e

)i1+..+in (aE1 )i1 ..(aEn )in

i1!..in!

 (5.10)

We denote the the revenue obtained by this heuristic as JRA2 in the numerical

results presented in Chapter 6.

5.2 Heuristics Based on Deterministic Problem

In this section, heuristic approaches based on the deterministic problem will be

proposed. First, fixed price heuristics proposed by Gallego & van Ryzin [4] will be

described in Section 5.2.1. Then, we will present two dynamic pricing heuristics

in Sections 5.2.2 and 5.2.3. In Chapter 6, the performance comparison for all

heuristics will be done with numerical examples.

5.2.1 Fixed Price Heuristics

Gallego & van Ryzin [4] proposes two heuristics that are asymptotically optimal

as the initial inventories and the length of selling period tend to infinity. These

heuristics, namely make to stock (MTS) and make to order (MTO) heuristics,

determine fixed prices over the entire selling period based on the solution of

the deterministic problem. In MTS heuristic, resources are initially allocated to
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products that are to be sold until their allocated resource capacity is exhausted or

the selling period ends. No resource transfers can be made among products after

initial allocation. In MTO heuristic, no initial allocation is done, the products

are sold in a first-come-first-served order. The deterministic problem is easy

to solve and the fixed price is easy to implement; however, it is reasonable to

question whether it is possible to acquire more revenue via dynamic pricing.

This additional revenue may have a profound effect on profitability in industries

such as airlines and retail.

Suppose the solution of the deterministic problem is λDj and the corresponding

fixed price is pDj for products j = 1..n. Then, denote the number of product j

to be sold (according to the deterministic problem) during the selling period

with yj =
⌊
λDj · T

⌋
. Remember from Chapter 3 that the counting process N j

T

represents the number of product j sold up to time T . Expected revenue obtained

from MTS heuristic is then

JMTS =
n∑
j=1

pDj · E
[

min
{
yj, N

j
T

} ]
(5.11)

We find the expected revenue obtained from MTO heuristic, JMTO by plugging

λDj into the system of partial differential equations in (3.4). Hence, we can write

∂JMTO(x, s)

∂s
=

n∑
j=1

rj(λ
D
j )−

n∑
j=1

λDj
(
JMTO(x, s)− JMTO(x−Aj, s)

)
(5.12)

5.2.2 Resolving the Deterministic Problem Continuously

In order to reveal the advantage of dynamic pricing, we propose two heuristics.

The first one solves the deterministic problem continuously over the selling period

and sets the prices of each product dynamically. The main idea here is to take

advantage of the information of demand realization up to current time in the

selling period. This is basically a resolving approach which received considerable

attention in the literature as mentioned in Chapter 1. (See Cooper [25], Maglaras

& Meissner [26]) This heuristic is similar to the run-out rate heuristic proposed
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by Şen [22] for single product case. Hence, we will call this heuristic as run-out

rate (RR) heuristic.

5.2.3 Dynamic Pricing after Resource Allocation

The second heuristic decomposes the multiple product problem into simpler single

product problems. As in MTS heuristic, resources are allocated to products based

on the solution of the deterministic problem, then optimal dynamic pricing is

implemented for each product. Hence, this is a mixture of the MTS heuristic

and the optimal pricing of single products. This heuristic is abbreviated by ATD

which stands for allocate-then-dynamic. The expected revenue obtained from this

heuristic, JATD, can be written as

JATD =
n∑
j=1

J∗j (yj, T ) (5.13)

where J∗j (yj, T ) is the optimal expected revenue function for the single item j for

a given inventory level yj and selling period T , yj = λDj ·T and λDj is the solution

of the deterministic problem.
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Chapter 6

Numerical Analysis

In this chapter, numerical results are reported to compare the performance of

heuristics. All operations in numeric analysis including solution of the determin-

istic problem and system of partial differential equations are performed in Maple

15 with default methods and error tolerances. There are two product-resource

structures in particular that are covered by our numerical analysis. The first one

is an example from retail industry where bundling is a common practice. This

example is related with the dynamic pricing of bundle and individual products.

The second example is from airline industry where there is a network of flight legs

which constitute many different itineraries. Dynamic pricing of these itineraries is

of great importance to this industry as mentioned in Chapter 1. The airline net-

work we used in the numerical analysis is the same network proposed by Gallego

& van Ryzin [4] which enables fair comparisons.
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Figure 6.1: Product resource structure of retail example

6.1 Performance of Heuristics Based on Deter-

ministic Problem

6.1.1 Example from Retail Industry

In this section, we will consider the product resource structure shown in Fig-

ure 6.1. There are two resources R1 and R2 and three products P1, P2 and P3.

In words, P1 and P2 are individual products and P3 is the bundle.

6.1.1.1 Linear Price Response

In linear price response, the demand rate for product j is denoted by λj(pj) =

aj − bjpj. We used three parameter sets in the following numerical results. In all

sets, a1 = a2 = a3 = 2 and b1 = b2 = 1, but b3 changes in each parameter set and

takes one of the values from the set {2/3, 4/7, 1/2}. So, the demand function of

the third product changes as shown in Figure 6.2.

Expected revenues of each heuristic and their percentages to optimal expected

revenue J∗ for all parameter sets are tabulated in Table 6.1, 6.2 and 6.3. There

are two levels of T , one represents short (T = 10) and the other represents long

selling period (T = 40). The column xj shows the initial inventory for each

resource type j = 1, 2. In fact, x1 = x2 in all cases.

The values in the J∗ column are obtained by solving the system of partial
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Figure 6.2: Linear demand vs. price

differential equations in (3.4) numerically. The values in JMTS, JMTO and JATD

columns are calculated as shown in (5.11), (5.12) and (5.13), respectively. The

deterministic problem given in (3.9), which we solve continuously over the selling

period in RR heuristic, is a linearly constrained quadratic programming problem

in linear price response case. We were able to write the optimal solution of the

deterministic problem for linear price response as a piecewise function of the

problem parameters by using KKT conditions. In other words, we constructed

a piecewise function which has 16 branches with conditions on remaining time

s, remaining inventory vector x, aj’s and bj’s and gives the optimal demand

rate. When we plug this function in (3.4) as the demand rate, we obtain the

expected revenue of the RR heuristic, JRR, which solves the deterministic problem

continuously.

Table 6.1: Expected Revenues, Linear Demand, a = [2, 2, 2], b = [1, 1, 2/3]

T xj J∗ JMTS JMTS/J
∗ JMTO JMTO/J

∗ JRR JRR/J
∗ JATD JATD/J

∗

10

1 3.340 2.402 0.719 2.402 0.719 3.278 0.982 3.333 0.998
2 6.324 5.251 0.830 5.251 0.830 6.246 0.988 6.265 0.991
3 9.071 7.915 0.873 7.915 0.873 8.969 0.989 8.833 0.974
4 11.634 9.716 0.835 10.303 0.886 11.515 0.990 11.333 0.974
5 14.028 12.101 0.863 12.714 0.906 13.902 0.991 13.561 0.967
10 23.708 21.826 0.921 22.684 0.957 23.555 0.994 22.879 0.965
20 33.305 30.621 0.919 31.481 0.945 32.532 0.977 32.412 0.973
30 34.957 33.785 0.966 34.924 0.999 34.941 1.000 34.769 0.995

40

1 3.810 2.497 0.655 2.497 0.655 3.748 0.984 3.810 1.000
2 7.502 5.689 0.758 5.689 0.758 7.401 0.986 7.502 1.000
3 11.085 8.962 0.808 8.962 0.808 10.958 0.989 11.084 1.000
4 14.565 12.230 0.840 12.230 0.840 14.422 0.990 14.561 1.000
5 17.943 15.460 0.862 15.460 0.862 17.794 0.992 17.936 1.000
10 33.491 30.621 0.914 30.621 0.914 33.346 0.996 33.304 0.994
20 60.420 55.279 0.915 56.718 0.939 60.212 0.997 59.750 0.989
30 83.060 77.734 0.936 79.389 0.956 82.853 0.998 81.956 0.987
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Table 6.2: Expected Revenues, Linear Demand, a = [2, 2, 2], b = [1, 1, 4/7]

T xj J∗ JMTS JMTS/J
∗ JMTO JMTO/J

∗ JRR JRR/J
∗ JATD JATD/J

∗

10

1 3.375 2.402 0.712 2.402 0.712 3.300 0.978 3.333 0.988
2 6.504 5.251 0.807 5.251 0.807 6.381 0.981 6.265 0.963
3 9.441 7.353 0.779 7.910 0.838 9.297 0.985 9.182 0.973
4 12.198 10.017 0.821 10.636 0.872 12.048 0.988 11.750 0.963
5 14.783 12.510 0.846 13.226 0.895 14.633 0.990 14.315 0.968
10 25.266 23.190 0.918 24.076 0.953 25.104 0.994 24.321 0.963
20 35.666 32.808 0.920 33.655 0.944 34.750 0.974 34.727 0.974
30 37.454 36.198 0.966 37.417 0.999 37.436 1.000 37.252 0.995

40

1 3.810 2.497 0.655 2.497 0.655 3.749 0.984 3.810 1.000
2 7.504 5.689 0.758 5.689 0.758 7.407 0.987 7.502 1.000
3 11.096 8.962 0.808 8.962 0.808 10.976 0.989 11.084 0.999
4 14.599 12.230 0.838 12.230 0.838 14.462 0.991 14.561 0.997
5 18.032 15.460 0.857 15.460 0.857 17.874 0.991 17.936 0.995
10 34.400 29.585 0.860 30.717 0.893 34.158 0.993 34.079 0.991
20 63.563 57.816 0.910 59.322 0.933 63.303 0.996 62.787 0.988
30 88.162 82.311 0.934 84.003 0.953 87.933 0.997 86.936 0.986

Table 6.3: Expected Revenues, Linear Demand, a = [2, 2, 2], b = [1, 1, 1/2]

T xj J∗ JMTS JMTS/J
∗ JMTO JMTO/J

∗ JRR JRR/J
∗ JATD JATD/J

∗

10

1 3.516 2.402 0.683 2.402 0.683 3.419 0.973 3.333 0.948
2 6.843 4.804 0.702 5.238 0.765 6.703 0.980 6.667 0.974
3 9.978 7.653 0.767 8.227 0.825 9.822 0.984 9.598 0.962
4 12.926 10.502 0.812 11.136 0.861 12.767 0.988 12.530 0.969
5 15.692 13.166 0.839 13.892 0.885 15.535 0.990 15.098 0.962
10 26.914 24.736 0.919 25.610 0.952 26.741 0.994 25.943 0.964
20 38.041 34.996 0.920 35.829 0.942 36.976 0.972 37.042 0.974
30 39.951 38.611 0.966 39.910 0.999 39.931 0.999 39.736 0.995

40

1 3.862 2.497 0.647 2.497 0.647 3.791 0.982 3.810 0.986
2 7.671 4.994 0.651 5.444 0.710 7.549 0.984 7.619 0.993
3 11.426 8.186 0.716 8.802 0.770 11.265 0.986 11.311 0.990
4 15.127 11.378 0.752 12.064 0.797 14.936 0.987 15.003 0.992
5 18.776 14.651 0.780 15.469 0.824 18.561 0.989 18.586 0.990
10 36.254 30.920 0.853 32.013 0.883 35.976 0.992 35.871 0.989
20 67.474 61.242 0.908 62.701 0.929 67.197 0.996 66.607 0.987
30 93.823 87.513 0.933 89.175 0.950 93.584 0.997 92.482 0.986

One important observation from Table 6.1,6.2 and 6.3 is that the optimal

expected revenue is inreasing in both x and s, which is parallel to Corollary

3.1 for a different price response. It can be seen graphically from Figure 6.3.

Besides, expected revenues are increasing in both x and s in all heuristics, which

is intuitive. MTO heuristic outperforms MTS heuristic in all cases. A similar

observation is done by Gallego & van Ryin [4]. Their interpretation is that

”protecting” resources for certain products, which is done in MTS heuristic, does

not perform well. The first-come-first-served order, which is followed in MTO

heuristic, yields better results. In other words, the inventory flexibility provided

by MTO heuristic has a value in terms of the expected revenues. However, it is

possible in principle for MTS heuristic to outperform MTO heuristic.

Another observation is that RR and ATD heuristics consistently outperform

fixed price heuristics, which indicates the advantage of dynamic pricing. (The

only exception is when x1 = x2 = 30 and when T = 10. For this instance, ATD
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Figure 6.3: Optimal expected revenue is increasing in x and s

performs slightly worse than MTO) RR heuristic provides ∼ 15% additional rev-

enue compared to MTO heuristic for xj ≤ 5 and ∼ 5% additional revenue for

xj = 10, 20, 30. It is not surprising that ATD heuristic always outperforms MTS

heuristic, since prices are set according to optimal dynamic pricing in ATD heuris-

tic whereas fixed prices of the deterministic solution are used in MTS heuristic,

after the same initial resource allocation is done in both. A more insightful ob-

servation is the comparison of ATD and MTO heuristics. This comparison gives

an idea about whether price flexibility of ATD heuristic or inventory flexibility of

MTO heuristic is more favorable. It seems that price flexibility is more important

in almost all cases with the only exceptional instance with short selling period

(T = 10) and high initial inventory levels (x1 = x2 = 30).

It is observed that revenues increase as b3 gets larger. This is intuitive since

the same demand level can be achieved with higher prices for product 3 as b3 gets

larger, which can be seen in Figure 6.2.

It is also interesting to see how the price of each product behaves under

different policies. To this end, we will consider a certain demand realization

which is shown in Figure 6.4. We will observe one unit of demand for product

1,2 and 3 at time s = 3, 6, 9, respectively. Suppose that we have 5 units of
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both resources at the beginning of the selling period which is of length T = 10.

Then, the price paths of each product under different pricing policies are shown

in Figure 6.5, 6.6, 6.7 and 6.8.

Figure 6.4: Demand realization

Figure 6.5: Price paths of 3 products under optimal dynamic pricing policy

MTS and MTO heuristics are fixed price heuristics, so the price level does

not change during the selling period. The fixed demand rates (and corresponding

price levels) are determined by the deterministic problem given in (3.9).

Notice that a realization of demand for a product causes an upward jump

on the optimal price path of that particular product. Besides, a realization of

demand for a product also causes an upward jump on the price paths of the other

products that shares common resources. As an example, at s = 3, we observe a

demand for product 1 which created an upward jump on the price path of product

1. It also caused an upward jump on the price path of product 3 since product 1

and 3 shares the common resource 1. Although products 1 and 2 do not share any

resource, the price of product 2 is also affected by the sales of a unit of product 1
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Figure 6.6: Price paths of 3 products under MTS and MTO heuristics

Figure 6.7: Price paths of 3 products under RR heuristics

at s = 3. This is the network effect which makes the problem interesting. Notice

also that prices reduce between two consecutive demand realizations for each

product. Figure 6.9 indicates how close the price path of product 3 is determined

by different pricing policies compared to the optimal dynamic pricing policy. Note

that the same demand realization given in Figure 6.4 is assumed for all pricing

policies just for demonstration; however, the actual demand realization depends

on the prices determined and hence differs under each pricing policy.
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Figure 6.8: Price paths of 3 products under ATD heuristics

Figure 6.9: Price paths of product 3 in all pricing policies

6.1.1.2 Exponential Price Response

In exponential price response, the demand rate for product j is denoted by

λj(pj) = aj e
−αjpj . We again used three parameter sets in the following nu-

merical results. In all sets, a1 = a2 = a3 = e and α1 = α2 = 1, but α3 changes

in each parameter set and takes one of the values from the set {2/3, 4/7, 1/2}.
Thus, the demand function of the third product changes as shown in Figure 6.10.

Expected revenues of each heuristic and their percentages to optimal expected

revenue J∗ for all parameter sets are tabulated in Table 6.4, 6.5 and 6.6.

The values in the columns of J∗, JMTS, JMTO and JATD are obtained as they

are calculated in linear price response case. However, JRR values are calculated

with a different technique. In exponential price response, we cannot construct
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Figure 6.10: Exponential Demand vs. Price

the piecewise demand function which we used in calculating JRR values of linear

price response case, since objective function of the deterministic problem has a

more complicated structure with natural logarithms in this case. This makes

it difficult to handle KKT conditions parametrically. Hence, we use simulation

where we discretize the selling period by dividing it into 100 and 400 intervals

for T = 10 and T = 40, respectively. In each interval, the following procedure is

followed:

1. Solve the deterministic problem with remaining inventory x and remaining

time s to obtain optimal demand rates λj for each product.

2. Generate a random number that is uniformly distributed over [0, 1]. If it is

less than (λj · 0.1), then we assume that a demand for product j is realized.

In other words, a demand for product j in the current time interval is

observed with probability (λj ·0.1). Here, we assumed that the selling period

is divided into small enough time intervals so that the Poisson process is

approximated by the sequence of Bernoulli trials with success probability

(λj · 0.1). Note that λj is recalculated in each time interval based on the

remaining time and resource amounts to reflect the effect of resolving in

RR heuristic. This step is repeated for all products in each interval.

3. Check the resource constraints for the products with realized demand. If
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they are satisfied, then add the current price pj(λj) to the revenue and

decrease the current inventory by Aj . If resource constraint is not satisfied

for a product, then skip that product.

4. Move to the next time interval.

We have simulated 50 replications for each entry in the JRR column of Table

6.4, 6.5 and 6.6. The values in the tables are the average revenues of these 50

replications as estimates for expected revenues with relative error of ±5% with

95% confidence.

As for the ATD heuristic, it is possible to calculate the exact values of expected

revenue since the optimal expected revenue in exponential price response for single

item can be calculated by (4.4). After allocation of resources, single product

revenues must be calculated for each product separately and summed up to obtain

exact values of expected revenues.

Table 6.4: Expected Revenues, Exponential Demand, a = [e, e, e], α = [1, 1, 2/3]

T xj J∗ JMTS JMTS/J
∗ JMTO JMTO/J

∗ JRR JRR/J
∗ JATD JATD/J

∗

10

1 5.172 4.175 0.807 4.175 0.807 5.166 0.999 4.796 0.927
2 9.232 7.307 0.791 8.070 0.874 8.954 0.970 8.393 0.909
3 12.611 10.744 0.852 11.557 0.916 12.182 0.966 11.819 0.937
4 15.502 13.322 0.859 14.259 0.920 15.307 0.987 14.388 0.928
5 18.016 15.971 0.886 16.895 0.938 17.853 0.991 17.022 0.945
10 26.774 24.431 0.912 25.445 0.950 26.550 0.992 25.544 0.954
20 33.849 30.621 0.905 31.481 0.930 33.676 0.995 33.112 0.978
30 34.969 33.785 0.966 34.924 0.999 34.939 0.999 34.825 0.996

40

1 7.681 5.928 0.772 5.928 0.772 7.643 0.995 7.427 0.967
2 14.181 10.374 0.732 11.457 0.808 13.920 0.982 12.998 0.917
3 19.969 16.103 0.806 17.327 0.868 19.943 0.999 19.040 0.953
4 25.248 21.161 0.838 22.471 0.890 25.225 0.999 24.272 0.961
5 30.131 25.458 0.845 26.955 0.895 29.733 0.987 28.803 0.956
10 50.530 45.126 0.893 46.901 0.928 50.360 0.997 48.943 0.969
20 79.705 73.788 0.926 75.733 0.950 79.418 0.996 77.928 0.978
30 100.001 93.881 0.939 95.872 0.959 98.392 0.984 98.133 0.981

Table 6.5: Expected Revenues, Exponential Demand, a = [e, e, e], α = [1, 1, 4/7]

T xj J∗ JMTS JMTS/J
∗ JMTO JMTO/J

∗ JRR JRR/J
∗ JATD JATD/J

∗

10

1 5.420 4.175 0.770 4.175 0.770 5.417 0.999 4.796 0.885
2 9.736 7.829 0.804 8.587 0.882 8.690 0.893 8.992 0.924
3 13.349 11.266 0.844 12.108 0.907 13.162 0.986 12.418 0.930
4 16.450 14.274 0.868 15.201 0.924 16.378 0.996 15.416 0.937
5 19.151 16.922 0.884 17.861 0.933 18.859 0.985 18.050 0.942
10 28.598 26.176 0.915 27.177 0.950 28.592 1.000 27.368 0.957
20 36.255 32.808 0.905 33.655 0.928 36.104 0.996 35.477 0.979
30 37.467 36.198 0.966 37.417 0.999 37.387 0.998 37.313 0.996

40

1 7.962 5.928 0.745 5.928 0.745 7.944 0.998 7.427 0.933
2 14.799 11.115 0.751 12.191 0.824 14.777 0.999 13.926 0.941
3 20.920 16.844 0.805 18.110 0.866 20.698 0.989 19.968 0.954
4 26.521 21.857 0.824 23.277 0.878 26.290 0.991 25.255 0.952
5 31.714 26.915 0.849 28.435 0.897 31.642 0.998 30.487 0.961
10 53.495 47.783 0.893 49.583 0.927 52.795 0.987 51.863 0.970
20 84.822 78.458 0.925 80.444 0.948 84.693 0.998 82.898 0.977
30 106.708 100.135 0.938 102.157 0.957 106.697 1.000 104.688 0.981
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Table 6.6: Expected Revenues, Exponential Demand, a = [e, e, e], α = [1, 1, 1/2]

T xj J∗ JMTS JMTS/J
∗ JMTO JMTO/J

∗ JRR JRR/J
∗ JATD JATD/J

∗

10

1 5.733 4.175 0.728 4.175 0.728 5.464 0.953 4.796 0.836
2 10.321 8.351 0.809 9.104 0.882 10.278 0.996 9.592 0.929
3 14.173 11.788 0.832 12.659 0.893 14.141 0.998 13.018 0.918
4 17.483 15.225 0.871 16.143 0.923 16.790 0.960 16.443 0.941
5 20.370 17.874 0.877 18.828 0.924 19.169 0.941 19.078 0.937
10 30.474 27.921 0.916 28.908 0.949 30.472 1.000 29.193 0.958
20 38.669 34.996 0.905 35.829 0.927 37.869 0.979 37.842 0.979
30 39.964 38.611 0.966 39.910 0.999 38.240 0.957 39.800 0.996

40

1 8.386 5.928 0.707 5.928 0.707 8.373 0.999 7.427 0.886
2 15.626 11.856 0.759 12.926 0.827 15.547 0.995 14.854 0.951
3 22.129 17.585 0.795 18.892 0.854 22.117 0.999 20.896 0.944
4 28.088 23.314 0.830 24.720 0.880 27.639 0.984 26.938 0.959
5 33.617 28.372 0.844 29.915 0.890 32.838 0.977 32.171 0.957
10 56.840 50.782 0.893 52.577 0.925 56.761 0.999 55.146 0.970
20 90.295 83.510 0.925 85.499 0.947 90.115 0.998 88.247 0.977
30 113.693 106.675 0.938 108.702 0.956 113.470 0.998 111.531 0.981

Observations similar to linear demand case can be made from the numerical

results of exponential case. Optimal expected revenue is increasing in both x and

s. All heuristics give higher expected revenues as x and s increases. Dynamic

pricing heuristics (RR and ATD) again outperform fixed price heuristics.(The

only exception is when x1 = x2 = 30 and when T = 10. For this instance, RR

and ATD performs slightly worse than MTO) The advantage of dynamic pricing

is, not surprisingly, more profound when T = 40. The effect of the increase in α3

is similar to the effect of b3 in linear price response. The same demand level can

be achieved with higher prices for product 3 as α3 gets larger, which can be seen

in Figure 6.10.

6.1.2 Example from Airline Industry

The product resource structure in the example from retail industry was relatively

a simple structure. What is really expected from the heuristics is that they should

be tested and implemented in more complicated product resource structures with

larger number of initial inventories. Hence, heuristics are also tested in a product

resource structure which is constructed from the airline network shown in Figure

6.11 which we get from Gallego & van Ryzin [4]. The number next to an arc

shows the capacity of that flight leg. The products are the origin-destination pairs

and the resources are flight legs in this example. All products have exponential

price response in general form. Products, resources, problem parameters and the

solution of the deterministic problem are shown in Table 6.7. The number of seats
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allocated to passengers for each origin-destination pair is the vector y = (y1, .., yn)

where yj = λDj ·T as we defined in Chapter 5 (Indeed, we solved a slightly different

version of (3.9) where λj’s are not continuous but discrete, that is why number of

seats are always integer values). Number of seats are equal to λDj values for each

product since the length of the selling period is T = 1 time unit in this example.

The optimal deterministic revenue obtained from a single O-D pair can be found

by multiplying the number of seats and prices. Total deterministic revenue is the

sum of revenues obtained from all O-D pairs.

We have implemented 5 different scales of this problem to compare perfor-

mances of MTO, MTS, ATD and RR heuristics. For instance, if the scale factor

is 2, then the flight leg capacities in Figure 6.11, the parameter a and the number

of seats in Table 6.7 are doubled. The optimal deterministic prices do not change

with scaling. The aim here is to indicate how heuristics’ performance change as

the problem size gets larger.

Figure 6.11: An airline network with 6 cities and 11 flight legs

Expected revenues for MTO heuristic are determined by simulation. To do so,
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Table 6.7: Origin-destination pairs, exponential demand function parameters and
solution of deterministic problem

O D α a Path # Seats Price
1 2 0.0045 815.4845 1-2 135 $396.11
1 3 0.0055 996.0351 1-3 62 $507.71
1 4 0.0050 2,216.7168 1-2-4 165 $519.24
1 5 0.0040 815.4845 1-3-5 38 $769.57
1 6 0.0040 667.6623 1-6 100 $474.65
2 3 0.0043 815.4845 2-3 169 $361.93
2 4 0.0045 737.8809 2-4 143 $365.34
2 5 0.0100 2,216.7168 2-3-5 31 $427.14
2 6 0.0050 815.4845 2-4-6 92 $436.02
3 2 0.0050 815.4845 3-2 200 $281.09
3 4 0.0087 2,216.7168 3-4 132 $324.09
3 5 0.0167 2,216.7168 3-5 32 $255.21
3 6 0.0133 2,216.7168 3-4-6 15 $377.01
4 6 0.0067 815.4845 4-6 161 $242.91
5 2 0.0050 815.4845 5-2 100 $419.72
5 3 0.0133 2,216.7168 5-3 47 $289.17
5 4 0.0063 815.4845 5-3-4 21 $583.27
5 6 0.0043 815.4845 5-3-4-6 32 $746.19

the deterministic problem is solved to find optimal deterministic demand rates

(and prices) for each product. According to these fixed demand rates, 10, 000

different realization of Poisson arrival processes are generated. In each replication,

products are sold in first come first served order and revenues are calculated based

on the optimal deterministic prices. The values in the JMTO column of Table 6.8

are the average of revenues as an estimate for expected revenues with relative

error less than ±0.01% with 95% confidence.

It is easier to calculate the expected revenues obtained by MTS heuristic since

the problem reduces to single product case once the resource allocation is done.

Expected number of arrivals for each product can be calculated easily by using

the probability mass function of Poisson distribution. Then, expected revenue

obtained via MTS heuristic can be calculated by (5.11).

ATD heuristic is similar to MTS heuristic in the sense that resource are allo-

cated to products at the beginning of the selling period. Then, optimal dynamic
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Table 6.8: Expected revenues obtained by heuristics in airline example

Scale Upper Bound MTO MTS ATD RR
0.1 65,748 53,922 55,937 59,267 62,034
0.5 328,738 315,871 308,346 319,813 326,028
1 657,477 640,454 630,215 648,487 650,991
2 1,314,953 1,293,374 1,276,061 1,304,355 n/a
10 6,574,767 6,550,660 6,484,796 6,557,380 n/a

Table 6.9: Ratio of the expected revenues to upper bound

Scale MTO MTS ATD RR
0.1 0.820 0.851 0.901 0.944
0.5 0.961 0.938 0.973 0.992
1 0.974 0.959 0.986 0.990
2 0.984 0.970 0.992 n/a
10 0.996 0.986 0.997 n/a

pricing is applied to single products separately and expected revenues are calcu-

lated as it is done in the exponential price response case of the retail example.

Results of RR heuristic are obtained by simulation similar to the exponential

price response case in the retail example. The results for scale 0.1, 0.5 and 1 are

given in Table 6.8. The [0, 1] time interval is divided into 100, 500 and 1000 in

scales 0.1, 0.5 and 1, respectively. We have simulated 30 replications for each

entry in the JRR column of Table 6.8. These values are the average revenues of

30 replications as estimates for expected revenues with relative error of ±0.1%

with 95% confidence.

What we observe from Table 6.8 is that the expected revenues increase as the

problem size gets larger. This is intuitive since leg capacities increases with the

problem size and more tickets are sold. The demand increases with the problem

size as well since the parameter a is multiplied with the scale factor. Dynamic

pricing heuristics (ATD, RR) significantly outperform fixed price heuristics es-

pecially for smaller scales. As the scale increases, the performance of fixed price

heuristics gets better, which can be seen from the ratios presented in Table 6.9.

This can be explained by the fact that fixed price heuristics are asymptotically

optimal as the volume of sales tends to infinity. RR heuristic yields the best
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results among four heuristics; however, we could not not calculate the expected

revenue of RR heuristic for the scales 2 and 10 since it takes a prohibitive amount

of time to generate demand arrivals and simulate it. Although it is difficult to

measure the performance of it, implementation is not difficult since it is just

solving the deterministic problem frequently enough in practice.

6.2 Performance of Heuristics Using Value Ap-

proximation

In this section, we present the numerical results for the heuristics using value

approximations discussed in Section 5.1. We use the product resource structure

of the retail example shown in Figure 6.1. In Table 6.10, performance of the value

approximations of RA1 heuristic is shown. In Table 6.11 and 6.12, performance

of the value approximations of RA2 heuristic for exponential and linear price

responses is shown, respectively. Note that in some cases J̃ > J∗, because J̃ values

are just approximations and do not have to be less than the optimal expected

revenue J∗. The ratio J̃/J∗ is persistently increasing in initial inventory levels

xj in the value approximation of RA1 heuristic. A similar observation cannot be

done for RA2 heuristic. Unfortunately, we cannot find an upper bound on the

performance of revenue approximations.

In Table 6.13, 6.14 and 6.15 revenues obtained from both approximation

heuristics for three different parameter sets are shown. The first approxima-

tion heuristic (JRA1) is for exponential price response, so it is compared with the

optimal expected revenues of exponential price response (J∗). However, the sec-

ond approximation heuristic (JRA2) is applicable to any price response in general.

Thus, it is compared with the optimal expected revenue of both exponential and

linear price responses (J∗).

What we observe is that the first two approximation heuristics give very close

results to optimal expected revenues. The first and second approximation heuris-

tics yield at least ∼ 0.995 and ∼ 0.967 of the optimal expected revenue for all
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Table 6.10: Performance of value approximations for RA1 heuristic for aE =
[e, e, e], α = [1, 1, α3]

α3 = 2/3 α3 = 4/7 α3 = 1/2

T xj J∗ J̃ J̃/J∗ J∗ J̃ J̃/J∗ J∗ J̃ J̃/J∗

10

1 5.172 5.059 0.9783 5.420 5.233 0.9656 5.733 5.489 0.9574
2 9.232 9.061 0.9814 9.736 9.480 0.9736 10.321 10.003 0.9691
3 12.611 12.424 0.9851 13.349 13.068 0.9789 14.173 13.820 0.9751
4 15.502 15.322 0.9884 16.450 16.168 0.9828 17.483 17.119 0.9792
5 18.016 17.856 0.9911 19.151 18.883 0.9860 20.370 20.011 0.9824
10 26.774 26.838 1.0024 28.598 28.537 0.9978 30.474 30.302 0.9943
20 33.849 34.801 1.0281 36.255 37.109 1.0236 38.669 39.436 1.0198
30 34.969 37.106 1.0611 37.467 39.559 1.0558 39.964 42.018 1.0514

40

1 7.681 7.572 0.9859 7.962 7.760 0.9747 8.386 8.120 0.9684
2 14.181 13.975 0.9855 14.799 14.486 0.9789 15.626 15.260 0.9766
3 19.969 19.703 0.9867 20.920 20.544 0.9820 22.129 21.695 0.9804
4 25.248 24.944 0.9880 26.521 26.104 0.9843 28.088 27.604 0.9828
5 30.131 29.804 0.9891 31.714 31.267 0.9859 33.617 33.096 0.9845
10 50.530 50.163 0.9927 53.495 52.983 0.9904 56.840 56.216 0.9890
20 79.705 79.389 0.9960 84.822 84.329 0.9942 90.295 89.648 0.9928
30 100.001 99.807 0.9981 106.708 106.322 0.9964 113.693 113.133 0.9951

Table 6.11: Performance of value approximations for RA2 heuristic for aE =
[e, e, e], α = [1, 1, α3]

α3 = 2/3 α3 = 4/7 α3 = 1/2

T xj J∗ J̃ J̃/J∗ J∗ J̃ J̃/J∗ J∗ J̃ J̃/J∗

10

1 5.172 4.913 0.9499 5.420 4.931 0.9098 5.733 4.949 0.8631
2 9.232 8.639 0.9358 9.736 8.698 0.8934 10.321 8.755 0.8482
3 12.611 11.710 0.9286 13.349 11.823 0.8857 14.173 11.930 0.8418
4 15.502 14.335 0.9247 16.450 14.511 0.8821 17.483 14.676 0.8394
5 18.016 16.625 0.9228 19.151 16.869 0.8809 20.370 17.098 0.8394
10 26.774 24.829 0.9273 28.598 25.475 0.8908 30.474 26.070 0.8555
20 33.849 32.579 0.9625 36.255 34.107 0.9408 38.669 35.513 0.9184
30 34.969 34.761 0.9940 37.467 37.004 0.9876 39.964 39.124 0.9790

40

1 7.681 7.462 0.9716 7.962 7.468 0.9380 8.386 7.474 0.8912
2 14.181 13.605 0.9594 14.799 13.626 0.9208 15.626 13.647 0.8733
3 19.969 18.997 0.9513 20.920 19.042 0.9102 22.129 19.086 0.8625
4 25.248 23.869 0.9454 26.521 23.945 0.9029 28.088 24.018 0.8551
5 30.131 28.347 0.9408 31.714 28.459 0.8974 33.617 28.566 0.8498
10 50.530 46.864 0.9275 53.495 47.221 0.8827 56.840 47.558 0.8367
20 79.705 73.280 0.9194 84.822 74.322 0.8762 90.295 75.290 0.8338
30 100.001 92.050 0.9205 106.708 93.918 0.8801 113.693 95.638 0.8412

parameter sets of exponential price response. However, second approximation

heuristic’s performance is worse for linear price response. Its performance gets

consistently better as the initial inventory increases. For instance, it yields at

least ∼ 0.951 of the optimal expected revenue among all parameter sets when

xj = 30 for j = 1, 2. In Figure 6.12-6.14, the percentage gap of all approximation

heuristics for xj = 5, 10 and 20 for j = 1, 2 and for the given parameter set is

shown. Percentage gap is calculated as follows:

Percentage Gap =
J∗ − JRA1

J∗
× 100 (6.1)

We can also show how close the price path of a product is to the optimal

price path under different approximation heuristics. We will again consider the

demand realization shown in Figure 6.4. For instance, the price path of the
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Table 6.12: Performance of value approximations for RA2 heuristic for aL =
[2, 2, 2], b = [1, 1, b3]

b3 = 2/3 b3 = 4/7 b3 = 1/2

T xj J∗ J̃ J̃/J∗ J∗ J̃ J̃/J∗ J∗ J̃ J̃/J∗

10

1 3.340 6.155 1.8430 3.375 6.165 1.8270 3.516 6.176 1.7567
2 6.324 11.043 1.7463 6.504 11.080 1.7036 6.843 11.117 1.6246
3 9.071 15.223 1.6782 9.441 15.298 1.6204 9.978 15.370 1.5404
4 11.634 18.916 1.6259 12.198 19.037 1.5607 12.926 19.154 1.4818
5 14.028 22.242 1.5855 14.783 22.417 1.5164 15.692 22.583 1.4392
10 23.708 35.305 1.4891 25.266 35.814 1.4175 26.914 36.288 1.3483
20 33.305 51.725 1.5531 35.666 53.077 1.4882 38.041 54.318 1.4279
30 34.957 61.225 1.7514 37.454 63.516 1.6958 39.951 65.607 1.6422

40

1 3.810 8.807 2.3118 3.810 8.810 2.3124 3.862 8.813 2.2819
2 7.502 16.263 2.1679 7.504 16.275 2.1687 7.671 16.286 2.1229
3 11.085 22.942 2.0695 11.096 22.967 2.0698 11.426 22.991 2.0122
4 14.565 29.077 1.9964 14.599 29.120 1.9947 15.127 29.162 1.9277
5 17.943 34.796 1.9392 18.032 34.861 1.9333 18.776 34.924 1.8600
10 33.491 59.269 1.7697 34.400 59.494 1.7295 36.254 59.711 1.6470
20 60.420 96.761 1.6015 63.563 97.481 1.5336 67.474 98.163 1.4548
30 83.060 125.917 1.5160 88.162 127.282 1.4437 93.823 128.559 1.3702

Table 6.13: Expected revenues obtained by approximation heuristics for aE =
[e, e, e], α = [1, 1, 2/3], aL = [2, 2, 2], b = [1, 1, 2/3]

Exponential Linear
T xj J∗ JRA1 JRA1/J

∗ JRA2 JRA2/J
∗ J∗ JRA2 JRA2/J

∗

10

1 5.172 5.166 0.9989 5.146 0.9950 3.340 1.968 0.5893
2 9.232 9.224 0.9991 9.182 0.9945 6.324 4.483 0.7089
3 12.611 12.600 0.9991 12.548 0.9950 9.071 7.177 0.7912
4 15.502 15.486 0.9989 15.436 0.9957 11.634 9.901 0.8511
5 18.016 17.991 0.9986 17.953 0.9965 14.028 12.419 0.8853
10 26.774 26.694 0.9970 26.756 0.9993 23.708 22.597 0.9531
20 33.849 33.671 0.9947 33.809 0.9988 33.305 32.067 0.9628
30 34.969 34.881 0.9975 34.960 0.9997 34.957 34.389 0.9837

40

1 7.681 7.675 0.9993 7.656 0.9968 3.810 1.968 0.5166
2 14.181 14.172 0.9994 14.114 0.9953 7.502 4.483 0.5975
3 19.969 19.959 0.9995 19.856 0.9943 11.085 7.177 0.6474
4 25.248 25.238 0.9996 25.091 0.9938 14.565 9.965 0.6842
5 30.131 30.122 0.9997 29.935 0.9935 17.943 12.809 0.7139
10 50.530 50.518 0.9998 50.209 0.9937 33.491 27.424 0.8188
20 79.705 79.675 0.9996 79.412 0.9963 60.420 55.574 0.9198
30 100.001 99.939 0.9994 99.864 0.9986 83.060 79.025 0.9514

third product under first and second approximation heuristics together with the

optimal price path are shown in Figure 6.15. Price path of the third product

under the second approximation heuristic for linear price response is shown in

Figure 6.16. Note that the price of the third product does not exceed the value 3

since the price response is linear with parameters a3 = 2, b3 = 2/3 and p∞3 = 3. If

the price exceeds 3, then the corresponding demand rate becomes negative. Price

paths of the first and the second products under both approximation heuristics

for exponential and linear price responses are shown in Figure 6.17 - 6.20. In all

price paths, demand realization for a certain product causes an upward jump on

the price path of that product and the other products having common resources

with it. Price of product 1 (2) drops when a unit of product 2 (1) is sold. Besides,

prices decrease over time between consecutive demand realizations.
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Table 6.14: Expected revenues obtained by approximation heuristics aE =
[e, e, e], α = [1, 1, 4/7], aL = [2, 2, 2], b = [1, 1, 4/7]

Exponential Linear
T xj J∗ JRA1 JRA1/J

∗ JRA2 JRA2/J
∗ J∗ JRA2 JRA2/J

∗

10

1 5.420 5.408 0.9979 5.343 0.9858 3.375 2.121 0.6284
2 9.736 9.725 0.9988 9.603 0.9863 6.504 4.817 0.7406
3 13.349 13.336 0.9990 13.189 0.9880 9.441 7.696 0.8152
4 16.450 16.434 0.9990 16.288 0.9901 12.198 10.635 0.8718
5 19.151 19.129 0.9989 19.001 0.9922 14.783 13.437 0.9090
10 28.598 28.526 0.9975 28.554 0.9985 25.266 24.353 0.9639
20 36.255 36.080 0.9952 36.170 0.9976 35.666 34.316 0.9622
30 37.467 37.380 0.9977 37.441 0.9993 37.454 36.749 0.9812

40

1 7.962 7.946 0.9980 7.866 0.9880 3.810 2.121 0.5566
2 14.799 14.780 0.9987 14.577 0.9850 7.504 4.817 0.6419
3 20.920 20.902 0.9991 20.579 0.9837 11.096 7.696 0.6936
4 26.521 26.503 0.9993 26.073 0.9831 14.599 10.668 0.7308
5 31.714 31.697 0.9995 31.173 0.9829 18.032 13.697 0.7596
10 53.495 53.480 0.9997 52.691 0.9850 34.400 29.245 0.8501
20 84.822 84.796 0.9997 84.124 0.9918 63.563 59.885 0.9421
30 106.708 106.653 0.9995 106.380 0.9969 88.162 85.214 0.9666

Table 6.15: Expected revenues obtained by approximation heuristics for aE =
[e, e, e], α = [1, 1, 1/2], aL = [2, 2, 2], b = [1, 1, 1/2]

Exponential Linear
T xj J∗ JRA1 JRA1/J

∗ JRA2 JRA2/J
∗ J∗ JRA2 JRA2/J

∗

10

1 5.733 5.716 0.9970 5.566 0.9708 3.516 2.390 0.6799
2 10.321 10.305 0.9985 10.056 0.9743 6.843 5.355 0.7826
3 14.173 14.157 0.9989 13.867 0.9784 9.978 8.506 0.8525
4 17.483 17.466 0.9990 17.178 0.9825 12.926 11.708 0.9057
5 20.370 20.348 0.9990 20.090 0.9863 15.692 14.681 0.9356
10 30.474 30.408 0.9978 30.393 0.9973 26.914 26.171 0.9724
20 38.669 38.496 0.9955 38.528 0.9963 38.041 36.581 0.9616
30 39.964 39.878 0.9978 39.913 0.9987 39.951 39.109 0.9789

40

1 8.386 8.361 0.9971 8.131 0.9696 3.862 2.390 0.6189
2 15.626 15.601 0.9984 15.114 0.9672 7.671 5.355 0.6981
3 22.129 22.105 0.9989 21.387 0.9665 11.426 8.506 0.7444
4 28.088 28.064 0.9992 27.150 0.9666 15.127 11.749 0.7767
5 33.617 33.595 0.9993 32.515 0.9672 18.776 15.047 0.8014
10 56.840 56.821 0.9997 55.304 0.9730 36.254 31.932 0.8808
20 90.295 90.270 0.9997 89.000 0.9857 67.474 64.894 0.9618
30 113.693 113.643 0.9996 113.082 0.9946 93.823 91.712 0.9775
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(a) RA1 for exponential price response (b) RA2 for linear price response

(c) RA2 for exponential price response

Figure 6.12: Percentage gap of approximation heuristics for aE = [e, e, e], α =
[1, 1, 2/3], aL = [2, 2, 2], b = [1, 1, 2/3]
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(a) RA1 for exponential price response (b) RA2 for linear price response

(c) RA2 for exponential price response

Figure 6.13: Percentage gap of approximation heuristics for aE = [e, e, e], α =
[1, 1, 4/7], aL = [2, 2, 2], b = [1, 1, 4/7]
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(a) RA1 for exponential price response (b) RA2 for linear price response

(c) RA2 for exponential price response

Figure 6.14: Percentage gap of approximation heuristics for aE = [e, e, e], α =
[1, 1, 1/2], aL = [2, 2, 2], b = [1, 1, 1/2]

Figure 6.15: Price path of the third product under the RA1 and RA2 heuristics
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Figure 6.16: Price path of the third product under RA2 heuristic for linear price
response

Figure 6.17: Price path of the first product under RA1 and RA2 heuristics

Figure 6.18: Price path of the first product under RA2 heuristic for linear price
response
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Figure 6.19: Price path of the second product under RA1 and RA2 heuristics

Figure 6.20: Price path of the second product under RA2 heuristic for linear price
response
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Chapter 7

Conclusion

We study the problem of multi-product inventory pricing under stochastic

and price sensitive demand. Demand for each product is modeled as a non-

homogeneous Poisson process whose intensity is a function of the current price

of the product itself. We have initial inventory of m resources whose different

combinations form n products. Products are perishable and the selling period is

of length T . The aim is to set the price of each product over the time interval

[0, T ] to maximize the expected revenue.

This problem takes place in the pricing category of the revenue management

literature, but it is also related with capacity allocation, since pricing and capacity

allocation problems are interrelated as mentioned in the introduction. There are

similar studies in the literature which considers selling a given inventory of items

over a finite selling period. Some examples are Kincaid & Darling [17], Stadje

[18], Gallego & van Ryzin [4] and Sen [22]. These studies consider either a single

type of product or fixed price policies for multiple types of products. Our work

differs from those by considering dynamic pricing for a network. The aim of this

study is to emphasize the advantage of dynamic pricing.

Dynamic pricing of multiple products is a quite challenging problem. Even

for single item case, analytical solution of the Hamilton-Jacobi equation (3.4) is

difficult. Gallego & van Ryzin [19] provide a closed form solution of the single
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product problem for exponential price response. To the best of our knowledge, no

closed form solution for the multi-product case is given in the literature. In multi-

product case though, it is even difficult to solve the system of partial differential

equations in (3.4) numerically. The number of partial differential equations in the

system gets larger as the initial inventories and number of resource types increases.

For instance, there are 30× 30 = 900 partial differential equations in the system

for the product resource structure shown in Figure 6.1 with initial inventories

x1 = x2 = 30. Hence, even obtaining a numerical solution is a computational

challenge.

Our contributions are twofold. First, we provided a closed form solution for

the multi-product pricing problem for the special case of exponential price re-

sponse. In this special case, the parameter αj of the demand function of each

product is assumed to be identical. Considering the similarity of products and

their customer targets, this is not a very strong assumption. Second, we provided

two types of dynamic pricing heuristics: one using the value approximation ap-

proach and the other using the deterministic version of the problem. First two

heuristics of the value approximation type is applicable to exponential price re-

sponse, whereas the third heuristic using value approximation is for general price

response. Heuristics based on the deterministic problem (RR, ATD) are concep-

tually for general price response, but are tested for only linear and exponential

price responses. We have provided a substantial numerical analysis regarding the

performance of all heuristics.

As for the future research, there are many opportunities. The foremost is

to solve (3.4) analytically for different price responses. The assumption that the

demand of a certain product is a function of only the current price of that product

itself can be relaxed. The demand can be modeled in such a way that the demand

of a product may depend on the price of other products, which may either be

complements or substitutes. In this thesis, we assumed that the price response

does not change over time, i.e., the past and future prices do not have an effect on

the current demand. This assumption can also be relaxed to model the strategic

behaviour of customers which makes the problem more interesting and challenging

at the same time. Finally, structural results can be derived analytically.
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