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Çağrı Şenel

June, 2013





ABSTRACT

33 FEMTOSECOND YB-DOPED OPTICAL
FREQUENCY COMB FOR FREQUENCY

METROLOGY APPLICATIONS

Çağrı Şenel

M.S. in Physics

Supervisor: Assist. Prof. Dr. Fatih Ömer İlday

June, 2013

Optical frequency combs have enabled many applications (high precision spec-

troscopy, table-top optical frequency metrology, optical atomic clocks, etc.), re-

ceived considerable attention and a Nobel Prize. In this thesis, the development

of a stabilized Yb-doped femtosecond optical frequency comb is presented. As a

starting point in the development of the frequency comb, a new type of fiber laser

has been designed using numerical simulations and realized experimentally. The

developed laser is able to produce pulses that can be compressed to 33 fs without

higher-order dispersion compensation. After realization of the laser, a new type

of fiber amplifier has been developed to be used for supercontinuum generation.

The amplifier produces 6.8 nJ pulses that can be compressed to 36 fs without

higher-order dispersion compensation. The dynamics of supercontinuum genera-

tion have been studied by developing a separate simulation program which solves

the generalized nonlinear Schrödinger equation. Using the simulation results, ap-

propriate photonic crystal fiber was chosen and octave-spanning supercontinuum

was generated. Carrier-envelope-offset frequency of the laser has been obtained

by building an f -2f interferometer. Repetition rate and carrier-envelope offset

frequency of the laser have been locked to Cs atomic clock using electronic feed-

back circuits, resulting in a fully stabilized optical frequency comb. The noise

performance and stability of the system have been characterized. Absolute fre-

quency measurement of an Nd:YAG laser, which was stabilized using iodine gas,

has been performed using the developed optical frequency comb.

Keywords: Fiber lasers, fiber amplifiers, optical frequency combs, frequency

metrology, numerical simulations.
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ÖZET

FREKANS METROLOJİSİ UYGULAMALARI İÇİN 33
FEMTOSANİYE YB-KATKILI OPTİK FREKANS

TARAĞI

Çağrı Şenel

Fizik, Yüksek Lisans

Tez Yöneticisi: Yrd. Doç. Dr. Fatih Ömer İlday

Haziran, 2013

Optik frekans tarakları birçok uygulamayı mümkün hale getirmiş (yüksek has-

sasiyetli spektroskopi, masa üstü optik frekans metrolojisi, optik atomik saatler,

vs.), hatırı sayılır derecede ilgi çekmiş ve bir Nobel Ödülü kazanmıştır. Bu tezde,

stabilize edilmiş bir Yb-katkılı femtosaniye optik frekans tarağının geliştirilmesi

sunulmuştur. Frekans tarağının geliştirilmesi için başlangıç olarak yeni bir tür

fiber lazer, nümerik simülasyonlar kullanılarak dizayn edilmiş ve deneysel olarak

yapımı gerçekleştirilmiştir. Geliştirilmiş olan lazer, yüksek-dereceli dağılım den-

gelenmeden 33 fs uzunluğa sıkıştırılabilen atımlar üretebilmektedir. Lazerin

yapımının gerçekleştirilmesinden sonra, supercontinuum üretimi için kullanılmak

üzere yeni bir tür fiber yükseltici geliştirilmiştir. Fiber yükseltici, yüksek-dereceli

dağılım dengelenmeden 36 fs uzunluğa sıkıştırılabilen, 6.8 nJ enerjiye sahip

atımlar üretebilmektedir. Supercontinuum üretim dinamikleri, genelleştirilmiş

Schrödinger denklemini çözen, geliştirilen başka bir simülasyon programını kul-

lanarak incelenmiştir. Simülasyon sonuçları kullanılarak uygun fotonik kristal

fiberi seçilmiş ve oktav-kaplayan supercontinuum üretilmiştir. Lazerin taşıyıcı-

zarf ofset frekansı bir f -2f interferometresi yapılarak elde edilmiştir. Lazerin

tekrar frekansı ve taşıyıcı-zarf ofset frekansı, elektronik geri-besleme devreleri kul-

lanılarak bir Cs atomik saatine kilitlenmiş, sonucunda tamamen stabilize edilmiş

optik frekans tarağı elde edilmiştir. Sistemin gürültü performansı ve kararlılığı

karakterize edilmiştir. İyot gazı kullanılarak stabilize edilmiş bir Nd:YAG laz-

erinin mutlak frekans ölçümü, geliştirilen sistem kullanılarak yapılmıştır.

Anahtar sözcükler : Fiber lazerler, fiber yükselticiler, optik frekans tarakları,

frekans metrolojisi, sayısal simülasyonlar.
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Chapter 1

Introduction

1.1 Introduction to Optical Fiber Technology

1.1.1 Brief History of Optical Fibers

Daniel Colladon and Jacques Babinet demonstrated guiding of light by total inter-

nal reflection in the early 1840s for the first time [7,8]. Image transmission through

tubes was demonstrated independently by John Logie Baird and Clarence Hansell

in 1920s [9, 10]. Heinrich Lamm used tubes for internal medical examinations in

1930s [11]. First modern optical fiber was made in late 1930s which consisted

of a core region surrounded by a transparent cladding region. First bundle of

fiber was produced by Harold Hopkins and Narinder Singh Kapany in 1954 [12].

First optical fiber with glass-cladding was produced by Lawrance E. Curtiss in

1956 [13]. Jun-ichi Nishizawa proposed usage of optical fibers for telecommunica-

tion in 1963 [14]. First working fiber-optical telecommunication system was shown

by Manfred Brner in 1965 [15,16]. High-fiber losses of that time (∼1000 dB/km)

prevented the building of long-distance communication lines. In 1965, Charles K.

Kao and George A. Hockham theorized that optical fibers with losses less than 20

dB/km can be produced using silica glass with high purity [17]. Half of the Nobel

Prize in Physics 2009 was awarded to Charles K. Kao for this discovery. First

1



Figure 1.1: Basic structure of an optical fiber.

fiber with loss of 17 dB/km was produced in 1970 by Robert D. Maurer, Donald

Keck, Peter C. Schultz and Frank Zimar. They also produced the fiber with loss

of 4 dB/km a few years later [18]. First commercial fiber-optical communication

system was built in 1975. First optical fiber with loss of 1 dB/km was produced

in 1976. Modern optical fibers have losses below 0.2 dB/km. Erbium-doped fiber

amplifiers, which reduced the cost of long-distance telecommunication systems by

eliminating the need for optical-electrical-optical repeaters, was co-developed by

teams led by David N. Payne and Emmanuel Desurvire in 1987 [19,20]. Photonic

bandgap fibers were developed in 1991, which guides light by diffraction from a

periodic structure [21]. Photonic crystal fibers became commercially available in

2000.

1.1.2 Structure and Guiding Mechanisms of Modern Op-

tical Fibers

Basic structure of modern optical fibers is shown (Fig. 1.1). Light mostly prop-

agates in the core, while some part of the light penetrates into the cladding.

Modern optical fibers can be classified into three main categories according to

their guiding mechanisms as step-index fibers, graded index fibers and micro-

structured fibers.

Step-index fibers have a core with uniform index of refraction and a cladding

2



Figure 1.2: Types of optical fibers [1].

with slightly lower, uniform index of refraction. Most single-mode fibers and

some multi-mode fibers have step-index profile. Light propagation in multi-mode

step-index fibers can be studied using ray optics. For single-mode fibers, since

the core size is comparable to the wavelength of the light, wave optics should

be used. When the ray optics is used, light guiding can be explained by total

internal reflection. The maximum incidence angle for the light to be guided is

determined by the numerical aperture (NA) of the fiber, which is given by,

sin θmax = NA ≡
√
n2

core − n2
cladding (1.1)

The number of guided modes is determined by the parameter called V number,

which is given by,

V =
2π

λ
aNA =

2π

λ
a
√
n2

core − n2
cladding (1.2)

where, a is the core radius of the fiber. The fibers with V values smaller than

∼2.405 are single-mode fibers. The number of guided modes can be approximated

by the formula given below for large V values:

M ≈ 4

π2
V 2 (1.3)

V number also determines the fraction of the light that propagates in the core.

Mode-field radius for single-mode fibers can be estimated using Marcuse’s formula

3



[22]:
w

a
≈ 0.65 +

1.619

V 3/2
+

2.879

V 6
(1.4)

where w is the mode-field radius.

Even though the mode profile in the fibers is not rectangular normally, ef-

fective mode area of single-mode fibers can be well-approximated by A = πw2.

However, this formula is not enough for multi-mode fibers and it is necessary to

calculate effective mode area using the definition,

Aeff =

(∫
I dA

)2∫
I2 dA

(1.5)

where I is the radius-dependent intensity.

Graded-index fibers have a radius-dependent index of refraction such that the

index of refraction usually has a parabolic profile and decreases as radial distance

from the center of the fiber increases. Mode dispersion is considerably lower

in multi-mode graded-index fibers than in multi-mode step index fiber as it is

illustrated in Fig. 1.2.

Recently, micro-structured fibers have emerged. Micro-structured fibers con-

sist of a solid or hollow core and some voids in the cladding area. Guiding mecha-

nism of the solid-core micro-structured fibers is similar to the conventional fibers.

Voids create a cladding region that has effectively lower index of refraction. Peri-

odicity of the holes is not crucial for this kind of fibers and light can be guided by

even a random arrangement of holes. Hollow core micro-structured fibers have

a different mechanism of guiding light. A strictly periodic arrangement of the

holes with spacing that is close to the wavelength of the light gives rise to a res-

onant effect that is similar to Bragg diffraction and light is guided by continuous

diffraction from the periodic structure. This kind of fibers are named photonic

bandgap fibers. Photonic bandgap fibers were also called photonic crystal fibers,

which is used as a general name for the micro-structured fibers nowadays. From

this point on, micro-structured fibers will be called photonic crystal fibers (PCF).

PCFs opened up the way to many new possibilities. Since almost all of the

4



Figure 1.3: Images of a micro-structured fiber obtained by a scanning electron
microscope. (Courtesy of Zuxing Zhang)

cladding area can consist of air, it is possible to produce fibers with very small

core diameters and very high NA. By adjusting the size of the holes, hole spacing

and the core diameter, the dispersion characteristics of PCFs can be engineered.

These two properties gave rise to highly nonlinear fibers with arbitrary zero dis-

persion wavelengths and revolutionized the areas of supercontinuum generation

and optical frequency metrology. Hollow core fibers have the potential to be the

fibers with the lowest propagation losses since light effectively propagates in air.

They allow transfer of light pulses without experiencing Kerr nonlinearity and

can be used for pulse compression. Hollow core fibers can be filled with gases

and be used as very long gas cuvettes. There is a class of PCF which is called

endlessly single-mode fibers. These fibers do not have a higher-order mode cut-off

wavelength and can have very large core diameters. PCFs can also be doped with

rare earth elements for light amplification. PCFs can be produced to have very

high values of birefringence and they can be polarization-maintaining.

5



1.2 Pulse Propagation in Optical Fibers

1.2.1 Dispersion

Dispersion is the phenomenon in which phase velocity of a wave depends on some

factors such as frequency, propagation mode or polarization. Most important of

these is the chromatic dispersion, which is caused by the frequency dependence of

refractive index. Because of Kramers-Kronig relations, real part of the refractive

index depends on the imaginary part of the refractive index, which means the

frequency dependence of the phase velocity in related to the frequency dependence

of the material absorption. The frequency dependence of refractive index of

materials are well-approximated for the frequencies that are far from the medium

resonances by the Sellmeier equation,

n2(ω) = 1 +
m∑
j=1

βjω
2
j

ω2
j − ω2

(1.6)

where ωj is the resonance frequency and βj is the strength of jth resonance. For

bulk fused silica, these parameters are given as ωj = 2πc/λj, β1 = 0.6961663,

β2 = 0.4079426, β3 = 0.8974794, λ1 = 0.0684043 µm, λ2 = 0.1162414 µm,

λ3 = 9.896161 µm.

Chromatic dispersion plays an important role for pulse propagation in fibers

since the spectrum of short pulses are broad. In the presence of the nonlinear

effects, dispersion gives rise to very rich dynamics which makes mode-locked

femtosecond fiber lasers possible. Effects of fiber dispersion is usually studied

by applying a Taylor expansion about a frequency ω0:

β(ω) = n(ω)
ω

c
= β0 + β1(ω − ω0) +

1

2
β2(ω − ω0)2 + ... (1.7)

where

βm =

(
dmβ

dωm

)
ω=ω0

(1.8)

6



β1 and β2 are given as

β1 =
1

vg
=
ng
c

=
1

c

(
n+ ω

dn

dω

)
(1.9)

β2 =
1

c

(
2
n

ω
+ ω

d2n

dω2

)
(1.10)

where vg is the group velocity and ng is the group index. β1 is the inverse group

velocity and β2 is the group-velocity dispersion (GVD) coefficient. In optical

fiber communications community, it is common to use the dispersion parameter

D, which is defined as D = dβ1/dλ. Dispersion parameter D is related to β2 as

D =
dβ1

dλ
= −2πc

λ2
β2 = −λ

c

d2n

dλ2
(1.11)

Higher orders of dispersion can also be defined. For pulses with small spec-

tral bandwidths higher-order terms can be neglected. In most cases, including

the third-order dispersion term suffices. Even higher-order dispersion terms are

usually necessary only for extremely broadband pulses as it is the case for super-

continuum generation.

Chromatic dispersion is not the only cause of dispersion in optical fibers.

Modal dispersion is an effect that is observed in multi-mode fibers, which causes

the light pulses to spread in time since the propagation velocity is not the same

for all propagation modes. There is also a special type of modal dispersion called

polarization mode dispersion, which is observed even in single mode fibers. Po-

larization mode dispersion is caused by the birefringence of the fiber which stems

from production imperfections and anisotropic stress. Chromatic dispersion is by

far the most important type of dispersion for femtosecond fiber lasers and other

types of dispersion will be ignored for the rest of the discussions.

1.2.2 Nonlinear Effects

The response of fibers depends on the intensity of light. The most important

effects that influence the short pulse propagation are the Kerr effect and Raman

scattering. Kerr effect is an instantaneous effect while Raman scattering is a

delayed effect.
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The Kerr effect is the modification of the phase delay per unit length in

proportion to optical power. It can be described as the dependence of the index

of refraction on the light intensity:

n(I) = n0 + n2(I) (1.12)

The Kerr coefficient of fused silica is measured as n2 ≈ 2.7× 10−20 m2/W for the

wavelengths around 1 µm [23]. The frequency-dependent nonlinearity coefficient

of the fibers are usually given in terms of the parameter γ(ω):

γ(ω) =
n2(ω)ω

cAeff (ω)
(1.13)

where Aeff is the effective mode-area of the fiber.

Some important consequences of Kerr nonlinearity can be categorized as self-

phase modulation, cross-phase modulation and self-focusing effects. Self-phase

modulation is the dependency of phase delay for light to its own intensity. When

there are more than one beams propagating together with different wavelengths,

each beam creates an intensity-dependent phase delay on other beams and this

is called cross-phase modulation. Mode-profile in fibers is not rectangular and

therefore, intensity of the light is not constant in the transverse direction. This

causes the refractive index to depend on the radial distance from the center and

leads to self-focusing. Self-phase modulation is the most important consequence of

the Kerr effect for short pulses that are propagating in fiber and will be discussed

in some detail.

Self-phase modulation determines the main characteristics of short pulse prop-

agation in optical fibers together with dispersion and is very important for pulse

formation and mode-locking. In the absence of chromatic dispersion, self-phase

modulation does not change the pulse envelope. It creates new frequency compo-

nents and some frequency chirp. In the presence of anomalous dispersion in the

medium, self-phase modulation gives rise to solitonic effects. If the pulse enters

the anomalous dispersion medium with positive initial chirp, pulse is compressed

temporally and broadened spectrally. When the pulses are negatively chirped and

propagated in a medium with normal dispersion, they get compressed in both

temporal and spectral domains. Initially transform-limited or positively chirped
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pulses go through self-similar parabolic pulse propagation and they evolve into a

parabolic shape in both temporal and spectral domains.

Raman scattering is the scattering of photons from optical phonons in the

medium. Raman scattering can be divided into two subcategories as Stokes and

anti-Stokes scattering. Stokes scattering corresponds to the annihilation of the

input photon that is followed by creation of a phonon and a photon with lower

frequency. Anti-Stokes scattering corresponds to the annihilation of the input

photon and a phonon that is followed by creation of a photon with higher fre-

quency. Anti-Stokes scattering occurs very rarely at low temperatures since it

requires the existence of a phonon beforehand. Stokes scattering can take place

at any temperature since the phonon is created in the process. The ratio of

anti-Stokes to Stokes scattering events is given by [24]:

Ianti-Stokes

IStokes

= exp(−~Ω/kBT ) (1.14)

where Ω is the absolute angular frequency difference between the input and output

photons.

Raman scattering can happen spontaneously or it can be stimulated. Stimu-

lated Raman scattering (SRS) is the dominant type that is observed with short

pulses in optical fibers. Stokes scattering rate increases when there are some

Stokes photons already in the medium and the rate increases proportionally to

the number of both original input (pump) and Stokes (signal) photons. For con-

tinuous wave pump and Stokes beams, growth of the intensity of Stokes beam is

given by [2]:
dIS
dz

= gRIP IS (1.15)

where IS is the intensity of Stokes beam, IP is the intensity of pump beam and

gR is the Raman gain coefficient. Since ultrashort pulses have wide spectral

bandwidths, photons within the pulse with different frequencies can act as pump

and signal photons. This causes pulse wavelength to continuously shift towards

longer wavelengths in the fiber. This effect is called self-frequency shift. Self-

frequency shift becomes especially important for soliton propagation since the

peak power of the pulses does not decrease drastically during propagation.
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1.2.3 Nonlinear Schrdinger Equation

Evolution of the pulse envelope in optical fibers with second-order group ve-

locity dispersion and self-phase modulation can be described by the nonlinear

Schrdinger equation (NLSE):

∂A

∂z
= −iβ2

2

∂2A

∂T 2
+ iγ|A|2A (1.16)

where A is the normalized pulse amplitude such that |A|2 gives the optical power,

β2 is the second-order group velocity dispersion coefficient, γ is the nonlinear-

ity coefficient and z is the propagation direction. NLSE can be derived from

Maxwell’s equations and the derivation can be found in [2]. NLSE is sufficient for

modelling pulses with relatively small bandwidths and moderate peak powers.

NLSE can be generalized to include the effects of gain, loss, higher order

dispersion, stimulated Raman scattering and self-steepening [2]. Higher-order

dispersion can be added to the equation through a simple summation. Higher-

order nonlinear effects can be added by adding more terms of the Taylor expansion

of the nonlinearity coefficient γ:

γ(ω) = γ(ω0) + γ1(ω − ω0) +
1

2
γ2(ω − ω0)2 + ... (1.17)

In practice, it is enough to keep the first two terms of the expansion. Stimulated

Raman scattering can be included in the equation via use of a response function

[25]. Resulting equation is called the generalized nonlinear Schrdinger equation

(GNLSE):

∂A

∂z
+
α

2
A+

(∑
n≥2

βn
in−1

n!

∂n

∂tn

)
A = i

(
γ(ω0) + γ1

∂

∂t

)

×

(1− fR)A|A|2 + fRA

∞∫
0

hR(t′)|A(z, t− t′)|2dt′
 (1.18)

where α is the loss (or gain) coefficient, γ1 is a higher-order nonlinearity term,

fR is the fraction of the delayed Raman response and hR is the Raman response

function. GNLSE is sufficient to model very complicated processes like supercon-

tinuum generation.
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1.3 Mode-Locked Fiber Lasers

Mode-locked fiber lasers are pulsed lasers that uses fibers that are doped with rare-

earth elements (such as neodymium, erbium, ytterbium, thulium, praseodymium,

thulium and holmium) as the gain media. Mode-locked fiber lasers have replaced

their gain-crystal based predecessors in most applications due to their lower cost,

better environmental stability and comparable pulse parameters. In this section,

a brief history, applications and fundamental dynamics of mode-locked fiber lasers

will be presented.

1.3.1 A Brief History of Mode-Locked Fiber Lasers

First mode-locked fiber laser was built in 1986 using neodymium-doped fiber [26].

The laser was operating at 1.08 µm and the pulse energy was 17 pJ. The Nd-doped

fiber had normal dispersion at that wavelength, but the possibility of building a

soliton laser using erbium-doped fibers was discussed in the same article. This

was followed by the demonstration of the soliton fiber lasers using Yb:Er co-

doped fiber in 1989 [27]. In this study, 70 ps pulses with 1.56 µm wavelength and

6 pJ energy was produced. An erbium soliton laser that produces 4 ps pulses at

1.53 µm with output pulse energy of 11 pJ was also demonstrated in the same

year [28]. First femtosecond erbium fiber laser was demonstrated in 1991 [29].

This laser was passively mode-locked using a nonlinear amplifying loop mirror

as a virtual saturable absorber and produced 314 fs pulses. First mode-locked

thulium-doped fiber laser was demonstrated in 1992, which was operating at

810 nm [30]. Same year, 30 fs pulses were generated by an amplified all-fiber

Er laser [31]. 180 fs pulses with 100 pJ pulse energy were produced using an

Er-doped fiber with normal dispersion and in-cavity dispersion compensation

with prism pair in 1993 [32]. In the same year, 42 fs pulses at 1.06 µm with

1 nJ pulse energy were generated using a neodymium fiber laser [33]. First

mode-locked praseodymium-doped fiber laser which was operating at 1.3 µm

was also demonstrated in 1993 [34]. Stretched-pulse erbium fiber lasers, which

consist of normal and anomalous dispersion fibers were presented later [35–37].
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They had energies around 1 nJ and were an improvement over the soliton lasers.

Femtosecond pulses was obtained from a tunable Th-doped fiber laser in 1995 [38].

The demonstrated laser was tunable from 1.8 µm to 1.9 µm. First mode-locked

Yb:glass fiber laser was built in 1998 [39]. Yb fiber lasers became increasingly

popular due to their broad gain bandwidth and low quantum defect. In 2003,

36 fs pulses were generated with 1.5 nJ pulse energy by optimizing the cavity

dispersion map [40]. First similariton laser was demonstrated in 2004 using Yb-

doped fibers for gain and diffraction gratings for dispersion management [41].

The experimentally demonstrated laser had 2 nJ pulse energy but the possibility

of reaching much higher energies was shown using numerical simulations. All-

normal-dispersion (ANDi) Yb-doped fiber laser was demonstrated in 2006 [42]. It

was not the first fiber laser that was built using all-normal-dispersion components,

since even the first mode-locked fiber laser was built using all-normal-dispersion

components, but rather it was the first passively mode-locked femtosecond all-

normal-dispersion laser. ANDi laser included a spectral filter in the cavity to

balance the effects of Kerr nonlinearity and chromatic dispersion and produced

highly chirped pulses, opening the way to pulses with even higher energies. Using

Yb-doped large mode area photonic crystal fibers, ANDi lasers that produce

sub-100 fs pulses with microjoule-level pulse energy and tens of watts average

power has been presented [43]. In 2007, first mode-locked bismuth-doped fiber

laser was built, which was operating at 1.16 µm [44]. In 2010, the possibility of

incorporating different pulse evolution mechanisms into one laser was shown for

the first time by demonstration of the soliton-similariton laser [45]. First mode-

locked holmium-doped fiber laser was demonstrated in 2012, which was operating

at 2.09 µm [46]. Even though continuous-wave dysprosium-doped fiber lasers that

operate around 2.9 µm have been built, a mode-locked Dy-doped fiber laser has

not been demonstrated yet [47,48].

In the current state of the technology, shortest pulses from fiber lasers are

produced by Yb-doped fiber lasers and are ∼20 fs-long [49]. Even shorter pulses

are generated by amplified erbium-based systems. Few-cycle pulse generation

have been demonstrated by several groups and pulses as short as one optical cycle

are generated [50–53]. Highest pulse energies also produced by Yb-doped fiber
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lasers and they are in the order of microjoule [54, 55]. Yb-doped fiber amplifiers

produce millijoule pulse energies and gigawatt peak powers [56].

1.3.2 Applications of Mode-Locked Fiber Lasers

Mode-locked fiber laser have very important scientific and technological appli-

cations and some applications of the mode-locked fiber lasers can be listed as

such: Femtosecond frequency combs (Nobel Prize in Physics 2005) [57], micro-

machining [58], nonlinear optics (optical parametric oscillators, terahertz gener-

ation, etc.) [59, 60], optical communications [61], femtochemistry (Nobel Prize

in Chemistry 1999) [62], low-phase-noise microwave generation [63], microscopy

(confocal, multi-photon, photoacoustic, etc.) [64, 65], nuclear fusion [66], ultra-

fast spectroscopy [67], optical coherence tomography [68], eye surgery (corneal,

cataract) [69], optical data storage [70] and high-speed electrical testing [71].

Mode-locked fiber lasers advance quickly and it can safely be argued that

they will become even more common and influential in both the industrial and

scientific applications.

1.3.3 Main Types and Fundamental Dynamics of Mode-

Locked Fiber Lasers

Mode-locked fiber lasers can be classified into two categories according to their

mode-locking mechanisms as actively mode-locked and passively mode-locked

fiber lasers. Actively mode-locked lasers include an active element in the cav-

ity such as an electro-optic or acousto-optic modulator for initialization of pulsed

operation. Actively mode-locked lasers can be set to operate at the fundamental

cavity frequency or a higher harmonic of the fundamental frequency. Passively

mode-locked lasers can be mode-locked using one of several mechanisms. Sat-

urable absorber materials can be placed in the laser cavity to initialize mode-

locking. Kerr self-focusing effect can also be utilized to initialize mode-locking
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Figure 1.4: Pulse evolution for different types of lasers. Vertical axis is the spec-
tral bandwidth of pulses and horizontal axis is the ratio of pulse durations to the
transform-limited pulse durations. Negative values indicate negative frequency-
chirp.

of lasers. Nonlinear polarization rotation, which also stems from the Kerr non-

linearity, can be used as a virtual saturable absorber for initialization of pulsed

operation.

Mode-locked fiber lasers can also be categorized according to their pulse evo-

lution regimes. They can be classified into six categories which are soliton,

stretched-pulse, dispersion-managed, similariton, all-normal-dispersion (ANDi)

and soliton-similariton fiber lasers. Even though the distinctions are not very

clear as similariton, soliton-similariton and stretched-pulse lasers are also uti-

lize some dispersion-management and therefore can be considered dispersion-

managed lasers, these categories are still useful and commonly used to clas-

sify lasers. Pulse evolutions for the mentioned type of lasers are shown in Fig.

1.4. This figure illustrates the characteristic evolutions for these lasers but they
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are only example cases and the actual values of spectral bandwidth and time-

bandwidth products depend heavily on the particular laser parameters. Charac-

teristic properties of these lasers will be explained below.

Soliton lasers consist of all-anomalous-dispersion components. Their pulse

durations and spectral bandwidths change minimally in one roundtrip. The pulse

energy of soliton fiber lasers are usually limited to ∼100 pJ level. The most

important advantages of soliton lasers are their very simple cavity designs, which

makes building an all-fiber laser very easy and their ability to produce nearly

chirp-free pulses.

Stretched-pulse lasers incorporate fibers with normal and anomalous-

dispersion together in the cavity. Pulses reach zero-chirp in the middle of both

normal and anomalous-dispersion fibers. They are positively chirped after the

zero-chirp point inside the normal-dispersion fiber until the zero-chirp point in

the anomalous-dispersion fiber. They are negatively chirped from there on until

the zero-chirp point in the normal-dispersion fiber. These pulses are also called

“breathers” because of the explained evolution of the pulses. These lasers usually

have pulse energies of ∼1 nJ. They can be built in the all-fiber form easily and

compressed pulses can be obtained simply by adjusting the fiber length after the

output coupler.

The term “dispersion-managed lasers” usually refers to lasers with normal

dispersion fibers and some elements like diffraction gratings for dispersion man-

agement. These lasers can be mode-locked with net-anomalous, net-zero or net-

normal cavity dispersion and pulse evolution in the laser heavily depends on

the net-dispersion of the cavity and pulse energy. Dispersion-managed lasers

with high net-anomalous dispersion are somewhat similar to soliton lasers and

pulses can be considered to be average solitons. Dispersion-managed lasers with

high net-normal dispersion approximates ANDi lasers and cannot be mode-locked

without some kind of spectral filtering. Dispersion-managed lasers with near-zero

net cavity dispersion can produce very broadband pulses which can be compressed

outside the cavity to obtain very short pulses.

Similariton lasers are a special case of dispersion-managed lasers and they
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have net-normal cavity dispersion. Pulses evolve self-similarly in the similariton

lasers and have approximately parabolic temporal and spectral shapes. When the

output is taken after the gain fiber, similariton lasers generates linearly chirped

broadband pulses, which can be compressed outside the cavity.

All-normal-dispersion lasers consist of elements with normal dispersion only.

They usually include a spectral filter in addition to regular mode-locking elements

to undo the spectral broadening caused by Kerr nonlinearity. Spectral filter short-

ens the pulses also in the temporal domain since the pulses are chirped. ANDi

lasers generate highly chirped pulses with steep edges. Highest pulse energies are

reached by ANDi lasers since the nonlinearity can be kept low due to long pulse

durations.

Soliton-similariton lasers consist of passive fibers with anomalous-dispersion

and gain fiber with normal-dispersion. They also include a spectral filter in

the cavity. Pulses evolve into a soliton in the passive fiber. They get ampli-

fied and propagates self-similarly in the gain fiber, get shortened by the mode-

locking element and spectral filter in spectral and temporal domains and enter

the anomalous-dispersion fiber again. Due to attractive nature of both soliton

and self-similar propagations, soliton-similariton lasers offer very good noise per-

formance [45].

1.4 Femtosecond Frequency Combs

Femtosecond frequency combs are tools that revolutionized optical frequency

metrology and as a recognition of this revolution, half of the Nobel Prize in

Physics 2005 was awarded to John L. Hall and Theodor W. Hnsch “for their

contributions to the development of laser-based precision spectroscopy, including

the optical frequency comb technique”. The history of optical frequency mea-

surements can be found in an article by Hall and Nobel Lecture by Hnsch [72,73].

Femtosecond frequency combs depend on a very simple principle: Fourier trans-

form of a train of pulses is a comb-like structure in the frequency domain. This
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Figure 1.5: The electric field of pulses (left column) and the corresponding spectra
(right column).

is illustrated in Fig. 1.5. In this figure, the electric field of pulses and the corre-

sponding spectra are shown. Note that as the number of pulses increase, the comb

lines get narrower. The comb spacing is independent of the carrier frequency and

depends only on the repetition frequency of the pulses. If all the pulses are iden-

tical as in Fig. 1.5, frequency of the comb lines correspond to an exact integer

multiple of the repetition frequency. But usually this is not the case, phase of

the electric field shifts with respect to the pulse envelope due to the chromatic

dispersion and this causes all the comb lines to be shifted by a fixed amount that

is called the carrier-envelope-offset frequency [74]. The frequency of the comb

lines in this case can be written as such:

f(n) = n× fR + fceo (1.19)

where n is the integer multiple, fR is the repetition frequency of the pulses and

fceo is the carrier-envelope-offset frequency.

The challenge was to obtain and stabilize the carrier-envelope-offset frequency.

This became easy with the generation of octave-spanning spectrum using the
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photonic crystal fibers [75]. First stabilized femtosecond frequency comb was

demonstrated in 2000 [76]. Firstly, 300 THz-wide spectrum was generated using

a Ti:Sapphire laser and a piece of photonic crystal fiber. Then, the low-frequency

end of the spectrum was frequency-doubled and beaten with the high-frequency

end of the spectrum. The fceo was obtained using the beat signal and stabilized.

This setup to obtain fceo is called an f − 2f interferometer and it is currently the

most commonly employed method for this purpose.

First stabilized frequency combs were generated using Ti:Sapphire lasers and

they usually cover the region of 500-1200 nm. They are followed by many others

notably Er-fiber laser based combs which cover 1000-2000 nm region and Yb-fiber

laser based combs which cover 700-1400 nm region. Frequency combs that covers

other regions of the spectrum are also available. Through difference frequency

generation using an Er-fiber laser comb, a tunable frequency comb that can be

used up to 17 µm wavelength has been demonstrated [77]. Other methods of

producing mid-infrared frequency combs are discussed in [78]. Frequency combs

in the ultraviolet and extreme ultraviolet regions were also produced via high

harmonic generation [79–81].

Femtosecond frequency combs have found many other applications. Some of

the applications of frequency combs can be listed as: attosecond pulse genera-

tion [82], optical clocks [83,84], astronomical spectrograph calibration [85], spec-

troscopy [86], time/frequency transfer [87], long range absolute distance measure-

ment [88], length calibration of gauge blocks [89], surface-profile metrology [90]

and next generation of formation-flying satellite missions [91].

Femtosecond frequency combs have advanced tremendously, found many ap-

plications and became a common laboratory equipment in only one decade. They

will open new doors for ultra-precise measurements and enable us to understand

the universe better than ever. Some theories predict that the fine structure con-

stant changes with time and even though measurements performed with frequency

combs have not shown a drift, the upper limit for the drift rate have been im-

proved by a factor of ten [92]. The unprecedented precision reached by frequency

combs will enable us to test the constancy of “physical constants” and may help
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us discover new physical phenomena.
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Chapter 2

Numerical Simulations

Numerical simulations have a very important place in physics to understand un-

derlying processes in a particular situation and simulations enable us to predict

new phenomena and make new designs. In this chapter, different models that are

used for modelling optical pulse propagation in optical fibers will be reviewed and

the simulation code that is developed to simulate ultrafast fiber lasers and fiber

amplifiers will be explained in detail. This chapter is partially based on [2, 3, 5].

2.1 Finite-Difference Methods

Finite-difference methods are widely used for simulating electromagnetic wave

propagation. Finite-difference methods solve Maxwell equations directly in time

domain with small number of approximations and therefore they are more ac-

curate than other methods. In fiber optics, they are particularly useful for

modelling wavelength-division-multiplexed (WDM) systems and few-cycle optical

pulse propagation, where slowly-varying envelope approximation is invalid. Main

draw-back of finite difference methods for optical propagation modelling is the ne-

cessity of very small grid size (< 1 fs), which limits their usage. Pseudo-spectral

methods are more commonly used for modelling optical pulse propagation in

fibers, since optical pulses are usually much longer than one optical cycle and
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slowly-varying envelope approximation is valid.

2.2 Pseudo-Spectral Methods

Pseudo-spectral methods are usually the first choice for numerical modelling of

optical pulse propagation in optical fibers by solving the nonlinear Schrdinger

equation (NLSE) or the generalized nonlinear Schrdinger equation (GNLSE).

They can be used to simulate propagation of optical pulses that are sufficiently

longer than one optical cycle, which means pulses that are longer than ∼10 fs

can be modelled with this group of methods.

In pseudo-spectral methods, NLSE and GNLSE are solved by handling linear

effects in frequency domain and handling intensity-dependent nonlinear effects

in time domain. Fast Fourier transform (FFT) is used to go back and forth

between time and frequency domains. Two different pseudo-spectral methods

will be explained in detail.

2.2.1 Split-Step Fourier Method

Split-step Fourier method is the most popular method that is used for solving

NLSE and GNLSE. NLSE and GNLSE can be written in terms of linear and

nonlinear operators as
∂A

∂z
= (D̂ + N̂)A (2.1)

where D̂ is a differential operator that includes the effect of the chromatic disper-

sion, loss or gain and N̂ is a nonlinear operator that includes the effect of fiber

nonlinearities. These operators are given by

D̂ = −iβ2

2

∂2

∂T 2
(2.2)

N̂ = iγ|A|2 (2.3)
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for NLSE and given by

D̂ = −α
2
−

(∑
n≥2

βn
in−1

n!

∂n

∂tn

)
(2.4)

N̂ = iγ
1

A

(
1 +

1

ω0

∂

∂t

)(1− fR)A|A|2 + fRA

∞∫
0

hR(t′)|A(z, t− t′)|2dt′
 (2.5)

for GNLSE. The split-step Fourier method treats dispersive and nonlinear effects

separately and they are assumed to act independently over a small propagation

distance. In the simplest implementation of split-step Fourier method, the prop-

agation from z to z + h is performed in two separate steps. In the first step,

nonlinear operator acts alone and in the second step linear operator acts alone.

Mathematically, this can be written as

A(z + h, T ) ≈ exp(hD̂) exp(hN̂)A(z, T ) (2.6)

This split-step Fourier method is locally accurate to second order in the step-size

h, which means that it is globally accurate to first order in the step-size h.

A more accurate implementation of the split-step Fourier method is achieved

by evaluating the propagation from z to z + h in three steps. In the first step,

linear operator acts alone for a propagation distance of h/2. In the second step,

nonlinear operator acts alone for a propagation distance of h and lastly another

linear step of h/2 is taken. This modified procedure is called the symmetrized

split-step Fourier method and can be written mathematically as

A(z + h, T ) ≈ exp

(
h

2
D̂

)
exp

 z+h∫
z

N̂(z′)dz′

 exp

(
h

2
D̂

)
A(z, T ) (2.7)

Symmetrized split-step Fourier method is locally accurate to third order in the

step-size h, which means that it is globally accurate to second order in the step-

size h.

There are also higher-order split-step Fourier method implementations which

use some form of extrapolation. The scheme introduced by Blow and Wood [93]

is one of the popular schemes. In the Blow-Wood scheme, four forward steps of

length h is followed by a backward step of length 2h and four more forward steps
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Figure 2.1: Schematic illustration of the symmetrized split-step Fourier method
used for numerical simulations [2].

of length h are taken. This scheme is globally accurate to fourth order in the step

size h.

Accuracy of all the schemes explained here also depends on the method that

is used for integration in the nonlinear step and cannot exceed the accuracy of

the integration method.

2.2.2 Fourth-Order Runge-Kutta in the Interaction Pic-

ture Method

In quantum mechanics, the interaction picture is an intermediate picture between

Schrdinger and Heisenberg pictures that was proposed by Dirac and is also known

as the Dirac picture. In the interaction picture, both the quantum states and the

operators carry time dependence. The state vectors are transformed only by the

free part of the Hamiltonian and the transformed state vectors evolve in time

according to the interaction part of the Hamiltonian. The interaction picture

allows operators to act on the state vector at different times.
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Fourth-order Runge-Kutta in the interaction picture method (RK4IP) is a

method that was developed to solve the Gross-Pitaevskii equation, which is a non-

linear partial differential equation that describes the dynamics of Bose-Einstein

condensates. The time-dependent Gross-Pitaevskii equation can be written as

i~
∂Ψ(r, t)

∂t
=

(
− ~2

2m
∇2 + V (r) + g|Ψ(r, t)|2

)
Ψ(r, t) (2.8)

The Gross-Pitaevskii equation has a similar structure to NLSE and RK4IP

method was adapted to solve NLSE and GNLSE [3].

Field envelope A is transformed into the interaction picture representation AI

in terms of the previously defined linear operator D̂ and nonlinear operator N̂ as

AI = exp
(
−(z − z′)D̂

)
A (2.9)

where z′ is the separation distance between the interaction and normal pictures.

Differentiating AI gives the evolution of AI

∂AI
∂z

= N̂IAI (2.10)

where

N̂I = exp
(
−(z − z′)D̂

)
N̂exp

(
(z − z′)D̂

)
(2.11)

A straight-forward implementation of these equations using a fourth-order Runge-

Kutta method requires 16 FFTs to be performed per propagation step. However,

the number of required FFTs can be reduced to 8 by setting the separation

distance z′ = z + h/2. Even higher-order Runge-Kutta methods can be used but

the number of necessary FFTs cannot be reduced for higher-order methods.

One propagation step from z to z+h is performed by evaluating the equations

24



below:

AI = exp

(
h

2
D̂

)
A(z, T ) (2.12)

k1 = exp

(
h

2
D̂

)[
hN̂(A(z, T ))

]
A(z, T ) (2.13)

k2 = hN̂(AI + k1/2)[AI + k1/2] (2.14)

k3 = hN̂(AI + k2/2)[AI + k2/2] (2.15)

k4 = hN̂

(
exp

(
h

2
D̂

)
(AI + k3)

)
exp

(
h

2
D̂

)
[AI + k3] (2.16)

A(z + h, T ) = exp

(
h

2
D̂

)
[AI + k1/6 + k2/3 + k3/3] + k4/6 (2.17)

The RK4IP algorithm is locally accurate to fifth order in the step-size h and

it is globally accurate to fourth order in the step-size h. An implementation of

this algorithm in MATLAB is given in Appendix A. The given implementation

uses the analytical form given in [4] as the Raman response function. It was

implemented to simulate supercontinuum generation in photonic crystal fibers.

2.2.3 Performance Comparison of the Pseudo-Spectral

Computational Schemes

The accuracy and computational efficiency of the methods that are mentioned

before have been compared in reference [3]. As the test case for NLSE, a second-

order soliton has been chosen since an analytical solution exists in this case.

Simulations was performed using different implementations and the results were

compared to the analytical solution. The average relative intensity error ε is used

for comparisons and it is defined by

ε =

N∑
k=1

||Acompk |2 − |Atruek |2|/N

max(|Atrue|2)
(2.18)

where N is the total number of temporal grid points, Atruek is the analytically

calculated solution for kth grid point and Acompk is the result of computer simula-

tion for kth grid point. Average relative error for some implementation schemes
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Figure 2.2: Graph of average relative errors for different schemes versus number
of computational steps for simulation of a second-order soliton [3].

is given in Fig. 2.2. SS, RK2 and RK4 shows the methods that have been used

for integration of nonlinear operator. SS corresponds to trapezoidal integration,

RK2 corresponds to second-order Runge-Kutta method and RK4 corresponds

to fourth-order Runge-Kutta method. Most accurate methods appear to be the

RK4IP and Blow-Wood RK4 methods and they both exhibit an asymptotic slope

of -4 until the machine accuracy is reached at ε ≈ 10−10. For small number of

steps, the most accurate method seems to be the RK4IP method.

As the test case for GNLSE, broadband supercontinuum generation in a PCF

is simulated. In this case, same definition was used for ε and the result of RK4IP

algorithm for N = 316228 was used as Atrue. Results are shown in Fig. 2.3.

In this test case, RK4IP is distinctly the most accurate algorithm. Numerical

accuracy limit is reached at ε ≈ 10−8.

Since the computational effort to take one propagation step is different for

every scheme, the given graphics does not mean much in terms of computational

efficiency. In Fig. 2.4, average relative errors versus the computational time which

is normalized with the time necessary to calculate one FFT. In this graph, it can
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Figure 2.3: Graph of average relative errors for different schemes versus number
of computational steps for simulation of broadband supercontinuum generation
in PCF [3].

Figure 2.4: Graph of average relative errors for different schemes versus normal-
ized computation time for simulation of broadband supercontinuum generation
in PCF [3].
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be seen that RK4IP method is computationally the most efficient algorithm for

high accuracy simulations and RK4IP, and all schemes except the simple symmet-

ric split-step implementation competitively efficient for low accuracy simulations.

Fixed step sizes were used for all the simulations above. Implementations

with adaptive step-size control might perform better since much larger steps can

be used for regions where nonlinearity is weak. An implementation of RK4IP

algorithm with adaptive step-size control is given in Appendix B and will be

explained in detail later in this chapter.

2.3 Ultrashort Pulse Propagator

A pulse propagation simulation software has been developed which solves a sim-

plified version of GNLSE and it has been used to simulate fiber lasers and fiber

amplifiers for more than 6 years and freely available for academic use on the

web [94]. It is called “Ultrashort Pulse Propagator” and it solves the equation

given below

∂A

∂z
+
α

2
A+

iβ2

2

∂2A

∂T 2
−β3

6

∂3A

∂T 3
= iγ

(
|A|2A+

i

ω0

∂

∂T
(|A|2A)− TRA

∂|A|2

∂T

)
(2.19)

where TR is the Raman response time, which is given by

TR≡
∞∫

0

tR(t)dt ≈ fR

∞∫
0

thR(t)dt = fR
d(Imh̃R)

d(∆ω)

∣∣∣∣∣
∆ω=0

(2.20)

The experimental value for Raman response time is about 3 fs [95]. The solu-

tion is approximated using symmetrized split-step Fourier method with fourth-

order Runge-Kutta method used for integration of nonlinear operator. Modelled

equation includes the effects of second-order dispersion, third-order dispersion,

loss and gain, Kerr nonlinearity, self-steepening and simplified Raman scattering.

Gain is implemented as saturable and it has a wavelength dependence with a

Lorentzian shape. Gain factor for frequency f is calculated using the equation

below

G(f) = 1 +
g0 − 1

1 + ((f − f0)/∆f)2

1

1 + Ein/Esat
(2.21)
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Figure 2.5: Main screen of Ultrashort Pulse Propagator 3.0.0.

where f0 is the central frequency of the gain, g0 is the small-signal gain at f0,

∆f is the half-width at half-maximum (HWHM) of the gain spectrum, Ein is the

total input energy and Esat is the gain saturation energy.

The effects of saturable absorbers, output couplers and spectral filters are

included in the code as multiplications by transmission functions. Output cou-

plers are simply implemented as multiplication of the propagating field by the

transmission ratio given by the user. Different saturable absorber models are in-

cluded. The power-dependent transmission function for semiconductor saturable

absorber (SSA) is

TSSA(P ) = 1− q

1 + P/Psat
(2.22)

where P is instantaneous power of the signal, q is the modulation depth and

Psat is the saturation power of the saturable absorber. The power-dependent

transmission function for nonlinear polarization evolution (NPE) is

TNPE(P ) = 1− q cos2

(
π

2

P

Psat

)
(2.23)

again with the same definitions of terms. As an example, the transmission curves

for both cases are shown in Fig. 2.6 for q = 0.7 and Psat = 1000 W. There are
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Figure 2.6: Transmission versus incident power graphs for SSA and NPE for the
given parameters.

three types of spectral bandpass filters implemented in the program which have

square, Gaussian and parabolic shapes. Implementation of spectral filters are

simple using FFTs. FFT of the incident field is calculated and multiplied by the

spectral transmission function which is calculated according to the parameters

that are given by the user. Lastly, inverse FFT of the result is calculated and

assigned as the new propagating field.

2.4 Simulation of Supercontinuum Generation

Using RK4IP Algorithm

Supercontinuum generation is a highly nonlinear and complicated process where

many effects act together and output of the process is extremely sensitive to the

input parameters. Highly accurate numerical methods are necessary for simula-

tions due to the mentioned sensitivity of the process. In the previous section,

RK4IP was shown to be the most efficient algorithm for simulations that require
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high accuracy and a simulation program that uses RK4IP algorithm is devel-

oped. Two versions of the algorithm are presented. First version that is given

in Appendix A uses constant step-size for propagation. Second version utilizes

an adaptive step-size control algorithm and is given in Appendix B. Developed

programs solve GNLSE with arbitrary orders of chromatic dispersion and an accu-

rate stimulated Raman scattering model by D. Hollenbeck and C.D. Cantrell [4].

Multiple-vibrational-mode model that is presented fits the experimental Raman

Figure 2.7: Experimental and computed Raman response function and Raman
gain [4].

response function by Stolen et.al. [25] using the convolutions of 13 Gaussian and

Lorentzian functions. Raman response function hR(t) is calculated by

hR(t) =
13∑
i=1

A′i
ων,i

exp(−γit) exp(−Γ2
i t

2/4) sin(ων,it)θ(t) (2.24)

where A′i is the amplitude of ith vibrational mode, ων,i is the central frequency of

ith vibrational mode, γi is the Lorentzian linewidth for mode i, Γi is the Gaussian

linewidth for mode i and θ(t) is the unit step function. Numerical values of the

parameters are given in Table 2.1.

Calculation of Raman contribution includes the convolution of the response

function with the pulse envelope. Convolution is computationally expensive when

it is implemented in the naive way. Convolutions can be calculated much faster
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Table 2.1: Values of the parameters used in the intermediate-
broadening model∗

Mode Component Peak Gaussian Lorentzian
Number Position Intensity FWHM FWHM

i (cm−1) Ai (cm−1) (cm−1)

1 56.25 1.00 52.10 17.37
2 100.00 11.40 110.42 38.81
3 231.25 36.67 175.00 58.33
4 362.50 67.67 162.50 54.17
5 463.00 74.00 135.33 45.11
6 497.00 4.50 24.50 8.17
7 611.50 6.80 41.50 13.83
8 691.67 4.60 155.00 51.67
9 793.67 4.20 59.50 19.83
10 835.50 4.50 64.30 21.43
11 930.00 2.70 150.00 50.00
12 1080.00 3.10 91.00 30.33
13 1215.00 3.00 160.00 53.33

∗Ai = A′i/ων,i, Γi = πc×(Gaussian FWHM), γi = πc×(Lorentzian
FWHM) and ων,i = 2πc×(component position)

by using the convolution theorem. According to the convolution theorem, convo-

lution of two functions can be calculated through use of Fourier transforms,

f ∗ g = F−1{F{f} · F{g}} (2.25)

Since Fourier transforms can be calculated very fast with the usage of FFT al-

gorithms, convolutions can be accelerated by orders of magnitude with an im-

plementation that uses FFT. This is used in the implementation of the given

simulation.

Experimental and simulated spectra for supercontinuum generation in 30 cm-

long SC-3.7-975 fiber using 35 fs pulses with 24 kW peak power are given in Fig.

2.8. The similarity of the two spectra is striking and shows the quality of the

used model. The difference in the spectra is mostly caused by the noise floor of

the optical spectrum analyzer that was used for the measurements, which is in

the order of 0.01 for 600 nm and decreases as the wavelength increases.

As mentioned before, usage of adaptive step-size control might decrease the

necessary computational effort to reach a given computational accuracy. Adaptive

step-size control algorithms need some measure to estimate the error and adjust

the step size accordingly. There are different approximations to this problem.
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Figure 2.8: Experimental (upper fig.) and simulated (lower fig.) supercontinuum
spectra obtained from 30 cm-long SC-3.7-975 photonic crystal fiber.

The local error method tries to estimate the error by taking a coarse step, then

propagating the same amount in two steps with half the step size and comparing

them to estimate the error. The conservation quantity error (CQE) method for

adaptive step-size control, which is proposed by A. M. Heidt [5], is an improve-

ment over the local error method and uses the total photon number as a measure

of local error to increase the computational efficiency. A second version of the

presented simulation is implemented using this method. Local error and CQE

methods are explained below.

As mentioned before, local error method propagates a distance in three steps:

firstly whole propagation is done in one step and the solution Acoarse is calculated,

then it is propagated again in two half steps and the solution Afine is calculated.

Local error is approximated by

δ =
|Afine − Acoarse|
|Afine|

(2.26)

The step-size is adjusted as such: If δ > 2δG then last step is discarded and

repeated with half the step-size, if δG < δ < 2δG then h is divided by 2(1/η), if
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δ < 0.1δG then h is multiplied by 2(1/η), where δG is the goal error and η is the

degree of local accuracy of the used method in the step size. η = 3 for symmetrized

split-step Fourier method and η = 5 for RK4IP method. Both coarse and fine

solutions can be used for increasing the accuracy of the computation through

extrapolation and a higher-order accurate solution can be found:

Aη+1 =
2η−1

2η−1 − 1
Afine −

1

2η−1 − 1
Acoarse (2.27)

GNLSE conserves the photon number in the absence of loss and CQE method

exploits this property of GNLSE to decrease the necessary computational effort.

Even if linear loss exists in the medium, the true photon number can be calculated

easily. Change in the photon number in a step can be used as a measure of local

error. In the absence of loss, absolute photon number error can be calculated as,

∆Ph = |Pcalc(z + h)− Ptrue(z + h)| (2.28a)

=

∣∣∣∣∫ (|Ãcalc(z + h, ω)|2 − |Ãtrue(z + h, ω)|2
)
× S(ω)

ω
dω

∣∣∣∣ (2.28b)

=

∣∣∣∣∫ (|Ãcalc(z + h, ω)|2 − |Ã(z, ω)|2
)
× S(ω)

ω
dω

∣∣∣∣ (2.28c)

where Ã(z, ω) is the Fourier transform of A(z, T ), S(ω) = neff(ω)Aeff(ω) and neff

is the frequency-dependent refractive index. Relative photon error, which will be

used to adjust the step sizes, is defined as,

δPh =
∆Ph

Ptrue

(2.29)

The step size is adjusted in the same way as the local error method with the only

difference being the usage of δPh instead of δ.

Necessary computational times for different implementation schemes are

shown in Fig. 2.9. In this figure, local error, CQE and constant step-size methods

are compared for RK4IP and symmetrized split-step Fourier methods. RK4IP-

CQE method is found to be the most efficient method.
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Figure 2.9: Comparison of necessary computational time for supercontinuum
generation process in PCF for different implementations of symmetrized split-
step Fourier method and RK4IP method [5].

2.5 Improvement of the GNLSE

GNLSE usually gives satisfactorily accurate results but it is not enough to model

some aspects of the supercontinuum generation such as the coherence of the

output spectra. In order to study the noise properties and coherence of the

output spectra, it is necessary to implement the spontaneous Raman scattering

and input pulse noise. GNLSE can be modified slightly to include the spontaneous

Raman scattering in the following way [96]:

∂A

∂z
+
α

2
−
∑
k≥2

ik+1

k!
βk
∂kA

∂T k

= iγ

(
1 + iτshock

∂

∂T

)A(z, t)

∞∫
−∞

R(T ′)|A(z, T − T ′)|2dT ′ + iΓR(z, T )


(2.30)
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The term ΓR is a multiplicative stochastic variable that is added to model the

effect of spontaneous Raman scattering. ΓR has correlations given by

〈ΓR(Ω, z)Γ∗R(Ω′, z′)〉 =
2fR~ω0

γ
|Im[hR(Ω)]|[nth(|Ω|) + θ(−Ω)]δ(z − z′)δ(Ω− Ω′)

(2.31)

where Ω = ω−ω0, nth(Ω) = [exp(~Ω/kBT )− 1]−1 and θ is the unit step function.

Input pulse shot noise can be implemented as adding one photon per mode with

random phase to every spectral discretization bin [96].

Accuracy of the simulations can be increased further with the inclusion of

frequency-dependent fiber losses, frequency-dependence of the mode-field area

and Kerr coefficient, and polarization effects. It is straight forward to implement

frequency-dependent losses since loss is a part of the linear operator and imple-

mented in the frequency domain. To the first order, frequency dependence of

mode-field diameter can be included by a simple correction to τshock [93, 97],

τshock = τ0 +
d

dω

[
ln

(
1

neff(ω)Aeff(ω)

)]
ω0

= τ0 −
[

1

neff(ω)

dneff(ω)

dω

]
ω0

−
[

1

Aeff(ω)

dAeff(ω)

dω

]
ω0

(2.32)

where Aeff(ω) is the frequency-dependent mode-field area and neff(ω) is the

frequency-dependent effective index.
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Chapter 3

Supercontinuum Generation in

Photonic Crystal Fibers with

Femtosecond Pulses

The possibility of shifting zero-dispersion wavelength (ZDW) to shorter wave-

lengths than the intrinsic ZDW of silica fibers which is around 1.3 µm by choos-

ing appropriate design parameters for cladding of photonic crystal fibers was

shown [98]. It was noted that the small mode-field diameters of solid-core PCFs

would enhance the Kerr nonlinearity of these fibers compared to standard fibers

and this might bring new opportunities [99]. Combination of these effects lead

to generation of supercontinuum that spans from 400 nm to 1500 nm with pulses

from a Ti:Sa laser at 770 nm with 100 fs duration and 0.8 nJ energy using only 75

cm-long PCF [75]. Efforts to model and analyse the SC generation in PCF have

been made and it was found that GNLSE was capable of accurately modelling

SC generation in PCF [100].

In this chapter, the important effects behind the supercontinuum generation

in photonic crystal fibers will be explained with the help of simulations that solve

GNLSE. This chapter is mostly based on [6]. Simulations are performed using

the code given in Appendix A. The discussions here applies to PCFs with single
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Table 3.1: Dispersion coefficients of SC-3.7-975 fiber for wave-
length of 1040 nm.

β2= −7.5946 fs2/mm
β3= 78.5925 fs3/mm
β4= −101.3403 fs4/mm
β5= 110.2014 fs5/mm

ZDW. However, there are some PCFs with multiple ZDW and the SC generation

dynamics for these fibers will not be discussed.

3.1 Supercontinuum Generation Dynamics

Supercontinuum generation in photonic crystal fibers has very rich dynamics that

mainly arises from the interplay between chromatic dispersion, Kerr nonlinearity

and Raman scattering. Propagation of a 62 fs hyperbolic secant pulse with 2.6

kW peak power and 1040 nm central wavelength in SC-3.7-975 fiber is shown

in Fig. 3.2. ZDW of this fiber is 984 nm according to the given data by the

manufacturer and dispersion coefficients up to 5th order for 1040 nm wavelength

is given in Table 3.1. Dispersion profile is shown in Fig. 3.1.

Input pulse parameters correspond to a third-order soliton. Propagation dy-

namics for this case will be deconstructed in the rest of this section.

3.1.1 Soliton Fission

For anomalous GVD pumping regime, soliton effects dominate the evolution of

pulses in the PCF and soliton fission is the most important effect that causes

the spectrum to get broadened. Soliton fission is the break-up of an high-order

soliton into several fundamental solitons due to effects that disturb the soliton

evolution. In Fig. 3.3, the evolution of the described pulse is shown in the

absence of disturbances like higher-order dispersion, self-steepening and Raman

scattering. Initially, pulse gets compressed temporally and the spectrum of the
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Figure 3.1: Dispersion profile of SC-3.7-975.

Figure 3.2: Evolution of a third-order soliton in PCF.
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Figure 3.3: Evolution of a third-order soliton in fiber in the absence of higher-
order dispersion and Raman scattering.

pulse gets broadened. Pulse recover its original state after one soliton period.

3.1.2 Raman Scattering

Raman scattering is one of the effects that disturb the soliton evolution and induce

pulse break up. In Fig. 3.4, propagation of the same initial pulse is shown when

the stimulated Raman scattering is taken into account. Pulse cannot recover

its initial state and breaks up into several pulses. Three distinct pulses can be

seen. First ejected soliton carries most of the energy and it gets further away

from other pulses as its wavelength shifts to higher wavelengths through Raman

induced self-frequency shift. Spectrum of the pulse continues to broaden as it

propagates. Raman scattering is the dominant disturbing effect for long pulses

(> 200 fs).
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Figure 3.4: Raman scattering induced break up of a third-order soliton in PCF
in the absence of higher-order dispersion.

3.1.3 Dispersive Wave Generation

Soliton fission and the Raman scattering cannot explain normal GVD regime

spectral structure and the low-intensity temporal background that is observed in

SC generation with PCF. It is necessary to consider higher-order dispersion to

explain the mentioned properties of SC generation. Higher-order dispersion is the

most important effect that disturbs and modifies the soliton evolution for short

pulses (< 50 fs). In Fig. 3.5, evolution of the same pulse under the influence

of higher-order dispersion and absence of Raman scattering is shown. From the

similarity to Fig. 3.2, it can be deduced that higher-order dispersion is the main

effect that determines the pulse evolution for this particular case.

Higher-order dispersion modifies the evolution in two ways. It causes the

Raman shifted solitons to experience different values of GVD through their evo-

lution and they need to continuously adapt. Higher-order dispersion also cause

some energy to be transferred to a resonant region in the normal GVD regime

from the solitons [101]. This process is shown to be analogous to the Cherenkov
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Figure 3.5: Higher-order dispersion induced break up of a third-order soliton in
PCF in the absence of Raman scattering.

radiation and the resonance frequency for a soliton can be calculated by solving

the equation [102],

β(ωs)−
ωs
νg,s

+ (1− fR)γPs = β(ωDW)− ωDW

νg,s
(3.1)

where ωDW is the frequency of the generated dispersive wave, Ps is the peak power

of the soliton, ωs is the frequency of the soliton and νg,s is the group velocity at

ωs.

3.2 Dependence of Generated Supercontinuum

on Input Pulse Parameters

Main effects that contribute to the SC generation have been discussed in the

previous section. In this section, dependence of the generated supercontinuum

on the input pulse parameters such as central wavelength, pulse duration and

initial chirp will be discussed.
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3.2.1 Dependence on Pulse Wavelength

The relative positions of the ZDW of PCF and the central wavelength of the

input pulse is one of the most critical factors in the SC generation process since

it determines the fundamental nature of the propagation in PCF. Numerical sim-

ulations are performed to demonstrate how the evolution is modified when the

input pulse wavelength is changed. In the simulations, Gaussian pulses with 25

kW peak power and 50 fs FWHM duration with different central wavelengths

are propagated through 15 cm-long SC-3.7-975 fiber, which have ZDW of 984 nm

according to the provided data. Simulation results for several cases are shown

in Fig. 3.6. The central wavelength of the input pulses are varied from 800

Figure 3.6: Temporal and spectral evolution of pulses with different central wave-
lengths in PCF with ZDW of 984 nm.

nm to 1150 nm. Variety of the resulting spectra shows the importance of the
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dispersion profile of PCF for the SC generation. For input wavelength of 800

nm, Kerr nonlinearity is the dominant effect in the broadening of the spectrum.

Since Kerr nonlinearity with normal GVD leads to rapid broadening of the input

pulse, spectral broadening is limited. For 850 nm and 900 nm input pulses, Kerr

nonlinearity starts the initial broadening. After the initial broadening phase,

some of the energy is transferred to the anomalous GVD regime and temporal

oscillations on the pulse envelope appear. As the pulse wavelength gets closer

to the ZDW, solitonic effects become apparent. As the input pulse wavelength

increased further, broader spectra are generated. One may expect that increas-

ing wavelength should decrease the generated spectral bandwidth since increased

wavelength means higher anomalous dispersion and smaller soliton number. As

it is apparent from the simulations, this is not the whole story. Higher anoma-

lous dispersion also means smaller characteristic dispersion length LD and more

solitons are ejected for the same length of fiber, which leads to higher depletion

of the pump wavelength area, more distinct spectral peaks and broader spectra.

3.2.2 Dependence on Pulse Duration

The effect of duration of the chirp-free input pulses will be discussed here with the

help of numerical simulations. In the simulations, Gaussian pulses with 25 kW

peak power, 1040 nm central wavelength and various durations are propagated

through 15 cm-long SC-3.7-975 fiber. Simulation results are shown in Fig. 3.7.

As it is seen from the simulation results, all the spectral components of the

generated SC is seeded by the initial broadening phase for short pulses, whereas

most of the generated spectra is started from noise for long pulses. Longer pulses

correspond to pulses with higher soliton orders for constant peak power and this

also contributes to the complex temporal and spectral structure observed for

long pulses. The effects of the pulse duration will be discussed further during the

discussion of the coherence of the generated SC.

Transform-limited input pulses are used for the discussions up to this point.

The SC generation with chirped input pulses was studied numerically by Corwin

et. al. [103]. In the simulations, it has been found that the broadest spectra
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Figure 3.7: Temporal and spectral evolution of pulses with different initial dura-
tions in PCF.

is generated by near-transform-limited pulses with slight positive chirp around

+100 fs2 for constant input pulse energy and bandwidth.

3.2.3 Noise Properties of the Generated Supercontinuum

Noise properties of the generated SC is a big concern for some applications like

optical frequency metrology. In this section, dependence of the noise properties

of the generated SC on the input pulse parameters will be discussed based on

numerical simulations.

Amplitude, phase and timing noise of the generated SC were studied numer-

ically in [103, 104]. In these studies, it has been found that noise contribution

from the spontaneous Raman scattering was very small compared to te contri-

bution of the input pulse shot noise. In [103], firstly both effects are taken into

account and relative intensity noise (RIN) is calculated for a sample case. When

only the spontaneous Raman scattering is neglected, calculated RIN reduced less

than 1 dB. When only the input shot noise is neglected, calculated RIN reduced
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by 20 dB. It is also found that spectral distribution of RIN has a very complex

structure. There are consistently low RIN spectral areas, which correspond to

the input pulse wavelength and the Raman soliton on the infrared side of the

spectrum. In both studies, the dependence of the noise on the pulse energy and

input pulse chirp is investigated. Minimum RIN is found to be achieved for

slightly positive input pulse chirp around ∼100 fs2. RIN is found to increase

exponentially with both pulse energy and pulse chirp. RIN is also found to in-

crease exponentially with increasing spectral bandwidth. In [104], phase noise,

timing jitter, amplitude noise and carrier-envelope-offset phase jitter are found

to be highly correlated with RIN and the statements about RIN holds for other

types of noise. The way to reach the largest spectral bandwidth with minimal

noise is also investigated in this study. When the spectral bandwidth is increased

by 10% increasing the fiber length, noise increases by ∼12 dB. When the spec-

tral bandwidth is increased by increasing the pulse energy, noise increases by ∼8

dB. When the spectral bandwidth is increased by reducing the input pulse chirp

towards the optimum value of +100 fs2, the noise decreases by ∼12 dB. As a

conclusion, as long as the pulse duration is kept constant, wide spectrum should

be obtained using high energy pulses and short fiber length for minimum noise.

It was shown that the amplitude and phase fluctuations across the supercon-

tinuum spectrum can also be characterized using interferometric measures [105].

In this study, two independently generated supercontinua interfered and sepa-

rated spectrally. Then, the fringe visibility is used as a measure of SC phase

stability. It has been shown that this measure of SC phase stability can be cal-

culated using numerical simulations [106]. The modulus of the complex degree of

first-order coherence is defined by

|g(1)
12 (λ, t1 − t2)| =

∣∣∣∣∣ 〈E∗1(λ, t1)E2(λ, t2)〉√
〈|E1(λ, t1)|2〉〈|E2(λ, t2)|2〉

∣∣∣∣∣ (3.2)

The angular brackets denote ensemble average of independently generated SC

pairs. To calculate the fringe visibility at zero path difference, t1 and t2 should

be equal.

The dependence of the coherence of the resulting SC on the input pulse du-

ration and wavelength is also investigated in [6, 106]. A map that shows the
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Figure 3.8: Dependence of average SC coherence and -20 dB spectral bandwidth
on pump wavelength and pulse duration for constant peak power [6]. Dashed line
indicates ZDW.

dependence of average SC coherence and spectral bandwidth on input pulse du-

ration and wavelength for constant peak power was generated (Fig. 3.8). From

this map, it can be seen that perfect coherence can be obtained with pulse du-

rations of <80 fs using any pump wavelength. Another conclusion that can be

drawn is that perfect coherence can be obtained with a pump wavelength in the

normal GVD regime using any pulse duration, at the expense of narrower spectral

bandwidth. A somewhat surprising result is that when the process is pumped in

the deep anomalous regime, obtained coherence increases. This effect can be un-

derstood by considering the characteristic lengths of modulation instability gain

and soliton fission. The characteristic length for modulation instability gain is

proportional to the nonlinear length and does not change considerably with wave-

length. On the other hand, soliton fission length gets shorter as the dispersion

coefficient gets larger and more solitons can be ejected before the modulation

instability gain significantly amplifies the input pulse noise.
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Chapter 4

Net-Zero Dispersion Short

Pulsed Laser

Coherence of a produced supercontinuum is an important concern for applica-

tions that requires the carrier-envelope offset frequency (fceo) to be stabilized.

As mentioned in chapter 3, to obtain good coherence, short pulses should be

used. Another concern is the width of the fceo beat signal. Width of the beat

signal depends on net laser cavity dispersion and reaches its minimum value for

net-zero cavity dispersion [107]. Therefore, an ideal laser for fceo stabilization

should have net-zero cavity dispersion and produce very short pulses. Current

laser designs were unable to provide both features together. Similariton lasers

can be compressed to very short pulse durations but they have net-normal cavity

dispersion. Dispersion-managed lasers with net-zero dispersion cannot be com-

pressed to short pulse durations (<50 fs). The good features of the both lasers

should be combined to build “the ideal laser” for fceo stabilization. To be able to

do this, one needs to understand the dynamics of both of these lasers.
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Figure 4.1: Schematics of a dispersion-managed laser.

4.1 Basic Principles of Similariton Lasers

Similariton lasers are dispersion-managed lasers with net-positive cavity disper-

sion. Diffraction grating separation is adjusted such that anomalous dispersion

that is caused by grating pair is smaller than the total normal dispersion that

is caused by other elements in the cavity (mainly fibers). Similariton lasers uti-

lize self-similar propagation in optical fibers to reach high-energies and linearly-

chirped wide spectra. Self-similar propagation occurs in fibers with normal group

velocity dispersion in the presence of Kerr nonlinearity. A generic cavity design

for a dispersion-managed laser is shown in Fig. 4.1. A similariton laser can

exhibit two fundamentally different pulse evolutions for same cavity dispersion

and pulse energy, depending on the saturable absorber parameters. In one case,

pulses enter the fiber with minimal duration and minimal spectral width after the

diffraction gratings. Pulses get wider in both time and frequency domains as they

evolve self-similarly in the passive fiber. Pulses get amplified in the gain segment.

Their spectral widths can be narrowed due to limited gain bandwidth. Saturable

absorber makes the pulses shorter in time domain and narrower in frequency

domain. For this type of evolution, simulated evolution of pulses for one cavity

round-trip is shown in Fig. 4.2. In the second case, pulses enter the cavity with
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Figure 4.2: Simulated evolution of pulses in a similariton laser for the first type
of evolution.

negative-chirp after the diffraction gratings. Spectral compression takes place

and makes the pulses shorter in time domain and narrower in frequency domain,

until the chirp on the pulse reaches zero. After that point, self-similar propaga-

tion takes place, mainly in the gain fiber. Again, saturable absorber makes the

pulses shorter in time domain and narrower in frequency domain. Simulated evo-

lution of pulses for this type of evolution is also shown for one cavity round-trip

in Fig. 4.3. In both simulations, cavity consists of a segment of 350 cm-long

passive fiber, followed by a segment of 60 cm-long gain fiber and another segment

of passive fiber which has the length of 20 cm. These fiber segments are followed

by a saturable absorber and a pair of diffraction gratings. Net cavity dispersion

is +11600 fs2. Maximum pulse energy is 4.74 nJ for the first case and 4.22 nJ

for the second case. Maximum peak powers are 926 W and 2612 W respectively.

In conclusion, net-normal dispersion of the cavity causes pulses to have longer

durations in average and allows high-energy operation without pulse breaking.

Its drawbacks are also caused by net-normal cavity dispersion. Since total cavity

dispersion is not zero, cavity round-trip time for every frequency component is

slightly different, which causes the repetition frequency beat signal to be widened,

which in turn causes fceo beat signal to be widened.
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Figure 4.3: Simulated evolution of pulses in a similariton laser for the second
type of evolution.

4.2 Basic Principles of Dispersion-Managed

Lasers with Net-Zero Cavity Dispersion

Dispersion-managed lasers with net-zero cavity dispersion has a similar structure

to the similariton lasers. Only difference is that anomalous dispersion of grat-

ing pair exactly cancels the normal dispersion of other elements in the cavity.

Simulated evolution of the pulse for one round-trip is shown in Fig. 4.4. In the

simulation, cavity design is very similar to the previous case, with the exceptions

of 30 cm-long gain segment and diffraction grating pair separation. Maximum

pulse energy is 0.56 nJ and maximum peak power is 1895 W. Pulse evolution is

similar to the second type of evolution that is explained in the previous section.

Main difference is that spectral compression phase continues deep into the gain

fiber segment, until the 20th cm of the 30 cm-long gain fiber. Its main drawback

is that net-zero cavity dispersion limits maximum reachable pulse energy to small

values and pulses usually have narrower spectra than similariton laser pulses. A

second simulation for the same laser with 1 nJ pulse energy is also shown in Fig.

4.5. Maximum peak power for this case is 3156 W. Notice that the position of
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Figure 4.4: Simulated evolution of pulses in a dispersion-managed laser with
net-zero cavity dispersion for 0.56 nJ pulse energy.

Figure 4.5: Simulated evolution of pulses in a dispersion-managed laser with
net-zero cavity dispersion for 1 nJ pulse energy.
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minimal spectral width point did not change. The reason for low pulse energy

limitation can be understood from these simulations in the following way: as the

pulse energy increases, spectral bandwidth of the pulses increases and spectral

compression dominantly happens in the gain segment. After some energy value,

spectral compression cannot balance the increase in spectral bandwidth.

4.3 Design and Characterization of a Novel

Laser

As it was stated before, “the ideal laser” for fceo stabilization should have net-

zero cavity dispersion and its pulses should be compressible to short (<50 fs)

durations. To satisfy the short pulse duration requirement, pulses with large

spectral bandwidths are required. To obtain large spectral bandwidth, the net-

zero dispersion laser should be modified in such a way that spectral compression

should end at the beginning of the gain fiber. Since the spectral compression in

the passive fiber before the gain fiber would not be enough, another component is

necessary to keep the balance. A spectral bandpass filter, which is placed before

the passive fiber can do the job. If the input energy to the passive fiber is reduced

using a beamsplitter to reduce the effect of spectral compression, balance can be

satisfied even with increased pulse energy. Such a laser design is shown in Fig.

4.6. With these thoughts in mind, I simulated a zero-dispersion laser with a

10 nm-wide bandpass filter and a 60/40 beamsplitter. Laser has the same fiber

lengths and structure as the simulations in the previous section. Simulated pulse

evolution and spectrum are shown in Fig. 4.7-4.8. In the given simulation, pulses

enter the fiber with pulse energy of 57 pJ and reach intra-cavity pulse energy of

3.82 nJ and peak power of 6296 W at the end of gain fiber. Pulses reach minimal

spectral bandwidth of 6.0 nm at 9th cm of the gain fiber and maximal spectral

bandwidth of 61.7 nm at the end of fiber section. Beamsplitter output of the

laser can be compressed to 38 fs using a diffraction grating pair with line density

of 600 lines/mm and the compressed pulse shape is shown in Fig. 4.9.

Encouraged by the simulation results, a net-zero cavity dispersion laser is
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Figure 4.6: Schematics of the new laser.

Figure 4.7: Simulated evolution of pulses in the new laser.
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Figure 4.8: Simulated beamsplitter output of the laser for 3.82 nJ pulse energy.

Figure 4.9: Simulated compressed beamsplitter output.
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Figure 4.10: 50/50 Beamsplitter output of the laser.

built with the simulated parameters. Grating distance is initially set such that

the total cavity dispersion is near-zero. After that, cavity dispersion is fine-

tuned to zero by using the in situ dispersion measurement technique proposed

by Knox [108]. 50/50 beamsplitter is placed after the PBS. Transmittance of the

50/50 beamsplitter is 50% for unpolarized light and ∼60% for the polarized light

after the PBS. Measured spectra for polarizing beamsplitter (PBS) and 50/50

beamsplitter outputs are shown in Fig. 4.10-4.11. Repetition rate of the laser

is 49.5 MHz. PBS output power is 90.4 mW and 50/50 beamsplitter output

power is 38.6 mW. This means the total intra-cavity power is 186.9 mW and

pulse energy is 3.81 nJ. Output of the 50/50 beamsplitter is compressed using a

pair of diffraction gratings with line density of 600 lines/mm and measured using

an intensity autocorrelator. Measured autocorrelation and spectrum is given to

PICASO algorithm and pulse shape is retrieved [109]. Measured autocorrelation

trace, PICASO retrieved autocorrelation trace and PICASO retrieved pulse shape

is shown in Fig. 4.12. Retrieved pulse shape from the PICASO algorithm has a

FWHM width of 33 fs.

Noise performance of the laser is characterized by relative intensity noise
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Figure 4.11: Polarizing beamsplitter output of the laser.

Figure 4.12: Retrieved pulse shape from PICASO algorithm. (Inset) Measured
(red) and PICASO retrieved (blue) autocorrelation traces.
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Figure 4.13: Relative intensity noise of the laser.

(RIN) and phase noise (PN) measurements. Noise measurements are performed

using the PBS output of the laser. For the measurement of RIN, output of the

laser is passed through a variable attenuator and detected by a 100 MHz pho-

todetector. Output of the photodetector is filtered by a low-pass filter with -3

dB cut-off frequency of 1.9 MHz and analyzed by a Rohde&Schwarz UPV Audio

Analyzer. The measured RIN for 3 Hz - 250 kHz interval is shown in Fig. 4.13.

Integrated RIN for this interval is equal to 0.017%. From the location of the

peaks in the RIN graph, it can be concluded that most of the intensity noise is

caused by electrical and acoustic noise from the environment.

Measurement of the phase noise is done in a similar way. Output of the free-

running laser is passed through a variable attenuator and detected by an EOT-

ET3500 photodetector which has a bandwidth >15 GHz. 16th harmonic of the

repetition rate is passed through a bandpass filter and then amplified by a Mini-

Circuits ZRL-1150LN+ low-noise amplifier. Amplified signal is analyzed using

Agilent E5052B signal source analyzer. Measured phase noise heavily depends

on the incident optical power and photodiode bias voltage. Since all the RF
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Figure 4.14: Phase noise of the laser.

components also contribute to the noise, measured PN should be considered as

an upper-bound to the actual phase noise of the laser. The measured PN is shown

in Fig. 4.14. Timing jitter that is calculated using this measurement is 76 fs.

For the actual measurement of the PN, optical measurement techniques should

be used [110]. Typical timing jitter values measured for near-zero dispersion

Yb-doped fiber lasers using optical techniques are <1 fs [111].
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Chapter 5

Frequency Comb Stabilization

and Absolute Frequency

Measurements with The

Stabilized Frequency Comb

In this chapter, stabilized femtosecond frequency comb that has been developed

will be explained in detail.

5.1 Repetition-Rate Stabilization of the Laser

Laser is slightly modified and 50/50 beamsplitter is placed after the bandpass

filter. Schematics of the repetition rate stabilization and measurement setup is

shown in Fig. 5.1. 5% Output of the laser is detected by a photodiode. Output of

the photodiode is passed through a low-pass filter which lets only the fundamental

repetition frequency to pass. The signal is amplified by an amplifier and splitted

into two. One arm of the splitted signal is connected to a frequency counter for

measurement purposes and the other arm is connected to an electronic mixer.

A signal generator, which is referenced to Cs atomic clock 1 is also connected
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Figure 5.1: Schematics of the repetition-rate locking and characterization setup.
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to the mixer. Output frequency of the signal generator is adjusted to a value

that is close to the repetition frequency of the laser. At the output of the mixer,

difference frequency between the signal generator and the repetition-rate of the

laser is obtained and connected to a PID controller. Output of the PID controller

is amplified by a high-voltage amplifier and connected to the fiber phase shifter

in the laser cavity. Proportional gain, integrator gain offset voltage, lower and

upper output voltage limits of the PID controller are adjusted such that output

of the high-voltage amplifier never exceeds the limits of the fiber phase shifter

and a good repetition-rate locking is achieved.

Performance of the repetition-rate stabilization system is shown by perform-

ing time-interval measurements with the frequency counter and calculating the

corresponding overlapping Allan deviations [112]. Frequency counter is also ref-

erenced to Cs atomic clock 1. 1 pulse-per-second (PPS) output of Cs atomic

clock 2 is connected to frequency counter as trigger signal. Signal generator fre-

quency is adjusted to be an integer, therefore for an ideal stabilization system

with ideal reference oscillators, phase of the repetition-rate signal will be the same

for every triggered measurement. Instabilities of the system is then quantified by

the fluctuation of the phase of the repetition-rate signal from measurement to

measurement. Overlapping Allan deviation graphs are shown in Fig. 5.2.

5.2 Carrier-Envelope-Offset Frequency Stabi-

lization

Carrier-envelope-offset frequency (fceo) of the laser is obtained with the setup

shown in Fig. 5.3. Output from the 50/50 beamsplitter that is inside the laser

is passed through a half-wave plate and coupled into the 250 cm-long HI-1060

fiber by a pigtailed fiber collimator. This fiber is followed by a 980/1030 nm

wavelength-division-multiplexer (WDM) to couple the pump laser into the 40-cm

long Yb1200-4/125 gain fiber. Total fiber length before the gain fiber is 350 cm as

it was in the laser cavity. It is designed in this way for the spectral compression

of the pulses to end at the beginning of the gain fiber. Gain fiber is 10 cm

62



Figure 5.2: Relative Allan deviation vs. averaging time graph for the given cases.

Figure 5.3: Schematics of the supercontinuum generation setup and f-2f interfer-
ometer.
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Figure 5.4: Output spectrum of the amplifier.

longer than it was in the laser cavity so the amplifier can be pumped with higher

pump powers than the laser itself. Collimator that is placed after the gain fiber

has the length of 18 cm. Output power of 335 mW is obtained for 650 mW of

pump power. Output spectrum of the amplifier for this case is shown in Fig.

5.4. Output of the amplifier is compressed by a pair of diffraction gratings with

the line density of 300 lines/mm. Compressed pulse duration is measured by an

intensity autocorrelator. Measured autocorrelation trace and measured amplifier

spectrum is processed using PICASO algorithm to retrieve the pulse shape and

the retrieved pulse shape has FWHM of 36 fs. Measured autocorrelation trace and

the retrieved pulse shape is shown in Fig. 5.5. Pulse compressor work with 63%

efficiency. Compressed pulses are coupled into 30 cm-long SC-3.7-975 photonic

crystal fiber after passing through a half-wave plate for polarization adjustment.

Generated supercontinuum is detected by an optical spectrum analyzer. Obtained

supercontinuum spectrum for 62 mW coupled average power is shown (Fig. 5.6).

Output of PCF is separated into two beams with a dichroic mirror with cut-off

wavelength of 1000 nm. The beam with higher wavelength is focused to a 1

cm-long PPLN crystal which efficiently produces second harmonic of 1400 nm.

Generated second harmonic is collimated using a second lens. The beam with the

64



Figure 5.5: Compressed pulse shape that is retrieved from PICASO algorithm.
(Inset) Measured (red) and PICASO retrieved (blue) autocorrelation traces.

Figure 5.6: Measured supercontinuum spectrum for 62 mW of coupled average
power.
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Figure 5.7: Obtained carrier-envelope offset beat signal.

lower wavelength is sent to an adjustable delay line. Two beams are combined

again by a 50/50 beamsplitter. Combined beam is sent to a diffraction grating

and the spectral region which includes the SHG signal is separated by a pinhole

and detected by an amplified photodiode. Obtained carrier-envelope offset beat

signal is shown in Fig. 5.7.

Carrier-envelope offset frequency of the laser is stabilized using the setup

shown is Fig. 5.8. Obtained signal is passed through a 30 MHz band-pass filter

with -3 dB width of 8 MHz. If offset beat does not correspond to this region, it

is shifted to 30 MHz by slightly changing the laser pump diode current. Filtered

signal is amplified and splitted into two. One line is connected to a frequency

counter for measurement purposes and the other line is connected to a phase

detector. A 30 MHz sine signal that is coming from a function generator is also

connected to the phase detector. The error signal that is obtained from the phase

detector is connected to a PID controller and PID controller’s output is connected

to the analog modulation input of the laser pump diode’s current driver.
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Figure 5.8: Schematics of the carrier-envelope offset frequency locking setup.

Stability of the carrier-envelope offset frequency is characterized by perform-

ing frequency measurements with the frequency counter and calculating the cor-

responding Allan deviations. Overlapping Allan deviations for free-running and

stabilized cases are shown in Fig. 5.9.

5.3 Absolute Frequency Measurements with the

Stabilized Frequency Comb

Absolute frequency measurements are performed by obtaining the frequency dif-

ference between the laser-under-test (LUT) and one of the comb teeth. Schemat-

ics of the heterodyne beat setup is shown in Fig. 5.10. After the stabilization of

the laser, generated supercontinuum and the beam from LUT are passed through

separate half-wave plates and combined by a beamsplitter. Combined beam is

spread spectrally by a diffraction grating and the spectral region of interest is

selected by a pinhole. Half-wave plate angles and beam power are adjusted for

optimum beat signal-to-noise ratio. Obtained RF beat signal is filtered using a

band-pass filter, amplified and connected to a frequency counter that is referenced

to a Cs atomic clock. Measured beat frequency is recorded for some time and

Allan variance statistics is used to characterize the stability of LUT.

Generally, measuring the beat signal frequency is not enough for determining

the absolute frequency of LUT. As it is shown in Fig. 5.11, two LUT-comb beat
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Figure 5.9: Allan deviation vs. averaging time graphs for free-running and sta-
bilized fceo.

Figure 5.10: Schematics of the absolute frequency measurement setup.
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Figure 5.11: Illustration of LUT and comb teeth.

signals are observed that is smaller than the repetition rate of the comb and same

is valid for fceo beat signal. It is necessary to identify the beat signals and the

comb teeth number n.

Frequencies of LUT-comb beat signals is given by the following equations:

fbeat1 = fLUT − nfrep − fceo (5.1)

fbeat2 = (n+ 1)frep + fceo − fLUT (5.2)

by taking partial derivatives of equations 5.1 and 5.2, the following equations are

obtained:

∂fbeat1

∂frep

= −n (5.3)

∂fbeat2

∂frep

= n+ 1 (5.4)

∂fbeat1

∂fceo

= −1 (5.5)

∂fbeat2

∂fceo

= 1 (5.6)

Using these equations, beat signals can be identified and the number “n” can be

calculated by following the steps below:

1. Lock the repetition frequency of the laser to an arbitrary frequency.
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2. Lock one of the carrier-envelope offset frequency beat signals to an arbitrary

frequency.

3. Observe LUT beat signals.

4. Filter and read one of the beat signals using a frequency counter. Record

the beat signal for some time.

5. Slightly modify the repetition rate of the laser. Repeat the last step for

the same beat signal. Number “n” can be calculated from equation 5.3 or

equation 5.4, depending on the sign of the derivative.

6. Slightly modify the frequency of the locked carrier-envelope offset frequency

beat signal. Observe the change of carrier-envelope offset beat signals and

LUT beat signals. Carrier-envelope offset frequency can be identified using

equations 5.5 and 5.6.

If the LUT frequency is known approximately (as it is the case for the lasers

that are stabilized to a known atomic transition), it is usually enough to measure

one of the LUT beat signals, without identifying the beat signals, to determine

the absolute frequency of the laser after locking the repetition-rate and any one

of the carrier-envelope offset beat signals. When the beat frequencies are not

determined, there are four different possibilities for the absolute frequency of the

laser and the closest one to the known transition frequency can be assumed to be

the absolute frequency of the laser.

Using the method explained in the previous paragraph, absolute frequency

measurement of a Nd:YAG laser that is stabilized to the a10 line of R(56)32-

0 group is performed. Stabilization is achieved by using the 532 nm second-

harmonic output of the laser and the measurement is performed by using the 1064

nm output of the laser. Nd:YAG laser parameters, PLL parameters and iodine cell

temperature is adjusted to their respective CIPM (International Committee for

Weights and Measures) recommended values. Beat signal between the frequency

comb teeth and the Nd:YAG laser is obtained using the setup shown in Fig.

5.10. Repetition rate of the Yb-laser is locked to 49556406.90 Hz. One of the

carrier-envelope offset beat signals is locked to 30 MHz. One of the obtained beat
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Figure 5.12: Nd:YAG beat frequency measurement data.

signals is passed through a 30 MHz bandpass filter with -3 dB bandwidth of 10

MHz and read by a frequency counter that is stabilized to a Cs atomic clock.

Beat frequency is read once a second and recorded. Measurement data is shown

in Fig. 5.12. Average of the data is 30216604 Hz. Overlapping Allan deviation

graph for the measurement data is shown in Fig. 5.13.

Since the beat signals are not identified, all possible frequencies should be

considered. The frequency of R(56)32-0:a10 is given as 563260223513± 5 kHz by

CIPM. Since the frequency of 1064 nm beam should be around half of this value,

the frequency of the laser should be around 281630111756500 Hz. There are four

possible combinations of beat signals and four possible frequency values as it was

mentioned before:

1. Locked carrier-offset frequency beat signal is fceo and the recorded comb-

LUT beat frequency is the beat of LUT with a comb teeth with lower

frequency than the LUT. In this case, the possible actual laser frequency

that is closest to the recommended value is 281630111757442 Hz, which is

942 Hz above the recommended value.
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Figure 5.13: Overlapping Allan deviation graph for beat signal between the sta-
bilized Nd:YAG laser and one frequency comb tooth.

2. Locked carrier-offset frequency beat signal is fceo and the recorded comb-

LUT beat frequency is the beat of LUT with a comb teeth with higher

frequency than the LUT. In this case, the possible actual laser frequency

that is closest to the recommended value is 281630100880641 Hz, which is

10855859 Hz below the recommended value.

3. Locked carrier-offset frequency beat signal is frep − fceo and the recorded

comb-LUT beat frequency is the beat of LUT with a comb teeth with lower

frequency than the LUT. In this case, the possible actual laser frequency

that is closest to the recommended value is 281630101313849 Hz, which is

10422651 Hz below the recommended value.

4. Locked carrier-offset frequency beat signal is frep − fceo and the recorded

comb-LUT beat frequency is the beat of LUT with a comb teeth with higher

frequency than the LUT. In this case, the possible actual laser frequency

that is closest to the recommended value is 281630090437048 Hz, which is

21299452 Hz below the recommended value.
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It can be safely assumed that the frequency calculated for case 1 is indeed the

absolute frequency of the stabilized Nd:YAG laser and the multiplicative constant

for repetition rate is 5683020. Measurement uncertainty can be calculated using

the Allan deviation graphs for repetition rate, carrier-envelope offset frequency

and LUT beat frequency. When a line is fitted to Fig. 5.13, the slope of the

line is −0.580324 and the Allan deviation for τ = 1 is 6950.33. Therefore, Allan

deviation of Nd:YAG beat frequency for an arbitrary τ can be calculated from

the equation σy(τ) = 6950.33 × τ−0.580324. Same calculation can be repeated for

repetition rate and carrier-envelope offset frequency. Allan deviation of repetition

rate can be written as σy(τ) = 7.227×10−4 × τ−0.564945 and Allan deviation of

carrier-envelope offset frequency can be written as σy(τ) = 1.43391 × τ−0.513901.

Therefore, for the averaging time of 445 s, the Allan deviations for fceo, n× frep

and fbeat are 0.06 Hz, 131 Hz and 202 Hz, respectively. As a result, the absolute

frequency of the 1064 nm output of Nd:YAG laser that is stabilized to R(56)32-

0:a10 line of iodine gas is measured as 281630111757442±333 Hz, which is within

the frequency interval that is recommended by CIPM.
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Chapter 6

Conclusions

In this thesis, a new fiber laser design and a fully stabilized Yb-doped frequency

comb that is based on this design is presented. The design and understanding

of the system requires the understanding of the laser dynamics and supercontin-

uum generation process. For this reason, numerical simulations are used and the

utilized simulation methods and simulation results are presented.

In chapter 1, introductory information about optical fiber technology, pulse

propagation dynamics in fibers, mode-locked fiber lasers and femtosecond fre-

quency combs is given.

In chapter 2, numerical simulations for ultrashort pulse propagation in fibers

are presented. Several computational schemes are compared and split-step

Fourier and fourth-order Runge-Kutta in the interaction picture methods are

discussed in some detail. Local error and conservation quantity error methods

for adaptive step-size control are discussed. At the end of the chapter, some

improvements over the generalized nonlinear Schrdinger equation are presented.

In chapter 3, dynamics of supercontinuum generation in photonic crystal fibers

using femtosecond pulses are explained with the help of numerical simulations. In

addition, dependence of the generated supercontinuum parameters on the input

pulse parameters are also investigated.
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In chapter 4, a novel laser which has net-zero cavity dispersion and produces

output pulses that can be compressed to 33 fs is presented. The laser is char-

acterized by spectrum, autocorrelation, relative intensity noise and phase noise

measurements.

In chapter 5, the stabilized femtosecond frequency comb that has been built

using the laser presented on the previous chapter and absolute frequency measure-

ment of an Nd:YAG/I2 laser performed with this comb are presented. Repetition-

rate and carrier-envelope-offset frequency stabilization setups are explained in

detail and their characterizations of long-term stability are presented using over-

lapping Allan deviations.

In the appendices, two numerical simulation programs, that is written in

MATLAB and solves generalized Schrdinger equation are given. The first pro-

gram uses fixed step-sizes through the propagation while the second program uses

conservation quantity error method for adaptive step-size control.
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Appendix A

Simulation of Pulse Propagation

in Fiber Using RK4IP Algorithm

This MATLAB function calculates the output spectrum and shape of a pulse after

passing through some fiber by solving GNLSE using fourth-order Runge-Kutta

method in the interaction picture.

1 function []=RK4IP()

2

3 tic

4

5 global w timesteps fr hr dz tres gamma h passrat

6

7 c=299792458; %Speed of light (m/s)

8 twidth=10e−12; %Total time window width (s)

9 tres=1e−15; %Time resolution (s)

10 nz=5000; %Number of z−steps
11 nsaves = 200; %Number of saved snapshots

12 pulseshape=1; %0 for sechˆ2, 1 for Gaussian pulse ...

shape

13

14 fr=0.18;

15

16 fiberlength=0.15; %Fiber length (m)
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17 aeff=7.55e−12; %Effective mode area of the fiber (m...

ˆ2)

18 n2=2.74e−20; %Kerr coefficient (mˆ2/W)

19 betas=[−8.9655e−27,80.3570e−42,−103.2412e−57,110.2014e−72]; %...

Betas (sˆx/m)

20

21 pulsewidth=50e−15; %Initial pulse duration (s)

22 peakpower=25000; %Peak power of the initial pulse (W)

23 lambda=1050e−9; %Central wavelength (m)

24

25 timesteps=round(twidth/tres+1);

26 t=−twidth/2:tres:twidth/2;
27

28 empty=zeros(1,timesteps);

29

30 comp pos=[56.25,100.00,231.25,362.50,463.00,497.00,611.50,691.67...

,793.67,835.50,930.00,1080.00,1215.00].*100; %1/m

31 peak int=[1.00,11.40,36.67,67.67,74.00,4.50,6.80,4.60,4.20,4.50,2...

.70,3.10,3.00]; %Unitless

32 gau FWHM=[52.10,110.42,175.00,162.50,135.33,24.50,41.50,155.00,59...

.50,64.30,150.00,91.00,160.00].*100; %1/m

33 lor FWHM=[17.37,38.81,58.33,54.17,45.11,8.17,13.83,51.67,19.83,21...

.43,50.00,30.33,53.33].*100; %1/m

34

35 hr=empty;

36

37 for a=ceil(timesteps/2):timesteps

38 for b=1:13

39 hr(a)=hr(a)+peak int(b)*exp(−pi*c*t(a)*lor FWHM(b))*exp...

(−((pi*c*gau FWHM(b))ˆ2)*(t(a)ˆ2)/4)*sin(2*pi*c*...

comp pos(b)*t(a));

40 end

41 end

42

43 hr integral=trapz(t,hr);

44

45 hr=hr./hr integral;

46 hr=fft(hr);

47 if (pulseshape==1)

48 E=sqrt(peakpower).*exp(−0.5*(t./pulsewidth*1.665).ˆ2);
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49 else

50 E=sqrt(peakpower)*sech(t/pulsewidth);

51 end

52 w=2*pi*c/lambda;

53

54 fs=1/(timesteps*tres);

55 freq=c/lambda+fs*linspace(−timesteps/2,timesteps/2,timesteps);
56

57 lambdaarr = c./freq;

58 gamma=n2*w/(c*aeff);

59

60 omegas=2*pi*freq;

61 B=0;

62 for i = 1:length(betas) % Taylor expansion of ...

betas

63 B = B − 1i*betas(i)/factorial(i+1).*(omegas−w).ˆ(i+1);
64 end

65

66 passrat=0;

67 dz=fiberlength/nz;

68 h = waitbar(0,'0% done...');

69

70 k=1;

71 spectarr=zeros(nsaves,timesteps);

72 Iarr=zeros(nsaves,timesteps);

73 zarr = linspace(0,fiberlength,nsaves);

74 for i=1:nz

75 E=Prop(E,w,gamma,fr,hr,dz,tres,empty,timesteps,B);

76 passrat=i/nz;

77 if(passrat*fiberlength≥zarr(k))

78 Iarr(k,:)=abs(E).ˆ2;

79 spectarr(k,:)=abs(fftshift(fft(E))).ˆ2;

80 zarr(k)=i*dz;

81 k=k+1;

82 end

83 end

84

85 Spect=abs(fftshift(fft(E))).ˆ2;

86 Spect=Spect/max(Spect);

87
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88 figure;

89 plot(t,abs(E).ˆ2);

90 grid on;

91

92 title('Temporal Intensity');

93 axis tight;

94 print −r300 −dpng 'intensity.png'

95 saveas(gcf,'intensity','fig');

96

97 figure;

98 semilogy(lambdaarr,Spect);

99 title('Output Spectrum')

100 grid on;

101 axis tight;

102 xlim([600 1750].*1e−9);
103 ylim([1e−10 1]);

104 print −r300 −dpng 'spectrum.png'

105 saveas(gcf,'spectrum','fig');

106

107 fid=fopen('RK4IP inten.txt','w');

108 for i=1:timesteps

109 fprintf(fid,'%d %d \r\n',t(1,i),abs(E(1,i)).ˆ2);
110 end

111 fclose(fid);

112

113 fid=fopen('RK4IP spect.txt','w');

114 for i=1:timesteps

115 fprintf(fid,'%d %d \r\n',lambdaarr(1,i),Spect(1,i));
116 end

117 fclose(fid);

118

119 figure;

120 lIW = 10*log10(spectarr); % log scale spectral ...

intensity

121 mlIW = max(max(lIW)); % max value, for ...

scaling plot

122 lIW=lIW−mlIW;
123 WL = lambdaarr; iis = (WL>500e−9&WL<1700e−9); % wavelength ...

grid

124 s1=subplot(1,2,1);
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125 pcolor(WL(iis)*1e9,zarr,lIW(:,iis)); % plot as ...

pseudocolor map

126 caxis([−40.0, 0]); xlim([500,1700]); shading interp;

127 xlabel('Wavelength (nm)'); ylabel('Distance (m)');

128

129 lIT = 10*log10(Iarr); % log scale temporal ...

intensity

130 mlIT = max(max(lIT)); % max value, for ...

scaling plot

131 lIT=lIT−mlIT;
132 s2=subplot(1,2,2);

133 pcolor(t*1e12,zarr,lIT); % plot as ...

pseudocolor map

134 caxis([−40.0,0]); xlim([−2,4]);
135 shading interp;

136 xlabel('Delay (ps)'); %ylabel('Distance (m)');

137 hb = colorbar('location','eastoutside');

138 hand=xlabel(hb,'(dB)');

139 set(hand,'position',[2 −42 0]);

140 set(s1,'Units','normalized', 'position', [0.1 0.1 0.37 0.85]);

141 set(s2,'Units','normalized', 'position', [0.50 0.1 0.37 0.85]);

142 set(s2,'ytick',[]) ;

143 set(hb,'Units','normalized', 'position', [0.9 0.1 0.03 0.85]);

144 set(findall(gcf,'type','text'),'FontSize',15,'fontWeight','bold')

145 set(findall(gcf,'type','axes'),'FontSize',15,'fontWeight','bold')...

;

146 print −r300 −dpng 'evolution.png'

147 saveas(gcf,'evolution','fig');

148 close(h)

149

150 toc

151

152 end

153

154 function [Eout] = Prop(Ein,w,gamma,fr,hr,dz,tres,empty,timesteps,...

B)

155

156 global h passrat

157

158 Ai=DSProp(Ein,B,dz/2);
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159 k1=DSProp(NLProp(Ein,w,gamma,fr,hr,dz,tres,empty,timesteps),B,dz...

/2);

160 k2=NLProp(Ai+k1/2,w,gamma,fr,hr,dz,tres,empty,timesteps);

161 k3=NLProp(Ai+k2/2,w,gamma,fr,hr,dz,tres,empty,timesteps);

162 k4=NLProp(DSProp(Ai+k3,B,dz/2),w,gamma,fr,hr,dz,tres,empty,...

timesteps);

163 Eout=DSProp(Ai+k1/6+k2/3+k3/3,B,dz/2)+k4/6;

164

165 waitbar(passrat,h,strcat(num2str(round(passrat*100)),'% done...')...

);

166 end

167

168 function [Eout] = NLProp(Ein,w,gamma,fr,hr,dz,tres,empty,...

timesteps)

169

170 I=ifftshift(ifft(hr.*fft(abs(Ein).ˆ2))).*Ein*tres*fr+(1−fr).*Ein....

*abs(Ein).ˆ2;

171 Eout=−dz*gamma*(I*1i+1/w*dif(I,tres,empty,timesteps));
172 end

173

174 function [Eout] = DSProp(Ein,B,dz)

175

176 Ein=fftshift(fft(Ein));

177 Eout=ifft(ifftshift(Ein.*exp(B*dz)));

178

179 end

180

181 function [out] = dif(in,tres,empty,len)

182

183 out=empty;

184

185 out(1)=(in(4)−9*in(3)+45*in(2)−45*in(len)+9*in(len−1)−in(len−2))...
/(60*tres);

186 out(2)=(in(5)−9*in(4)+45*in(3)−45*in(1)+9*in(len)−in(len−1))/(60*...
tres);

187 out(3)=(in(6)−9*in(5)+45*in(4)−45*in(2)+9*in(1)−in(len))/(60*tres...
);

188 out(4:len−3)=(in(7:len)−9*in(6:len−1)+45*in(5:len−2)−45*in(3:len...
−4)+9*in(2:len−5)−in(1:len−6))/(60*tres);
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189 out(len−2)=(in(1)−9*in(len)+45*in(len−1)−45*in(len−3)+9*in(len−4)...
−in(len−5))/(60*tres);

190 out(len−1)=(in(2)−9*in(1)+45*in(len)−45*in(len−2)+9*in(len−3)−in(...
len−4))/(60*tres);

191 out(len)=(in(3)−9*in(2)+45*in(1)−45*in(len−1)+9*in(len−2)−in(len...
−3))/(60*tres);

192

193 end
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Appendix B

Simulation of Pulse Propagation

in Fiber Using RK4IP Algorithm

with Adaptive Step-Size

This MATLAB function calculates the output spectrum and shape of a pulse after

passing through some fiber by solving GNLSE using fourth-order Runge-Kutta

method in the interaction picture with adaptive step-size.

1 function []=RK4IP adaptive()

2

3 tic

4

5 global w timesteps fr hr dz tres gamma h fiberlength totalsteps ...

minstep maxstep totalaccepted passed tol

6

7 c=299792458; %Speed of light (m/s)

8 twidth=10e−12; %Total time window width (s)

9 tres=1e−15; %Time resolution (s)

10 dz=0.1; %Initial z−step size (m)

11 tol=1e−8; %Relative error tolerance

12 pulseshape=1; %0 for sechˆ2, 1 for Gaussian pulse ...

shape
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13

14 fr=0.18;

15

16 fiberlength=0.3; %Fiber length (m)

17 aeff=7.55e−12; %Effective mode area of the fiber (m...

ˆ2)

18 n2=2.74e−20; %Kerr coefficient (mˆ2/W)

19 betas=[−7.5946e−27,78.5925e−42,−101.3403e−57,110.2014e−72]; %...

Betas (sˆx/m)

20

21 pulsewidth=35e−15; %Initial pulse duration (s)

22 peakpower=24000; %Peak power of the initial pulse (W)

23 lambda=1040e−9; %Central wavelength (m)

24

25 timesteps=round(twidth/tres+1);

26 t=−twidth/2:tres:twidth/2;
27

28 empty=zeros(1,timesteps);

29

30 comp pos=[56.25,100.00,231.25,362.50,463.00,497.00,611.50,691.67...

,793.67,835.50,930.00,1080.00,1215.00].*100; %1/m

31 peak int=[1.00,11.40,36.67,67.67,74.00,4.50,6.80,4.60,4.20,4.50,2...

.70,3.10,3.00]; %Unitless

32 gau FWHM=[52.10,110.42,175.00,162.50,135.33,24.50,41.50,155.00,59...

.50,64.30,150.00,91.00,160.00].*100; %1/m

33 lor FWHM=[17.37,38.81,58.33,54.17,45.11,8.17,13.83,51.67,19.83,21...

.43,50.00,30.33,53.33].*100; %1/m

34

35 hr=empty;

36

37 for a=ceil(timesteps/2):timesteps

38 for b=1:13

39 hr(a)=hr(a)+peak int(b)*exp(−pi*c*t(a)*lor FWHM(b))*exp...

(−((pi*c*gau FWHM(b))ˆ2)*(t(a)ˆ2)/4)*sin(2*pi*c*...

comp pos(b)*t(a));

40 end

41 end

42

43 hr integral=trapz(t,hr);

44
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45 hr=hr./hr integral;

46 hr=fft(hr);

47

48 if (pulseshape==1)

49 E=sqrt(peakpower).*exp(−0.5*(t./pulsewidth*1.665).ˆ2);
50 else

51 E=sqrt(peakpower)*sech(t/pulsewidth);

52 end

53 w=2*pi*c/lambda;

54

55 fs=1/(timesteps*tres);

56 freq=c/lambda+fs*linspace(−timesteps/2,timesteps/2,timesteps);
57

58 lambdaarr = c./freq;

59 gamma=n2*w/(c*aeff);

60

61 omegas=2*pi*freq;

62 B=0;

63 for i = 1:length(betas) % Taylor expansion of ...

betas

64 B = B − 1i*betas(i)/factorial(i+1).*(omegas−w).ˆ(i+1);
65 end

66

67 photonin=CountPhoton(E,freq);

68 fprintf('Number of Input Photons: %e \n',photonin);
69

70 if (gamma==0)

71 dz=fiberlength;

72 end

73 passed=0;

74

75 h = waitbar(0,'0% done...');

76 totalsteps=0;

77 maxstep=0;

78 minstep=fiberlength;

79 totalaccepted=0;

80 E=Prop(E,w,gamma,fr,hr,tres,empty,timesteps,B,photonin,freq);

81

82 disp(strcat('Total number of steps: ',num2str(totalsteps)));
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83 disp(strcat('Total number of accepted steps: ',num2str(...

totalaccepted)));

84 disp(strcat('Minimum stepsize: ',num2str(minstep)));

85 disp(strcat('Maximum stepsize: ',num2str(maxstep)));

86

87 photonout=CountPhoton(E,freq);

88 fprintf('Number of Output Photons: %e \n',photonout);
89

90 Spect=abs(fftshift(fft(E))).ˆ2;

91 Spect=Spect/max(Spect);

92

93 figure;

94 plot(t,abs(E).ˆ2);

95 grid on;

96 title(strcat('Output Energy: ',num2str(trapz(t,abs(E).ˆ2))));

97 axis tight;

98

99 figure;

100 plot(lambdaarr,Spect);

101 title('Output Spectrum');

102 grid on;

103 axis tight;

104 xlim([600 1750].*1e−9);
105

106 figure;

107 semilogy(lambdaarr,Spect);

108 title('Output Spectrum')

109 grid on;

110 axis tight;

111 xlim([600 1750].*1e−9);
112 ylim([1e−10 1]);

113

114 fid=fopen('RK4IP adaptive spect.txt','w');

115 for i=1:timesteps

116 fprintf(fid,'%d %d \r\n',lambdaarr(1,i),Spect(1,i));
117 end

118 fclose(fid);

119

120 close(h)

121
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122 toc

123

124 end

125

126 function [Eout] = Prop(Ein,w,gamma,fr,hr,tres,empty,timesteps,B,...

photonin,freq)

127

128 global h passed fiberlength totalsteps minstep maxstep ...

totalaccepted dz tol

129

130 while (passed<fiberlength)

131

132 if (dz>(fiberlength−passed))
133 dz=(fiberlength−passed);
134 end

135 totalsteps=totalsteps+1;

136

137 Ai=DSProp(Ein,B,dz/2);

138 k1=DSProp(NLProp(Ein,w,gamma,fr,hr,dz,tres,empty,timesteps),B...

,dz/2);

139 k2=NLProp(Ai+k1/2,w,gamma,fr,hr,dz,tres,empty,timesteps);

140 k3=NLProp(Ai+k2/2,w,gamma,fr,hr,dz,tres,empty,timesteps);

141 k4=NLProp(DSProp(Ai+k3,B,dz/2),w,gamma,fr,hr,dz,tres,empty,...

timesteps);

142 Eout=DSProp(Ai+k1/6+k2/3+k3/3,B,dz/2)+k4/6;

143

144 photonout=CountPhoton(Eout,freq);

145

146 ∆=abs(photonout−photonin)/photonin;
147

148 if(∆<2*tol)

149 Ein=Eout;

150 photonin=photonout;

151 passed=passed+dz;

152 minstep=min(minstep,dz);

153 maxstep=max(maxstep,dz);

154 totalaccepted=totalaccepted+1;

155 waitbar(passed/fiberlength,h,strcat(num2str(round(passed/...

fiberlength*100)),'% done...'));

156 if(∆>tol)
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157 dz=dz/2ˆ(0.2);

158 elseif(∆<tol)

159 dz=dz*2ˆ(0.2);

160 end

161 else

162 dz=dz/2;

163 end

164

165 end

166

167 end

168

169 function [Eout] = NLProp(Ein,w,gamma,fr,hr,dz,tres,empty,...

timesteps)

170

171 Eabs=abs(Ein).ˆ2;

172

173 I=ifftshift(ifft(hr.*fft(Eabs))).*Ein*tres*fr+(1−fr).*Ein.*Eabs;
174 Eout=−dz*gamma*(I*1i+1/w*dif(I,tres,empty,timesteps));
175

176 end

177

178 function [Eout] = DSProp(Ein,B,dz)

179

180 Ein=fftshift(fft(Ein));

181 Eout=ifft(ifftshift(Ein.*exp(B*dz)));

182

183 end

184

185 function [photonn] = CountPhoton(Ein,freq)

186

187 Spect=abs(fftshift(fft(Ein))).ˆ2;

188 photonn=sum(Spect./(6.626e−34*freq));
189

190 end

191

192 function [out] = dif(in,tres,empty,len)

193

194 out=empty;

195
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196 out(1)=(in(4)−9*in(3)+45*in(2)−45*in(len)+9*in(len−1)−in(len−2))...
/(60*tres);

197 out(2)=(in(5)−9*in(4)+45*in(3)−45*in(1)+9*in(len)−in(len−1))/(60*...
tres);

198 out(3)=(in(6)−9*in(5)+45*in(4)−45*in(2)+9*in(1)−in(len))/(60*tres...
);

199 out(4:len−3)=(in(7:len)−9*in(6:len−1)+45*in(5:len−2)−45*in(3:len...
−4)+9*in(2:len−5)−in(1:len−6))/(60*tres);

200 out(len−2)=(in(1)−9*in(len)+45*in(len−1)−45*in(len−3)+9*in(len−4)...
−in(len−5))/(60*tres);

201 out(len−1)=(in(2)−9*in(1)+45*in(len)−45*in(len−2)+9*in(len−3)−in(...
len−4))/(60*tres);

202 out(len)=(in(3)−9*in(2)+45*in(1)−45*in(len−1)+9*in(len−2)−in(len...
−3))/(60*tres);

203

204 end
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