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ABSTRACT 

ANALYSIS OF THE IN-VITRO NANOPARTICLE-CELL 

INTERACTIONS VIA SUPPORT VECTOR REGRESSION 

MODEL  

Nur Muhammed Akbulut 

M.S. in Industrial Engineering 

Supervisor: Prof. Dr. Savaş Dayanık  

Co-Supervisor: Assoc. Prof. Dr. İhsan Sabuncuoğlu  

August 26, 2013 

 

In this research a Support Vector Regression model is developed to understand the 

nanoparticle (NP)-cell interactions and to predict the cellular uptake rate of the 

nanoparticles, which is the rate of NPs adhered to the cell surface or entered into the 

cell. Examination of nanoparticle-cell interaction is important for developing 

targeted drug delivery systems and cell-level detection and treatment of diseases. 

Cellular uptake rate of NPs depends on NP type, size, shape, surface charge, 

concentration and incubation time. Conducting numerous experiments on the 

combinations of those variables to understand NP-cell interaction is impractical. 

Hence, a mathematical model of the cellular uptake rate will therefore be useful. The 

data for this study are obtained from in-vitro NP-healthy cell experiments conducted 

by a Nano-Medicine Research Center in Turkey. The proposed support vector 

regression model predicts the cellular uptake rate of nanoparticles with respect to 

incubation time given the size, charge and concentration properties of NPs.  

 

 

 

 

 

Keywords: Nano-medicine, targeted drug delivery, nanoparticle uptake rate, support 

vector regression   
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ÖZET 

 

DESTEK VEKTÖR REGRESYON MODELİ İLE          

İN-VİTRO NANOPARTİKÜL-HÜCRE 

ETKİLEŞİMLERİNİN MODELLENMESİ  

 

 

Nur Muhammed Akbulut 

Endüstri Mühendisliği, Yüksek Lisans 

Tez Yöneticisi: Doç. Dr. Savaş Dayanık  

Yardımcı Tez Yöneticisi: Prof. Dr. İhsan Sabuncuoğlu  

Ağustos, 2013 

 

Bu araştırmada, Destek Vektör Regresyon (DVR) yöntemi ile nanopartikül-hücre 

etkileşimini inceleyen ve hücreye tutunan yani hücre yüzeyine yapışan veya hücre 

içine alınan nanopartikül (NP) oranını tahmin eden bir model geliştirilmiştir. 

Güdümlü ilaç dağıtımı sistemleri ve hücre seviyesinde hastalıkların tanı ve tedavileri 

için NP-hücre etkileşimini analiz etmek önemli bir araştırma konusudur. 

Nanopartiküllerin hücreye bağlanma oranları NP tipi, boyutu, şekli, yüzey yükü, 

yoğunluğu ve zaman değişkenlerine bağlı olarak farklılık göstermektedir. NP-hücre 

ilişkisini açıklamak için bu değişkenlerin binlerce varyasyonunu deneylerle test 

etmek pratik değildir.  Bu yüzden, farklı varyasyonlar için nanopartiküllerin hücreye 

tutunma oranlarını matematiksel bir model yardımı ile tahmin etmek önemli bir 

çalışmadır.  Çalışma için kullanılan veri seti Türkiye'de bir Nano-Tıp Araştırma 

Merkezi tarafından yapılan in-vitro NP-hücre etkileşimi deneyleri sonucunda elde 

edilmiştir. Geliştirilen DVR modeli, nanopartiküllerin verilen büyüklük, yoğunluk, 

yüzey yükü özelliklerini girdi olarak alarak; nanopartiküllerin hücreye tutunma 

oranlarını zamana bağlı olarak tahmin etmektedir.    

 

 

 

 

 

Anahtar Sözcükler: Nano-tıp, güdümlü  ilaç dağılımı, hücre içine nanopartikül alım 

oranı, destek vektör regresyon modeli, tahmin modeli 
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Chapter 1 

 

Introduction 
 

Cancer causes the body cells become abnormal and divide and grow 

uncontrollably. Cancer cells may invade any tissue of the body and may spread 

through the blood or lymphatic system to other parts of the body. If this spread is not 

controlled, it can result in death. According to the World Cancer Report of The 

International Agency for Research on Cancer 7.6 million which is nearly one in eight 

of all deaths in the world is caused by cancer in 2008. According to the report this 

number will almost be doubled in 2030 [1].  National Cancer Institute’s Surveillance 

Epidemiology and End Results (SEER) program claimed that there are 12.5 million 

people who suffer from cancer only in United States by 2009 [2].  

Therefore, researchers work hard to find effective ways of diagnosis and 

treatment of cancer. Surgical operations, radiation and chemotherapy are the current 

treatment methods for cancer. However, those methods have severe side effects on 

the body. Those methods often harm healthy cells and cause toxicity. Cancer cells 

may also reappear in the body after the treatment.  
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Nanotechnology is an emerging and evolving technology and there have been 

an interest in using it in cancer research. Targeted drug delivery system is one of the 

most fundamental research areas related to both nanotechnology and biotechnology 

[3]. Targeted drug delivery is a method of delivering medication to the body in a 

manner such that the concentration of the medication in the diseased tissues is higher 

than that in the healthy cells.  Current research focuses on using nanoparticles with 

pharmacological agents to kill cancer cells in a targeted drug delivery system. Since 

those studies are conducted at cell-level, a careful investigation of nanoparticle (NP)-

cell interaction and cellular uptake efficiency, which is defined as the rate of NPs 

adhered to the surfaces of the cells or entered into the cells is very important for 

targeted drug delivery. 

Cellular uptake efficiency is affected by size, type (chemical structure), shape, 

surface charge and the concentration of NPs.  It is impractical or too costly to 

conduct all of the possible configurations of those variables in laboratory conditions.  

Therefore, this thesis aims to develop a prediction model based on data from in-vitro 

NP-cell interaction experiments. The proposed model predicts the cellular uptake rate 

of NPs on different combinations. In this study, the prediction model is developed by 

using Support Vector Regression (SVR) technique. SVR approach is preferred 

because it is a powerful tool to model non-linear complex systems. Since SVR 

presents a solution by means of small subset of training data, it also gives enormous 

computational advantages.  
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Data for this study are obtained from  in-vitro experiments that are conducted 

by a Nano-Medicine Research Center in Turkey. Silica, polymethyl methacrylate 

(PMMA) and polylactic acid (PLA) are the types of nanoparticles used in those 

experiments. Data include the uptake rate of nanoparticles for different combinations 

of NP size, charge and concentration at particular times. Then we propose a 

prediction model for 48 hours incubation period by using SVR method on those data.     

The primary contribution of this study is a prediction method for the uptake 

rate of NPs in the nanomedicine field.  The second contribution is a thorough 

implementation of SVR for statistics field based on real data.  

The remainder of the thesis is organised as follows: The related literature is 

reviewed in Chapter 2. Chapter 3 introduces Support Vector Regression. The design 

of the experiments is discussed in Chapter 4. The proposed models and results of 

computational study are presented in Chapter 5. Chapter 6 compares and discusses 

the results of our model with those of the previous studies. Finally, Chapter 7 

concludes the thesis.    
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Chapter 2 

 

Literature Review 
 

There are numerous experimental studies on nanoparticle-cell interaction and 

cellular uptake rate of nanoparticles in the literature. In those studies, effects of some 

characteristics of NPs such as chemical structure, size, surface charge, concentration 

and incubation time on the interaction with cells are explored. Although those studies 

give information about the effects of some NP characteristics on cell interactions,  

mathematical models built on those findings are very rare.  

Chitrani et al. [4] investigated the influence of different size and shape of 

colloidal gold nanoparticles for different incubation times over intracellular uptake 

inside mammalian cells. In their study, spherical NPs with diameters of 14, 30, 50, 

74 and 100 nm and rod-shaped NPs with dimensions 40x14 nm and 74x14 nm are 

used. They conclude that, uptake rate rapidly increases for the first 2 hours, and then 

becomes steady at 4-7 hours for different sizes. Their experiments also show that 

uptake rate for 50 nm NPs is higher than that for other sizes. Shape also has impact 

on uptake rate. They demonstrated that more spherical NPs are taken into the cell 

than the rod-shaped NPs. Therefore, their research demonstrates that desired cellular 
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uptake rate may be achievable by adjusting the size and shape of the NPs. However, 

the findings of their study are observational and did not lead to a mathematical model 

of  the NP-cell interaction.  Davda and Labhasetwar [5] examine the NP-endothelial 

cell interaction. They observe that the cellular uptake of nanoparticles depends on the 

incubation time and uptake rate increases with increase in the concentration of 

nanoparticles in the medium. Their study sheds light on the biocompability of the 

NPs with cells. According to their study concentration of NPs have impact on uptake 

rate.  Peetla and Labhasetwar [6] investigate the interaction between endothelial cell 

membrane and nanoparticles. 20 nm and 60 nm sized polystyrene NPs of different 

surface charges are used to analyze the changes in the membrane’s surface pressure. 

The results show that positively charged 60 nm NPs increase surface pressure while 

neutral NPs reduced surface pressure and negatively charged NPs of the same size 

have no effect. However, 20 nm NPs have greater interactions with the cell for all 

surface charges. Their study does not provide a mathematical model but it is 

significant to understand how the characterizations of nanoparticles affect the 

interaction with cells.  In all those studies, NP-cell interactions are examined by only 

physical experimentations for only two or three variables, without using a proper 

mathematical model. Therefore, they are not capable of predicting cellular uptake 

rate without conducting the experiments.   

Lin et al. [7] investigate the interactions between different surface charge 

densities and signs of gold nanoparticles and cell membranes by developing coarse-

grained molecular dynamics simulation model. They reach the conclusion that 
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positively charged nanoparticles adhere to cell membrane more than negatively 

charged nanoparticles and level of penetration increases as the charge density of NPs 

increases. They show that the adhesion and penetration level can be controlled by 

adjusting the surface charges and densities.     

Boso et al. [8] provides the only mathematical model on NP-cell interaction in 

the literature. They seek to determine the optimum NP diameter that maximizes the 

NPs adhered to the diseased blood vessel walls. They conducted a parallel plate flow 

chamber in vitro experiments with spherical polystyrene NPs. They develop an 

artificial neural network model to predict the number of NPs adhering per unit area 

as a function of shear rate and NP diameter. They show that an optimal NP diameter 

exists that maximizes the number of NPs adhere to the vessel walls. This study 

considers the effects of only NP size and wall shear rate on the NP accumulation, but 

other properties of NPs such as type, shape, charge and concentration are not 

considered. Albeit the study is limited in terms of investigating factors that affect 

NP-cell interactions, this study contains a mathematical model and demonstrate that 

accurate prediction can be used effectively to minimize the number of experiments 

needed which is the motivation for this study.      

Cenk [9] and Dogruoz [10] studies have recently proposed models of NP-cell 

interactions. They investigate the effects of NP size, surface charge, concentration, 

and chemical structure on NP-cell interactions.  Those studies and our study use the 

same data to build prediction models for  the cellular uptake rate of NPs. However, 

their modeling approaches are different. Cenk [9] develops an artificial neural 
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network model whereas Dogruoz [10] uses a statistical mixed model approach. 

Chapter 6 compares the results of our study with those of Cenk [9] and Dogruoz 

[10]. 

SVR was not studied to investigate the NP-cell interactions in the past. 

However, it is applied to many real-world problems successfully. When it is 

compared to other modeling tools, SVR generalization ability shows either similar or 

significantly better performance than competing methods in most of the cases [11].  

Hence, SVR is an appropriate tool to examine NP-cell interaction. This study will be 

helpful to understand the interaction between nanoparticles and cells for the 

nanomedicine and targeted drug delivery studies. A new application area for SVR 

will contribute to the statistics literature.  
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Chapter 3 

 

Background on Support Vector Regression 

 

 Support Vector Regression (SVR) is based on statistical learning theory and 

has been developed by Vapnik [12]. This new technique provides an efficient and 

novel approach to improve generalization performance. SVR achieves good 

generalization ability by adopting a structural risk minimization principle.  Structural 

risk minimization (SRM) seeks to minimize an upper bound on the generalization 

error rather than minimize the empirical error (empirical risk minimization (ERM)) 

focused in by many of the other modeling techniques. It has been show that SRM is 

superior to ERM principle employed by other techniques such as Artificial Neural 

Networks. SVR is trained with optimization of a quadratic cost function, which 

guarantees the attainment of a global minimum.  

  The construction of SVR to estimate a regression function is based on three 

distinct characteristics of SVR. Firstly, SVR estimate the regression function using a 

set of linear functions that are defined in a high dimensional space. Secondly, SVR 

defines the regression estimation as the problem of risk minimization with respect to 

the Vapnik’s ε-insensitive loss function. Thirdly, SVR minimizes the risk function 



9 
 

consisting of the empirical error and a regularization term which is derived from the 

SRM principle. 

 The ε-insensitive loss function can be defined as: 

                       if    ( )        

  ( )                                                                            

   ( )       ,  otherwise                                     (3.1) 

This loss function defines an ε tube (Figure 1) which means, if the predicted 

value is inside the tube the loss is zero; if the predicted value is outside the tube the 

loss is the magnitude of the difference between the predicted value and data point 

and the radius, ε.  

 

Figure 1: ε-Loss function and Slack Variable ξ 
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Assume that the training data set consists of   sample {(     )   (     )}  

where   is the input and    is the output. The problem is to choose a function that 

predicts   as closely as possible with a precision of   . 

Now, let us assume a linear predictor. 

 ( )  (   )                                                                    (3.2) 

where   is an adjustable weight vector and     and   are the n-dimensional and 1-

dimensional vector space, respectively. 

The main purpose of SVR is to find a function  ( ) that gives at most  -deviation 

from   (actual output) and at the same time as flat as possible. Flatness in (3.2) can 

be achieved by seeking small  . One way of doing this is by minimizing         

which is the Euclidean norm of   [13]. Thus, convex optimization problem is to 

minimize  
 

 
|   |

 
 

subject to  

   (        )                                                             

(        )                                                   (3.3) 

The best regression line is found by solving  

   
 

 
|   |

 

  ∑(     
 )

 

   

 

subject to 
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   (        )                                                  

(        )         
                                                                    

  
       and                                                      (3.4) 

The term 
 

 
|   |

 
  is called the regularized term. The second term  ∑ (    

   

  
 ), is the so called empirical error (risk), which is measured by the ε-insensitive loss 

function in (3.1).   is the regularization constant determining the trade-off between 

empirical risk and regularized term. In the error term, predictions which are deviating 

by less than    or more than    are taken into account by slack variables   
  and   , 

respectively (Figure 1). Value of   should be determined by the user. One should 

note that   is not the final desired prediction of the model. It is a characteristic of the 

prediction error penalty.  In addition to  , the penalty weight   should also be 

optimally chosen by the user. If it is chosen too small, the best result is determined 

by the size of the regression weights. On the other hand, if it is chosen too large, the 

best solution will be determined by minimizing the empirical error.  

In order to solve the problem in (3.4) the following Lagrangian function is 

constructed.  
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 (                 )

 
 

 
|   |

 

  ∑(     
 )

 

   

 ∑       

 

   

   

  (        )  ∑  
          (        ) 

 

   

 ∑(       
   

 )

 

   

 

                      (3.5) 

where    is the Lagrangian and            are the Lagrangian multipliers. It follows 

from the saddle point condition that partial derivatives of   with respect to primary 

variables           have to vanish for optimality. 

                                                       ↔             ∑   (     
  

   ), 

                                                          ↔            ∑    ∑   
  

   
 
   , 

                                                          ↔    ∑    ∑ (    )
 
   

 
   , 

                          ↔  ∑   
  

    ∑ (    
 ) 

    ,         (3.6) 

Substituting (3.6) into (3.5) yields the following dual optimization problem. 

     ∑(  
 

 

   

   )  ∑  (  
 

 

   

   )  
 

 
∑∑(     

 )(     
 )(     )

 

   

 

   

 

subject to 
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∑   ∑  
 

 

   

 

   

  

                   , 

    
                                                     (3.7) 

The coefficients   ,    
  are determined by solving (3.7). Some of these 

multipliers (  ,   
 ) will be zero. The corresponding training points are irrelevant for 

the final solution. The training objects with non-zero Lagrangian multipliers are 

called support vectors. Support vectors are the objects where prediction errors are 

larger than ±  . Then equation (3.2) can be written as; 

 ( )  ∑ (     
 )    (    )    where    

 

 
 (     )                    (3.8) 

where    denotes the collection of support vectors. 

In most problems linear regression is not appropriate. When it is not, the input data 

must be mapped into a high dimensional feature space where linear regression is 

performed through some nonlinear mapping [14]. Then   is replaced by the feature 

space representation,  ( ) in the above optimization problem. Therefore; (3.7) can 

be written as kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk 

     ∑(  
 

 

   

   )  ∑  (  
 

 

   

   )

 
 

 
∑∑(     

 )(     
 )( (  )  (  ))
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subject to 

∑   ∑  
 

 

   

 

 

   

 

                        

    
                                                     (3.9) 

To reduce the computational load, kernel function defined by  

 (     )   (  )  (  ) 

Cortes and Vapnik [15] introduced. 

The optimization problem can be written as  

     ∑(  
 

 

   

   )  ∑  (  
 

 

   

   )  
 

 
∑∑(     

 )(     
 ) (     )

 

   

 

   

 

subject to 

∑   ∑  
 

 

   

 

   

  

                        

    
                                                   (3.10) 

and the regression function can be written as 

 ( )  ∑ (     
 )     (    )     

where    
 

 
∑ (     

 )      (     )   (     )               (3.11) 
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SVR model provides only an estimated target value. However, we also want to 

calculate a prediction interval. In order to find prediction intervals, we use the well-

functioning approach of Lin et al. [16] as we explain now.  

We are given a set of training data   {(     )   (     )} . We suppose that  

    (  )    ,                                              (3.12) 

where and    are independent and identically distributed random noises. 

Given a test data  , the distribution of   given   and   is  (       ). This 

allows one to construct a prediction interval      ( ) such that     with a pre-

specified probability.  If we denote  ̂( ) as the estimated function based on  , then 

   ( )     ̂( )  is the out-of-sample residuals (prediction error) and     is 

equivalent to       ̂( ).   

It is proposed to model the distribution of   based on a set of out-of-sample 

residuals {  }    
  using training data  . The   ’s are generated by first conducting a 

k-fold cross validation to get   ̂          , and then setting         ̂(  ) for 

(     )  in the jth fold. It is conceptually clear that the distribution of   ’s may 

resemble that of the prediction error  . 

Lin et al. [16] propose to model    by zero-mean Gaussian and Laplace, or 

equivalently, model the conditional distribution of   given  ̂( )  by Gaussian and 

Laplace with mean  ̂( ).   
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To obtain the fitted curves using Laplace and Gaussian distributions, we first 

express the density functions of zero-mean Laplace and Gaussian with scale 

parameter  , 

                                          Laplace  ( )  
 

  
  

   

                                                (3.13) 

 

 

                                          Gaussian  ( )  
 

√   
 

   

                                            (3.14) 

 

 

Next, assuming that   are independent, we can estimate the scale parameter by 

maximizing the likelihood. For Laplace, the maximum likelihood estimate is, 

  
∑     

 
   

 
                                                                  (3.15) 

 

and for Gaussian, 

    
∑   

  
   

 
                                                               (3.16) 

 

 

Then we obtain the fitted curves by plugging these estimates into (3.13) and 

(3.14). 

After then (1-2s)100% prediction interval for   is ( ̂( )      ̂( )    )  

where    is the upper sth percentile of the corresponding probability distribution of  .  

For example, a Laplace with  ( )  as in (3.13) has         (  )  and resulting 

prediction interval for   is 

 (   (  )       (  ) ) .                                                (3.17) 
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A Gaussian with  ( ) defined in (3.12) has          (   ) where  ( ) is the 

cumulative density function of Gaussian distribution, and the prediction interval for   

is  

 (       (   )       (   ))                          (3.18) 

In order to decide either Laplace or Gaussian for the distribution of     will be 

used, one should investigate   ’s.  Visual detection of the histogram of   ’s and fitted 

Laplace and Gaussian models, can be helpful to decide which model captures   ’s 

better.  However, this method can be subjective and may not be efficient for some 

cases. We refer the interested reader to Lin et al [16] between Gaussian or Laplace 

distribution. 
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Chapter 4 

 

Experimental Procedure of Proposed Study  

Expertise and advanced technology are used for the synthesis of nanoparticles 

to be used for diagnostics and targeted drug delivery at cell-level. In this process, 

synthesized NPs can be characterized according to targeted cell/tissue in order to find 

and enter in or adhere to targeted cell/tissue. Therapeutic agents are inserted in 

chemically or immunologically characterized nanoparticles to treat cells. Advanced 

technology enables us to place both therapeutic and diagnostic contrast agents 

together. This method, called as “theragnostic” allows cell-level treatment and 

diagnosis simultaneously.  NPs that are used for theragnostic purposes should be 

designed properly. There are five main variables of NPs for the design of a 

theragnostic purpose: type (chemical structure), shape, surface charge and 

concentration of NP solution.  

The data set for the SVR model is obtained from in-vitro nanoparticle-cell 

interaction experiments conducted by Nanomedicine Research Center. Three types of 

NPs were used for in-vitro nanoparticles-healthy cell interaction experiments: 

polymethyl methacrylate (PMMA), silica and polylactic acid (PLA).  All of those 

NPs were sphere-shaped. Two different diameter sizes (50 nm and 100 nm) were 
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used for silica and PMMA nanoparticles, and only one diameter size (250 nm) was 

used for PLA nanoparticles. For each type of nanoparticles two different surface 

charges were selected. For each type of nanoparticle, two different concentrations of 

NP solutions (0,001 mg/l and   0, 01 mg/l) were prepared for the experiments. 

Cellular uptake rate of NPs was measured at some specific times.  

In experiments, "3T3 Swiss albino Mouse Fibroblast" type of healthy cell set 

was used to interact with nanoparticles. Cells were incubated in medium containing 

10% FBS, 2 mm L-glutamine, 100 IU / ml penicillin and 100 mg / ml streptomycin 

at 37 °C with 5% CO2. After incubation, proliferating cells in the culture flask were 

passaged using PBS and trypsin-EDTA solution. Then, cells incubated for 24 hours 

were counted and placed on 96-well cell culture plates. After then, prepared solutions 

of NPs were added to those cell culture plates.  

Cells and nanoparticles interacted in in-vitro experiments by using 

micromanipulation systems in the labs established as a ''clean room'' principle. 

Transmission electron microscopy, spectrophotometric measurement methods, and 

confocal microscopy were used in order to observe NP-cell interactions and to obtain 

the data.  

There were 20 different configurations of NPs for these experiments. For Silica 

and PMMA NPs, 8 different configurations (50 or 100 nm, positive or negatively 

charged, 0.001 or 0.01 mg/l concentration); for PLA NPs 4 different configurations 

(250 nm, positive or negatively charged, 0.001 or 0.01 mg/l concentration) were 

created. Experiments were repeated six times for each configuration. In order to 
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determine NP-cell interaction behavior by time cell cultures were observed at 3, 6, 

12, 24, 36, and 48 hours of incubation. In order to find the cellular uptake efficiency 

of nanoparticles, the following steps were applied. Immediately after the incubation 

period, the number NP removed from the environment is calculated by washing the 

solution. Subtracting this number from the initially applied number of NPs gives the 

number of NPs adhered to the cell surface or penetrated into the cell. Then, by 

dividing this number to the initial number of NPs  cellular uptake efficiency is found.   

After conducting the above experiments, for 8 different configurations of Silica 

NPs, the experiments were repeated. In those experiments, measurements were taken 

at 1.5, 4, 9, 18, 30 and 42 hour of incubation in order to observe the process in time 

intervals of the first replication. Also, for two configurations of PMMA NPs (size of 

50 and 100 nm with concentration of 0.001 mg/l and positive surface charge), the 

experiments were repeated as in the first experiment set to check for the consistency 

of the results of the first replication. The raw data is graphically illustrated in 

Appendix.   
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Chapter 5 

 

Proposed Model 

In this research, we aim to model the cellular uptake rate of NPs of different 

qualities over time. For this aim, we use Support Vector Regression model, which is 

explained in Chapter 3. The proposed model is implemented in Matlab Programming 

Language.  

We fit a model for Silica, PMMA and PLA nanoparticles. Due to their different 

chemical structures, their interactions with cells show very different behavior from 

each other. The values of the input variables used in the study are given in Table 1.  

In order to apply SVR model on these data, surface charge of NPs is converted 

to numerical values. Before applying the model, data are scaled between 0 and 1 to 

increase the efficiency of SVR model. 
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Table 1:Input variables 

1. Input Variable Value 

2. Types of NPs PMMA, Silica, PLA  

3. Diameter size of NPs  
50 nm and 100 nm for PMMA and Silica 250 nm for PLA 

4. Surface charge of NPs Positive (1) and Negative (0) 

5. Concentrations of NPs 0,001 - 0,01 mg/l 

6. Incubation time  
0,3, 6, 12, 24, 36, 48 hours for PMMA, Silica and PLA 

0,1.5, 4, 9, 18, 30, 42 hours for silica 

 Output of the proposed SVR model is cellular uptake efficiency of NPs which 

is the only dependent variable of the experiments. Cellular uptake efficiency is the 

ratio of number of NPs over the cell surface or inside the cells to the initial number 

of NPs and calculated as follows: 

 

 Note that at time zero, for all type of NPs the cellular uptake rate is zero. 

Hence, the proposed SVR model should guarantee this property. Therefore, we use a 

modified version of SVR called weighted SVR that will satisfy the uptake rate will 

be zero at time zero [17].  
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Recall the objective function of (3.4). Instead of using a common penalty 

term C, we use a weight factor si for C for each data point i. Then we solve the 

following the quadratic problem, applying the same steps as in Chapter 3.  

   
 

 
|   |

 
  ∑   (     

 ) 
      

subject to      (        )                                      

   (        )         
                                    

                      
       and                                                               (5.1) 

By the help of this new formulation; cellular uptake prediction for time zero 

can be within Ɛ neighborhood of zero. We can achieve this result by making      

for data points where time is zero and    
 

                           
 for other data 

points. 

To construct the proposed SVR models for PMMA, Silica and PLA 

nanoparticles, first we need to determine the kernel that will be used for mapping 

data to a higher dimensional space in order to get nonlinear regression model. Dibike 

et al. [18] presented some results showing that Radial Basis Function (RBF) is the 

best kernel function to be used in SVM models. We use Gaussian Radial Basis 

Function (RBF) as kernel function.  

 (     )     (           
 )    

where,   is the parameter of the function and should be determined by the user. 

Smaller values of    give a smoother regression functions.   
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We should also determine the value of penalty term       ’s and   . The 

selection of the user-defined parameters has significant effects on the performance of 

the regression function. The best parameter set (  ,  ,  ) for a given problem is 

unknown. In the first step of this research, mean square error (MSE) is used as 

performance measure for different combinations of  parameters   (  ,  ,  ). However, 

the best parameter set selected according to MSE criterion resulted in overfits the 

data. Since SVR is problem and data dependent, selection of  the parameter values 

should be based on expert opinion. Our problem is related to living organisms and 

has complex structure. Moreover, data are obtained only for seven distinct hours over 

a 48-hours interval. Therefore, for each type of nanoparticles we made search  a grid 

of  (  ,  ,  ) 11*11*11=1331 models are presented to the choice of the experts. The 

best parameter sets were chosen based on the expert opinion.   

In Sections 5.1, 5.2 and 5.3 the proposed models for PMMA, Silica and PLA 

are given, respectively. In all given models, it is seen that there is a rapid entry of 

NPs into to the cell at the beginning of incubation periods. After some time, uptake 

rate decreases and then increases again and continues to fluctuate in this manner. 

Although general behavior looks similar, the overall behavior and uptake rates 

change with the characteristics of NPs.    
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5.1. Proposed Model and Results for PMMA NP 

For PMMA NP experiments, measurements were taken at 3, 6, 12, 24, 36, 48 

hours of incubation. For each experiment sets, there are 8 different combinations of 

PMMA NPs as in Table 2. The values of the parameters for SVR models were 

determined by expert opinions and are tabulated below. 

Table 2: Experimental groups of PMMA and Silica nanoparticles 

Group  Size Charge Density  

1  50 nm  (+)  0.001 mg/l  

2  50 nm  (+)  0.01 mg/l  

3  50 nm  (-)  0.001 mg/l  

4  50 nm  (-)  0.01 mg/l  

5  100 nm  (+)  0.001 mg/l  

6  100 nm  (+)  0.01 mg/l  

7  100 nm  (-)  0.001 mg/l  

8  100 nm  (-)  0.01 mg/l  

 

Table 3: Model parameters for PMMA NPs 

Parameter       (      )     

Value 71 71000 0.001 1.347 

Figures 2 and 3 show the hourly prediction values of the proposed models for 

PMMA NPs. Mean uptake rates for each configuration over 48 hours and their 

standard deviations are given in Table 4. Model gives a good fit with mean square 

error (MSE) 0.00244 and R-squared value 0.961. Results mostly show that 

negatively charged NPs have smaller standard deviations when size and 
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concentration are constant. Positively charged NPs show large fluctuations for 

PMMA NPs. Moreover, when sizes are same, high concentration (1/100 mg/l) has 

smaller standard deviations than low concentration (1/1000 mg/l) for negatively 

charged NPs.  

Table 4: Standard deviation of mean uptake rates for PMMA 

Type PMMA 

Size 50 100 

Charge 0 1 0 1 

Concentration 0.001 0.01 0.001 0.01 0.001 0.01 0.001 0.01 

Standard deviation 

of mean uptake 

rates  

0.218 0.110 0.166 0.134 0.132 0.060 0.348 0.232 

 

In order to understand the effect of 50 nm and 100 nm sizes for negatively 

charged PMMA, hypothesis testing for the difference between two means is applied. 

Therefore, we made 50 simulation runs that depend on our prediction model. Mean 

and standard deviations of 50 samples are calculated for each hour between 0 and 48. 

By the central limit theorem, since sample size is greater than 40, each sample is 

independent simple random sampling with approximately normal distribution.  We 

utilized from two-sample t-test to understand whether there is a significant difference 

between means or not.  The hypothesis is stated as follows: 

Null hypothesis: effects of 50 nm and 100 nm are same H0: μ1 = μ2   

Alternative hypothesis: effects of 50 nm and 100 nm are not same Ha: μ1 ≠ μ2 



27 
 

 

Data points                  Predictions                                   95% Prediction interval  

Figure 2: PMMA 50nm predictions 



28 
 

 

Data points                  Predictions                                   95% Prediction interval  

Figure 3: PMMA 100nm predictions
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Significance level is 0.05 for this analysis and degrees of freedom is n-1=49. t-score 

test statistic is calculated as   
 (     )   

  
 where    and    are the means of sample 

1 and 2,   is the hypothesized difference between population means and    is the 

standard error. Standard error is computed as   √(  
    ) (  

    )
 

 where    is 

the standard deviation of sample 1,    is the standard deviation of sample 2, and   is 

the size of sample 1, and   is the size of sample 2. 

We have a two tailed test; P(t<-2.01)=0.025 and P(t>2.01)=0.025 and we 

reject null hypothesis when P-value is less than the significance level. Null 

hypothesis is rejected when t-score is either smaller than -2.01 or greater than 2.01.  

Figures 4 and 5 show the hourly t-score values for negatively charged PMMA 

NPs. In low concentration case, P-value is less than the significance level only for a 

small portion of time. Therefore, there is no clear difference between 50 nm and 100 

nm NPs. In high concentration case, t-score is always more than 2.01, which shows 

that 50 nm NPs lead to higher uptake rate. When we consider the results for a 

targeted delivery system, it is reasonable to prefer negatively charged, 50 nm and 

high concentration of PMMA NPs since they result in high uptake rate show more 

stable behavior.  
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Figure 4: t-score of size difference ((-) Charged PMMA NPs, 0.001 Concentration) 

 

 

 

Figure 5: t-score of size difference ((-) Charged PMMA NPs, 0.01 Concentration) 
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5.2. Proposed Model and Results for Silica NP 

For Silica nanoparticles, the experiments were made at two distinct times 

with different incubation periods. In the first series of experiments, measurements 

were taken at 3, 6, 12, 24, 36, 48 hours of incubation. In the second series of 

experiments, measurements were taken at 1.5, 4, 9, 18, 30, 42 hours of incubation. 

For each experiment sets, there are 8 different combinations of Silica NPs as PMMA 

NPs given in Table 2.  

Since there are two different data sets obtained at different experiment series, 

we fit two different SVR model for Silica NPs and named as Silica I and Silica II 

models. The values of the parameters for SVR models were determined by expert 

opinions and are tabulated below.  

Table 5: Silica I and Silica II model parameters for Silica NPs 

Parameter       (      )     

Silica I Value 2000 2000000 0.002 0.15 

Silica II Value 189 189000 0.001 1 

Figure 6 and 7 show the hourly prediction values of the proposed models for 

Silica NPs. Silica I model has MSE=0.01 and R-squared value=0.88 whereas Silica 

II model has MSE=0.008 and R-squared value=0.915 as performance indicators of 

models.   
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Data points  1
st

 set                  Predictions  Silica I                                               95% Prediction interval  
Data points  2

nd
 set                 Predictions  Silica II                                              95% Prediction interval  

Figure 6: Silica 50nm predictions  
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Data points  1
st

 set                  Predictions  Silica I                                               95% Prediction interval  
Data points  2

nd
 set                 Predictions  Silica II                                              95% Prediction interval  

Figure 7: Silica 100nm predictions 
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Table 6: Standard deviation of mean uptake rates for Silica 

Type Silica (Model Silica I) 

Size 50 100 

Charge 0 1 0 1 

Concentration 0.001 0.01 0.001 0.01 0.001 0.01 0.001 0.01 

Standard deviation of 

mean uptake rates  
0.156 0.175 0.179 0.195 0.188 0.178 0.180 0.184 

Type Silica (Model Silica II) 

Size 50 100 

Charge 0 1 0 1 

Concentration 0.001 0.01 0.001 0.01 0.001 0.01 0.001 0.01 

Standard deviation of 

mean uptake rates  
0.200 0.201 0.188 0.198 0.181 0.179 0.165 0.180 

Mean uptake rates for each configuration over 48 hours and their standard 

deviations are given in table above. Silica NPs have higher uptake rates than PMMA 

NPs in general. We applied two-sample t-test for difference of 50 nm and 100 nm 

sizes of Silica NPs. Same procedure is followed as conducted for PMMA NPs.  For 

(-) charged NPs we fail to reject null hypothesis for all 0-48 hours interval since t-

scores are sometimes within the range (-2.01, 2.01). However, at other times t-scores 

are mostly less than -2.01 for both models. This shows that although we fail to reject 

the null hypothesis for whole interval, 100 nm size lead to high uptake rate for most 

of the time. Same deduction is valid for the (+) charged NPs in 0.001 concentration, 

because we fail to reject the null test for some parts of the interval and for other parts 

of the interval t-score is less than -2.01. For (+) charged NPs in 0.01 concentration, t-

scores are always greater than 2.01 for Silica II model and mostly greater than 2.01 

for Silica I model. This means that 50 nm size lead to higher uptake rate for (+) 
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charged, high concentration Silica NPs. It is also seen that uptake rates are greater for 

high concentration than low concentration  with constant NP size and charge. 

 

Figure 8: t-score of size difference ((-) Charged Silica NPs, 0.001 Concentration) for Silica I 

 

 

Figure 9: t-score of size difference ((-) Charged Silica NPs, 0.001 Concentration) for Silica II 

-14

-12

-10

-8

-6

-4

-2

0

2

4

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

t-score of size difference vs. hours 

-15

-10

-5

0

5

10

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

t-score of size difference vs. hours 



36 
 

 

 

Figure 10: t-score of size difference ((-) Charged Silica NPs, 0.01 Concentration) for Silica I 

 

 

Figure 11: t-score of size difference ((-) Charged Silica NPs, 0.01 Concentration) for Silica II 
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Figure 12:  t-score of size difference ((+) Charged Silica NPs, 0.001 Concentration) for  

Silica I 

 

 

Figure 13:  t-score of size difference ((+) Charged Silica II NPs, 0.001 Concentration) for 

Silica II 
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Figure 14: t-score of size difference ((+) Charged Silica NPs, 0.01 Concentration)  for    

Silica I 

 

 

Figure 15: t-score of size difference ((+) Charged Silica NPs, 0.01 Concentration) for    

Silica II 
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5.3. Proposed Model and Results for PLA NP 

 Different from Silica and PMMA experiments, only one type of size (250 nm) 

was used in the PLA experiments due to technical limitations. Measurements were 

taken at 3, 6, 12, 24, 36, 48 hours of incubation. Table 7 shows the combinations of 

PLA experiments.  

Table 7: Experimental groups of PLA nanoparticles 

Group Size Charge  Density  

1  250 nm  (+)  0.001 mg/l  

2  250 nm  (+)  0.01 mg/l  

3  250 nm  (-)  0.001 mg/l  

4  250 nm  (-)  0.01 mg/l  

As done above, the values of the parameters for SVR models were 

determined by expert opinions and are tabulated below. 

Table 8: Model parameters for PLA NPs 

Parameter       (      )     

Value 500 500000 0.001 0.0014 

Figure 16 shows the hourly prediction values of the proposed models for PLA 

NPs. PLA model performs a good fit with MSE and R-squared values found as 0.004 

and 0.915 respectively. Standard deviation of mean uptake rates of hours for PLA 

NPs is given in Table 9. PLA shows fluctuations fewer than both PMMA and Silica. 

However, average of mean uptake rates is less than Silica and more than PMMA.
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Data points                  Predictions                                   95% Prediction interval  

Figure 16: PLA predictions
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Table 9: Standard deviation of mean uptake rates for PLA 

Type PLA 

Size 250 

Charge 0 1 

Concentration 0.001 0.01 0.001 0.01 

Standard deviation of mean 

uptake rates  0.119 0.128 0.113 0.122 

 

Uptake rates in high concentration are larger than in low concentration. t-test 

is applied for the difference between means of uptake rates in high and low 

concentration to prove this result. t-scores for this test are always less than -2.01 

which means that high concentration leads to higher uptake rate.  

 
 
Figure 17: t-score of concentration difference ((-) Charged PLA NPs) 
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Figure 18: t-score of concentration difference ((+) Charged PLA NPs) 

 We also conducted t-test to see the effect of charge difference on uptake rate. 

However, we obtained t-scores that are either greater than 2.01 or between 0 and 

2.01. For low concentration, after sixth hour t-scores are always greater than 2.01;  

 
 
Figure 19: t-score of charge difference (0.01 Concentration PLA NPs) 
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Figure 20: t-score of charge difference (0.001 Concentration PLA NPs) 

this means that after six hours of incubation negative charged PLA NPs have higher 

uptake rates. For high concentration we cannot conclude a general result since t-

scores are sometimes higher than 2.01 and are sometimes lower.  
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Chapter 6 

 

Comparison and Discussion 

In this study, cellular uptake rate of nanoparticles is predicted through 

Support Vector Regression Model. There are also other mathematical studies that 

investigate the NP-cell interaction and predict the cellular uptake rate. Two studies 

were made by using the same data used in our models. Therefore, it would be 

beneficial to make a comparison among those studies and our study.  

Cenk [9] developed an artificial neural network model to predict the cellular 

uptake rate. Dogruoz [10] proposed a mixed effects model for the same purpose. 

Both studies use the same data, inputs and outputs of the models are as of our model. 

Predictions of our model, Cenk’s ANN model and Dogruoz’s mixed effects model 

are shown in Figures 21-30. All three studies suggest that different NP types have 

different interactions with cells.  For PLA NPs, our predictions show similar 

behavior with other models. However, at the beginning of incubation time the rapid 

entry into the cell is more obvious in Cenk’s study than Dogruoz’s and our study. For 

PMMA NPs, predictions are similar in all models, however, Cenk’s model has less 

fluctuation than our and Dogruoz’s model. For Silica NPs, Cenk uses the two 

different data sets in the same model without differentiating them. We should not 
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combine those data sets because they may be correlated since it can be thought that 

they come from different subjects. Therefore, our and Dogruoz’s models seem more 

appropriate at this point of view. Silica predictions of Cenk’s model generally fall in 

the region between our first and second Silica models predictions. Our Silica I model 

and Dogruoz’s first replication predictions are very similar. However, our Silica II 

model predictions are more fluctuating than Dogruoz’s second replication 

predictions.  

While our and Dogruoz’s models contain prediction intervals, Cenk provides 

confidence bounds in her model. It is more reasonable to compute prediction 

intervals because we want to know that where future predictions will fall in. Also 

Cenk’s model does not guarantee the prediction at time zero will be zero since at that 

time there is no penetration whereas this problem is solved in our and Dogruoz’s 

models. Another difference in those models is that while Cenk’s model 

mathematically guarantees that the predictions will fall in 0-1 range, our and 

Dogruoz’s models are not capable of this. In Cenk’s ANN model, she uses saturated 

linear transfer function for output layer which gives the output value between 0 and 

1. Actually this property should be satisfied since the uptake rate cannot exceed 1 or 

fall below 0. In fact, there is one way of doing that, which is transforming the data 

appropriately. We can use the following transformation for the data.        (
 

   
)  

where   is the actual uptake rate and   is the corresponding value after the 

transformation. Then, we can use   values for modeling and after modeling we can 

get the uptake rate predictions by transforming back as   
  

    . This technique will 
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mathematically guarantee that the uptake rate   predictions will be between 0 and 1. 

We tried this transformation for our study, but it did not give good results because 

SVR modeling is problem and data dependent. In our case, we have used only 7 

different time points and tried to develop a prediction model on 48 hours interval. 

Therefore, using log transformation technique gave meaningless results at some time 

points especially where we do not have data.  
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Our model,                      Data points               Predictions                                 95% Prediction interval  
Cenk’s ANN model,                                            Predictions                                 95% Confidence interval  

Figure 21: PLA predictions of our model and Cenk’s model  
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Our model,                      Data points               Predictions                                 95% Prediction interval  
Dogruoz’s mixed model,                                   Predictions                                 95% Prediction interval  

Figure 22: PLA predictions of our model and Dogruoz’s model  
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Our model,                      Data points               Predictions                                 95% Prediction interval  
Cenk’s ANN model,                                            Predictions                                 95% Confidence interval  

Figure 23: PMMA 50 nm predictions of our model and Cenk’s model  



50 
 

 

Our model,                      Data points               Predictions                                 95% Prediction interval  
Cenk’s ANN model,                                            Predictions                                 95% Confidence interval  

Figure 24: PMMA 100 nm predictions of our model and Cenk’s model  
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Our model,                      Data points               Predictions                                 95% Prediction interval  
Dogruoz’s mixed model,                                   Predictions                                 95% Prediction interval  

Figure 25: PMMA 50 nm predictions of our model and Dogruoz’s model  
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Our model,                      Data points               Predictions                                 95% Prediction interval  
Dogruoz’s mixed model,                                   Predictions                                 95% Prediction interval  

Figure 26: PMMA 100 nm predictions of our model and Dogruoz’s model  
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Our model Silica I,          Data points               Predictions                                 95% Prediction interval  
Our model Silica II,         Data points               Predictions                                 95% Prediction interval  
Cenk’s ANN model,                                            Predictions                                 95% Confidence interval  

Figure 27: Silica 50 nm predictions of our model and Cenk’s model  



54 
 

 

Our model Silica I,          Data points               Predictions                                 95% Prediction interval  
Our model Silica II,         Data points               Predictions                                 95% Prediction interval  
Cenk’s ANN model,                                            Predictions                                 95% Confidence interval  

Figure 28: Silica 100 nm predictions of our model and Cenk’s model  
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Our model Silica I,                                               Data points               Predictions                                 95% Prediction interval  
Our model Silica II,                                              Data points               Predictions                                 95% Prediction interval  
Dogruoz’s mixed model - 1st replication,                                           Predictions                                 95% Prediction interval  
Dogruoz’s mixed model - 2nd replication,                                          Predictions                                 95% Prediction interval  

Figure 29: Silica 50 nm predictions of our model and Dogruoz’s model  
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Our model Silica I,                                               Data points               Predictions                                 95% Prediction interval  
Our model Silica II,                                              Data points               Predictions                                 95% Prediction interval  
Dogruoz’s mixed model - 1st replication,                                           Predictions                                 95% Prediction interval  
Dogruoz’s mixed model - 2nd replication,                                          Predictions                                 95% Prediction interval  

Figure 30: Silica 100 nm predictions of our model and Dogruoz’s model 
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Chapter 7 

 

Conclusion 

For the treatment of many diseases such as cancer, researchers have a focus on 

targeted drug delivery systems. The main objective of this treatment method is to 

treat only cancer cells of the body. Nanoparticles are used in those systems, to kill or 

treat the cancer cells by therapeutic agents. The main advantage of those systems is 

high efficacy of treatment can be provided without harming the healthy cells of the 

body. Therefore, investigation of nanoparticle-cell interaction is important for 

targeted drug delivery systems.  

The uptake rate, which is the ratio of the NPs adhered to the cell surface or 

entered in the cell, is affected by the chemical structure, diameter size, surface charge 

and concentration of NPs and incubation time. Since all the possible NP 

characterization cannot be tested experimentally to find the ideal NP 

characterization, we build a mathematical model.  

This study develops a modified SVR model for the prediction of uptake rates 

of NPs. Predictions are made every half an hour between 0 and 48 hours. Type of the 

nanoparticles have a big effect on the uptake rates. Silica nanoparticles have higher 
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uptake rates than PMMA and PLA nanoparticles. Negatively charged NPs have more 

stable uptake rates than positively charges NPs. Also, negative surface charge is an 

effective factor on uptake rate of PMMA nanoparticles. Uptake rates of PLA and 

Silica are lower in low concentration (1/1000) than in high concentration (1/100).  

By the time this study finished, Cenk’s ANN model and Doğruöz’s Smoothing 

Splines Mixed Effect model studies were the only two studies that use the same 

factors to model the NP-cell interaction.  In future work, these studies can be 

expanded by using different modeling tools. Moreover, NP-cancer cell interactions 

could be investigated via SVR modeling. In addition, in vivo-experiments could be 

conducted and SVR modeling approach can be a useful tool to understand the NP-

cell interactions.      
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Appendix A.1 

Silica Nanoparticle Raw Data 
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Appendix A.2 

PMMA Nanoparticle Raw Data 
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Appendix A.3 

PLA Nanoparticle Raw Data 

 


