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ABSTRACT 

HUB LOCATION UNDER COMPETITION  

 

Ali İrfan Mahmutoğulları 

M.S. in Industrial Engineering 

Supervisor: Assoc. Prof. Bahar Yetiş Kara 

July 2013 

Hubs are consolidation and dissemination points in many-to-many flow networks. The 

hub location problem is to locate hubs among available nodes and allocate non-hub 

nodes to these hubs. The mainstream hub location studies focus on optimal decisions of 

one decision-maker with respect to some objective(s) even though the markets that 

benefit hubbing are oligopolies. Therefore, in this thesis, we propose a competitive hub 

location problem where the market is assumed to be a duopoly. Two decision-makers (or 

firms) sequentially decide the locations of their hubs and then customers choose the firm 

according to provided service levels. Each decision-maker aims to maximize his/her 

market share. Having investigated the existing studies in the field of economy, retail 

location and operation research, we propose two problems for the leader (former 

decision-maker) and follower (latter decision-maker): (r|Xp) hub-medianoid and (r|p) 

hub-centroid problems. After defining them as combinatorial optimization problems, the 

problems are proved to be NP-hard. Linear programming models are presented for these 

problems as well as exact solution algorithms for the (r|p) hub-centroid problem that 

outperform the linear model in terms of memory requirement and CPU time. The 

performance of models and algorithms are tested by the computational analysis 

conducted on two well-known data sets from the hub location literature.  

Keywords: Hub location, competition models, competitive location. 
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ÖZET 

REKABET ORTAMINDA ADÜ YER SEÇİMİ PROBLEMİ 

 

Ali İrfan Mahmutoğulları 

Endüstri Mühendisliği Yüksek Lisans 

Tez Yöneticisi: Doç. Dr. Bahar Yetiş Kara 

Temmuz 2013 

Ana dağıtım üsleri (ADÜ) her noktadan diğer her noktaya akışın olduğu ağlarda toplama 

ve dağıtma noktalarıdır. ADÜ yer seçimi problemi, ADÜ’lerin yerlerinin belirlenmesi ve 

ADÜ olmayan noktaların bu ADÜ’lere atanması olarak tanımlanmaktadır.ADÜ’lerin 

kullanıldığı sektörlerde çok sayıda firma rekabet halinde olsa da ana akım ADÜ yer 

seçimi çalışmaları tek karar vericinin amaç fonksiyonları üzerinde yoğunlamıştır. Bu 

tezde iki karar vericinin olduğu bir ADÜ yer seçimi problemi incelenmiştir. Karar 

vericiler sırayla ADÜ yerlerini seçmekte ve müşteriler sağlanan hizmet seviyelerine göre 

bunlardan birini tercih etmektedir. Karar vericiler kendi pazar paylarını enbüyüklemeye 

çalışmaktadır. Ekonomi, perakende yer seçimi ve yöneylem araştırması alanlarındaki 

çalışmalarının incelenmesinin ardından lider (ilk karar verici) ve takipçi (sonraki karar 

verici) için iki farklı problem tanımlanmıştır. Problemler kombinatoriyal eniyileme 

problmeri olarak tanımlanmış ve karmaşıklık sınıflarının NP-zor olduğu ispatlanmıştır. 

Bu problemler için doğrusal modeller sunulmuştur. Ayrıca takipçinin problemi için 

doğrusal modelden daha az bilgisayar hafızası ve çalışma süresine ihtiyaç duyan kesin 

çözüm algoritmalar geliştirilmiştir. Modeller ve algoritmaların performansı ADÜ 

çalışmalarında sıkça kullanılan iki veri kümesi üzerindeki sayısal çalışmayla 

incelenmiştir.    

Anahtar sözcükler: ADÜ yer seçimi, rekabet modelleri, rekabet ortamında yer seçimi.  
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Chapter 1  

 

Introduction 

Hubs are consolidation and dissemination points in many-to-many flow network 

systems. Consolidation generates economies of scale and thus unit transportation cost is 

reduced between hubs. Hubbing also reduces the number of required links to ensure that 

each flow is routed to its desired destination. Many applications benefit from hub 

networks such as airline, cargo and telecom industries. Hub location problem is deciding 

the location of hubs and allocation of non-hub nodes to the hubs with respect to a given 

allocation structure and an objective such as minimizing the system-wide operating cost.  

The facility location literature can be categorized into three groups regarding decision 

space of the problem. Planar models assume that demand points (or customers) are 

spread over a plane. The facilities can be located anywhere on this plane. In network 

models, demand points are regarded as nodes of a graph and facilities can be located on 

nodes or edges. The third category is discrete models where both demand points and 

available sites for facilities are nodes of a graph. The majority of hub location literature 
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falls into discrete facility location category due to practical reasons in cargo, air 

transportation and telecommunication.  

Today, many industries are ruled by a few numbers of competing firms. Such a market is 

called as an oligopoly (from Greek words oligoi: few and  polein: to sell). Hence, market 

share and profit of a firm is affected by the decision made by itself and other competitors 

in the market. Also, customer behavior is another concern in oligopolistic markets. 

Market share is affected by the criteria that customers prefer one firm among others. 

Competition in oligopolies has been studied by economists to observe optimal decisions 

(including location) of each competing firm. However, studies considering competition 

in hub networks are rare in the literature.  

Widely speaking, the hub location problem is to determine the location of hubs with 

respect to a given objective (or at least two objectives in existence of multi-objective 

optimization problems). A single decision-maker can determine the locations of hubs 

depending on the parameters: amount of flow and cost of distance between each pairs of 

nodes, interhub transportation discount factor, allocation strategy (single- or multi-

allocation and structure of the network (incomplete, star network etc.). However, in a 

competitive environment a decision-maker should also consider the decisions made by 

his/her rivals and the preference of customers. In this study, we consider a duopolistic 

market -a special case of oligopoly- where the number of operating firms is two. The 

one who makes the location decision formerly is called as the leader and the other one is 

the follower. 

Then by combining retail location from marketing, spatial competition in economics and 

location theory in operations research, in this thesis, we propose a discrete Stackelberg 

hub location problem where each firms makes decisions sequentially. Each decision-

maker (or firm) decides the location of hubs and allocation of non-hub nodes to the hubs 

considering market share maximization.   
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Chapter 2 presents competitive location and hubbing in the literature. In chapter 3, we 

propose (r|Xp) hub-medianoid and (r|p) hub-centroid problems as combinatorial 

optimization problems. In chapters 4 and 5, mathematical models, complexity results, 

solution techniques and computational experiments for (r|Xp) hub-medianoid and (r|p) 

hub-centroid are presented, respectively. Finally, a general discussion and possible 

future researches related with these competitive hub location problems are discussed in 

Chapter 6.   
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Chapter 2  

 

Competitive Location and Hubbing in 

the Literature   

In this chapter, we present the literature of competition in economics, competitive 

location models and hub location problem. Then, we investigate hub location studies in 

which competition is considered. 
2.1 Competition in Economy & Competitive Location Models  

Competitive models in economy date back to 19
th

 century. The book Recherches sur les 

principes mathématiques de la théorie des richesse (Researches into the Mathematical 

Principles of the Theory of Wealth) published in 1838 by Cournot is the pioneering 

study in the competition in economics [1]. Cournot, a French economist, considers two 

competing firms operating in the same market.  The firms decide the amount of 

production of a single product. The demand of the product is not known a priori and 

depends on the total amount of production. Hence, the profit of a firm depends on the 

amount of production made by itself and the competitor firm. Following Cournot’s 
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A B 

study, another French economist Bertrand considers a duopoly model where the 

competitors decide the price of a single product in Theorie mathematique de la richesse 

sociale (Mathematical theory of social wealth) published in 1883 [2]. In Bertrand’s 

model the total demand is known before the decisions and each of the firms aims to 

maximize its market share or equivalently its total revenue. He considers that each 

customer prefers the firm that offers lower price to the product.  

Hotelling presents first competitive model that includes location decisions in 1929 [3]. 

He considers the location and price decisions of two ice cream vendors operating on a 

beach. Each customer prefers the vendor that offers lower cost. Cost function includes 

the price of the ice cream and a linear function of transportation. The demand is assumed 

to be uniformly distributed on a line segment.  

 

 

 

 

 

Figure 2-1 is an illustration of Hotelling’s model. The “Y-shaped” functions indicate the 

cost of buying the ice cream form the vendors A and B. The region between the locations 

of A and B is called as competitive region. The segment that is located on the LHS of 

vendor A is called A’s hinterland. Similarly, the segment located on the RHS of the 

location of B is called as B’s hinterland.  The dashed line indicates the point where 

customers are indifferent between both vendors. The customers located in the hinterland 

of A and LHS of the dashed line in the competitive region prefers the vendor A. Moving 

A’s position towards to B will increase its market share since A’s hinterland increases. 

Figure 2-1: Hotelling's model on a line segment  
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Similarly, B has incentive to move towards A. The solution of Hotelling’s model is 

found as location of both vendors clusters at the center of the market with equal prices. 

At this equilibrium point, each vendor captures half of the market.  

Hotelling’s pioneering work attracted many researchers. Later, Lerner and Singer 

consider the same model with more than two competitors [4], Smithies considers 

different customer behaviors [5], and Eaton and Lipsey investigate the equilibrium point 

on a plane rather than a line segment [6].  

In duopoly models presented by Cournot, Bertrand and Hotelling, the decisions of the 

two firms are made simultaneously. Solutions to these kinds of simultaneous decisions 

are called as Nash equilibrium (sometimes called as Cournot-Nash equilibrium), after 

John F. Nash’s great contributions to Game Theory [7]. A Nash equilibrium is a decision 

vector of all decision-makers where no one can achieve a better objective by changing 

his/her decision given that other decision-makers do not deviate from their current 

decisions.  

Another streamline research in competitive models deals with not simultaneous but 

sequential decision making process. The preliminary work of sequential decision making 

of location is first proposed in Stackelberg’s book Grundlagen der theoretischen 

Volkswirtschaftslehre (The Theory of Market Economy) published in 1943 [8]. Since 

sequential decision making results in an asymmetry between decision makers, we need 

to differentiate the identities of decision makers. Stackelberg considers a duopoly where 

the firm that makes the initial decision is called the leader and the other one as the 

follower.  Stackelberg’s model has three major assumptions: 

 Decisions are made once and for all.  

 Decisions are made sequentially. 

 The leader and the follower have full and complete knowledge about the system. 
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If leader’s decisions are given, the follower’s decisions are made while optimizing 

his/her own objective. These decisions are called as reaction function of the follower. 

Since both parties have the complete information of the system, the leader observes the 

reaction function of the follower. Hence, leader gives the decisions based on this 

reaction function. These leader-follower situations can be modeled as bilevel 

optimization problems. Bilevel optimization models consider the follower’s reaction 

function as an input to the leader’s decisions. Bard [9] and Dempe [10] give detailed 

discussion on bilevel programming models and solution techniques.  

Teitz is the first non-economies scholar who studies sequential location on a line 

segment in 1968 [11]. His findings are similar to Hotelling’s observations. Moreover, 

Teitz considers the extension of Hotelling’s model by allowing that each decision maker 

locates more than one facility. First, Tietz proposes a sequential location model, where 

one firm, say A, locates two facilities, but the other firm, say B, locates only one facility. 

The decisions are made by based on short-term maximum gain (referred as 

“conservative maximization” by Tietz) and continue until equilibrium point is found.  A 

moves first and relocates one of his/her facilities, and then B moves and relocates his/her 

facility. Later, A relocates, then B and so on ad infinitum. Tietz claims that in such a 

model the equilibrium point is clustering at the center where at each turn the order of 

facilities change (for example AAB, ABA, BAA, ABA). At this dancing equilibrium point, 

A gets ¾ of the market where B’s share is ¼. Tietz generalizes his results for the case 

where A has n facility and B has only one. Then, in resulting equilibrium, A gets (2n-

1)/2n of the market. 

Although sequential location models have been studied by economists until 1980s, this 

topic also attracted OR specialists attention. Some predate works were proposed by 

Wendell and Thorson [12]; Slater [13]; Wendell and McKelvey [14]; and Hansen and 

Thisse [15].  
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Drezner [16] and Hakimi [17] independently propose sequential location problems with 

an OR point of view and attracted the community’s attention in 1982 and 1983, 

respectively. They both consider the same competitive environment but decision space is 

the only difference in their studies. While Drezner considers the decision space as a 

plane, Hakimi deals with network models. Their problem includes a number of 

customers with inelastic demand, that is, the amount of demand of each customer is 

known a priori and does not affected by the decisions of leader and follower. The 

customers prefer the closest facility to buy a homogenous product. The decision-makers 

act sequentially, first leader locates p facilities and then the follower locates r facilities.  

In order to describe Drezner and Hakimi’s contributions, following conventions are 

necessary. Assume that n customers (or demand points) are located on points 

V={v1,v2,…,vn}. The demand of customer i is w(vi). Let D(v,z) = min{d(v,z) : z ∈ Z} 

where d(v,z) is the distance between v and z for any subset of points Z ⊆ V. The distance 

between two points is Euclidean distance in two-dimensional plane and the shortest path 

on a network. Assume that the leader’s and follower’s facilities are located on the set of 

points Xp={x1,x2,…,xp} and Yr={y1,y2,…,yr} respectively. A customer vi prefers the 

follower if D(vi,Yr) < D(vi,Xp). Then, the demand captured by the follower can be 

defined as  (  |  )  ∑                         . 

Assume that the leader has already been operating with facilities located on Xp. Then, 

(r|Xp) medianoid is the set Yr* such that W(Yr*|Xp) ≥ W(Yr|Xp) for all sets of follower’s 

possible facility locations Yr. (r|Xp) medianoid is the optimal set of facility locations for 

the follower to capture the highest market share given Xp. 

Similarly, (r|p) centroid is the set Xp* such that W(Yr*(Xp*)|Xp*) ≤ W(Yr*(Xp)|Xp) for all 

sets of the leader’s possible set of facility locations Xp where Yr*(Xp) is the (r|Xp) 

medianoid given Xp. (r|p) centroid is the optimal set of facility locations for the leader to 
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capture the highest market share under the realistic assumption that the follower will 

respond by (r|Xp) medianoid. 

Drezner initially considers a Stackelberg location model where both leader and follower 

locate one facility each, that is p = 1 and r = 1. Figure 2-2 is an example of Drezner’s 

model. The demand points are marked with dots on the plane and the leader and the 

follower located their facilities on point X and Y, respectively. Draw the hyperplane that 

is perpendicular to the line segment connecting X and Y at the center of the segment. 

Since customers prefer the closest facility, customers that are on the same half-plane 

with X prefer the leader and the remaining ones prefer the follower. Then, if X is given, 

the follower prefers a location Y that is as close as possible to X so as to capture more 

customers. Hence, the optimal location for the follower’s facility can be searched at the 

points that are infinitesimally close to X.  

 

Figure 2-2: An example of Drezner’s model when p = 1 and r = 1 

Since the demand points are finite, Drezner presents an algorithm that find the (1|X1) 

medianoid in O(n log n) time. His algorithm is based on sorting the total amount of 

demand captured by the follower rotating the position of Y along a circle with center X 

and an infinitesimal radius. The (1|1) centroid problem is more challenging. Realizing 

the follower’s optimal response the leader positions X so as to maximize his/her market 

share. Drezner provided an O(n
4
 log n) algorithm for the leader’s problem that utilizes 
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the intersections of hyperplanes for all pairs of demand nodes. Drezner did not study the 

cases where p > 1 and r > 1. He provided that when p = 1 and r > 1, the (r|p) centroid is 

on the node with highest demand since the follower can sandwich the leader’s location. 

He also proposed an O(n
2
 log n) algorithm to solve for (r|p) centroid when p >1 and r = 

1. 

Hakimi proposes medianoid and centroid problems on a network rather than in a plane 

[17]. He first tries to find general properties of medianoid and centroids by working on 

some illustrative examples. Hakimi realizes that the centroid problem can be considered 

as a minimax problem since the leader aims to minimize the amount of demand captured 

by the follower. However, center and centroid do not necessarily coincide. In Figure 2-3, 

each node has same demand value. The point A is 1-center of the tree, but not (1|1) 

centroid.  Moreover, the point B is a (1|1) centroid, but not a 1-center. 

 

Figure 2-3: An example where 1-center and 1-centroid do not coincide 

Hakimi also investigates the existence of node optimality of medianoid. His findings 

also reveal that a medianoid is not necessarily to be a node on the network. In figure 2-4, 

the leader has already located a facility at one of the edges of an equilateral triangle 

where the total demand is equally distributed over the vertices. Then, the follower can 

capture the two-third of the total demand by locating a facility at the center of the side 

that is opposite to X1.  

A B 
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Figure 2-4: An example where a 1-medianoid is not an vertex 

 

Hakimi cannot find special characteristic of centroids and medianoids. He only proposed 

that a 1-centroid of a tree network coincides with 1-median. Later, Hakimi proves for the 

proportional demand case where the leader and the follower proportionally capture the 

demand of a customer with respect to distance, node optimality exists [18].  

Hakimi later proves that both centroid and medianoid problems are NP-hard. His proofs 

are based on reduction of the dominating set problem and the vertex cover problem to 

finding (r|X1) medianoid and (1|p) centroid problems, respectively.  

Drezner and Hakimi’s influential works attracted many academicians attention in the last 

three decades. However, most of the studies focus on the medianoid problems since 

centroid problem is still challenging. ReVelle propose an integer programming 

formulation for the discrete medianoid problem [19]. His formulation, namely 

MAXCAP, is based on the maximization of the total demand captured by the follower. 

In his model, the follower choses p facilities among the set of possible sites J. The 

follower captures the whole demand ai of node i ∈ I if he/she can provide a strictly better 

service level than the follower. If both decision-makers have same service level for a 

customer demand is shared equally between both firms. The decision variables used by 

ReVelle: 

X1 Y
1
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yi = 1 if some server is closer to i than its previous closest server for i ∈ I, and 0 

otherwise; 

zi = 1 if node i is captured by a server within Ki, that is , at the currently closest server to 

i or at a site whose distance from i is equal to the distance from i to its currently closest 

server for i ∈ I, and 0 otherwise; 

xj = 1 if a facility is sited at j ∈ J, and 0 otherwise; 

The MAXCAP model is as follows: 

maximize  ∑    

 

 ∑        
 

 (2.1) 

subject to    ∑            

 ∈  

  (2.2) 

    ∑            

 ∈  

  (2.3) 

                      (2.4) 

 ∑  
 

   (2.5) 

          ∈ {   }                 (2.6) 

where Ni is the subset of possible sites that are strictly closer to the demand point i than 

the closest facility of the leader. Similarly, Ki is the subset of possible sites that are 

equally close to the demand point i with the closest facility of the leader. The objective 

(2.1) maximizes the captured demand where constraints (2.2), (2.3) and (2.4) determine 

whether the demand is totally captured, partially captured or lost. Constraints (2.5) limit 

the number of opened facility to p. Constraints (2.6) are domain constraints. 

Later, Eiselt and Laporte extend the MAXCAP formulation by introducing attraction 

functions [20]. Serra et al. [21], and Serra and Colome [22] solve the MAXCAP model 
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for partial demand preferences. Later, Benati addresses the sub-modularity of the 

objective function of MAXCAP [23], and Benati and Hansen demonstrates that the 

problem can be modeled as a p-median type problem [24]. 

For centroid models that are more challenging than medianoid not so many results are 

obtained so far. Most remarkable work is proposed by Hansen and Labbe [25]. They 

propose an algorithm that solves (1|1) centroid problem in polynomial time. The 

algorithm runs in O(n
2
m

2
 log mn log D) time where n is the number of nodes, m is the 

number of edges and D is the total demand on the network. For p,r > 1 no algorithm is 

available that runs efficiently. Serra and ReVelle propose two heuristic methods based 

on the response of the follower for every action of the leader [26].  

An interested reader may refer to surveys by Eiselt and Laporte [27] and Daşçı [28] for a 

detailed discussion for competitive location problems.  

2.2 Hub Location Problem 

Hubs are special kinds of facilities that are consolidation and dissemination points in 

many-to-many flow network systems. The flow originating from a point visits one or 

two hubs before arrival its destination. Since the links between hubs carry high volume 

of flows, economies of scale is generated on these hubs links and transportation cost (or 

time) attribute is discounted by a factor α (0 ≤ α ≤ 1).  

The hub location problem is to decide locations of hubs and allocations of non-hub 

nodes to the hubs to optimize a given objective. Two different allocation strategies are 

considered in the hub location literature. In single-allocation models, the whole 

incoming and outgoing flow of a node is transferred via a single hub. In multi-allocation 

case different hubs can be used for transferring the flow of a node.  

Figure 2-5 gives an example of cost structure in a hub network where squares indicate 

hubs. Flow from node i to node j first visits the hub to which node i is allocated, say k. 
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Then, the flow is sent to destination’s hub, say m and finally to the destination which is 

node j. The total cost of sending one unit of flow from origin to destination consists of 

collection, transfer and distribution costs where interhub transfer cost is discounted. In 

the example depicted in Figure 2-5 cost of sending one unit of flow from node i to node j 

is equal to cik + αckm+ cmj .  

 

Figure 2-5: Cost structure in a hub network 

 

O’Kelly presents the hub location problem where the system-wide transportation cost of 

the network is minimized by locating p hubs in a single-allocation structure (This 

problem is later referred as single allocation p-hub median problem) [29,30].  

O’Kelly also proposed the first mathematic formulation of the single-allocation p-hub 

median problem [31]. Define xik as 1 if node is allocated to hub k and 0, otherwise. If a 

hub is located at node k, then xkk = 1. With these parameters and decision variables, 

O’Kelly proposes his model as follows: 

minimize  ∑∑   (∑      
 

 ∑      
 

  ∑∑         
  

)

  

 (2.7) 

subject to            ∑              

 

  (2.8) 

i j 

k m 

𝑐𝑖𝑘 

𝛼𝑐𝑘𝑚 

𝑐𝑚𝑗 
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 ∑               

 

 (2.9) 

 ∑       

 

 (2.10) 

    ∈  {   }                 (2.11) 

  

The quadratic objective (2.7) minimizes the total collection, distribution and transfer 

cost of the system. Constraint (2.8) ensures that a node is not allocated to a non-hub 

node.  Constraints (2.9) guaranties that each node is allocated to a single hub. The total 

number of hub to be opened is p, as in constraint (2.10). Constraint (2.11) is the binary 

constraint. Constraint (2.8) can be replaced with the following corresponding constraint.  

                         (2.12) 

Campbell proposes the first linear formulation for the single allocation p-hub median 

problem with n
4
+n

2
+n variables of which n

2
+n are binary and n

4
+2n

2
+n+1 constraints 

[32]. Later Skorin-Kapov et al. provides a new linear model with n
4
+n

2
 variables of 

which n
2
 are binary and 2n

3
+n

2
+n+1 constraints [33]. Their model is as follows: 

minimize  ∑∑∑∑        (            )

    

 (2.13) 

subject to (2.9)-(2.12)  

 ∑                    

 

         (2.14) 

 ∑                    

 

         (2.15) 

                             (2.16) 

where xijkm is the fraction of flow from node i to node j that is transferred via hubs k and 

m in that order.  
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Ernst and Krishnamoorthy model the single allocation p-hub median problem as a multi-

commodity flow problem [34]. Their formulations require n
3
+n

2
 variables of which n

2
 

are binary and 2n
2
+n+1 constraints. The formulation is as follows:  

minimize  ∑∑               

  

 ∑∑∑       
 

   

 (2.17) 

subject to (2.9)-(2.12)  

 ∑   
 

 

 ∑   
 

 

       ∑                      

 

 (2.18) 

    
                       (2.19) 

where    
  is the amount of flow originating from node i and visits hubs k and l in that 

order.   and   are unit collections and distribution costs, respectively. Constraint (2.18) 

is the flow balance constraint that ensures that each flow is transferred to its destination 

via one or two hubs. 

The single allocation p-hub median problem is NP-hard. Kara proves that even if the 

hub locations are given, the remaining allocation decisions are still cannot be solvable 

with an algorithm that runs in polynomial time [35]. Since the problem is NP-hard, 

heuristics are widely used to come up with a promising solution to the single allocation 

p-hub median problem such as [31].  

The multi-allocation p-hub median problem has also attracted attention. Campbell 

presents the first multi allocation hub model [36]. His formulation is as follows:  

minimize  (2.13)  

subject to (2.10),(2.11) and (2.16)  

 ∑∑                       

  

 (2.20) 

                                 (2.21) 
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                                 (2.22) 

Campbell also states that in absence of capacity each xijkm has a value of 0 or 1 since 

each flow travels the least cost path through opened hubs. Later, Skorin-Kapov develop 

a linear model with n
4
+n variables of which n are binary and 2n

3
+n

2
+1 constraints by 

aggregating constraints (2.21) and (2.22) [33]. Ernst and Krishnamoorthy model the 

multi-allocation p-hub median problem based on the idea that they use for the single-

allocation version of the problem [37]. Their model requires 2n
3
+n

2
+n variables of 

which n are binary and 4n
3
+n+1 constraints.  

Some heuristic models are also improved to solve multi-allocation p-hub median 

problem. Some examples are can be found in the studies proposed by Campbell [38], 

Ernst and Krishnamoorthy [37], and Boland et al. [39].  

Although hub location problem under median objective constitutes the main streamline 

of the literature, other types of objectives are also investigated by the researchers. 

Another channel of research on hub location problem is the hub location problem with 

fixed costs. In the structure of the problem the number of hubs to be opened is 

exogenous. The constraint on the number of hubs - constraint (2.10) - is removed and a 

fixed cost of opening a hub at node k, say fk, is included in the objective function. 

O’Kelly [40] and Campbell [36] propose mathematical models for the hub location 

problem with fixed costs where capacities of hubs are ignored. The capacity constraints 

can be included in hub location problem with fixed costs to ensure that the total flow 

throughout a hub does not exceed a threshold value. Campbell [36] and Aykin [41] 

present mathematical models for the capacitated version of the problem. 

In some applications of hub networks, for example in cargo applications where the cargo 

should be delivered within a 24-hours period, not only the cost but also service levels are 

considered. The p-hub center problem is to locate p hub on a network to ensure that the 
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distance or cost between the most disadvantageous pair of nodes does not exceed a given 

cover radius.  

Campbell proposes the first linear model for the hub location problems with center-type 

objectives [32]. Kara and Tansel prove that the p-hub center problem is NP-hard by 

using reduction from the dominating set problem [42]. They also propose different 

mathematical models for the model. Later, Ernst et al. provide a new formulation for the 

p-hub center problem based on the value of maximum collection/distribution distance 

between a hub and a non-hub node [43].  

Hub covering problem is another version of the hub location problem. There are two 

types of hub covering problem: Hub set covering problem and maximal hub covering 

problem. Hub set covering problem is to minimize the number of hubs to be located by 

ensuring that the distance or cost between each O-D pair does not exceed a given 

threshold value. On the other hand, maximal hub covering problem is to maximize the 

total demand that are covered by a given number of hubs.  

Campbell is the first researcher who presents mathematical models for different types of 

hub covering problem [32]. After his contribution, Kara and Tansel study single 

allocation hub set covering problem and propose three different linearizations of the 

problem [44]. They also worked on the complexity of the problem and conclude that the 

problem is NP-hard. Later, Ernst et al. provide new formulations of the problem based 

on the idea that they use for the p-hub center problem [45].  

An interested reader may refer to surveys by Campbell et al. [46], Alumur and Kara [47] 

and Kara and Taner [48] for a detailed discussion of hub location problems. 

2.3 Hub Location with Competition  

Although the competition in location decisions has been studied in detail, competitive 

hub location studies in the literature are rare. The first hub location problem with 
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competition is proposed by Marianov et al. [49]. They propose mathematical models for 

the follower’s problem where the leader has already been operating the market with 

existing hubs. First, they assume that the follower will capture the whole demand 

between nodes i and j if he/she can provide a better or equal service level than the 

leader. The idea is based on defining a capture set  Nij = {(k,l) : cik +αckm +clj  ≤ Cij} for 

all pair of nodes i and j where Cij is the current service level provided by the leader. The 

number of hubs to be opened by the follower is restricted by p. However, they relax this 

assumption by redefining the objective function as the total profit made by captured flow 

and the fixed cost of opening a hub.  

They also consider proportional capture levels instead of all-or-nothing type capture. For 

example, they assume that the leader capture half of the flow between nodes i and j if 

his/her service levels is between 0.9Cij and 1.1Cij, three-fourth of the flow if his/her 

service levels is between 0.7Cij and 0.9Cij and captures the whole flow if his/her service 

level is less than 0.7Cij. Then, the capture sets are redefined as Nij
50

, Nij
75

 and Nij
100

 for 

the capture levels 50%, 75% and 100%. The mathematical model is provided for the 

proportion capture case by triplicating the capture variables and constraints. However, 

due to large number of constraints and variables it is hard to get an optimal solution 

within reasonable time. 

The authors propose a meta-heuristic to solve the problem on AP data set. The heuristic 

consists of three steps. First, an initial solution is generated by opening hubs based on 

the marginal improvements obtained by opening a hub at a specific node. Later, a 

heuristic is used to improve the objective by relocating one hub at each iteration. Finally, 

to prevent the trap on a local optimal a tabu-search heuristic is used. The efficiency of 

the heuristic is tested by the randomly generated instances and AP data set with 20, 25, 

40 and 50 nodes. They point out that the heuristic yields an optimal solution in most of 

the instances within seconds. It is also stated that, the LP relaxation of the model and the 
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branch and bound technique does not yield a fast solution even if the number of nodes is 

20.  

Wagner criticizes the study by Marianov et al. on his note [50]. Wagner states that the 

capture sets should be redefined since the follower captures the whole demand in case of 

a tie when all-or-nothing type capture is considered. When the number of hubs to be 

opened is equal to the number of existing hubs the follower can get the whole market by 

location the hubs at the location of existing hubs. Then, Wagner proposes a new capture 

set where the follower gets nothing in case of equal service levels. Wagner was also able 

to solve the model optimally up to 50 nodes by eliminating some redundant routes that 

visit two hubs.  

Sasaki and Fukushima propose a new kind of competitive hub location model where the 

decision space is a plane [51]. The route between any O-D pair on the plane visits only 

one hub. First, a big firm locates one hub, and then several medium size firms locate 

their hubs. There is no competition between medium size firms. They state that the 

problem has a Stackelberg model due to its sequential decision structure.  

Sasaki and Fukushima uses logit functions for customer preferences to express the 

proportional capture in their model. They initially model the problem as a bilevel 

program and use sequential quadratic programming approach that updates the Hessian 

at each iteration to solve the problem. They conduct computational experiments on CAB 

data set and conclude that the big firm gets the highest market share with the advantage 

of first move.  

Sasaki applies the same idea in the study by Sasaki and Fukushima to a discrete 

environment with some modifications [52]. Her model includes two decision-makers: 

one leader and one follower. The leader and the follower locate p and q hubs on the 

network, respectively. The capture rule of the customer is similar to their previous study 

and each route contains one hub again. In her new problem environment, Sasaki also 
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considers a threshold value of the captures amount of flow. Her solution methods are 

complete enumeration and a greedy heuristic that does not perform very well in terms of 

CPU time when p < q. 

Eiselt and Marianov propose another hub location model with competition where an 

airline transportation company enters a market [53]. It is assumed that some other 

companies already operate the market.  The entrant firm aims to capture as much 

customer as possible.  Customers’ preferences are based on the basic attractiveness of 

the firms (such as safety record, personal space, quality of the foods etc.), the number of 

stopover on the trip, cost of the route and time required by the flight. These factors are 

converted to an attraction function by using a Huff-like model. So, the fractional capture 

is allowed. They propose a nonlinear mathematical model of the problem which is 

solved with a two phase meta-heuristics. The first phase, set of available sites is 

restricted to a smaller set, called as concentration set, and an initial solution is obtained. 

This initial solution is improved in the second phase by relocation the hubs of the 

follower.   

They test the meta-heuristics with the 25-node version of the AP data set. The 

computational analysis reveals that follower has a great advantage in the most of the 

instances and is able to capture 70% of the total customers. Eiselt and Marianov later 

used a 50-node version of the same data set; however they were not able to solve the 

problem within reasonable CPU times. 

Another hubbing problem with Stackelberg competition is studied by Sasaki et al. [54]. 

In their problem environment, the decision-makers do not locate hubs but they locate 

hub arcs. One leader and one competitor airline companies locate q
a
 and q

b
 hub arcs on 

the network to maximize the total revenue. The leader can capture 0%, 25%, 50%, 75% 

or 100% of the flow between any O-D pair based on the cost and the travel time of the 

trip and the remaining customers prefer the follower. They propose a bilevel program of 
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the model and use a smart complete enumeration scheme that does not perform quick 

solutions for the instances with large q
a
 and q

b
 to solve the problem. CAB data set is 

used to test the efficiency of the solution technique. The authors conclude that the 

geography plays an important role on the location of hubs in the competitive 

environment.  

Although existing studies contribute to hub location and competition literature, both 

theoretical aspect of the problem and application in industry required much more effort. 

Therefore, in this thesis, we formally define hub-medianoid and hub-centroid problems 

by following the terminology used by Hakimi [17] for the analogous competitive 

location problems in order to motivate the studies in this area. Moreover, we prove that 

both problems are NP-hard. 

The following table summarizes the paper mentioned above with their contribution to 

the literature. The last row indicates the contributions made by our study.  
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Table 2-1: Summary of competitive hub location literature 
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Chapter 3  

 

Problem Definition 

Given a network G=(N,E) where N is the set of nodes and E is the set of edges, let wij be 

the flow between nodes i and j for all i,j ∈ N and cij be the transportation cost of a unit 

flow from node i to node  j for all i,j ∈ N . The interhub transportation cost is discounted 

by a factor α, 0 ≤ α ≤ 1. (We use <G=(N,E), wij, cij, α> nomenclature to refer this many-

to-many flow network in the remainder of the thesis.) The leader and follower want to 

enter a market with prespecified number of hubs. Say p and r be the number hubs to be 

opened by the leader and follower, respectively. We assume that both p and r are grater 

or equal to 2 since otherwise there is no interhub link and economies of scale is not 

generated.  Let H ∈ N be the subset of nodes that are available to locate a hub.  The 

customers prefer the leader or follower with respect to provided service levels. Service 

level is defined as the cost of routing the flow from a node to its destination via hubs. A 

customer prefers the follower if the service level provided by the follower is strictly less 

than the one provided by the leader, otherwise the demand is captured by the leader. Ties 

are broken in the advantage of the leader in case of equal service levels since the 



25 
 

customer has already operating with the leader when the follower enters the market and 

the customer has no incentive to deviate from the current position. 

First, assume that the leader has already operating the market with hubs located at a 

subset of nodes Xp={x1,x2,…,xp}, Xp ⊆ H. The flow originated from node i visits one or 

two hubs before arrival to its destination node j. Therefore, we can easily compute the 

service level, say βij, provided by the leader for the flow between nodes i and j.  

            ∈  
{            }   (3.1) 

Now, consider the follower enters the market by opening hubs on subset of nodes 

Yr={y1,y2,…,yr}, Yr⊆H. Similarly, follower’s service levels, say γij, for all node pairs i 

and j can be calculated as: 

            ∈  {            }   (3.2) 

The flow wij is captured by the follower if         . Given that the leader and 

follower’s hubs are located on the subset of nodes Xp and Yr, respectively, the total flow 

captured by the follower can be expressed by a function  f :Pp(H) x Pr(H) → [0,W] such 

that 

  (     )  ∑    

   ∈         

 (3.3) 

where Pp(H) is collection of subsets of H whose cardinalities are p and W is the total 

flow over the network, that is   ∑       ∈ .  

Given Xp, the follower wants to find the set Yr that maximizes  (     ) assuming the 

follower will respond (or act) rationally. Rational behavior means that the leader wants 

to capture more demand as more as he/she can. 



26 
 

We define set   
  as (r|Xp) hub-medianoid if  (     

 )     (     )    ∈ Pr(H). In 

plain words, (r|Xp) hub-medianoid is the subset of nodes with r elements to locate hubs 

that maximizes the demand captured by the follower given the hub set of the leader.  

Now we look at the problem from the leader’s perspective. The leader wants to 

minimize the demand captured by the follower (or equivalently maximize demand 

captured by himself/herself) while deciding his/her hub set. The leader also has the 

information that the follower will respond rationally.  

We define set   
  as (r|p) hub-centroid if   (  

    
    

  )     (     
     )    ∈ 

Pp(H) where   
      is the (r|Xp) hub-medianoid given   . To simplify, we can say that 

(r|p) hub-centroid is the best choice of the leader’s hub locations so that in the remaining 

scenario the follower can capture the least possible demand.  
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Chapter 4  

 

(r|Xp) Hub-medianoid Problem  

In Chapter 3, we define the (r|Xp) hub-medianoid problem as a combinatorial 

optimization problem from viewpoint of the follower. In this chapter, we provide 

linearization of the problem and prove that the problem is NP-hard by reduction from 

clique problem. Also, we present numerical analysis conducted to observe the 

efficiencies of the linear model. 

4.1 Linearization of (r|Xp) Hub-medianoid Problem 

Let <G=(N,E), wij, cij, α> be a many-to-many flow network. At the time the follower 

makes the decision, the leader has already located his/her hubs and locations of these 

hubs are correctly observed by the follower. Assume that the leader have already located 

p hubs on the set Xp ⊆ H. Then, the follower has the information of the service levels 

provided by the leader for each pair of nodes i,j ∈ N. These service levels can be found 

as   

            ∈  
{            }   (4.1) 
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To provide a linear model for the (r|Xp) hub-medianoid problem, we define the 

following decision variables: 

hk = 1  if the follower locates a hub on node k ∈ H, and 0 otherwise; 

uijk = 1 if  the flow from node i ∈ N to node j ∈ N visits hub k ∈ H as the first hub, and 0 

otherwise; 

oijm = 1 if  the flow from node i ∈ N to node j ∈ N visits hub m ∈ H as the second hub, 

and 0 otherwise; 

γij = the service level for node pair i,j ∈ N provided by the follower;  

aij = 1  if the flow form node i ∈ N to i ∈ N is captured by the follower, and 0 otherwise; 

The following mixed integer problem H-MED0 correctly linearizes the (r|Xp) hub-

medianoid problem: 

H-MED0   

maximize  ∑∑      

  

 (4.2) 

subject to ∑      

 

 (4.3) 

 ∑                   

 

  ∈    (4.4) 

 ∑                   

 

  ∈    (4.5) 

                   ∈        ∈    (4.6) 

                     ∈         ∈    (4.7) 
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    ∑                   

 

 (      )  

       ∈         ∈    (4.8) 

           (     )                 ∈    (4.9) 

 
                ∈  {   }            

          ∈           ∈    (4.10) 

 

The objective (4.2) maximizes the amount of flow captured by the follower. Constraint 

(4.3) ensures that follower locates r hubs on the set of available nodes. Constraints (4.4), 

(4.5), (4.6) and (4.7) guarantee that flow from node i ∈ N to j ∈ N visits two (not 

necessarily different) hub nodes k ∈ H and m ∈ H. Constraints (4.8) correctly calculate 

the service levels of the follower in the following manner: if oijm = 0, the constraint 

becomes redundant.  However, if  oijm = 1 the RHS of the constraint becomes the service 

level for flow from  node i ∈ N to j ∈ N. M is a large positive value but M =    

            value is large enough since the RHS can be at most                  Let 

  be very small positive number used to break ties in favor of the leader. Constraints 

(4.9) correctly calculate whether a flow is captured by the follower or not in the 

following manner: If the LHS of the constraint is positive, that is the follower provides a 

service level for the flow from node i ∈ N to j ∈ N which is equal to or worse than 

service level provided by the leader, the RHS of the constraint must be positive and aij = 

0. Otherwise, the constraint becomes redundant. Constraints (4.10) are domain 

constraints.  

We can eliminate decision variable     by combining constraints (4.8) and (4.9). 

Moreover, aggregating allocation variable      and capture variable     we define a 

binary variable      such that  
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vijm = 1 if  the flow from node i ∈ N to node j ∈ N visits hub m ∈ H as the second hub and 

this flow is captured by the follower, and 0 otherwise; 

Then, the following mixed integer problem H-MED correctly linearizes the (r|Xp) hub-

medianoid problem with fewer variables and constraints than H-MED0:  

H-MED   

maximize  ∑∑∑       

   

 (4.11) 

subject to ∑                   

 

  ∈    (4.12) 

                   ∈        ∈    (4.13) 

 

∑                          

 

 

 (      )             ∈        ∈    (4.14) 

              ∈  {   }            ∈          ∈    (4.15) 

 (4.3), (4.4) and (4.6)  

 

The objective function (4.11) maximizes captured flow by the follower. Constraints 

(4.12) ensure that flows from node i ∈ N to node j ∈ N can be captured by the follower at 

most once. Constraints (4.13) do not allow that the flow from node i ∈ N to node j ∈ N is 

captured via hub m ∈ H unless m is a hub node. Constraints (4.14) determine the 

captured flows in the following manner: if the LHS of the constraint is non-negative, the 

corresponding variable      is forced to be 0; otherwise there is no restriction on      

and together with the objective function its value is assigned to 1 which means that the 

follower can provide a strictly better service level than the follower for the flow from 

node i ∈ N to node j ∈ N. Constraints (4.15) indicate that all variables can take binary 

values. 
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We can easily argue that H-MED correctly linearizes the (r|Xp) hub-medianoid problem 

with fewer variables and constraints than H-MED0. The following table depicts the 

number of variables and constraints of both models where n is the number of nodes and 

m is the number of available nodes to locate hub in the network, that is |N| = n and |H| = 

m. 

Table 4-1: Comparison of H-MED0 and H-MED in terms of size of the models 

Model Number of Constraints 
Number of Variables 

Continuous Binary 

H-MED0 3mn
2
+3n

2
+1 n

2
 2mn

2
+n

2
+m 

H-MED 3mn
2
+2n

2
+1 -- 2mn

2
+m 

 

4.2 Problem Complexity 

We prove that the problem of finding a (r|Xp) hub-medianoid is NP-hard and the 

corresponding decision problem is NP by using reduction from clique problem, an NP-

complete problem by Karp [56]. 

Decision Version of Clique Problem: Given an undirected graph G=(N,E) and an 

integer r, determine if G has a r-clique, that is, there is a set of vertices K with |K| ≥ r 

such that for each pair of vertices in K there is an edge in E between them.   

Theorem 1: (r|Xp) hub-medianoid is NP-complete even if α = 0. 

Proof: (r|Xp) hub-medianoid problem is clearly in NP since given the set of leaders and 

followers hubs for each pair of nodes i,j ∈ N, we can solve the shortest path problem and 

determine if the flow wij is captured or not. This process can be done in polynomial time. 

Given an instance of clique problem, we construct a network G’=(N’,E’) where N’ = N 

U Xp, where Xp = {x1,x2,...,xp} and  E’ = E U {(i,j): i ∈ N and j ∈ Xp} where Xp is 
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assumed to be the hub set of the leader. Let cij = 1 if (i,j) ∈ E and cij = 0.5 if i ∈ N and j ∈ 

Xp and let α = 0. The flow values for all pairs i,j ∈ N is set to 1.  Clearly βij = 1 for all i,j 

∈ N.  

We prove the theorem by showing that there exists a set of r points Yr(Xp) on G’ such 

that  (         ) ≥ C(r,2) = (r
2
-r)/2 if and only if there exists an r-clique on G where 

C(r,2) is 2-combination of a set with cardinality r. 

Assume that clique problem has solution K ⊆ N and |K| ≥ r. By letting Yr ⊇ K, we can 

observe that γij = 0 for all i,j ∈ K since all flows on the clique benefit discounting where 

α = 0 and the total flow among the clique is captured by the follower, that is, 

 (         ) ≥ (r
2
-r)/2.  

On the other hand, suppose Yr  in G’ is such that  (         ) ≥ (r
2
-r)/2. If for all i,j ∈ 

Yr  there exists an edge (i,j) ∈ E, then Yr  itself form an r-clique on G. Then set K = Yr. 

Otherwise, assume that Yr  does not form an r-clique, then there must be (r
2
-r)/2 units of 

flow captured by the follower and at least one unit of flow should be routed via a spoke 

link. Equivalently, we can say that for (r
2
-r)/2 pairs of node γij < 1. Then, none of the 

captured flow is routed via spoke link of the follower which contradicts with the 

assumption.  

Hence, we conclude that (r|Xp) hub-medianoid is reducible from clique problem in 

polynomial time. So, it is NP-hard. □ 

4.3 Computational Study 
Performance of H-MED is investigated by the computational experiments conducted on 

two different data sets: CAB and TR. The following table summarizes properties of 

CAB and TR data sets. 
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Table 4-2: Summary of properties of CAB and TR data sets 

 CAB TR 

Proposed by O’Kelly [31] Tan and Kara [55]  

|N| 25 81 

|H| 25 22 

Symmetric flow matrix   Yes No 

Symmetric distance matrix   Yes Yes 

 

  values are chosen as either     or    . Also, for TR data set results for       are 

obtained since Tan and Kara propose that this value is obtained from cargo companies of 

Turkey [55].  Nodes in the CAB data set are numbered based on the alphabetical order 

of the city names whereas nodes in the TR data sets are plate codes of cities in Turkey 

which ranges from 1 to 81. The maps showing the spatial locations of nodes and 

potential hubs of CAB and TR data sets can be found in Appendix 1 and 2, respectively. 

All instances are solved with CPLEX 12.4.0.0 and a 4 x AMD Opteron Interlagos 16C 

6282SE 2.6G 16M 6400MT computer running under Linux operating system.  

Since we need to take βij values as parameters of (r|Xp) hub-medianoid problem, we 

have to make some assumptions for the leader’s hub set in advance. Therefore, we 

consider that the leader locates his/her hubs on a set of nodes according to his/her 

optimal choices of well-studied multi-allocation hub location problems: uncapacitated 

multi-allocation p-hub median (UMApHM) and p-hub center (UMApHC). However, 

current models in the literature are not able to solve the UMApHC for the size of TR 

data set, so only UMApHM solutions are used as leader’s hub set for this data set. Table 

4-3 and 4-4 show the optimal solutions of UMApHM and UMApHC problems that are 

used in the computational study. 
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Table 4-3:Optimal solutions of UMApHM and UMApHC in CAB data set  

p α UMApHM UMApHC 

2 0.6 12,20 8,21 

 

0.8 12,20 8,21 

3 0.6 4,12,17 8,18,24 

 

0.8 4,12,17 8,17,24 

4 0.6 1,4,12,17 1,12,17,23 

 

0.8 1,4,12,17 3,6,8,24 

5 0.6 4,7,12,14,17 1,18,19,22,23 

 

0.8 4,7,12,17,24 17,19,22,23,24 

 

Table 4-4 Optimal solutions of UMApHM in TR data set 

p α UMApHM 

6 0.6 1,6,21,34,35,55 

 

0.8 1,6,21,34,35,55 

 

0.9 1,6,21,34,35,55 

8 0.6 1,3,6,21,25,34,35,55 

 

0.8 1,3,6,21,25,34,35,55 

 

0.9 1,3,6,21,25,34,35,55 

10 0.6 1,3,6,16,21,25,34,35,38,55 

 

0.8 1,3,6,16,21,25,34,35,38,55 

 

0.9 1,3,6,16,21,25,34,35,38,55 

12 0.6 1,6,7,16,21,25,27,34,35,38,42,55 

 

0.8 1,6,7,16,21,25,27,34,35,38,42,55 

 

0.9 1,6,7,16,21,25,27,34,35,38,42,55 

14 0.6 1,3,6,7,16,21,25,27,34,35,38,42,55,61 

 

0.8 1,3,6,7,16,21,25,27,34,35,38,42,55,81 

 

0.9 1,3,6,7,16,21,25,27,34,35,38,42,44,55 

 

The distance matrices of both data sets are symmetric. Therefore, if from node i to node 

j is routed via the leader’s (follower’s) hubs then flow from node j to node i is also 

routed via the leader’s (follower’s) hubs. By using this fact, the constraints (4.4), (4.6) 
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and (4.12)-(4.15) of H-MED are imposed for only i < j and the objective (4.11) is 

replaced with ∑ ∑                   for computational studies. 

The following table summarizes all of the totaling up to 139 instances used in the 

computational study of (r|Xp) hub-medianoid problem: 

Table 4-5: Summary of the instances used in the computational study 

Data Set CAB TR 

Hub set of the leader UMApHM & UMApHC UMApHM 

p 2,3,4 and 5 6,8,10,12 and 14 

r 2,3,4 and 5 6,8,10,12 and 14 

α 0.6 and 0.8 0.6,0.8 and 0.9 

 

Table 4-6 summarizes the CPU time, the market share and hub sets of the follower in the 

optimal solution of (r|Xp) hub-medianoid problem where the follower has already 

located his/her hubs on the optimum solution of UMApHM and UMApHC  on CAB 

data set with α = 0.6.   
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Table 4-6: Results of the (r|Xp) hub-medianoid problem on CAB where Xp = UMApHM 

with α = 0.6  

p Leader's hubs = 

UMApHM  
r = 2  r = 3 r = 4 r = 5 

2 {12,20} 

CPU  6.15 5.59 7.95 12.49 

Share 65.62% 78.25% 87.08% 92.26% 

Hubs {2,6} {2,6,12} {2,6,12,19} {2,5,12,19,20} 

3 {4,12,17} 

CPU  11.16 9.05 14.15 10.97 

Share 30.49% 45.13% 53.69% 62.02% 

Hubs {17,25} {17,21,25} {9,17,18,21} {9,17,18,21,22} 

4 {1,4,12,17} 

CPU  23.44 17.93 20.79 24.61 

Share 17.91% 28.39% 37.73% 46.18% 

Hubs {2,21} {17,21,25} {14,17,18,21} {9,14,17,18,21} 

5 {4,7,12,14,17} 

CPU  11.28 9.32 12.63 10.55 

Share 18.64% 28.14% 35.04% 42.32% 

Hubs {17,25} {9,17,18} {9,17,18,21} {9,17,18,21,22} 

p Leader's hubs = 

UMApHC 
 r = 2 r = 3 r = 4 r = 5 

2 {8,21} 

CPU  2.86 4.32 4.74 3.69 
Share 75.86% 85.20% 90.98% 94.74% 
Hubs {5,19} {4,13,19} {4,8,12,13} {4,8,12,13,21} 

3 {8,18,24} 

CPU  6.45 4.63 15.68 18.3 
Share 51.81% 70.25% 79.08% 85.23% 
Hubs {4,17} {5,17,19} {5,14,17,19} {6,14,17,19,21} 

4 {1,12,17,23} 

CPU  21.72 22.67 20.94 19.91 
Share 36.56% 47.39% 57.38% 66.93% 
Hubs {18,20} {18,20,24} {13,18,20,24} {13,18,19,20,24} 

5 {1,18,19,22,23} 

CPU  6.75 13.39 16.08 10.96 
Share 45.62% 57.27% 69.34% 76.75% 
Hubs {4,17} {1,5,17} {1,5,12,17} {6,12,13,17,24} 

 

Since the leader chooses his/her hub locations without being aware of competition, the 

follower can capture high amounts of flow even p = r. For example, if p = r = 2 the 

follower can capture more than 65% of total demand.   

The proposed mathematical model H-MED can be regarded as the formulation of 

maximal hub cover problem so that covering radius for each pair of nodes i,j ∈ N are 
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defined as βij-ε  where ε is a small positive real number. Having this property, CPLEX 

efficiently solves H-MED within reasonable times. All instances of CAB data set could 

be optimally solvable within 25 seconds. Appendix 3 summarizes the results of rest of 

the computational experiment conducted on CAB data set in terms of solution time, 

follower’s optimal hub set and market share. Table 4-7 depicts the percentage of the 

market that is captured by the follower in the optimal solution of (r|Xp) hub-medianoid 

problem on TR data set.   

Table 4-7: Market share captured by the follower in the optimal solution of H-MED for 

TR data set where hub set of the leader is UMApHM 

α p\r 6 8 10 12 14 

0.6 6 
39.31% 49.19% 56.94% 64.02% 68.91% 

8 
28.58% 37.09% 44.37% 51.77% 57.97% 

10 
19.91% 27.13% 34.10% 40.48% 45.73% 

12 
15.83% 21.79% 27.06% 31.37% 35.48% 

14 
13.04% 17.87% 22.25% 26.00% 28.42% 

0.8 6 
37.97% 48.24% 55.70% 61.84% 66.97% 

8 
29.37% 37.08% 44.35% 50.71% 56.33% 

10 
20.12% 27.03% 33.84% 40.74% 46.84% 

12 
16.93% 23.41% 28.62% 32.81% 35.85% 

14 
13.02% 18.57% 22.52% 25.20% 27.40% 

0.9 6 
40.86% 49.44% 56.06% 61.54% 66.45% 

8 
31.11% 38.69% 44,83% 50.49% 55.77% 

10 
20.74% 27.77% 33.86% 39.89% 44.90% 

12 
18.45% 24.59% 29.08% 32.98% 36.18% 

14 
13.66% 18.81% 22.50% 25.60% 28.18% 
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The above table also reveals that in case of equal number of hubs, that is p = r, the 

follower captures more than half of the market. The follower should open at least 2 more 

hubs to defeat the leader. Moreover, since the same discount factor applies for both 

firms, there is no important correlation between market shares and α value.   

Table 4-8 shows CPU time to solve the H-MED on TR data set. As seen in Table 4-8 all 

instances are solved within 8 minutes even for TR data set. Another observation is that 

as values of both p and r increase, the amount of time required solving the problem 

decreases.  

Table 4-8: CPU times of H-MED for TR data set where hub set of the leader is 

UMApHM 

α p\r 6 8 10 12 14 

0.6 6 467.27 358.34 266.14 80.93 20.77 

8 326.31 286.47 213.4 76.28 21.11 

10 302 190.99 144.75 68.05 18.38 

12 168.81 125.01 61.06 28.81 13.45 

14 141.97 108.2 22.23 10.43 9.76 

0.8 6 449.76 330.15 158.63 85.34 35.69 

8 393.24 263.35 174.8 84.56 39.49 

10 385.03 222.86 200.72 72.85 26.06 

12 232.28 104.74 107.7 13.03 15.83 

14 109.78 13.44 13.66 34.18 25.14 

0.9 6 354.78 339.55 213.72 177.01 74.73 

8 182.35 197.03 158.88 129.43 76.34 

10 287.35 121.56 128.64 90.58 32.29 

12 127.1 42.89 36.44 42.05 31.13 

14 66.42 29.76 30.4 31.8 30.64 
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Hub sets of the follower in the optimum solution of (r|Xp) hub-medianoid problem on 

TR data set are presented in Appendix 4. 

As p value gets closer to |H|, using the advantageous of being former decision-maker, 

the leader prevents that the follower can capture at least half of the market even for the 

case r > p . As seen in Table 4-7, for the instances p ≥ 10, the leader locates his/her hubs 

on strategic locations and prevents good choices for the follower. Then, for these 

instances the follower is not able to capture half of the market. Hence, if p is not a small 

value compared to |H|, the leader uses the advantageous of being the first mover, in 

simple words, the firms have incentive of competing to be the leader. For example, even 

if the leader choose his/her hubs according to the optimal solution of UMApHM for α = 

0.6, p = 10 and r = 14 he/she can capture more flow than follower even without having 

the information about competition. However, this may always not be the case.  In CAB 

instances, p is relatively small than |H| so after the leader makes his/her decision, the 

follower still has a big action space and being the latter decision-maker is more 

advantageous if the former one does not have information about the competition.          
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Chapter 5  

 

(r|p) Hub-centroid Problem  

In Chapter 3, we define the (r|p) hub-centroid problem as a combinatorial optimization 

problem from viewpoint of the leader. In this chapter, we provide a bilevel linear model 

for the problem and provide linearization of this bilevel model. Then, we prove that 

problem is NP-hard by reduction from vertex cover problem. Since bilevel model and its 

linearization are hard to solve, we propose enumeration-based algorithms for the (r|p) 

hub-centroid problem. Finally, we present numerical studies conducted to observe the 

performance of linearization of bilevel model as well as proposed algorithms. 

5.1 Linearization of (r|p) Hub-centroid Problem  

Let <G=(N,E), wij, cij, α> be a many-to-many flow network.  At the time the leader 

makes his/her decision (choosing Xp as his/her set of hubs), he/she has the knowledge 

that the follower is going to respond rationally, that is, the follower is going to choose 

the optimal solution of (r|Xp) hub-medianoid problem after observing Xp. Therefore, 
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(r|Xp) hub-medianoid problem is embedded in (r|p) hub-centroid problem. Due to this 

relation, the leader’s problem has a bilevel structure. 

To provide a bilevel linear model for the (r|p) hub-centroid problem, we define the 

following decision variables: 

Hk = 1 if the leader locates a hub on node k ∈ H, and 0 otherwise; 

Uijk = 1 if the flow from node i ∈ N to node j ∈ N visits hub k ∈ H as the first hub, and 0 

otherwise; 

Vijm = 1 if the flow from node i ∈ N to node j ∈ N visits hub m ∈ H as the second hub, 

and 0 otherwise; 

βij = the service level for node pair i,j ∈ N provided by the leader;  

aij = 1  if the flow form node i ∈ N to j ∈ N is captured by the follower, and 0 otherwise; 

(                )   (                )  =  the values of decision variables 

              are provided from the optimal solution of (r|Xp) hub-medianoid given Xp. 

    are the induced values of service levels provided by the follower according to his/her 

optimal solution. Observe that the capital letter decision variables              of the 

follower are anaologous ones to their lowercase versions defined in Chapter 4.1. 

The following bilevel mixed integer problem H-CEN-B correctly linearizes the (r|p) 

hub-centroid problem: 

minimize  ∑∑      

 

 

 

 (5.1) 

subject to ∑      

 

 (5.2) 
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 ∑                    

 

 ∈    (5.3) 

 ∑                     

 

  ∈    (5.4) 

                    ∈        ∈    (5.5) 

                     ∈        ∈    (5.6) 

     ∑                       

 

       ∈         ∈    (5.7) 

                             ∈     (5.8) 

 (                )   (                )  (5.9) 

              ∈  {   }                  ∈          ∈    (5.10) 

 

The objective (5.1) minimizes the amount of flow captured by the follower which is 

equivalent to maximizing the amount of flow captured by the leader. Constraint (5.2) 

ensures the leader locates p hubs on the set of available nodes. Constraints (5.3), (5.4), 

(5.5) and (5.6) guarantee that flow from node i ∈ N to j ∈ N visits two (not necessarily 

different) hub nodes k ∈ H and m ∈ H. Constraints (5.7) correctly calculate the service 

levels of the follower in the following manner: if Vijm = 0, the constraint becomes 

redundant.  However, if Vijm = 1 the RHS of the constraint becomes the service level 

provided by the leader for flow from node i ∈ N to j ∈ N. Constraints (5.8) correctly 

calculate whether a flow is captured by the follower or not in the following manner: If 

the LHS of the constraint is positive, that is the follower provides a service level for the 

flow from node i ∈ N to j ∈ N which is better than the service level provided by the 

leader, the RHS of the constraint must be positive and aij = 1. Otherwise, the constraint 

becomes redundant.  Constraint (5.9) guarantees that the follower respond optimally 

after observing the hub set of the leader. Constraints (5.10) are the domain constraints. 
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As stated by Bard [9] and Dempe [10] bilevel models are hard to solve even for small 

number of decision variables. Therefore, we use a mini-max approach to linearize H-

CEN-B where the leaders choose a hub set so as to minimize the total captured flow by 

the follower in the remaining scenario. Let us define a new parameter: 

γij
S
 = the service level for node pair i,j ∈ N provided by the follower if he/she choose S ⊆ 

H as hub set, that is,    
        ∈ {            }. Also define a new decision 

variable: 

aij
S 

= 1  if the flow form node i ∈ N to i ∈ N is captured by the follower when he/she 

choose S ⊆ H as hub set, and 0 otherwise; 

Then, the following mixed integer problem H-CEN correctly linearizes the (r|p) hub-

centroid problem with exponential number of decision variables and constraints: 

minimize     (5.11) 

subject to   ∑∑   
    

  

           ∈        ⊆   | |      (5.12) 

         
     

             ∈        ⊆   | |       (5.13) 

 
                

 ∈  {   }           

      ∈      ∈        ⊆   | |     (5.14) 

 (5.2)-(5.7)  

 

Objective function (5.11) and constraints (5.12) together minimize the highest possible 

captured flow value by the follower in the remaining scenario. Constraints (5.13) 

correctly calculate whether a flow is captured with a hub set S ⊆ H by the follower or 

not in the following manner: If the LHS of the constraint is positive, that is the follower 

provides a service level for the flow from node i ∈ N to j ∈ N which is better than service 
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level provided by the leader, the RHS of the constraint must be positive and aij
S
 = 1. 

Otherwise, the constraint becomes redundant. Constraints (5.14) are domain constraints.  

The mixed integer problem H-CEN has 3n
2
m + 2n

2
 +2n

2
C(m,r) + 1 constraints and 

2n
2
m + n

2
C(m,r) + n

2
 + m + 1 variables of which 2n

2
m + n

2
C(m,r) + m are binary 

where |N| = n, |H| = m and C(m,r) is r-combination of the set H.  

5.2 Problem Complexity 

We prove that the problem of finding a (r|p) hub-centroid is NP-hard by using reduction 

from vertex cover problem, an NP-complete problem by Karp [56]. However, decision 

version of the (r|p) hub-centroid does not belong to complexity class NP. 

Decision Version of Vertex Cover Problem: Given an undirected graph G=(N,E) and 

an integer p, determine if G has a vertex cover C, that is, if there is a set of vertices C 

with |C| ≤ p such that for each edge (i,j) ∈ E, either i or j is in C. 

Theorem 2: The problem of finding a (r|p) hub-centroid is NP-hard even if α = 1. 

Proof: (r|p) hub-centroid problem is not in NP since given the set of leader’s hub set we 

need to solve (r|Xp) hub-medianoid problem to observe the amount of flow captured by 

the follower. Since (r|Xp) hub-medianoid cannot be solved in polynomial time, we can 

conclude that decision version of (r|p) hub-centroid problem does not belong to 

complexity class NP. 

Given an instance of vertex cover problem, we construct a network G’=(N’,E’) where G’ 

= G. Let cij = 1 if (i,j) ∈ E. The flow values, wij, for all pairs i,j ∈ N is set to 1 if (i,j) ∈ E 

and 0, otherwise.  Also, assume that α = 1.  

We prove the theorem by showing that there exists a set of p points Xp on G’ such that 

 (     
     ) = 0 if and only if there exists a vertex cover C with |C| ≤ p. 
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Assume that vertex cover problem has solution C ⊆ N and |C| ≤ p. By letting Xp ⊇ C, we 

can observe for each unit flow wij either i or j is in Xp. Therefore, for each flow wij, the 

service level provided by the leader βij = 1 noting that each flow is routed via only a 

single link. Since the follower cannot provide a strictly better service level for any of the 

node pairs i and j, no flow is captured by the follower. Then,  (     
     ) = 0. 

On the other hand, suppose Xp  in G’ is such that  (     
     ) = 0. Also, assume that 

Xp  does not contain a subset which is a vertex cover C of G. So, there exists an edge (i,j) 

∈ E’ where neither i nor j is in Xp. Then, the follower can capture the flow wij by location 

his/her hubs on both i and j which yields γij = 1. On the other hand, the follower can 

provide a service level βij ≥ 2 since the flow should visit a hub that is different from both 

i and j. Then,  (     
     ) ≥ 1 which contradicts with the assumption.  

Hence, we conclude that (r|p) hub-centroid is reducible from vertex cover problem in 

polynomial time. So, it is NP-hard. □ 

5.3 Computational Performance of H-CEN 

We used CAB data and computer set presented in Chapter 4.3 to observe the 

performance of H-CEN model via CPLEX. Since H-CEN model contains exponential 

number of variables and constraints, the experiment is conducted for first n nodes of the 

data set where n ranges from 5 to 25 for the α = 0.6 value. Moreover, values of problem 

parameters p and r are set to 2 which yield O(n
4
) variables and constraints. Table 5-1 

summarizes the results of the computational study for these instances within a time limit 

of 7200 second (= 2 hours). First column of the table (n) indicates the number of nodes 

in the instance, the second row (Follower's capture (%)) is the percentage of total flow 

that the follower captures in the optimal solution of the (r|p) hub-centroid problem, the 

third row (Solution Time (sec)) is the required CPU time of the optimal solution if it 
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found within the time limit, finally the fourth row (Gap %) shows the optimality gap if 

the optimal solution is not found within 2 hours.  

Table 5-1: Summary of numerical experiments for H-CEN model 

n  
Follower's 

capture (%) 

Solution 

Time 

(sec) 

Gap % n  
Follower's 

capture 

Solution 

Time 

(sec) 

Gap % 

5 41.39% 1.04 -- 15 43.75% -- 55.92% 

6 40.16% 3.83 -- 16 43.15% -- 76.74% 

7 40.59% 13.30 -- 17 58.49% -- 83.53% 

8 36.36% 18.34 -- 18 61.16% -- 86.10% 

9 34.31% 109.31 -- 19 100.00% -- 91.41% 

10 39.72% 475.02 -- 20 100.00% -- 92.33% 

11 41.03% 325.55 -- 21 58.18% -- 88.02% 

12 40.55% -- 4.50% 22 98.36% -- 92.19% 

13 39.55% -- 20.62% 23 57.65% -- 87.82% 

14 46.18% -- 17.16% 24 100.00% -- 93.02% 

    

25 100.00% -- 93.33% 

 

The conducted computational study revealed that the H-CEN model can only be 

solvable within 2 hours for n ≤ 11. Moreover, for values n ≥ 15, the optimality gap is 

greater than 50%. Therefore, for even very small instances, exact solution of H-CEN 

model cannot be obtained via CPLEX. Thus, we develop enumeration-based solution 

algorithms presented in the next section.  

5.4 Enumeration-based Solution Algorithms  

Since H-CEN-B is a bilevel model and H-CEN contains exponential number of 

constraints, they are inefficient to solve (r|p) hub-centroid problem for even small and 

medium size networks. Therefore, we propose enumeration-based algorithms to get 

optimal solutions of (r|p) hub-centroid problem for the problem instances with 

reasonable sizes.  
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The first idea is observing all possible choices of leader’s hub sets and the response that 

the follower gives to these possible solutions. This leads us to complete enumeration 

algorithm for (r|p) hub-centroid problem: 

algorithm complete enumeration 

begin  

1 initialize all Xp in Pp(H) as unmarked  

2 total_flow := ∑       ∈ ; 

3          leader_objective := 0,  

4          leader_hubset := {}; 

5          while Pp(H) contains an unmarked element Xp 

6  initialize all Yr in Pr(H) as unmarked 

7  current_leader_objective := 0; 

8  follower_objective := 0,  

9  follower_hubset :={}; 

10  while Pr(H) contains an unmarked element Yr 

11   current_follower_objective := 0; 

12   for each i ∈ N to j ∈ N do 

13               ∈  
{            } 

14               ∈  {            } 

15    if   
  

   
  

 then  

16     current_follower_objective             

17     := current_follower_objective + wij; 

18   if current_follower_objective > follower_objective then 

19    follower_objective  := current_follower_objective; 

20    follower_hubset :=  Yr; 

21    current_leader_objective  

22    := total_flow - follower_objective ; 
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23   mark Yr;  

24  if current_leader_objective > leader_objective then  

25   leader_objective :=  current_leader_objective; 

26   leader_hubset := Xp; 

27  mark Xp; 

end; 

 

The flow chart of the complete enumeration algorithm is presented in Appendix 5. 

The above complete enumeration algorithm enumerates all the possible choices of hub 

sets of the leader and follower,  then for all node pairs i,j ∈ N determines if the flow wij 

is captured by the follower or not. Therefore, we can say that the running time of the 

algorithm is proportional to  n
2
|Pp(H)|| Pr(H)|.   

However, the following theorem states that enumerating all of the remaining feasible 

solutions is redundant if a feasible solution to (r|p) hub-centroid problem is observed. 

Theorem 3: Let    be a feasible solution to (r|p) hub-centroid problem. If there exists 

  
  and   

  with  (     
 (  ))    (  

    
 ) then   

  cannot be an optimal solution 

to (r|p) hub-centroid problem. 

Proof:  (  
    

 )     (  
    

    
  ) where   

    
   is the optimal solution to (r|Xp) 

hub-medianoid problem given that the hub set of the leader is Xp. Then 

 (     
 (  ))    (  

    
 ) and  (  

    
 )     (  

    
    

  ) together imply that 

 (     
 (  ))    (  

    
    

  ). Therefore,   
  cannot be an optimal solution to 

(r|p) hub-centroid problem. □ 

By using Theorem 3, we can improve the solution time of complete enumeration 

algorithm by skipping the search of the follower’s reaction to the choices of the leader 
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which cannot be an optimum solution to (r|p) hub-centroid problem. Then, we propose 

smart enumeration algorithm by inserting following lines between lines 22 and 23 of 

complete enumeration algorithm.  

if current_follower_objective > total_flow - leader_objective then  

mark all Yr  in Pr(H) and continue with another Xp 

 

The flow chart of the smart enumeration algorithm is presented in Appendix 6. 

Even if the worst case running time of the smart enumeration algorithm is equal to the 

smart enumeration, in practice solution times are reasonably short when compared to its 

worst case performance as will be seen in Section 5.4.  

We can still decrease the running time of smart enumeration algorithm if another bound 

on the amount of the flow captured by the leader is obtained. For the special case p ≥ r, 

we can improve the efficiency of the algorithm by skipping some feasible solutions that 

cannot be optimal. 

Theorem 4: If p ≥ r, p < |H|-2, r ≥ 2, all flow values wij > 0 for all i ≠ j and the cost 

matrix satisfies triangular inequality, then the optimal solution of (r|p) hub-centroid 

problem   
  satisfies  (  

    
    

  )  
 

 
 where   is the total flow over the network. 

Proof: Assume that   
  is an optimal solution of (r|p) hub-centroid problem which 

satisfies  (  
    

    
  )  

 

 
. Then, at least half of the total flow on the network is 

captured by the follower. Equivalently, we can say         hold for at least half of the 

total flow where     and     values are implied by   
  and   

    
  , respectively. Then, 

the follower can provide a better service level (viz. can provide a better     value) for at 

least half of the total flow by setting his/her hub set   
    

    
  . Then, 

 (  
    

    
  )    since both the leader and follower provide same service levels for 
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all flows and in case of equity the follower captures the flow. Since p < |H|-2 then there 

are two nodes i and j ∈ H ⊆ N but not in   
 . The follower can move two of his/her hubs 

to i and j and captures the flow wij due to triangular inequality. Let   
  this new hub set. 

Then,  (  
    

 )   . So, we can say that the service levels induced by   
  dominate 

the service levels implied by   
    

   contradicting with the optimality condition 

 (  
    

    
  )    (  

    
 ).  

Hence, under the conditions p ≥ r, p < |N|-2, r ≥ 2, all flow values wij > 0 for all i ≠ j and 

the cost matrix satisfies triangular inequality, an optimal solution of (r|p) hub-centroid 

problem   
  satisfies  (  

    
    

  )  
 

 
 □ 

Utilizing Theorem 4, we can further improve the running time of the algorithm. The 

bound states that in an optimal solution the leader should get at least 50% of the total 

flow, so if there exists    and    with  (     )  
 

 
 where   is the total flow on the 

network with p ≥ r then we can say that    is not an optimal solution to (r|p) hub-

centroid problem. 

Then, we propose smart enumeration with 50%-bound for the instances with p ≥ r 

algorithm by inserting following lines between lines 22 and 23 of complete enumeration 

algorithm: 

if current_follower_objective > total_flow - leader_objective then  

mark all Yr  in Pr(H) and continue with another Xp 

if current_follower_objective > total_flow /2 then  

mark all Yr  in Pr(H) and continue with another Xp 

 

The flow chart of the smart enumeration with 50%-bound algorithm is presented in 

Appendix 7. 
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5.5 Computational Study 

The following example of first 5 nodes of CAB data set with p = r = 2 and α = 0.6 

depicts how complete enumeration, smart enumeration and smart enumeration with 

50%-bound work. The rows and columns of Table 5-2 indicate feasible hub set choices 

of the leader and follower, respectively. The entity in each shell shows the percentage of 

total flow captured by the follower. For example, if Xp = {1,2} and Yr = {1,3}, then the 

market share of the follower is 37.76% as indicated in the intersection of first row and 

second column in Table 5-2. The bolded entities in the table are the maximizers of that 

row.  

Table 5-2: The percentage of captured flow by the follower for first 5 nodes of CAB data 

set with p = r = 2 and α = 0.6 calculated by complete enumeration algorithm  

Xp\ Yr {1,2} {1,3} {1,4} {1,5} {2,3} {2,4} {2,5} {3,4} {3,5} {4,5} 

{1,2} 0.00 37.76 57.56 38.58 41.92 52.64 59.83 46.65 46.65 72.79 

{1,3} 18.20 0.00 43.52 47.15 55.11 55.22 32.60 55.22 59.83 43.52 

{1,4} 28.19 20.60 0.00 20.90 50.41 55.11 27.88 41.92 50.41 42.68 

{1,5} 58.85 43.22 53.37 0.00 58.45 47.92 55.11 47.92 47.84 52.64 

{2,3} 44.89 39.88 33.96 33.96 0.00 71.81 51.77 61.19 65.81 44.58 

{2,4} 14.56 14.16 25.08 29.69 20.60 0.00 10.83 37.76 41.39 38.58 

{2,5} 26.46 48.67 48.67 25.08 43.22 53.37 0.00 48.67 37.76 57.56 

{3,4} 17.14 14.56 24.18 26.75 28.19 18.20 26.45 0.00 21.75 52.16 

{3,5} 37.07 26.46 31.16 24.18 31.61 31.16 18.20 53.37 0.00 40.94 

{4,5} 21.00 21.00 26.46 30.09 52.85 58.85 38.81 43.22 47.84 0.00 

  

If Xp is given, then the follower choices the hub set which maximizes his/her market 

share since we assume that the follower acts rationally. For example, if Xp = {1,2} is 

given, then the follower responds with Yr*(Xp) = {4,5} which is the maximum value of 
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the first row. Therefore, we can argue that an optimal solution of (r|p) hub-centroid 

problem for this instance needs to be searched among row maximums. Since we also 

assume that the leader acts rationally, he/she aims to minimize the market share of the 

follower. Therefore, the leader choices the hub set so that the row maximum gets the 

smallest value among all other row maximums. So, Xp* = {2,4} is the optimal solution 

where the follower responds with Yr*(Xp*) = {3,5} and follower’s capture is 41.39%. 

The complete enumeration algorithm calculates all the entities of the table and finds the 

minimum of the maximizers of each row as the optimal solution.     

As mentioned before, smart enumeration algorithm is an improved version of complete 

enumeration algorithm using the results of Theorem 3. Here, we give an example of how 

the improvement is obtained. Assume that we calculated all values in the first three rows 

of Table 5-2. Then, the current objective values is 55.11% with Xp = {1,4} and Yr*(Xp) = 

{2,4}. Again assume that we continued the search and find the first entity of the fourth 

row whose value is 58.85%. This value is already greater that the current objective, 

55.11%. Hence, maximum value of the fourth row is greater than the current objective. 

We can conclude that the optimal solution of (r|p) hub-centroid problem cannot be 

found on the fourth row and calculating other values in the fourth row is redundant. In 

Table 5-3 indicated entities calculated by smart enumeration algorithm where redundant 

entities are removed.  
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Table 5-3: The percentage of captured flow by the follower for first 5 nodes of CAB data 

set with p = r = 2 and α = 0.6 calculated by smart enumeration algorithm  

Xp\ Yr {1,2} {1,3} {1,4} {1,5} {2,3} {2,4} {2,5} {3,4} {3,5} {4,5} 

{1,2} 0.00 37.76 57.56 38.58 41.92 52.64 59.83 46.65 46.65 72.79 

{1,3} 18.20 0.00 43.52 47.15 55.11 55.22 32.60 55.22 59.83 43.52 

{1,4} 28.19 20.60 0.00 20.90 50.41 55.11 27.88 41.92 50.41 42.68 

{1,5} 58.85          

{2,3} 44.89 39.88 33.96 33.96 0.00 71.81     

{2,4} 14.56 14.16 25.08 29.69 20.60 0.00 10.83 37.76 41.39 38.58 

{2,5} 26.46 48.67         

{3,4} 17.14 14.56 24.18 26.75 28.19 18.20 26.45 0.00 21.75 52.16 

{3,5} 37.07 26.46 31.16 24.18 31.61 31.16 18.20 53.37   

{4,5} 21.00 21.00 26.46 30.09 52.85      

       

As seen in Table 5-3, only 72 entities are calculated by smart enumeration algorithm 

instead of 100.  

Smart enumeration with 50%-bound algorithm uses the results of Theorem 4 in a similar 

manner. For an instance of the problem with p ≥ r, Theorem 4 implies that total captured 

flow by the follower in optimal solution of the (r|p) hub-centroid problem is less than 

50%. Therefore, if we found an entity with a value of greater than or equal to 50%, 

searching optimal value over the remainder of the values in this row is redundant. Table 

5-4 shows the entities calculated by smart enumeration with 50%-bound algorithm. For 

this example instance only 55 cells need to be calculated.     
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Table 5-4: The percentage of captured flow by the follower for first 5 nodes of CAB data 

set with p = r = 2 and α = 0.6 calculated by smart enumeration with 50%-bound 

algorithm 

Xp\ Yr {1,2} {1,3} {1,4} {1,5} {2,3} {2,4} {2,5} {3,4} {3,5} {4,5} 

{1,2} 0.00 37.76 57.56        

{1,3} 18.20 0.00 43.52 47.15 55.11      

{1,4} 28.19 20.60 0.00 20.90 50.41      

{1,5} 58.85          

{2,3} 44.89 39.88 33.96 33.96 0.00 71.81     

{2,4} 14.56 14.16 25.08 29.69 20.60 0.00 10.83 37.76 41.39 38.58 

{2,5} 26.46 48.67         

{3,4} 17.14 14.56 24.18 26.75 28.19 18.20 26.45 0.00 21.75 52.16 

{3,5} 37.07 26.46 31.16 24.18 31.61 31.16 18.20 53.37   

{4,5} 21.00 21.00 26.46 30.09 52.85      

  

All algorithms are coded in Java 1.6.0_23 on the computer presented in Section 4.3.  The 

following table summarizes all of the totaling up to 80 instances used in the 

computational study of smart enumeration and smart enumeration with 50%-bound 

algorithms: 

Table 5-5: Summary of the instances used in the computational study 

Data Set CAB TR 

p 2,3,4 and 5 2,3,4 and 5 

r 2,3,4 and 5 2,3,4 and 5 

α 0.6 and 0.8 0.6,0.8 and 0.9 
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For (r|p) hub-centroid problem, TR instances are generated for relatively smaller values 

of number of hubs to be located, that is p,r ∈ {2,3,4,5}, unlike the instances for (r|Xp) 

hub-medianoid problem due to memory requirements and long CPU times. 

Although worst case running times of all three algorithms are proportional to 

n
2
|Pp(H)||Pr(H)|, in practice smart enumeration and smart enumeration with 50%-bound 

algorithms outperforms complete enumeration dramatically especially for large 

instances. Table 5-6 illustrates the running times of the algorithms for CAB data set for 

relatively small values of p and r.  

Table 5-6: Running times of three algorithms for CAB data with p,r ∈ {2,3} (in CPU 

seconds) 

 complete enumeration smart enumeration 
smart enumeration 

with 50%-bound 

p\r 2 3 2 3 2 3 

2 19.82 325.48 1.52 12.71 0.93 -- 

3 191.96 2513.34 5.81 19.94 5.61 11.46 

 

The above example reveals that the complete enumeration algorithm takes much longer 

times compared to other algorithms even for p,r ∈ {2,3}. Therefore, computational 

analysis is conducted for smart enumeration and smart enumeration with 50%-bound 

algorithms only.   

Tables 5-7 and 5-8 depict the solution times of smart enumeration and smart 

enumeration with 50%-bound algorithms for CAB data set with p and r values range 

from 2 to 5 with α = 0.6 and 0.8, respectively. Since smart enumeration with 50%-

bound algorithm cannot be applied for p < r corresponding cells are marked with “--“.  

The optimal locations of hubs and objective value in the optimal solution are presented 

in Appendix 8 for these instances. 
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Table 5-7: Solution times of smart enumeration and smart enumeration with 50%-bound 

algorithms for CAB data with α = 0.6 (in seconds) 

 smart enumeration  
smart enumeration with 50%-

bound 

p\r 2 3 4 5  2 3 4 5 

2 1.52 12.71 70.32 320.78  0.93 -- -- -- 

3 5.81 19.94 88.02 557.16  5.61 11.46 -- -- 

4 19.27 36.62 141.6 631.1  17.24 33.27 77.38 -- 

5 70.35 117.4 371.14 1498.94  70.09 117.15 341.28 1272.24 

 

Table 5-8: Solution times of smart enumeration and smart enumeration with 50%-bound 

algorithms for CAB data with α = 0.8 (in seconds) 

 smart enumeration  
smart enumeration with 50%-

bound 

p\r 2 3 4 5  2 3 4 5 

2 1.35 11.78 100.37 535.15  0.72 -- -- -- 

3 4.31 23.13 142.68 791.55  4.13 14.65 -- -- 

4 17.96 30.7 212.61 1015.49  18.56 25.58 155.75 -- 

5 74.25 139.05 382.09 1335.03  72.77 135.53 360.54 1043.81 

 

As can be inferred in Tables 5-7 and 5-8, the solution times of these algorithms seem 

satisfactory and (r|p) hub-centroid problem on a 25 node can be solved in reasonable 

CPU times. All instances of CAB data set are solved within half an hour. Therefore, it 

can be concluded that smart enumeration and smart enumeration with 50%-bound 

algorithms are efficient tools for the solution of (r|p) hub-centroid problem for moderate 

size networks.  
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Although smart enumeration and smart enumeration with 50%-bound algorithms can 

solve the (r|p) hub-centroid problem on CAB within reasonable times, TR data set 

require more CPU time. Table 5-9 depicts the running time of smart enumeration with 

50%-bound algorithm for the instances of TR data set.  

Table 5-9: Solution times of smart enumeration with 50%-bound algorithms for TR data 

set (in CPU seconds) 

α p\r 2 3 4 5 

0.6 2 7.20 45.69 257.80 1409.52 

3 24.60 77.19 400.15 1630.12 

4 75.35 161.12 724.81 2166.95 

5 415.39 551.04 1098.69 4911.17 

0.8 2 8.81 39.23 280.44 1326.98 

3 21.65 73.32 351.76 1354.41 

4 80.30 154.12 549.42 2087.01 

5 440.62 534.12 997.63 4450.71 

0.9 2 8.39 38.84 265.09 1775.52 

3 26.90 68.93 365.13 2002.92 

4 77.32 176.41 901.68 3022.19 

5 455.12 583.39 1706.91 6634.97 

  

Even for p,r ∈ {2,3,4,5} running time of the algorithm worsens dramatically since TR 

has 81 nodes and 81x81 = 6561 flows in comparison to CAB data set where only 25x25 

= 625 flow attribute exist. Optimal hub sets of the leader and percentage of total flow 

captured by the follower in the optimal solution of (r|p) hub-centroid problem are 

presented in Appendix 9 and 10, respectively.  
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Computational analysis also revealed that the leader can increase his/her market share by 

acting rationally in case of competition. If the leader makes his/her decision without the 

knowledge of that another firm will enter the same market, his/her decision will be based 

on the solutions of some classic models, such as p-hub median and p-hub center. 

However, the leader may lose some of his/her market in case of another firm enter the 

market and captures some of customers that belong to the leader previously. In Table 5-

9, we compare the percentage of captured flow by the follower if the leader locates 

his/her hubs on the optimal locations of (r|p) hub-centroid or the leader locates his/her 

hubs on p-hub median and p-hub center (without considering competition) and the 

follower responds based on (r|Xp) hub-medianoid problem.  

Table 5-10: Market share of the follower for CAB data set with α = 0.6 in the optimal 

solutions of (r|p) hub-centroid, p-hub median and p-hub center 

  
(r|p) 

hub-

centroid 

(r|Xp) hub-

medianoid 
Difference 

with 

optimal 

(r|Xp) hub-

medianoid 
Difference 

with 

optimal p r Xp = p-hub median Xp = p-hub center 

2 2 46.14% 65.62% 19.48% 75.86% 29.72% 

 3 64.37% 78.25% 13.88% 85.20% 20.83% 

 4 74.75% 87.08% 12.33% 90.98% 16.23% 

 5 83.52% 92.26% 8.74% 94.74% 11.22% 

3 2 30.39% 30.49% 0.10% 51.81% 21.42% 

 3 45.13% 45.13% 0.00% 70.25% 25.12% 

 4 53.69% 53.69% 0.00% 79.08% 25.39% 

 5 62.02% 62.02% 0.00% 85.23% 23.21% 

4 2 17.91% 17.91% 0.00% 36.56% 18.65% 

 3 28.39% 28.39% 0.00% 47.39% 19.00% 

 4 37.73% 37.73% 0.00% 57.38% 19.65% 

 5 46.18% 46.18% 0.00% 66.93% 20.75% 

5 2 14.30% 18.64% 4.34% 45.62% 31.32% 

 3 23.73% 28.14% 4.41% 57.27% 33.54% 

 4 31.91% 35.04% 3.13% 69.34% 37.43% 

 5 39.58% 42.32% 2.74% 76.75% 37.17% 
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For example, if p = r = 2 and the leader locates his/her hubs by being aware of 

competition, then the follower can only capture 46.14 % of the market. However, if the 

leader locates his/her hubs according to the optimal solution of p-hub median problem, 

the follower can capture 65.62% of the market and leader loses 19.48% of the market to 

the follower. Likewise, optimal solution of p-hub center problem is a worse choice and 

the follower can capture 75.86% of the market which means that the leader lost 29.72%.       

As seen in Table 5-9, optimal solution of p-hub median is preferable to optimal solution 

of the p-hub center problem in all instances. This result is a direct consequence of the 

difference in definition of the problems. While p-hub median problem minimizes the 

weighted sum of the service levels of each node pair where the weights are flow between 

node pairs, p-hub center problem aims to minimize the service level of most 

disadvantageous node pair. p-hub center problem ignores the flows between node pairs 

and focuses only the distance between them. On the other hand, p-hub median problem 

locates the hubs on a set of node so that the node pairs with higher flow are given more 

consideration.  

Also observe that the p-hub median optimal solution can be regarded as a promising 

solution to (r|p) hub-centroid problem. Especially for larger values of p, the difference 

in the market share between the optimal solution of (r|p) hub-centroid and p-hub median 

is reasonably small and for 7 of the 16 instances the optimum hub sets and optimal 

values of these problems coincide.  

Required CPU time for smart enumeration algorithms directly depends on the order of 

enumeration of leader’s hub set choices. Currently, the algorithm enumerates sets 

lexicographically. For example, if p = 3, first algorithm starts with Xp = {1, 2, 3}, then 

goes on with {1, 2, 4}, {1, 2, 5} and so on. However, as stated in Theorem 3, if a feasible 

solution which provides genuine bound is already obtained, the running time of 

algorithm can be improved. For the instances reported in Table 5-10, the optimal 
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solution of p-hub median problem diverges 4.32% on average from the optimal solution 

of (r|p) hub-centroid problem. Then, another computational experiment is conducted for 

smart enumeration algorithm on CAB data set with p,r ∈ {2,3,4,5} and α = 0.6 by 

including the bound obtained by the optimal solution of  p-hub median problem. Table 

5-11 depicts CPU time of this experiment 

Table 5-11: CPU time of smart enumeration algorithm with p-hub median bound (in 

seconds) 

p\r 2 3 4 5 

2 1.52 10.94 52.84 269.13 

3 3.21 8.90 20.76 105.55 

4 14.64 20.04 45.73 145.72 

5 68.51 105.97 300.05 1078.97 

 

The experiment revealed that the running time of smart enumeration algorithm has 

improved up to 81% (37% on average) for these instances when the optimal solution of 

p-hub median problem is used a bound on the optimal value of (r|p) hub-centroid 

problem. Also, as the difference between optimal solutions of p-hub median and (r|p) 

hub-centroid problems get smaller, the higher improvement is obtained.   
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Chapter 6  

 

Conclusion & Research Extensions 

In this thesis, we propose a duopoly model where two competitors sequentially choose 

hub locations and aim to maximize their own market share under Stackelberg 

competition rules. Although competitive location has attracted the attention of 

economists and OR practitioners, hub location considering competition studies are rare. 

Therefore, some formal definitions of terminology and problem were deficiencies in 

both competitive location and hub location literature. It is assumed that both players 

have perfect information of the environment. Perfect information means each player can 

observe the system correctly and each player knows that his/her competitor can observe 

the environment correctly. It is also assumed that both players are rational which means 

that they aim to maximize their market share. The market share of the firms is 

determined by the flows (or customers). Although choice of the customers depends on 

many attributes, we assume that the customers prefer the firm which offers a better 

service level.  
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First, from the view of the follower (r|Xp) hub-medianoid problem is defined. It is also 

proved that finding (r|Xp) hub-medianoid is NP-hard. At the time the follower makes 

his/her decisions, the hub set of the leader has already chosen. Therefore, for the 

follower the problem is a “maximum capture” or a “maximum cover” problem rather 

that a competition. Hence, both formulation and solution of (r|Xp) hub-medianoid 

problem require less effort.    

On the other hand, the competition issue becomes important from the viewpoint of the 

leader. After the leader makes his/her decisions, the follower takes action and then the 

markets shares are determined. Therefore, the (r|p) hub-centroid problem has a bilevel 

nature. We then propose a bilevel model and its linearization as well as the 

computational complexity of the problem. The linearization of the bilevel model can 

only be solvable for very small instances where solving the bilevel mode is even harder. 

However, proposed enumeration-based algorithms can solve the problem for relatively 

bigger instances even though the worst-case complexity tends to complete enumeration. 

Conducted computational analysis revealed that the leader can increase his/her market 

share by choosing hub set based on (r|p) hub-centroid problem rather than optimal 

solutions of classical hub location problems such as p-hub median and p-hub center 

problems. The leader can increase his/market share by being aware of competition up to 

37.43% as seen in the computational analysis conducted on CAB data set.   

We hope that this thesis will motivate researchers to study various possible extensions of 

hub location problem under competition. Some possible extensions could be following: 

Although we assume that both firms use same parameter values, allowing firm-specific 

parameters will increase the applicability of the results. Since different firms use 

different technology, vehicles and operational strategies, the service levels which depend 

on cost and interhub discount values may be specific to the firms.  
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In duopoly, the number of competing firms is assumed to be two. However, one may 

extend the problem with three, four and even more firms. As the number of firm 

increases, the complexity of the models and solution techniques will increase. Even if 

this extension may be challenging, models and solution algorithms can be adopted 

easily. The bilevel model can be extended as a multi-level programming model and 

enumeration-based algorithms can be expanded for three or more firms. 

Although objectives of the firms are 100% conflicting, that is one aims to maximize the 

amount of captured flow by the follower while the other tries to minimize the same 

objective, in reality cooperation may be profitable for both parties. For example, a 

passenger may prefer to fly with firm A from his/her origin to origin’s hub and firm B 

from destination’s hub to his/her destination with firm B where interhub transportation is 

operated in the coordination of both firms. Such coordination will bring benefit to both 

parties by providing better service levels to the customers. Especially in air 

transportation, customers seek for the cheapest way to fly their destinations which means 

that they are willing to buy ticket from different firms for different legs of their trips.     

Other possible extensions may be competitive hub location problem with elastic demand 

and/or partial capture. Despite of the fact that the flow between node pairs are known a 

priori, the demand may be related to the service levels and some demand may be lost. 

Also, some fraction of the flow between a pair of nodes may be captured by one firm 

instead of all-or-nothing type capture. This partial capture function may even be a 

distribution function that represents the stochastic nature of customer decisions. 

Finding an exact solution to (r|p) hub-centroid problem requires big amounts of memory 

requirement and CPU time. Therefore, some heuristic approaches may be developed to 

find a near optimal solution to this problem in reasonable CPU time.  
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Appendix 1: Map showing the nodes of CAB data set 
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Appendix 2: Map showing the nodes of TR data set where nodes with circles are 

possible hub locations 
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Appendix 3: Summary of computational experiment conducted on CAB data set in terms 

of solution time, follower’s optimal hub set and market share 
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Appendix 4: Hub locations of the leader (UMApHM) and the best response of the 

follower given the hub set of the leader 

 

 

 

 

 

 

 

 

α p Xp r = 6 r = 8 r = 10 

0.6 6 {1,6,21,34,35,55} {3,16,25,27,34,38} {3,5,6,16,23,27,34,68} {3,5,6,16,23,27,34,35,61,68}

8 {1,3,6,21,25,34,35,55} {6,16,27,34,38,42} {6,16,20,27,34,38,42,61} {6,16,20,23,27,34,35,38,42,61}

10 {1,3,6,16,21,25,34,35,38,55} {5,20,27,34,42,81} {5,6,20,23,27,34,42,81} {5,6,20,23,26,27,34,42,61,81}

12 {1,6,7,16,21,25,27,34,35,38,42,55} {3,5,34,44,61,81} {1,3,5,20,23,34,61,81} {1,3,5,6,20,23,34,61,65,81}

14 {1,3,6,7,16,21,25,27,34,35,38,42,55,61} {1,5,20,23,34,81} {1,5,6,20,23,26,34,81} {1,5,6,20,26,34,44,65,68,81}

0.8 6 {1,6,21,34,35,55} {3,5,16,27,34,68} {3,5,6,16,23,27,34,68} {3,5,6,16,23,27,34,38,68,81}

8 {1,3,6,21,25,34,35,55} {16,27,34,38,42,81} {6,7,16,27,34,38,42,81} {6,16,20,27,34,35,38,42,61,81}

10 {1,3,6,16,21,25,34,35,38,55} {5,7,27,34,42,81} {5,6,7,27,34,42,44,81} {5,6,20,27,34,35,42,44,68,81}

12 {1,6,7,16,21,25,27,34,35,38,42,55} {3,6,34,44,68,81} {3,5,6,34,44,61,68,81} {1,3,5,6,20,34,44,61,68,81}

14 {1,6,7,16,21,25,27,34,35,38,42,55} {6,20,34,44,61,68} {5,6,20,26,34,44,61,68} {1,5,6,20,26,34,44,61,65,68}

0.9 6 {1,6,21,34,35,55} {3,6,16,34,38,81} {3,6,16,23,34,38,68,81} {1,3,6,16,23,34,38,42,61,81}

8 {1,3,6,21,25,34,35,55} {16,27,34,38,42,81} {6,16,20,23,34,38,42,81} {1,6,7,16,23,34,38,42,61,81}

10 {1,3,6,16,21,25,34,35,38,55} {27,34,38,42,44,81} {6,20,27,34,42,44,68,81} {6,20,27,34,35,42,44,61,68,81}

12 {1,6,7,16,21,25,27,34,35,38,42,55} {3,6,34,44,68,81} {1,3,6,34,44,61,68,81} {1,3,6,20,26,34,44,61,68,81}

14 {1,3,6,7,16,21,25,27,34,35,38,42,44,55} {6,23,34,61,68,81} {5,6,20,23,34,61,68,81} {1,5,6,20,23,26,34,61,68,81}

α p Xp r = 12 r = 14

0.6 6 {1,6,21,34,35,55} {1,3,5,6,16,23,27,34,35,61,68,81} {1,5,6,16,20,21,25,27,34,35,38,42,61,81}

8 {1,3,6,21,25,34,35,55} {1,5,6,16,20,21,27,34,38,42,61,81} {1,5,6,16,20,21,25,27,34,35,38,42,61,81}

10 {1,3,6,16,21,25,34,35,38,55} {1,5,6,20,23,26,27,34,35,42,61,81} {1,5,6,7,20,23,26,27,34,35,42,61,65,81}

12 {1,6,7,16,21,25,27,34,35,38,42,55} {1,3,5,6,20,23,26,34,61,65,68,81} {1,3,5,6,20,23,26,34,35,44,61,65,68,81}

14 {1,3,6,7,16,21,25,27,34,35,38,42,55,61} {1,5,6,20,23,26,34,35,44,65,68,81} {1,5,6,20,23,25,26,34,35,42,44,65,68,81}

0.8 6 {1,6,21,34,35,55} {1,3,5,6,16,23,27,34,38,61,68,81} {1,3,5,6,16,23,27,34,35,38,42,61,68,81}

8 {1,3,6,21,25,34,35,55} {1,6,16,20,23,27,34,35,38,42,61,81} {1,5,6,16,20,23,27,34,35,38,42,61,68,81}

10 {1,3,6,16,21,25,34,35,38,55} {1,6,20,26,27,34,35,42,44,61,68,81} {1,5,6,7,20,26,27,34,35,42,44,61,68,81}

12 {1,6,7,16,21,25,27,34,35,38,42,55} {1,3,5,6,20,26,34,44,61,65,68,81} {1,3,5,6,20,21,26,34,35,44,61,65,68,81}

14 {1,6,7,16,21,25,27,34,35,38,42,55} {1,5,6,20,26,34,35,44,61,65,68,81} {1,5,6,7,20,23,26,34,35,44,61,65,68,81}

0.9 6 {1,6,21,34,35,55} {1,3,6,16,23,27,34,35,38,61,68,81} {1,3,5,6,16,20,23,27,34,35,38,61,68,81}

8 {1,3,6,21,25,34,35,55} {1,6,16,20,27,34,35,38,42,61,68,81} {1,6,7,16,20,23,27,34,35,38,42,61,68,81}

10 {1,3,6,16,21,25,34,35,38,55} {1,6,20,26,27,34,35,42,44,61,68,81} {1,5,6,7,20,26,27,34,35,42,44,61,68,81}

12 {1,6,7,16,21,25,27,34,35,38,42,55} {1,3,5,6,20,21,26,34,44,61,68,81} {1,3,5,6,20,21,26,34,44,55,61,65,68,81}

14 {1,3,6,7,16,21,25,27,34,35,38,42,44,55} {1,5,6,20,23,26,34,35,61,65,68,81} {1,5,6,20,21,23,26,34,35,55,61,65,68,81}
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Appendix 5: Flow Chart of complete enumeration Algorithm  
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Appendix 6: Flow Chart of smart enumeration Algorithm  
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Appendix 7: Flow Chart of smart enumeration with 50%-bound Algorithm 

 

Initialize 

obj:= 0 

leader’s hubs := {} 

unmark all Xp in Pp(H) 

totalflow := ∑ 𝑤𝑖𝑗𝑖 𝑗∈𝑁  

  

Does there 

exist an 

unmarked Xp? 
Exit  

  

follower’s obj  := 0    

leader’s obj  := totalflow 

unmark all Yr in Pr(H) 

    

Does there 

exist an 

unmarked Yr? 

Calculate f(Xp, Yr) 

mark Y
r
 

  

Is f(Xp, Yr) >  

follower’s 

obj ? 

follower’s obj  = f(Xp, Yr)    
leader’s obj  = totalflow - f(Xp, Yr)   
  

Is leader’s 

obj > obj ? 

obj = leader’s obj   
 leader’s hubs = Xp 

 

mark X
p
 

  

Is f(X
p
, Y

r
) >  

obj or 

totalflow/2? 

mark all Yr in Pr(H) 

  

YES 

YES 

YES 

YES 

YES 

NO 

NO 

NO 

NO 

NO 



78 
 

Appendix 8: Hub locations and percentages of total flow captured by the follower in the 

optimal solution of (r|p) hub-centroid problem on CAB data set  

α p\r 2 3 4 5 

0.6 2 {4,17} {17,21} {4,17} {4,17} 

3 {4,17,19} {4,12,17} {4,12,17} {4,12,17} 

4 {1,4,12,17} {1,4,12,17} {1,4,12,17} {1,4,12,17} 

5 {1,4,12,17,25} {1,4,12,17,20} {1,4,12,17,20} {1,4,12,17,20} 

0.8 2 {4,17} {4,17} {4,17} {4,17} 

3 {4,12,17} {4,8,17} {4,12,17} {4,12,17} 

4 {1,4,12,17} {4,12,17,25} {4,12,17,25} {4,12,17,25} 

5 {2,4,12,13,17} {4,12,13,17,25} {4,12,13,17,25} {4,12,13,17,25} 

 

α p\r 2 3 4 5 

0.6 2 46.14% 64.37% 74.75% 83.52% 

3 30.39% 45.13% 53.69% 62.02% 

4 17.91% 28.39% 37.73% 46.18% 

5 14.30% 23.73% 31.91% 39.58% 

0.8 2 43.68% 59.59% 70.75% 78.74% 

3 29.18% 42.87% 52.84% 60.14% 

4 21.06% 30.70% 38.39% 45.24% 

5 15.30% 23.24% 31.78% 38.57% 
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Appendix 9: Hub locations in the optimal solution of (r|p) hub-centroid problem on TR 

data set  

α p\r 2 3 4 5 

0.6 2 {6,44} {1,6} {6,44} {16,38} 

3 {6,34,44} {6,34,44} {6,27,34} {6,27,34} 

4 {3,6,27,34} {3,6,34,44} {3,6,34,44} {3,6,27,34} 

5 {1, 3, 6, 23,34} {1, 3, 6, 25, 34} {1, 3, 6, 23,34} {1, 3, 6, 23,34} 

0.8 2 {38,81} {6,34} {6,34} {6,34} 

3 {6,34,44} {6,34,44} {6,34,44} {6,34,44} 

4 {3,6,34,44} {3,6,34,44} {3,6,34,44} {3,6,34,44} 

5 {1, 3, 6, 23,34} {1, 3, 6, 23, 34} {1, 3, 6, 23,34} {1, 3, 6, 23,34} 

0.9 2 {38,81} {6,34} {6,34} {34,38} 

3 {6,27,34} {1,6,34} {6,27,34} {6,27,34} 

4 {3,6,34,44} {3,6,23,34} {3,6,23,34} {3,6,23,34} 

5 {1, 3, 6, 34,44} {1, 3, 6, 34,44} {1, 3, 6, 34,44} {3, 6, 23, 27,34} 
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Appendix 10: Percentages of total flow captured by the follower in the optimal solution 

of (r|p) hub-centroid problem on TR data set  

α p\r 2 3 4 5 

0.6 2 49.44% 64.65% 74.97% 84.72% 

3 30.49% 40.82% 56.18% 65.58% 

4 20.07% 30.57% 42.15% 51.89% 

5 14.32% 23.61% 32.34% 40.05% 

0.8 2 46.84% 60.05% 70.03% 77.97% 

3 30.68% 40.81% 51.43% 60.66% 

4 20.33% 30.19% 39.41% 48.57% 

5 14.82% 22.12% 29.28% 37.44% 

0.9 2 44.12% 58.74% 67.98% 75.45% 

3 30.35% 39.90% 50.03% 58.18% 

4 20.38% 29.55% 38.11% 46.83% 

5 14.27% 22.87% 31.76% 38.91% 

 

 

 

 

 


