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Approved for the Graduate School of Engineering and Science:

Prof. Dr. Levent Onural
Director of the Graduate School

ii



ABSTRACT

APPLICATION OF MAP/REDUCE PARADIGM IN
SUPERCOMPUTING SYSTEMS

Gündüz Vehbi Demirci

M.S. in Computer Engineering

Supervisor: Prof. Dr. Cevdet Aykanat

August, 2013

Map/Reduce is a framework first introduced by Google in order to rapidly

develop big data analytic applications on distributed computing systems. Even

though the Map/Reduce paradigm had a game changing impact on certain fields

of computer science such as information retrieval and data mining, it did not

have such an impact on the scientific computing domain yet. The current imple-

mentations of Map/Reduce are especially designed for commodity PC clusters,

where failures of compute nodes are common and inter-processor communication

is slow. However, scientific computing applications are usually executed on high

performance computing (HPC) systems and such systems provide high commu-

nication bandwidth with low message latency where failures of processors are

rare. Therefore, Map/Reduce framework causes performance degradation and

becomes less preferable in scientific computing domain. Due to these reasons,

specific implementations of Map/Reduce paradigm are needed for scientific com-

puting domain. Among the existing implementations, we focus our attention

on the MapReduce-MPI (MR-MPI) library developed at Sandia National Labs.

In this thesis, we argue that by utilizing MR-MPI Library, the Map/Reduce

programming paradigm can be successfully utilized for scientific computing ap-

plications that require scalability and performance. We tested MR-MPI Library

in HPC systems with several fundamental algorithms that are frequently used in

scientific computing and data mining domains. Implemented algorithms include

all-pair-similarity-search (APSS), all-pair-shortest-path (APSP), and page-rank

(PR). Tests were performed on well-known large-scale HPC systems IBM Blue-

Gene/Q (Juqueen) and Cray XE6 (Hermit) to examine scalability and speedup

of these algorithms.
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ÖZET

MAP/REDUCE PARADİGMASININ SÜPER
BİLGİSAYAR SİSTEMLERİNDE UYGULANMASİ

Gündüz Vehbi Demirci

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Prof. Dr.Cevdet Aykanat

Ağustos, 2013

Map/Reduce, büyük veri uygulamalarının hızlı bir şekilde geliştirilebilmesi

için ilk kez Google tarafından ortaya atılan bir uygulama çatısıdır. Map/Reduce

paradigmasının, bilgisayar bilimlerinin veri madenciliği, bilgi sistemleri gibi alan-

larında büyük etkisi olmasına rağmen, bilimsel hesaplama alanına böyle bir etkisi

olmamıştır. Mevcut Map/Reduce uygulamaları özellikle hata oranı yüksek olan

ve iletişim hızı düşük olan dağıtık bellekli bilgisayar kümeler için geliştirilmiştir.

Bununla birlikte, bilimsel hesaplama uygulamaları genellikle yüksek performanslı

bilgisayar sistemleri üzerinde çalıştırılmaktadır ve bu sistemler yüksek bant

genişlikli ve düşük gecikmeli iletişim sağlarlar ve bu sistemlerde hata oranı

azdır. Bu yüzden, Map/Reduce paradigması bilimsel hesaplama alanında per-

formans azalmasına neden olmaktadır ve bu yüzden daha az tercih edilmektedir.

Bu nedenlerden dolayı, bilimsel hesaplama uygulamaları için özel Map/Reduce

uygulamaları gerekmektedir. Mevcut olan uygulamalar arasından biz dikka-

timizi Sandia Ulusal laboratuvarları tarafından geliştirilen MapReduce-MPI (MR-

MPI) kütüphanesi üzerine odakladık. Bu tezde, MR-MPI kütüphanesinden fay-

dalanarak Map/Reduce paradigmasının ölçeklenebilirlik ve performans gerek-

tiren bilimsel hesaplama alanında da kullanılabilecegini savunduk. MR-MPI

kütüphanesini bilimsel hesaplama ve veri madenciliğinde sıklıkla kullanılan al-

goritmalarla yüksek performanslı bilgisayar sistemlerinde test ettik. Tatbik

ettiğimiz algoritmalar arasında APSS, APSP, ve PR algoritmalrı vardır. Bu al-

goritmaların ölçeklenebilirliğini ve hızlanmasını incelemek için yaptığımız testler

IBM BlueGene/Q (Juqueen) ve Cray XE6 (Hermit) sistemlerinde gerçekleştirildi.

Anahtar sözcükler : Map/Reduce, Büyük Veri, Veri Madenciliği, Bilgi Sistemleri,

Dağıtık Bilgisayar Sistemleri.
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Chapter 1

Introduction

Big data applications that require processing of huge amount of data are of

great importance due to the need of contemporary computation problems. These

kinds of problems frequently occur especially in the fields of data mining, bio-

informatics and scientific computing. To meet the demands of such applications,

Map/Reduce programming framework was first introduced by Google and it be-

came a standard way of developing such applications [1]. Usage of this paradigm

is becoming more widespread due to its several other advantages.

The Map/Reduce paradigm originated from functional programming, where

higher order functions map and reduce are applied to a list of elements to return

a value. In addition, this framework provides a runtime system that manages

mapper and reducer tasks, providing automatic scalability, fault tolerance, and

auto-parallelization. With the help of this framework, it is possible to ignore

complex parallel programming structures like message passing and synchroniza-

tion and the programmer only needs to design a mapper and a reducer function

for each distinct map/reduce phase. Along with reducing programming complex-

ity, another important feature of Map/Reduce is that it can operate on massive

data sets. That is, Map/Reduce is designed for scalability instead of speedup.

Depending on the architecture it is meant to run, Map/Reduce framework can

be implemented in many different ways. For example, one implementation may

take advantage of shared or distributed memory architectures and another may
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take advantage of larger collection of networked machines [1].

Even though the Map/Reduce paradigm had a game changing impact on cer-

tain fields of computer science such as information retrieval and data mining,

it did not have such an impact on the scientific computing domain yet. Main

reason for this is the current implementations of the Map/Reduce, which are

especially designed for commodity PC clusters where failures of compute nodes

are common and communication interconnection between nodes is slow. On the

other hand, scientific computing applications are usually executed on high perfor-

mance computing (HPC) systems and such systems provide high communication

bandwidth with low message latency. Also, failures of compute nodes on these

systems are rare. Therefore, the Map/Reduce framework, which is designed for

automated fault-tolerance and thus causes some performance decrease becomes

less preferrable in scientific computing domain. Because of these reasons, spe-

cial implementations of Map/Reduce paradigm is needed for scientific computing

domain [2, 3, 4]. Among these implementations, we decided to focus attention

on the MapReduce-MPI (MR-MPI) library [5, 2] developed at Sandia National

Labs. This is due to the following properties of MR-MPI; it provides a lightweight

Map/Reduce implementation developed in C++ and it uses the MPI library for

inter-process communication, which enables MR-MPI to be used on HPC plat-

forms without an extra overhead because MPI is well optimized for such systems.

In this thesis, we argue that utilizing MR-MPI Library; the Map/Reduce

programming paradigm can be successfully adopted for scientific computing ap-

plications that require scalability and performance. HPC systems generally lack

virtual memory at compute nodes, because the only external memory available

to the nodes is a parallel files system which is accessed by all compute nodes

concurrently. This memory bound on each compute node prevents applications

to scale to huge data sizes that exceed the total aggregate memory available on

the system. Usage of this library helps to deal with virtual memory problems

existing on such computing systems. More importantly, Map/Reduce paradigm

also provides ease of parallel programming, and it needs programmer to only

provide map and reduce functions, hiding parallel programming complexity.
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We tested MR-MPI Library in HPC systems with several fundamental al-

gorithms that are frequently used in scientific computing and data mining do-

mains. Implemented algorithms include all-pair-similarity-search (APSS), all-

pair-shortest-path (APSP), and page-rank (PR). Tests were performed to see

scalability and speedup of these algorithms. We used Juqeen [6] and Hermit [7]

HPC systems in our test. The Juqeen system is an IBM BlueGene/Q machine

whereas Hermit system is a Cray XE6 machine. These systems are all distributed

memory systems and data storage network is separated from compute nodes.

Also, message passing between compute nodes are performed via MPI Library

which is well optimized for these kinds of systems.

During our tests we generally preferred to use realistic data sets which rep-

resent social events or link structure of the web. Additionally, in some cases

we also created synthetic data sets. For instance, we created randomly gener-

ated graphs that are recursively generated with power-law degree distributions

for APSP tests. These type of graphs are commonly used to represent social

networks [2].

The remaining parts of this thesis are organized as follows: Chapter 2 gives

detailed background information about Map/Reduce paradigm and execution

frameworks. Chapter 3 explains the algorithms that we implemented, Chapter 4

presents the details of the MR-MPI implementation of the selected applications.

Finally Chapter 5 provides the experimental results and Chapter 6 concludes.
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Chapter 2

Background

Map/Reduce framework is first introduced by Google [1]. It is designed to

ease parallel programming for distributed computing systems. In addition,

Map/Reduce framework also provides scalability, availability, and fault-tolerance

for the computing systems that is used by Google. To work properly, the frame-

work needs a distributed file system or data store that can fulfill requirements

of the framework. Therefore, Google uses the Map/Reduce framework on top of

Google File System (GFS) [8] or BigTable [9] services. Since Map/Reduce frame-

work is not publicly available, open-source implementations of such system are

emerged [10, 11]. One of the most famous implementations of the Map/Reduce

framework is Hadoop. It runs on Hadoop Distributed File System (HDFS) [12]

and designed for commodity PC architectures. In this thesis, both Google and

Hadoop Map/Reduce implementations will be referred to explain the framework

and runtime system.

2.1 Map/Reduce Programming Paradigm

Map/Reduce is a programming model which is originated from functional pro-

gramming languages such as Lisp and ML [13]. Among the important features of

such languages are higher order functions in which a function can take another
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function as an argument. In this model, a higher order function map is provided

with a user defined function f which is then applied to given list of elements.

After this operation has been performed, higher order reduce function with an-

other user defined function g, applies the function g to the list of elements which

are produced by the previous map operation. Illustration of these operations are

given in Figure 2.1.

f

g

f

g

f

g

f

g

f

g

f

g

Figure 2.1: Illustration of map and reduce higher order functions: map takes user
defined f and reduce takes g, both apply user defined functions to list of elements
and reduce aggregates the results.

Application of the above-mentioned map and reduce functions to each ele-

ment of the input list can be performed separately, which means each element

can be processed independently. Using this fact, it is possible to distribute the

input elements to different processors and apply user defined functions on them

without performing any communication. In this sense, one can exploit func-

tional programming paradigm in order to provide auto-parallelization in parallel

computing environments. Map/Reduce basically uses this idea and uses a map

function to apply the user defined f to the input data. Input data is stored across

a distributed file system running on large number of compute nodes. Distributed

file systems store the data by partitioning it into chunks where the size of chunks
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is pre-determined. Each chunk is generally replicated to more than one node and

each node can serve these chunks to clients. Knowing the fact that the data is

partitioned into chunks and chunks are distributed across the nodes, map task

invocations are executed on each node in order to process the whole data stored

in the system. Map invocations produce intermediate key-value pairs, which are

then written back to the distributed file system. This step often causes perfor-

mance decrease in iterative algorithms that needs more than one Map/Reduce

job phase; because writing huge amount of data to the distributed file system

causes high latency between the iterations. At this time of execution, different

compute nodes may have different key-value pairs with same key field.

Before executing the reduce phase, all key-value pairs are hashed according to

their key fields and the range of values, which are produced by the hash function,

is divided into the number of reducer tasks. Each reducer task reads intermediate

key-value pairs from the distributed file system according to the assignment of

hash values to the reducers. Since key-value pairs with the same key can be stored

on different nodes, reducer task invocations need to read these key-value pairs

from remote compute nodes. To improve performance, run time scheduler of the

framework tries to assign reducer tasks to compute nodes, which are close to other

nodes that reducer task needs to communicate. In other words, runtime scheduler

tries to improve locality during the communication phase. Following this step,

key-value pairs with the same key, which are all read and stored locally, are

merged into key-multi-value objects. These two steps that are performed after the

map phase are called “distributed shuffle” and “sort” in Hadoop implementation

of the Map/Reduce framework. Having all the key-multi-value objects, reducer

function applies a user defined function to all key-multi-value objects one-by-one

and produces the final key-value objects as a result. Later on, these key-value

objects are all written back to the distributed file system again and can be used

for further Map/Reduce iterations.
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2.2 Distributed File Systems

Distributed file systems are well studied in the computer science literature [14,

15, 16, 17]. They differ in their design according to architectures they are de-

signed for and requirements of the domain to be used for. In HPC systems, data

is stored on separate network of data nodes, which are only used for data storage.

Besides, computation is performed on a network of compute nodes and storing

large amounts of data at these nodes is not generally possible. Therefore, link

between data nodes and compute nodes can be a bottleneck in data intensive

applications. On the other hand, commodity PC clusters do not have that sepa-

ration between data nodes and compute nodes. All nodes are generally identical

and have the ability to store data and perform computations on it. Additionally,

component failures are the norm for commodity PC clusters [1], whereas this is

not the case for HPC systems. Therefore, a Map/Reduce framework that is de-

signed for commodity PC clusters is powerful when it is backed with a scalable,

available and fault tolerant distributed file systems. In addition, since the data

that is to be processed by Map/Reduce framework is gigantic, it must be stored

on a distributed file system running on large number of compute nodes; because

generally it is not possible to fit even the partitioned input data to the memory

of a single machine.

The first Map/Reduce implementation, which was introduced by Google, runs

on top of Google File System (GFS) [8], which is itself a distributed file system.

This system is designed for commodity PC clusters, where failures of nodes are

common. Moreover these kind of clusters are not capable of providing low latency

messaging, but it is possible to achieve high bandwidth in these systems by using

batched messages that have large message sizes. For this reason, GFS uses large

chunk sizes when compared to other distributed file systems.

Illustration of GFS system [1] is provided in Figure 2.2 and working princi-

ples of the GFS are as follows. GFS consists of a master node and chunk servers.

Master node keeps meta data information such as name space, chunk to server

mappings, and location of replicas. Chunk servers are actual nodes, where data

is stored and served. All chunks are saved to local disk available at the nodes

7
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Chunk data

Instructions
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Figure 2.2: Illustration of GFS architecture

using linux file system. In addition, these chunks are replicated to other chunk

servers which can be at different racks to provide availability and fault-tolerance.

Clients using GFS, transfer data only with chunk servers minimizing participation

of master node in order to prevent master node being a bottleneck. Moreover,

Map/Reduce task invocations are scheduled to run on the same compute nodes as

chunk server deamons in order to provide locality for certain operations. A map

task reads chunks residing at the same compute node and produces intermediate

key-value pairs, which are later written back to the distributed file system. Re-

duce tasks are also scheduled to run at the same nodes as GFS deamons. These

tasks read some data locally but some chunks may reside at remote nodes. There-

fore, these chunks are gathered via messaging protocols available at the cluster

infrastructure.

As mentioned earlier, Hadoop framework is an open-source implementation of

the Map/Reduce framework. The framework is developed with Java programming

language by an open-source software development community Apache Founda-

tion [18]. Hadoop implementation of Map/Reduce runs on top of Hadoop dis-

tributed file system. Architecture of the Hadoop Distributed File System (HDFS)

8



is very similar to GFS and provides almost same functionalities.

HPC systems have also distributed file systems, but these systems generally

run on a different network of machines than the machines used solely for compu-

tation. This separation is useful especially to scale the computation network; but

on the other hand, the link between computation and data storage networks can

be a bottleneck in data intensive applications. Obviously, reading and writing

operations performed on huge chunks of data that is stored across distributed file

systems in HPC platforms is not a good strategy to provide performance and scal-

ability in certain applications. Therefore, MR-MPI library, which is a MPI-based

Map/Reduce framework developed for HPC systems, does not write intermediate

key-value pairs to the distributed file system. Instead, it uses MPI Library to

communicate these key-value pairs among compute nodes using the high speed

interconnection network available. Interaction between compute nodes and data

nodes occur only when it is not possible to fit intermediate key-value pairs to the

internal memory available at compute nodes. This problem is handled by copying

these key-value pairs to the distributed file system using I/O operations provided

by the system. By this way, avoiding high latency between map and reduce steps

is possible and key-value pairs are distributed to reducer processors much faster.

These properties of the MR-MPI library differentiate it from other Map/Reduce

implementations and enable usage of this library effectively in highly iterative

algorithms that run on HPC systems.

Lustre [19] and GPFS [16] distributed file systems are the most commonly

used distributed file systems in HPC systems. They run on a separate network of

machines for data storing and serving purposes. In Lustre [19], the system con-

sists of three main components which are meta-data server (MDS), object storage

servers (OSS) and clients. The meta-data server keeps file names, permissions,

directories, and file layout. MDS only involves in pathname and permission op-

erations. All I/O operations such as block allocation, reading, and writing are

performed with directly OSSes avoiding MDS being a bottleneck. Whenever

clients need to access some portion of a file, offset calculations are carried out

on the client with logical object volume layer. Therefore, clients only communi-

cate with OSSes while performing I/O operations, where MDS only controls file

9



access and informs clients about layout of the objects that constitute the files.

Additionally, Lustre uses distributed lock manager in order to protect integrity

of files and meta-data information.

Another commonly used distributed file system in HPC systems is General

Parallel File System (GPFS) [16] which is developed by IBM. GPFS is shared-disk

file system for large clusters and has a different architecture then GFS, Hadoop,

and Lustre. Firstly, the GPFS uses shared-disk architecture which also provides

high scalability. The system consists of a cluster of nodes and a disk subsys-

tem. These components are connected thorough a switching fabric and files are

stripped across all the disks available in the system. Distributed locking is used

to synchronize parallel I/O operations that are performed by multiple nodes. Sec-

ondly, GPFS fully supports Posix file semantics, whereas previously mentioned

file systems are only capable of providing some subset of Posix semantics. Addi-

tionally, meta-data information too is distributed across shared-disk file system,

where this is not the case for GFS or HDFS.

2.3 Map/Reduce Execution Framework

Map/Reduce programs consist of user defined map and reduce functions in ad-

dition to configuration codes that set up the runtime environment and define

map/reduce phases explicitly. When a user submits a Map/Reduce job, run-

time system take care of things like fault-tolerance, starting the execution of MR

program, scheduling, and synchronization of map and reduce invocations trans-

parently. With the help of this framework, it is possible to ignore complex parallel

programming structures like message passing and synchronization and the pro-

grammer only needs to design a mapper and a reducer function for each distinct

map/reduce phase.

The sample architecture of a sample Hadoop cluster is shown in Figure 2.3 [13].

All Map/Reduce jobs are submitted to the job submission node where the job-

tracker is being executed. The job-tracker takes care of starting and monitoring

10
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Figure 2.3: Illustration of Hadoop cluster environment

of jobs, scheduling, and coordination of MR tasks. Therefore, job-tracker assigns

mapper and reducer tasks to task-trackers. The task-trackers are responsible

for executing user defined map and reduce tasks if they are available. Large

proportion of the nodes in the Hadoop cluster are slave nodes which run both the

task-tracker for executing map and reduce tasks and the distributed file system

deamons to store and serve data.

Execution of the Map/Reduce job on a cluster is depicted in Figure 2.4 [1].

When a user submits a Map/Reduce job, the map tasks are distributed to nodes

which also store the data chunks. These chunks can be processed separately on

different machines requiring no communication. Following the map phase, the

intermediate key-value pairs are partitioned according to their key fields. This

step is usually carried up by hashing the key fields and partitioning the value range

to the number of reducer tasks so that each key-value range induces a reducer

task. When partitioning is complete, master node assigns reducer tasks to slave

nodes and informs them about the partitions they are to process. Master node

11
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Figure 2.4: Illustration of Map/Reduce execution.

also cares about the location of reducer task to provide locality. For instance,

it assigns reducer tasks to slave nodes which are close to the nodes that reducer

tasks need to communicate in order to read the key-value pairs assigned on them.

After this step the reducers begin to read their input key-value pairs. Whenever

a reducer reads all of its intermediate key-value pairs, it sorts the key-value pairs

according to their key fields and groups them according to key values. Following

the sort operation, all key-value pairs with the same key are merged together to

form key-multi-value objects, which are later passed to the user defined reduce

function. Reducer function processes these key-multi-value objects one by one

and produces final key-value objects, which can be used in further Map/Reduce

phases. In Google and Hadoop implementation of Map/Reduce, final key-value

objects produced by reduce step are always written back to the distributed file

system by the reducer tasks. As mentioned before this property usually causes

performance decrease in iterative algorithms.

12



2.4 MR/MPI Library

MR-MPI library is a light-weight implementation of Map/Reduce programming

paradigm and it is designed for MPI-based cluster systems. It is developed in

C++ language and uses MPI library for communication operations because MPI

library is well optimized for such systems. With the help of this framework, it is

possible to ignore complex parallel programming structures like message passing

and synchronization and the programmer only needs to design a mapper and a

reducer function for each distinct Map/Reduce phase. Another important feature

of this library is that huge data sets that do not fit within the aggregate memory

of such systems can be processed using the built-in out-of-core algorithms. This

means that, memory pages can be swapped between main memory and parallel

file system allowing huge datasets to be processed.

To use this library, the programmer writes a main program which runs like

a regular MPI code. Main program makes calls to the MR-MPI library for cer-

tain operations but most importantly provides user defined functions for map

and reduce functions. Library performs map, reduce and data shuffle operations

synchronously and uses MPI Send and MPI Recv functions between processors

to communicate large aggregated messages to improve bandwidth and reduce

latency costs [2].

One of the strongest aspects of the library is its in-core and out-of-core op-

eration modes. Whenever a processor creates a Map/Reduce object, it allocates

pages of memory to store the key-value or key-multi-value pairs of this object.

The size of these pages can be determined by the programmer. During execution,

if the size of a page is exceeded, the page is written to the parallel file system

and the freed space is used for the new operations. Whenever an old page is

required by the program, it must be explicitly indicated by the programmer. If

adequate page size is given and proper library settings are chosen, then library

automatically informs that the page size is exceeded. On the other hand, out-

of-core execution mode helps processing huge data sets whose size exceed total

aggregate memory of the cluster. In addition, MR-MPI also provides flexibility
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and lets the programmer call MPI functions directly within the code. This is im-

portant when global state information needs to be exchanged between processors.

One example is the convergence information exchange done by processors dur-

ing the page rank computations, which is done for terminating the Map/Reduce

iterations correctly.

The basic objects on which MR-MPI Library operates are key-value pairs.

Keys and values can be of any data type and library treats these as byte strings.

Although a value can be NULL, a key-value object always needs a valid key. Key-

value objects are stored in MapReduce objects, which must be initialized within

the main program. Along with the key-value objects another important type of

objects are key-multi-value objects. These objects store multiple values for the

same key.

A typical Map/Reduce program using MR-MPI library consists of at least

three calls to the MR-MPI library to perform map, collate and reduce operations.

In the map phase, the key-value pairs are produced. Map function can accept

as input a file name or existing key-value objects or the provided function can

generate the key-value objects itself. In MR-MPI, the produced key-value objects

are stored in the allocated pages and all the operations on these objects are

performed locally requiring no communication.

The collate phase of MR-MPI corresponds to the shuffle operation in the

Hadoop based Map/Reduce implementations. This operation produces key-multi-

value objects by grouping key-value objects with the same key into a single key-

multi-value. Collate requires communication, since different processors may have

different key-value pairs with the same key. Key-value pairs are partitioned just

before the communication phase according to a hash function which is available

by default in the library itself but also can be provided by the programmer. After

the partitioning step the MPI All To All library function is used to communicate

key-value pairs between processors.

The reduce phase is started whenever key-value pairs are collected by all

processors and this time each processor has its own set of keys. This means

that the key-value pairs with the same key can not occur on different processors.
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Before calling the reduce function the processor sorts the key-value pairs in order

to reorganize key-value pairs into key-multi-value pairs. If key-value pairs do not

fit in to the local memory external memory sort algorithms are used to perform

the operation. Following this step, the reduce function is called for each distinct

key-multi-value object.

MR-MPI library extends also the basic functionality provided by Map/Reduce

paradigm. It has additional functionalities that can be utilized for speed-up. In

the original Map/Reduce framework, it is required to submit each Map/Reduce

phase as a separate job, which causes a decrease in performance. In contrast,

MR-MPI library does not have such requirements, which leads to a performance

increase especially in iterative algorithms like graph algorithms. In the original

Map/Reduce framework, initial key-value pairs produced by a map phase are

written to the disk system waiting for the reducer tasks to read their own par-

titions via remote procedure calls. In the MR-MPI library, whenever a mapper

task produces its all key-value pairs, it is not obligated to write all of these key-

value pairs to the disk but instead, it is possible to communicate these key-value

pairs with reducer tasks while storing them in memory. MR-MPI also provides

additional functions to manipulate key-value pairs between map tasks and reduce

tasks. For example one can reduce some of the key-value pairs and produce new

key-values from them. Later it is possible to unite old key-value pairs which

are not reduced with the new key-value pairs for further reduction operations.

With MR-MPI lots of further optimizations can be achieved while designing new

efficient Map/Reduce algorithms. We believe that MR-MPI library has the pos-

sibility to make a great impact on scientific computing since it eases parallel

programming while providing high scalability for HPC platforms.
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Chapter 3

Applications

To test the efficiency of Map/Reduce paradigm in parallelizing scientific comput-

ing applications over HPC systems, we selected three of the most frequently used

fundamental operations in scientific computing. These operations are: Sparse ma-

trix vector multiplication (SpMxV), multiplication of two large matrices (MxM),

and repeated multiplication of two matrices (rMxM). Since we wanted to observe

efficiency on actual applications instead of basic operations, we implemented the

All Pairs Similarity Search (APSS), All Pairs Shortest Paths (APSP), and PageR-

ank (PR) applications, which extensively depend on SpMxV, MxM, and rMxM

operations, respectively.

3.1 All Pairs Similarity Search (APSS)

In the APSS application, given a large set of sparse vectors V = {v1, v2, . . . , vn}
representing a high dimensional data, we want to find all pairs of vectors whose

similarity measure are above a given threshold value ε. The similarity of two

vectors vi and vj is computed by a function sim(vi, vj). Some of the applications

of APSS problem are; query refinement for web search, collaborative filtering,

near duplicate document detection and elimination, and coalition detection [20].

Main difficulty that is observed while solving these kinds of problems is the scale
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of the problems. That is to say that dimension of the data and number of in-

put vectors can be huge depending on the problem domain. To cope with this

issue, some approximate solutions are proposed in literature instead of finding

exact solutions for the problems. These approximate solutions generally consider

reducing dimension and number of input vectors [21, 22, 23]. Finding exact so-

lution for the APSS problem can be easily carried out by putting all the input

vectors in rows of a matrix and multiplying it with its transpose, and by changing

inner product operation between row and column vectors to sim(vi, vj) function.

The resulting matrix contains the similarity measures between all pairs of vec-

tors. Due to the reasons that are mentioned, implementing APSS algorithm with

MR-MPI library and running on HPC systems would be a good practice to show

handiness of the MR-MPI library in parallelizing the multiplication of two sparse

matrices. Note again that APSS algorithm is quite similar to the matrix mul-

tiplication algorithm, only difference between the two being the operator used

between inner products of the row and column vectors of the input matrices.

Therefore, testing this algorithm with above mentioned configurations also pro-

vides substantial information about applicability of Map/Reduce paradigm to

other scientific computing problems that require sparse matrix multiplication.

3.2 All Pairs Shortest Paths (APSP)

Given a directed graph G = (V,E) and edge weighting function w : E → R,

APSP finds a least-weight path between every vertices u, v ∈ V . The weight of a

path is the sum of its constituent edges : w(p) =
∑

(i,j)∈p

w(i, j). It is assumed that

vertices are numbered 1, 2, . . . , |V |, and adjacency of the nodes are represented

by a matrix (wij) as given below:

wij =


0 if i = j

w(i, j) if i 6= j and (i, j) ∈ E
∞ if i 6= j and (i, j) 6∈ E

(3.1)

Output of the algorithm is (lij) where each element of the matrix shows the

shortest path lengths between all nodes. As is well known, the shortest path
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problem in a given graph exhibits the following optimal substructure property:

each subpath of a shortest path is also a shortest path. Utilizing this optimal

substructure property, two distinct dynamic programming (DP) formulations are

given in the literature [24] for solving the APSP problem: matrix-multiplication-

based algorithm and Floyd-Warshall algorithm. We discuss these two algorithm

in the following two subsections respectively.

3.2.1 APSP via Matrix Multiplication

Let l
(m)
ij denote the minimum weight path from i to j having at most m edges.

Formula 3.2 defines the base case where m = 0. That means a node has a shortest

path only to itself since it is not possible to have a shortest path between any

two node having zero edges.

l
(0)
ij =

{
0 if i = j

∞ if i 6= j
(3.2)

If m ≥ 1, then the recursive formula (3.3) calculates the shortest path between

any two nodes that has at most m edges.

l
(m)
ij = min

(
l
(m−1)
ij , min

1≤k≤n
{l(m−1)ik + wkj}

)
(3.3)

= min
1≤k≤n

(
l
(m−1)
ik + wkj

)
Using the recursive definition given in (3.3) the shortest path weights can be

computed in a bottom-up manner as follows.

Algorithm 1: Extend Shortest Path.

Require: L,W
1: N = L.nrows
2: for k = 0 to N do
3: for j = 1 to N do
4: for k = 1 to N do
5: lij = min (lij, lik + wkj)

As one can see, algorithm 1 is very similar to matrix multiplication algorithm
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if we make the following operator substitutions:

min← + ,

+← .

In this way, computing all-pair-shortest-path problem is achieved by multiplying

current distance matrix with adjacency matrix. In this context, multiplication is

performed by substituting the above mentioned operators. Each multiplication

increments the power of the distance matrix by one. Power of a matrix indicates

the maximum number of edges that can constitute a shortest path between any

two nodes. Besides, there can be at most |V | − 1 edges in a shortest path in a

directed graph. Therefore, incrementing the power of distance matrix to |V | − 1

by multiplying distance and adjacency matrices at least |V | − 1 times solves the

APSP problem. Following equations show the calculation of the final distance

matrix.

L(1) = L(0).W, (3.4)

L(2) = L(1).W,

...

L(|V |−1) = L(|V |−2).W

3.2.2 APSP via Repeated Squaring

The result of the repeated matrix multiplications can be obtained much faster

by using associativity rule of multiplication of distance and adjacency matrices.

Instead of incrementing the power of distance matrix by one in each iteration,

one can use repeated squaring method to get the final distance matrix. As it is

known that if the input directed graph doesn’t contain negative weight cycles,

then L(m) = L(|V−1|) for all integers m ≥ |V | − 1. Therefore it is possible to
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compute the L(|V |−1) matrix with dlog (|V | − 1)e matrix multiplications.

L(1) = W, (3.5)

L(2) = L(1).L(1) = W.W,

L(4) = L(2).L(2) = W (2).W (2),

L(8) = L(4).L(4) = W (4).W (4),

...

L(2dlog (|V |−1)e) = L(2dlog (|V |−1)e−1).L(2dlog (|V |−1)e−1)

= W (2dlog (|V |−1)e−1).W (2dlog (|V |−1)e−1)

One can see that, if directed graph G doesn’t have negative weight cycles and

2dlog (|V |−1)e) ≥ |V | − 1, final distance matrix L(2dlog (|V |−1)e) is equal to the matrix

L(|V |−1).

3.2.3 APSP via Floyd-Warshall Algorithm

Another elegant way of solving APSP problem is Foyd-Warshall (FW) algorithm.

The FW algorithm differs from repeated squaring method in dynamic program-

ming formulation and also runs faster on a non-parallel machine. Repeated squar-

ing algorithm has a run time complexity of Θ(V 3 log V ) whereas Floyd-Warshall

has Θ(V 3). Given the input directed graph G = (V,E), Floyd-Warshall algorithm

approaches to DP formulation in a different manner. Firstly, dividing main prob-

lem into subproblems, it considers constructing shortest paths from some subset

of vertices of V . Lets say we have a shortest path p between the vertices i, j ∈ V
with all intermediate vertices are selected form the subset {v1, v2, . . . , vk} of V .

If vk is not an intermediate vertex of path p, then all intermediate vertices of p

are in the subset {v1, v2, . . . , vk−1}. On the other hand, if vk is an intermediate

vertex of the path, then we can decompose the path p into i
p1 k

p2 j. Because

k is not an intermediate vertex for both p1 and p2, intermediate vertices of p1

and p2 must be selected from the subset {v1, v2, . . . , vk−1}. Based on these facts,

recursive formulation 3.6 solves the problem of APSP. Let dkij be the length of a

shortest path between vertices i, j ∈ V , and all intermediate vertices are chosen
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from the subset {v1, v2, . . . , vk} of V , then the base case of the formulation is for

k = 0, and d
(0)
ij = wij if edge (i, j) ∈ E:

d
(k)
ij =

 wij if k = 0

min
(
d
(k−1)
ij , d

(k−1)
ik + d

(k−1)
kj

)
if k ≥ 1

(3.6)

Using recurrence (3.6), algorithm 2 computes the APSP. At each iteration of the

for loop in line 3, row k and column k is used to update whole distance matrix.

Algorithm 2: Floyd-Warshall

Require: W
1: N = W.nrows
2: D = W
3: for k = 1 to N do
4: for i = 1 to N do
5: for j = 1 to N do

6: d
(k)
ij = min

(
d
(k−1)
ij , d

(k−1)
ik + d

(k−1)
kj

)
7: returnD

3.3 PageRank

PageRank is an algorithm that shows the importance of web pages in the Web.

Importance of a web page is determined by the hyperlink structure between the

pages. The Web can be represented by a directed graph, where pages are rep-

resented by vertices and hyperlinks by directed edges. The algorithm basically

depends on the random surfer model in which an imaginary web surfer visits web

pages and randomly clicks the hyperlinks on the pages, which corresponds to

traversing the directed graph representation of the Web. Hence, PageRank value

of a page shows the probability of a random walk over the link structure of the

Web after certain number of steps. If a page has z out-links pointing to other

web pages, then the surfer chooses one of them randomly with probability 1/z.

In addition, the surfer might also want to visit a random page with a probabil-

ity α instead of following the links on the page. Using information above, the
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PageRank of a page n is computed with the following formula:

P (n) = α

(
1

|G|

)
+ (1− α)

∑
m∈L(n)

P (m)

C(m)
(3.7)

In formula (3.7), |G| is the total number of nodes, α is is the probability of

choosing a random page, L(n) is set of pages that has hyperlink to n, and C(m)

is the out-degree of a vertex m. Considering the probability of surfer being on

node m with probability value of P (m), the surfer randomly chooses a link on the

web page with probability 1/C(m). Therefore, probability contribution of node

m to n is P (m)/C(m). As one can see from the above formula, probability of

a web page n is calculated by summing probability contributions from all other

pages that have a link to it. Using recursive equation (3.7) Algorithm 3 computes

PageRank values of a given web graph.

Algorithm 3: PageRank

Require: G
1: init oldPR, newPR vectors
2: n← |G.V |
3: for all v ∈ G.V do
4: oldPR[v]← 1/n
5: while Convergence is not achieved do
6: c← 0
7: for all v that has no out-links do
8: c← c+ α ∗ oldPR[v]

n
9: for all v ∈ G.V do

10: newPR[v]← c+ (1−α)
n

11: for all u ∈ L(v) do

12: y[v]← y[v] + (1−α)∗oldPR[u]
C(u)

13: Normalize y-vector
14: Check convergence

We can also formulate the PageRank algorithm in matrix notation. To do

this, we need to define a transition matrix of the Web. The transition matrix

M = (mij) consists of n rows and n columns if there are n pages. The matrix

entry mij is defned as 1/out deg(j) (number of edges leaving a vertex) if web

page j has at least one link form j to i.

mij =

{
0 if (j, i) 6∈ G

1
out deg(j)

if (j, i) ∈ G

22



Given a vector v0 representing the PageRank values of the nodes, all pages have

the same probability value 1/n, since random surfer can be at any one of them

with equal probability. If we multiply the initial vector v0 by transition matrix M

we get a second probability distribution vector Mv0, which shows the probability

of being on a node after one step. Continuing this step, we can also multiply Mv0

with M and get M(Mv0) = M2v0 vector which shows a probability distribution

after second step. It is known that, if the graph represented by M is strongly

connected, distribution vector v approaches to a limit value which satisfies Mv =

λv. This vector v is the eigenvector of M with eigenvalue λ. Actually, if M is a

column stochastic matrix, then all column values add up to 1. The vector v is

the principle eigenvector which corresponds to the largest eigenvalue with value

1.The eigenvector v shows the probability distribution of surfer being on a page

after large number of steps. To find the principle eigenvector of the matrix M we

start with initial vector v0 and multiply it with M to find v1 = Mv0. Carrying

out this step we multiply v1 and M to find v2 = Mv1. After a certain number

of steps the convergence will be achieved and final resulting vector will be the

principle eigenvector.

Even though PageRank computes probability distribution of web pages, it

is not an exact solution but an approximation of probability distribution of the

pages unless some cases are handled properly, since it depends on the assumption

that input graph is strongly connected. In fact, it is not possible to reach from

any node to any other node in a real world Web graph, which means there is

no single strongly connected component in the graph. For instance, there may

be some nodes that have no out-links to other pages. These pages are named

as dangling nodes. If these pages are not handled properly, the total probability

distribution that adds up to one will loss some of its proportion, since probability

mass arriving at these nodes will not be transfered to other vertices. So, one

proper way to handle this situation is to distribute the whole probability values

of these dangling nodes to all nodes in the graph evenly. Using information above,

one can calculate PageRank distribution of web pages with the following formula

given in matrix notation:

v′ = αMv + (1− α)e/n (3.8)
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Equation 3.8 correctly calculates PageRank distribution in case there are no dan-

gling nodes in the graph. Therefore, probability calculation of theses dangling

nodes must be calculated separately. In addition to dangling nodes that need

extra care to calculate the PageRank values of the pages are pages that have self-

links named as spider-traps. If there are spider-traps in a directed graph, these

pages get all probability mass during PageRank computation. Hence, PageRank

values found at the end of computation are not actual values. Solution of these

kinds of problems are out of scope of the thesis, so they will not be covered in

here.

As one can see from the formulation (3.8), PageRank calculation requires

repeated sparse matrix-vector multiplications on huge data sets. So, if the size of

the data sets are considered, one can see that the main difficulty of the PageRank

algorithm is scalability. Hence, to be able to calculate PageRank for huge data

sets, one need to benefit from distributed computing systems consisting of large

number CPUs and memory systems.
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Chapter 4

MR-MPI Implementation Details

In this chapter, implementation details of the applications that are described in

Chapter 3 will be covered. All codes are developed in C++ programming language

and MR-MPI library is used for parallelization of these algorithms. Moreover, all

the codes are tested on the Juqeen [6] and Hermit [7] supercomputing systems.

All these supercomputing systems have a distributed file system that is separated

from their network of compute nodes. Juqeen uses GPFS and Hermit uses Lustre

distributed file systems for high performance parallel I/O operations. Huge data

sets that are used for testing purposes are stored on these distributed file systems

by partitioning into chunks. Later, MPI parallel I/O functions are used to read

these data sets from distributed file systems. With the help of the MPI library,

huge amount of data is drawn to computation network in a short period of time.

All data sets that we used were graphs that represent social networks or link

structure of the Web. These data sets were in the form of (i, j)(mij) key-value

pairs showing coordinates of the non-zero elements of matrices which can be used

to represent adjacency structure of graphs.
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4.1 All Pairs Similarity Search (APSS)

In order to solve the APSS problem, we used a method that a matrix representing

the input data is multiplied by it’s transpose. The matrix is formed as placing

vectors which represent high dimensional data at the row positions of the matrix.

Also, matrix multiplication is performed by using a similarity function between

matrix elements instead of plus and multiplication operators that is used by

standart matrix multiplication.

Matrix multiplication algorithms can be implemented in two different ways

with Map/Reduce paradigm. One way performs multiplication with only single

Map/Reduce phase and the other performs in two distinct Map/Reduce phases.

We decided to use the later two-phase approach; because this approach is much

more scalable than the former one. In two-phase approach, column vectors of the

first matrix are multiplied by the row vectors of second matrix and each vector

multiplication produces a matrix consisting of partial results which are later com-

bined to produce resulting matrix. On the other hand, in one-phase approaches

row vectors of the first matrix are multiplied by the column vectors of the second

matrix and inner product operation is performed between the row and column

vectors. After the inner product operation, we get a single element correspond-

ing to one of the entries of the resulting matrix. Moreover, one-phase approach

needs more replication of the input matrix elements compared to the two-phase

approach [25]. Therefore, one-phase approach performs more communication,

and thus the two-phase approach is more efficient even it needs two distinct

Map/Reduce job phases. Additionally, even though second approach needs two

phases, MR-MPI library does not need intermediate key-value pairs to be written

to the distributed file system, which provides low latency between Map/Reduce

phases. Hence, using the two-phase approach with MR-MPI library does not

have such overhead that is seen in other implementations of Map/Reduce. Ad-

ditionally, we regarded scalability more; because memory available at compute

nodes was limited.

Algorithm 4 shows the psuedo-code implementation of the APSS algorithm.
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At the beginning of the algorithm, two MR-MPI library objects named as E and T

are initialized. Object E stores key-value objects which are read from distributed

file system using parallel I/O functions of the MPI library. Key-value pairs are in

the form of (i, j)(mij) that corresponds to non-zero entries in the input matrix.

Here (i, j) is the key field that i and j correspond to row and column coordinates

of the non-zero element and the (mij) field is the actual non-zero element of the

matrix. As for object T , it is an empty object; but filled by mapping key-value

pairs stored in the object E. Whenever library object E is filled by key-value

Algorithm 4: APSS

Require: E = (rowi, colj)(mij)
1: Init MR objects E and T
2: T ← E.map(mapper1DRW )
3: E ← E.map(mapper1DCW )
4: E ← T.add()
5: delete T
6: E.collate(NULL)
7: E ← E.reduce(reducerOP )
8: E ← E.map(mapper1DCW )
9: E.collate(NULL)

10: E ← E.reduce(reducerSP )
11: returnE

objects, E is mapped with user defined function mapper1DRW function in line 2

of the algorithm. After this operation is performed, resulting key-value pairs are

stored in object T . In this function, input key value objects (i, j)(mij) are trans-

formed into (i)(j,mij) key-value pairs. This operation maps the input matrix

row-wise for the matrix multiplication as given in algorithm 4. In line 3, the sec-

ond library object E is mapped with user defined function mapper1DCW . This

function basically maps input matrix column-wise by transforming the (i, j)(mij)

key value pairs into (j)(i,mij) pairs. In line 4, the key-value pairs in the object

T are all added to object E and object T is deleted. Whenever the add opera-

tion is finished, the collate() function is called where all the key-value pairs are

hashed according to key fields and are distributed to processors. When collate

phase finishes, non-zero entires of row vectors of the matrix E and column vectors

of the matrix T with the same keyfield are all collected by the same processor.

After this operation had been performed, all the key-value objects with the same
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key are merged into key-multi value object in the form of (j)(i, [mij]). Then, in

line 7 the reduce operation is performed with user defined function reducerOP .

Within the function reducerOP , row vector entries and column vector entries are

separated. Following this step, an outer vector product operation is performed

and a new intermediate matrix with partial entries is formed. For this reason, we

prefered the two-phase approach while implementing the APSS algorithm. All of

the entries in the form of (i, j)(m′ij) of the intermediate matrix is than mapped

column-wise in line 8 of the algorithm with the same function used in line 2.

Then, collate operation is performed in line 9 of the algorithm to sum each par-

tial results to form final resulting matrix. Each column of the each intermediate

matrix produced by the outer product operations are mapped and distributed to

processors. After the collate phase, partial results in different intermediate ma-

trices which have the same column indices are gathered by the same processor.

Therefore, it is possible to compute columns of the resulting matrix locally by all

processors. In other words,the resulting matrix are partitioned by columns and

each processor is responsible to compute some subset of columns of the result

matrix. In line 11 resulting matrix is computed and stored as key-value pairs in

the library object E.

4.2 All Pairs Shortest Paths (APSP)

The input graph is represented by an adjacency matrix and the adjacency matrix

is multiplied log n times by itself where n is the number of nodes in the graph.

In the second method, we implemented Floyd-Warshall (FW) algorithm in which

a different approach for dynamic programming formulation is used. Moreover,

the Floyd-Warshall algorithm is also different compared to the matrix multipli-

cation algorithm. In this algorithm there is an n iteration main loop where at

each iteration i, row i and column i are used to compute each element of the

distance matrix for further iterations. As mentioned above, in repeated squaring

method a sparse matrix is repeatedly multiplied by itself and after each iteration,

resulting matrix becomes much denser. Hence, it was not possible to test this al-

gorithm with huge matrices; because algorithm itself has running time complexity
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of Θ(n3 log n). In addition, Floyd-Warshall algorithm also has high asymptotic

complexity that it is Θ(n3). As mentioned in Section 3.2.2, while performing

repeated squaring method we used two phase matrix multiplication algorithm

because of the same reasons.

4.2.1 APSP via Repeated Squaring

Algorithm 5 shows the repeated squaring (RSQ) method to calculate all pair

shortest paths between vertices. The RSQ algorithm is very similar to APSS

Algorithm 5: RSQ

Require: E = (rowi, colj)(mij), N
1: Init MR objects E and T
2: M = 1
3: while M < N − 1 do
4: T ← E.map(mapper1DRW )
5: E ← E.map(mapper1DCW )
6: E ← T.add()
7: delete T
8: E.collate(NULL)
9: E ← E.reduce(reducerOP )

10: E ← E.map(mapper1DCW )
11: E.collate(NULL)
12: E ← E.reduce(reducerSP )
13: M ←M ∗ 2
14: returnE

algorithm; since core operation for the two algorithm is the matrix multiplica-

tion. In line 1 MR-MPI library objects are initialized and object E is filed up

by key-value pair that are read from distributed file system. Following this the

variable M which shows the iteration number is set to 1. Therefore, the while

loop between lines 3 and 13 iterates dlog (|N | − 1)e/2 times. Within the while

loop, two-phase matrix multiplication is performed by changing certain operator

changes as mentioned in Section 3.2.2. In line 13, variable M is doubled. When-

ever while loop finishes, resulting object E holds key-value pairs which correspond

to final distance matrix entries.
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4.2.2 APSP via Floyd-Warshall (FW) Algorithm

In the FW algorithm each iteration i, row i and column i are used to update all

elements of the distance matrix. The number of columns and rows in a distance

matrix is n. Therefore, main loop in Floyd-Warshall algorithm iterates n times.

Algorithm 6: Floyd Warshall

Require: E = (vi, vj)(wij), N
1: E ← E.map(mapper1DCW )
2: E.collate()
3: E.reduce(reducer1DCW )
4: for k = 0 to N − 1 do
5: T ← E.map(kthColMapper)
6: T.collate(NULL)
7: T.reduce(kthColReducer)
8: E.convert()
9: E.reduce(kthIterationReducer)

The algorithm requires MR-MPI object E that is filled up by key-value pairs

corresponding to each matrix element of an adjacency matrix. The key-value

pairs are in the form of (vi, vj)(wij), where vi, vj are source and target nodes and

wij is the distance between the two. In lines 1 to 3, as given in the algorithm

6, the MR-MPI object E is mapped with user defined function mapper1DCW .

User defined function mapper1DCW converts the key-value pairs in the form

of (vi, vj)(wij) to the form of (vj)(vi, wij). This operation maps each column of

the input matrix. Hence, a column-wise partitioning is attained between reducer

tasks. Whenever the lines 1 to 3 are executed, the key-value pairs corresponding

to the same column entries in the distance matrix are gathered by the same

processors. Therefore, distance calculation at each iteration can be performed

locally. The for loop in line 4 iterates n times and at each iteration, column k is

replicated to all reducer tasks. This operation is performed by mapping object E

with user defined function kthColMapper and by adding the resulting key-value

pairs to the library object T in line 5. Column k is replicated by the number of

reducer tasks with this function. After mapping operation had been performed in

line 6, the collate() function is called on object T which distributes all copies of

column k to reducer tasks. Following this step, in line 7 reduce function is called

30



on object T with user defined function kthColReducer which stores all column

entries of kth column in a vector which is stored in memory. Following this, in line

6, the convert() function of object E is called. The convert() function converts

all key-value pairs to key-multi-value objects by merging all key-value pairs with

the same key into a single element. The key of the resulting key-multi-value

object is the old key of key-value pairs that are merged and the key-multi-value

object stores all the values. In the case of algorithm 6, the convert() function

call only converts key-value objects to key-multi-value objects because key fields

of all key-value objects are distinct in processor. In other words, this operation

is obligation of the MR-MPI library that reduce functions can be performed on

MR-MPI library objects that have key-multi-value objects. In this regard, if a

library object has key-value pairs, then it is not possible to call reduce on that

object which forces programmer to convert the key-value objects to key-multi-

value objects. Afterwards, in line 9 of the algorithm, reduce function which

is provided with user defined kthIterationReducer function is called on library

object E. In this reduce phase, local portion of the kth row is separated from

other key-value pairs and stored in a vector in memory; since it is used to update

distance matrix entries that are stored in th object E. Following this, the values

of all key-value pairs are updated using kth column and local portion of kth row

according to recursive formulation given in (3.6). Whenever update operation is

completed, all updated key-value pairs are again stored in object E in the form

of (vj)(vi, wij).

4.3 PageRank

As mentioned in chapter 3.3, PageRank algorithm can be performed by mul-

tiplying a sparse transition matrix with a dense PageRank distribution vector

repeatedly until convergence is achieved. One proper way for matrix vector mul-

tiplication with Map/Reduce paradigm is partitioning the matrix one dimensional

by columns and partitioning the vector conformable with column partitioning of

the matrix. In other words, one needs to distribute the input vector and ma-

trix in a way so that column i of the matrix and row i of the vector goes to
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same processor to perform multiplication operation locally. While implementing

PageRank algorithm, we used parallel I/O operations to read input matrix which

represents the Web graph. Matrix elements are represented by key-value pairs in

the form of (i, j)(aij) where i and j correspond to row and column indices and

aij corresponds to non-zero element of the matrix. Whenever input key-value

pairs are completely read from the distributed file system, these key-value pairs

are mapped column-wise to produce key-value pairs in Then, new key value pairs

are distributed to processors with aggregate() function call of the MR-MPI li-

brary using a user defined hash function. With the help of the hash function, it

is possible to designate the processors to which non-zero elements of a column

are assigned. Following this step, input vector partitions that are conformable

with matrix partitioning are initialized by each processor locally and each vector

element has a value of 1/n where n is the number of web pages.

Before beginning to PageRank computation, one step that must be taken is

finding dangling vertices which correspond to columns that have all entries equal

to zero. This operation can be performed locally by each processor; since all

columns that have at least one non-zero and entries of the input vector that are

conformable with column-wise matrix partitioning are locally available. Adding

key-value pairs of the input vector to the respective pairs of matrix, one can call

the convert() function to create key-multi-value objects using all the key-value

objects. Hence, key-value pairs with key i which correspond to non-zero elements

of column i and key-value objects with key i that is the ith row of the input vector

will be merged together to form key-multi-value objects. In this way, calling a

reduce function on all the key-multi-value objects, columns that do not have any

non-zero elements can be found easily by just looking to key-multi-value objects

that have only one value element; since the only key-value object with a key i

which corresponds to dangling nodes is the ith row entry of the input vector.

Implementation of PageRank is provided in the Algorithm 7. The algorithm

requires MR-MPI library objects A, M , x, and y. Firstly, object A stores the

input matrix elements in the form of (j)(i, aij) which corresponds to column-wise

partitioning of the matrix. Secondly, object M is required to keep indices of

the empty columns of the matrix in the form of (j)(NULL). Lastly, x is the
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initial vector of PageRank distributions in the form of (i)(xi) and y is an empty

object which will be later used to store the result vector of the first matrix vector

multiplication.

Algorithm 7: PageRank

Require: A = (colj)(rowi,mij),M = (colj)(NULL), x = (rowi)(1/n), y
1: while residiul < tolerance do
2: c = 0
3: M.add(x)
4: M.convert()
5: M.reduce(reducerComputeAdjustment)
6: c = MPI Allreduce(c,MPI SUM)/n
7: y.add(x)
8: y.add(A)
9: y.convert()

10: y.reduce(reducerIP )
11: y.collate()
12: y.reduce(reducerSUM)
13: ymax = 0
14: y.map(mapperMAX)
15: y = MPI Allreduce(ymax,MPI MAX)
16: y.map(mapperScale)
17: x.add(y)
18: x.convert()
19: residual = 0
20: x.reduce(reducerComputeResidual)
21: residual = MPI Allreduce(residual,MPI MAX)
22: x = y.copy()
23: returnx

The while loop in line 1 iterates until the convergence is achieved. In each

iteration, the following operations are performed in succession. Firstly, in lines

1 to 5, computations that are required by dangling nodes are performed. To do

that, key-value pairs of the object x are added to the object M in line 3 and

convert() function is called on M to convert key-value objects in to key-multi-

value objects. After this operation is performed, the reduce function with user

defined function reducerComputeAdjustment is involved. With the help of this

function, total probability mass arriving at dangling nodes that are stored locally

is calculated at each processor. Then in line 6, using MPI Allreduce function,

the whole probability mass arriving at all dangling nodes is globally summed and

divided by n in order to make adjustments to the probability distribution of all
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vertices. The only communication required to perform these operations is global

reduction operation. All the other operations are performed locally due to the

pre-aggregation step performed at the beginning of the program.

Next step of the algorithm is multiplication of transition matrix A by vector

x. The multiplication operation is performed firstly in lines 7 to 12 by adding

key-value pairs of objects x and A to the object y and calling convert() function

which produces key-multi-value objects in the form of (j)(xj, [i, aij]). The vector

entry xj can be differentiated from other entries that are recieved from the nonzero

entries of matrix A by using some library specific functionalities. So, it is possible

to perform multiplication of vector entry xj by all matrix elements aij in the same

column. The results of each separate multiplication operation is a partial result

of the final corresponding vector entry yi. For instance, if xj is multiplied with

matrix entry aij, then the result of this operation is a partial result of the final

vector entry yi. Each partial result is mapped with their row indices and added

to object y as a key-value pair in the form of (i)(yi) for the later steps of the

PageRank algorithm. Finally, to come up with the final resulting vector y, a

second phase of Map/Reduce is needed to sum all partial results that contribute

to same y-vector entry. Therefore, after the first reduce phase, the collate()

function of the library is called on object y to collect all partial results of the

same y-vector entry on the same processor. After the collate operation, it is

now possible to compute the final y-vector entries locally on each processor. The

reduce operation performed on line 12 performs the summation of the partial

results that are gathered from other processors and produces resulting y-vector

entries in the form of (i)(yi) key-value pairs.

After the computation of the output vector y, it is time to check convergence

criteria to be able to properly end the execution of the algorithm. In the algorithm

7, in lines 13 to 21, difference value between x and y vector named as residual

is computed. In lines 13 to 15, maximum y vector entry which is the infinity

norm of the vector is found by a single step map phase which is called with user

define function mapperMAX and does not require communication. Additionally,

probability value c which is calculated in line 6 is added to each entry of vector

y by yi = yi + ymax. Then, the global reduction operation is performed using
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MPI library to find the global maximum y-vector entry is found in line 15. Using

the global maximum y-vector entry ymax, all y vector entries are scaled by map

function which is called with mapperScale function. With this map phase, each

entry of y is scaled by yi = yi/ymax operation. Finally, in lines 17 to 21, the

difference of the two vectors x and y is found and the infinity norm of the difference

is computed. In line 17 key-value pairs of y is added to x and convert() function is

called. After the convert operation, the reduce function is called with user defined

function reducerComputeResidual on object x. In the reducer function infinity

norm of the difference of the vectors is found by max(|xi − yi|) operation; but

this operation is performed locally in which local maximum is found. Therefore,

globally maximum entry of the difference vector must be found in line 21 where

global reduction is used among processors. The entry that has maximum value

of the difference vector is copied to variable residual which is later used to check

whether convergence is achieved or not. Following that operation, library object

y is copied to object x which will be used in further iteration until convergence is

achieved. Whenever the while loop is completed, we have the resulting PageRank

distribution vector which is normalized using infinity norm.
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Chapter 5

Experimental Results

In this chapter, the results of the experiments that are performed on HPC systems

will be provided. Experiments are performed to measure the total execution time

in order to observe performance metrics such as speedup and scalability. All of

the applications are implemented using MR-MPI library for HPC systems. Algo-

rithmic and implementation details of the applications are elaborated in Chapter

3 and 4 respectively. In addition to experimental results, a data set properties

and hardware features of HPC systems are also provided. The experiments are

performed on the two HPC systems namely as Juqeen and Hermit. The following

tables 5.1 and 5.2 provide hardware features of these two systems.

During the experiments, several real world graph datasets which represent so-

cial events or link structure of the Web are used. For instance, we used LiveJour-

nal which is taken from Stanford University Large Network Dataset Collection

[26]. The LiveJournal is an on-line community in which significant fraction of

members are highly active. It allows members to maintain journals and to de-

clare which other members are their friends. Each node in the graph corresponds

to a member in the network and an edge is added between two nodes if respective

members become friends. An other important real world data set is uk-2007 Web

graph which is part of DELIS dataset [27]. The DELIS dataset is a collection

of web graphs focusing on .uk domains which is collected by monthly snapshots.
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Table 5.1: Hardware configuration of the Juqeen (IBM BlueGene/Q) system

Features Description
Compute Nodes IBM PowerPC A2, @ 1.6 GHz, 16 cores,

16 GB SDRAM-DDR3 per node
Number of CNs 28672 nodes

Number of Racks 28 racks
Total number of cores 458,752 cores
Overall main memory 448 TB

Networks 5D Torus 40 GBps; 2.5 sec latency,
Collective network part of the 5D Torus,
Global Barrier/Interrupt part of 5D Torus,
1 GB Control Network System Boot, Debug, Monitoring

Distributed File System GPFS
Peak performance 5.9 Petaflops

Table 5.2: Hardware configuration of the Hermit (Cray XE6) system

Features Description
Compute Nodes AMD Opteron(tm) 6276 (Interlagos) processors (2 per node)

@ 2.3 GHz (up to 3.2 GHz with TurboCore)
32GB RAM/node 2GB/Core

Number of CNs 3552 nodes
Number of Racks 28 racks

Total number of cores 113.664 cores
Overall main memory 126 TB

Networks Gemini Interconnect (3D torus)
Distributed File System Lustre

Peak performance 1 Petaflops
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Additionally, we also used randomly generated graphs that are recursively gen-

erated with power-law degree distributions. These random graphs generally used

to represent social networks. The properties of these datasets are presented in

Table 5.3.

Table 5.3: Dataset Properties

Name Type Nodes Edges Description
Random Graph1 Directed 262,144 10,485,760 Randomly generated
Random Graph2 Directed 256 2560 social network
Random Graph3 Directed 512 5120
Random Graph4 Directed 1024 10240

LiveJournal Directed 4,847,571 68,993,773 LiveJournal online
social network

uk-2007 Directed 105,896,435 3,738,733,649 Web graph that is
part of the DELIS project

5.1 APSS Experiments

The APSS experiments are performed with RandomGraph1 and LiveJournal

datasets whose properties are presented in Figure 5.3. These experiments are

all performed in Hermit Supercomputing system which is described in Table 5.2.

As mentioned earlier, performing APSS algorithm on social graphs can be used

in recommendation systems in which friendship suggestions are offered to people

if their friendship profile is similar to someone. Here we present experimental

results of the APSS algorithm in Table 5.4. The corresponding graphs to the run

time experiments are presented in Figures 5.1 and 5.2.

In Figure 5.1, APSS algorithm where the RandomGraph1 is given as input

is run on 128, 256 and 512 CPU cores. As one can see the Map/Reduce imple-

mentation of APSS scales up to 512 cores improving total running time. There is

some efficiency loss Between 256 and 512 cores due to parallelization overheads

but it is possible to gain higher speedups by increasing input size. In Figure 5.2,

APSS is run on 1K, 2K, and 4K cores with input data of LiveJournal graph.
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A super linear speedup is achieved between 1K and 2K cores since the size of

the data that is assigned to each processor is bigger then the size of the memory

available at each core which causes I/O operations to swap pages of key-value

pairs between memory and distributed file system. Unfortunately, only a slight

improvement is achieved by increasing the number of cores to 2K due to efficiency

loss that shows that algorithm did not scale. It is important to note that paral-

lelization overheads grow at least linearly as the number of processors increases.

Moreover, Hermit super computing system has an interconnection network that

provides low bisection width compared to Juqeen system which causes Hermit

system to have higher parallelization overheads since MPI Alltoall communica-

tion is performed among the processors in the collate phase of the library. As the

results show, MR-MPI library provides high scalability up to a certain number

of processors if it is provided with right input size to keep efficiency at a fixed

value. The scalability can further be improved by optimizing both algorithm it-

self, and the library specific configurations, and using a supercomputing system

which provides higher bisection width. Additionally, as one can see the huge data

sets can be processed on the HPC systems in a very small period of time which

is not possible with other parallel computing systems.
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Figure 5.1: APSS algorithm run on RandomGraph1
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Figure 5.2: APSS algorithm run on LiveJournal

Table 5.4: Execution time results gathered from the APSS experiments

RG1 LJ

Number of procs. 128 256 512 1024 2048 4096
Execution time (secs): 15.63 11.67 10.91 89.29 36.96 36.68
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5.2 APSP Experiments

Performing APSP on a graph might be used to find betweenness centrality mea-

sure of nodes in the graph in big data applications. Betweenness centrality

of a node is equal to the number of shortest paths passing through that ver-

tex. The measure is used to find a node’s centrality in a network. The APSP

experiments are performed on Hermit Supercomputing system using data sets

RandomGraph2, RandomGraph3, and RandomGraph4. As mentioned earlier

two different algorithms are used to solve the APSP problem. The first is RSQ

method where adjacency matrix is multiplied with itself repeatedly and the sec-

ond one is the FW algorithm. Algorithmic details of these algorithms are provided

in Section 3.2.2 and 3.2.3 respectively.

Here, the experimental results of the two algorithms are presented in Fig-

ure 5.3 and in Table 5.5. As one can see the three different experiments are

performed for each algorithm. In the experiments, we increased both the input

size and the number of processors to compare execution time of the algorithms.

Increasing the number of vertices corresponds to increasing the problem size cubi-

cally due to the serial execution complexity of the algorithms that are Θ(V 3 log V )

for the RSQ and Θ(V 3) for the FW. We used 128, 256, and 512 CPUs for the

randomGraph2, randomGraph3, and randomGraph4 respectively. In each ex-

periment RSQ method performed significantly better than FW algorithm even

FW algorithm has lower complexity for the serial execution. The reason is that

the number of Map/Reduce iterations is log n for RSQ, whereas it is n for the FW

algorithm. While performing these experiments we observed that even though

the MR-MPI library provides low latency between Map/Reduce phases, the large

number of iterations still contains substantial overheads. Moreover, it is observed

that the Hermit system offers an interconnection network that has low bisection

width which causes more parallelization overheads compared to Juqeen system.

The reason for that is MR-MPI library performs MPI Alltoall communication be-

tween the Map/Reduce phases which cause each processor to communicate with

every processor that is allocated for the program execution. Therefore, it is more
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important to prefer algorithms that requires small number of Map/Reduce iter-

ations and round minimization is more important then reduced computational

complexity, at least for small enough dataset sizes.
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Figure 5.3: APSP algorithm run on RandomGraph2(RG2), RandomGraph3
(RG3), and RandomGraph4 (RG4)

Table 5.5: Execution time results gathered from the APSP experiments

rgraph1 rgraph2 rgraph3
k = 128 k = 256 k = 512

RSQ 21.36 57.22 152.47
FW 147.91 534.19 1187.81

5.3 PageRank Experiments

PageRank experiments are performed on Juqeen supercomputing system using

data set uk-2007. The uk-2007 data set is a huge sparse matrix which is a directed

graph representing link structure of web sites under .uk domain. This huge sparse

matrix is repeatedly multiplied with a dense PageRank distribution vector until

the convergence is achieved. The experiments are performed using 256, 512, 1K,
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and 2K CPU cores and the total execution time of the algorithm using those

configurations are provided in Figure 5.4 Table 5.6. Figure 5.4, a super linear

speedup is achieved between the 256 and 512 cores. The reason is that the

data that is assigned to each processor is bigger than the size of the memory

available for each core which causes I/O operations to swap pages of key-value

pairs between memory and distributed file system. If the input data is distributed

to more CPU cores, than it is possible to fit the partitioned data to local memory

available for each CPU core. Moreover, between the 512 and 2K cores almost

linear speedup is achieved which shows the efficiency and the scalability of the

MR-MPI implementation of the PageRank algorithm. On the other hand, the

scalability of the PageRank implementation also depends on the architecture of

the Juqeen system; since it has an interconnection network which provides higher

bisection width compared to Hermit system. The results of the experiments show

us the low parallelization overhead of the MR-MPI library especially when used

on Juqeen supercomputing system. Due to low parallelization overheads, it is

possible to scale to large number of processors to process huge data sets efficiently

which shows usefulness of the MR-MPI library for the big data applications.
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Figure 5.4: PageRank algorithm run with uk-2007 data set
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Table 5.6: Execution time results gathered from the PageRank experiments

Number of procs. 256 512 1024 2048

Execution time (secs): 390.20 80.73 45.32 20.99
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Chapter 6

Conclusion

Experimentally it was verified that Map/Reduce paradigm can be useful in HPC

systems; since it provides both ease of parallel programming and scalability for

the data intensive applications. Especially, using a library such as MR-MPI which

is designed for HPC systems is beneficial because of it’s certain aspects. First

of all, the MR-MPI library has more functionalities than the other Map/Reduce

frameworks such as Hadoop and Google. Additionally, the library itself is de-

signed for HPC system where communication is much more faster than writing

chunks of data to a distributed file system. Therefore, the intermediate key-value

pairs are distributed among processors by message passing which decreases la-

tency between Map/Reduce phases. The benefits of the library and it’s being

the only implementation for HPC systems currently, makes it the best choice for

such systems. On the other hand, even the MR-MPI decreases latency between

Map/Reduce phases and provides much more performance compared to the other

implementations, it is not so sufficiently efficient in iterative algorithms especially

when used in HPC system that have an interconnection networks having low bi-

section width. While performing the scalability tests of the applications using

MR-MPI library, it was observed that the properties of the interconnection net-

work have significant impact on parallelization overheads of the MR-MPI library.

For this reason, Juqeen system provided more scalability compared to Hermit

system. Therefore, trying to decrease the number of Map/Reduce job phases

45



while designing Map/Reduce algorithms is a good strategy to improve runtime

and scalability of applications. Besides, it was observed that data intensive ap-

plications can also be run efficiently on HPC systems using MR-MPI library.

The applications in the of data mining and information retrieval which are

generally preferred to run on commodity PC clusters, can also be run efficiently

on HPC systems. Because it is possible to store huge data sets and process these

data sets efficiently on HPC systems.

The Map/Reduce paradigm is used more frequently in data mining and in-

formation retrieval domains. During our studies, we implemented sparse matrix

multiplication and sparse matrix vector multiplication algorithms, which are fun-

damental operations in such domains. It is also known that the implemented

algorithms are also frequently used in scientific computing domain which shows

that Map/Reduce paradigm can also be used in scientific computing applications

as well.

As a future work, we consider to implement some optimizations which try

to decrease communication among processors between Map/Reduce phases by

preprocessing input data to provide locality to reducer tasks. Additionally, it

is possible to configure size and number of memory pages which are required

by the library to store key-value pairs. These pages are swapped transparently

between memory and distributed file system during execution of an algorithm.

These configurations also need some optimizations to achieve more scalability

and speedup. Also the algorithms might be designed in considering the memory

page configurations.

In conclusion, Map/Reduce paradigm and variations of frameworks are well

understood during our studies. Additionally, designing efficient Map/Reduce

algorithms for HPC systems is a well guide for future works. Also, we observe

that research in big data applications attracts more interest than ever in these

days. Therefore, we believe that concentrating on the tools that are used to solve

big data problems is generally of high importance.
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