
SCALING FORECASTING ALGORITHMS
USING CLUSTERED MODELING

a thesis

submitted to the department of computer engineering

and the graduate school of engineering and science

of bilkent university

in partial fulfillment of the requirements

for the degree of

master of science

By

Mehmet Güvercin
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ABSTRACT

SCALING FORECASTING ALGORITHMS USING
CLUSTERED MODELING

Mehmet Güvercin

M.S. in Computer Engineering

Supervisor: Assoc. Prof. Dr. Hakan Ferhatosmanoğlu

August, 2013

Research on statistical forecasting has traditionally focused on building more

accurate models for a given time-series. The models are mostly applied only

to limited data due to their limitation on efficiency and scalability. However,

many enterprise applications such as Customer Relationship Model (CRM) and

Customer Experience Management (CEM) require scalable forecasting on large

number of data series. For example, telecommunication companies need to fore-

cast each of their customers’ traffic load individually to understand their needs

and behavior, and to tailor targeted campaigns. Forecasting models are easily

applied on aggregate traffic data to estimate the total traffic volume for rev-

enue estimation and resource planning. However, they cannot be applied to each

user individually as building accurate models for large number of users would

be time consuming. The problem is exacerbated when the forecasting process is

continuous and the models need to be updated periodically. We address the prob-

lem of building and updating forecasting models continuously for multiple data

series and propose dynamic clustered modeling optimized for forecasting. We

introduce representative models as an analogy to cluster centers, and apply the

models to each individual series through iterative nonlinear optimization. The

approach performs modeling and clustering simultaneously, makes forecasts by

applying representative models to each data, and updates the model parameters

for a continuous forecasting process. Our findings indicate that understanding

an individual’s behavior within its segment’s model provides more scalability and

accuracy than computing the individual model itself. Experimental results from

a real telecom CRM application show the method is highly efficient and scalable,

and also more accurate than having separate individual models.

Keywords: Scalable forecasting, time-series models, dynamic maintenance, clus-

tered modeling, streaming data, performance, accuracy.
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ÖZET

KÜMELEME MODELLEMESİ TABANLI
ÖLÇEKLENEBİLİR TAHMİNLEME ALGORİTMALARI

Mehmet Güvercin

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Assoc. Prof. Dr. Hakan Ferhatosmanoğlu

Ağustos, 2013

İstatistiksel tahminleme konusunda yapılan araştırmalar geleneksel olarak daha

çok verilen zaman serisi için daha doğru modeller oluşturmaya odaklanmaktadır.

Bu modeller verimlilik ve ölçeklenebilirlik kısıtlarından dolayı sadece sınırlı sayıda

zaman serisine uygulanabilmektedir. Ancak, Müşteri İlişkileri Yönetimi (MİY)

ve Müşteri Deneyimi Yönetimi (MDY) gibi bazı kurumsal uygulamalar büyük

veri seti üzerinde çalışabilen ölçeklenebilir tahminleme gerektirmektedir. Örnek

olarak, telekomünikasyon firmaları müşterilerin ihtiyaçlarını ve davranışlarını

anlamak veya müşteriye özel kampanya üretmek için her bir müşterinin ayrı ayrı

trafik yükünün tahminine ihtiyaç duyarlar. Tahminleme modelleri, gelir tah-

mini veya kaynak planlaması için gerekli olan toplam trafik hacmi tahmininde

toplu trafik verisi üzerinde kolayca kullanılabilir. Bununla birlikte, çok sayıda

kullanıcı için ayrı ayrı model oluşturmak çok fazla zaman aldığı için bu durumda

tahminleme modelleri uygulabilirliğini yitirmektedir. Tahminleme sürecinin

sürekli olduğu ve modellerin periyodik olarak güncellenmesi gerektiği durumlarda

problem daha da içinden çıkılmaz hale gelmektedir.

Biz bu çalışmada, birden fazla zaman serisi için tahminleme modellerini

oluşturma ve sürekli bir şekilde güncelleme problemini ele almaktayız ve

tahminleme için optimize edilmiş dinamik kümeleme modellemesini sunmaktayız.

Çalışmada küme merkezleri için temsili model oluşturmayı ve bu modelleri

tekrarlı doğrusal olmayan optimizasyon kullanarak her bir zaman serisine ayrı

ayrı uygulamayı önermekteyiz. Öne sürülen yaklaşım, modelleme ve kümeleme

işlemlerini eş zamanlı olarak yerine getirmekte, temsili modelleri her bir zaman

serisine uygulayarak tahminleme yapmakta ve sürekli tahminleme süreci için

model parametrelerini güncellemektedir. Elde ettiğimiz bulgular bireysel model

davranışlarını kendi segment modeli üzerinden değerlendirmenin bireysel modeller

hesaplamaya göre daha ölçeklenebilir ve daha doğru olduğunu göstermektedir.
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Gerçek bir telekom MİY uygulaması üzerinde yapılan deneyler, önerilen yöntemin

her bir kişiyi ayrı ayrı modellemeye göre yüksek verimli, ölçeklenebilir ve daha

doğru olduğunu ortaya koymaktadır.

Anahtar sözcükler : Ölçeklenebilir tahminleme, zaman serisi modelleri, dinamik

sürdürme, gruplandırma modellemesi, akan veri, performans, doğruluk.
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Chapter 1

Introduction

Statistical forecasting is an essential tool for enterprise planning and budgeting.

The companies often make forecasts on an attribute of interest, such as total

revenue or network traffic using an aggregate time-series model on that attribute.

Such a collective analysis provides insights on common patterns but not on un-

derstanding the customers and their needs. CRM and CEM applications are

based on a customer centric view that requires scalable and dynamic models on

multiple evolving data series. In terms of accuracy, a separate individual model

for each series would be expected to perform well as each model is tailored for

its corresponding data. However, this approach is not scalable since common

forecasting models, such as Seasonal Auto Regressive Integrated Moving Average

(SARIMA) [1], take nontrivial time even for a single time-series. A scalable ap-

proach is needed to scale forecasting models for multiple and possibly correlated

data series. The models should be updated in periods with the newly coming

data. The process of fitting an incremental model for the updated data needs

also be scalable.

We present the problem through a CRM example that originally motivated

this research, among many Business Intelligence (BI) applications. Telecommu-

nication companies predict their future network traffic load, such as total 3G

connections or call volumes generated by their customers, for resource planning

and revenue estimation. The forecasts are typically performed using well-formed
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statistical models such as Holtz Winter [2], exponential smoothing [1, 2], and

SARIMA [2–4]. The models are practically applied to an aggregate time-series

of total traffic on the company network. While aggregating the data makes the

analysis more feasible, CRM requires understanding each customer’s usage traffic

patterns individually. For example, if the companies can forecast a customer’s

future traffic, they can design personalized campaigns to improve both the cus-

tomer’s experience and the company revenue.

Given the complexity of statistical forecasting models, individual modeling

(IM) and their dynamic maintenance would not be scalable for large CRM appli-

cations. Also, while the aggregate data may provide clear trends, each individual

series includes noise and local outliers that reduce the accuracy of the forecasting

model. Fortunately, data series in most real applications, such as customers call

traffic, are not independent and show correlations through segments and due to

regular and irregular events. We revisit statistical forecasting in the context of

dynamic large-scale analytics and develop a less costly modeling approach that

considers correlations and preserves accuracy. The ideal method would be ac-

curate in forecasting future data for each series, efficient in building models and

capturing correlations for a large number of time series, and scalable in accuracy

and speed.

Our approach scales the forecasting algorithms by a continuous clustered mod-

eling (CM) optimized for forecasting. We form groups of data simultaneously with

appropriate forecasting models based on similarity in the context of forecasting.

We use a forecasting model as an analogy to cluster center and apply the repre-

sentative model to each series separately. A common model in a cluster eliminates

the need for modeling every individual and results in efficiency as applying the

model is significantly cheaper than building the model. The individual focus is

also captured since individual data is used in model application that leads to more

accurate fit as shown in the experimental results. Following this methodology, we

develop two specific algorithms: the first one integrates clustering and modeling

simultaneously, and the second where they are applied sequentially. We focus on

improving SARIMA family of models for better integration to current enterprise
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CRM and BI applications. In fact, they are also shown to perform better in fore-

casting aggregate traffic than more complicated and time consuming models such

as neural networks [5,6]. We note that the proposed methodology is independent

of the underlying linear or nonlinear modeling approach, and can benefit from

any model selection method.

Our first method builds SARIMA based clusters on multiple series and con-

tinuously updates them through iterative non-linear optimization. For a single

time series, the best model is obtained by minimizing the (Akaike Information

Criterion) AIC over the parameters. For multiple series, one can obtain the mod-

els by minimizing the AIC of each series hence the total AIC. Identically, for

co-evolving data series, we minimize total AIC in groups instead of individually.

We seek through the space of SARIMA models to group correlated data series

into their segments according to their evolution pattern and find the ones mini-

mizing total AIC starting with initial SARIMA models. The search and update

are done through an iterative nonlinear optimization. As we search to minimize

AIC, we also adjust clusters to decrease AIC further. Clusters are dynamically

adjusted with model parameter updates to continuously decrease AIC.

Our second approach utilizes time-series clustering within the proposed rep-

resentative forecasting models. We cluster time series using an Linear Prediction

Cepstrum (LPC) based representation and build models on each cluster repre-

sentative. Each series is applied its corresponding model and forecasts are made

by applying the representative model. As data evolve, updates are applied only

on the parameters of the representative models, not the whole data set.

The proposed grouped models avoid over-fits and capture common motifs

even on noisy data. While the current forecasting models need pre-processing to

smooth local outliers, the proposed approach is robust to bursty data with outliers

and handles them automatically. We use one single model for all time-series in

the cluster, however, the produced forecast for each time-series is different and

tailored for the corresponding time-series. An appealing outcome of our work is

to achieve the two seemingly contradictory goals at the same time: more accurate

and more efficient forecasts compared to modeling each time series individually.
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We discuss the related work in Chapter 2 and present the background in

Chapter 3. In Chapter 4, we explain the proposed methodology including the

specific approaches following the two methods. We first model multiple data se-

ries using non-linear optimization on groups of data. We then use time series

representations within our new cluster definition and assign models to each indi-

vidual time series by fitting models for each corresponding cluster. We present the

experimental study and results in Chapter 5. Finally, we conclude in Chapter 6.
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Chapter 2

Related Work

Time series clustering methods can be broadly categorized into three groups in

terms of data they use: raw data, features extracted from time series, and models

on raw time series [7].

Li and Prakash propose a time series clustering method to identify the cate-

gory of the motion from given motion sequence [8]. They note that feature based

clustering does not give appealing results for motion category identification since

they fail to capture temporal dynamics and time shifts. Their method has inter-

pretable features that eliminates time shifts and identifies joint dynamics across

the sequences.

Corduas and Piccola use AR metric as a dissimilarity measure for time series

classification and clustering [9]. They define AR distance from ARIMA processes,

and derive asymptotic distribution of the squared AR distance to compute time

series dissimilarity. They apply AR metric on two real problems and conclude

that AR metric is well defined for seasonal and non-seasonal, long and short,

stationary and non-stationary time series.

In management science community, Kumar and Patel use clustering for predic-

tive analytics in retail merchandising [10]. The method depends on the trade-off

between decreased variance and increased bias instead of just considering only
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decrease in variance as in Fishers method. It finds the number of clusters using

the trade-off between decreased variance and increased bias. To calculate sim-

ilarity of time series, they use next period forecasts and its variance instead of

using historical data.

Kalpakis et al. study clustering of time series modelled with ARIMA mod-

els [11]. They use LPC coefficients as features of time series and show that fewer

number of LPC coefficients are needed to discriminate time series when compared

to the traditional distance measures. They demonstrate results better than ex-

isting time series representations (DFT, DWT, etc.) in terms of similarity metric

and Silhouette coefficient.

Alonso et al. propose a clustering approach that considers evolution time se-

ries [12]. For dissimilarity calculation they use the full forecast densities instead of

point forecasts and used squared Euclidean distance between full forecast densi-

ties. Authors also derived an approximation for the L2 distance between forecast

densities. Rodrigues proposes Online Divisive-Agglomerative Clustering (ODAC)

for whole time series clustering [13]. Clusters are on the leaves of a binary tree

and updated incrementally. Each leaf can be split or aggregated after testing

confidence level which is given by the Hoeffding bound. The computation of dis-

similarity matrix of variables in a leaf is necessary only if the confidence level of

that leaf exceeds the Hoeffding bound. In this incremental hierarchical cluster-

ing, time and space requirements depend on the number of variables but they are

constant with respect to the number of examples.

An application-oriented approach for data stream clustering problem is pre-

sented in [14]. The stream clustering is divided into two sub-processes. In the first

sub-process, which is called online process, summary statistics of data streams

are stored periodically. In the second one, offline process, stored summary statis-

tics are used to explore streams in different time horizons. Statistical properties

of evolving data streams are captured effectively by means of pyramidal time

window and micro-clustering in online process.

An anytime iterative incremental clustering version of partitional clustering

algorithms is introduced in [15]. They use Haar Wavelet decomposition of time

6



series in their clustering algorithm and increase the level of decomposition. At

each iteration, they run k-Means algorithm on the increased level representation

of Haar Wavelet decomposition and use final centers as the initial clusters for the

next iteration.

Recently Matsubara et al. [16] introduce TriMine to find three-way patterns

in complex time-stamped events and can be used to forecast future events in a

web text corpora. They use the concept of M-th order tensor with topic mod-

eling to associate each actor-object with extracted hidden topics. The approach

uses different levels of granularity to catch long term and short term fluctuations.

Forecasting the next volume of clicks of a user on a certain URL is achieved using

topic modeling and multi-level representation of data. Li et al. [17] propose to

capture the essential characteristics of the collection of time series using Linear

Dynamical System (LDS) and then extract features called fingerprints. The pro-

posed method gives interpretable features that can be used to forecast motion

capture, sensor, and network router traffic data.

Hong et al. [18] study tracking volume of terms from text corpora of conference

and computational linguistics papers. They incorporate the volumes of terms into

the temporal dynamics of topics using state-space models by a supervised learning

system. Their system is capable of forecasting the future volume of textual terms.

A Delay Coordinate Embedding based approach is proposed in [19]. The

authors use an automated non-linear forecasting for periodic and chaotic time

series generated by a common physical system over separate periods of time.

They use intrinsic dimensionality of time series using fractals to estimate the lag

length. Also they divide the data into training and holdout set to find k in k-

nearest neighbor estimation. Using the k-nearest neighbors, they interpolate the

data using an SVD-based interpolation and achieve superior performance over

prior approaches including auto-regression.

Kim et al. introduce a forecasting method that is able to capture special

characteristics of Epilepsy EEG data in [20]. Epilepsy EEG data has such nonlin-

earity, nonnormality and nonperiodicity special characteristics that deteriorates

performance of traditional forecasting methods. They propose to use coercively
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adjusted auto regression(CA-AR) to model this type data. They forcefully ad-

justed AR coefficients to deal with special characteristics of Epilepsy EEG data

and they used a random coefficient between -1 and 1. Experimental results of

authors show that CA-AR performs well for nonperiodic data. It is also faster

and more accurate compared to the other existing forecasting methods.

The current approaches have mostly focused on building more accurate fore-

casting with no particular consideration on collective and continuous models. We

aim a methodology to scale the forecasting algorithms through a dynamic clus-

tered modeling that exploits correlation between data series and that is optimized

for forecasting. The solution is general and can be used to further improve both

linear and non-linear individual modeling approaches, such as the recent ones

proposed by databases and data mining community [16–18].
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Chapter 3

Background

A data series or time series x is defined as an ordered list of real numbers indexed

by positive integers. More formally a time series x is a vector in nx dimension

x = (x1, x1, ..., xnx) (3.1)

where xi ∈ Rk, and nx is called the length of the time series x. If k > 1 then it is

called multivariate time series, in the other case it is called univariate time series.

In our context we use multiple univariate time series, and the words ”time series”

and ”univariate time series” are used interchangeably. We note that a time series

does not necessarily have to have a constant length. It may be dynamic thus

left-bounded and right-unbounded, or static and bounded on both intervals.

The definition of a time series using an n-dimensional vector is the simplest

form of its representation. There are different representations that are more eligi-

ble for different problems. We may categorize these representations as; transfor-

mation based models: PCA [21], SVD [22], spectral domain models: DFT [22],

DWT [4], time domain models: ARMA [1, 3], ARIMA [1, 3], SARIMA [1, 3],

GARCH [3], and state-space models: ARMAX [1,3]. The use of these models may

vary from problem to problem, but we focus on multiplicative Seasonal Autore-

gressive Moving Average (SARIMA) family of models which includes SARMA,

ARIMA, ARMA, SMA, SAR, AR, MA and more generally SARIMA, which we

explain in detail in the following parts.
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SARIMA is one of the most widely used time domain model that have de-

sirable theoretical and asymptotic behaviors. SARIMA family of models exploit

the fact that the value of a time point in a time series can be represented by the

linear combination of its past time points and the linear combination of a white

noise with indexes shifted through time. The linear combinations of past time

points and white noise is formed by both periodic and non-periodic components.

Following the notation in [1], we give the definitions of operators and obtain a

more compact representation for SARIMA.

Definition (Operators): The operators

φ(B) = 1− φ1B − ...− φpBp, (3.2)

θ(B) = 1 + θ1B + ...+ θqB
q, (3.3)

ΦP (Bs) = 1− Φ1B
s − ...− ΦPB

Ps, and (3.4)

ΘQ(Bs) = 1 + Θ1B
s + ...+ ΘQB

Qs (3.5)

are the autoregressive operator, moving average operator, seasonal autoregressive

operator and seasonal moving average operator respectively with s being seasonal

period where Bkxt = xt−k.

A time series can be classified as being stationary, thus having a time in-

dependent mean value and/or variance, or non-stationary, thus having a time

dependent mean value and variance.

Definition (Stationarity of a Time Series): A time series xt is called

stationary if the mean value and autocovariance function of xt, don’t depend on

time, and autocovariance function depends only on time difference,

cov(xs, xt) = γ(s, t) = γ(|(s− t)|). (3.6)

In case of non-stationary time series further processing is required to remove non-

stationarity to make the time series suitable for SARMA. If the variance of the

time series varies with time then a power transformation like Box-Cox family of

10



transformations may be used,

yt =

 (xαt − 1)/α

logxt

 , (3.7)

where α is called the power of the transformation. In the other case where a time

series is not stationary because of its mean value, differencing may be used to

remove non-stationarity

yt = ∇dxt = (1−B)dxt, (3.8)

where d is called the order of differencing.SARIMA family of models without the

integrated part deals with stationary time series and called SARMA. Now we

turn our attention to generic SARMA model using operators:

Definition (SARMA): A SARMA model is defined as

ΦP (Bs)φ(B)xt = Θ(Bs)θ(B)wt, (3.9)

where xt is stationary, wt ∼ N(0, σw) and called Gaussian white noise, φ(B),

θ(B), ΦP (Bs), and ΘQ(Bs) are autoregressive operator, moving average operator

and their seasonal counterparts respectively.

A SARMA model is denoted by SARMA(p, q)x(P,Q)s, where p, q, P,Q are

autoregressive, moving average, seasonal autoregressive and seasonal moving av-

erage orders respectively. Building a model on a data refers to choosing the right

number of orders and estimating the model parameters.

Parameter Estimation. There are different ways of calculating the values of

model parameters. One can use Maximum Likelihood Estimation (MLE), Sum

of Squares Estimation (SSE), or Conditional Sum of Squares Estimation (CSSE).

In case of invertible SARMA models, all these approaches lead to optimal esti-

mators [1]. We start with definition of the likelihood of a SARIMA model. As

arg maxx f(x) = arg maxx gof(x) if g is a monotonically increasing function, in-

stead of raw likelihood of a SARMA model we use its log transform because of

its analytical tractability. To find the optimal parameters, we can maximize the

log-likelihood.
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Definition (Log-likelihood): The log-likelihood of a SARMA(p, q)x(P,Q)s

model built on x is defined as

`(β;x) = −n
2
ln(2πσ2

w)− 1

2σ2
w

n∑
t=1

w2
t , (3.10)

where β is the parameter vector of the model, wt is the white noise of the under-

lying SARMA model, σ2
w is the variance of the wt.

We can also minimize unconditional or conditional sum of squares to find the

optimal parameter values.

Definition (Unconditional Sum of Squares): The unconditional sum-of-

squares of a SARMA(p, q)x(P,Q)s model built on x is defined as

SS(β;x) =
n∑

t=−∞

w2
t (β), (3.11)

where β is the parameter vector of the model, wt = E(wt|x1, x2, ..., xn).

If the unconditional sum-of-squares is conditioned on the initial values of the

white noise, then the sum is called the conditional sum-of-squares.

Definition (Conditional Sum of Squares): The conditional sum-of-squares

of a SARMA(p, q)x(P,Q)s model built on x is defined as

CSS(β;x) =
n∑

t=p+1

ŵ2
t (β), (3.12)

where β is the parameter vector of the model, ŵt = E(wt|x1, x2, ..., xp).
Model selection. Although parameter estimation methods seem to be enough

for modeling, it is known that increasing the number of parameters give better

models but introduce overfit. Model selection is a tradeoff between these two

contradictary goals. Even though there is no best way to choose the right sta-

tistical model, Akaike Information Criterion (AIC), AIC Bias Corrected (AICc),

and Bayesian Information Criteron (BIC) are well studied and widely used ways

of choosing a statistical model from a set of candidate models [1]. Our algorithms

are not specific to any model selection, but we will focus on AIC.
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Definition (AIC): The AIC of a SARMA(p, q)x(P,Q)s model is defined as

AIC(β;x) = −2`(β;x) + 2k (3.13)

or

AIC(β;x) = n(1 + log(2π)) + nlog(CSS(β;x)) + 2k, (3.14)

where k is the total number of parameters present in the given SARMA model,

`(β;x) is the log-likelihood of x with respect to the parameter vector β, and

CSS(β;x) is the conditional sum-of-squares of the model on x with parameter β.

Given a time series x, the best model parameters are found by

β
′
= arg min

β
AIC(β;x). (3.15)

List of symbols and list of abbreviations used throughout the this thesis is

presented in Table 3.1 and Table 3.2 respectively.
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Table 3.1: Table of symbols

SYMBOL DESCRIPTION

x A time series
nx Length of time series
φ Auto regressive operator
θ Moving average operator
Φ Seasonal auto regressive operator
Θ Seasonal moving average operator
s Seasonal period
α Power of the transformation
d Order of differencing
wt Gaussian white noises
p Auto regressive order
q Moving average order
P Seasonal auto regressive order
Q Seasonal moving average order
β Parameter vector of the model
σ2
w Variance of the wt
ŵ Expected value of wt
k Total number of parameters of a SARIMA model
β

′
Best model parameters

n Number of time series
k Number of clusters
P A subset of time series
τ Parameter vector of a subset of time series
C(F,X) A model cluster
F Common forecasting model
tseries s multiple time series
M A minimization algorithm
o Orders vector

{C(0)
i }

k

i=1 The set of initial clusters
ε Stopping margin for average AIC
h Forecasting period
c LPC coefficient
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Table 3.2: Table of abbreviations

SYMBOL DESCRIPTION

CRM Customer Relationship Model
CEM Customer Experience Management

MY Müşteri İlişkileri Yönetimi
MDY Müşteri Deneyimi Yönetimi
SARIMA Seasonal Auto Regressive Integrated Moving Average
BI Business Intelligence
IM Individual Modeling
CM Clustered Modeling
AIC Akaike Information Criterion
LPC Linear Prediction Cepstrum
AR Auto Regression
ARIMA Auto Regressive Integrated Moving Average
DFT Discrete Fourier Transform
DWT Discrete Wavelet Transform
ODAC Online Divisive-Agglomerative Clustering
LDS Linear Dynamical System
SVD Singular Value Decomposition
EEG Electroencephalography
CA-AR Coercively Adjusted Auto Regression
PCA Principal Component Analysis
ARMA Auto Regressive Moving Average
ARMAX Auto Regressive Moving Average with Exogenous Inputs
SARMA Seasonal Auto Regressive Moving Average
SMA Seasonal Moving Average
SAR Seasonal Auto Regression
MA Moving Average
MLE Maximum Likelihood Estimation
SSE Sum of Squares Estimation
CSSE Conditional Sum of Squares Estimation
CSS Conditional Sum of Squares
BIC Bayesian Information Criteron
BFGS Broyden-FletcherGoldfarbShanno
MAPE Mean Absolute Percentage Error
PAM Partitioning Around Medoids
CM-u Clustered Modeling Update
REG-ARIMA Regression with Arima Errors
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Chapter 4

Proposed Methodology

We now present our forecasting methodology for multiple co-evolving and corre-

lated data series that is scalable, faster and more accurate compared to individual

forecasting. The initial step is to fit a common model on data series to minimize

their AICs, complement each other where possible, and remove redundancy in

forecasting. Real time series are noisy and react to events resulting in local out-

liers. If the events are apriori known, they can be modeled easily. For example,

during holidays there are more personal phone calls, and less calls made by com-

mercial customers. If an event is ad hoc and lacks a certain pattern, it would

introduce noise to an individual model. By identifying data with similar models

and fitting a common model on them, we avoid over-fits and remove the tendency

to capture the local outliers. An individual SARIMA model cannot exploit these

events to increase forecast accuracy.

We develop the notion of similarity for an effective clustering in the context

of forecasting. Then for each cluster, we devise a representative model that

minimizes the forecasting errors. These representatives are updated continuously

as the data keeps streaming. We then enhance the representative models and

re-cluster the data until AIC no further decreases. Representative models are

iteratively updated and the data is clustered to minimize errors. Forecasts are

performed by applying the representative model to each series independently, and

parameters are updated incrementally as data evolve.
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Following the above approach, we first present our clustered modeling that

simultaneously builds and enhances the models while clustering. We then develop

representative models utilizing time series clustering. Our first approach includes

k model building and n application of a model to a series, whereas the second

approach and individual modeling require building n models. For each time

series, we apply the representative model by putting the parameter vector of

the model and the time series to the appropriate positions in the formula (3.9)

and estimating the residuals. Next period forecasts for each series are derived

by applying the corresponding model and using this model. We note that this

approach of applying the model to a data series is negligible in time compared

to building the model from scratch. However, as the application process involves

the data series itself, it also produces accurate results; in fact more accurate on

average than building the model from scratch.

We formalize the behavior of multiple time series to understand whether min-

imizing the model errors of multiple time series individually is the best thing to

do. More formally given N time series X = (X1, X2, ..., XN), let βi be the model

parameters of the time series Xi minimizing its AIC(βi;Xi), we seek whether the

proposition below is true or not;

∀τ,
∑
Xi∈P

Error(τ ;Xi, P ) >
∑
Xi∈P

Error(βi;Xi), (4.1)

where Error(βi;Xi) is the forecast error of time series Xi using model parame-

ters βi and Error(τ ;Xi, P ) is the forecast error of time series Xi using a common

model estimated on a subset P of X. The left hand side of the inequality repre-

sents a group of time-series modeled collectively where all the time series Xj ∈ P
share the same model parameters τ . The right hand side represents the errors of

individual models. As also evidenced in experiments, instead of modeling every

time series individually, modeling them in clusters decreases the total forecast

error in contrast to sum of individual errors. This also clearly decreases the time

required to give each time series a successful model.
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4.1 Clustered Modeling and Forecasting

We present a definition of model cluster as a basis for clustering optimized for

forecasting.

Definition (Model Cluster): A model cluster C(F,X) is a set of time se-

ries X = (X1, X2, ..., Xm), and a common forecasting model F with parameters

τ where AIC(τ ;Xi) is minimum over all clusters.

Based on this definition, model clustering of a set of time series X =

(X1, X2, ..., Xm) is a partitioning P = (P1, P2, ..., Pl) of these time series and

a vector of forecasting models F = (F1, F2, ..., Fl) where the model Fi is a com-

mon model for all the time series in the set Pi. The common model Fi includes

model parameters and the variance of the white noise is specific to each time

series in a cluster.

Analogous to a cluster center, a forecasting model Fi of a cluster is the best

(closest) in minimizing the AIC. More formally let τi be the parameters of the

model Fi then

τi = arg min
τ

∑
x∈X

AIC(τ ;x). (4.2)

Assuming that we are given a cluster C(F,X), we need to find a way to adjust

the parameter vector β of F so that it is optimal for each time series belonging

to the corresponding cluster. Considering a single series, we defined the best

model as the one minimizing the corresponding AIC. In multiple series case, if

the models are independent from each other then minimizing total AIC will be

equal to minimizing AICs individually which would give us the best model for

each series. Similar to this, our approach is to minimize total AIC but using a set

of grouped models instead of modeling these series individually. For this purpose,

we define the following optimization function for each cluster i, which is the basis

of our approaches;

minimize
∑
x∈Pi

AIC(βi;x), (4.3)

where βi is the parameter vector of the SARIMA model minimizing above on the
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set of Pi. The optimization we introduced in (4.3) is generic to any time-series

modeling approach, not specific to SARIMA models. Thus our approach can

be applied to any time-series modeling. To avoid the computational burden of

searching through the order space we assume that the number of parameters does

not change in each cluster but the values of the parameter vectors change. So

minimizing total AIC with respect to model parameter vector will be equal to

minimizing the negative of the sum of the log-likelihoods, or the (un)conditional

sum-of-squares and eventually the followings:

minimize ψ(Pi) = −
∑
Xj∈Pi

`(βi;Xij) (4.4)

or

minimize ψ(Pi) =
∑
Xj∈Pi

CSS(βi;Xij). (4.5)

For minimizations in (4.4) and (4.5), we utilize iterative nonlinear optimiza-

tion algorithms. We use quasi-Newton method (BFGS) [23] as it is parameter

free and relatively fast. BFGS is based on function evaluation and the gradient of

the corresponding function. Because gradient gives a relatively better direction

to search towards, BFGS converges fast. In Appendix I, we give the gradient of

our optimization function which will be required for BFGS algorithm.

Also the iterative nature of BFGS makes it easy to adapt existing models

when new time points arrive. Using the existing models and data series extended

with new points, we easily update common models for each cluster and preserve

accuracy. Algorithm 1 shows the general outline of clustered modeling. The

problems in how to construct and maintain proper clusters are to i) find an initial

representative model F for each cluster, ii) appropriately assign a time series to

one of the clusters given, iii) enhance representative models for every cluster,

iv) update representative models as new data arrive, and v) forecast future data

points.
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Algorithm 1 Clustered Modeling

clustered-modeling(tseries,k, M)

tseries: s multiple time series

k: number of clusters

M: a minimization algorithm

1. {C(0)
i } ← initialize(tseries, k,M)

2. {C(1)
i } ← form− clusters(tseries, {C(0)

i }
k

i=1)

3. t← 1

4. tseries(0) ← tseries

while new data points arrive do
Update tseries(t−1) with new data, tseries(t)

β(t) ← update(tseries(t),M, β(t−1))

Forecast future data points
end while

4.1.1 Finding Initial Representatives

We first handle the problem of finding the initial clusters of series, and initial

model selection for each cluster. To search for an appropriate initial model of

a cluster, we need the number of parameters and a modeling schema. We first

group time-series into k clusters with equal number of time-series. We estimate

the center of each cluster. We use the median of each time point and construct

the ”median time-series” as cluster centers to handle outlier time points. The

number of parameters is estimated by fitting an optimal SARIMA model on

median time-series minimizing its AIC. Given the estimated orders of the common

model (p, q, P, Q, d), we can estimate the parameter values by minimizing (4.4)

and (4.5). Algorithm 2 gives the details of the initial model selection.

model(P 0
i ,M, oi) estimates the best model parameters minimizing (4.4) and

(4.5) given a minimization schema M , time-series of the corresponding cluster

P 0
i , and the orders oi.
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Algorithm 2 Finding initial representative models

initialize(tseries,k, M)

tseries: s multiple time series

k: number of clusters

M: a minimization algorithm

1. Group time-series into k clusters C
(0)
i (F

(0)
i , P

(0)
i ) for i = 1, 2, ..., k

2. Estimate median time-series of each cluster, Ti, for i = 1, 2, ..., k

3. vi = arg minβ AIC(β;Ti)

4. Extract orders oi = (p, q, P,Q, d)i from vi

5. β0
i ← model(P 0

i ,M, oi) for i = 1, 2, ..., k

6. return {C(0)
i (F

(0)
i , P

(0)
i )}

4.1.2 Forming the Model Clusters

There are two problems that need to be considered when forming the clusters.

The first one is how to assign a time series to a cluster, and the second is how to

enhance the representative models. We first deal with assignment of a time series.

Given a set of clusters C1, C2, ..., Cn, the best approach to select the appropriate

cluster for a time series Xi would be to assign a time series Xi ∈ Pk from Ck to

Cj and then update the model parameters of Ck and Cj after the assignment.

The cluster Cj that causes most total AIC reduction is the new cluster of time

series Xi. Although this approach seems to work well, it needs to update model

parameters at every consideration of every series, which becomes infeasible as

data size grows. Assigning a new object to a cluster will change its model but

this may cause an increase in the AIC of some objects while reducing the AIC of

the others. This may increase total AIC of time series. We need a fast update

scheme that guarantees the decrease in AIC.

Theorem 1. Given a minimization algorithm M and two clusters Cp(Fp, Pp) and
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Cq(Fq, Pq) having model parameters βp and βq, respectively, with Xt ∈ Cp, if

AIC(βp;Xt) > AIC(βq;Xt), (4.6)

assigning Xt from Cp to Cq always decreases total AIC.

Proof. Let X = {X1, X2, , XN} be the set of time series available, P
′
p = Pp\ {Xt},

P
′
q = Pq ∪ {Xt} and β

′
p and β

′
q be the parameter vectors of clusters C

′
p and C ′q,

respectively, adjusted by M after the assignment of Xt from Cp to Cq. Assigning

Xt from Cp to Cq is the best approach if

∑
Xi∈P ′

p∪P
′
q

AIC(β
′

p;Xi) <
∑

Xi∈Pp∪Pq

AIC(β
′

p;Xi)

=
∑

Xi∈P ′
p∪P

′
p

AIC(βp;Xi) + AIC(βp;Xt)− AIC(βq;Xt).

As M will update the model parameter vectors as long as the total AIC decreases,

it will never increase total AIC of C
′
p and C

′
q after assignment of Xt from Cp to

Cq, and following statements will be satisfied:∑
Xi∈P ′

p

AIC(β
′

p;Xi) <
∑
Xi∈P ′

p

AIC(βp;Xi)

and ∑
Xi∈P ′

q

AIC(β
′

q;Xi) <
∑
Xi∈P ′

q

AIC(βq;Xi)

At the simplest level, it will keep parameter vectors the same and the relations

above will strictly be equalities. Based on the relations we obtained, if (4.2) is

satisfied then

AIC(βp;Xt − AIC(βq;Xt) +
∑

Xi∈P ′
p∪P

′
q

AIC(βp;Xi) >
∑

Xi∈P ′
p∪P

′
q

AIC(βp;Xi)

∑
Xi∈Pp∪Pq

AIC(βp;Xi) >
∑

Xi∈P ′
p∪P

′
q

AIC(β
′

p;Xi).

Thus the inequality in (4.6) will be satisfied.
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Based on the theorem above, for a time series Xt we choose the cluster hav-

ing the smallest AIC to assign it into. To avoid empty clusters, we skip the

reconsideration of the series in singleton clusters.

After we find the best cluster for each time series, we update the models for the

altered clusters using (4.4) and (4.5). We continue the reassignment and update

steps successively until the average AIC can no further be improved. Forming

the model clusters is given in Algorithm 3.

Algorithm 3 Forming the Model Clusters

form-clusters(tseries,{C(0)
i }

k

i=1, ε)

tseries : s multiple time series

{C(0)
i }

k

i=1 : the set of initial clusters

ε : Stopping margin for average AIC

1. 4AIC(0) ←∞

2. t← 0

3. Estimate AIC(βj;Xi) by (3.13) and (3.14) for i = 1, 2, ..., s, j = 1, 2, ..., k

while 4AIC(t) > ε do
Assign Xi to the cluster Ct

l where
l = arg minj AIC(βj;Xi) for i = 1, 2, ..., s

|β(t)
i | ← update(P

(t)
i ,M, |β(t−1)

i |)

Estimate AIC(βj;Xi) by (3.13, 3.14) for i = 1, 2, ..., s, j = 1, 2, ..., k

t← t+ 1

AIC(t) ← 1/s
∑k

j=1

∑
X∈Pj

AIC(βj;X)

4AIC(t) ← (AIC(t−1) − AIC(t))/AIC(t−1)

end while

return {C(t)
i }

k

i=1
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4.1.3 Updating Model Parameters

As new data points arrive, we update models in each cluster instead of modeling

from scratch. Given the time series updated by new data points tseries, model

updates are accomplished using the function

βi = update(tseries,M, β(t−1)),

which uses a minimization algorithm M initialized with β(t−1), and estimates

next parameters β(t) minimizing the total AIC of tseries. We initialize the min-

imization algorithm M with previous parameters β(t−1) because this hastens the

convergence as clusters also stabilize in time.

4.1.4 Forecasting Future Data Points

Let’s assume that given a time series X, h-step ahead forecasts is achieved by

using the function f where X̂t+h = f(X; β, h) using parameters β. Then our

clustered forecasts are performed by using the desired forecasting function f with

the model parameters of the corresponding cluster. More formally if the time

series X is clustered in C(F, P ) with the corresponding parameter vector τ then

we give the h-step ahead forecasts of X using the following equation.

X̃t+h = f(X; τ, h). (4.7)

4.2 Modeling on LPC-based Clustering

Although most time-series clustering and representation approaches are not

specifically designed for forecasting, we also investigate ways to utilize them in

forecast modeling. The intuition of our approach here is similar to the proposed

method in previous section, where identifying and applying a suitable common

model is more accurate than building a separate model for each data series. Us-

ing a time series representation, we cluster data and assign models build on each
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cluster center as the corresponding representative model for the cluster. Forecasts

for each individual time series are obtained using the model of the corresponding

cluster representative.

More formally, we initially partition time series into k clusters Ci(Mi, Pi),

i = 1, 2, , k using a representation and a distance measure where Mi is the cluster

center, and Pi is the time series in cluster Ci. Next we fit a SARMA model Fi to

each of the cluster centers Mi. We construct our model clusters by transforming

previous clusters using the following equation:

C
′

i(Fi, Pi) = Ci(s(Mi), Pi), (4.8)

where s gives the SARMA model for Mi by minimizing the corresponding AIC.

Any representation and clustering approach can be utilized within this

methodology. We specifically adapt LPC (Linear Prediction Cepstrum) coeffi-

cients which is the cepstral representation of the Linear Prediction Coefficients,

used in speech and image processing [24]. It was also shown to be effective for time

series clustering in terms of silhouette coefficient [11]. We can use the invertibility

of a SARMA model and construct LPC coefficients using AR representation of

every SARMA model. Linear Prediction Coefficients are the AR representation

of the time series and can be specified by all-pole model in frequency domain [25].

Although a time series can be modeled by an AR model explicitly, an invertible

SARIMA model can be converted to an equal infinite order AR model [1]. Thus

based on our SARMA definition with the integration, AR representation of the

corresponding SARIMA model can be found by solving

φ
′
(B) =

∞∑
i=0

φ
′

ixt−i =
ΦPB

Sφ(B)(1−B)d

ΘPBSθ(B)
xt = wt. (4.9)

Given an AR representation φ
′
(B), LPC coefficients can be defined as follows [24]:

ci =


−φ′1 if i = 1

−φ′i −
∑i−1

j=1 (1− j
i
)φ′jci−j if 1 < i ≤ p

−
∑i−1

j=1 (1− j
i
)φ′jci−j if p < i

. (4.10)

Our experimental results confirm that while traditional representations of PCA,
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DWT and DFT do not provide meaningful forecasts, LPC provides highly accu-

rate results. However, its execution time is comparable to individual modeling

and significantly slower than clustered modeling presented in Section 4.1. The

LPC based approach requires models of each time series in advance, which is not

that case in the clustered modeling approach.

4.3 REG-ARIMA Modeling and Forecasting

We also propose to use Regression with Arima Errors (REG-ARIMA) model to

capture information such as holidays, special days, etc. in time series. We try to

utilize regression model to handle information of unexpected events in time series.

A Regression with Arima Errors model is a combination of a regression model

and an ARIMA model. For a REG-ARIMA model, firstly a regression model is

applied to time series, then an ARIMA model is applied to residuals of regression

model. One can build a SARIMA model on residuals of regression model instead

of ARIMA model. A REG-ARIMA model is in the form of equation (4.11)

Xt = b0 + b1X1,t + b2X2,t + ...+ bkXk,t +Nt, (4.11)

where X1,t, X2,t, ..., Xk,t are the k explanatory variables and Nt is the error term

contains auto correlations modeled as in formula (4.12)

ΦP (Bs)φ(B)xt = Θ(Bs)θ(B)wt, (4.12)

where wt is white noises series.

4.3.1 Individual REG-ARIMA Modeling

We propose to use individual REG-ARIMA modeling and compare its perfor-

mance to clustered modeling, individual modeling and clustered REG-ARIMA

modeling. Individual REG-ARIMA modeling is the methodology described in

Section 4.3. Summation of regression predicts and SARIMA forecasts give the

total forecast. Experimental results show that it is more accurate than individual

modeling.
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4.3.2 Clustered REG-ARIMA Modeling

Clustered REG-ARIMA modeling uses REG-ARIMA modeling in the context

of clustered modeling. Clustered modeling given in Section 4.1 is applied on

residuals of regression models of time series. For the forecasting, predicted values

from regression models and forecast valued from clustered modeling are summed

up.
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Chapter 5

Performance Evaluation

We demonstrate efficiency, accuracy, and scalability of the proposed approaches

compared to the alternatives, in particular to the individual forecasting ap-

proaches. We observed that each individual forecast with a SARIMA model

takes several seconds to minutes, hence even a couple of thousand series cannot

be updated continuously with individual modeling. For example, on a traffic

load of 2497 VIP commercial customers of a major telecom company, individual

modeling takes 173 minutes and clustered modeling takes around nine minutes,

20 times faster. This gives 4.16 seconds on average for each individual modeling

for traffic. The results also show that our method is scalable, and increasing the

number of series does not degrade the accuracy and time performance.

5.1 Experimental Setup

We used one real data set and four synthetic data sets in our experiments. The

first data set is a telco traffic time-series consisting 2497 series each having a

length of 867 time points. These are traffic load generated by major commercial

customers of a telecom company. The time series shows highly seasonal behavior

and is sensitive to special and unexpected events, e.g. weekends, holidays, sudden

events, campaigns. We also generated several synthetic data sets based on this
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real data through aggregations, introducing random local outliers, and enhancing

its size following the time series generation methodology presented in [11]. Using

the available time series with periodicity 7, we fit SARIMA models to all of

the time series. We uniformly selected AR, SAR, MA, and SMA coefficients

from the intervals [φi − σ, φi + σ], [Φi − σ,Φi + σ], [θi − σ, θi + σ] and [Θi −
σ,Θi + σ] respectively. In our experiments we used σ = 0.05 which preserves

the invertibility and causality of the generated SARMA model. We generated

four datasets each having 100,000 time series. Our clustered modeling approach

intrinsicly handles stationary issues by differencing and Box-Cox transformations.

The modeling part of our system utilizes the packages in R Project that involves

several statistical packages useful in our analyses [26]. To fit the best model

minimizing (3.13) or (3.14) of a single time series, we use the R Package [27].

To show performance of our proposed method, we took the first 839 time

points for building model and we made forecasts for later 28 points. To evaluate

the dynamic update of clustered modeling, we took the first 832 and dynamically

add 7 points to each time series.

We provide accuracy results for weekly (4 weeks) forecasts. We compare our

accuracy results with the individual forecasts using Mean Absolute Percentage

Error (MAPE),

MAPE =
1

h

(
h∑
i=1

∣∣∣∣xn+i − fixn+i

∣∣∣∣
)

(5.1)

where h is the forecasting period, xn+i is the i-th future time point, and fi is the

i-th forecast.

In our experiments we address several questions, including:

• How does the accuracy results change compared to the ones coming from

individual forecasts?

• How does the speed of our clustered modeling change compared to the

average speed of the individual fits?

• How does the accuracy and speed of clustered modeling change compared

to other clustering algorithms we adjusted for forecasting purposes?
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Figure 5.1: MAPE results of CM and
IM

Figure 5.2: CM and IM time

• How does the number of clusters affect the speed and accuracy results?

• How does the accuracy and speed of our dynamic update change?

• Is the proposed method scalable?

Our results first focus on telecom VIP customer traffic which originally moti-

vated this work. Our software is in active use by the company. We also present

results on synthetic data sets. We give results to answer the questions above, then

we compare clustered modeling to representations and clustering algorithms we

adjusted for forecasting. We finally experiment for scalability of the algorithms.

5.2 Efficiency and Accuracy of Initialization

Considering our first question, Fig. 5.1 shows the average MAPE results over

all time series of individual modeling and clustered modeling. It is seen that,

clustered modeling gives better accuracy results compared to individual modeling.

We take the weekly average forecast error over all time series. The error of

clustered modeling is 0.59, and for individual modeling it is 0.93. On average

clustered modeling provides 37% improvement on weekly MAPE over individual

modeling.
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Figure 5.3: Average MAPE vs number of clusters using CM

Fig. 5.2 shows the time requirement of clustered modeling and individual

modeling. While individual modeling takes hours to fit models, clustered mod-

eling is significantly faster by providing this in minutes. On average clustered

modeling takes only nine minutes, while it takes 173 minutes to model each time

series individually.

In Fig. 5.3, we observe the relationship between the number of clusters and

the accuracy of clustered modeling solution. Although there is a slight decrease

in MAPE, MAPE and the number of clusters does not have regular pattern. We

find the best number of cluster having a local minimum. We increase the clusters

one at a time, until we observe a second increase in MAPE. So we use eight

clusters for VIP time series.

We investigate the relationship between the number of clusters and the time

that clustered modeling requires. Fig. 5.4 shows that increasing the number

of clusters slightly increase the running time. The reason is that, optimization

algorithm is almost linear in time series size. The default number of clusters is

set to 8, which has a considerably low running time.
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Figure 5.4: Average time for each number of clusters using CM

5.3 Results on Time Series Clustering Approaches

We performed experiments adapting time-series clustering using 5 different repre-

sentations, LPC, DFT, DWT, PCA, and raw data. We use the resulting clusters

and raw time series to forecast future points. With median and mean of the time

series belonging to each cluster, we have 10 different approaches. We use first 10

features extracted using one of the representations DFT, DWT, PCA, and LPC

with PAM clustering for DWT, PCA, LPC and raw data and k-means clustering

for DFT with Euclidean distance. Using 10 features is shown to be descriptive

enough for these approaches [11]. To the best of our knowledge, our work presents

the first results on clustering for forecasting purposes.

Fig. 5.5 shows the comparison of modeling using representations with Eu-

clidean distance. For DFT, DWT, PCA and raw data, clustered modeling pro-

vides considerably better results in comparison to both median and mean ap-

proaches. The only exception is LPC which works better than clustered mod-

eling which has 0.22 and 0.22 MAPE results for median and mean respectively

while clustered modeling has 0.59. While LPC is more accurate than clustered

modeling, it requires SARMA models to be available to construct cepstral co-

efficients. Thus it is computationally much more expensive than the clustered

modeling approach. The execution time of each algorithm is presented in Fig.
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representations
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5.6. While DFT, DWT, PCA and raw data can manage faster results, LPC is

doing as worse as individual modeling in terms of time. On average LPC takes

189 and 191 minutes for median and mean respectively.

Overall, LPC provides the most accurate results, but has the same efficiency

problem with individual modeling. LPC is very suitable in small-scale appli-

cations where the models can easily be obtained. For small-scale data, LPC

based approach is preferable over individual modeling as it significantly improves

accuracy. For large-scale data, clustered modeling is preferable over both as in-

dividual modeling and LPC based approaches are infeasible due to efficiency and

scalability problems. As new time points come, cepstral coefficients have to be

updated as well as common models for each cluster. The other representations

are reasonably faster but they lack of the necessary accuracy to be used in real life

applications. Considering both speed and accuracy, clustered modeling is both

fast and accurate and hence more practical.

5.4 Dynamic Update of Model Parameters

As our optimization algorithms are iterative in nature, we can easily update

the models as new time points arrive. We first merge the existing time series

with newly arriving points. Then we use the model parameters estimated in the

initialization phase as the initial inputs to the optimization algorithm and run

using new data. To compare, we re-run our clustered modeling algorithm from the

scratch and show that our Clustered Modeling Update (CM-u) takes less time

than re-run thus transitively it takes considerably less time than individually

fitting data as new points come.

Fig. 5.7 shows the comparison of MAPE results of clustered modeling update

as new points come with with re-run of clustered modeling and individual mod-

eling. Clustered modeling update and re-run are comparable with each other,

and both are more accurate than individual modeling. Clustered modeling up-

date takes 1.32 minutes which is faster than both re-run and individual modeling.
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Figure 5.7: MAPE comparison of our CM-u algorithm with re-run and IM

The reason is that clusters stabilize at the end of clustered modeling, and clus-

tered modeling update converges very fast as we initialize it with the resulting

clusters of clustered modeling. This is summarized in Fig. 5.8.

To show how the accuracy and speed changes if data size increases, we choose

500 time series randomly and at each iteration we add 500 more distinct time

series. Fig. 5.9 shows that as the size of data increases, the accuracy of the same

subset remains nearly the same. This result shows that as the data increases, the

clusters may change but the accuracy is preserved. Fig. 5.10 exhibits a linear

relationship between the size of the data and the time it takes. As the data size

doubles, clustered modeling takes approximately double time but with a very

small slope compared to individual modeling.

5.5 Experiments for Large Dataset

We first compared clustered modeling update modeling with clustered modeling

and individual modeling. We then compared accuracy and running time perfor-

mance of clustered modeling and individual modeling as the data size increases

on synthetic data set.
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Figure 5.8: The time of CM-u algorithm and re-run vs. IM

0 

0,05 

0,1 

0,15 

0,2 

0,25 

0,3 

500 1000 1500 2000 2497 

M
A

P
E 

Data size 
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36



0

20

40

60

80

100

120

140

160

180

200

500 1000 1500 2000 2497

T
im

e
(M

in
)

Data size

CM IM

Figure 5.10: The processing time of CM vs. IM as the size of the data increases

Fig. 5.11 illustrates the accuracy comparison of the proposed approach with

individual modeling. We vary the dataset size from 2500 to 100,000 and give aver-

age results. It shows that clustered modeling and clustered modeling update has

lower MAPE than individual modeling, and clustered modeling update competes

with clustered modeling. This shows that, instead of building clustered modeling

from start, we can use clustered modeling update to obtain the same accuracy.

Fig. 5.12 shows the time that clustered modeling, clustered modeling update,

and individual modeling takes. It takes 43 minutes and 6.5 hours for clustered

modeling update and clustered modeling respectively, while it takes 126 hours

for individual modeling. On average our clustered modeling solution is 19 times

faster than individual modeling. If we have available clusters, we can further

improve results using clustered modeling update which is 173 times faster than

individual modeling.

5.6 Evaluations for Scalability

We run clustered modeling over 4 synthetic datasets to evaluate the scalability

of clustered modeling. We divide time series into 10 parts to build individual

models to fasten the process. We then sum up the times. Fig. 5.13 shows the

37



0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
M
A
P
E

CM-u CM IM

Figure 5.11: MAPE results of CM-u, re-run and IM for large data set

0

1000

2000

3000

4000

5000

6000

7000

8000

T
im

e
(M

in
)

CM-u CM IM

Figure 5.12: Time results of CM-u, re-run, and IM for large data set
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Figure 5.13: Time of CM and IM on large data set

time requirements for clustered modeling and individual modeling over 4 synthetic

datasets. On all 4 dataset, clustered modeling is more scalable than individual

modeling. On average, clustered modeling is 17.5 times faster than individual

modeling. It takes 12 hours for clustered modeling to build models while it

takes 147 hours for individual modeling over 100,000 time series. These results

show that clustered modeling is more scalable than individual modeling. We

should note that putting all the time series in memory can slow down processes.

Because we double the size of the data after 25,000, the slope of the time for

individual modeling changes. This is the result of in-memory calculations. But

we always put time series to memory for clustered modeling. Thus the speed up

improvements are lower bounds.

When the data has local outliers, clustered modeling results in significantly

better accuracies than individual modeling, as it has an aggregate effect to re-

move outliers. If the data does not have any outliers, than clustered modeling

is comparable with individual modeling. In two of the four datasets, the error

of clustered modeling is around half of individual modeling. In the other two,

clustered modeling and individual modeling are comparable within a 0.01 margin.
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Figure 5.14: MAPE results of CM, IM and REG-ARIMA

5.7 Experiments for REG-ARIMA Modeling

We run individual REG-ARIMA modeling and clustered REG-ARIMA modeling

on real telco traffic time series. Fig. 5.14 shows the accuracy results of clustered

modeling, individual modeling and individual REG-ARIMA modeling. Individual

REG-ARIMA modeling has lower MAPE than individual modeling, and clustered

modeling has lower MAPE than both individual modeling and individual REG-

ARIMA modeling. Clustered REG-ARIMA modeling is the worst when accuracy

results compared. This is expected, as REG-ARIMA modeling has ability to

capture special events it results better accuracies than individual modeling. Also

since our clustered modeling performs better on time series that contain some

special events or outliers, applying this model on residuals of regression models

does not give good results as expected.

The processing time of clustered modeling, individual modeling and individ-

ual REG-ARIMA modeling is displayed on Fig. 5.15. Processing time for the

individual REG-ARIMA modeling is slightly more than processing time for the

individual modeling since individual REG-ARIMA modeling builds a regression

model before SARIMA model for each time series.
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Chapter 6

Conclusions

We addressed the problem of continuous forecasting of multiple time series in

the context of scalable data analytics, and proposed two approaches: one with

clustering and modeling of data performed simultaneously, and another where

data is first clustered then modeled. The proposed methodology is independent

of the underlying linear or nonlinear modeling approach, and can benefit from

any model selection method.

The first method is significantly faster and more scalable with comparable

accuracies to individual modeling. We cluster time series according to their AIC

values. A time series belongs to the cluster having the lowest AIC value for the

corresponding time series. Thus two time series is considered similar if they have

the lowest AIC values in the same cluster center. We improve each cluster model

using iterative nonlinear optimization algorithms. This makes the approach also

suitable for dynamic model updates as new time points arrive. Our clustered

modeling paradigm is not restricted to SARIMA models and is applicable to any

individual modeling approach with a given minimization procedure.

The second approach is significantly more accurate than individual modeling,

with comparable run times to the individual approach. We adapt time-series

feature extraction and clustering to forecasting. We used the invertibility of a

SARMA model and construct LPC coefficients using AR representation of every
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SARMA model. We used results of k-Means and PAM clustering structures and

corresponding centers, and build SARMA models on each of the cluster centers.

Forecasts for each individual time series are achieved using the model built on

the center of their corresponding cluster. We showed that LPC based approach

provides more accurate results than individual modeling with a negligible com-

putational overhead.

We compare clustered modeling and modeling using representations to indi-

vidual modeling and each other. Experimental results show that both of the

proposed approaches perform significantly better than individual modeling. The

clustered modeling is up to 20 times faster and 37% more accurate than indi-

vidual modeling and modeling with LPC has 76% improvement over individual

modeling with a speed overhead of 9% on real telco traffic series.
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Appendix A

Gradient of Log-likelihoods

To construct an algorithm to update the model parameters for BFGS, we need

to calculate the gradient of the equation in (4.4). Given that

γ = (φi1, ..., φipi ,Φi1, ...,ΦiPi
, θi1, ..., θiqi ,Θi1, ...,ΘiQi

)

is the parameter set of the model belonging to cluster Ci(Fi, Pi) where βi is

the parameter vector of the model Fi,
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where

∂wt
∂φik

= −(1− Φ1B
s − ...− ΦPB

Ps)xt−i,

∂wt
∂Φik

= −(1− φ1B − ...− φpBp)xt−si,

∂wt
∂θik

= −(1 + Θ1B
s + ...+ ΘQB

Qs)wt−i,

∂wt
∂Θik

= −(1 + θ1B + ...+ θqB
q)wt−si,

and

X(j) = (x
(j)
1 , x

(j)
2 , ..., x(j)n ),

Thus

∆Ψ =

(
∂Ψ

∂γ1
,
∂Ψ

∂γ2
, ...,

∂Ψ

∂γ(pi+Pi+qi+Qi)

)
.

We provide matrix forms of these equations next. Thanks to this form, one can

also utilize the large body of software packages that are optimized for matrix
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operations.
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Appendix B

Gradient of Conditional Sum of

Squares

To construct an algorithm to update the model parameters for BFGS, we need

to calculate the gradient of the equation in (4.5). Given that

γ = (φi1, ..., φipi ,Φi1, ...,ΦiPi
, θi1, ..., θiqi ,Θi1, ...,ΘiQi

)

is the parameter set of the model belonging to cluster Ci(Fi, Pi) where βi is

the parameter vector of the model Fi,
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∂Θik

= −(1 + θ1B + ...+ θqB
q)wt−si,

and

X(j) = (x
(j)
1 , x

(j)
2 , ..., x(j)n ),

Thus

∆Ψ =

(
∂Ψ

∂γ1
,
∂Ψ

∂γ2
, ...,

∂Ψ

∂γ(pi+Pi+qi+Qi)

)
.
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Here are the matrix forms of these equations.

∂Ψ

∂φm
=
∑
Xj∈P

∂CSS(βi;X
(j))

∂φm

=

[1,−Φ1, ...,−ΦP ]
n∑

j=p+1

2


w

(j)
t x

(j)
t−m · · · w

(j)
n−t+1x

(j)
n−m

...
. . .

...

w
(j)
t x

(j)
t−m−Ps · · · w

(j)
n−t+1x

(j)
n−m−Ps





1
...

1


∂Ψ

∂Φm

=
∑
Xj∈P

∂CSS(βi;X
(j))

∂Φm

=

[1,−φ1, ...,−φP ]
n∑

j=p+1

2


w

(j)
t x

(j)
t−sm · · · w

(j)
n−t+1x

(j)
n−sm

...
. . .

...

w
(j)
t x

(j)
t−sm−p · · · w

(j)
n−t+1x

(j)
n−sm−p





1
...

1


∂Ψ

∂θm
=
∑
Xj∈P

∂CSS(βi;X
(j))

∂θm

=

[1,−Θ1, ...,−ΘQ]
n∑

j=p+1

2


w

(j)
t x

(j)
t−m · · · w

(j)
n−t+1x

(j)
n−m

...
. . .

...

w
(j)
t x

(j)
t−m−Qs · · · w

(j)
n−t+1x

(j)
n−m−Qs





1
...

1


∂Ψ

∂Θm

=
∑
Xj∈P

∂CSS(βi;X
(j))

∂Θm

=

[1,−θ1, ...,−θq]
n∑

j=p+1

2


w

(j)
t x

(j)
t−sm · · · w

(j)
n−t+1x

(j)
n−sm

...
. . .

...

w
(j)
t x

(j)
t−sm−q · · · w

(j)
n−t+1x

(j)
n−sm−q





1
...

1


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