
POWER-SOURCE-AWARE ADAPTIVE
ROUTING IN WIRELESS SENSOR

NETWORKS

a dissertation submitted to

the department of computer engineering

and the Graduate School of engineering and science

of bilkent university

in partial fulfillment of the requirements

for the degree of

doctor of philosophy

By

Metin Tekkalmaz

July, 2013

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a dissertation for the degree of Doctor of Philosophy.

Assoc. Prof. Dr. İbrahim Körpeoğlu (Advisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a dissertation for the degree of Doctor of Philosophy.

Prof. Dr. Özgür Ulusoy

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a dissertation for the degree of Doctor of Philosophy.

Prof. Dr. Tolga Mete Duman

ii

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a dissertation for the degree of Doctor of Philosophy.

Assoc. Prof. Dr. Uğur Güdükbay

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a dissertation for the degree of Doctor of Philosophy.

Assoc. Prof. Dr. Ahmet Coşar

Approved for the Graduate School of Engineering and Science:

Prof. Dr. Levent Onural
Director of the Graduate School

iii

ABSTRACT

POWER-SOURCE-AWARE ADAPTIVE ROUTING IN
WIRELESS SENSOR NETWORKS

Metin Tekkalmaz

Ph.D. in Computer Engineering

Supervisor: Assoc. Prof. Dr. İbrahim Körpeoğlu

July, 2013

A wireless sensor network (WSN) is a collection of sensor nodes distributed

over an area of interest to accomplish a certain task by monitoring environmental

and physical conditions and sending the collected data to a special node called

sink. Most studies on WSNs consider nodes to be powered with irreplaceable bat-

teries, which limits network lifetime. There are, however, perpetual power source

alternatives as well, including mains electricity and energy harvesting mecha-

nisms, which can be utilized by at least some portion of the sensor nodes to

further prolong the network lifetime.

Our aim here is to increase the lifetime of such WSNs with heterogeneous

power sources by centralized or distributed routing algorithms that distinguish

battery- and mains-powered nodes in routing, so that energy consuming tasks

are carried out mostly by mains-powered nodes. We first propose a framework

for a class of routing algorithms, which forms and uses a backbone topology

consisting of all mains-powered nodes, including the sinks, and possibly some

battery-powered nodes, to route data packets. We propose and evaluate a set of

centralized algorithms based on this framework, and our simulation results show

that our algorithms can increase network lifetime by up to more than a factor

of two. We also propose a fully distributed power-source-aware backbone-based

routing algorithm (PSABR) that favors mains-powered nodes as relay nodes. We

validate and evaluate our distributed algorithm with extensive ns-2 simulations

and our results show that the proposed distributed algorithm can enhance network

lifetime significantly with a low control messaging overhead.

Besides wireless technology independent routing solutions, we also propose a

technology specific power-source-aware routing solution (PSAR) for sensor and

iv

v

ad hoc networks which use 802.15.4/ZigBee as the wireless technology. Our so-

lution is fully distributed, tree-based, and traffic-adaptive. It utilizes some pro-

tocol specific properties of ZigBee, such as distributed and hierarchical address

assignment, to eliminate battery-powered nodes on the routing paths as much as

possible. To validate and evaluate our ZigBee-specific algorithm, we first imple-

mented ZigBee extensions to ns-2 simulator and then implemented and simulated

our protocol in this extended ns-2 environment. Our results show that the pro-

posed algorithm operates efficiently and can increase network lifetime without

increasing the path lengths significantly, compared to the default ZigBee routing

algorithm.

Keywords: wireless sensor networks, network lifetime, routing, heterogeneous net-

works, backbone, power-source-aware, mains-powered, ZigBee, energy-efficiency.

ÖZET

KABLOSUZ ALGILAYICI AĞLAR İÇİN GÜÇ
KAYNAĞI BİLİNÇLİ DEVİNGEN YOL ATAMA

Metin Tekkalmaz

Bilgisayar Mühendisliği, Doktora

Tez Yöneticisi: Doç. Dr. İbrahim Körpeoğlu

Temmuz, 2013

Kablosuz algılayıcı ağlar, belli bir amacı gerçekleştirmek için ilgilenilen

bölgeye dağıtılmış algılayıcı düğümlerden oluşur. Bu düğümler çevresel ve fiziki

şartları izleyerek toplanan veriyi belli bir merkezi düğüme gönderir. Kablosuz

algılayıcı ağlar ile ilgili çoğu çalışmada algılayıcı düğümlerin gücünün ağ yaşam

süresini sınırlayan değiştirilemez piller ile sağlandığı varsayılmaktadır. Diğer

taraftan, algılayıcı düğümlerin en az bir kısmına güç sağlayabilecek ve böylece

ağ yaşam süresini uzatabilecek şebeke elektriği, enerji hasadı mekanizmaları gibi

daimi güç kaynakları da bulunmaktadır.

Burada amacımız pil ve şebeke elektriği ile beslenen farklı tipteki algılayıcı

düğümlere sahip bu tarz heterojen kablosuz algılayıcı ağların yaşam süresini

merkezi ve dağıtık yol atama algoritmaları kullanarak ve bu esnada fazla enerji

gerektiren işleri şebeke elektriği ile beslenen düğümlere atayarak uzatmaktır. İlk

olarak bir sınıf yol atama algoritması üretiminde kullanılabilecek bir çerçeve

öneriyoruz. Üretilen algoritmaların ortak özelliği şebeke elektriği ile besle-

nen düğümleri, hedef düğümü ve gerekiyorsa pil ile beslenen bazı düğümleri

içeren bir omurga oluşturarak veriyi aktarmak için bu omurgayı kullanmalarıdır.

Simülasyon sonuçlarımız bu çerçeveyi kullanarak ürettiğimiz merkezi algorit-

maların ağ yaşam süresinde iki kata kadar artış sağladığını göstermiştir. Ayrıca

bu çalışmada veri iletimi için şebeke elektriği ile beslenen düğümlere öncelik veren

güç kaynağı bilinçli, omurga temelli ve tam dağıtık bir yol atama algoritması da

öneriyoruz. Önerdiğimiz bu algoritmayı geçerlemek ve değerlendirmek amacıyla

ns-2 ortamını kullanarak elde ettiğimiz simülasyon sonuçları göstermektedir ki,

algoritmamız düşük bir ek haberleşme yükü ile ağ yaşam süresini belirgin şekilde

arttırmaktadır.

vi

vii

Bu çalışmada, bahsi geçen teknoloji bağımsız yol atama çözümlerimizin

yanısıra, 802.15.4/ZigBee kablosuz ağ teknolojisine özel, güç kaynağı bilinçli,

tam dağıtık, ağaç tabanlı ve trafiğe uyumlanabilen bir yol atama çözümü de

önermekteyiz. Önerdiğimiz yol atama çözümü pil ile beslenen düğümlerin

haberleşme yolları üzerinde yer almasını mümkün olduğunca önlemek amacıyla,

dağıtık ve hiyerarşik ağ adresi atama mekanizması gibi ZigBee protokolüne özel

yetenekleri kullanmaktadır. ZigBee teknolojisine özel algoritmamızı geçerlemek

ve değerlendirmek amacıyla ilk olarak ZigBee protokolünün ihtiyaç duyduğumuz

kısımlarını, daha sonra da önerdiğimiz algoritmayı ns-2 simülasyon ortamında

gerçekledik. Hazırladığımız ns-2 simülasyon ortamını kullanarak elde ettiğimiz

sonuçlar, ZigBee tanımında yer alan yol atama yöntemi ile karşılaştırıldığında,

önerdiğimiz algoritmanın yol uzunluklarını arttırmadan ağ yaşam süresini

arttırabildiğini göstermiştir.

Anahtar sözcükler : kablosuz algılayıcı ağlar, ağ yaşam süresi, yol atama, hete-

rojen ağlar, omurga, güç kaynağı bilinçli, şebeke elektriği ile beslenen, ZigBee,

enerji verimi.

Acknowledgement

First of all, I would like to express my sincere gratitudes to my supervisor Assoc.

Prof. Dr. İbrahim Körpeoğlu. I am grateful for his invaluable support for all

these long years, which made this thesis come true. His encouraging and positive

attitude has always kept me walking.

I would like to thank to the thesis committee members Prof. Dr. Özgür

Ulusoy and Dr. Defne Aktaş for their valuable comments for the past six years.

I would also like to thank to the thesis jury members Prof. Dr. Tolga Mete

Duman, Assoc. Prof. Dr. Uğur Güdükbay, and Assoc. Prof. Dr. Ahmet Coşar

for kindly accepting to spend their valuable time and to evaluate this work.

I would like to express my appreciation to ASELSAN A.Ş. for the understand-

ing and support during my academic studies. I also want to thank to people I

work with for the joy they bring to my life making my work life together with

academic life a pleasureful experience.

I would like to thank to my parents and grandparents for raising me with

all their love. I would not be the person who I am without their never-ending

support. I would also like to thank to my brother Sezgin. Despite the physical

distance between us throughout our lives, he always cheers me up.

And most of all, my beloved wife Tuçe who has lived every stage of this long

journey with me. Thank you for bearing with me for all this time. I cannot

express how valuable your support has been to me, I love you. And my son

Dorukhan Aral. I can only imagine being son of a daytime software developer

and nighttime PhD candidate. I apologize for the time I have stolen from you for

the last five years. And the newcomer of the family, my daughter Pelin. You are

already five months old without a proper father. I promise to be a better father

and husband from now on.

viii

Contents

Contents ix

List of Figures xii

List of Tables xvii

1 Introduction 1

1.1 Contributions . 8

1.2 Outline of the Thesis . 10

2 Related Work 11

2.1 Energy Conservation . 11

2.2 Routing . 13

2.3 Power Sources . 15

2.4 Heterogeneity . 16

2.5 ZigBee . 17

3 An Algorithm Framework for Power-Source-Aware Routing in

ix

CONTENTS x

Wireless Sensor Networks 20

3.1 Our Routing Algorithm Framework 21

3.2 Sample Centralized Algorithms Based on Our Framework 26

3.3 Evaluation of the Proposed Approach 30

3.4 Conclusions . 34

4 A Distributed Algorithm for Power-Source-Aware Routing in

Wireless Sensor Networks 36

4.1 Our Distributed Routing Algorithm: PSABR 37

4.1.1 Messages . 38

4.1.2 Sample Backbone Construction 41

4.1.3 Behavior . 44

4.1.4 Analysis . 57

4.2 Performance Evaluation . 59

4.2.1 Simulation Implementation Details 59

4.2.2 Visualization of Simulations 63

4.2.3 Simulation Parameters . 64

4.2.4 Simulation Results . 66

4.3 Conclusions . 75

5 Power-Source-Aware Routing in ZigBee Networks 76

5.1 The ZigBee Standard . 77

CONTENTS xi

5.1.1 A Brief Summary . 77

5.1.2 ZigBee Address Assignment 79

5.2 Our Power-Source-Aware Routing Algorithm: PSAR 81

5.2.1 The Algorithm Details . 83

5.2.2 Implementation . 88

5.2.3 Analysis . 90

5.3 Simulation Results . 92

5.4 Conclusions . 107

6 Conclusions and Future Work 108

Bibliography 112

List of Figures

1.1 (a) Visibility graph, (b) secondary graph, (c) spanning tree on the

secondary graph, (d) mapping to the original graph, and (e) rout-

ing tree. 4

1.2 (a) Visibility graph, (b) initial routing tree, and (c) routing tree

after reconfiguration. 7

3.1 (a) Visibility graph, (b) a spanning tree on the mains-powered

node connectivity graph, (c) backbone, and (d) routing tree graph

(reprinted from Fig. 1 of [1] c© 2010 IEEE). 23

3.2 A portion of a sample wireless sensor network. 26

3.3 Number of rounds passed vs. number of nodes reachable from the

sink (mains-powered node ratio: 20%) (reprinted from Fig. 2 of [1]

c© 2010 IEEE). 32

3.4 Number of rounds passed vs. average energy consumption per

round (mains-powered node ratio: 20%) (reprinted from Fig. 3

of [1] c© 2010 IEEE). 33

3.5 Number of rounds passed vs. average path length to the sink

(mains-powered node ratio: 20%) (reprinted from Fig. 4 of [1]

c© 2010 IEEE). 34

xii

LIST OF FIGURES xiii

3.6 Mains-powered node ratio vs. network lifetime (reprinted from

Fig. 5 of [1] c© 2010 IEEE). 35

4.1 Backbone construction (1 of 2). 42

4.2 Backbone construction (2 of 2). 43

4.3 Finite state machine for mains-powered nodes. 46

4.4 Finite state machine for battery-powered nodes. 53

4.5 Mobile node architecture in ns-2. 60

4.6 Visual output of a sample simulation run at different points in time. 65

4.7 Number of reachable nodes over time [n = 150, m = 20%]. . . . 66

4.8 (a) Average indegree, (b) number of packets transmitted over time,

(c) energy consumption of battery-powered nodes, and (d) total

residual energy of battery-powered nodes [n = 150, m = 20%]. . . 67

4.9 Node counts as new nodes arrive and the network is constructed

[n = 300, m = 25%]. 69

4.10 Network lifetime (assuming lifetime is the time passed until half

of the nodes become unreachable from the sink) depending on

(a) node count [m = 20%, ρ = 100%], (b) mains-powered node

ratio [n = 150, ρ = 100%], and (c) density [n = 150,m = 20%]. . . 70

4.11 Network lifetime (assuming lifetime is the time passed until the

first node death) depending on (a) node count [m = 20%, ρ =

100%], (b) mains-powered node ratio [n = 150, ρ = 100%], and

(c) density [n = 150,m = 20%]. 71

4.12 Number of control packets required to construct the network [m =

20%]. 72

LIST OF FIGURES xiv

4.13 Lifetime and average path length to sink for different sink counts

[n = 150, m = 20%]. 73

4.14 Number of messages (MDM and MIM) required to discover a peer

[n = 300, m = 20%]. 74

5.1 ZigBee protocol stack (reprinted from Fig. 1 of [2] c© Springer

Science+Business Media, LLC 2012, with kind permission from

Springer Science and Business Media). 78

5.2 ZigBee distributed address assignment (reprinted from Fig. 2 of [2]

c© Springer Science+Business Media, LLC 2012, with kind permis-

sion from Springer Science and Business Media). 81

5.3 Modifying the ZigBee tree topology to change communication

paths (reprinted from Fig. 3 of [2] c© Springer Science+Business

Media, LLC 2012, with kind permission from Springer Science and

Business Media). 82

5.4 Percent reduction in traffic load on the battery-powered devices

(x-axis: battery-powered device ratio, y-axis: percent reduction)

(reprinted from Fig. 5 of [2] c© Springer Science+Business Media,

LLC 2012, with kind permission from Springer Science and Busi-

ness Media). 94

5.5 Average reduction in traffic load on the battery-powered devices

for the network sizes of 10, 40, and 70 devices and communicat-

ing pair ratios of 10%, 30%, and 50% (reprinted from Fig. 6 (a)

of [2] c© Springer Science+Business Media, LLC 2012, with kind

permission from Springer Science and Business Media). 96

LIST OF FIGURES xv

5.6 Total reduction in traffic load on the battery-powered devices for

the network sizes of 10, 40, and 70 devices and communicating

pair ratios of 10%, 30%, and 50% (reprinted from Fig. 6 (b) of [2]

c© Springer Science+Business Media, LLC 2012, with kind per-

mission from Springer Science and Business Media). 97

5.7 Percent reduction in traffic load on the battery-powered devices

and number of configurations over time for the network size of 40

devices and communicating pair ratio of 30% (reprinted from Fig. 7

of [2] c© Springer Science+Business Media, LLC 2012, with kind

permission from Springer Science and Business Media). 98

5.8 Percent reduction in traffic load on the battery-powered devices

for the dynamic traffic case (x-axis: battery-powered device ratio,

y-axis: percent reduction) (reprinted from Fig. 8 of [2] c© Springer

Science+Business Media, LLC 2012, with kind permission from

Springer Science and Business Media). 99

5.9 Percent reduction in standard deviation of traffic load on the

battery-powered devices (x-axis: battery-powered device ratio, y-

axis: percent reduction) (reprinted from Fig. 9 of [2] c© Springer

Science+Business Media, LLC 2012, with kind permission from

Springer Science and Business Media). 101

5.10 Percent reduction in average path lengths between communicat-

ing devices (x-axis: battery-powered device ratio, y-axis: per-

cent reduction) (reprinted from Fig. 10 of [2] c© Springer Sci-

ence+Business Media, LLC 2012, with kind permission from

Springer Science and Business Media). 102

5.11 Packet drop rate (x-axis: battery-powered device ratio, y-axis:

drop rate in packets per second) (reprinted from Fig. 11 of [2]

c© Springer Science+Business Media, LLC 2012, with kind per-

mission from Springer Science and Business Media). 104

LIST OF FIGURES xvi

5.12 Ratio of control packet traffic to data traffic (x-axis: battery-

powered device ratio, y-axis: control packet ratio) (reprinted from

Fig. 12 of [2] c© Springer Science+Business Media, LLC 2012, with

kind permission from Springer Science and Business Media). . . . 105

5.13 Change in control packet count per reconfiguration with respect

to network size (reprinted from Fig. 13 of [2] c© Springer Sci-

ence+Business Media, LLC 2012, with kind permission from

Springer Science and Business Media). 106

List of Tables

4.1 Summary of the messages. 39

4.2 Variables and expressions. 45

4.3 Simulation parameters. 64

5.1 802.15.4 and ZigBee commands utilized in the implementation of

the proposed algorithm. 89

5.2 Total traffic in KB for different network sizes and communicating

pair ratios. 97

xvii

Chapter 1

Introduction

A wireless sensor network (WSN) is a collection of nodes, which are capable of

sensing, data processing, and wireless communication, distributed over an area

of interest to accomplish a certain task. Nodes in a WSN monitor environmental

and physical conditions and send the collected data to a special node, called sink

or base station, usually in a multi-hop fashion. Therefore, the main purpose of a

WSN is basically information gathering and delivery.

Typically, a sensor node consists of a processing unit, a wireless radio, and

at least one sensor. Sensing capabilities of the nodes vary depending on the

application, and different types of sensors are able to sense different physical

phenomenon such as temperature, moisture, smoke, vibration, pressure, light, and

sound. Continuous advances in wireless technology, sensing devices and low power

electronics make WSNs a feasible solution for a wide range of applications. These

applications include, but not limited to, habitat and environment monitoring, air

conditioning control in buildings, collecting vital statistics of patients, controlling

moisture level of soil in agriculture, industrial process monitoring and control,

intrusion detection, target tracking, home automation, building evacuation in

emergency conditions, and traffic control. Depending on the application type and

coverage, number of nodes in a WSN can vary from a few to several thousands.

While some of the applications require careful manual placement of nodes, in the

others it might be possible to throw the nodes from air vehicles in large quantities.

1

Batteries have been the natural choice of power source in WSNs to facili-

tate ease of node deployment. On the other hand, limited energy of batteries

restricts WSN lifetime. In a WSN composed of battery-powered nodes, replacing

or recharging batteries is vital for the continuity of the operation. But most of

the time, it is a costly process considering the high number of sensor nodes and

worse, it might be impossible due to reasons such as safety in military applica-

tions or harsh environmental conditions. Historically, majority of the studies on

WSNs assume that the nodes are battery-powered and extending the network

lifetime has been one of the most studied subjects on WSNs. In general, the

studies attack to a specific layer (e.g., physical, data link, network, transport)

on the protocol stack, or they follow a cross-layer approach. Some of the studies

try to increase the lifetime of individual nodes, and others try to increase the

network lifetime as a whole.

Although most of the studies assume that sensor nodes are battery-powered,

there are several studies showing that alternative energy sources exist [3][4][5].

Capacitors, fuel cells, heat engines, and beta voltaic systems are listed as energy

sources with different capacities, that can be used to power sensor nodes, besides

regular batteries. Although some of these energy sources last longer than the

others, their energy depletes eventually as well. There are also alternatives to

power sensor nodes continuously. One such alternative is to wirelessly transmit

energy to the sensor nodes from a nearby energy-rich power source using radio

frequency (RF) signals. A more promising perpetual power source alternative is

energy harvesting, which basically is the process of converting ambient energy into

usable electrical energy. Energy harvesting by itself is not a new research area,

but its use in WSNs has gained popularity recently, as a result of the advances in

the field enabling more efficient, smaller, and cheaper energy harvesting systems.

Mains electricity (power line) is another possible continuous power source al-

ternative for sensor nodes. Although it seems to be in contradiction with the

nature of wireless sensor nodes and networks, there is no reason for at least some

of the sensor nodes not to benefit from the continuous energy source of the facil-

ity if they are already next to power lines. This is especially the case for indoor

applications, where the nodes are deployed in houses, offices, buildings, factories,

2

etc. In such a scenario, mains-powered nodes would be preferred wherever possi-

ble to reduce maintenance costs, and battery-powered nodes would be used where

installing power lines is costly or impractical.

In this thesis, our aim is to increase the lifetime of WSNs composed of nodes

with heterogeneous power sources. We especially focus on WSNs composed of

battery- and mains-powered nodes. But our study can easily be extended to

WSNs in which some of the nodes have finite energy and the others are fed

by continuous power sources, like energy harvesting systems. More details on

possible continuous power sources are provided in Chapter 2. In the rest of the

thesis, terms battery-powered and mains-powered are going to be used to refer

class of nodes with finite and continuous power sources, respectively.

Our basic approach to increase the lifetime of WSNs is to make related algo-

rithms power-source-aware in which energy consuming tasks, such as routing, co-

ordination, and data processing, are mostly carried out by mains-powered nodes.

Battery-powered nodes, on the other hand, are mainly responsible for sensing

and sending their own data. We assume that all nodes have fixed and identical

communication range without loss of generality. We also assume that the nodes

are mostly stationary as expected in a WSN.

Firstly, we propose a framework for a class of routing algorithms. The reason

we call it a framework is that some parts of it have several alternatives, therefore

depending on the choice, different algorithms can be obtained. Our framework

aims to form a backbone topology consisting of all mains-powered nodes, in-

cluding the sinks. The backbone may also include battery-powered nodes, as

required, if the mains-powered nodes do not form a connected topology. The

resulting backbone is actually a tree rooted at the sink if there is a single sink,

or a forest if there are multiple sinks. The remaining sensor nodes are connected

to this backbone structure, either directly or through multiple-hops. The data

packets produced by the sensor nodes are routed through this backbone structure

towards the sinks.

Given a visibility (reachability) graph representing a WSN, where sensor nodes

are the vertices and wireless links are the edges, the proposed framework first

3

S S S

(a) (b) (c)

S S

battery-powered node

mains-powered node

(d) (e)

Figure 1.1: (a) Visibility graph, (b) secondary graph, (c) spanning tree on the
secondary graph, (d) mapping to the original graph, and (e) routing tree.

reduces the original graph to a secondary graph: vertices representing the mains-

powered nodes in the original graph constitutes the vertices of the secondary

graph and there is an edge between the vertices of the secondary graph if the

length of the shortest path between the corresponding vertices of the original

graph is below a threshold. Then a spanning tree is found on the secondary graph.

Using this spanning tree, the backbone on the original graph is determined, by

replacing the edges in the spanning tree by the corresponding paths in the original

graph. Finally, the rest of the nodes connect to the backbone to form a routing

tree.

Figure 1.1 shows the graphs related to a sample network at different steps

of the algorithm framework during its execution. Figure 1.1 (a) is the visibility

4

graph of the sample network in which the battery-powered nodes are represented

by rings whereas the mains-powered nodes are represented by black circles. The

sink is marked with an S. Figure 1.1 (b) is the secondary graph extracted by the

algorithm framework. In this sample case, we assume the maximum hop distance

between the mains-powered nodes used while extracting the secondary graph is 2.

Figure 1.1 (c) depicts a spanning tree on the secondary graph and Figure 1.1 (d)

shows the backbone obtained by mapping the spanning tree on the secondary

graph to a tree on the original graph. Finally, Figure 1.1 (e) presents the routing

tree obtained by connecting the rest of the nodes to the backbone.

In order to show the effectiveness of our approach and framework, we carried

out extensive simulation experiments. In the experiments, we assumed that a

central node (possibly the sink) has the global visibility graph, hence the backbone

can be computed centrally. Our experiment results show that the centralized

algorithms based on our proposed framework are able to increase the network

lifetime by up to more than a factor of two, compared to the case in which

battery- and mains-powered nodes are not differentiated.

Secondly, we present a power-source-aware backbone-based distributed rout-

ing algorithm (PSABR) based on the framework we propose. We give the detailed

design of our distributed algorithm including all control messages and node be-

haviors in the form of pseudo-codes and finite state machines. We implemented

the algorithm in ns-2 [6] network simulation environment completely, and run

simulations to validate its correctness and robustness, as well as to measure its

effectiveness and efficiency.

So far, our proposed methods are technology independent: any wireless tech-

nology providing one-hop wireless communication and an addressing mechanism

to distinguish nodes can use our methods. But there are already several specific

wireless communication technologies targeting especially WSNs such as 6LoW-

PAN [7], ZigBee [8], and Bluetooth Low Energy [9]. Algorithms designed for

a specific wireless communication technology can benefit from the features the

technology provides, but the algorithm should also comply with the restrictions

and constraints the technology imposes, such as maximum number of neighbors,

5

types and roles of devices defined, address assignment mechanism and scheme,

routing method, etc.

Thirdly, besides our wireless technology independent solutions, we also focused

on and worked with a specific wireless technology, namely ZigBee, and applied

our basic approach of distinguishing nodes based on their power sources while

creating logical topologies and routing structures. The ZigBee standard is built

on the IEEE 802.15.4 standard [10], which shares similar goals. ZigBee defines

the application layer and the network layer, whereas IEEE 802.15.4 defines the

medium access control layer and the physical layer. Both tree and mesh topologies

are possible in a ZigBee network. The ZigBee standard defines a distributed and

hierarchical address assignment mechanism and a routing method that depends

on this addressing mechanism.

In our study related to ZigBee networks, we concentrate on tree topologies

with the distributed address assignment mechanism enabled. We propose a dis-

tributed, dynamic, and traffic-load-aware routing algorithm to be used for sensor

and ad hoc networks. The algorithm is fully distributed and forwards the packets

according to the tree-based hierarchical addresses of ZigBee nodes. It considers

traffic load in the network and in this way tries to use less number of battery-

powered nodes on the paths between heavily communicating nodes. Each node in

the network monitors the traffic it forwards and reconfigures the current topology

if the data forwarded by battery-powered nodes would be less in an alternative

topology compared to the current topology. Thanks to the distributed address

assignment mechanism of the ZigBee standard, we can compute the addresses of

the intermediate nodes given addresses of the source and the destination nodes,

hence the nodes can compare the alternative topologies with minimal communi-

cation overhead.

In Figure 1.2, we present a sample reconfiguration scenario. Given a network

as in Figure 1.2 (a), where the rings, circles, and edges represent battery-powered

nodes, mains-powered nodes and the wireless links between the nodes, respec-

tively and the PAN (personal area network) coordinator is marked with a C;

assume that the initial routing tree is as shown in Figure 1.2 (b) where the edges

6

C

+

+

#

#

C

+

+

#

#

C

(a) (b) (c)

Figure 1.2: (a) Visibility graph, (b) initial routing tree, and (c) routing tree after
reconfiguration.

represent the logical links of the routing tree. Also assume that the node pairs

marked with + and # communicate with each other, hence the edges shown

with solid lines represent the active links on the routing tree. In Figure 1.2 (b),

number of battery-powered nodes on the routing paths is six. If we can recon-

figure the routing tree as shown in Figure 1.2 (c), we can reduce the number of

battery-powered nodes on the routing paths to three.

Our study on ZigBee networks differs from our previous studies in three re-

spects. One, it is technology specific. Two, it assumes point-to-point communi-

cation is possible. Three, we do not assume a regular traffic flow between the

nodes, that is, rate and end points of the data traffic can change over time. Due

to these last two aspects, besides WSNs where traffic is usually many-to-one, it

is also suitable for wireless ad hoc networks where traffic is peer-to-peer. It can

also be used in wireless sensor and actuator networks (WSANs) where traffic can

be both many-to-one and peer-to-peer. In WSANs, data may need to be gath-

ered from all sensor nodes to the sink node and also may need to be transported

between sensors and actuators. Hence, our ZigBee specific topology control and

routing solution can be used for a broad range of ZigBee applications.

We evaluated the proposed ZigBee routing solution again using the ns-2 sim-

ulator. For that, we first implemented the ZigBee protocol in ns-2, on top of

7

the IEEE 802.15.4 implementation which is already available. Then, we embed-

ded our protocol to ns-2 and performed extensive experiments. Our results show

our routing protocol extends network lifetime compared to the default routing

algorithm of ZigBee, which is not traffic-aware and which does not distinguish

battery- and mains-powered nodes.

1.1 Contributions

The followings are the contributions of this thesis:

• We propose a backbone-based routing approach to increase WSN lifetime

by distinguishing the sensor nodes according to their power sources.

• By following this approach, we propose an algorithm framework for WSNs

in which battery- and mains-powered nodes coexist. The framework allows

an energy-efficient, backbone-based routing algorithm to be obtained by

selecting alternative sub-algorithms, depending on the application require-

ments.

• We propose a set of centralized backbone-based routing algorithms obtained

using our framework. We showed via simulations that network lifetime can

be increased by a factor of two using our algorithms, compared to using

a basic algorithm that does not distinguish between battery- and mains-

powered nodes.

• We also propose a distributed algorithm for constructing and maintaining a

backbone-based routing structure that routes packets from sensor nodes to

the sink in an energy-efficient manner and prolongs the network lifetime in

this way. We describe the protocol messages used and also provide battery-

and mains-powered node behaviors in detail and rigorously by means of

pseudo-codes and finite state machines.

• To validate and evaluate our distributed algorithm, we developed a simu-

lation environment based on ns-2 and a tool to visualize network topology

8

and routing relationships among the nodes. This tool can be used in sim-

ilar studies with slight modifications. The simulation results show that

our power-source-aware distributed routing algorithm can enhance network

lifetime significantly compared to a basic shortest-path algorithm that does

not distinguish battery- and mains-powered nodes.

• In addition to our wireless technology independent studies, we also propose

a novel tree-based routing topology construction and maintenance algo-

rithm for ZigBee wireless networks. Besides describing our algorithm in

every detail, we also show a method to compute the ZigBee network ad-

dresses of intermediate nodes between any given source-destination pair,

that depends on the distributed address assignment mechanism of ZigBee.

Our routing algorithm can utilize mains-powered nodes to reduce packet

and energy load on battery nodes. It is also adaptive to changes in traffic

patterns.

• To evaluate the performance of our tree-based ZigBee routing algorithm, we

again implemented an ns-2 simulation. To do this, we partially implemented

the network (NWK) layer of ZigBee into ns-2 environment. Hence, we

contributed a new module to ns-2.

• The set of solutions we provide in this thesis are analyzed considering dif-

ferent aspects such as:

– centralized vs. distributed algorithms,

– single vs. multiple sinks,

– generic vs. technology-specific approaches,

– continuous dissemination vs. event-driven communication,

– sensor to sink vs. point-to-point communication.

9

1.2 Outline of the Thesis

Organization of the thesis is as follows. In the next chapter we give the related

studies in the literature. In Chapter 3, we present a framework for a class of

algorithms that basically forms a backbone, mainly composed of mains-powered

nodes, to route the data packets. In Chapter 4, we describe a distributed al-

gorithm based on this framework in detail. We propose a distributed algorithm

specific to ZigBee networks, which shapes the network topology in order to re-

duce the data forwarded by the battery-powered devices in Chapter 5. Finally,

in Chapter 6, we summarize accomplishments of the thesis along with possible

future research directions.

10

Chapter 2

Related Work

In this chapter, we describe the previous work related to our study on power-

source-aware routing in heterogeneous WSNs. We first give studies on energy

conservation in WSNs since our aim is to increase the network lifetime by careful

use of limited energy of battery-powered nodes. Next, we present studies related

to routing in general and backbone routing in particular in wireless ad hoc and

sensor networks, since our studies focus on routing and employ a backbone-based

routing approach. We also describe some of the studies related to power-source

types in WSNs including energy harvesting and discuss studies exploiting node

heterogeneity similar to our study. Finally, we present studies related to our

ZigBee-specific adaptive routing method that distinguishes nodes with respect to

their power-source types to increase network lifetime.

2.1 Energy Conservation

Due to the limited energy resources and mostly unattended nature of WSNs,

efficient use of energy to increase the network lifetime has been one of the most

studied subjects related to WSNs [11].

11

In a recent study, Anastasi et al. [12] provide a taxonomy for energy conser-

vation techniques in WSNs and present a survey on the related studies based on

this taxonomy. At the highest level, the authors classify studies into one of the

following categories: approaches employing duty-cycling, data-driven approaches,

and mobility-based approaches. The duty-cycling based studies are further classi-

fied into two subcategories: topology-control based studies and connection-driven

studies. In studies belonging to the topology control subcategory, node redun-

dancy is exploited to cover the area as in [13] and [14] or provide the network

connectivity using a subset of the nodes as in [15], [16], and [17]. Our study falls

into the connection-driven subcategory, since we exploit the redundancy of the

nodes in the network to route data packets in an energy-efficient manner. In [12],

data-driven approaches are further divided into data reduction [18][19][20] and

energy-efficient data acquisition [21][22][23] subcategories. Although we assume

that data aggregation (which is a data reduction technique) is possible in our

simulations, it is not an integral part of our proposed solutions and our schemes

can be used in environments with or without data aggregation.

In another study, Gupta et al. [24] also investigate energy efficiency in WSNs.

Authors first discuss methods to reduce energy consumption that can be em-

ployed at the MAC (media access control) layer, such as avoiding collisions and

overhearing, but the main focus of the study is network layer protocols. Effective

routes and efficient route setup and maintenance are given as means of energy

efficient routing in WSNs. In our study, we aim at constructing effective routes

from the viewpoint of battery-powered nodes, but we also consider efficiency of

the route construction.

Yet in another work dealing with energy efficient strategies in WSNs [25], re-

lated studies are grouped into four: energy efficient routing [26][27][28], scheduling

the nodes’ sleeping state [29][30], topology control by tuning node transmission

power [31][32], and reducing the volume of information transferred [33][34]. In

some respects [25] resembles similarities with the grouping given in [12], but dif-

ferently it considers routing in a separate category. We discuss routing in WSNs

in a broader sense in Section 2.2, but here we focus on the energy efficiency as far

as routing in WSNs concerned. Multipath routing is given as one of the strategies

12

to prolong lifetime and employed in studies like [26], [35], [36], and [37]. In our

study we take multipath routing into account not as end-to-end multipath rout-

ing but rather as multipath routing between mains-powered nodes. By using this

method we aim at balancing energy usage of battery-powered nodes connecting

mains-powered nodes.

Adaptive hop-by-hop routing is given in [25] as another strategy for energy

efficient routing in WSNs. Studies like [27] and [38] try to select paths consuming

minimum energy whereas studies like [28] try to use paths with nodes having the

highest residual energy. There are also studies which apply a hybrid of these two

methods such as [39]. Favoring paths with minimum energy requirement has the

disadvantage of depleting energy of common nodes residing on multiple paths. On

the other hand, using residual energy while deciding the routing paths requires

additional information exchange and can increase the amount of control messages.

In some of the studies applying cluster-based routing, cluster heads are elected

according to residual energy of the nodes either by one-hop message exchange or

by probabilistic methods [40][41][42], to minimize or eliminate message exchange.

But they are prone to connectivity problems unless additional precaution is taken,

such as increasing node density.

2.2 Routing

Al-Karaki and Kamal [43] investigate different aspects of routing in WSNs and

present a survey on the related studies. Authors categorize the routing protocols

into three groups according to the network structure. In flat routing, sensor nodes

take equal role in routing in the network as in [44][45][26]; in hierarchical routing,

a group of the nodes take special role, such as cluster-heads, and coordinate

communication between the regular nodes and the sink as in [46][47][48][49]; and

finally in location based routing, nodes are addressed based on their locations

and data packets are routed accordingly as in [15][50][51]. Hierarchical routing

methods facilitate scalability and energy efficiency and have better potential to

exploit node heterogeneity. Our proposed method based on backbone routing

13

best fits into the hierarchical routing category and has two levels of hierarchy:

nodes forming the backbone, which are mostly mains-powered, and rest of the

nodes, which are battery-powered.

As Simplot-Ryl et al. enumerate in [52], backbone-based approaches for data

dissemination and gathering are rather well-studied. As in other related studies,

in [52], backbone is considered to be either neighbor- or area-dominating set of a

network. In the former, all nodes are either part of the backbone or in one-hop

distance of it, and in the latter, the whole area is in the sensing range of the nodes

constituting the backbone. Since finding the minimum connected dominating set

(CDS) is NP-complete, approaches in the literature are based on centralized or

distributed heuristics. Although centralized algorithms can provide bounds on

the size of CDS, such as in [53], they require global information, increasing the

messaging overhead.

Localized backbone-based approaches, in which only a limited neighborhood

information is shared, are based on either deterministic or probabilistic algo-

rithms. Span, presented in [15], is an example of probabilistic algorithms. In

Span, a node either sleeps or takes part in the backbone randomly, based on its

residual energy and the benefit to its neighbors if it stays awake. In a similar al-

gorithm called EAD [54], Boukerche et al. try to find a spanning tree with many

leaf nodes. In EAD, nodes with higher residual energy have a higher chance of

not being a leaf-node. As another distributed algorithm, in ASCENT [16], nodes

participate in sensing and routing tasks according to the packet-losses due to lack

of relay nodes and packet-losses due to collisions. Hence, the aim is to keep only

a subset of the nodes alive to preserve energy.

Cell-based approaches, which are also CDS-based, are employed in different

studies including [13] and [55]. In both studies the area is divided into cells and

only a single node in each cell is kept alive for routing. The major drawback of

these studies is that they need to know the locations of the nodes. In the studies

mentioned so far, the aim is to find a CDS. Differently in [56], the authors present

different protocols that ensure k-connectedness of dominating sets, for the sake

of fault tolerance. In a different study that take fault tolerance into account,

14

Kashyap et al. [57] add relay nodes to a WSN in order to provide a k-connected

backbone.

In our study, different from the previous studies based on backbone construc-

tion, we assume that the sensor nodes are heterogeneous as far as their power

sources are considered. Although studies, such as [53] and [15], that take residual

energy into account, can be applied for this case, prior knowledge of different

power-source types enables specialized solutions, since the energy of the nodes

change in time but their power-source types do not. In this study, we also adapt

the definition of backbone: in our case, a backbone consists of a connected set of

mains-powered nodes, compared to the CDS of all nodes. As mentioned earlier,

there are both centralized and localized algorithms for backbone construction.

Both centralized and distributed algorithms, based on the approach presented

in this thesis, are possible. We propose several centralized algorithms in Chap-

ter 3, and we propose a distributed algorithm in Chapter 4. In any case, our

solutions fall into the deterministic category. That means, if there is a connected

backbone, our proposed approach is able to construct it, whereas in randomized

algorithms backbone connectivity is highly affected by the node density. Our

proposed approach can also take fault tolerance into account similar to [56] and

[57], but different from them our proposed algorithms try to increase the number

of vertex disjoint paths between a pair of mains-powered nodes on the backbone,

rather than trying to achieve k-connectedness of the whole backbone. As another

difference with [57], we assume that the locations of the sensor nodes are fixed.

2.3 Power Sources

In most of the studies concerning WSNs, nodes are assumed to be battery-

powered. But there are several studies showing that alternative energy sources

exist. Fuel-cells, heat engines, energy harvesting methods as well as power dis-

tribution techniques (e.g., through use of radio frequencies, acoustics, light, etc.)

are discussed in [3], [4], and [5], besides batteries and power lines. Some of these

power-source types provide energy for a limited time similar to batteries, whereas

15

others, such as energy harvesting methods, have potential to provide a contin-

uous source of energy. Therefore, although studies presented in this thesis are

originally designed for networks consisting of battery- and mains-powered nodes,

they can be used in similar heterogeneous deployment cases as far as the en-

ergy sources are considered. Using a technique similar to the one presented in

[58], nodes employing our approach can identify their power-source types and act

accordingly.

In recent years, energy harvesting methods to power WSNs have been cov-

ered by many studies (e.g., [59], [60], [61], and [62]), since such methods have

great potential to decrease maintenance costs due to battery replacement and to

greatly extend network lifetime for cases where replacing batteries is practically

impossible. In these studies, different renewable energy sources, such as sun,

wind, vibration, heat, electromagnetics, are considered for energy harvesting. In

general, harvesting provides intermittent energy, due to the unreliable nature of

the sources and the effectiveness of the harvesting. But different approaches can

be employed to increase the reliability of this method. One approach is to use

multiple sources of energy as in [63] and [64]. Another approach is to harvest

energy from relatively more reliable ambient energy sources such as fluorescent

lamps in hospitals or factories, where the lights are always on, as in [65], or air

flow near ventilation exhausts, as in [66]. As long as some of the nodes can be

powered by such reliable methods, we can make use of those special nodes to

increase the network lifetime.

2.4 Heterogeneity

Basically, our approach exploits the nodes’ heterogeneous power sources in a

WSN. There are other studies that make use of superior nodes to increase WSN

lifetime. Yarvis et al. [67] show that even a modest number of mains-powered

nodes has significant impact on network lifetime. The authors use existing energy-

aware routing protocols and try to find the optimum number of battery- and

mains-powered nodes along with their locations. Although special placement of

16

the nodes can increase the network lifetime, our study does not rely on such

arrangements. In [68], Ma et al. present a cluster based topology formation

and update protocol which takes the energy resources of the nodes into account.

Unlike this study, we assume that all nodes have the same communication range;

that means in our solutions all nodes, whether ordinary or superior, can use

the same wireless communication technology. In [69] and [70], authors consider

the heterogeneity of the nodes as far as their energy harvesting capabilities are

considered. Kansal et al. [69] propose a routing method that makes use of nodes

with higher harvesting potential. Voight et al. [70], on the other hand, describe a

modified directed diffusion approach in which solar powered nodes are taken into

account.

2.5 ZigBee

In this thesis we also propose a power-source-aware routing algorithm for ZigBee

networks. Here, we first give some energy conservation related studies specific to

ZigBee, then we present some studies on topology control and routing in ZigBee

networks.

There are several studies on increasing energy efficiency, hence the lifetime, of

ZigBee networks. [71] provides a survey of ZigBee networks as sensor networks

and includes a section on energy efficiency. As presented in [71], energy-efficiency

related approaches for ZigBee networks are realized in different layers of the

protocol stack.

Suarez et al. in [72] replace the MAC protocol of ZigBee with X-MAC. Cho

et al. in [73] adapt the beacon interval dynamically based on the arrival rate of

packets in order to increase the sleep time of the nodes. In a similar study, Kim

et al. [74] present the impact of adaptive superframe duration as well as beacon

interval. Li et al. in [75] exploit multiple sleep/wake-up schedules as opposed to

the single beacon interval of ZigBee, to conserve energy.

Piccunelli et al. in [76] present a strategy to build a routing tree based on

17

a cross-layer cost function incorporating remaining energy, channel quality, and

number of hops. Similarly, Boughanmi et al. in [77] use a cost function in order

to satisfy the energy and delay constraints of the paths to be used. This modified

function is used at the path discovery phase of ZigBee. Unlike studies in [76]

and [77], Peng et al. in [78] use the two ZigBee routing methods presented in

the ZigBee standard as they are, but choose one of them according to the data

service that requires routing functionality. In some studies, such as [79] and [80],

multi-path routing is exploited in order to prolong the network lifetime.

In some studies, topology control is also applied in ZigBee networks to increase

network lifetime. Ma et al. in [81], for example, propose an algorithm to construct

network topologies with a small number of coordinators while still maintaining

network connectivity. The average duty cycle is reduced and the battery life is

prolonged by reducing the number of coordinators.

There are two different routing mechanisms, i.e., hierarchical tree routing and

modified ad hoc on-demand distance vector routing (AODV), specified in the

ZigBee standard and there are several studies analyzing and comparing these

two mechanisms (e.g., [82], [83], and [84]). Cuomo et al. in [82] show that

hierarchical tree routing performs better than AODV in terms of packet loss, en-

ergy consumption, and delay. Hierarchical tree routing exploits the information

exchanged during the topology formation to achieve its superior performance.

Although hierarchical tree routing is superior in certain scenarios, AODV pro-

vides a more generic routing solution, especially in relatively dynamic networks.

Furthermore, hierarchical tree routing uses relatively longer paths compared to

AODV. Studies in [85] and [86] make use of neighboring nodes, which are neither

parents nor children of the current node, to enhance hierarchical tree routing

performance by shortening the paths.

The main difference between the studies related to ZigBee mentioned so far

and our ZigBee specific study presented in this thesis is that our study distin-

guishes between mains- and battery-powered devices in order to modify the net-

work topology. Unlike residual energy, power-source type information does not

18

change over time. Hence, messaging required to share the energy levels is elimi-

nated. Furthermore, studies that propose ZigBee routing strategies are generally

for mesh topology networks whereas our algorithm focuses on tree topology net-

works, which is natural to consider for WSNs. Hence, our algorithm makes use of

advantages provided by hierarchical tree routing while eliminating the inefficient

battery usage due to relatively longer paths.

19

Chapter 3

An Algorithm Framework for

Power-Source-Aware Routing in

Wireless Sensor Networks

Wireless Sensor Networks (WSNs) are used to monitor physical and environmen-

tal conditions in a wide range of civilian and military applications, as stated

before. We believe in many WSN applications at least a portion of the nodes can

be mains-powered. This is especially the case for indoor applications. On the

other hand, in some applications, clever use of energy-harvesting methods can

provide continuous and reliable energy to some of the sensor nodes in a WSN, as

discussed in Chapter 2.

In this chapter, we present an energy efficient routing approach that increases

the lifetime of heterogeneous WSNs in which nodes with different power-source

types coexist. We make the following assumptions about a sensor network:

• a node is either battery- or mains-powered,

• all sensor nodes have the same communication range,

• all sensor nodes have periodic data to send,

20

• data flow is from the sensor nodes to the sink,

• nodes are stationary,

• nodes are located randomly.

The basic idea behind our proposed approach is to form a backbone structure

consisting of mains-powered nodes and the sink to relay the packets from sensor

nodes to the sink. However, the sink and the mains-powered sensor nodes might

not always form a connected topology. Therefore, some battery-powered nodes

can also be used to form a connected backbone for the rest of the network. The

proposed approach is presented as an algorithm framework defining a class of

routing algorithms.

The remainder of this chapter is organized as follows. We describe our pro-

posed approach and framework in Section 3.1. We present four sample centralized

algorithms based on our framework in Section 3.2. In Section 3.3, we give the sim-

ulation results presenting the performance of our centralized algorithms. Finally,

in Section 3.4, we conclude the chapter.

3.1 Our Routing Algorithm Framework

As mentioned earlier, we assume that battery- and mains-powered sensor nodes

coexist in the network, and that the proposed approach uses mains-powered nodes

to decrease energy usage of battery-powered nodes, increasing the overall lifetime

of the sensor network. Basically, the proposed approach forms a backbone routing

structure that consists of the sink, all mains-powered sensor nodes (which are

accessible from the sink) and some of the battery-powered nodes to interconnect

mains-powered nodes, if required. The remaining battery-powered nodes are

connected to this backbone structure. Then this backbone structure is used to

route packets from all sensor nodes, battery- or mains-powered, to the sink node.

Figure 3.1 shows a sample network to explain the proposed approach. This

21

network consists of 500 sensor nodes, 100 of which, including the sink, are mains-

powered. The nodes are distributed to a square-shaped area with an edge length

of 10 units. Communication range of each node is 1 unit. The sink is located

at the center of the area. In the figures, the battery-powered nodes are de-

noted by small circles and the mains-powered nodes are shown as larger circles.

Figure 3.1 (a) shows the visibility graph of the network; if a node is in the com-

munication range of another, there is an edge between the vertices representing

these two nodes. We assume links are symmetric. Given such a visibility graph,

our approach can extract a backbone similar to the one shown in Figure 3.1 (c).

Connectivity information of the mains-powered nodes, reduced to a spanning tree

as in Figure 3.1 (b), is used to form the backbone, which is explained later in

this section. Please note that all mains-powered nodes take part in the backbone,

and in some cases battery-powered nodes are used to interconnect them. Finally,

Figure 3.1 (d) shows the routing tree formed as the rest of the nodes connect to

the backbone.

The proposed approach can be described in a more formal manner by the

following three-step procedure:

1. Reduce the visibility graph G = (V,E) to a secondary graph G′ = (V ′, E ′)

such that

(a) V ′ ← {v ∈ V | v is mains-powered},

(b) ∀ vi, vj ∈ V ′, the edge (vi, vj) ∈ E ′ ⇐⇒ (vi, vj) ∈ E or ∃ a simple

path p = (v1, v2, ..., vn) between vi and vj in G s.t. v1, v2, ..., vn are all

battery-powered and |p| < T , and then

(c) assign a cost value to each edge e′ ∈ E ′.

2. Extract a backbone:

(a) Find a spanning tree on G′,

(b) Map the spanning tree on G′ to a tree on G.

3. Connect the remaining nodes to the backbone.

22

(a) (b)

(c) (d)

Figure 3.1: (a) Visibility graph, (b) a spanning tree on the mains-powered node
connectivity graph, (c) backbone, and (d) routing tree graph (reprinted from
Fig. 1 of [1] c© 2010 IEEE).

23

This procedure is actually a framework for a class of algorithms rather than

a complete description of a single algorithm because there are several alterna-

tives for some of its steps. Let us explain the procedure step by step with the

alternatives where necessary.

In Step 1, the original network visibility graph is reduced to a secondary

graph in which the vertices are the mains-powered nodes (Step 1-a) and the edges

represent the connectivity of these nodes. Two mains-powered nodes are assumed

to be connected either if they are in direct communication range of each other

or if there is a simple path between them shorter than or equal to a threshold T

and consisting of only battery-powered nodes (Step 1-b).

In Step 1-c, cost values are assigned to the edges of the secondary graph to

be used in Step 2 of the procedure. Two alternatives are considered for this step,

given two vertices representing the mains-powered nodes, and an edge between

them: 1) Minimum number of battery-powered nodes between the two mains-

powered nodes and 2) A value inversely proportional to the number of vertex

disjoint paths (shorter than or equal to a threshold, T , and consisting of only

battery-powered nodes) between the two mains-powered nodes. The first method

is expected to reduce the amount of energy consumed by the battery-powered

nodes, whereas the second method is considered for fault tolerance, that is, if one

of the paths between the mains-powered nodes becomes unusable due to a node

failure, another path can be chosen from the alternatives. Instead, the alternative

paths between the mains-powered nodes can also be used for load balancing by

sending each packet through a different alternative path.

In Step 2 of the procedure, the backbone is formed. First a spanning tree

on the secondary graph is found (Step 2-a), similar to the one in Figure 3.1 (b).

This spanning tree is used as the basis of the backbone on the actual network.

A minimum spanning tree (MST) and shortest path tree (SPT) rooted at the

sink are considered as alternatives. Although an MST is expected to give better

network-wide results than an SPT, especially when data is aggregated, the lat-

ter has a less-complex distributed implementation. The backbone is yielded by

mapping the spanning tree on the secondary graph back to a tree on the original

24

graph (Step 2-b), which corresponds to mapping each edge of the spanning tree

on the secondary graph to a path on the original graph. End points of the paths

are the vertices representing mains-powered nodes and nodes on the paths are

the battery-powered nodes connecting the corresponding mains-powered nodes.

In the algorithms given in Section 3.2, the paths are chosen to be the shortest

simple paths connecting mains-powered nodes and there might be no battery-

powered nodes on the paths if mains-powered nodes are immediate neighbors.

The mapping can be seen in Figure 3.1 (b) and (c). After these first two steps,

the backbone is formed.

Finally, in the last step of the procedure, the remaining battery-powered

nodes, i.e., the nodes are not connected to the backbone yet, are connected to

the nodes that are part of the backbone (Step 3), either directly or over multiple-

hops. Although there might be other alternatives, in the algorithms presented

in Section 3.2, mains-powered nodes are chosen to have precedence over battery-

powered nodes to be parents of the connecting nodes. The final routing tree is

similar to the one in Figure 3.1 (d).

So far the algorithm framework and properties of possible concrete algorithms

are described but their implementations are not explained. Centralized implemen-

tation is one of the alternatives. In the centralized implementation, each node

sends its neighbor list to the sink and in this way the sink obtains the complete

network topology information. The sink then executes the centralized algorithm

and sends back the final connectivity information to the nodes according to the

algorithm results. Whenever neighborhood information of a node changes, the

sink is informed about the situation and the topology is restructured according

to the current visibility of the nodes, if required. More detail on centralized

implementation is provided in Section 3.2.

Distributed implementation is another alternative. Although both MST and

SPT have distributed implementations available in the literature [87][88], finding

an MST of a graph in a distributed manner is more complex than finding an SPT.

In a distributed implementation of SPT case, local information, which includes

neighboring mains-powered nodes (other mains-powered nodes connected directly

25

or through a limited number of battery-powered nodes) and the path alternatives

to them, can be collected at mains-powered nodes. Hence each mains-powered

node can have a partial view of the visibility graph. In order to construct an SPT,

distance to the sink can be shared between connected mains-powered nodes. Once

a mains-powered node determines its parent, which has the minimum distance

to the sink among its mains-powered neighbors, it may also decide the path

to its parent among the alternatives. This corresponds to a partial mapping

of the secondary graph to the original graph handling part of the step 2-b of

the procedure. Nodes that are not declared as part of the backbone by the

mains-powered nodes can be connected to the backbone as in the last step of the

procedure. More detail on distributed implementation is provided in Chapter 4.

3.2 Sample Centralized Algorithms Based on

Our Framework

In this chapter, we mainly focus on the centralized implementation of the algo-

rithms based on our proposed framework. Before going into the details of the

centralized algorithms, let us first clarify some of the terms that we use in the

algorithm descriptions. Two nodes are neighbors if they are within communica-

tion range. The peer of a mains-powered node is another mains-powered node

(possibly the sink) that is reachable through less than T battery-powered nodes,

where T > 0. Battery- and mains-powered nodes send their data to their parents

in the data gathering process. The parent of a mains-powered node is one of its

peers, whereas the parent of a battery-powered node is one of its neighbors.

K M

L N

P

Q

R

S

Figure 3.2: A portion of a sample wireless sensor network.

In Figure 3.2, we give a graph representing a portion of a sample WSN where

26

ring-shaped vertices denote battery-powered nodes, solid-circle-shaped vertices

denote the mains-powered nodes, and the edges denote the wireless links between

the nodes. In the sample network, neighbors of node M are K, N , and P .

Assuming the threshold T is 2, peers of M are K, N , and R: K and N are

immediate neighbors of M and there is a path between R and M whose length

is less than or equal to T (i.e., 2) and consisting of only battery-powered nodes.

M and S are not peers since shortest path between these two nodes consisting

of only battery-powered nodes is 3, which is greater than T . Similarly M and

L are not peers: although they are 2 hops away, there is no path between them

consisting of only battery-powered nodes. Assuming the sink is S and M sends

its data to the sink through P and R, parent of M is R.

Based on our algorithm framework, we propose four different algorithms that

aim at constructing a backbone structure to route the data traffic through, as

listed below.

1. Algorithm “# of BP-Nodes + MST”,

2. Algorithm “# of Disjoint Paths + MST”,

3. Algorithm “# of BP-Nodes + SPT”,

4. Algorithm “# of Disjoint Paths + SPT”.

The first two algorithms construct the spanning tree over the secondary graph

as a minimum spanning tree (MST) and the latter two algorithms construct the

spanning tree as a shortest path tree (SPT). Furthermore, the first and the third

algorithms use the minimum number of battery-powered nodes connecting peers

(i.e., mains-powered node pairs) as the edge costs on the secondary graph, and the

second and the fourth algorithms make use of a value inversely proportional with

the number of vertex disjoint paths connecting peers to assign costs to edges.

More algorithms can be derived from our algorithm framework by considering

different cost functions or different tree formation algorithms. We propose and

analyze these four specific algorithms in this chapter.

27

Algorithm 3.1 Construct the backbone

function ConstructBackbone(G(V,E), ps)

1: {find peers and all possible paths between them}
2: paths← FindPeers(G(V,E), ps)
3: {reduce G to G′ and compute the edge costs of G′}
4: G′(V ′, E′, cost)← ReduceGraph(G(V,E), ps, paths)
5: {given G′ and cost, find a spanning tree, that is G′′}
6: G′′(V ′′, E′′)← FindMST(G′, cost)

7: {map G′′ back to a tree on G to obtain Ḡ(V̄ , Ē)}
8: for all edge (u, v) ∈ E′′ do

9: V̄ ← V̄ ∪ u ∪ v

10: path← argminl(|l|,∀ l ∈ pathsuv)

11: last← u

12: for all node n on path l do

13: V̄ ← V̄ ∪ n

14: Ē ← Ē ∪ (last, n)

15: last← n

16: end for

17: Ē ← Ē ∪ (last, v)

18: end for

19: return Ḡ(V̄ , Ē)

In Algorithms 3.1, 3.2, and 3.3, we give the pseudocodes for the centralized

implementation of one of our four algorithms, the “# of BP-Nodes + MST”

algorithm. The pseudocodes assume that the visibility graph G(V,E) of the

network and the power-source types of the nodes ps are already available at the

sink. Note that, these pseudocodes can easily be modified to implement the other

algorithms, besides “# of BP-Nodes + MST” algorithm.

In Algorithm 3.1, which constructs the routing backbone, first peers (mains-

powered nodes) and possible paths between them are computed. The details of

this step are given in Algorithm 3.2. In the algorithms, paths is a data structure

such that pathsuv stores the list of all possible paths between mains-powered nodes

u and v, and each path between u and v is a sequence of battery-powered nodes,

excluding the mains-powered end points (i.e., u and v). In Algorithm 3.2, a queue

of node sequences (i.e., paths), Q, is used to explore all possible paths between

the mains-powered nodes. For each mains-powered node m, first a sequence

containing only the mains-powered node itself is pushed to the queue Q. Then,

28

until Q is empty, sequences are popped and according to the power-source types

of each newly explored node, either a new path is discovered to a mains-powered

node and added to paths (line 11) or a new sequence is obtained (by adding the

new node to the current sequence) and pushed to the queue (line 8).

Algorithm 3.2 Find peers and paths between them

function FindPeers(G(V,E), ps)

1: for all mains-powered node m ∈ V do

2: push(Q, [m])

3: while Q 6= ∅ do

4: L←pop(Q)

5: for all v adjacent to front(L) in G do

6: if psv = battery-powered then

7: if (|L| < T) ∧ (v /∈ L) then

8: push(Q,L + v)

9: end if

10: else if v 6= m then

11: pathsmv ← pathsmv ∪ (L−m)

12: end if

13: end for

14: end while

15: end for

16: return paths

Next in Algorithm 3.1, the original visibility graph is reduced to a secondary

graph, whose details are given in Algorithm 3.3. In Algorithm 3.3, vertices are

added to the secondary graph for all mains-powered nodes (line 3), and edges are

added for all mains-powered node pairs if there is path between them stored in

paths (line 7). For each edge added, a cost value is also computed. Here, the

length of the shortest path between the nodes in the original graph is chosen as

the cost metric (line 8), but other alternatives can easily be adapted.

Then, in Algorithm 3.1, a spanning tree on the secondary graph is computed

using the minimum spanning tree algorithm (line 6, details are not provided).

Note that, here the minimum spanning tree algorithm can be replaced by a span-

ning tree algorithm of choice. In the last part of Algorithm 3.1 (lines 8-18),

the spanning tree on the secondary graph G′, that is G′′, is mapped back to a

tree on the original graph G, and therefore the backbone, Ḡ, is obtained. While

29

Algorithm 3.3 Reduce graph

function ReduceGraph(G(V,E), ps, paths)

1: for all u ∈ V do

2: if psu = mains-powered then

3: V ′ ← V ′ ∪ u

4: for all v ∈ V do

5: if psv = mains-powered then

6: if pathsuv 6= ∅ then

7: E′ ← E′ ∪ (u, v)

8: cost(u,v) ← |argminl(|l|,∀ l ∈ pathsuv)|
9: end if

10: end if

11: end for

12: end if

13: end for

14: return G′(V ′, E′, cost)

mapping the edges of G′′ to the paths on G, shortest possible paths between the

mains-powered nodes are chosen (line 10). Note that the mains-powered nodes

(line 9) are added to the backbone as well as the battery-powered nodes (line 13)

connecting these mains-powered nodes.

3.3 Evaluation of the Proposed Approach

In order to evaluate the effectiveness and the performance of our approach and

its alternative algorithms obtained by selecting different sub-algorithms and cost

functions, described in Sections 3.1 and 3.2, we implemented a custom simulator

in C++ and run a set of simulation experiments. In our simulations, our power-

source-aware backbone-based routing approach is compared with a basic shortest

path tree routing algorithm, in which battery- and mains-powered nodes are not

distinguished and each node is connected to the sink via the shortest possible

path. For our backbone-based routing approach, either the minimum number

of battery-powered nodes or 1/d, where d is the number of vertex-disjoint paths

bounded by a threshold T , is chosen to be the cost value assigned to the edges

30

of the secondary graph (referred as # of BP-Nodes and # of Disjoint Paths,

respectively). T is chosen to be 4, and although polynomial time algorithms

exist to find the maximum number of vertex-disjoint paths for T ≤ 4, a greedy

approach is followed to find a lower bound on the number of vertex-disjoint paths.

On the other hand, either a minimum spanning tree (MST) or a shortest path

tree (SPT) algorithm is applied to find a spanning tree on the secondary graph.

In the simulations, the network size is chosen to be 500 sensor nodes, a certain

ratio of which is mains-powered. The sensor nodes are distributed over an area

of 500 m by 500 m and the communication range of a node is set to be 50 m,

independent of its power-source type. The sink is located at the center of the

area and it is mains-powered. The simulation results are averaged over 20 runs, in

each of which the locations of the sensor nodes are determined pseudo-randomly

as described in [89]. A sensor node is assumed to be reachable if it is alive

and there is a path between the node and the sink. Each simulation run is

stopped when more than half of the sensor-nodes (i.e., 250 sensor nodes) become

unreachable. In the simulations, we assume that each sensor node sends data

to the sink periodically. At each round of data gathering, data is collected once

from each sensor node. We also assume that the data is aggregated at each node.

A simple energy consumption model is applied in the simulations. In [90], the

energy consumption ratio of a wireless device is measured as 1:1.05:1.4 for idle,

receive, and send periods, respectively. The energy consumption of the sensor

nodes is determined in accordance with this measurement. Hence, receiving a

data packet is assumed to consume 1.05 units of energy, whereas sending a data

packet is assumed to consume 1.4 units of energy. Idle periods of sensor nodes

are ruled out, since total idle period of a node is almost equal for any approach

compared in the simulations. Furthermore, the energy consumed during data

aggregation is assumed to be negligible. In each simulation run, all the battery-

powered nodes start running with 1000 units of energy.

Figure 3.3 depicts the number of reachable nodes with respect to number of

rounds since the start of data gathering. We express the time and network lifetime

in number of rounds. As the figure shows, our backbone-based routing approach,

31

 250

 300

 350

 400

 450

 500

 0 100 200 300 400 500 600 700 800

R
e
a
ch

a
b
le

 N
o
d
e
 C

o
u

n
t

Rounds

of BP-Nodes + MST
of Disjoint Paths + MST
of BP-Nodes + SPT
of Disjoint Paths + SPT
Shortest Path

Figure 3.3: Number of rounds passed vs. number of nodes reachable from the sink
(mains-powered node ratio: 20%) (reprinted from Fig. 2 of [1] c© 2010 IEEE).

with its four different versions, exhibits a significant improvement over the basic

shortest path routing algorithm. Note that if the network lifetime is defined as the

number of rounds until 20% of the nodes (i.e., 100 nodes) become unreachable,

our algorithms provide network lifetime more than twice as long as the shortest

path algorithm. Also note that, MST performs better than SPT as the spanning

tree algorithm and # of BP-Nodes performs better than # of Disjoint Paths as

the cost function, as far as the network lifetime is concerned.

Figure 3.4 presents the average energy consumption of a battery-powered node

(averaged over all battery-powered nodes) during the lifetime of the network. Our

backbone-based approach has an average energy consumption of around 1.5 units

per node per round. Considering that each node must transmit exactly once at

each round, thanks to data aggregation, and one packet transmission consumes

1.4 units of energy, this means that packets are mostly relayed by mains-powered

nodes. As the number of rounds increases, the average energy consumption per

node decreases for the basic shortest path algorithm. The reason for this is the

increase in the ratio of mains-powered nodes among the reachable nodes while the

battery-powered nodes deplete their energy, which in turn decreases the burden

32

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 100 200 300 400 500 600 700 800

A
v
e
ra

g
e
 E

n
e
rg

y
 C

o
n

su
m

p
ti

o
n
 p

e
r

R
o
u
n
d

Rounds

of BP-Nodes + MST
of Disjoint Paths + MST
of BP-Nodes + SPT
of Disjoint Paths + SPT
Shortest Path

Figure 3.4: Number of rounds passed vs. average energy consumption per round
(mains-powered node ratio: 20%) (reprinted from Fig. 3 of [1] c© 2010 IEEE).

on the remaining battery-powered nodes.

In our proposed approach, since packets are relayed through a backbone with

certain restrictions such as including all mains-powered nodes, suboptimal results

are expected as far as the average path length from a node to the sink is con-

cerned. As depicted in Figure 3.5, the average path lengths are twice as long on

the average for MST versions of our algorithms compared to the basic shortest

path algorithm, which ensures that each node is connected to the sink via the

shortest possible path. On the other hand, for the SPT versions of our algorithms,

the average path length is at most 40% longer compared to the shortest path al-

gorithm. Note that for the shortest path algorithm after around 250 rounds,

which corresponds to about 50 (i.e., 10%) unreachable nodes, the average path

length exhibits a noticeable increase and eventually exceeds the SPT versions of

our algorithms. This is probably due to the battery-powered node failures at

critical locations, which lead to longer paths.

Finally in Figure 3.6, the effect of mains-powered node ratio on the effective-

ness of our algorithms is presented. As the figure shows, our backbone-based

33

 0

 5

 10

 15

 20

 0 100 200 300 400 500 600 700 800

A
v
e
ra

g
e
 P

a
th

 L
e
n
g
th

 (
h
o
p
s)

Rounds

of BP-Nodes + MST
of Disjoint Paths + MST
of BP-Nodes + SPT
of Disjoint Paths + SPT
Shortest Path

Figure 3.5: Number of rounds passed vs. average path length to the sink (mains-
powered node ratio: 20%) (reprinted from Fig. 4 of [1] c© 2010 IEEE).

routing approach outperforms the basic shortest path algorithm in terms of net-

work lifetime and stabilizes at around 715 rounds, which is the theoretical upper

bound for network lifetime considering battery-powered nodes initially have 1000

units of energy and each transmission consumes 1.4 units of it. For the 40%

mains-powered node ratio, all algorithms based on the proposed approach have

exactly 715 rounds of lifetime, meaning that the backbone is completely com-

posed of mains-powered nodes, for the node density preferred in the simulations

(500 nodes in an area of 500 m×500 m). As the mains-powered node ratio in-

creases, the shortest path algorithm exhibits longer lifetime, which is the result

of coincidental benefit obtained from mains-powered nodes.

3.4 Conclusions

In this chapter, we proposed a routing approach together with an algorithm frame-

work, and a set of centralized routing algorithms based on this framework that

can effectively increase the lifetime of WSNs with heterogeneous power sources.

In order to achieve this, a backbone is formed to relay the data packets. The

34

 300

 350

 400

 450

 500

 550

 600

 650

 700

 750

 5 10 15 20 25 30 35 40

Li
fe

ti
m

e
 (

R
o
u
n
d
s)

Mains-Powered Node Ratio (%)

of BP-Nodes + MST
of Disjoint Paths + MST
of BP-Nodes + SPT
of Disjoint Paths + SPT
Shortest Path
Upper Bound

Figure 3.6: Mains-powered node ratio vs. network lifetime (reprinted from Fig. 5
of [1] c© 2010 IEEE).

backbone consists of mains-powered nodes which are assumed to coexist with

battery-powered nodes.

Although the MST versions of our algorithms achieve longer lifetimes in our

simulations, SPT versions have a very close performance with much better aver-

age shortest path length values. Since SPT also has a less complex distributed

implementation, it is further investigated in this thesis. Other algorithms, with

different primary purposes, based on the proposed framework can also be stud-

ied as a future work. In the proposed algorithms, nodes are kept in idle mode,

unless they are receiving or transmitting, and the simulation results are obtained

accordingly. Putting non-backbone nodes into sleep mode can be considered as a

way to extend the network lifetime and benefits of such a scheme can be analyzed.

35

Chapter 4

A Distributed Algorithm for

Power-Source-Aware Routing in

Wireless Sensor Networks

An algorithm framework, which aims at increasing the lifetime of heterogeneous

wireless sensor networks (WSNs), is presented in Chapter 3. In the same chapter,

the effectiveness of the centralized algorithms based on this framework is also

shown by means of simulation results.

In this chapter we propose and present the detailed description of a distributed

power-source-aware backbone-based routing algorithm, called PSABR. PSABR

is a distributed version of one of the centralized algorithms given in the previous

chapter, Algorithm “# of BP-Nodes + SPT”. PSABR assumes battery- and

mains-powered nodes coexist in the network and form a backbone using mostly

the mains-powered nodes to relay data packets from the sensor nodes to the

sink similar to the proposed framework. But different than the algorithms based

on the framework presented in the previous section, PSABR achieves this in a

fully distributed manner, without requiring any centralized control and without

requiring global topology information to be available at a center.

The remainder of this chapter is organized as follows. In Section 4.1, we

36

present a detailed description of our distributed algorithm PSABR. We give the

simulation results showing the performance of PSABR later in Section 4.2. Fi-

nally, in Section 4.3, we conclude the chapter with some discussions.

4.1 Our Distributed Routing Algorithm: PSABR

In this section, we describe and detail our distributed power-source aware routing

algorithm, PSABR, which is based on the approach presented in Chapter 3.

Please refer to Section 3.2 for the terms neighbor, peer, and parent used in the

algorithm descriptions.

In our distributed algorithm, battery- and mains-powered nodes have different

behaviors. Mains-powered nodes maintain a list of peers, along with the possible

paths to each peer. To achieve this, each mains-powered node stores a partial

view of the global visibility graph. Mains-powered nodes also gather the cost

information of their peers. With this information, a mains-powered node chooses

one of its peers as its parent and a path to reach that parent. The backbone

consists of the mains-powered nodes as well as the battery-powered nodes chosen

by the mains-powered nodes to reach their parents. Mains-powered nodes have an

active role; they try to maintain the partial visibility graph and determine their

parents, and in turn the backbone, in a distributed manner. Battery-powered

nodes, on the other hand, are mostly passive. In the backbone construction and

maintenance process, they mainly forward control messages sent by the mains-

powered nodes.

The proposed algorithm can handle node arrivals and departures, therefore

it does not require a network-wide construction phase. As battery- and mains-

powered nodes are added or removed, the algorithm constructs and maintains

efficient backbone and routing paths. Our algorithm is also designed to work

with any number of sinks. Similar to sensor nodes, sink nodes can be added at a

later time.

37

The control messages used by our algorithm are transferred by either broad-

cast or source routing. The route information in a source-routed packet is ex-

tracted from the partial visibility graph maintained by the nodes. We assume

all nodes have periodic data to send to the sink and that data aggregation takes

place. Parent nodes aggregate their own data with the data received from their

child nodes and send the aggregated message to their parents. Data messages

between a mains-powered node and its parent are transferred by table-driven

routing. The intermediate battery-powered nodes on the backbone construct

routing tables using the information extracted from the control messages they

forward. As the battery-powered nodes on the backbone forward data messages,

they aggregate their own data with the forwarded. Battery-powered nodes that

are not on the backbone send the data packets to their parents which are one hop

away.

In the following subsections, we describe how mains-powered nodes maintain

the partial visibility graph and how nodes choose their parent in a distributed

manner. In the next subsection, we present the control messages used to gather

information and form the parent-child relations (i.e., the backbone routing tree).

In Section 4.1.2, we give a sample scenario to explain how the messages are used

during backbone construction. In Section 4.1.3, we describe the node behavior

at different events, including when receiving the control messages. Finally, in

Section 4.1.4, we discuss the messaging overhead of the distributed algorithm.

4.1.1 Messages

A summary of the messages used by PSABR are given in Table 4.1. In the table,

the transfer type (T) of the messages are given either as broadcast (B) or unicast

(U). Power-source types of the senders are also provided as either battery-powered

node (BP) or mains-powered node (MP). Note that some messages can be sent

by both battery- and mains-powered nodes. The message sent as a response to

the current message is given in the last column of the table. Next we describe

the messages in more detail.

38

Table 4.1: Summary of the messages.

Abbr. Name T Sender Replied by
MDM MP-Node Discovery Message B BP-MP MIM
MIM MP-Node Information Message U BP-MP -
MUM MP-Node Update Message U MP -
BCM Backbone Construction Message U MP BCMACK
LFM Link Failure Message U BP -
NDM Neighbor Discovery Message B BP NIM
NIM Neighbor Information Message B-U BP-MP -

MDM (MP-Node Discovery Message) – An MDM is initiated by a battery-

or mains-powered node to discover mains-powered nodes that are either direct

neighbors or accessible through battery-powered nodes. The number of battery-

powered nodes connecting mains-powered nodes is restricted by a threshold num-

ber T . MDM is transferred by broadcast. An MDM(s, r, ps) contains the origina-

tor s of the message; the accumulated path r, which consists of battery-powered

nodes, visited until the packet reaches its current receiver; and the power-source

type ps of the originator.

MIM (MP-Node Information Message) – An MIM is initiated either by a

mains-powered node as a response to an MDM or by a battery-powered node

while joining the network. An MIM is transferred by unicast using source routing.

An MIM(s, d, r, V, E, I) contains the originator s and the destination d of the

message; the path r that the packet should follow; the node set V containing

source, destination, and the nodes connecting them; the edge set E representing

the one-hop connectivity of the nodes in V ; and the tuple set I containing the

mains-powered node and cost pairs.

MUM (MP-Node Update Message) – An MUM is initiated by a mains-powered

node to inform peers when its cost to reach the sink has changed. An MUM is

transferred by unicast using source routing. An MUM(s, d, r, c) contains the

originator s and the destination d of the message, the path r that the packet

should follow, and the cost c of the originator. Note that the cost of a node is the

number of battery-powered nodes between that node and the sink in the current

39

routing settings.

BCM (Backbone Construction Message) – A BCM is initiated by a mains-

powered node to establish a path to another mains-powered node, possibly

through battery-powered nodes. A BCM is transferred by unicast using source

routing. A BCM(s, d, r) contains the originator s, the destination d of the mes-

sage, and the path r that the packet should follow. Each BCM should be replied

by a BCMACK(s, d, r), in order to acknowledge a peer node’s backbone (i.e.,

parent-child relation) construction request. A BCMACK is transferred by uni-

cast using source routing and contains the same fields as a BCM.

LFM (Link Failure Message) – An LFM is initiated by a battery-powered node

to inform the originator of a data or control message that could not be transferred

to the next node about the link failure (i.e, the next intermediate battery-powered

node is unreachable). An LFM can be generated from messages routed either by

source routing or table-driven routing. The LFM’s routing method matches the

routing method of the message that caused it. Hence, an LFMtdr is generated

for messages that are routed by table-driven mechanisms and an LFMsr is gen-

erated for messages that are source routed. An LFMtdr(d, un, up) contains the

destination d of the message, the unreachable battery-powered node un, and the

unreachable mains-powered node up due to link failure. An LFMsr(d, r, un, up)

contains the path r that the packet should follow, in addition to the information

that an LFMtdr contains.

NDM (Neighbor Discovery Message) – An NDM is initiated by a battery-

powered node to discover its immediate neighbors. An NDM is transferred by

broadcast. An NDM(s) contains the originator s of the message.

NIM (Neighbor Information Message) – An NIM is initiated by either a

battery- or mains-powered node as a response to an NDM or as the cost of

the node changes. An NIM is transferred either by broadcast or unicast. An

NIM(s, d, ps, c) contains the originator s, the destination d of the message, the

power-source type ps, and the cost c of the originator.

40

4.1.2 Sample Backbone Construction

In this section, we explain how the messages described in Section 4.1.1 are used

to construct a backbone using a sample scenario shown in Figures 4.1 and 4.2.

In Figures 4.1 and 4.2, battery-powered nodes are shown with small circles

and labeled with lower-case letters from a to h, whereas mains-powered nodes

are shown with larger circles and labeled with upper-case letters K, L, M , N , P ,

and S. There is a line between nodes if they are in the communication range of

each other. Parent-child relations are shown with solid lines. S is the sink of the

sample network, hence its cost is 0. In this sample network, we assume T is 3,

that is, peers can be at most 3 hops away.

We assume, initially the mains-powered nodes reachable from the sink are L,

M , and N , as shown in Figure 4.1 (a). K, on the other hand, is not reachable

from the sink, therefore its cost is infinity. Assume that a new mains-powered

node P joins to the network as shown in Figure 4.1 (b). As soon as the node

joins it broadcasts an MDM. As shown in the figure, the MDM contains the

originator P and the list of battery-powered nodes that the message has visited,

which is initially empty (∅). Note that the power source field is omitted in this

example. Since MDM is a broadcast message, it is received by all the one-hop

neighbors of P (i.e., b, d, g, and h). As shown in Figure 4.1 (c), all the battery-

powered receivers add themselves to the list of battery-powered nodes field and

rebroadcast the message. Similarly, as the two-hop battery-powered neighbors of

P receive the MDMs, they update the messages adequately and rebroadcast them

as shown in Figure 4.1 (d). Note that, c receives two MDMs originated by P . It

rebroadcasts both of them by adding itself to the message because the goal is to

discover all paths between P and its potential peers (K, L, and M in this case).

Another point worth mentioning here is, b and d receive the MDMs sent by a and

c, but they do not rebroadcast these messages since they are already included in

the list of battery-powered nodes of the MDMs. On the other hand, as shown in

Figure 4.1 (e), e drops the MDMs sent by c, since T is 3. Battery-powered nodes

check the length of the list of battery-powered nodes in MDMs to decide whether

to rebroadcast or to drop these messages.

41

b c

L

Md

a

e

S

N

f

g

hK

Cost: 0

Cost: 1

Cost: 1

Cost: ∞

Cost: 0

P

b c

L

Md

a

e

S

N

f

g

hK

MDM(P,∅)

(a) (b)

P

b c

L

Md

a

e

S

N

f

g

hK MDM(P,[h])

MDM(P,[b])

MDM(P,[d])

MDM(P,[g]) P

b c

L

Md

a

e

S

N

f

g

hK

MDM(P,[b,c])
MDM(P,[d,c])

MDM(P,[b,a])

(c) (d)

P

b c

L

Md

a

e

S

N

f

g

hK

MIM(L,P,[a,b],(V,E),{(L,0)})

drop MDMs

MIM(M,P,[d],(V,E),{(M,1)})

MIM(K,P,[h],{(P,g),(P.h),(g,K),(h,K)},{(K,∞)})

P

b c

L

Md

a

e

S

N

f

g

hK

BCM(P,L,[b,a])

(e) (f)

Figure 4.1: Backbone construction (1 of 2).

42

P

b c

L

Md

a

e

S

N

f

g

hK

MUM(P,M,[d],2)

MUM(P,K,[h],2)

Cost: 2

P

b c

L

Md

a

e

S

N

f

g

hK
BCM(K,P,[h])

(g) (h)

P

b c

L

Md

a

e

S

N

f

g

hK

Cost: 0

Cost: 1

Cost: 1

Cost: 3

Cost: 2

Cost: 0

(i)

Figure 4.2: Backbone construction (2 of 2).

43

K, L, and M know all the possible paths to P by receiving all the MDMs

originated from it. For example, L has received three MDMs from P , more specif-

ically the following messages: MDM(P ,[b,a]), MDM(P ,[b,c]), and MDM(P ,[d,c]).

Using these messages, L updates its partial visibility graph to include the follow-

ing edges: (P, b), (b, a), (a, L), (b, c), (c, L), (P, d), and (d, c). Once the peers of

P receive all the MDMs, they reply using MIM as shown in Figure 4.1 (e). MIMs

contain the newly discovered paths between the peers, as well as the cost of the

discovered peers. In the figure, only the contents of MIM sent by K is shown

completely due to space limits, in the others the discovered nodes and edges are

denoted by (V,E).

As P receives the MIMs from K, L, and M , it checks whether there is a parent

candidate among the newly discovered peers. Here, both L and M have cost less

than infinity: L’s cost is 0, and M ’s cost is 1. But shortest path length between

P and L is 2, whereas it is 1 between P and M , meaning that cost of P will be 2

independent of its parent choice. We assume P chooses L as its parent candidate

and sends a BCM to form a new path in the backbone as shown in Figure 4.1 (f).

L replies with a BCMACK to confirm the backbone path construction (not shown

in the figures).

Once P becomes part of the backbone and its cost changes from infinity to

2, it sends MUMs to its peers as shown in Figure 4.2 (g). MUMs contain the

updated cost information of P . As K receives the MUM from P , it sends BCM

to P to become part of the backbone (Figure 4.2 (h)). The final topology, after

P and K exchange BCM and BCMACK, is depicted in Figure 4.2 (i). Note

that, although not shown in the figures, nodes also broadcast NIMs as their costs

change, so that battery-powered nodes can update their parent if they are not on

the backbone.

4.1.3 Behavior

Node behaviors, described in the form of finite state machines (FSM) are depicted

in Figures 4.3 and 4.4, and the algorithms are presented in Algorithms 4.1 to 4.11.

44

Table 4.2: Variables and expressions.

var./expr. Usage
self Address of the node executing the algorithm.

peers Set of peers of a mains-powered node, which is initially empty
(i.e., ∅).

neighbors Set of neighbors of a battery-powered node, which is initially
empty (i.e., ∅).

parent A node that is used to reach to the sink, which is initially
undefined (i.e., ⊥). parent of a mains-powered node is one of
its peers and parent of a battery-powered node is one of its
neighbors.

cost Number of intermediate battery-powered nodes traversed to
reach the sink, which is initially infinity (i.e., ∞)

pathToParent The path used by a mains-powered node to reach its current
parent.

peers [p].costpeer Cost of the peer p.
peers [p].cost Cost of the node if sink is reached through peer p.

|r| Length of path r.
SP(s, d, V, E) The shortest path between s and d given a vertex set V and

an edge set E.

Each type of node has a different reaction to an external event depending on its

current state. Since battery- and mains-powered nodes have different behaviors,

they have separate FSMs and separate sets of algorithms. We explain the vari-

ables and the expressions used in the algorithms in Table 4.2.

The FSM of a mains-powered node is depicted in Figure 4.3. Initially, a

mains-powered node is in the Idle state. With the Start event, it transits into the

WaitMIMTimeout state. Start is fired when the node is powered up, as shown

in Algorithm 4.1. At the transition from Idle to WaitMIMTimeout, a mains-

powered node broadcasts an MDM and starts a timer, tmim, for corresponding

Algorithm 4.1 On Power-up (MP-Node)

1: peers← ∅
2: parent←⊥, cost←∞
3: V ← {self}, E ← ∅
4: fire Start

45

Id
le

S
ta

rt

B
C

M
S

en
t

 B
C

M
A

C
K

T
im

eo
ut

N
oP

ar
en

t
W

ai
tB

C
M

A
C

K
H

as
P

ar
en

t
P

ar
e

nt
U

p
da

te

P
at

hU
pd

at
e

P
a

th
U

pd
at

e
B

C
M

W
ai

tC
o

st
P

ro
pa

ga
tio

n
P

ar
e

nt
U

p
da

te
B

C
M

B
C

M
A

C
K

R
ec

ei
ve

d

P
ar

en
tU

p
da

te

B
C

M
S

en
t

B
C

M
A

C
K

T
im

eo
u

t

B

C
M

A
C

K
R

ec
ei

ve
d

 P
at

h
U

pd
at

e

B
C

M
A

C
K

R
ec

ei
ve

d

ol

d
C

os
t <

 c
os

t

T
im

eo
ut

el
se

co
st

 <
 IN

F

el

se

B
C

M
A

C
K

T
im

e
ou

t

In
fo

U
p

da
te

d
In

fo
U

pd
at

e
d

 C
os

tIn
cr

ea
se

W
ai

tM
IM

T
im

e
ou

t

M
IM

T
im

eo
ut

F
ig

u
re

4.
3:

F
in

it
e

st
at

e
m

ac
h
in

e
fo

r
m

ai
n
s-

p
ow

er
ed

n
o
d
es

.

46

Algorithm 4.2 On Entry of NoParent

1: candidate← p s.t. peers[p].cost is minimum
2: if candidate 6=⊥ then

3: path←SP(self, candidate, V,E)
4: send BCM(self, candidate, path)
5: schedule tbcmack

6: fire BCMSent
7: end if

MIMs. Each MIM received restarts the timer, as shown in Algorithm 4.5, line 2b.

As tmim expires, a MIMTimeout event is fired, which means that a certain amount

of time has passed since the last MIM, and the node transits into the NoParent

state.

From the Idle state to the NoParent state, a mains-powered node discovers

all other mains-powered nodes that are accessible through less than T battery-

powered nodes, and alternative paths to them. As an MDM is received by a

battery-powered node, it adds itself to the path that the packet has followed

thus far and rebroadcasts it (if less than T − 1 battery-powered nodes have been

traversed), as shown in Algorithm 4.10. Therefore, as an MDM is received by a

mains-powered node, a path from the originator to that node is discovered, and

when all MDMs originating from the same mains-powered node are received, all

possible paths (bounded by length T) between these two mains-powered nodes

are known. When a mains-powered node receives all the MDMs originating from

a mains-powered node, it replies with an MIM, which contains all the alternative

paths to that node, as shown in Algorithm 4.4. Finally, as a mains-powered node

receives all the MIMs corresponding to the MDM it has sent, discovery of its

peers and possible paths to them is completed. Through this process, the node

has a partial view of the global visibility graph.

Note that an existing mains-power node discovers a newly joined mains-

powered node (and possible paths to it) by the MDMs originating from the new

node and following different paths. On the other hand, a newly joined mains-

powered node discovers existing mains-powered nodes by the MIMs, which are

replies to the MDM it has sent. The third method to discover new peers or new

paths to known peers is achieved by the help of newly joined battery-powered

47

nodes, which is presented later in this section.

Algorithm 4.3 On Entry of HasParent (MP-Node)

1: if cost <∞ then

2: if parent ∈ peers then

3: if peers[parent].cost > cost then

4: if peers[parent].cost < inf then

5: cost← peers[parent].cost

6: else

7: parent←⊥, cost←∞
8: end if

9: fire CostIncrease
10: else

11: if ∃p ∈ peers s.t. peers[p].cost < peers[parent].cost then

12: fire ParentUpdate
13: else

14: if pathToParent still exists then

15: if cost 6= peers[parent].cost then

16: cost← peers[parent].cost

17: send MUM to peers
18: end if

19: else

20: fire PathUpdate
21: end if

22: end if

23: end if

24: else

25: parent←⊥, cost←∞
26: send MUM to peers
27: fire CostIncrease
28: end if

29: else

30: send MUM to peers
31: fire CostIncrease
32: end if

As the entry action of the NoParent state, the node tries to find a parent

candidate and sends a BCM to the best parent candidate to establish a parent-

child relation with that node. With the BCMSent event, which is fired when

a BCM is sent to a parent candidate, the node transits into the WaitBCMACK

state. As the BCM is sent, a timer, tbcmack, is also started. If tbcmack expires before

the corresponding BCMACK message is received (which fires a BCMACKTimeout

event) the node returns to the NoParent state. If the BCMACK is received on

48

time (which fires a BCMACKReceived event) it transits into the HasParent state.

The entry action of the NoParent state is given in Algorithm 4.2.

Algorithm 4.4 On Message Receive (MP-Node) - MDM

When MDM(s, r, ps) arrives:

1a: if s 6= self then

2a: if first MDM from s then

3a: Vs ← {self, s}, Es ← ∅
4a: end if

5a: for all nodes n1, n2, ..., nk on path r do

6a: Vs ← Vs ∪ {ni}
7a: end for

8a: Es ← Es ∪ {(self, n1)}
9a: for i = 1 to k − 1 do

10a: Es ← Es ∪ {(ni, ni+1)}
11a: end for

12a: Es ← Es ∪ {(nk, s)}
13a: if first MDM from s then

14a: Schedule timer ts for s

15a: else

16a: Reschedule ts
17a: end if

18a: Wait until ts expires
19a: send MIM(self, s, SP(self, s, Vs, Es), Vs, Es, {(self, cost)})
20a: if ps = MP then

21a: peers← peers ∪ {s}
22a: peers[s].costpeer ←∞
23a: V ← V ∪ Vs, E ← E ∪ Es

24a: fire InfoUpdated
25a: end if

26a: end if

If the parent role is acknowledged by the parent candidate using BCMACK,

the mains-powered node transits into the HasParent state. The BCM/BCMACK

messages allow construction of part of the backbone also by informing the battery-

powered nodes (see Algorithm 4.11) between the parent and child mains-powered

nodes. On the entry to the HasParent state, the node checks whether it can still

access its current parent, whether the path to the current parent has changed and

whether the cost of the current parent has changed. Then, if required, it takes

the appropriate action among the following: starts updating the parent, starts

updating the path to its current parent, or starts disseminating the cost change

49

to its peers. The exact procedure is given in Algorithm 4.3.

If a better parent candidate is found in the HasParent state, a ParentUpdate

event is fired (Algorithm 4.3, line 12) and the node transits into the ParentUpdate

state. On entry to the ParentUpdate state, the node sends a BCM to the best

parent candidate to establish a parent-child relation with, starts a timer, and

fires a BCMSent event. When the corresponding BCMACK is received (i.e.,

BCMACKReceived event) or the timer expires (i.e., BCMACKTimeout event),

the node returns to the HasParent state, with its parent updated, or preserves

its previous parent.

Algorithm 4.5 On Message Receive (MP-Node) - MIM, MUM

When MIM(s, d, r, V ′, E′, I) arrives:

1b: if |I| = 1 then

2b: Reschedule tmim

3b: end if

4b: V ← V ∪ V ′, E ← E ∪ E′

5b: update V and E s.t. ∀ v ∈ V, SP(self, v, V, E) ≤ T
6b: for all (i0, i1) ∈ I do

7b: if i0 ∈ V then

8b: peers← peers ∪ {i0}
9b: peers[s].costpeer ← i1
10b: peers[s].cost← i1 + |SP(self, i0, V, E)|
11b: end if

12b: end for

13b: if |I| > 1 then

14b: fire InfoUpdated
15b: end if

When MUM(s, d, r, c) arrives:

1c: peers[s].costpeer ← c

2c: peers[s].cost← c + |SP(self, s, V,E)|
3c: fire InfoUpdated

If the path to the current parent needs updating in the HasParent state, a

PathUpdate event is fired (Algorithm 4.3, line 20) and the node goes into the

PathUpdate state. On entry to the ParentUpdate state, the node sends a BCM

to the current parent to update the path to that node and then transits into the

PathUpdateBCM state. If a BCMACK is not received on time, the node transits

into the HasParent state without a successful path update process. Otherwise

50

(i.e., that is the corresponding BCMACK is received), the node goes to the Wait-

CostPropagation state or back to the HasParent state, depending on the current

and previous cost values.

Algorithm 4.6 On Message Receive (MP-Node) - LFM

When LFM(∗, un, up) arrives:

1d: if un 6= up then

2d: for all e ∈ E do

3d: if e is incident to un then

4d: E ← E − {e}
5d: end if

6d: end for

7d: for all v ∈ V do

8d: if @ a path between self and v in G(V,E) or ∀ path p between self and v in
G(V,E), ∃ a mains-powered vertex v on p then

9d: V ← V − {v}
10d: end if

11d: end for

12d: for all p ∈ peers do

13d: if p ∈ V then

14d: peers[p].cost← peers[p].costpeer|SP(self, p, V,E)|
15d: else

16d: peers← peers− {p}
17d: end if

18d: end for

19d: else

20d: V ← V − {up}
21d: for all e ∈ E do

22d: if e is incident to up then

23d: E ← E − {e}
24d: end if

25d: end for

26d: peers← peers− {up}
27d: end if

28d: fire InfoUpdated

The node cost increases in the following two cases: the parent cost increases

(Algorithm 4.3, line 3) or the current parent becomes unreachable (Algorithm 4.3,

line 24), both of which lead to the HasParent → WaitForCostPropagation state

transition; or a higher-cost path to its parent needs to be established, which leads

to HasParent → PathUpdate → PathUpdateBCM → WaitForCostPropagation

state transitions. In these cases, the node needs to advertise the new cost and

51

Algorithm 4.7 On Message Receive (MP-Node) - BCM, BCMACK

When BCM(s, d, r) arrives:

1e: send BCMACK(self, s, reverse(r))

When BCMACK(s, d, r) arrives:

1f: parent← s

2f: cost← peers[s].cost

3f: for all p ∈ peers do

4f: send MUM(self, p, SP(self, p, V,E), cost)
5f: end for

6f: broadcast NIM(self, ∗, MP, cost)

When NDM(s) arrives:

1g: send NIM(self, s, MP, cost)

wait for the information to disseminate before attempting to find a better-cost

parent; otherwise routing loops will occur, if a node connects with one of its

descendants. When the timer for disseminating the increased cost information

expires, a Timeout event is fired and the node transits into the HasParent state if

the cost of its parent is less then infinity and it can still reach its parent; otherwise

it transits into the NoParent state.

When node information such as set of peers, cost of peers, paths to peers, etc.

changes (see algorithms 4.4, 4.5, and 4.6 for such cases), an InfoUpdated event

is fired. Note that this event causes self-transitions in NoParent and HasParent

states, so the node can check for a parent candidate (Algorithm 4.2) or the validity

of the current parent (Algorithm 4.3), respectively.

The FSM of a battery-powered node is depicted in Figure 4.4. Initially, a

battery-powered node is in the Idle state. With the Start event, it transits into

the WaitMIMTimeout state. Start event is fired when the node is powered up,

as shown in Algorithm 4.8. At the transition from Idle to WaitMIMTimeout, a

battery-powered node broadcasts MDM and starts a timer, tmim, for correspond-

ing MIMs. Each MIM received restarts the timer. As tmim expires, a MIMTimeout

event is fired, which means that a certain amount of time has passed since the

last MIM, and the node transits into the NotAssociated state.

52

Id
le

S
ta

rt

M
IM

T
im

eo
ut

W
a

itM
IM

T
im

eo
u

t
N

ot
A

ss
oc

ia
te

d

P
ar

tO
fB

ac
kb

on
e

W
a

itC
os

t
P

ro
pa

ga
tio

n
H

as
P

ar
en

t

B
C

M
A

C
K

R
ec

ei
ve

d

B
C

M
A

C
K

R
ec

ei
ve

d

H

as
P

ar
en

t

C
o

st
P

ro
pa

g
at

io
n

T
im

eo
ut

co
st

 <
 IN

F

el
se

C
o

st
In

cr
e

as
e

In
fo

U
pd

a
te

d

In
fo

U
p

da
te

d
Ta

b
le

E
m

pt
y

F
ig

u
re

4.
4:

F
in

it
e

st
at

e
m

ac
h
in

e
fo

r
b
at

te
ry

-p
ow

er
ed

n
o
d
es

.

53

Algorithm 4.8 On Power-up (BP-Node)

1: neighbors← ∅
2: parent←⊥, cost←∞
3: V ← {self}, E ← ∅, I ← ∅
4: fire Start

A battery-powered node discovers nearby mains-powered nodes by broadcast-

ing an MDM and receiving corresponding MIMs (Algorithm 4.10, line 4b), which

is a similar process to the initial peer discovery of mains-powered nodes. But here,

this information (i.e., a partial graph obtained as in Algorithm 4.10, line 6b) is

not consumed by the battery-powered node but is distributed back to the mains-

powered nodes when tmim expires. Therefore, mains-powered nodes can discover

new peers or new paths to their existing peers with the help of newly joined

battery-powered nodes.

Algorithm 4.9 On Entry of HasParent (BP-Node)

1: if parent ∈ neighbors then

2: if neighbors[parent].cost > cost then

3: if neighbors[parent].cost =∞ then

4: parent←⊥, cost←∞
5: else

6: cost← neighbors[parent].cost + 1

7: end if

8: broadcast NIM(self, ∗, BP, cost)
9: fire CostIncrease

10: else

11: if ∃n ∈ neighbors s.t. neighbors[n].cost < (cost− 1) then

12: parent← n, cost← neighbors[n].cost + 1

13: broadcast NIM(self, ∗, BP, cost)
14: end if

15: end if

16: else

17: parent←⊥, cost←∞
18: broadcast NIM(self, ∗, BP, cost)
19: fire CostIncrease
20: end if

On entry to the NotAssociated state, the node tries to determine its parent.

If it has one or more neighbors whose cost is less than infinity, it sets the one

with the minimum cost as its parent and fires a HasParent event, which makes

it transit into the HasParent state.

54

Algorithm 4.10 On Message Receive (BP-Node) - MDM, MIM, MUM, LFM

When MDM(s, r, ps) arrives:

1a: if (|r| < (T − 1)) and (self 6∈ r) then

2a: r′ ← r + self

3a: broadcast MDM(s, r′, ps)
4a: end if

When MIM(s, d, r, V ′, E′, I ′) arrives:

1b: if s 6= self then

2b: i← index of self in list r

3b: send MIM(s, d, r, V,E, I) to r[i + 1]

4b: else

5b: Reschedule tmim

6b: V ← V ∪ V ′, E ← E ∪ E′, I ← I ∪ I ′

7b: end if

When MUM(s, d, r, c) arrives:

1c: i← index of self in list r

2c: send MUM(s, d, r, c) to r[i + 1]

When LFMtdr(d, un, up) arrives:

1d: send LFMtdr(d, un, up) to next-hop[d]

When LFMsr(d, r, un, up) arrives:

1e: i← index of self in list r

2e: send LFMsr(d, r, un, up) to r[i + 1]

On entry to the HasParent state, the node checks whether it can still access its

current parent (Algorithm 4.9, line 1), whether the cost of the current parent has

changed (Algorithm 4.9, line 2), and whether there is a parent candidate with

a better cost (Algorithm 4.9, line 11) and takes the appropriate action among

the following: updates its parent, starts disseminating the cost change, or fires a

CostIncrease event.

If, in the NotAssociated or HasParent states, a node receives a BCMACK mes-

sage (which indicates that it is now on the backbone), a BCMACKReceived event

is fired (Algorithm 4.11, line 3g) and the node transits into the PartOfBackbone

state. As shown in Algorithm 4.11, when a battery-powered node receives BCM

and BCMACK messages, it establishes backward and forward routing entries. As

long as a battery-powered node is part of the backbone, it forwards data packets

from one mains-powered node to another using table-driven routing. Unused en-

tries expire and are removed from the table, therefore, when a battery-powered

55

node is not part of the backbone its routing table becomes empty.

Algorithm 4.11 On Message Receive (BP-Node) - BCM, BCMACK, NDM,
NIM
When BCM(s, d, r) arrives:

1f: i← index of self in list r

2f: if i = 0 then

3f: next-hop[s]← s

4f: else

5f: next-hop[s]← r[i− 1]

6f: end if

7f: if i = (|r| − 1) then

8f: next-hop[d]← d

9f: else

10f: next-hop[d]← r[i + 1]

11f: end if

12f: send BCMACK(s, d, r) to next-hop[d]

When BCMACK(s, d, r) arrives:

1g: same as the lines [1f,11f]

2g: send BCMACK(s, d, r) to next-hop[d]

3g: fire BCMACKReceived

When NDM(s) arrives:

1h: send NIM(self, s, BP, cost)

When NIM(s, d, ps, c) arrives:

1i: neighbors← neighbors ∪ {s}
2i: neighbors[s].cost← c

3i: fire InfoUpdated

If, when in the PartOfBackbone state, a node realizes that it is no longer

on the backbone (which results in a TableEmpty event), or, when it is in the

HasParent state because its cost has increased (which results in a CostIncrease

event), it transits into the WaitCostPropagation state. When the timer expires

and a CostPropagationTimeout event is fired, the node transits into the HasParent

state if it still has a parent (i.e., its cost is less than infinity) or transits into the

NotAssociated state otherwise.

When information such as a set of neighbors, cost of neighbors, etc. changes,

an InfoUpdated event is fired. Note that this event causes self-transitions in

NotAssociated and HasParent states; therefore the node can check for a parent

or the validity of the current parent.

56

Note that PSABR can work with multiple sinks. Each sink advertises its cost

as zero and each mains-powered node chooses a parent minimizing its own cost,

which is the sum of its parent’s cost and the cost to reach its parent. Therefore,

the backbone is constructed minimizing cost of mains-powered nodes by choosing

the appropriate parents and in turn the appropriate sink.

4.1.4 Analysis

This section analyzes PSABR’s messaging overhead. In the analysis, n is the

total number of nodes in the network, r is the communication range of each

node, and R is the diameter of the deployment area, assuming that it is circular.

Furthermore, m is the mains-powered node ratio, where 0 ≤ m ≤ 1. Hence, there

are mn mains-powered nodes and (1−m)n battery-powered nodes.

Assuming the nodes are deployed uniformly, the expected number of exactly

t-hop neighbors, kt, of a node is given in Equation (4.1). It is the total number

of nodes multiplied by the ratio of the area of the ring, whose inner and outer

radii are (t− 1)r and tr, to the whole area.

kt = n

(
π[(tr)2 − ((t− 1)r)2]

πR2

)
= n(2t− 1)

(r
R

)2
(4.1)

The most expensive operation in PSABR is mains-powered node discovery,

which involves transmitting MDMs and MIMs. Once an MDM is broadcast by

the originator, it is rebroadcast by the battery-powered nodes until time to live

(TTL) expires, and replied by the mains-powered nodes, using MIM. Assuming

that a mains-powered node is allowed to have peers at most T hops away (i.e.,

TTL is T), an upper bound for the expected number of packets transmitted due

to a mains-powered node discovery, Cdiscover, is given in Equation (4.2). The

left operand of the addition is the total number of MDMs transmitted. It is the

summation of total number of messages transmitted after each rebroadcast. Since

the MDMs are dropped by the T th battery-powered nodes, the summation is from

1 to (T − 1). The right operand of the addition is the summation of number of

57

mains-powered nodes for each hop count multiplied by the hop count (i.e., the

number of transmissions required for a MIM to reach from a mains-powered node

to the originator of the MDM). As mentioned earlier, a battery-powered powered

node does not rebroadcast an MDM if it is already included in the path that the

message traversed so far. Equation (4.2) provides an upper bound, since it does

not take this behavior into account. Cdiscover is the number of messages due to

the mains-powered node discovery process of a single node, therefore nCdiscover

gives the maximum number of messages sent in the network for this purpose.

Cdiscover ≤
T−1∑
t=1

[k1(1−m)]t +
T∑
t=1

ktmt (4.2)

Although mains-powered node discovery is a rather expensive operation, be-

cause it is performed only once by each node (upon joining the network) its cost

is amortized by the benefits it provides, as shown in simulation results, in Sec-

tion 4.2. In the same section, we also compare Equation (4.2) with the simulation

results.

Assuming parent-child relations are formed once between mains-powered

nodes, the upper bound for the total number of messages in the network required

for this purpose is 2nmT . This value is the total number of BCM/BCM-ACK

messages exchanged by the mains-powered nodes that are at most T hops away.

Contrary to the assumption, parent-child relations might be established several

times for each mains-powered node, due to battery-powered node deaths or dis-

covery of lower-cost paths to the sink. Therefore, it is hard to present an equation

for the number of messages required for establishing parent-child relations (i.e.,

forming the backbone) for the duration of the network.

From time to time, mains-powered nodes need to advertise changes in their

cost values. The expected number of MUMs sent for this purpose, Cadvertise, is

given in Equation (4.3), and is basically the number of transmission required to

send MUM to each of the peers, that is summation of the number of peers at

each level multiplied by the distance to the peers. Similar to the case in the

total cost of backbone construction, it is hard to predict the total number of

58

cost changes during the network lifetime. But note that, cost change of a mains-

powered node causes cost change in all of its descendants. Furthermore, if the

cost has decreased, non-child peers might chose the node as a parent, causing

cost updates in other mains-powered nodes.

Cadvertise =
T∑
t=1

ktmt (4.3)

4.2 Performance Evaluation

This section presents our simulation results illustrating the performance of

PSABR. First, in Section 4.2.1, we give the simulation implementation details.

Then in Section 4.2.2, we present the method used to visualize the algorithm

behavior. We explain the algorithm parameters in Section 4.2.3. Finally in Sec-

tion 4.2.4, we give the detailed simulation results and their interpretations.

4.2.1 Simulation Implementation Details

Proposed routing algorithm is implemented as a network layer protocol in ns-2 [6]

(version 2.34) simulation environment. ns-2 models and simulates a mobile node

as depicted in Figure 4.5. LL has the link layer implementation. It uses ARP

to handle IP address to MAC address conversions. Outgoing packets are handed

down to link layer by the routing agent, and incoming packets are handed by the

MAC layer, directly to the link layer. IFq is a priority queue implementation

and gives precedence to the routing control packets over other packets. MAC

has the media access control protocol implementation. There are currently dif-

ferent alternatives readily available in ns-2 for wireless MAC. NetIF corresponds

to the network interfaces of the mobile node. Similar to MAC, there are different

interface implementations. It basically stamps outgoing packets with metadata

containing transmission power, wavelength, etc., hence the propagation model

can use. In turn, packet collisions and corruptions can be simulated. As shown

59

in Figure 4.5, above these components, two demultiplexers are located. They

forward packets to other components according to their address and port infor-

mation. Hence, the packets can be consumed within the node or forwarded to

a neighbor. The RTagent component provides routing functionality so that the

packets can be sent to the appropriate nodes.

Channel

NetIF

MAC

IFq

LL

RTagent

Src/Sink

255

addr demux

port demux

IP
address

defaulttarget_

ARP
uptarget_

uptarget_

uptarget_

uptarget_

downtarget_

downtarget_

downtarget_

mac_

channel_

target_

entry_

Figure 4.5: Mobile node architecture in ns-2.

In order to simulate our algorithm, we provided our own RTagent implemen-

tation. As seen in Section 4.1, battery- and mains-powered nodes have different

behavior. Therefore, two different routing agents (one for the battery-powered

nodes and another for the mains-powered nodes), which can cooperate, are im-

plemented. Besides exchanging routing packets, they maintain a routing table

according to the information obtained from these messages. We assume that the

nodes do not use separate network addresses and use their device addresses as

their network addresses as well. Therefore, we do not need ARP. To adapt ns-2 to

60

this condition, we gave the same identifier as both network and device addresses.

Next we modified ARP to return the same address that it is provided, without

any actual address resolution.

IEEE 802.15.4 [10], which is already implemented in ns-2, is used as the under-

lying MAC and physical layer protocol. To compare PSABR’s performance, we

use a shortest-path routing implementation. In the shortest-path routing, pack-

ets are forwarded to the sink through the path with the minimum-hop distance

among all possible paths.

In the simulations, we assume that each sensor node sends data to the sink

periodically. We also assume that data can be aggregated. To run the simulation

in accordance with these assumptions we partly used infrastructure already avail-

able in ns-2, but we also implemented certain functionality. In order to generate

periodic data packets we used the traffic generators, to be specific, constant bit

rate (CBR) traffic generator of ns-2. The CBR traffic generator allows to change

the frequency and size of the data packets. Once a packet is received at the

network layer of a node, where the proposed algorithm is implemented, either

from the upper layer (i.e., from CBR traffic generator) or from the lower layers

(i.e., from another node), the packet is either dropped, forwarded (i.e., routed),

or “stored” to be aggregated at a later time. Battery- and mains-powered nodes

have different algorithms to decide the action to be taken, which are specified in

Algorithms 4.12 and 4.13.

Algorithm 4.12 Data packet processing on mains-powered nodes

1: if data is originating from this node then

2: if node has parent then

3: Forward to the next hop according to the routing table
4: else

5: Drop
6: end if

7: else

8: if node has parent then

9: Store
10: else

11: Drop
12: end if

13: end if

61

Algorithm 4.13 Data packet processing on battery-powered nodes

1: if data is originating from this node then

2: if node is part of the backbone then

3: Store
4: else

5: if node has parent then

6: Forward to the parent
7: else

8: Drop
9: end if

10: end if

11: else

12: if data is originating from a battery-powered node then

13: if node is part of the backbone or it has a parent then

14: Store
15: else

16: Drop
17: end if

18: else

19: if there is a routing table entry for the destination then

20: Forward to the next hop according to the routing table
21: else

22: Drop
23: end if

24: end if

25: end if

In general, if a node cannot reach sink (i.e., does not have a parent, or is

not part of the backbone), it drops the data packets. On the other hand, if

a node decides to aggregate a packet at a later time, it “stores” the packet.

Storing a packet in the simulation implementation is virtual, since there is no

actual data, hence no actual aggregation. Dropping and storing a data packet

have the same external behavior (i.e., no packet transmission). Therefore, in the

simulation implementation, if a node decides to store a packet, rather than to

forward or to drop it, the node drops it with a special label. In this way, we

simulate the aggregation, since the resulting over-the-air traffic is equivalent to

our assumptions.

We consider a node is reachable if it is alive and the algorithm establishes a

routing path between the node and the sink. Even if a node is alive, unless there

62

is a routing path to the sink, it cannot contribute to the sensor network. There-

fore, we think a reachable-node count better reflects the algorithms’ performance

compared to an alive-node count. We assume the network lifetime is the time

passed until half of the nodes become unreachable, and we run the simulations

accordingly, unless otherwise noted. To simulate this behavior, we monitor the

changes in the parent-child relations and the paths between the parent and child

if they are both mains-powered. At every change, we compute number of nodes

reachable from the sink and if it is below half the number of nodes for a period

of time, we stop the simulation.

4.2.2 Visualization of Simulations

As we implemented the proposed algorithm in ns-2 environment, we used small

and hand crafted networks to check whether the algorithm works as expected. We

tried to choose networks to test some odd cases. But it is not easy to foresee all the

possible cases and guess the algorithm behavior as the network gets larger. In the

simulations, we started to use as high as 300 nodes whose locations are determined

randomly. In such a chaotic environment, we required a visual mechanism to track

the algorithm behavior.

As mentioned in Section 4.2.1, we monitor the changes in the parent-child

relations and the paths between the parents and their children. At every change,

having this information, we draw the graph representing logical links. The current

logical links are represented using the DOT graph description language [91] and

this textual representation is converted into an image using the neato tool found

in graphviz [92], which is an open-source graph visualization toolset. Such an ap-

proach helped us identify several major and minor problems about the algorithm,

and achieve a robust algorithm after several iterations.

Some sample images are depicted in Figure 4.6. In the images, nodes that

consider themselves as connected are shown with solid lines and others with

dashed lines; mains-powered nodes are shown as red and battery-powered nodes

as black; backbone paths are shown with red edges and parent-child relation for

63

battery-powered nodes with black edges.

4.2.3 Simulation Parameters

Table 4.3: Simulation parameters.

Abbr. Parameter Value
n Node count variable
m Mains-powered node ratio variable
ρ Node density variable
σ Sink count variable
T Max. hops between peers 3

Transmit Power 0.0807 W
Receive Power 0.0801 W
Initial energy 3 J
Data packet payload size 32 bytes
Data packet interval 60 s

We use several parameters in the simulations to observe the impact of dif-

ferent conditions on the algorithm’s performance (Table 4.3). These parameters

include network size n, battery-powered node ratio m, node density ρ, and num-

ber of sinks σ. The value of a data point is obtained by averaging the results

across 20 simulation runs, unless otherwise stated. In each simulation run, the

locations of the nodes are determined pseudo-randomly based on the approach

described in [89]. Node arrival times are also determined randomly, keeping all

the aforementioned parameters intact.

The energy model in the simulations is based on the values in [93]. According

to this model, nodes consume 0.0807 W as they transmit and 0.0801 W as they

receive. The initial energy of battery-powered nodes is 3 J. Although this value is

known to be rather low for a battery, our experiments with different initial energy

values show that factor does not proportionally affect performance, so we kept it

low to obtain the simulation results in a reasonable time. As stated before, we

assume each node has periodic data to send and the data is aggregated as it is

routed to the sink. In the simulations each node sends a packet destined to the

64

0 0

15

26

46

65

71

85

86
108

110

111

113

116

132

136

147

150

168

184

198

221

223

234

243

260

261

265

282

292

0.00 s 52.57 s

0

15

243

26

61

40

211

46

51

53

63

65

71

74

147
78

83

85
283

86
108

113

110

111

257

114

116

118

120
124

132

150

136

139

220

141

153

156

168

177

180

184

197

198

200

221

223

232
234

236

250

253

260

261

265
280

282

291

292

0

1

283

12

15

243

16

113

19

40

24

257

26

61

33

268

39

211

42

45

141

46

51

53

57

59

58
63

65

71

72

167

74

77

78

82

83

253

84

85

86

96

108

110

111

114

116

118

119

150

120
124

128

129

132

134

147

136

139

220

144

153

156

157

159

189

168

174

175

177

180

184

186

197

198

200

201

203
214

219

221

223

232
234

236

246

247

250

260

261

265

271

273

274

280

282

291

292

97.46 s 201.52 s

0

1

29

6

11

12

39

15 179

16

47

17

18

19

58

20

46

23

24

26

30

27

189

28

31

32

33

212

35

37

40

42

45

43

49

57

50

51

52

53

59

60

61

62

175

63

64

65

66
67

68

69

71

72

74

77

84

78

80

81

250

82

83

85

86

87

96

97

98

99

100

101

102103

104

108

109

110

111

112

113

114

115

116

118

119

150

120

121

123

198

124

127

128

129

132

133

281

134

136

138

139

220

141

142

144

147

149

153

154

155

156

157

159

160

161
166

167
168

170

224

171

172

173

174

176
177

178

180

182

184

185

186

192

194

195

196

197

265

199

200

201

202

284

203

205

210

211

214

217

273

218

221

219

223

225

226

229

232
234

236

239

240

243

245

246

247

253

254

257

258

260

261

263

267

268

271

274

275

276

280

282

283

287

289

290

296

291

292

293

294

295

298

299

0

1

29

2

3

4

32

516

6 7

27

8

24

9

35

10

11

12

39

13

14

242
15 179

47

17

18

19

58

20

46

21

22

23

25

26

30

28

33

31

34

59

36

37

38

40

41

42

45

43

44

48

49

57

50

51

52

53

54

55

56

60

61

62

63

64

65

66
67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

250

82

83

84

85

86

87

88

296

89

90

91

297

92

93

94

95

96

97

98

99

100

101

102103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119
120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

220

145

243

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

217

163

164

165

166

167
168

169

170

171

172

173

174

175

176
177

178

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

218

219

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

244

245

246

247

248

249
251

252

253

254

255
256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279
280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

298

299

400.46 s 729.08 s

Figure 4.6: Visual output of a sample simulation run at different points in time.

65

sink with a 32-byte payload every 60 seconds.

4.2.4 Simulation Results

In the first part of this section, we present the simulation results mostly related

to PSABR’s behavior, evaluating its efficiency. Later, we give results that help

evaluate the performance of the algorithm, i.e., its effectiveness.

 80

 90

 100

 110

 120

 130

 140

 150

 0 50 100 150 200 250

N
o
d
e
 C

o
u
n
t

Time (h)

PSABR
SP

Figure 4.7: Number of reachable nodes over time [n = 150, m = 20%].

Figure 4.7 presents the change in the reachable-node count over time. The

figure is given for a certain node count and mains-powered node ratio, but the

algorithm exhibits similar behavior for other values of the node count and mains-

powered node ratio. While PSABR is hesitant to use battery-powered nodes as

forwarding nodes, the shortest-path routing does not distinguish between battery-

and mains-powered nodes. Therefore, in PSABR, the reachable-node count re-

mains mostly flat with sudden drops, whereas in the shortest-path routing, it

decreases almost linearly over time.

Figure 4.8 presents a more detailed look into the algorithm behavior. As

mentioned earlier, PSABR’s basic approach is to eliminate battery-powered nodes

on the routing paths; they are pushed down to the leaves of the routing tree.

Figure 4.8 (a) shows how the average in-degree of battery-powered nodes changes

66

 0

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9

 0
 5

0
 1

0
0

 1
5

0
 2

0
0

 2
5

0

Average Indegree

Ti
m

e
 (

h
)

P
S

A
B

R
S
P

 0

 1
0

0
0

0

 2
0

0
0

0

 3
0

0
0

0

 4
0

0
0

0

 5
0

0
0

0

 6
0

0
0

0

 7
0

0
0

0

 8
0

0
0

0

 9
0

0
0

0

 1
0

0
0

0
0

10
20

30
40

50
60

70
80

90
10

0
11

0
12

0
13

0
14

0
15

0
16

0
17

0
18

0
19

0
20

0
21

0

Packet Count

Ti
m

e
 (

h
)

P
S

A
B

R
 (

D
a
ta

)
P
S

A
B

R
 (

C
o
n
tr

o
l)

S
P
 (

D
a
ta

)
S
P
 (

C
o
n
tr

o
l)

(a
)

(b
)

 1
0

 1
5

 2
0

 2
5

 3
0

 3
5

10
20

30
40

50
60

70
80

90
10

0
11

0
12

0
13

0
14

0
15

0
16

0
17

0
18

0
19

0
20

0
21

0

Energy (j)

Ti
m

e
 (

h
)

P
S

A
B

R
S
P

 0

 5
0

 1
0

0

 1
5

0

 2
0

0

 2
5

0

 3
0

0

 3
5

0

 0
 5

0
 1

0
0

 1
5

0
 2

0
0

 2
5

0

Energy (j)

Ti
m

e
 (

h
)

P
S

A
B

R
S
P

(c
)

(d
)

F
ig

u
re

4.
8:

(a
)

A
ve

ra
ge

in
d
eg

re
e,

(b
)

n
u
m

b
er

of
p
ac

ke
ts

tr
an

sm
it

te
d

ov
er

ti
m

e,
(c

)
en

er
gy

co
n
su

m
p
ti

on
of

b
at

te
ry

-p
ow

er
ed

n
o
d
es

,
an

d
(d

)
to

ta
l

re
si

d
u
al

en
er

gy
of

b
at

te
ry

-p
ow

er
ed

n
o
d
es

[n
=

15
0,
m

=
20

%
].

67

over time. Note that an average in-degree of 0 means that none of the battery-

powered nodes forwards data packets. The average in-degree is below 0.2 for

PSABR and remains rather stable until the end of the network, which shows

PSABR is rather successful in its basic approach. On the other hand, the in-

degree for the shortest-path routing is around 0.9 at the beginning (meaning that

on the average almost every battery-powered node is an intermediate node on a

routing path) and it decreases to around 0.3 linearly as time passes. This result is

primarily due to a decrease in the battery-powered node ratio because of battery

depletion.

The number of packets transmitted in the network is shown in Figure 4.8 (b),

as is a breakdown for control traffic and actual data traffic. Initially, PSABR

exchanges a relatively higher number of control packets for network construction,

and from time to time it requires some control packets for self-organization due to

node deaths. In general, however, a higher number of data packets are delivered

to the sink in PSABR compared to shortest-path routing.

In Figures 4.8 (c) and (d), we show the experiment results related to energy

usage. Figure 4.8 (c) shows that the total energy usage of battery-powered nodes

for different time frames is rather stable for PSABR, which is a direct result of

the stable average in-degree value for the battery-powered nodes. Earlier time

frames show almost twice as much energy usage by battery-powered nodes for the

shortest-path routing, but this decreases linearly according to the decrease in the

average in-degree of the battery-powered nodes and the battery-powered node

count. Figure 4.8 (d) depicts the total residual energy of the battery-powered

nodes, which decreases almost linearly in both algorithms, but the decrease in

the shortest-path routing has a steeper slope.

Figure 4.9 shows how PSABR reacts to new node arrivals. The figure depicts

the number of battery- and mains-powered nodes (dark and light gray areas,

respectively) over time, and the number of reachable nodes (straight line). Note

that number of battery- and mains-powered nodes are plotted as a stacked chart,

hence they sum up to the total number of nodes. Values are taken from a single

simulation run, i.e., not averaged over multiple runs, in order to visualize the

68

 0

 50

 100

 150

 200

 250

 300

 0 100 200 300 400 500 600 700 800

N
o
d
e
 C

o
u
n
t

Time (sec)

Battery-Powered
Mains-Powered
Reachable

Figure 4.9: Node counts as new nodes arrive and the network is constructed
[n = 300, m = 25%].

algorithm’s reactions in more detail. 300 nodes arrive in about 600 seconds,

with uniformly distributed random arrival times. As evident from the figure, the

number of reachable nodes is close to the total number of nodes, with sudden

decreases followed by increases, from time to time. These fluctuations are due to

switches to better routing paths, which become possible as new nodes arrive.

We now present our results regarding our algorithm’s performance (effective-

ness). Figure 4.10 depicts network lifetime under different conditions, with Fig-

ure 4.10 (a) showing the algorithm’s performance with respect to the total node

count. In general, the performance is unaffected by node count. Algorithm perfor-

mance with respect to the mains-powered node ratio is shown in Figure 4.10 (b),

and as evident, PSABR performs better than the shortest-path routing overall,

but it achieves the best results in the 15%-25% range. For lower ratios, the

mains-powered nodes do not confer significant advantage to PSABR. For higher

ratios, coincidental exploitation of the mains-powered nodes is high enough for

the shortest-path routing to achieve results similar to PSABR. Figure 4.10 (c)

shows the effect of node density on network lifetime. In the other experiments,

node density is around 1 node per 44 unit2 (note that the communication range is

around 20 units). Here, the lifetime is given for different density values relative to

the usual case. As the density increases, the lifetime of the network also increases

because it is possible to eliminate more battery-powered nodes on the paths to

69

 1
2

0

 1
4

0

 1
6

0

 1
8

0

 2
0

0

 2
2

0

 1
0

0
 1

5
0

 2
0

0
 2

5
0

 3
0

0

Lifetime (h)

N
o
d
e
 C

o
u
n
t

P
S

A
B

R
S
P

U
p
p
e
r

B
o
u
n
d

 1
2

0

 1
4

0

 1
6

0

 1
8

0

 2
0

0

 2
2

0

1
0

%
1

5
%

2
0

%
2

5
%

3
0

%
3

5
%

4
0

%

Lifetime (h)

M
a
in

s-
Po

w
e
re

d
 N

o
d
e
 R

a
ti

o

P
S

A
B

R
S
P

U
p
p
e
r

B
o
u
n
d

 1
2

0

 1
4

0

 1
6

0

 1
8

0

 2
0

0

 2
2

0

6
0

%
8

0
%

1
0

0
%

1
2

0
%

1
4

0
%

Lifetime (h)

D
e
n
si

ty

P
S

A
B

R
S
P

U
p
p
e
r

B
o
u
n
d

(a
)

(b
)

(c
)

F
ig

u
re

4.
10

:
N

et
w

or
k

li
fe

ti
m

e
(a

ss
u
m

in
g

li
fe

ti
m

e
is

th
e

ti
m

e
p
as

se
d

u
n
ti

l
h
al

f
of

th
e

n
o
d
es

b
ec

om
e

u
n
re

ac
h
ab

le
fr

om
th

e
si

n
k
)

d
ep

en
d
in

g
on

(a
)

n
o
d
e

co
u
n
t

[m
=

20
%
,ρ

=
10

0%
],

(b
)

m
ai

n
s-

p
ow

er
ed

n
o
d
e

ra
ti

o
[n

=
15

0,
ρ

=
10

0%
],

an
d

(c
)

d
en

si
ty

[n
=

15
0,
m

=
20

%
].

70

 1
0

 2
0

 3
0

 4
0

 5
0

 6
0

 7
0

 8
0

 9
0

 1
0

0

 1
0

0
 1

5
0

 2
0

0
 2

5
0

 3
0

0

Lifetime (h)

N
o
d
e
 C

o
u
n
t

P
S
A

B
R

S
P

 1
0

 2
0

 3
0

 4
0

 5
0

 6
0

 7
0

 8
0

 9
0

 1
0

0

1
0

%
1

5
%

2
0

%
2

5
%

3
0

%
3

5
%

4
0

%

Lifetime (h)

M
a
in

s-
P
o
w

e
re

d
 N

o
d
e
 R

a
ti

o

P
S
A

B
R

S
P

 1
0

 2
0

 3
0

 4
0

 5
0

 6
0

 7
0

 8
0

 9
0

 1
0

0

6
0

%
8

0
%

1
0

0
%

1
2

0
%

1
4

0
%

Lifetime (h)

D
e
n
si

ty

P
S
A

B
R

S
P

(a
)

(b
)

(c
)

F
ig

u
re

4.
11

:
N

et
w

or
k

li
fe

ti
m

e
(a

ss
u
m

in
g

li
fe

ti
m

e
is

th
e

ti
m

e
p
as

se
d

u
n
ti

l
th

e
fi
rs

t
n
o
d
e

d
ea

th
)

d
ep

en
d
in

g
on

(a
)

n
o
d
e

co
u
n
t

[m
=

20
%
,ρ

=
10

0%
],

(b
)

m
ai

n
s-

p
ow

er
ed

n
o
d
e

ra
ti

o
[n

=
15

0,
ρ

=
10

0%
],

an
d

(c
)

d
en

si
ty

[n
=

15
0,
m

=
20

%
].

71

the sink.

Figure 4.10 also shows the experimental upper bound. Given the simula-

tion parameters (i.e., 32-byte packets transmitted every 60 seconds, 0.0807 W

transmission energy, and 3 J initial energy), the bound is the time required until

the energy of a battery-powered node drains completely, assuming that it does

not exchange control packets or forward data but only transmits its own data

packets. Note that the bound is not tight for cases where battery-powered node

are required to forward data packets, such as with low node density or a low

mains-powered node ratio.

For the simulation results given in Figure 4.10, we assume the lifetime is the

time passed until the half of the nodes become unreachable as mentioned earlier.

In Figure 4.11, we give the corresponding results if the lifetime is defined as the

time passed until the energy of a node depletes completely (first node death).

Compared to the previous results PSABR in this case exhibits similar behavior,

that is, node count does not have significant effect on the algorithm performance

but as the mains-powered node ratio or the density increases, PSABR performs

better. Shortest-path routing, on the other hand, is mostly unaffected by the

change in node count, mains-powered node ratio and density. As shown in the

figures, in first node death case, PSABR performs much better than the shortest-

path routing, proportionally.

 0

 5000

 10000

 15000

 20000

 25000

 100 150 200 250 300

Pa
ck

e
t

C
o
u
n
t

Node Count

PSABR
SP

Figure 4.12: Number of control packets required to construct the network [m =
20%].

72

The number of control packets required to construct the initial routing tree

with respect to network size is presented in Figure 4.12. As shown in the figure,

PSABR requires three to five times more control packets for construction. This

is expected because PSABR has a more complicated control messaging scheme

compared to shortest-path routing. Regardless, the simulation results show that

PSABR increases the network lifetime, although it requires more control packets.

It is notable that the increase in the control packet count is linear in PSABR

as well as in shortest-path routing, showing that the algorithms are scalable for

different network sizes.

 150

 160

 170

 180

 190

 200

 210

 220

 1 2 4

Li
fe

ti
m

e
 (

h
)

Sink Count

PSABR
SP

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 1 2 4

Pa
th

 L
e
n
g

th
 t

o
 S

in
k

Sink Count

PSABR
SP

Figure 4.13: Lifetime and average path length to sink for different sink counts
[n = 150, m = 20%].

The proposed algorithm is designed to run with an arbitrary number of sinks,

and Figure 4.13 presents how the algorithms perform for various values of sink

counts. As the number of sinks increases, network lifetime increases for both

algorithms, as expected, but the performance difference in PSABR is not obvious

because it performs close to the experimental upper bound even for the single-

sink case. On the other hand, the average path length between the nodes and

the sink almost halves as the number of sinks increases from one to four. If fast

delivery of data packets is important, using multiple sink can still be considered.

73

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

20% 40% 60% 80% 100% 120%

P
a
ck

e
t

C
o
u
n
t

Density

Analysis
Simulation

Figure 4.14: Number of messages (MDM and MIM) required to discover a peer
[n = 300, m = 20%].

In Figure 4.14, we compare the number of messages required for a mains-

powered node to discover all of its peers found by analysis as given in Section 4.1.4,

with the simulation results. In the comparison, we fixed the total number of nodes

to 300 and the mains-powered node ratio to 20% and we gave the results for dif-

ferent node densities, which are obtained by changing the size of the deployment

area. As shown in the figure, the values computed according the equations are

very close to the values obtained from the simulations. The computed values

are higher, since the Equation (4.2) is an upper bound on the expected number

of messages required for mains-powered node discovery. Note that, these values

are for a single mains-powered node discovery for the case all nodes are ready

in the network. But if the nodes join to the network gradually, as in the rest of

the simulations, earlier discoveries require less number of messages, due to lower

node density. Hence the total number of messages required for mains-powered

node discovery would be much less than nCdiscover, given in Section 4.1.4.

74

4.3 Conclusions

In this chapter, we proposed a distributed routing algorithm (PSABR) based on

our approach presented in Chapter 3, which is able to significantly increase the

lifetime of WSNs where different power-source types for nodes exist. Our PSABR

algorithm forms a backbone in a distributed fashion to relay the data packets.

The backbone consists of mains-powered nodes that are assumed to coexist with

battery-powered nodes. Although PSABR is especially designed for WSNs with

battery- and mains-powered nodes, we explained in Chapter 2 that it can be used

in WSNs where nodes have heterogeneous power sources.

In addition to message complexity analysis of PSABR, we also presented sim-

ulation results to better explain the algorithm behavior and to evaluate its per-

formance. As our results show, distinguishing between sensor nodes according to

their power sources increases network lifetime by as much as 40%. This result

is achieved mainly by eliminating battery-powered nodes as forwarding nodes.

Although PSABR has a higher control message overhead, we showed that it is

scalable with network size and is still more energy efficient than conventional

routing that does not distinguish between power-source types. Simulation results

also revealed that PSABR is able to react to node additions rather quickly. We

also presented the effects of node count, mains-powered node ratio, density, and

sink count, on PSABR performance. In most cases, PSABR performs close to

the theoretical upper bound and much better than conventional shortest-path

routing, as far as the network lifetime is concerned.

75

Chapter 5

Power-Source-Aware Routing in

ZigBee Networks

In the previous chapters, we provided power-source aware routing algorithms

mostly independent of the underlying wireless technology. In this chapter, we

propose a power-source-aware routing algorithm designed for a specific wireless

technology, that is, ZigBee [8].

ZigBee is a short-range wireless networking technology that targets low-data

rate as well as low-duty cycle applications. Such applications include a wide range

of control and monitoring applications such as building automation, industrial

control, and sensor networks. A typical deployment site is likely to have battery-

and mains-powered devices coexisting.

Both tree and mesh topologies are possible in a ZigBee network. The ZigBee

standard defines different address assignments and routing mechanisms for these

topologies. Two different routing schemes are specified in the ZigBee standard:

hierarchical tree routing and a modified version of ad hoc on-demand distance

vector routing (AODV). In hierarchical tree routing, packets are routed according

to the parent-child relationships established during ZigBee topology formation

and distributed address assignment.

76

We propose a power-source-aware routing algorithm, PSAR, for tree topology

ZigBee networks. PSAR is based on hierarchical tree routing and simply aims

at reducing the power consumption of battery-powered devices and consequently

increasing network lifetime. The basic approach to achieve this is to route network

traffic through mains-powered devices instead of battery-powered devices as much

as possible. When routing in tree topology networks, because there is a single path

between any two devices, the only way to reduce the burden on battery-powered

devices is to modify the network topology, by disconnecting and reconnecting

some devices, to reduce traffic flow through the battery-powered devices.

PSAR requires only minor modifications to the current ZigBee protocol spec-

ification and minimal additional messaging, which keeps the overhead of the al-

gorithm at a minimum. Our simulation results shows that the average traffic

on battery-powered devices can be reduced by up to 50%, without a significant

increase in the average path length between devices (hence neither in the total

traffic load of the network) due to the topology changes.

The remainder of this chapter is organized as follows: In Section 5.1, we give

some information on ZigBee standard including a brief overview and the dis-

tributed address assignment scheme, which is important for hierarchical routing.

In Section 5.2, we present a detailed description of our proposed routing scheme,

PSAR. Next, in Section 5.3, we give the simulation results. Finally, in Section 5.4,

we conclude the chapter.

5.1 The ZigBee Standard

5.1.1 A Brief Summary

The ZigBee standard [8] defines a low-data rate wireless networking solution for

interconnection of devices in a wireless personal area network (WPAN). The low-

data rate requirement enables reduced complexity and very low power consump-

tion, which are also the primary goals of ZigBee. The ZigBee standard is built on

77

the IEEE 802.15.4 standard [10], which shares similar goals. ZigBee defines the

application layer (APL) and the network layer (NWK), whereas IEEE 802.15.4

defines the medium access control layer (MAC) and the physical layer (PHY),

as depicted in the protocol stack of Figure 5.1. In this chapter, we use ZigBee

to refer the ZigBee and IEEE 802.15.4 standards as a whole, unless otherwise

specified.

Figure 5.1: ZigBee protocol stack (reprinted from Fig. 1 of [2] c© Springer Sci-
ence+Business Media, LLC 2012, with kind permission from Springer Science
and Business Media).

The PHY layer defines 16 channels in the 2450 MHz band, 30 channels in the

915 MHz band, and three channels in the 868 MHz band [10]. Depending on the

band, the devices can communicate with data rates of 250 kbps, 100 kbps, 40 kbps,

and 20 kbps. The MAC layer controls access to the radio channel using the car-

rier sense multiple access with collision avoidance (CSMA/CA) mechanism. An

optional superframe structure can be used to coordinate the channel access. A su-

perframe, which is bounded by network beacons, can possibly include contention

and contention-free access periods (CAP and CFA) as well as an inactive period.

CFA periods can be assigned to time- or bandwidth-critical applications. On the

other hand, inactive periods can be exploited to reduce power consumption by

switching off the radio transmitters.

The NWK layer enables data transfer between devices that are not in the

78

communication range of each other through the use of intermediate devices, hence

making multi-hop communication possible. Responsibilities of the NWK layer

include starting a network, coordinating joining and leaving a network, routing,

discovering one-hop neighbors, and storing neighbor information. Three types of

devices are possible in a ZigBee network: Coordinator, router and end devices.

Routers are capable of forwarding data on behalf of others and a coordinator is a

router that starts the network and chooses key network parameters. Any device

can connect to a router in the network, whereas, devices cannot connect to an

end device, as the name implies. A ZigBee device is called a full functional device

(FFD) if it can have a router role in the network and be a reduced functional

device (RFD) otherwise. An RFD is usually limited in terms of its energy source

(e.g., battery-powered), processing power, and memory capacity. Each ZigBee

device has a universal 64-bit address and a 16-bit short address assigned when

it connects to a network. As stated before, both tree and mesh topologies are

possible in a ZigBee network, having different address assignments and routing

mechanisms.

The APL layer of ZigBee consists of the application support sub-layer (APS)

and the application framework. Responsibilities of the APS include maintain-

ing tables used to bind devices according to the services provided and needed,

forwarding between bound devices, fragmentation, reassembly, and reliable data

transport. The application framework contains the ZigBee device object (ZDO)

and manufacturer-defined application objects. ZDO defines the role of the device

in the network, such as coordinator or end device, discovers application services,

and manages service bindings.

5.1.2 ZigBee Address Assignment

There are different mechanisms for address assignment depending on the topology

(i.e., tree or mesh) of the ZigBee networks. In tree topology ZigBee networks,

there are two alternatives for the network address assignment. In one of the

alternatives, address assignment is left to the next higher layer. In the other

alternative, the specification defines a distributed address assignment mechanism.

79

According to the distributed address assignment mechanism, every potential

parent is assigned a finite block of network addresses. Each parent later assigns

one (if the child is an end device) or more (if the child is router-capable, and

therefore a potential parent) of these addresses to the devices connected to it.

The coordinator of a network determines the maximum number of children that

a parent can have, which is denoted by Cm. Of these children only Rm of them

can be router-capable. Every device has a depth, d, which is the minimum number

of hops to the ZigBee coordinator (i.e., the root of the tree). Maximum depth,

Lm, of a tree network is also determined by the coordinator of that network.

Given these values, the function Cskip(d), which is actually the size of the address

sub-block assigned to a router-capable device at depth d + 1, is computed as in

Equation (5.1) [8].

Cskip(d) =

1 + Cm · (Lm− d− 1), if Rm = 1

1 + Cm−Rm− Cm ·RmLm−d−1

1−Rm
, otherwise

(5.1)

A parent device assigns an address one greater than its own to its first router-

capable child and the address of each such child is separated by Cskip(d). The

address of the nth end device, An, is computed as An = Aparent+Cskip(d) ·Rm+n,

where 1 ≤ n ≤ (Cm − Rm) and Aparent is the address of the parent. Figure 5.2

depicts how the address space is used and redistributed at depth d.

Such a systematic address assignment mechanism enables a simple routing

strategy. Any routing-capable device receiving a packet destined to an address

A knows whether any of its children has address A or if A falls into the address

sub-block of any of its children, in which case the packet is forwarded to the

corresponding child. If no such child exists, then the packet is forwarded to the

parent device. This routing strategy is called hierarchical routing and is applied in

ZigBee tree topology. Although distributed address assignment eases the routing,

one of its drawbacks is that whenever a device changes its parent, its and all of

its descendants’ network addresses need to change.

80

... ...

Cskip(d)} }

Address ranges assigned
to router-capable devices

Addresses assigned
to end devices

Address of the device

Rm address ranges Cm-Rm addresses

depth = d

depth = d+1... ...

Cskip(d+1)

... ...

Cskip(d+1)

...
Figure 5.2: ZigBee distributed address assignment (reprinted from Fig. 2 of
[2] c© Springer Science+Business Media, LLC 2012, with kind permission from
Springer Science and Business Media).

5.2 Our Power-Source-Aware Routing Algo-

rithm: PSAR

The basic strategy for our power-source-aware routing (PSAR) algorithm is to

route the traffic through mains-powered ZigBee devices rather than battery-

powered devices as much as possible. In a tree topology network there is a

single simple path, hence, only one meaningful route between any two nodes.

This means, once a topology is determined, no alternative route can be found

to reduce the traffic routed by a battery-powered device. One possible solution

is to modify the tree-based network topology dynamically depending on traffic

demand so that the burden on the battery-powered devices is reduced.

Consider the ZigBee network given in Figure 5.3, where C is the coordinator

of the network, the nodes from R1 to R9 are the routers and Es are the end

devices. In the figure, mains-powered routers are shown with solid lines, whereas

battery-powered routers are shown with dashed lines. Assume that R6 and its

children have communication with R3, R4, and R5. For the topology given in

Figure 5.3 (a), R6-R3, R6-R4, and R6-R5 communications must follow paths R2-

C, R2-C, and R2-C-R1, respectively, meaning that battery-powered devices R1

and R2 are used as relay nodes. If R6 is disconnected from R2 and connected to

R7, as shown in Figure 5.3 (b), R2 is eliminated from the communication paths,

81

(a) (b)

(c)

Figure 5.3: Modifying the ZigBee tree topology to change communication paths
(reprinted from Fig. 3 of [2] c© Springer Science+Business Media, LLC 2012, with
kind permission from Springer Science and Business Media).

hence, the amount of traffic load on battery-powered devices is reduced. The

next modification would probably be to disconnect R5 from R1 and connect it

to R6, as shown in Figure 5.3 (c), leaving all the communication paths free of

battery-powered devices. In general, it is not always possible to eliminate all the

battery-powered devices on the communication paths due to constraints such as

communication range, but following a strategy like the one described certainly

reduces the amount of load on them. If a device knows

• the amount of traffic it forwards,

• the paths for each such traffic for a given topology,

• the battery-powered devices on the paths, and

82

• the alternative devices that it can connect to,

it is possible to follow such a strategy. Fortunately, a router-capable device in a

ZigBee network can obtain all this information with minimal or no overhead in

terms of network communication. The next section describes how to obtain and

use this information to modify the topology.

5.2.1 The Algorithm Details

As explained earlier, in ZigBee tree networks, a router-capable device relays all

the traffic between its descendants and the rest of the network. Hence, for such

a device it is possible to monitor the source, the destination, and the rate of each

flow it forwards.

Algorithm 5.1 Path between two ZigBee devices

function PathBetween(As, Ad)

1: paths ← PathFromRoot(As)
2: pathd ← PathFromRoot(Ad)
3: lcp← longest common prefix of paths and pathd

4: path← As

+ reverse of (paths − lcp)

+ last address in lcp

+ (pathd − lcp)

+ Ad

5: return path

Thanks to the distributed address assignment mechanism of ZigBee, it is

possible just by local computation to find the path between any two devices

whose addresses are known, meaning that no communication overhead such as

route discovery is required. Although not described in the ZigBee specification,

we provide a way to compute the path from a device with address As to another

device with address Ad in Algorithms 5.1 and 5.2. Algorithm 5.2 is used by

Algorithm 5.1 to compute the path from the network coordinator to an arbitrary

ZigBee node A in the network. Line 5 of Algorithm 5.2 computes the child

83

of parent p, having node A as a descendant, where Cskip(d) is calculated as in

Equation (5.1). Hence, starting from the root (lines 1 and 2), at each iteration

of the while-loop, the ancestor of node A at depth d + 1 is found. It is easy

to compute the path between any two nodes if the paths between those nodes

and the root are known. As described in Algorithm 5.1, to compute the path

between As and Ad, the common prefix, except for the closest common ancestor,

is removed from the paths. Then one of the paths is reversed and concatenated

to the other.

Algorithm 5.2 Path from the coordinator

function PathFromRoot(A)

1: d← 0

2: p← coordinator
3: while A 6= p do

4: path← path + p

5: p← p + 1 + b(A− (p + 1))÷ Cskip(d)c × Cskip(d)

6: d← d + 1

7: end while

8: return path

Unlike the path computation, determining the types of power sources of the

devices requires additional communication, as this information does not generally

exhibit a predictable pattern. One obvious way to collect this information is to let

each battery-powered device register itself to the coordinator and let any device

query this information whenever required.

Algorithm 5.3 Load on battery-powered devices

function LoadOnBPNodes(T)

1: load← 0

2: for all forwarded traffic T do

3: path← PathBetween(Tsource, Tdestination)
4: n← number of battery-powered devices on path

5: load← load + n× Trate

6: end for

7: return load

Having this information, a router-capable device can now compute the total

84

load on the battery-powered devices of the network due to communication be-

tween its descendants and rest of the network, as in Algorithm 5.3. Note that the

battery-powered devices are implicitly obtained from the coordinator on line 4

of the algorithm. In the current form, the battery-powered devices are queried

independently for each path. A more efficient approach would be to have a single

query for the union of all paths, as they probably contain many common devices,

but for the sake of simplicity, the algorithm is described in this way.

The method for finding the load on the battery-powered devices from the de-

scendants of a router-capable device for the current topology, is described so far.

In order to modify the topology, it is required that the node learns about alter-

native neighboring devices that can be connected to and computes the possible

loads on the battery-powered devices in the alternative topologies. ZigBee pro-

vides neighbor discovery mechanisms, making it possible to determine whether

other devices are in the communication range. Due to the distributed address

assignment mechanism of ZigBee, it is also possible to compute the paths, obtain

the battery-powered devices on the paths, and find out the load on them if a

certain alternative router-capable device is chosen as the new parent, in the same

way described previously.

As described in Algorithm 5.4, a router-capable device can decide the best

parent in terms of load on the battery-powered devices and change its parent

if the best case differs from the current one. As a restriction, the new parent

should have equal or less depth than the current one (line 5). Otherwise some

descendants of the device might not get a network address since the address range

assigned to a device decreases as its depth increases. Please note that this is a

conservative approach. Even if the depth of a parent candidate is greater, it is

possible to obtain a network address for all the descendants of the device if the

depth of the deepest device is still less then or equal to Lm (i.e., maximum al-

lowed depth of the tree) after the reconfiguration. Since the depth information

of some descendants might be unknown for a device without additional commu-

nication, this conservative approach is preferred. On the other hand, even if the

parent candidate satisfies the restriction on the depth, it might already have Rm

router-capable children, meaning that it cannot accept any other router-capable

85

Algorithm 5.4 Reconfiguration of the topology

1: load← load in the current configuration
2: n← 0

3: for all router-capable neighbor N do

4: cn.neighbor ← N

5: if depthN < depth then

6: cn.load← load if the device connects to N

7: else

8: cn.load←∞
9: end if

10: n← n + 1

11: end for

12: sort c in ascending order w.r.t. load values
13: i← 0

14: while i < n and not connected to a new parent do

15: if ci.load < load and router-capable child count of ci.neighbor < Rm then

16: connect to ci.neighbor

17: end if

18: i← i + 1

19: end while

child. Hence a device requires explicit permission of the parent candidate before

reconfiguration (line 15).

Note that the term connection mentioned in the 6th and the 16th lines of

Algorithm 5.4 refers to the connection of the device with all of its descendants as

a subtree. As mentioned in Section 5.1.2, whenever a device changes its parent, its

address and the addresses of all its descendants have to be changed as well. The

descendant devices are informed about the old and new addresses of the device

starting the reconfiguration (i.e., root of the subtree) and each descendant utilizes

this information to compute the updated addresses of its parent, children, and

itself as described in Algorithm 5.5. Next, updated addresses are used to re-join

to the network by orphaning mechanism described in the ZigBee specification.

Algorithm 5.5 takes old (Ro) and new (Rn) addresses of a device R, and old

address (Do) of another device D as input and returns either the new address

of D, if it is a descendant of R or ⊥, otherwise. In line 2, the algorithm checks

whether D is a descendant of R. If so, in the while-loop between lines 5 and 11,

the location of D in the subtree is traced starting from the root address Ro and

86

Algorithm 5.5 Obtaining updated address of a device

function ObtainUpdatedAddress(Ro, Rn, Do)

1: Dn ←⊥
2: if Ro < Do and Do < (Ro + Cskip(depthRo − 1)) then

3: Dn ← Rn

4: Ao ← Ro

5: while Ao 6= Do do

6: skipo ← Cskip(depthAo
)

7: skipn ← Cskip(depthDn)

8: index← b(Do − (Ao + 1))÷ skipoc
9: Ao ← Ao + 1 + index× skipo

10: Dn ← Dn + 1 + index× skipn
11: end while

12: end if

13: return Dn

using its old address Do and at each iteration of the loop, new address Dn of D is

updated according to this location information given that the new root address

is Rn.

Since the network addresses of the devices change, the rest of the network

should be informed about these address changes to route the data packets to the

correct devices. The new addresses are also required by the devices to update

their power source information caches in which power source information is stored

along with the network addresses to compute the load on the battery-powered

devices whenever required. To disseminate this information only the address

change of the device starting the reconfiguration is broadcast in the network.

Receiving the old and new addresses of the root of the subtree, which consists

of devices whose addresses are updated, a device checks all the addresses it is

interested in to see whether they belonged to the subtree and if so updates them

accordingly using the function given in Algorithm 5.5. Since successful dissemi-

nation of address updates has vital importance for the ongoing communications

and power source information, which is required for later reconfigurations, a re-

liable method for broadcast should be chosen. In our current implementation,

we transmit broadcast messages at most three times and try to limit the number

of retransmissions applying passive acknowledgement mechanism as the ZigBee

87

specification suggests. Other methods such as the one presented in [94] can also

be utilized.

As long as a network has a stable traffic characteristic and the devices it is

composed of remain the same, the network is expected to converge to a topology

in which battery-powered devices are avoided as much as possible. Because at

each reconfiguration, topology is modified in a way that the total load on the

battery-powered devices are reduced and reconfigurations occur as long as bet-

ter topologies are found in terms of load on the battery-powered devices. But

the algorithm can handle changes in the traffic characteristics (e.g., communi-

cating pairs, bandwidth requirements, etc.) and members of the network since

the routers constantly monitor the packets they forward and react accordingly.

Therefore, new reconfigurations may take place to adapt to new situations.

5.2.2 Implementation

We implemented the PSAR algorithms presented in Section 5.2.1 fully and

efficiently in ns-2 (version 2.31) simulation environment [6], on top of the

IEEE 802.15.4 and ZigBee protocol stacks. A module implementing 802.15.4

was already in ns-2, and we utilized that with slight modifications done wher-

ever required (e.g., to support network addresses in addition to device addresses).

However, at the time we did our simulations, there was no publicly available Zig-

Bee module for ns-2, hence, we implemented the required parts of the ZigBee

standard (that is, address assignment, routing, broadcast, rejoining, etc.) and

integrated them with ns-2.

During a reconfiguration, a subtree of devices disconnects from a parent and

connects to another as a whole, preserving the topology within the subtree.

Therefore the load on the battery-powered devices of the subtree remain the

same before and after the reconfiguration. Hence, in our PSAR implementation,

as an efficiency measure the 4th line of Algorithm 5.3, and in turn, Algorithms 5.1

and 5.2, is implemented to avoid paths from the current node (i.e., the node exe-

cuting the algorithm locally) to its descendants. Such an implementation choice

88

reduces the bandwidth required to obtain the power sources of the nodes on those

paths. On the other hand, to preserve the consistency of the network, simulta-

neous topology reconfigurations are not allowed. Otherwise, nodes may try to

connect to nodes which are actually in the middle of an independent reconfigu-

ration. In the current implementation, permission of the coordinator is obtained

to begin a reconfiguration and the coordinator allows only one reconfiguration at

a time.

Table 5.1: 802.15.4 and ZigBee commands utilized in the implementation of the
proposed algorithm.

Command Specified
In

Purpose

MLME-SCAN 802.15.4 Used for discovering other devices in
the communication range.

NLME-LEAVE ZigBee Used for disconnecting a subtree from
the network.

NLME-JOIN ZigBee Used for reconnecting all nodes in the
subtree. Since preserving the topol-
ogy of the subtree is desired, rejoin
through orphaning procedure is ap-
plied.

NLME-DIRECT-JOIN ZigBee Used for preparing the candidate par-
ent for the new child node.

Power Desc store req &
Power Desc store rsp

ZigBee Used for storing the power source in-
formation of the devices in the coor-
dinator.

Power Desc req &
Power Desc rsp

ZigBee Used for retrieving the power source
information of the devices from the
coordinator.

One of the advantages of the described scheme is that it can be implemented

mostly using existing commands of the IEEE 802.15.4 and ZigBee specifications.

Table 5.1 lists the commands directly used in the implementation of PSAR. These

commands in turn uses other commands such as NLDE-DATA. The scheme, which

makes use of the listed commands, is implemented as a ZDO in the APL layer.

Since a ZDO cannot access certain functionalities such as monitoring forwarded

packets at the NWK layer, minor modifications are required to make necessary

89

information available to the algorithm. On the other hand, there are cases in

which the algorithm residing at the APL requires direct access to some of the

functionalities provided by the lower layers, skipping the NWK. As an example,

MLME-SCAN is used by the NWK only if the device is currently not connected

to a network, whereas the algorithm needs to discover nearby devices even if it

is already part of a network. Therefore our solution also utilized cross-layering

approach.

5.2.3 Analysis

One of the aims of the ZigBee specification is to make the design and produc-

tion of low-cost devices possible. Reducing the complexity of the hardware is

an important part of this goal and software running on such reduced hardware

is required to have low memory and processing power demands. First part of

this section presents an asymptotic analysis of memory and processing power re-

quirements of PSAR and its possible implementations. In the second part of the

section, message complexity of PSAR is discussed.

First of all, the algorithm requires monitoring and keeping track of the for-

warded traffic. For each communicating pair whose traffic is forwarded (in other

words, for each traffic flow forwarded), the network addresses and the associated

bandwidth requirements should be stored and updated. There are several op-

tions for storing this data, each having advantages and disadvantages in terms

of memory (i.e., space complexity) and processing power (i.e., time complexity)

requirements. The most straightforward implementation is to use a list, whose

space complexity is O(m) where m is the number of communicating pairs to be

tracked. On the other hand, for each data packet forwarded, the list should be

sequentially searched and the corresponding element should be updated, which

has a time complexity of O(m). An alternative, as preferred for the implementa-

tion of the simulation, is to use a binary search tree (BST). A BST has the same

space complexity (i.e., O(m)) as the list implementation, and although it has a

larger overhead per communicating pair to be tracked, the gain is in the O(logm)

search time. Other options are also possible, all of which can be used for tracking

90

the forwarded traffic, such as a sorted array with O(m) space and O(logm) time

complexity but costly maintenance as new communicating pairs arise, or a hash

map with amortized O(1) time complexity but possibly higher space complexity.

Having the communicating pairs and associated bandwidth requirements,

nodes can decide whether a reconfiguration is necessary. As shown in Algo-

rithms 5.1, 5.2, and 5.3, for each communicating pair the path between them

should be computed. This leads to an average time complexity of O(mlogn), as-

suming the depth of the tree-shaped network is bounded by O(logn) on average,

where m is the number of communicating pairs whose traffic is forwarded by the

current node and n is the total number of nodes in the network. In the worst

case, there can be at most O(n2) flows (communicating pairs) going over a node

of the network. This is, however, quite a loose upper bound. The paths can

be computed each time they are required, as in the current implementation of

the simulation, or cached, which increases the memory overhead and is probably

not preferable. Once the paths are known, each node should be tested against

its power source to compute the load on the battery-powered devices (see Al-

gorithm 5.3, lines 4 and 5). Assuming the power source information is cached

after it is obtained from the coordinator, to prevent unnecessary communication,

the power source of the device on the computed paths can be searched from this

cache. The cache can be implemented as a BST or hash map to favor time com-

plexity or as a simple list to favor space complexity. Considering the possible

number of unique nodes on the paths, the power source cache is implemented

as a BST in the simulations, meaning that in the current implementation load

computation has a time complexity of O(mlog2n).

Until now possible space and time complexities of PSAR depending on the

implementation alternatives have been presented. PSAR also requires extra con-

trol messaging as described in the previous sections and this part analyzes this

messaging overhead asymptotically. Let n be the total number of nodes in the

network and k be the number of nodes in the subtree to be connected to another

node in the network. There are two groups of messages: one is exchanged once

in a lifetime of a network and the other is once per reconfiguration. Messaging

required to register power source information of a device when it connects to a

91

network and to query this information to compute the load on the battery pow-

ered devices belongs to the first group. O(nlogn) messages are exchanged for both

registration and querying, assuming a tree depth of O(logn). Since the ZigBee

networks are expected to have long lifetimes, overhead of this group of messaging

is considered to be negligible. On the other hand in each successful reconfigura-

tion attempt O(logn) messages are exchanged to inform PAN coordinator about

the start and end of a reconfiguration, O(logn) messages are exchanged to have

permission of the parent candidate, O(k) messages are exchanged for network

leave and network join operations, and finally O(n) messages are exchanged to

inform the network about the address change of the device which initiates the

reconfiguration. Hence neglecting the initial one-time overheads and considering

k < n, the algorithm requires O(n) messages per reconfiguration.

5.3 Simulation Results

This section presents simulation results illustrating the performance of PSAR. In

the simulations, several parameters are fixed. The communication band is set to

2450 MHz and Cm, Rm, and Lm values are 6, 6, and 6, respectively. Furthermore,

the superframe structure is not applied and all the devices in the network are

chosen to be FFD. On the other hand, several parameters are changed to observe

the impact of different conditions on the performance of the algorithm. These

parameters, along with their chosen values, are network size (10, 40, 70 devices),

density (one device per 24, 16, and 8 m2), battery-powered device ratio (10%, 20%,

. . . , 90%) and ratio of data flow count to total number of devices (10%, 30%, 50%).

Note that we use node count, not the number of all possible pairs, while limiting

the traffic flows. Otherwise, the number of flows (pairs) would be excessive. For

each combination of aforementioned parameters, the results are averaged across

100 simulations (disconnected topologies due to communication range and the

orphan problem [95] are eliminated), in each of which node locations, battery-

powered devices, and communicating nodes are determined pseudo-randomly, as

described in [89].

92

Traffic flows are constant bit rate (CBR) flows with two-seconds data genera-

tion interval and a random packet size between 2 and 50 bytes. In each simulation,

120 minutes of communication is simulated and each device is configured to check

for a possible reconfiguration every 20 minutes with a randomization of ± 20 sec-

onds, to prevent simultaneous reconfiguration attempts. Another alternative for

triggering the algorithm on a device is to wait until a significant change occurs

in the traffic observed by that device. In the majority of the simulation results

presented in this section, the communicating pairs are fixed (i.e., static traffic) for

a simulation run. But the results in which communicating pairs change during a

simulation run (i.e., dynamic traffic) are also given to present how PSAR copes

with the dynamic traffic scenarios. Please note that, the static traffic case can be

interpreted as a stable portion of a longer and dynamic (in terms of communica-

tion demands and device arrivals and departures) traffic case.

Currently, to the best of our knowledge, there is not a similar study with PSAR

in the literature that is adapting the tree topology dynamically with respect to the

traffic demand to reduce the load on battery-powered devices. Therefore, simula-

tions are repeated in the presence and the absence of PSAR (i.e., using ZigBee tree

routing reported in the specification), keeping all the remaining parameters intact

for both cases. Change (percent reduction) in the following metrics are measured

to evaluate the performance of the algorithm: total amount of data forwarded

by all the battery-powered devices, standard deviation of the forwarded data by

the battery-powered devices, and average path lengths between communicating

devices. Percent reduction is defined as in Equation (5.2). Apart from the above,

packet drops and communication overhead due to PSAR are also measured.

Reduction =
Value w/o PSAR− Value w/ PSAR

Value w/o PSAR
× 100 (5.2)

Figures 5.4, 5.9, 5.10, 5.11, and 5.12 depict the reduction in total traffic load

of the battery-powered devices, the reduction in the standard deviation of the

traffic loads of the battery-powered devices, the reduction in average path lengths

between communicating node pairs, the packet drop rates, and control packet

ratio for the static traffic case, respectively. In these figures, the columns present

93

10
d
ev

ic
es

40
d
ev

ic
es

70
d
ev

ic
es

1device/24m
2

1
0
%

3
0
%

5
0
%

7
0
%

9
0
%

0
%

2
0
%

4
0
%

6
0
%

8
0
%

1
0
0
%

1
0
%

3
0
%

5
0
%

7
0
%

9
0
%

0
%

2
0
%

4
0
%

6
0
%

8
0
%

1
0
0
%

1
0
%

3
0
%

5
0
%

7
0
%

9
0
%

0
%

2
0
%

4
0
%

6
0
%

8
0
%

1
0
0
%

1device/16m
2

1
0
%

3
0
%

5
0
%

7
0
%

9
0
%

0
%

2
0
%

4
0
%

6
0
%

8
0
%

1
0
0
%

1
0
%

3
0
%

5
0
%

7
0
%

9
0
%

0
%

2
0
%

4
0
%

6
0
%

8
0
%

1
0
0
%

1
0
%

3
0
%

5
0
%

7
0
%

9
0
%

0
%

2
0
%

4
0
%

6
0
%

8
0
%

1
0
0
%

1device/8m
2

1
0
%

3
0
%

5
0
%

7
0
%

9
0
%

0
%

2
0
%

4
0
%

6
0
%

8
0
%

1
0
0
%

1
0
%

3
0
%

5
0
%

7
0
%

9
0
%

0
%

2
0
%

4
0
%

6
0
%

8
0
%

1
0
0
%

1
0
%

3
0
%

5
0
%

7
0
%

9
0
%

0
%

2
0
%

4
0
%

6
0
%

8
0
%

1
0
0
%

C
om

m
un

ic
at

in
g

pa
ir

ra
tio

10
%

30
%

50
%

F
ig

u
re

5.
4:

P
er

ce
n
t

re
d
u
ct

io
n

in
tr

affi
c

lo
ad

on
th

e
b
at

te
ry

-p
ow

er
ed

d
ev

ic
es

(x
-a

x
is

:
b
at

te
ry

-p
ow

er
ed

d
ev

ic
e

ra
ti

o,
y
-a

x
is

:
p

er
ce

n
t

re
d
u
ct

io
n
)

(r
ep

ri
n
te

d
fr

om
F

ig
.

5
of

[2
]

c ©
S
p
ri

n
ge

r
S
ci

en
ce

+
B

u
si

n
es

s
M

ed
ia

,
L

L
C

20
12

,
w

it
h

k
in

d
p

er
m

is
si

on
fr

om
S
p
ri

n
ge

r
S
ci

en
ce

an
d

B
u
si

n
es

s
M

ed
ia

).

94

simulation results for the network sizes of 10, 40, and 70 devices and the rows

present simulation results for the networks with densities of one device per 24 m2,

16 m2, and 8 m2. The network size increases from left to right and the device

density increases from top to bottom. In each graph, values for three different

communicating pair ratio (i.e., ratio of communicating pair, or traffic flow, count

to the total node count) cases are given. Figure 5.8 presents the reduction in

total traffic load of the battery-powered devices for the dynamic traffic case.

Before analyzing the effect of different parameters on the performance of

PSAR, let us show how PSAR helps increasing the lifetime of a network. In

a network that is composed of both battery- and mains-powered devices, lifetime

of the network directly depends on the lifetime of the battery-powered devices.

As shown in Figure 5.4, if PSAR is applied, although additional control packets

need to be forwarded, traffic forwarded by a battery-powered device is reduced

on the average, which means each battery-powered device has a longer expected

lifetime. This result does not necessarily mean that the lifetime of the network

is increased, since some battery-powered devices might die much earlier than

the case without PSAR (although on the average the battery-powered devices

live longer), leaving some portions of the network unreachable. But Figure 5.9

shows that if PSAR is applied, standard deviation of the traffic forwarded by the

battery-powered devices is also reduced, meaning that the lifetime of the battery-

powered devices are distributed more evenly. Hence we claim that lifetime of the

network increases, since the lifetime of each battery-powered device increases.

As far as the percent reduction in total traffic load on the battery-powered

devices are concerned, values as high as 80%, 50% and 40% are observed for

the network sizes of 10, 40 and 70, respectively (see Figure 5.4). But as the

battery-powered device ratio increases, the percent reduction in total traffic load

decreases to values as low as around 10%. There are two obvious reasons for this

decrease in the traffic load percent reduction. First, an increase in the number of

battery-powered devices does not correspond to an increase at the same rate in the

number of battery-powered devices avoided from the paths between communicat-

ing pairs, because it gets harder to find paths without battery-powered devices.

Second, even if some of the battery-powered devices are avoided in networks with

95

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

10% 30% 50% 70% 90%

A
v
e
ra

g
e
 r

e
d

u
ct

io
n
 o

n
 b

a
tt

e
ry

-p
o
w

e
re

d
 d

e
v
ic

e
s

(K
B

)

Battery-powered device ratio

10 (10%)
10 (30%)
10 (50%)
40 (10%)
40 (30%)
40 (50%)
70 (10%)
70 (30%)
70 (50%)

Figure 5.5: Average reduction in traffic load on the battery-powered devices for
the network sizes of 10, 40, and 70 devices and communicating pair ratios of 10%,
30%, and 50% (reprinted from Fig. 6 (a) of [2] c© Springer Science+Business Me-
dia, LLC 2012, with kind permission from Springer Science and Business Media).

a higher battery-powered device ratio, the total load on all battery-powered de-

vices is so high that the reduced amount of load does not have a comparatively

significant value. Another observation is that as the network size increases, the

percent reduction in traffic load on the battery-powered devices decreases. The

reason is similar to the previous argument, that is, although the amount of traffic

load avoided from battery-powered devices does not change significantly, since

the number of battery-powered devices (and therefore, the total load on them)

increases, the significance of the avoided traffic load decreases.

Figures 5.5 and 5.6 support these arguments: as the battery-powered device

ratio increases, average reduction per battery-powered device decreases while the

total reduction on all the battery-powered devices increases. Furthermore, larger

networks have better average and total reduction values in bytes although they

have worse percent reduction values since the avoided traffic does not keep up

with the increase in the number of battery-powered devices. In Table 5.2, total

amount of traffic (i.e., all traffic sent from the source nodes and forwarded by the

96

 0

 500

 1000

 1500

 2000

 2500

 3000

10% 30% 50% 70% 90%

To
ta

l
re

d
u
ct

io
n
 o

n
 b

a
tt

e
ry

-p
o
w

e
re

d
 d

e
v
ic

e
s

(K
B

)

Battery-powered device ratio

Figure 5.6: Total reduction in traffic load on the battery-powered devices for the
network sizes of 10, 40, and 70 devices and communicating pair ratios of 10%,
30%, and 50% (reprinted from Fig. 6 (b) of [2] c© Springer Science+Business Me-
dia, LLC 2012, with kind permission from Springer Science and Business Media).

intermediate nodes) for different network sizes and communicating pair ratios is

given to compare with the values presented in Figures 5.5 and 5.6.

Table 5.2: Total traffic in KB for different network sizes and communicating pair
ratios.

10 devices 40 devices 70 devices
10% 523 2645 5592
30% 1210 7836 17448
50% 1959 13373 30741

In Figures 5.4, 5.5, and 5.6, reduction for the first two hours of different net-

works are given. Differently in Figure 5.7, percent reduction values until different

time points from the beginning of the network is presented (e.g., y value which

corresponds to the 60 in the x-axis is the percent reduction for 0-60 period). Fig-

ure 5.7 also depicts the number of successful reconfigurations for the last time

period (e.g., y value which corresponds to the 60 in the x-axis is the number of

97

-10%

0%

10%

20%

30%

40%

50%

60%

 0

 2
0

 4
0

 6
0

 8
0

 1
0

0

 1
2

0

 1
4

0

 1
6

0

 1
8

0

 0

 0.5

 1

 1.5

 2

 2.5

Pe
rc

e
n
t

re
d
u
ct

io
n
 o

n
b
a
tt

e
ry

-p
o
w

e
re

d
 d

e
v
ic

e
s

N
u
m

b
e
r

o
f

re
co

n
fi
g
u

ra
ti

o
n
s

Time (minutes)

Reduct. - 10%
Reduct. - 50%
Reduct. - 90%

Reconfig. - 10%
Reconfig. - 50%
Reconfig. - 90%

Figure 5.7: Percent reduction in traffic load on the battery-powered devices
and number of configurations over time for the network size of 40 devices and
communicating pair ratio of 30% (reprinted from Fig. 7 of [2] c© Springer Sci-
ence+Business Media, LLC 2012, with kind permission from Springer Science
and Business Media).

reconfigurations for 40-60 period). As it can be seen from the figure, reduction

increases over time although its rate decreases and tends to converge to a certain

value. Additionally, for the first 20 minutes of the network lifetime, negative

reduction values are obtained, since there have been messaging overhead on the

battery-powered devices due to PSAR although there has not been any reconfigu-

rations to reduce the amount of traffic forwarded by the battery-powered devices.

Note that the number of reconfigurations peaks early in the network lifetime

and decreases rapidly, meaning that the network topology converges rather quick

considering a node can attempt for a reconfiguration once in every 20 minutes

and simultaneous reconfigurations are not allowed. Also note that in Figure 5.4

reduction values are given for the first 120 minutes of the network and Figure 5.7

shows that the percent reduction continues to increase after this period, as long

as the network traffic stays the same.

98

10
d
ev

ic
es

40
d
ev

ic
es

70
d
ev

ic
es

1device/16m
2

1
0
%

3
0
%

5
0
%

7
0
%

9
0
%

0
%

2
0
%

4
0
%

6
0
%

8
0
%

1
0
0
%

1
0
%

3
0
%

5
0
%

7
0
%

9
0
%

0
%

2
0
%

4
0
%

6
0
%

8
0
%

1
0
0
%

1
0
%

3
0
%

5
0
%

7
0
%

9
0
%

0
%

2
0
%

4
0
%

6
0
%

8
0
%

1
0
0
%

C
om

m
un

ic
at

in
g

pa
ir

ra
tio

10
%

30
%

50
%

F
ig

u
re

5.
8:

P
er

ce
n
t

re
d
u
ct

io
n

in
tr

affi
c

lo
ad

on
th

e
b
at

te
ry

-p
ow

er
ed

d
ev

ic
es

fo
r

th
e

d
y
n
am

ic
tr

affi
c

ca
se

(x
-a

x
is

:
b
at

te
ry

-
p

ow
er

ed
d
ev

ic
e

ra
ti

o,
y
-a

x
is

:
p

er
ce

n
t

re
d
u
ct

io
n
)

(r
ep

ri
n
te

d
fr

om
F

ig
.

8
of

[2
]

c ©
S
p
ri

n
ge

r
S
ci

en
ce

+
B

u
si

n
es

s
M

ed
ia

,
L

L
C

20
12

,
w

it
h

k
in

d
p

er
m

is
si

on
fr

om
S
p
ri

n
ge

r
S
ci

en
ce

an
d

B
u
si

n
es

s
M

ed
ia

).

99

Figure 5.8 gives the similar set of results with the ones in Figure 5.4 for the

dynamic traffic case. In the simulations with the dynamic traffic scenario, the

communicating devices are changed in the middle of the simulation period (i.e.,

around 60th minute). As it can be observed from the figures, in the dynamic

traffic case, the percent reductions are slightly less compared to the static traffic

case. This is expected since the benefit obtained due to reconfigurations has effect

for less amount of time in the dynamic traffic case. As the traffic characteristics

change, current topology, which is the result of previous reconfigurations, would

probably not be the optimal one, as far as the load on the battery-powered devices

is concerned. Since, recognizing the current traffic characteristics and adapting

the topology accordingly take time, dynamic traffic patterns have negative impact

on the performance of PSAR.

As shown in Figure 5.9, PSAR is also able to decrease the standard deviation

of the traffic load on the battery-powered devices. This result means that the

load on the battery-powered devices is not only reduced but also distributed more

evenly, as stated earlier. The primary reason for the reduction in the standard

deviation is that since the load on the most of the battery-powered devices are

reduced or completely eliminated, the quantity of the differences is also reduced.

The reduction in the standard deviation exhibits a similar characteristic with the

reduction in the traffic itself, that is, the reduction in the standard deviation

decreases from around 60% to below 20%. The reason for the decrease in the

traffic load reduction described previously, largely applies to this case as well.

The number of battery-powered devices avoided from the communication paths

shows little change as the number of battery-powered devices increases, hence,

the effect of the algorithm remains limited in the variation of the traffic load on

them. As the network size increases, the reduction in standard deviation of traffic

load on the battery-powered devices decreases, due to similar reasons given for

the traffic load case.

Our experiments are designed to run on different device densities to observe

the effect of device density on the effectiveness of PSAR. But as can be seen from

the figures, neither the reduction in traffic load on the battery-powered devices

nor the reduction in the standard deviation of the loads on the battery-powered

100

10
d
ev

ic
es

40
d
ev

ic
es

70
d
ev

ic
es

1device/24m
2

1
0
%

3
0
%

5
0
%

7
0
%

9
0
%

0
%

2
0
%

4
0
%

6
0
%

8
0
%

1
0
0
%

1
0
%

3
0
%

5
0
%

7
0
%

9
0
%

0
%

2
0
%

4
0
%

6
0
%

8
0
%

1
0
0
%

1
0
%

3
0
%

5
0
%

7
0
%

9
0
%

0
%

2
0
%

4
0
%

6
0
%

8
0
%

1
0
0
%

1device/16m
2

1
0
%

3
0
%

5
0
%

7
0
%

9
0
%

0
%

2
0
%

4
0
%

6
0
%

8
0
%

1
0
0
%

1
0
%

3
0
%

5
0
%

7
0
%

9
0
%

0
%

2
0
%

4
0
%

6
0
%

8
0
%

1
0
0
%

1
0
%

3
0
%

5
0
%

7
0
%

9
0
%

0
%

2
0
%

4
0
%

6
0
%

8
0
%

1
0
0
%

1device/8m
2

1
0
%

3
0
%

5
0
%

7
0
%

9
0
%

0
%

2
0
%

4
0
%

6
0
%

8
0
%

1
0
0
%

1
0
%

3
0
%

5
0
%

7
0
%

9
0
%

0
%

2
0
%

4
0
%

6
0
%

8
0
%

1
0
0
%

1
0
%

3
0
%

5
0
%

7
0
%

9
0
%

0
%

2
0
%

4
0
%

6
0
%

8
0
%

1
0
0
%

C
om

m
un

ic
at

in
g

pa
ir

ra
tio

10
%

30
%

50
%

F
ig

u
re

5.
9:

P
er

ce
n
t

re
d
u
ct

io
n

in
st

an
d
ar

d
d
ev

ia
ti

on
of

tr
affi

c
lo

ad
on

th
e

b
at

te
ry

-p
ow

er
ed

d
ev

ic
es

(x
-a

x
is

:
b
at

te
ry

-p
ow

er
ed

d
ev

ic
e

ra
ti

o,
y
-a

x
is

:
p

er
ce

n
t

re
d
u
ct

io
n
)

(r
ep

ri
n
te

d
fr

om
F

ig
.

9
of

[2
]

c ©
S
p
ri

n
ge

r
S
ci

en
ce

+
B

u
si

n
es

s
M

ed
ia

,
L

L
C

20
12

,
w

it
h

k
in

d
p

er
m

is
si

on
fr

om
S
p
ri

n
ge

r
S
ci

en
ce

an
d

B
u
si

n
es

s
M

ed
ia

).

101

10
d
ev

ic
es

40
d
ev

ic
es

70
d
ev

ic
es

1device/24m
2

1
0
%

3
0
%

5
0
%

7
0
%

9
0
%

0
%

2
0
%

4
0
%

6
0
%

8
0
%

1
0
%

3
0
%

5
0
%

7
0
%

9
0
%

0
%

2
0
%

4
0
%

6
0
%

8
0
%

1
0
%

3
0
%

5
0
%

7
0
%

9
0
%

0
%

2
0
%

4
0
%

6
0
%

8
0
%

1device/16m
2

1
0
%

3
0
%

5
0
%

7
0
%

9
0
%

0
%

2
0
%

4
0
%

6
0
%

8
0
%

1
0
%

3
0
%

5
0
%

7
0
%

9
0
%

0
%

2
0
%

4
0
%

6
0
%

8
0
%

1
0
%

3
0
%

5
0
%

7
0
%

9
0
%

0
%

2
0
%

4
0
%

6
0
%

8
0
%

1device/8m
2

1
0
%

3
0
%

5
0
%

7
0
%

9
0
%

0
%

2
0
%

4
0
%

6
0
%

8
0
%

1
0
%

3
0
%

5
0
%

7
0
%

9
0
%

0
%

2
0
%

4
0
%

6
0
%

8
0
%

1
0
%

3
0
%

5
0
%

7
0
%

9
0
%

0
%

2
0
%

4
0
%

6
0
%

8
0
%

C
om

m
un

ic
at

in
g

pa
ir

ra
tio

10
%

30
%

50
%

F
ig

u
re

5.
10

:
P

er
ce

n
t

re
d
u
ct

io
n

in
av

er
ag

e
p
at

h
le

n
gt

h
s

b
et

w
ee

n
co

m
m

u
n
ic

at
in

g
d
ev

ic
es

(x
-a

x
is

:
b
at

te
ry

-p
ow

er
ed

d
ev

ic
e

ra
ti

o,
y
-a

x
is

:
p

er
ce

n
t

re
d
u
ct

io
n
)

(r
ep

ri
n
te

d
fr

om
F

ig
.

10
of

[2
]

c ©
S
p
ri

n
ge

r
S
ci

en
ce

+
B

u
si

n
es

s
M

ed
ia

,
L

L
C

20
12

,
w

it
h

k
in

d
p

er
m

is
si

on
fr

om
S
p
ri

n
ge

r
S
ci

en
ce

an
d

B
u
si

n
es

s
M

ed
ia

).

102

devices are affected by device density significantly.

Although the primary concern of reconfigurations in PSAR is to reduce the

traffic load on the battery-powered devices, it also helps to reduce the average

path lengths between communicating devices, as shown in Figure 5.10. There are

two reasons for this side benefit. First, if there are more than one reconfiguration

alternatives with equal reduction amounts, which is a rare case, then the one with

a shorter path is preferred. Second, a node marks another node as a new parent

candidate only if that node has equal or less depth value, reducing the average

depth of the tree, hence its diameter.

As described in Section 5.2.1 once the network address of devices change due

to reconfigurations, the address changes are advertised using a broadcast message.

As a negative effect, between the time a destination changes its address and the

corresponding source recognizes the change, the data packets are sent to the old

address of the destination, which leads to packet drops. Hence, one of the aims

of the experiments is to see the effect of the algorithm on the packet drops due

to disconnections during the reconfigurations. As presented in Figure 5.11 as the

network size increases from 10 to 70 devices the packet drop rate increases from

below 0.01% to around 0.1%. These results correspond to less than 1, 5 and 20

packet drops on the average for network sizes of 10, 40 and 70 nodes, respectively,

given that 2 hours of communication, CBR with two-seconds intervals and 50%

communicating pair ratio (i.e., 5, 20 or 35 data flows).

The communication overhead of PSAR is also observed in the experiments and

the results are given in Figures 5.12 and 5.13. The communication overhead of

the algorithm is mainly due to registering the power source of the devices, query

the power source of the devices, request connection from a parent candidate,

inform the subtree about an upcoming reconfiguration, and inform the rest of

the network about new network addresses after the reconfiguration. Not all the

communication ends up with a successful reconfiguration, due to reasons such

as not being a better alternative found after the power sources are queried or

because a parent candidate does not accept the new connection. Hence, two

approaches are applied to measure the control packet overhead traffic due to

103

10
d
ev

ic
es

40
d
ev

ic
es

70
d
ev

ic
es

1device/24m
2

1
0
%

3
0
%

5
0
%

7
0
%

9
0
%

0
.0

0
0
0
1

0
.0

0
0
1
0

0
.0

0
1
0
0

0
.0

1
0
0
0

1
0
%

3
0
%

5
0
%

7
0
%

9
0
%

0
.0

0
0
0
1

0
.0

0
0
1
0

0
.0

0
1
0
0

0
.0

1
0
0
0

1
0
%

3
0
%

5
0
%

7
0
%

9
0
%

0
.0

0
0
0
1

0
.0

0
0
1
0

0
.0

0
1
0
0

0
.0

1
0
0
0

1device/16m
2

1
0
%

3
0
%

5
0
%

7
0
%

9
0
%

0
.0

0
0
0
1

0
.0

0
0
1
0

0
.0

0
1
0
0

0
.0

1
0
0
0

1
0
%

3
0
%

5
0
%

7
0
%

9
0
%

0
.0

0
0
0
1

0
.0

0
0
1
0

0
.0

0
1
0
0

0
.0

1
0
0
0

1
0
%

3
0
%

5
0
%

7
0
%

9
0
%

0
.0

0
0
0
1

0
.0

0
0
1
0

0
.0

0
1
0
0

0
.0

1
0
0
0

1device/8m
2

1
0
%

3
0
%

5
0
%

7
0
%

9
0
%

0
.0

0
0
0
1

0
.0

0
0
1
0

0
.0

0
1
0
0

0
.0

1
0
0
0

1
0
%

3
0
%

5
0
%

7
0
%

9
0
%

0
.0

0
0
0
1

0
.0

0
0
1
0

0
.0

0
1
0
0

0
.0

1
0
0
0

1
0
%

3
0
%

5
0
%

7
0
%

9
0
%

0
.0

0
0
0
1

0
.0

0
0
1
0

0
.0

0
1
0
0

0
.0

1
0
0
0

C
om

m
un

ic
at

in
g

pa
ir

ra
tio

10
%

30
%

50
%

F
ig

u
re

5.
11

:
P

ac
ke

t
d
ro

p
ra

te
(x

-a
x
is

:
b
at

te
ry

-p
ow

er
ed

d
ev

ic
e

ra
ti

o,
y
-a

x
is

:
d
ro

p
ra

te
in

p
ac

ke
ts

p
er

se
co

n
d
)

(r
ep

ri
n
te

d
fr

om
F

ig
.

11
of

[2
]

c ©
S
p
ri

n
ge

r
S
ci

en
ce

+
B

u
si

n
es

s
M

ed
ia

,
L

L
C

20
12

,
w

it
h

k
in

d
p

er
m

is
si

on
fr

om
S
p
ri

n
ge

r
S
ci

en
ce

an
d

B
u
si

n
es

s
M

ed
ia

).

104

10
d
ev

ic
es

40
d
ev

ic
es

70
d
ev

ic
es

1device/24m
2

1
0
%

3
0
%

5
0
%

7
0
%

9
0
%

0
.0

%

0
.2

%

0
.4

%

0
.6

%

0
.8

%

1
0
%

3
0
%

5
0
%

7
0
%

9
0
%

0
.0

%

0
.2

%

0
.4

%

0
.6

%

0
.8

%

1
0
%

3
0
%

5
0
%

7
0
%

9
0
%

0
.0

%

0
.2

%

0
.4

%

0
.6

%

0
.8

%

1device/16m
2

1
0
%

3
0
%

5
0
%

7
0
%

9
0
%

0
.0

%

0
.2

%

0
.4

%

0
.6

%

0
.8

%

1
0
%

3
0
%

5
0
%

7
0
%

9
0
%

0
.0

%

0
.2

%

0
.4

%

0
.6

%

0
.8

%

1
0
%

3
0
%

5
0
%

7
0
%

9
0
%

0
.0

%

0
.2

%

0
.4

%

0
.6

%

0
.8

%

1device/8m
2

1
0
%

3
0
%

5
0
%

7
0
%

9
0
%

0
.0

%

0
.2

%

0
.4

%

0
.6

%

0
.8

%

1
0
%

3
0
%

5
0
%

7
0
%

9
0
%

0
.0

%

0
.2

%

0
.4

%

0
.6

%

0
.8

%

1
0
%

3
0
%

5
0
%

7
0
%

9
0
%

0
.0

%

0
.2

%

0
.4

%

0
.6

%

0
.8

%

C
om

m
un

ic
at

in
g

pa
ir

ra
tio

10
%

30
%

50
%

F
ig

u
re

5.
12

:
R

at
io

of
co

n
tr

ol
p
ac

ke
t

tr
affi

c
to

d
at

a
tr

affi
c

(x
-a

x
is

:
b
at

te
ry

-p
ow

er
ed

d
ev

ic
e

ra
ti

o,
y
-a

x
is

:
co

n
tr

ol
p
ac

ke
t

ra
ti

o)
(r

ep
ri

n
te

d
fr

om
F

ig
.

12
of

[2
]

c ©
S
p
ri

n
ge

r
S
ci

en
ce

+
B

u
si

n
es

s
M

ed
ia

,
L

L
C

20
12

,
w

it
h

k
in

d
p

er
m

is
si

on
fr

om
S
p
ri

n
ge

r
S
ci

en
ce

an
d

B
u
si

n
es

s
M

ed
ia

).

105

PSAR. The first approach is to find out the ratio of control packet traffic to the

actual data traffic (i.e., amount of control packet traffic divided by the amount of

data traffic) and the second approach is to measure number of control packets per

reconfiguration (i.e., total number of control packets divided by the total number

of reconfigurations). As shown in Figure 5.12, the control packet ratio is always

below 0.7%. Note that the network size does not have an observable effect on the

ratio, because the control packet traffic and the data traffic increase at the same

rate as the network size increases. The communication overhead is approximately

60, 170, and 260 packets per reconfiguration for the network sizes of 10, 40, and

70 devices respectively, as depicted in Figure 5.13. Hence the number of control

packets per device per reconfiguration is around 6 for the network size of 10, while

it is below 5 for the network sizes of 40 and 70. This is due to the less number

of reconfigurations for the network size of 10 devices in which the effect of initial

communication overhead per reconfiguration is higher.

10 40 70

0

50

100

150

200

250

300

Netw ork Size (Number of Devices)

o

f
C

o
n

tr
o

l P
a

c
ke

ts
 p

e
r

R
e

c
o

n
fi

g
u

ra
tio

n

1 device
per 24 m2

1 device
per 16 m2

1 device
per 8 m2

Figure 5.13: Change in control packet count per reconfiguration with respect to
network size (reprinted from Fig. 13 of [2] c© Springer Science+Business Media,
LLC 2012, with kind permission from Springer Science and Business Media).

106

5.4 Conclusions

In this chapter we propose a distributed algorithm, PSAR, to reduce the traffic

load on the battery-powered devices in tree topology ZigBee networks. The basic

approach is to route the network traffic through mains-powered devices instead

of battery-powered devices as much as possible. In order to achieve this, the

topology must be modified as there is only a single path between any two nodes

in a tree. New topology is decided by local computations with minimal commu-

nication to gather the required information. Simulation results show that the

reduction in traffic routed via battery-powered devices is as high as 80% in some

cases. Simulation results also show that PSAR reduces the standard deviation of

the traffic load on the battery-powered devices so that the energy consumption is

distributed more evenly among those devices. These benefits are obtained with

insignificant communication overhead (due to control packets) and packet losses

(due to disconnections during reconfigurations).

107

Chapter 6

Conclusions and Future Work

In this thesis, we propose several energy-efficient routing solutions for wireless ad

hoc sensor networks consisting of nodes with different power sources to extend the

network lifetime. We mainly focus on WSNs in which battery- and mains-powered

nodes coexist, but our proposed solutions can also be applied in different settings

such as where some of the nodes are powered by energy harvesting methods.

We first provide an approach for power-source aware routing, which basically

tries to construct a backbone structure to route packets from all sensor nodes to

one or more sinks. The constructed backbone is a tree (or a forest depending on

the sink count) containing all the mains-powered nodes and the sinks. It may

also include some of the battery-powered nodes, if the mains-powered nodes and

the sinks do not form a connected topology. Rest of the battery-powered nodes

are connected to this backbone. Since the data packets are forwarded over this

backbone mainly by the mains-powered nodes, precious energy of the battery-

powered nodes is preserved.

Next, based on this approach, we propose an algorithm framework that spec-

ifies the main steps of a procedure to construct such a backbone. The framework

may have different alternative algorithms for some of its steps. Such a framework

gives means to produce different algorithms with the same main behavior but dif-

ferent characteristics by altering the steps with different options. We describe four

108

such centralized algorithms and by means of simulations we evaluate their per-

formance by comparing them with a basic algorithm, which does not distinguish

between battery- and mains-powered nodes. Our simulation results reveal that

favoring mains-powered nodes on the routing paths using our algorithms increases

the network lifetime more than 20% even when the mains-powered node ratio is

as low as 5% and close to theoretical upper-bound when the mains-powered node

ratio is around 25%.

We also propose a distributed version of one of our centralized routing algo-

rithms obtained by using our algorithm framework. We give a detailed design

of our distributed algorithm, called PSABR, in which we include the descrip-

tion of the control messages as well as the node behaviors which are different for

battery- and mains-powered nodes. We also provide extensive simulation results

validating the correctness and robustness of the algorithm and measuring its ef-

fectiveness and efficiency. We show, using ns-2 simulations, that it is possible

to increase network lifetime significantly by favoring mains-powered nodes as the

relay nodes.

In our distributed algorithm, we assumed that the path-cost metric between

two mains-powered nodes is the number of battery-powered nodes on the shortest

path connecting these two mains-powered nodes. Such a cost metric is useful for

reducing the number of battery-powered nodes on the routing paths. Another cost

metric between two mains-powered nodes could be a value inversely proportional

with the number of vertex disjoint paths consisting of battery-powered nodes.

Such an approach can be useful for increasing the fault-tolerance of the routing

tree by increasing the connectivity alternatives of mains-powered nodes in case a

routing path between two mains-powered nodes fails. This cost metric can also be

used to achieve a more balanced energy usage by sending each packet through a

different vertex disjoint path from one mains-powered to another. This approach

can be studied in a future work.

Finally, we propose a distributed routing topology construction and mainte-

nance algorithm, called PSAR, for 802.15.4/ZigBee based wireless networks. In

its basic approach, that is making use of mains-powered nodes and eliminating

109

battery-powered nodes on the routing paths, it is similar to our previous algo-

rithms. On the other hand, it is different than our previous algorithms in some

other aspects. First, it is designed for a specific wireless communication technol-

ogy. Second, it can route peer-to-peer as well as many-to-one traffic. Third, it

can adapt to changes in traffic patterns, not only to node failures. Therefore, it

is suitable for wireless sensor and actuator networks as well, besides WSNs.

We performed extensive ns-2 simulations to investigate the performance of

our PSAR algorithm with respect to different parameters, such as node density,

node count, and mains-powered node ratio. Our simulation results show that our

distributed algorithm can reduce the load on the battery-powered devices and

maintain a more balance energy usage among battery-powered devices, effectively.

As we mention in Chapter 1, we also investigate different aspects of algorithms

introduced in this thesis by analyzing their similarities and differences. In Chap-

ter 4, we give a distributed version of one of our centralized routing algorithms

proposed in Chapter 3. Implementation of a centralized algorithm is relatively

simple, but it introduces additional communication overhead, since the required

global topology information should be collected at a central location and after

route computation, the nodes should be informed about the routing paths. A

distributed algorithm, on the other hand, is more complex, because nodes should

decide the routing paths with limited local information while trying to prevent

anomalies, such as routing loops. But a distributed algorithm can repair local

route failures easily with low overhead by exchanging relatively small amount of

control messages.

We also analyzed the effect of sink count in Chapter 4. As expected, as the

sink count increases, the average path length to the sinks decreases. Interestingly,

however, we observed that sink count may not always have a significant effect on

network lifetime. It depends on the algorithm. For example, as far as the network

lifetime is considered, our algorithms are affected slightly by the number of sinks.

On the other hand, the basic algorithm that we used for comparisons exhibited

around 40% performance increase as the sink count is increased from one to four.

We propose both wireless technology independent algorithms as in Chapters 3

110

and 4 and an algorithm designed for a specific wireless technology, i.e., ZigBee, as

in Chapter 5. While designing wireless technology independent solutions we were

required to work also with some primitive functionalities, but we had some degree

of freedom in design, while, for example, designing our own control messages. On

the other hand, ZigBee provided a rich set of functionality to work with, such as

device discovery and distributed address assignment mechanism, but we also had

to comply with the restrictions imposed by the protocol, since we tried to keep

modifications and extensions to ZigBee at minimum.

For our generic algorithms presented in Chapters 3 and 4, we assumed that

all the sensor nodes have periodic data to send to specific nodes (i.e., sinks),

hence the data rate is rather stable and destinations are fixed. We designed

our algorithms accordingly, that is, we only handled node failures, rather that

trying to handle changes in the traffic patterns. Differently, in our ZigBee specific

algorithm, considering the application areas of ZigBee, we assumed that dynamic

traffic patterns are possible, that is both the source and destinations of the data

flow and its rate can change over time. Hence, in order to achieve an energy

efficient algorithm, we needed to monitor traffic patterns and act accordingly to

change the routing paths.

As future work items, the followings can be investigated based on the studies

presented in this thesis and considering network environments composed of nodes

with heterogeneous power sources.

• Additional centralized and distributed algorithms can be obtained consider-

ing different requirements in WSNs and their performance can be evaluated.

• Routing algorithm frameworks for other types of networks (e.g., wireless ad

hoc, wireless mesh) can be investigated.

• To further extend the performance of backbone-based algorithms, putting

non-backbone nodes into sleep mode, instead of keeping them idle, can be

investigated.

• Power-source-aware algorithms targeting different wireless technologies

(e.g., Bluetooth [9], WiMAX [96]) can be designed.

111

Bibliography

[1] M. Tekkalmaz and I. Korpeoglu, “Power-source-aware Backbone Routing in

Wireless Sensor Networks,” in IEEE International Conference on Commu-

nication Systems (ICCS’10), pp. 46–50, 2010.

[2] M. Tekkalmaz and I. Korpeoglu, “PSAR: Power-source-aware Routing in

ZigBee Networks,” Wireless Networks, vol. 18, no. 6, pp. 635–651, 2012.

[3] S. Roundy, D. Steingart, L. Frechette, P. Wright, and J. Rabaey, “Power

Sources for Wireless Sensor Networks,” in Wireless Sensor Networks,

vol. 2920 of Lecture Notes in Computer Science, pp. 1–17, Springer, Berlin

Heidelberg, 2004.

[4] Z. Watral and A. Michalski, “Selected Problems of Power Sources for

Wireless Sensors Networks,” IEEE Instrumentation Measurement Magazine,

vol. 16, no. 1, pp. 37–43, 2013.

[5] C. Knight, J. Davidson, and S. Behrens, “Energy Options for Wireless Sensor

Nodes,” Sensors, vol. 8, no. 12, pp. 8037–8066, 2008.

[6] “The Network Simulator ns-2.” http://www.isi.edu/nsnam/ns/, 2013.

[Online; accessed 8-July-2013].

[7] X. Ma and W. Luo, “The Analysis of 6LoWPAN Technology,” in IEEE

Pacific-Asia Workshop on Computational Intelligence and Industrial Appli-

cation (PACIIA’08), vol. 1, pp. 963–966, 2008.

[8] ZigBee Specification. ZigBee Standards Organization, December 2006.

112

[9] “Bluetooth.” http://www.bluetooth.com, 2013. [Online; accessed 8-July-

2013].

[10] IEEE Standard for Local and Metropolitan Area Networks – Part 15.4: Low-

Rate Wireless Personal Area Networks (LR-WPANs). IEEE Computer So-

ciety LAN/MAN Standards Committee, June 2006.

[11] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless Sen-

sor Networks: A Survey,” Computer Networks, vol. 38, no. 4, pp. 393–422,

2002.

[12] G. Anastasi, M. Conti, M. D. Francesco, and A. Passarella, “Energy Con-

servation in Wireless Sensor Networks: A Survey,” Ad Hoc Networks, vol. 7,

no. 3, pp. 537–568, 2009.

[13] Y. Xu, J. Heidemann, and D. Estrin, “Geography-Informed Energy Conser-

vation for Ad Hoc Routing,” in 7th ACM Annual International Conference

on Mobile Computing and Networking (MobiCom’01), pp. 70–84, 2001.

[14] M. Zorzi and R. Rao, “Geographic Random Forwarding (GeRaF) for Ad

Hoc and Sensor Networks: Energy and Latency Performance,” IEEE Trans-

actions on Mobile Computing, vol. 2, no. 4, pp. 349–365, 2003.

[15] B. Chen, K. Jamieson, H. Balakrishnan, and R. Morris, “Span: An Energy-

Efficient Coordination Algorithm for Topology Maintenance in Ad Hoc Wire-

less Networks,” Wireless Networks, vol. 8, no. 5, pp. 481–494, 2002.

[16] A. Cerpa and D. Estrin, “ASCENT: Adaptive Self-Configuring Sensor Net-

works Topologies,” IEEE Transactions on Mobile Computing, vol. 3, no. 3,

pp. 272–285, 2004.

[17] P. B. Godfrey and D. Ratajczak, “Naps: Scalable, Robust Topology Man-

agement in Wireless Ad Hoc Networks,” in 3rd IEEE International Sympo-

sium on Information Processing in Sensor Networks (IPSN’04), pp. 443–451,

2004.

113

[18] D. Chu, A. Deshpande, J. M. Hellerstein, and W. Hong, “Approximate Data

Collection in Sensor Networks Using Probabilistic Models,” in 22nd IEEE

International Conference on Data Engineering (ICDE’06), 2006.

[19] D. Tulone and S. Madden, “PAQ: Time Series Forecasting for Approximate

Query Answering in Sensor Networks,” in Wireless Sensor Networks, pp. 21–

37, Springer, 2006.

[20] S. Goel and T. Imielinski, “Prediction-Based Monitoring in Sensor Networks:

Taking Lessons from MPEG,” ACM SIGCOMM Computer Communication

Review, vol. 31, no. 5, pp. 82–98, 2001.

[21] A. Jain and E. Y. Chang, “Adaptive Sampling for Sensor Networks,” in

Proceeedings of the 1st ACM International Workshop on Data Management

for Sensor Networks, in conjunction with VLDB’04, pp. 10–16, 2004.

[22] T. Kijewski-Correa, M. Haenggi, and P. Antsaklis, “Wireless Sensor Net-

works for Structural Health Monitoring: A Multi-Scale Approach,” in ASCE

Structures Congress, 2006.

[23] A. Deshpande, C. Guestrin, S. R. Madden, J. M. Hellerstein, and W. Hong,

“Model-Driven Data Acquisition in Sensor Networks,” in 13th International

Conference on Very Large Databases, pp. 588–599, VLDB Endowment, 2004.

[24] M. Gupta, M. S. Obaidat, and S. K. Dhurandher, “Chapter 13. Energy-

Efficient Sensor Networks,” in Handbook of Green Information and Commu-

nication Systems, pp. 353–369, Academic Press, 2013.

[25] S. Mahfoudh and P. Minet, “Survey of Energy Efficient Strategies in Wireless

Ad Hoc and Sensor Networks,” in 7th IEEE International Conference on

Networking (ICN’08), pp. 1–7, 2008.

[26] R. C. Shah and J. M. Rabaey, “Energy Aware Routing for Low Energy Ad

Hoc Sensor Networks,” in IEEE Wireless Communications and Networking

Conference (WCNC’02), vol. 1, pp. 350–355, 2002.

114

[27] S.-M. Senouci and G. Pujolle, “Energy Efficient Routing in Wireless Ad Hoc

Networks,” in IEEE International Conference on Communications, vol. 7,

pp. 4057–4061, 2004.

[28] H. Hassanein and J. Luo, “Reliable Energy Aware Routing in Wireless Sensor

Networks,” in 2nd IEEE Workshop on Dependability and Security in Sensor

Networks and Systems (DSSNS’06), pp. 54–64, 2006.

[29] M. Cardei and D.-Z. Du, “Improving Wireless Sensor Network Lifetime

Through Power Aware Organization,” Wireless Networks, vol. 11, no. 3,

pp. 333–340, 2005.

[30] V. Rajendran, K. Obraczka, and J. J. Garcia-Luna-Aceves, “Energy-

Efficient, Collision-Free Medium Access Control for Wireless Sensor Net-

works,” Wireless Networks, vol. 12, no. 1, pp. 63–78, 2006.

[31] M. Cardei, J. Wu, and S. Yang, “Topology Control in Ad Hoc Wireless Net-

works with Hitch-hiking,” in 1st Annual IEEE Communications Society Con-

ference on Sensor and Ad Hoc Communications and Networks (SECON’04),

pp. 480–488, 2004.

[32] S. Lin, J. Zhang, G. Zhou, L. Gu, J. A. Stankovic, and T. He, “ATPC: Adap-

tive Transmission Power Control for Wireless Sensor Networks,” in 4th ACM

International Conference on Embedded Networked Sensor Systems, pp. 223–

236, 2006.

[33] W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan, “Energy-

Efficient Communication Protocol for Wireless Microsensor Networks,” in

33rd IEEE Annual Hawaii International Conference on System Sciences,

p. 10, 2000.

[34] K. Kalpakis, K. Dasgupta, and P. Namjoshi, “Maximum Lifetime Data Gath-

ering and Aggregation in Wireless Sensor Networks,” in IEEE International

Conference on Networking (ICN’02), vol. 2, pp. 685–696, 2002.

[35] A. Srinivas and E. Modiano, “Minimum Energy Disjoint Path Routing in

Wireless Ad-hoc Networks,” in 9th ACM Annual International Conference

on Mobile Computing and Networking (MobiCom’03), pp. 122–133, 2003.

115

[36] A. Nasipuri and S. R. Das, “On-demand Multipath Routing for Mobile Ad

Hoc Networks,” in 8th IEEE International Conference on Computer Com-

munications and Networks, pp. 64–70, 1999.

[37] D. Ganesan, R. Govindan, S. Shenker, and D. Estrin, “Highly-Resilient,

Energy-Efficient Multipath Routing in wireless Sensor Networks,” ACM SIG-

MOBILE Mobile Computing and Communications Review, vol. 5, pp. 11–25,

Oct. 2001.

[38] S. Kwon and N. B. Shroff, “Energy-Efficient Interference-Based Routing for

Multi-Hop Wireless Networks,” in 24th Annual Joint Conference of the IEEE

Computer and Communications Societies (INFOCOM’05), 2005.

[39] N. Shrestha, Reception-Awareness for Energy Conservation in Ad Hoc Net-

works. PhD thesis, 2007.

[40] M. Ye, C. Li, G. Chen, and J. Wu, “EECS: An Energy Efficient Cluster-

ing Scheme in Wireless Sensor Networks,” in 24th International Perfor-

mance, Computing, and Communications Conference (IPCCC’05), pp. 535–

540, 2005.

[41] O. Younis and S. Fahmy, “HEED: A Hybrid, Energy-Efficient, Distributed

Clustering Approach for Ad Hoc Sensor Networks,” IEEE Transactions on

Mobile Computing, vol. 3, no. 4, pp. 366–379, 2004.

[42] A. Chamam and S. Pierre, “A Distributed Energy-Efficient Clustering Pro-

tocol for Wireless Sensor Networks,” Computers & Electrical Engineering,

vol. 36, no. 2, pp. 303–312, 2010.

[43] J. N. Al-Karaki and A. E. Kamal, “Routing Techniques in Wireless Sensor

Networks: A Survey,” Wireless Communications, vol. 11, no. 6, pp. 6–28,

2004.

[44] D. Braginsky and D. Estrin, “Rumor Routing Algorthim for Sensor Net-

works,” in 1st ACM International Workshop on Wireless Sensor Networks

and Applications, pp. 22–31, 2002.

116

[45] C. Schurgers and M. B. Srivastava, “Energy Efficient Routing in Wireless

Sensor Networks,” in IEEE Military Communications Conference (MIL-

COM’01), Communications for Network-Centric Operations: Creating the

Information Force, vol. 1, pp. 357–361, 2001.

[46] F. Ye, A. Chen, S. Lu, and L. Zhang, “A Scalable Solution to Minimum

Cost Forwarding in Large Sensor Networks,” in 10th IEEE International

Conference on Computer Communications and Networks, pp. 304–309, 2001.

[47] F. Ye, H. Luo, J. Cheng, S. Lu, and L. Zhang, “A Two-Tier Data Dissemina-

tion Model for Large-Scale Wireless Sensor Networks,” in 8th ACM Annual

International Conference on Mobile Computing and Networking, pp. 148–

159, 2002.

[48] V. Rodoplu and T. H. Meng, “Minimum Energy Mobile Wireless Networks,”

IEEE Journal on Selected Areas in Communications, vol. 17, no. 8, pp. 1333–

1344, 1999.

[49] Q. Li, J. Aslam, and D. Rus, “Hierarchical Power-Aware Routing in Sensor

Networks,” in DIMACS Workshop on Pervasive Networking, 2001.

[50] Y. Yu, R. Govindan, and D. Estrin, “Geographical and Energy Aware Rout-

ing: A Recursive Data Dissemination Protocol for Wireless Sensor Net-

works,” Tech. Rep. UCLA-CSD TR-010023, UCLA Computer Science De-

partment, May 2001.

[51] I. Stojmenovic and X. Lin, “GEDIR: Loop-free Location Based Routing in

Wireless Networks,” in IASTED International Conference on Parallel and

Distributed Computing and Systems, pp. 1025–1028, 1999.

[52] D. Simplot-Ryl, I. Stojmenovic, and J. Wu, Handbook of Sensor Networks,

ch. 11. Energy-Efficient Backbone Construction, Broadcasting, and Area

Coverage in Sensor Networks, pp. 343–380. Wiley Series on Parallel and

Distributed Computing, Wiley, 2005.

[53] B. Das, R. Sivakumar, and V. Bharghavan, “Routing in Ad Hoc Networks

Using a Spine,” 6th International Conference on Computer Communications

and Networks (ICCCN’97), p. 34, 1997.

117

[54] A. Boukerche, X. Cheng, and J. Linus, “Energy-Aware Data-Centric Routing

in Microsensor Networks,” in 6th ACM International Workshop on Modeling

Analysis and Simulation of Wireless and Mobile Systems (MSWIM ’03),

pp. 42–49, 2003.

[55] P. Santi and J. Simon, “Silence is Golden with High Probability: Maintaining

a Connected Backbone in Wireless Sensor Networks,” in Wireless Sensor

Networks, vol. 2920 of Lecture Notes in Computer Science, pp. 106–121,

Springer Berlin Heidelberg, 2004.

[56] F. Dai and J. Wu, “On Constructing k-connected k-dominating Set in Wire-

less Ad Hoc and Sensor Networks,” Journal of Parallel and Distributed Com-

puting, vol. 66, no. 7, pp. 947–958, 2006.

[57] A. Kashyap, S. Khuller, and M. A. Shayman, “Relay Placement for Higher

Order Connectivity in Wireless Sensor Networks,” in 25th IEEE Interna-

tional Conference on Computer Communications (INFOCOM’06), pp. 1–12,

2006.

[58] K. Mikhaylov and J. Tervonen, “Node’s Power Source Type Identification

in Wireless Sensor Networks,” in International Conference on Broadband

and Wireless Computing, Communication and Applications (BWCCA’11),

pp. 521–525, 2011.

[59] W.-G. Seah, Z. A. Eu, and H. Tan, “Wireless Sensor Networks Powered

by Ambient Energy Harvesting (WSN-HEAP) - Survey and Challenges,” in

1st International Conference on Wireless Communication, Vehicular Tech-

nology, Information Theory and Aerospace Electronic Systems Technology

(Wireless VITAE’09), pp. 1–5, 2009.

[60] S. Chalasani and J. Conrad, “A Survey of Energy Harvesting Sources for

Embedded Systems,” in IEEE SoutheastCon, pp. 442–447, 2008.

[61] S. Sudevalayam and P. Kulkarni, “Energy Harvesting Sensor Nodes: Survey

and Implications,” IEEE Communications Surveys and Tutorials, vol. 13,

no. 3, pp. 443–461, 2011.

118

[62] J. Gilbert and F. Balouchi, “Comparison of Energy Harvesting Systems for

Wireless Sensor Networks,” International Journal of Automation and Com-

puting, vol. 5, no. 4, pp. 334–347, 2008.

[63] C. Park and P. Chou, “AmbiMax: Autonomous Energy Harvesting Platform

for Multi-Supply Wireless Sensor Nodes,” in 3rd Annual IEEE Communica-

tions Society on Sensor and Ad Hoc Communications and Networks (SECON

’06), vol. 1, pp. 168–177, 2006.

[64] Y. Tan and S. Panda, “Energy Harvesting from Hybrid Indoor Ambient

Light and Thermal Energy Sources for Enhanced Performance of Wireless

Sensor Nodes,” IEEE Transactions on Industrial Electronics, vol. 58, no. 9,

pp. 4424–4435, 2011.

[65] A. Hande, T. Polk, W. Walker, and D. Bhatia, “Indoor Solar Energy Harvest-

ing for Sensor Network Router Nodes,” Microprocessors and Microsystems,

vol. 31, no. 6, pp. 420–432, 2007. Special Issue on Sensor Systems.

[66] S. Lee, B. D. Youn, and B. C. Jung, “Robust Segment-Type Energy Har-

vester and Its Application to a Wireless Sensor,” Smart Materials and Struc-

tures, vol. 18, no. 9, 2009.

[67] M. Yarvis, N. Kushalnagar, H. Singh, A. Rangarajan, Y. Liu, and S. Singh,

“Exploiting Heterogeneity in Sensor Networks,” in 24th Annual Joint Con-

ference of the IEEE Computer and Communications Societies (INFO-

COM’05), vol. 2, pp. 878–890, 2005.

[68] Y. Ma, S. Dala, M. Alwan, and J. Aylor, “ROP: A Resource Oriented Pro-

tocol for Heterogeneous Sensor Networks,” in Virginia Tech Symposium on

Wireless Personal Communications, 2003.

[69] A. Kansal, J. Hsu, M. Srivastava, and V. Raghunathan, “Harvesting Aware

Power Management for Sensor Networks,” in 43rd Annual Design Automa-

tion Conference (DAC’06), pp. 651–656, ACM, 2006.

[70] T. Voigt, H. Ritter, and J. Schiller, “Utilizing Solar Power in Wireless Sensor

Networks,” in 28th IEEE Annual International Conference on Local Com-

puter Networks (LCN’03), pp. 416–422, 2003.

119

[71] P. Baronti, P. Pillai, V. W. C. Chook, S. Chessa, A. Gotta, and Y. F.

Hu, “Wireless Sensor Networks: A Survey on the State of the Art and

the 802.15.4 and ZigBee Standards,” Computer Communications, vol. 30,

pp. 1655–1695, May 2007.

[72] P. Suarez, C.-G. Renmarker, A. Dunkels, and T. Voigt, “Increasing Zig-

Bee Network Lifetime with X-MAC,” in Workshop on Real-World Wireless

Sensor Networks (REALWSN’08), p. 5, 2008.

[73] D.-H. Cho, J.-H. Song, and K.-J. Han, “An Adaptive Energy Saving Mecha-

nism for the IEEE 802.15.4 LR-WPAN,” Lecture Notes in Computer Science,

vol. 4138/2006, pp. 38–46, 2006.

[74] J.-A. Kim, Y.-H. Jean, and H.-S. Park, “Period Assignment and Optimal

Scheduling for Zigbee-Based Sensor Networks,” in International Joint Con-

ference SICE-ICASE, pp. 1030–1035, Oct. 2006.

[75] Y. Li, W. Ye, and J. Heidemann, “Energy and Latency Control in Low Duty

Cycle MAC Protocols,” in IEEE Wireless Communications and Networking

Conference, vol. 2, pp. 676–682, March 2005.

[76] D. Puccinelli, E. Sifakis, and M. Haenggi, “A Cross-Layer Approach to En-

ergy Balancing in Wireless Sensor Networks,” Lecture Notes in Control and

Information Sciences, vol. 331/2006, pp. 309–324, 2006.

[77] N. Boughanmi and Y. Song, “A New Routing Metric for Satisfying Both

Energy and Delay Constraints in Wireless Sensor Networks,” Journal of

Signal Processing Systems, vol. 51, pp. 137–143, May 2008.

[78] R. Peng, S. Mao-heng, and Z. You-min, “ZigBee Routing Selection Strategy

Based on Data Services and Energy-Balanced ZigBee Routing,” in IEEE

Asia-Pacific Conference on Services Computing (APSCC ’06), pp. 400–404,

Dec. 2006.

[79] H.-C. Huang, Y.-M. Huang, and J.-W. Ding, “An Implementation of

Battery-Aware Wireless Sensor Network Using ZigBee for Multimedia Ser-

vice,” in International Conference on Consumer Electronics, pp. 369–370,

Jan. 2006.

120

[80] N. Shillingford, D. C. Salyers, C. Poellabauer, and A. Striegel, “DETOUR:

Delay- and Energy-Aware Multi-Path Routing in Wireless Ad Hoc Net-

works,” in International Conference on Mobile and Ubiquitous Systems: Net-

working and Services (MobiQuitous’07), pp. 1–8, Aug. 2007.

[81] J. Ma, M. Gao, Q. Zhang, and L. M. Ni, “Energy-Efficient Localized Topol-

ogy Control Algorithms in IEEE 802.15.4-Based Sensor Networks,” IEEE

Transactions on Parallel and Distributed Systems, vol. 18, no. 5, pp. 711–

720, 2007.

[82] F. Cuomo, S. D. Luna, U. Monaco, and T. Melodia, “Routing in ZigBee

Benefits from Exploiting the IEEE 802.15.4 Association Tree,” in IEEE In-

ternational Conference on Communications (ICC’07), pp. 3271–3276, Jun.

2007.

[83] B. Nefzi and Y.-Q. Song, “Performance Analysis and Improvement of ZigBee

Routing Protocol,” in 7th IFAC International Conference on Fieldbuses and

Networks in Industrial and Embedded Systems, vol. 7, 2007.

[84] J. Sun, Z. Wang, H. Wang, and X. Zhang, “Research on Routing Protocols

Based on ZigBee Network,” in 13th International Conference on Interna-

tional Information Hiding and Multimedia Signal Processing (IIH-MSP’07),

pp. 639–642, 2007.

[85] J. Y. Ha, H. S. Park, S. Choi, and W. H. Kwon, “EHRP: Enhanced Hierar-

chical Routing Protocol for ZigBee Mesh Networks,” IEEE Communications

Letters, vol. 11, pp. 1028–1030, Dec. 2007.

[86] T. Kim, D. Kim, N. P. S. eun Yoo, and T. S. Lopez, “Shortcut Tree Routing

in ZigBee Networks,” in 2nd International Symposium on Wireless Pervasive

Computing (ISWPC ’07), Feb. 2007.

[87] R. G. Gallager, P. A. Humblet, and P. M. Spira, “A Distributed Algorithm

for Minimum-Weight Spanning Trees,” ACM Transactions on Programming

Languages and Systems (TOPLAS), vol. 5, no. 1, pp. 66–77, 1983.

121

[88] K. M. Chandy and J. Misra, “Distributed Computation on Graphs: Shortest

Path Algorithms,” Communications of the ACM, vol. 25, pp. 833–837, Nov.

1982.

[89] T. Camilo, J. S. Silva, A. Rodrigues, and F. Boavida, “GENSEN: A Topology

Generator For Real Wireless Sensor Networks Deployment,” in 5th IFIP

Workshop on Software Technologies for Future Embedded and Ubiquitous

Systems, 2007.

[90] M. Stemm and R. H. Katz, “Measuring and Reducing Energy Consump-

tion of Network Interfaces in Hand-Held Devices,” IEICE Transactions on

Communications, vol. E80-B, pp. 1125–1131, August 1997.

[91] “DOT, Graph Description Language.” http://en.wikipedia.org/wiki/

DOT_(graph_description_language), 2013. [Online; accessed 8-July-2013].

[92] “Graphviz - Graph Visualization Software.” http://www.graphviz.org/,

2013. [Online; accessed 8-July-2013].

[93] A. Prince-Pike, Power Characterisation of a Zigbee Wireless Network in a

Real Time Monitoring Application. PhD thesis, AUT University, 2009.

[94] G. Ding, Z. Sahinoglu, B. Bhargava, P. Orlik, and J. Zhang, “Reliable Broad-

cast in ZigBee Networks,” in 2nd Annual IEEE Communications Society

Conference on Sensor and AdHoc Communications and Networks, pp. 510–

520, Sept. 2005.

[95] M.-S. Pan and Y.-C. Tseng, “The Orphan Problem in Zigbee-Based Wireless

Sensor Networks,” in 10th ACM Symposium on Modeling, Analysis, and

Simulation of Wireless and Mobile Systems (MSWiM’07), pp. 95–98, 2007.

[96] J. G. Andrews, A. Ghosh, and R. Muhamed, Fundamentals of WiMAX:

Understanding Broadband Wireless Networking. Pearson Education, 2007.

122

