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ABSTRACT

NOVEL METHODS AND ANALYSIS OF B0 AND B1
GRADIENTS IN MAGNETIC RESONANCE IMAGING

Esra Abacı Türk

Ph.D. in Electrical and Electronics Engineering

Supervisors: Prof. Dr. Ergin Atalar and Prof. Dr. Yusuf Ziya İder

June, 2013

In this thesis, analysis of B0 gradients and B1 fields are performed and novel

methods using B1 gradients instead of B0 gradients are proposed. The first con-

tribution of this dissertation is expressing the nature of the interaction between

the B0 gradient fields and the active implantable medical devices (AIMD). By

utilizing the fact that gradient coils produce linear magnetic field in a volume

of interest, the simplified closed form electric field expressions are defined inside

a homogeneous cylindrical volume. Using these simplified expressions, the in-

duced potential on an implant electrode has been computed approximately for

various lead positions on a cylindrical phantom and verified by comparing with

the measured potentials for these sample conditions. In addition, the validity

of the method has been tested with isolated frog leg stimulation experiments.

The results of both phantom and ex vivo experiments show that if the path of

the implant lead is known, the induced voltage on the lead can be estimated

analytically. The second topic in this dissertation is the Bloch-Siegert (BS) shift

based B1 mapping method. The method is analyzed in terms of the effects of the

off-resonance frequency, the RF pulse shape, and the duration of the RF pulse.

Based on these analyses, a new theoretical model that relates the Fourier trans-

form of the off-resonant BS RF pulse envelope to the phase shift is proposed.

Utilizing Bloch simulations and phantom experiments the proposed frequency

domain expression is verified. The results indicates that the proposed expression

works well even for short pulse durations (< 2ms) and low offset frequencies

(fRF < 500Hz) when the ratio of the RF field and the frequency offset of the

RF pulse is smaller than 0.5. The last topic of this dissertation is on flow and

shear wave imaging with B1 gradients instead of B0 gradients. In flow imaging, a

novel sequence using a Bloch-Siegert pulse generated by a spatially dependent B1

field is proposed. The proposed method is experimentally verified by comparing

the resultant velocity measurements with those obtained by using bipolar flow
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encoding B0 gradients. This comparison demonstrates the feasibility of using BS

shift with B1 gradients in detecting the flow. The usage of B1 gradients is also

proposed to detect shear waves at frequencies in kilohertz range and this method

is experimentaly verified for 2kHz, 3kHz and 4kHz shear frequencies. The studies

in this thesis indicate that extensive analysis of B0 gradients in Magnetic Reso-

nance Imaging (MRI) is important for safety issues, and for scenarios where B0

gradients prove insufficient in encoding due to hardware limitations, utilizing B1

gradients can be considered as an alternative.

Keywords: MRI, B0 gradients, B1 gradients, shear wave imaging, flow imaging.



ÖZET

MR GÖRÜNTÜLEMEDE KULLANILAN B0 VE B1

GRADYANLARIN İNCELENMESİ VE YENİ
YÖNTEMLER

Esra Abacı Türk

Elektrik Elektronik Mühendisliği, Doktora

Tez Yöneticileri: Prof. Dr. Ergin Atalar ve Prof. Dr. Yusuf Ziya İder

Haziran, 2013

Bu tezde, B0 gradyanlar ve B1 alanlar incelenmiş, B1 gradyanların, B0 gradyan-

lar yerine kullanıldığı yeni yöntemler sunulmuştur. Bu tezin katkılarından

ilki, gradyan alanlar ile aktif medikal implantlar arasındaki ilişkinin incelen-

mesiyle ilgilidir. Görüntülenecek bölgede gradyan sargıların yarattığı manyetik

alanın doğrusal olması bilgisinden yararlanılarak, homojen silindirik bir hacim

içerisinde basitleştirilmiş elektrik alan denklemleri elde edilmiştir. Bu denklem-

ler kullanılarak, silindirik bir fantom içerisinde farklı implant kablosu pozisy-

onlarında elektrod üzerinde indüklenebilecek potansiyel yaklaşık olarak hesa-

planmış ve deneysel ölçümlerle karşılaştırılarak doğrulanmıştır. Bunun yanında,

izole edilmiş kurbağa bacağı deneyleri ile de metodun doğruluğu test edilmiştir.

Deney sonuçları, implant kablosunun pozisyonu bilindiğinde, kablo üzerinde

indüklenebilecek voltajın yaklaşık olarak hesaplanabileceğini göstermiştir. Tezin

ikinci konusu Bloch-Siegert (BS) faz kaymasndan yararlanan B1 haritalama

tekniğidir. Kullanılan frekansın rezonans frekansından kayma miktarının, kul-

lanılan RF pulsun şeklinin ve süresinin yönteme etkisi incelenmiştir. Bu anal-

izler sonucunda BS RF pulsun Fourier transformu ile elde edilen faz kayması

arasında yeni bir teorik model sunulmuştur. Bloch simülasyonları ve fantom

deneyleri ile önerilen yöntemin doğruluğu test edilmiştir. RF alanı ile frekans

kayması arasındaki oran 0.5’ten küçük olduğunda, sonuçlar önerilen denklemin

kısa BS RF puls uzunluklarında (< 2ms) ve düşük frekans kaymalarında (fRF <

500Hz) dahi doğru çalıştığını göstermiştir. Tezin son konusu B1 gradyanlar

kullanılarak akış ve kesme dalga haraketinin görüntülenmesi ile ilgilidir. Akış

hareketinin gözlenmesinde, uzaysal değişkeni olan B1 alanlarla oluşturulan BS

pulsunun kullanıldığı yeni bir sekans önerilmiştir. Önerilen yöntemin deneysel

sonuçları günümüzde kullanılmakta olan yöntem sonuçları ile karşılaştırılarak
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doğrulanmıştır. Bu karşılaştırma B1 gradyanların, akış görüntülemede kul-

lanılabilirliğini göstermiştir. Aynı zamanda, B1 gradyanların kilohertz se-

viyesindeki frekanslarda kesme dalga hareketinin görüntülenmesinde kullanılması

önerilmiştir. Bu yöntem, 2kHz, 3kHz ve 4kHz kesme dalga frekansları için de-

nenmiştir. Tezdeki çalışmalarda, MR güvenliği için B0 gradyanlar incelenmiş

ve çeşitli kısıtlamalar sebebiyle B0 gradyanların kullanılamadığı durumlarda B1

gradyanların kullanılabileceği gösterilmiştir.

Anahtar sözcükler : MRI, B0 gradyanlar, B1 gradyanlar, kesme dalga

görüntüleme, akış görüntüleme.
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Chapter 1

Introduction

Magnetic resonance imaging (MRI) is one of the most widely used imaging tech-

nique for clinical purposes due to its high soft tissue contrast. Besides, it is a

non-ionizing radiation technique which makes it more preferable than the other

imaging techniques. However, still extensive analyses and improvements need to

be done to make this imaging tool safer and to enhance its application areas.

In this study, we first provide a derivation of simplified expressions for the elec-

tric field inside the cylindrical homogeneous body model for a perfectly uniform

gradient field [1]. These expressions can be used to understand the nerve stimu-

lation risk for patients with active implantable medical devices (AIMD). During

MRI, the rapidly switched gradient magnetic field induces an electric field and

the magnitude of this field is proportional with the rate of change of the magnetic

field. Since the human nervous system is sensitive to the field variations at low

frequencies [2], an induced electric field may cause nerve stimulation. Previously,

the peripheral nerve stimulation risk has been investigated theoretically and ex-

perimentaly in the absence of any metallic implant [3–10]. The studies [11–14]

show that a time-varying magnetic field causes stimulation by inducing an elec-

tric field on an AIMD inside the human body. However, there is no method in

the literature that provides intuitive information about the stimulation risk when

there is an AIMD. Hence, in this study, a closed-form expressions of electric and

magnetic fields for a linear gradient field formed by an infinitely long cylindrical
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gradient coil is proposed and used to estimate an induced potential along an im-

plant lead by assuming a unipolar pacing model. The accuracy of the proposed

expressions in estimating the stimulation risk is tested with ex vivo frog nerve

experiments.

Our second contribution is on analysis of Bloch-Siegert shift B1 mapping

method [15]. We also present a new approximated Fourier domain expression

to increase the understandability of the method [16]. B1 mapping is generally

used (i) to adjust a specific flip-angle for RF pulses, (ii) to design multichannel

RF pulses, (iii) to obtain T1 maps, (iv) to obtain conductivity maps, and (v) to

calculate local specific absorption rate (SAR). The Bloch-Siegert (BS) shift based

B1 mapping technique is a phase based technique [17]. This technique has a fast

acquisition time. Furthermore, it is insensitive to spin relaxation, repetition time

(TR), starting flip angle, chemical shift, and B0 field inhomogeneities. Due to

these properties, BS shift based B1 mapping became a widely used technique in a

very short time. On the other hand, relatively long off-resonant RF pulse used to

create the BS phase shift may cause high SAR and signal loss due to the T2∗ and

T2 effects. The usage of a short pulse duration for BS pulses becomes important

to minimize these problems. In this study, we first investigated the relationship

between the effects of the off-resonance frequency, the RF pulse shape, and the

duration of the RF pulse. To this end, a general expression based on theoreti-

cal modeling that relates the Fourier transform of the off-resonant BS RF pulse

envelope to the phase shift is proposed. To verify the accuracy of the proposed

expression, extensive Bloch simulations and phantom experiments are performed.

Our final contribution is on imaging of flow and shear waves using B1 gradi-

ents instead of B0 gradients. MR imaging is not only used to provide structural

information, but also information about blood flow, and tumor kinetics can be

obtained with MR imaging. Currently, the blood flow imaging is performed by

using bipolar flow encoding gradients to characterize the cardiovascular func-

tions [18–21]. In this study, a novel solution to encode flow is proposed. In this

method, Bloch-Siegert (BS) phase shifts generated by a spatially dependent B1

field is used to encode flow. The results of the experiments demonstrate that

flow detection by using BS shift with B1 gradients is feasible. Similarly, magnetic
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resonance elastography (MRE) is a non-invasive phase contrast based imaging

technique used for the visualization of elastic properties of biological tissues [22].

Wave images can be obtained from MR phase images when motion sensitization

gradients (MEGs) are synchronized with the shear wave excitation pulse gener-

ated by an electromechanical actuator [23]. Due to the gradient amplitude and

slew rate limitations of the MR system, in order to detect the stiffness of a very

small and stiff tissues (e.g. hyaline cartilage tissue), a new gradient coil has to be

constructed [24]. But using gradient coils at higher frequencies causes an increase

in the eddy currents induced by fast switching rates, and also it causes an increase

in the noise induced by the gradient coils. In this study, to use RF fields with

high B1 gradients and a phase, alternating between 0 and π is proposed to encode

wave motion. With this alternative method, the limitations due to finite rise- and

fall-time of the gradient waveforms and therefore the maximum frequency of the

wave that can be detected in the tissue can be solved. The observed signal with

this method is only due to the motion and therefore the displacement of the shear

wave can be calculated by using the magnitude image. To verify the method, MR

experiments are performed by using agar phantoms at frequencies in the kilohertz

range.

The structure of the dissertation is as follows. In the second chapter, the

derivations of a simple analytical expression for the gradient induced potential

and the experimental verification are discussed. The third chapter is about the

analysis of the Bloch-Siegert shift B1 mapping method and in the same chapter,

the derivations of a new approximated Fourier domain expression are presented.

The fourth chapter presents novel methods using B1 gradient for flow and shear

wave imaging. Finally, we conclude in the fifth chapter.
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Chapter 2

A Simple Analytical Expression

for the Gradient Induced

Potential on Active Implants

During MRI

2.1 Preface

The content of this chapter was presented in part at the Scientic Meetings of

International Society of Magnetic Resonance in Medicine [25] and it was published

in IEEE Transaction on Biomedical Engineering [1]. The text and the figures of

this chapter are based on the journal publication.

2.2 Introduction

Although magnetic resonance imaging (MRI) is known to be a very safe diagnostic

technique, patients with active implantable medical devices (AIMD) are generally

not allowed to be scanned because of the undesirable interaction between the
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electromagnetic field generated by the MRI scanner and AIMD. While the effects

of static magnetic and radio-frequency electromagnetic fields have been widely

studied, the interaction between the implants and the gradient magnetic field has

not been studied in depth.

In MRI, gradient waveforms are usually designed as pulses. Their ramp up and

down times are usually considered as dead times and minimized for maximum

performance. On the other hand, a rapidly switched gradient magnetic field

induces an electric field inside the body that may cause nerve stimulation [26].

In the presence of an AIMD, the risk of stimulation increases [12]. In particular,

when a cardiac pacemaker or an implantable cardioverter-defibrilator is present

in the patient during an MRI examination, possibility of cardiac arrest is a very

serious concern [13,14].

To investigate the peripheral nerve stimulation risk and the threshold value,

in the absence of any metallic implant, theoretical and experimental studies have

been carried out [3–10]. In these studies, electric field distributions are analyzed

for theoretical explanations of the stimulation risk. For the electric field measure-

ments, field probe is used in [10]. However it is useful only for the measurement

of the induced electric field at the body boundary. Furthermore, to define the

induced electric field, both computational methods such as finite difference time

domain [6], and analytical calculations have been performed using inhomoge-

neous and homogeneous human models [3,27,28]. The studies [11–14] show that

a time-varying magnetic field causes stimulation by inducing an electric field on

an AIMD inside the human body. However, in [11, 12], no experimental verifi-

cation is performed and in [13], experiments are only performed for Helmholtz

coil. On the other hand, in [14], experiments were performed on six mongrel

dogs and the induced current was measured with a current recorder. However,

no analytical explanation about the stimulation risk is carried out.

In a safety analysis of AIMD during an MRI examination, a generic and simple

formulation of the induced potential on electrodes of AIMD has a critical impor-

tance. This will give an insight on the worst case conditions for implants. With
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this simple formulation of the induced potential on electrodes and the knowl-

edge of the lead impedance, the appropriate filter for leads to protect the patient

from the stimulation risk during MRI may also be designed. Although in [27]

the induced electric and magnetic field expressions were derived for a homoge-

neous cylindrical body model so that the induced potential on an electrode can

be found, the provided expressions involve complicated Fourier integrals to be

calculated numerically. Hence, they are not suitable for obtaining a generic and

simple induced potential expression.

Therefore, in this study, we provide closed-form expressions of electric and

magnetic fields for a linear gradient field formed by an infinitely long cylindrical

gradient coil. With the simplified field expressions, induced potential causing

stimulation is estimated by assuming a unipolar pacing model. We conducted

phantom experiments to compare the difference between our estimated and actu-

ally measured potential values, and we also tested the accuracy of our expressions

in estimating the stimulation risk with ex vivo frog nerve experiments. Experi-

mental results show that, using the simplified expressions, we can determine the

voltage induced on the implant lead if the path of the implant lead is known.

2.3 Theory

To estimate the stimulation risk, we need to calculate the induced voltage on the

implant lead, which can be deduced from the induced electric field distribution.

During the ramping up and ramping down periods of the gradient fields an in-

duced electric field ~E, is set up in the medium. If there is an implant lead in

the medium, insulated except for the tips and extended in the direction of ~E,

then charge accumulates at the tips immediately to generate an opposing electric

field. The total electric field is equal to the sum of the magnetically induced

electric field and the charge induced electric field. Near the tip of the lead the

charge induced electric field is the dominating one and furthermore because it

has steep variation near the tip it is the cause of stimulation of a nearby nerve

membrane [29].
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The amount of current leaving the lead and flowing in the medium due to

the charge induced electric field is determined by the charge induced potential

difference between the two ends of the implant lead divided by the impedance

which is the sum of the contact impedance and the equivalent impedance of the

medium. This voltage difference can be calculated by integrating the charge

induced electric field along the path of the lead. This integral on the other hand

is equal to the negative of the integral of the magnetically induced electric field

along the path of the lead, since inside the lead the total electric field is almost

zero. This stimulation can be likened to the working of a unipolar pacing system,

where there is a lead connecting the only electrode within the heart with a metal

casing supplying power.

In [27], to calculate the electric field ~E, first the scalar potential V , and

the vector potential ~A inside the gradient coil have been solved by applying an

appropriate boundary condition on the surface of a cylindrical volume. It is

assumed that the conductivity of the volume is uniform and nearly equal to the

average of the conductivity of tissues inside the body as done in similar studies

on the subject. Moreover, since the gradient magnetic field is a low frequency

field, skin depth is assumed to be much larger than the physical size of the

stimulated tissue region, which means that the induced current inside the body

is not a source to generate magnetic field. Similarly, for low-frequencies, the

displacement current is also ignored. Under these assumptions the scalar and

the vector potential equations have been simplified and utilized to provide the

electric and the magnetic field expressions inside the body in [27]. However, the

field expressions provided in [27] are defined in terms of their Fourier transforms

and the coil current distribution is required for the computational analysis of the

field distributions.

In this study, we provide generic simplified electric and magnetic field expres-

sions that do not require the current distribution to be known in advance. In

addition to the same assumptions with [27], we also assumed that the gradient

coil is infinitely long, in other words, gradient field is linear in everywhere.
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According to the general principle of the target field method, for a speci-

fied target field on a cylindrical surface with radius c (i.e., ρ = c), the Fourier

transform of the current flowing in φ-direction can be found as the following [30]:

J
(m)
φ (k) = − B(m)

z (c, k)

µ0kaIm(kc)K ′m(ka)
c ≤ a (2.1)

where B(m)
z (c, k) is the Fourier transform of the target magnetic field in z-direction

over a cylindrical surface with radius c; Im(kc) and Km(ka) are the first and the

second kind modified Bessel functions of order m; k is spatial frequency; a is the

radius of the coil; and µ0 is the permeability of the medium.

As the design parameter, the z-component of the magnetic field is given as

Bz = xGx + yGy + zGz, where Gx, Gy and Gz are the gradient fields in the

x-,y- and z-directions, respectively. For imaging purposes, Gx, Gy and Gz are

constant within the volume of interest. In order to define the target magnetic

fields in the z-direction for x-, y-, and z-gradient coils, the g(z) function that

describes the field variation in the z-direction can be added to the predefined Bz

field expression [31]. Simplification of the field expressions is performed by using

these target fields.

For x-gradient coil, the target field is taken as Bz(c, φ, z) = xGxg(z) =

c cosφGxg(z). To find J
(m)
φ (k), first the Fourier transform, B(m)

z (c, k) for the

given target field is defined as follows:

B(m)
z (c, k) =

1

2π

∫ ∞
−∞

∫ π

−π
e−imφe−ikzBz(c, φ, z)dφdz

=
1

2π

∫ ∞
−∞

∫ π

−π
e−imφe−ikzGxg(z)c cosφdφdz

= Gxc
δ−1m + δ1m

2

∫ ∞
−∞

g(z)e−ikzdz

= Gxc
δ−1m + δ1m

2
ḡ(k), (2.2)

where ḡ(k) =
∫∞
−∞ g(z)e−ikzdz, the Kronecker symbol δjm has the value 1 if j = m

and 0 otherwise, and i =
√
−1. By inserting this B(m)

z (c, k) field into (2.1), the

expression for J
(m)
φ (k) is as follows:

J
(m)
φ (k) = −Gxc(δ−1m + δ1m)ḡ(k)

2µ0kaIm(kc)K ′m(ka)
. (2.3)
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Eq. (2.3) is used in the field expressions defined for a cylindrical volume with

radius ρ0 given in [27], and the field components in the form of Fourier transforms

are derived. Before starting the simplification, the inverse Fourier transform of

each component is expressed as follows:

Eρ(ρ, φ, z) = −ωGx
1

2π

∞∑
m=−∞

eimφ
∫ ∞
−∞

eikz(δ−1m + δ1m)
mḡ(k)

2k2
c

Im(kc)

×
(
Im(kρ)

ρ
− Im(kρ0)I

′
m(kρ)

ρ0I ′m(kρ0)

)
dk, (2.4)

Eφ(ρ, φ, z) = −iωGx
1

2π

∞∑
m=−∞

eimφ
∫ ∞
−∞

eikz(δ−1m + δ1m)
ḡ(k)

2k

c

Im(kc)

×
(
I ′m(kρ)− m2Im(kρ0)Im(kρ)

k2ρρ0I ′m(kρ0)

)
dk, (2.5)

Ez(ρ, φ, z) = −iωGx
1

2π

∞∑
m=−∞

eimφ
∫ ∞
−∞

eikz(δ−1m + δ1m)
mIm(kρ0)

2k2ρ0I ′m(kρ0)

×cIm(kρ)

Im(kc)
ḡ(k)dk, (2.6)

Bρ(ρ, φ, z) = −iGx
1

2π

∞∑
m=−∞

eimφ
∫ ∞
−∞

eikz(δ−1m + δ1m)
cI ′m(kρ)

2Im(kc)

×ḡ(k)dk, (2.7)

Bφ(ρ, φ, z) = Gx
1

2π

∞∑
m=−∞

eimφ
∫ ∞
−∞

eikz(δ−1m + δ1m)
mc

2kρ

×Im(kρ)

Im(kc)
ḡ(k)dk. (2.8)

Note that, the expressions will be different than 0, only for m = 1 and m = −1

indices due to the Kronecker delta functions δ−1m and δ1m.

The function g(z), describing the z variation of the magnetic field, has to be

chosen as given in [30] to satisfy the current continuity condition. Accordingly,

the function g(z) used in this study is chosen as g(z) = 2sinc(2z/b)− sinc(z/b)
and |z| < b region of the function is shown in Figure 2.1. The value of b is related

with the dimension of the coil in the z-direction.

Fourier transform of the gradient field B(m)
z (c, k) is proportional with the

function ḡ(k) as given in (2.2). The Fourier transform of the g(z) function used

in this study is shown in Figure 2.2. As b→∞, the function g(z) approaches to 1,
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b-b

z

1

Figure 2.1: The specified g(z) field.

b

k

0 1/2b 1/b-1/b -1/2b

Figure 2.2: The Fourier transform of the specified g(z) field. As b → ∞, two
pulses approach impulses at 0+ and 0−. However, ḡ(k) remains equal to zero at
k = 0.

in other words the gradient coil becomes infinitely long. On the other hand, ḡ(k)

approaches to two impulses at the left and right of zero while keeping its value zero

at k = 0. Therefore, limb→∞
∫∞
−∞ ḡ(k)f(k)dk = 1/2[limk→0− f(k) + limk→0+ f(k)].

When left and right limits are equal to each other, limb→∞
∫∞
−∞ ḡ(k)f(k)dk =

limk→0 f(k). Accordingly, the field equations can be simplified as follows:

Eρ(ρ, φ, z) = −iωcGx sinφ
[

lim
k→0

eikz
1

k2I1(kc)
(
I1(kρ)

ρ
− I1(kρ0)I

′
1(kρ)

ρ0I ′1(kρ0)
)
]

= −iωGx sinφ(
ρ0

2 − ρ2

4
), (2.9)

Eφ(ρ, φ, z) = −iωcGx cosφ
[

lim
k→0

eikz
1

kI1(kc)
(I ′1(kρ)− I1(kρ0)I1(kρ)

k2ρ0ρI ′1(kρ0)
)
]

= −iωGx cosφ(
ρ0

2 + ρ2

4
), (2.10)
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Ez(ρ, φ, z) = −ωcGx sinφ
[

lim
k→0

eikz
I1(kρ0)I1(kρ)

k2ρ0I ′1(kρ0)I1(kc)

]
= −iωGx sinφρz, (2.11)

Bρ(ρ, φ, z) = −iGxccos(φ)
[

lim
k→0

eikz
I ′1(kρ)

I1(kc)

]
= Gxz cosφ, (2.12)

Bφ(ρ, φ, z) = iGxcsin(φ)
[

lim
k→0

eikz
I1(kρ)

kρI1(kc)

]
= −Gxz sinφ. (2.13)

In the derivation of Eqs. (2.9)-(2.13), derivatives of the modified Bessel func-

tions are substituted with the appropriate recurrence relations for the modi-

fied Bessel functions [32]. Additionally, in order to simplify the limit opera-

tion, small argument approximation for the Bessel functions is used. Note that

since the electric field components vanish with the first order small argument

approximation, the second order approximation is used for simplifications. For

y- and z-gradient coils, target fields are defined as Bz(c, φ, z) = Gyc sinφg(z) and

Bz(c, φ, z) = Gzzg(z), respectively. The field expressions for these gradient coils

are also simplified in the same way applied to the x-gradient coil. The resul-

tant electric and magnetic field expressions in the Cartesian coordinates, in time

domain are obtained as follows [33]:

Ex =
xy

2

dGx

dt
+
ρ20 − x2 + y2

4

dGy

dt
+
yz

2

dGz

dt
, (2.14)

Ey =
−ρ20 − x2 + y2

4

dGx

dt
− xy

2

dGy

dt
− xz

2

dGz

dt
, (2.15)

Ez = −yzdGx

dt
+ xz

dGy

dt
, (2.16)

Bx = zGx −
x

2
Gz, (2.17)

By = zGy −
y

2
Gz, (2.18)

Bz = xGx + yGy + zGz. (2.19)

Note that Eqs. (2.14)-(2.19) are obtained for a homogeneous cylindrical vol-

ume with the assumption that the gradient coil is infinitely long.

With these simplified electric field expressions, the induced voltage on the
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implant lead can be calculated approximately by integrating tangential E field

over the length of the lead.

2.4 Experimental Results

2.4.1 Experimental Setup

In this study, both phantom and ex vivo experiments are performed with a

Siemens Magnetom TimTrio 3T system. In both experiments a fixed MRI se-

quence is applied and the changes are observed. In the MRI sequence, no RF

pulses are used. The magnitude of the gradient pulses is set to 30mTm−1 with

a ramp up and down time of 170µs. The pulse duration is set to 5ms. In the

sequence, there is a 5ms gap between each gradient pulse. In phantom experi-

ments, the implant is aligned along the z axis and the x axis in order to verify

the accuracy of the equations for the field variations in the x and z-directions.

40 different implant lead positions along the z-axis are considered for the ex vivo

experiments. x, y, and z positions of the leads are determined using the MR

magnitude images. Approximate induced potential on the lead is computed the-

oretically by integrating tangential E field over the lead according to the position

data.

ground tip

positioning platforms for leads

uninsulated tip

Figure 2.3: A cylindrical plexiglass phantom with a diameter of 30cm and a
length of 50cm and the positioning of the lead.
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Figure 2.3 illustrates the cylindrical plexiglass phantom with a diameter of

30cm and a length of 50cm used in the experiments. Wires acting as an implant

lead are fixed at different positions in the phantom as shown in Figure 2.3. The

diameter of the wire is 0.8mm. The wires are insulated without shielding. One

tip of the wire is left uninsulated and the other tip going out from the phantom

is connected to an oscilloscope probe. There is another wire attached to this wire

that acts as a ground which is taken as a reference level. As an oscilloscope,

Agilent InfiniiVision DSO7032A is used.

Oscilloscope

insulated coaxial cable

twisted wires

MR Scanner

Plexiglass phantom
full with saline water

Figure 2.4: Experimental setup: Position of the wires, phantom and the oscillo-
scope.

The voltage is carried by insulated coaxial cable to the oscilloscope. Insulated

wire outside the phantom is twisted in order to ensure that the measurement is

only coming from the lead inside the phantom. The experimental setup is shown

in Figure 2.4. For different implant lead positions, MR images of the phantom are

taken and the signal waveform observed from the oscilloscope is stored. For each

lead position, the peak voltage values observed in the oscilloscope are compared

with theoretically computed voltage values for the respective lead positions.

A model of the ex vivo experiment setup is shown in Figure 2.5. These

experiments are performed using the sciatic nerves of frogs. The nerve is kept alive

inside Ringer’s solution. One tip of a wire is soldered to a piece of copper plate,

this plate emulates the pulse generator when there is no electrical component

between the case and the lead, in other words when there is a short circuit

between the case and the lead. The other tip of the wire touches the sciatic

nerve of the frog as shown in Figure 2.5. Only the tip touching the nerve is

left uninsulated (emulates the electrode). The same cylinder used in phantom
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experiments is filled with Ringer’s solution instead of saline water, and the frog

leg and the wire are fixed inside the phantom.

uninsulated tip of the wire

sciatic nerve of the frog

frog leg

insulated wire as a lead

copper plate as a case

Figure 2.5: Location of the frog leg and the lead inside the phantom.

To determine the threshold voltage value that stimulates the frog nerve, the

same signal waveform observed during the phantom experiments is generated

with two signal generators outside the MR scanner. The voltage is applied to the

nerve with the same insulated wire used in the experiments. By changing only the

amplitude of the signal, the minimum voltage value that stimulates the nerve (i.e.,

the minimum voltage value at which a muscular contraction is observed visually)

is determined and defined as the threshold voltage value. In the experiments

under MR scanner for different implant lead positions, the stimulation of the frog

nerve is observed visually. For each implant lead position, with the help of the

MR images, the induced voltage values are computed and compared with the

threshold voltage.

2.4.2 Results and Discussion

By using MATLAB (Mathworks, Natick, MA, USA), the electric field distribu-

tions are obtained by solving the simplified field expressions for an x-gradient

coil with a diameter of 0.65m, 20mTm−1 gradient magnitude and 100Tm−1s−1

gradient switching rate, which are same as the parameters used in [27]. Figure 2.6

shows these electric field distributions for a conducting cylinder with 0.195m ra-

dius.
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Figure 2.6: E-field distribution formed by the equation of our study for x-gradient
coil. (a) Ex(y, x) for z = 0. (b) Ey(x, z) for y = 0. (c) Ez(y, z) for x = 0. (d)
|E(y, z)| for x = 0.

In the linear region of the gradient field, the obtained field patterns show

similar characteristics with those given in [27]. In [27], the peak value of |E|
for the x- coil with a gradient switching rate of 100Tm−1s−1 is calculated as

5.25V/m, whereas at the same location, this value is found to be 6.3V/m using

the simplified expressions. In [3], this peak value is calculated as 4.2V/m. For

the z- coil, the peak value of |E| is calculated as 4V/m in our study and in [27]

it is 3.53V/m.

In the phantom experiments, the measured voltage value for each lead position

is compared with the analytically computed voltage values. Figure 2.7(a) shows

the comparison of the calculated and the measured voltage values when the x-

gradient coil is active and the implant leads are aligned in the z axis along the

body. Figure 2.7(b) shows the same comparison for the activation of y-gradient

coil. Unity line is shown to indicate the difference between the expected and the

measured values.
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Figure 2.7: Comparison of the calculated and the measured voltage values for the
activation of: (a) x-gradient coil, (b) y-gradient coil. (Note that implant leads
are aligned in the z axis along the body)

According to these results, when the lead is aligned along the z-direction,

the root-mean-square error between the calculated and the measured voltages is

calculated as 26mV . The error may be due to the fact that in the course of

deriving the analytical expressions, both the gradient coils and the phantom are

assumed to be infinitely long. However, the lengths are obviously finite in the

experiments. For the z-gradient coil, the simplified field expressions show that Ez

is expected to be zero. In the measurements, for the z-gradient coil, the voltage

level is in 5− 10mV range and noisy, so it is classified as an error.

Figure 2.8 shows the comparison of the calculated and the measured voltage

values when z, y, and x-gradient coils are active, respectively and the implant

leads are aligned in the x axis along the body. According to these results when

the lead is along the x-direction, the root-mean-square error is calculated as

25mV . In order to verify that the provided expressions are independent from

the conductivity, experiments are repeated for different conductivity values and

measurements at the same lead positions are noted. For these experiments, con-

ductivity values are measured as 0.074S/m, 0.25S/m, 0.35S/m, and 0.44S/m.

For 5 different lead positions, similar measurement results are obtained with a

3mV root mean square error. Note that in this study the analytical calculations
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and the experiments are done for only a homogeneous body model and no com-

parison is given between homogeneous and heterogeneous body models unlike

the experiments in [3]. However, if the field calculations cannot be done for each

patient specifically, there will always be calculation errors, therefore simplified

expressions may suffice to obtain approximate values to assess the stimulation

risk.
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Figure 2.8: Comparison of the calculated and measured voltage values for the
activation of: (a) z-gradient coil, (b) y-gradient coil, (c) x-gradient coil. (Note
that implant leads are aligned in the x axis along the body)

In ex vivo experiments, 6 frogs are used and the stimulation risk is observed

at 40 different lead positions. The threshold voltage value for stimulating the frog

nerve is measured as 0.1V outside of the MR scanner. During MR experiments,

coordinates of each lead position is determined by MR images, and for each case

the approximate induced voltage values are calculated for x-, y- and z-gradient

coils. It is seen that for 24 lead positions the calculated voltage values are between
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0.11V and 0.3V . These values are bigger than the measured threshold voltage

and stimulation is observed at these lead positions as expected. For the remaining

16 lead positions, the calculated voltage values are between 0.01V and 0.098V .

These values are smaller than the measured threshold voltage; hence, stimulation

is not expected. However, in the two lead positions where the calculated voltages

are 0.094V and 0.098V , stimulation is also observed. Therefore, we decided to set

an approximate threshold voltage level as 0.09V allowing a 10% difference with

the measured one. Note that this 10% difference can be attributed to 5− 10mV

error margin as mentioned before. A similar difference is also observed in phantom

experiments where the measured voltages are slightly higher than the calculated

ones for some lead locations.

The error in these simplified expressions needs to be investigated for non

cylindrical and heterogeneous objects like human body. Furthermore, in this

work we assumed that the implantable pulse generator (IPG) case is directly

connected to the lead. Although this may be considered as a worst case condition,

the impedance between the lead and the IPG and the other circuit elements (e.g.

EMI capacitors) used to enhance the MRI compatibility of the AIMD can also

be put into the model and with this model gradient induced current passing

through the lead can be calculated with the knowledge of the induced voltage.

This analysis with experimental verifications is planned as a future study.

2.5 Conclusion

In this study we derived simplified expressions for the electric field inside the

cylindrical homogeneous body model for a perfectly uniform gradient field. These

simple expressions may be used to understand the nerve stimulation risk when

there is an implant. Both phantom and ex vivo experiments are performed and

results show that if the path of the implant lead is known, the induced voltage

on the lead can be estimated analytically.
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Chapter 3

An Approximate Fourier Domain

Expression for Bloch-Siegert

Shift

3.1 Preface

This chapter is based on an article that is submitted to Magnetic resonance

in Medicine. The content of this chapter was presented in part at the Scientic

Meetings of International Society of Magnetic Resonance in Medicine in 2012 and

2013 [15,16].

3.2 Introduction

The Bloch-Siegert (BS) based B1 mapping technique was proposed by Sacol-

ick [17] as a phase-based B1 mapping technique. This technique utilizes the

fact that applying an off-resonance RF field after an excitation RF adds phase

to the excited spins and for a large off-resonance frequency, the added phase is
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directly proportional to the square of the B1 field magnitude [34]. This tech-

nique is insensitive to spin relaxation, repetition time (TR), starting flip angle,

chemical shift, and B0 field inhomogeneities. However, this technique has some

limitations. For example, the sequence has a long echo time (TE) compared to

a standard sequence without BS pulses. Furthermore the sequence causes high

Specific Absorption Rate (SAR) due to the relatively long off-resonant RF pulse

used to create the BS phase shift.

To improve this technique, there have been studies on the optimization of

the sequence and the off-resonant RF pulse shape [35–41]. In [35], the BS pulse

shape was optimized to both maximize the sensitivity of the measurement of

B1 magnitude for given SAR and T2 values and also to decrease TE and SAR

values. In the same study, the authors also mentioned that crusher gradients

were added before and after a BS pulse to minimize the artifacts due to on-

resonant excitation by the BS pulse. In [36], an adiabatic RF pulse design was

introduced to increase the sensitivity of the measurement of |B1|. In [37], a faster

acquisition of the B1 information and a minimized signal loss due to T2∗ effects

were achieved. In [38], a new sequence that caused a lower SAR than that of a spin

echo sequence with a similar signal-to-noise ratio (SNR) was proposed. In [39],

a new sequence with an optimized BS pulse and echo-planar and spiral readouts

was used to reduce SAR and improve the scan efficiency. In [40], an algorithm

to design an optimized BS pulse was proposed and with the experiments it was

shown that better phase sensitivity can be obtained in a shorter time and with

lower on-resonance excitation than the Fermi pulse with designed pulses. In [41],

reducing the off-resonance frequency to improve the sensitivity of the BS based

B1 mapping method was proposed. In the same study, the effects of the crusher

gradients were also discussed. All of these studies improve the weaknesses of

the BS based B1 mapping technique by modifying the sequence or the RF pulse

shape.

In this study, our aim is to describe the parameters that affect the BS based

B1 mapping method and to investigate the relationship between the effects of the

off-resonance frequency, the RF pulse shape, and the duration of the RF pulse.

To this end, we propose a general expression based on theoretical modeling that
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relates the Fourier transform of the off-resonant BS RF pulse envelope to the

phase shift. To verify the accuracy of the proposed expression, we conducted

extensive simulations and experiments. These simulations and experiments show

that the proposed frequency domain expression is more accurate than the time

domain expression that was proposed by the authors of the BS shift based B1

mapping method [17].

3.3 Theory

In the BS Shift based B1 mapping method, an off-resonant RF pulse is applied

after an excitation RF pulse to add a phase shift to the excited spins. The

amount of phase shift (φBS) depends on both the applied RF field (B+
1 (t)) and

on the frequency offset of the RF pulse (ωRF (t)) from the resonance frequency

(ω0) [34, 42]. In [17], it has been shown that if ωRF (t) is much higher than

|ω1(t)| = γ|B+
1 (t)|, where γ is the gyromagnetic ratio, then in the ω0 rotating

frame the phase shift is directly related to the time integral of the square of

|ω1(t)|, as given in Eq. (3.1):

φBS ≈ φTD =
∫ T

0
ωTD(t)dt. (3.1)

where ωTD(t) = |ω1(t)|2
2ωRF (t)

.

Because long Bloch-Siegert pulse durations cause long TE values, which results

in signal loss due to the T2∗ and T2 effects, the use of a small pulse duration

becomes important. However, as our preliminary results have shown [33], when

a small pulse duration is used, for the same peak |B1| value, there is a significant

difference between the actual phase shift (φBS), as obtained by the solution of

the complete Bloch equations, and the phase shift given by Eq. (3.1), even if the

condition ωRF (t) >> |ω1(t)| is satisfied. This difference (φres) is defined as:

φres = φBS − φTD. (3.2)
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In fact, φres can be directly obtained if the Bloch equations are solved in the

ω0 + ωTD(t) rotating frame, because by doing so, the phase accumulation due to

ωTD(t) is excluded from the actual phase shift in the ω0 rotating frame. (Note

that this rotating frame is named as BS time domain (BSTD) rotating frame.)

In BSTD rotating frame, B+
1 (t) is defined as:

B+
1 (t) = Be

1(t)exp
[
i
( ∫ t

0
(ωRF (τ)− ωTD(τ))dτ + θ + θ0

)]
, (3.3)

where Be
1(t) is the envelope, θ is the phase of the applied Bloch-Siegert shift RF

pulse, and θ0 is the accumulated phase until the beginning of the BS pulse.

The Bloch equation in matrix form in the BSTD rotating frame is given as:

d

dt


Mx

My

Mz

 =


0 −ωTD(t) −ω1y(t)

ωTD(t) 0 ω1x(t)

ω1y(t) −ω1x(t) 0



Mx

My

Mz

 (3.4)

where ω1x(t) and ω1y(t) are the real and imaginary parts of ω1(t), respectively as

follows:

ω1x(t) = γBe
1(t) cos

( ∫ t

0
(ωRF (τ)− ωTD(τ))dτ + θ + θ0

)
, (3.5)

ω1y(t) = γBe
1(t) sin

( ∫ t

0
(ωRF (τ)− ωTD(τ))dτ + θ + θ0

)
. (3.6)

In the BSTD rotating frame, the magnetization vector at time zero (the time

that BS RF pulse is started) is M(0) = (M0 0 0)T , where T stands for the vector

transpose. Under this condition, the time derivative of Mx is very small, and it

is assumed that Mx remains almost constant throughout the Bloch-Siegert RF

pulse. Therefore the system of differential equations is reduced to:

d

dt

 My

Mz

 =

 0 ω1x(t)

−ω1x(t) 0

 My

Mz

+

 ωTD

ω1y(t)

M0. (3.7)
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Eq. (3.7) is rewritten for My and Mz magnetization components as the fol-

lowing:

d

dt
My(t) = ω1x(t)Mz(t) + ωTDM0, (3.8)

d

dt
Mz(t) = −ω1x(t)My(t) + ω1y(t)M0. (3.9)

Note that ω1x = γBe
1(t) cos (

∫ T
0 (ωRF (t) − ωTD)dt + θ + θ0) and ω1y =

γBe
1(t) sin (

∫ T
0 (ωRF (t)−ωTD)dt+θ+θ0). These differential equations are written

as a single differential equation in the form of Myz where Myz = My + iMz

d

dt
Myz(t) = −iω1x(t)Myz(t) +

(
ωTD + iω1y(t)

)
M0. (3.10)

The solution of this first order differential equation can be written as:

Myz(t) = f(t)exp
(
− i

∫ t

0
ω1x(s)ds

)
. (3.11)

To find f(t), this solution is plugged into Eq. (3.10) As a result, the solution for

Myz at time T is found to be the following.

Myz(T ) = M0

∫ T

0

(
ωTD + iω1y(t)

)
exp

(
− i

∫ T

t
ω1x(s)ds

)
dt. (3.12)

To simplify the solution, the exponential term is simplified by using the fact that

ωRF (t) >> |ω1(t)| because ω1x(s) is a sinusoidal function and the integration

result only becomes maximum during its one cycle, which gives
2γ|Be

1 |
ωRF

, when

Be
1(t) is a slowly varying function compared to ωRF (t). Therefore :

exp
(
− i

∫ T

t
ω1x(s)ds

)
≈ 1− i

∫ T

t
ω1x(s)ds, (3.13)
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With this simplification, the solution can easily be separated into its real and

imaginary parts, and the components My and Mz can be obtained as:

My(T ) ≈ M0

∫ T

0
ωTD(t)dt+M0

∫ T

0

∫ T

t
ω1y(t)ω1x(s)dsdt, (3.14)

Mz(T ) ≈ M0

∫ T

0
ω1y(t)dt−M0

∫ T

0

∫ T

t
ωTD(t)ω1x(s)dsdt. (3.15)

Because we assume that Mx(T ) = M0 and My(T ) are small, a phase can be

found as φ = −tan−1My(T )
M0
≈ −My(T )

M0
(note that the minus sign is due to the fact

that the phase is defined in left-hand direction), and the expression for φres in

BSTD rotating frame becomes:

φres ≈ −
∫ T

0

∫ T

t
ω1y(t)ω1x(s)dsdt−

∫ T

0
ωTD(t)dt (3.16)

To find the phase shift defined in the ω0 rotating frame, which is the actual

phase shift, we add the term φTD to φres as given in Eq. (3.2). Note that the

term θ0, which is the phase accumulated prior to the beginning of the BS pulse,

is also subtracted to get the phase shift in the ω0 rotating frame:

φBS ≈ −
∫ T

0

∫ T

t
ω1y(t)ω1x(s)dsdt− θ0 (3.17)

Because the contribution of θ0 is canceled by using the difference of two acquisi-

tions taken with positive and negative offset frequencies, it is ignored in the rest

of the equations. Note that ω1x(s) and ω1y(t) remain the same values as defined

in BSTD frame.

To find a simplified solution for φBS, the limits of the integration are changed

by adding a unit step function (u(t)) as follows:

φBS ≈ −
∫ T

0

∫ T

0
ω1y(t)ω1x(s)u(s− t)dsdt. (3.18)

ω1x(t) and ω1y(t) are expressed in terms of ω1(t) and ω∗1(t), where ω∗1(t) is

the complex conjugate of ω1(t), and Eq. (3.18) is rewritten in terms of ω1(t) and

ω1(t)
∗ as the following:
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φBS ≈ −
∫ T

0

∫ T

0

ω1(t)− ω∗1(t)

2i
× ω1(s) + ω∗1(s)

2
u(s− t)dsdt. (3.19)

To obtain a Fourier relation instead of a ω1(t) term, we used the Fourier

relation
∫∞
−∞Ω1(ft)exp(i2πftt)dft as follows:

φBS ≈ −
∫ T

0

∫ T

0

∫ ∞
−∞

∫ ∞
−∞

Ω1(ft)− Ω∗1(−ft)
2i

ei2πftt
Ω1(fs) + Ω∗1(−fs)

2
ei2πfssu(s−t)dfsdftdsdt.

(3.20)

The variables t and s are replaced with the new variables q and r, where

s = (r + q)/
√

2 and t = (q − r)/
√

2. By changing the order of the integrals and

using the relation:

∫ ∞
−∞

u(
√

2r)e(i2πfrr)dr = −
(

1

2
δ(fr) +

1

i2πfr

)
(3.21)

the final expression becomes the following:

φBS ≈ −
∫ ∞
−∞

|Ω1(f)|2

4πf
df − Ω2

1(0)− Ω∗12(0)

8i
(3.22)

Because ω1(t) is defined in a BSTD rotating frame, (ω0 +ωTF rotating frame)

such as;

ω1(t) = γBe
1(t)exp

[
i
( ∫ t

0
(ωRF (τ)− ωTD)dτ

)]
exp(i(θ + θ0)), (3.23)

the term ei(θ+θ0) stands out in the Ω1(f) term. The second part of Eq. (3.22) also

includes these phase terms. On the other hand, because the phase difference of

two acquisitions taken with positive and negative offset frequencies is used and

the term ei(θ+θ0) does not change, we can ignore this part. So, the expression

simplifies to the following relation:

φBS ≈ −
∫ ∞
−∞

|Ω1(f)|2

4πf
df (3.24)
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This expression is simplified by using the Hilbert transform. The Hilbert

transform of a function is defined as Hg(t) = 1
π

∫−∞
−∞

g(τ)
t−τ dτ . The Hilbert trans-

form is defined as the Cauchy principal value of the integral in this equality

whenever the value of the integral around the pole t = τ exists. The Cauchy

principal value is obtained by considering a finite range of integration that is

symmetric about the point of singularity and the region with the singularity is

excluded. While the interval of the integral approaches ∞, the length of the

excluded interval approaches zero. The Hilbert transform of g(t) at t = 0 can be

expressed as Hg(0) = − 1
π

∫−∞
−∞

g(τ)
τ

dτ . With this information, the Fourier domain

approximation of the Bloch-Siegert shift becomes the following:

φBS ≈ φFD = −
∫ ∞
−∞

|Ω1(f)|2

4πf
df =

H|Ω1|2(0)

4
(3.25)

To find the peak of the B1 field from the phase in ωRF (t) >> |ω1(t)| region

Eq. (3.25) is changed to the following equation:

B1peak ≈
1

γ

√
4φFD

H|Ωnorm|2(0)
(3.26)

where Ω1(f) = γB1peakΩnorm(f).

As an example, Eq. (3.25) is analytically solved for a hard pulse with a pulse

duration (T) and constant offset frequency (ωRF ) in ωRF (t) >> |ω1(t)|. The

resultant expression becomes as the following:

φFD =
(γB1peak)

2T

2(ωRF )

[
1− sinc

(ωRF

π
T
)]
. (3.27)

Analysis of this new approximated frequency domain BS relation(Eq. (3.25))

for hard, Fermi and Shinner-Le Roux (SLR) pulse shapes and a comparison of the

results with (i) the solution of the time domain approximated relation (Eq. (3.1)),

(ii) the results of the Bloch simulations, and (iii) the results of the experiments

are given in the following section.

26



3.4 Methods

To investigate the parameters that affect the Bloch-Siegert shift based B1 map-

ping method and to verify Eq. (3.25) expressed in the theory section, Bloch

simulations and MR experiments are performed for different pulse shapes. For

the Bloch-Siegert B1 mapping method, choosing the off-resonant RF pulse shape

properly is critical because this affects the phase value, the minimum offset fre-

quency that can be used, and the minimum undesired magnetization tilting effect.

In [17], the hard, Fermi, adiabatic hyperbolic secant and the adiabatic tanh/tan

pulses were compared in terms of their frequency range that contains 99% of spin

excitation and the constant, KBS, describing the phase shift. As a result, the

Fermi pulse was chosen for the experiments. In our experiments, however, only

hard, Fermi and SLR pulse shapes are used. The envelope of the Fermi pulse is

defined by the expression 1
1+e(|(t)|−t0)/a

, where the parameters t0 and a are defined

as T = 2t0 + 13.81a and t0 = 10a, and T is the pulse duration. The SLR pulse

is designed with 0.5% passband ripple, 1% reject ripple and 0.3 kHz bandwidth

by using VESPA-RFPulse tool [43]. In Figure 3.1, we present the pulse shapes

and their frequency domain patterns. Pulse magnitudes are normalized in such a

way that the same phase values can be obtained for an 8 ms pulse duration and

a 4 kHz offset frequency.
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Figure 3.1: (a) Pulse shapes used in the analysis. (b) Fourier transforms of each
pulse with a 4 kHz offset frequency and a 8 ms pulse duration.

The experiments were performed in the 3T scanner (MAGNETOM Trio a
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Tim System, Siemens Healthcare, Erlangen, Germany) with a cylindrical 1900 ml

Siemens phantom with 10 cm diameter (3.75% NISO4x6H2O + 5% NaCl). Dur-

ing the experiments, a FLASH sequence modified by adding an off-resonant pulse

after the excitation RF was used. The excitation RF was a sinc pulse with a 1 ms

duration. Crusher gradients with 1 ms duration in slice selection direction were

added to the sequence before and after the off-resonant pulse [41], and the phase

encoding gradient was applied before the off resonant RF pulse to avoid encoding

the undesired off-slice spins that were excited by the off-resonant RF pulse. Fig-

ure 3.2 shows the modified sequence. In each experiment, two phase images were

acquired by using a BS pulse with positive and negative offset frequencies, and

phase shifts were calculated by taking the difference of these two phase images.

For each experiment, imaging parameters were set to 150 ms TR, 5 mm slice

thickness, 256 × 256 in-plane resolution, and 200 mm field of view (FOV). The

|B+
1 | value calculated by Eq. (3.1) using the phase shift obtained with a Fermi

pulse with an 8 ms pulse duration and a 4kHz offset-frequency for a given RF

voltage, is used to establish the calibration factor between the peak |B+
1 | and the

applied RF voltage level. For RF transmission and reception, a transmit/receive

rectangular coil with 10× 23 cm dimension and tuned by 8 capacitors was used.

Note that the flip angle is space dependent due to the usage of the surface coil.

Therefore, for each experiment, data has been collected from the same region

with a maximum and constant B+
1 field distribution.

+ω
RF

RF

Readout

Phase

Slice Selection

-

Figure 3.2: Pulse sequence used in the experiments. Crusher gradients (encircled
by lines) are used to reduce out of slice effects.

While investigating the effect of the pulse duration through experiments and
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simulations for hard and Fermi pulse shapes, the pulse duration was varied be-

tween 150 µs and 2ms, with 50 µs steps, and the SLR pulse shape duration was

varied between 300 µs and 2 ms, with 50 µs steps. TE values are set according

to the BS pulse from 6.5 ms to 8.5 ms. The experiments were repeated 7 times

for each pulse and pulse duration. The pulse duration versus phase plots were

computed with the mean values and the standard deviation computed across the

7 repeats.

In the Bloch-Siegert shift based B1 mapping technique, the sensitivity of the

phase shift is inversely proportional to ωRF , as seen in Eq. (3.1). To obtain a

more accurate |B+
1 | estimate one may prefer to decrease ωRF . The maximum |B+

1 |
value that can be detected is then limited by the requirement ωRF >> |ω1(t)|. To

understand the relation between the phase and the off-resonance frequency and

to compare the results of frequency domain approximation (Eq. (3.25)) and time

domain approximation (Eq. (3.1)), the results of the simulations and experiments

for different offset frequencies were investigated. For this analysis, hard, Fermi,

and SLR pulse shapes with an 8 ms pulse duration were used. The TE value

was set to 14.5 ms in these experiments. According to the reference |B+
1 | value

obtained with a Fermi pulse with an 8 ms pulse duration and a 4 kHz offset-

frequency and by using the linear relation between the induced B1 field and the

applied voltage, the magnitudes of the B1 fields were acquired and the phase shifts

obtained at the same points on the phase image were noted for each applied

voltage. This experiment was repeated for 100 Hz, 1 kHz and 4 kHz offset

frequencies. The experiments were repeated 5 times for each pulse and offset

frequency. The B+
1 versus phase plots were computed with the mean values and

the standard deviation computed across the 5 repeats.

To correct for the effect of the B0 offset frequency in the simulations, especially

for small offset frequencies, B0 maps were obtained by using two gradient echo

images with different echo times (i.e. ∇TE = 1 ms), while the other imaging

parameters were kept constant.

For the simulations, the Bloch equations were solved numerically in MATLAB

(Mathworks, Natick, MA, USA) by using rotation matrices in an ω0 rotation
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frame. The magnetization was described by three 10× 10 matrices in x, y and z

directions. The elements of the matrices were located at a distance of 1.56 mm

from each other on the x-y plane. Initially magnetization in z-direction was one,

and the magnetizations in x and y directions are zero. Crusher gradients were

also added to the simulations.

3.5 Results

3.5.1 Effect of the Pulse Duration

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

5

10

15

20

25

30

35

40

45

50

55

P
h

a
s
e

(d
e

g
re

e
)

(a)

(c)

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

5

10

15

20

25

30

35

40

45

50

55
P

h
a

s
e

 (
d

e
g

re
e

)

(b)
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

5

10

15

20

25

30

35

40

45

50

55

P
h
a
s
e
 (

d
e
g
re

e
)

Bloch Simulations
The result of time domain app. (Eq. 1)
The result of frequency domain app. (Eq. 14)
Experimental data*

(Eq.(3.25))
(Eq.(3.1))

Figure 3.3: Phase difference for different pulse durations for (a) Hard, (b) Fermi,
and (c) SLR pulses with a 2 kHz offset frequency.

In Figure 3.3, we present a comparison of the phase shifts obtained by simu-

lations, by MR experiments, by applying Eq. (3.1), and by applying Eq. (3.25)

30



for different pulse durations and for hard, Fermi, and SLR pulse shapes with a

2 kHz offset frequency. From the applied voltages, the peak |B+
1 | is estimated

as 12.6 µT for the hard pulse, 16.2 µT for the Fermi pulse, and 21.1 µT for the

SLR pulse, where (ω1/ωRF ) ≤ 0.5. These peak |B+
1 | values were appropriate to

obtain a similar range of phase shifts for hard, Fermi and SLR pulse shapes. As

seen in the figure, the results of the experiments follow the results of the Bloch

simulations. Furthermore, the phase shifts obtained by Eq. (3.25) and the phase

shift obtained by the Bloch simulations exhibit a similar behavior in terms of both

their dependence on pulse duration and their small differences. However, there is

an appreciable difference between the results of Eq. (3.1) and the results of the

simulations. This difference is more significant for Fermi and SLR pulses than the

difference observed for the hard pulse. To compare the results quantitatively, the

absolute maximum phase differences of closed form expressions (φTDand φFD) rel-

ative to simulation and experimental results have been calculated. The absolute

maximum phase differences between φFD and the Bloch simulations is less than

1 degree for all pulse shapes. However, for hard, Fermi and SLR pulse shapes, the

absolute maximum phase differences between φTD and the Bloch simulations are

2.5 degrees, 4 degrees and 5 degrees at 0.6 ms pulse duration corresponding to

20%, 24% and 25% errors, respectively. Note that the absolute maximum phase

differences between φTD and the experiments are around 6 degrees at 0.6 ms

pulse duration for Fermi and SLR pulse shapes.

Figure 3.4 demonstrates the difference between the B1 maps calculated by

φTD and φFD expressions when a Fermi pulse with 0.6ms pulse duration and

2kHz offset frequency is used as a BS pulse. Unlike the previous experiments,

body coil was used for transmission and 12 channel Siemens head coil was used

for reception in these experiments. (Flip angle was set as 60◦, FOV=200 mm,

TR/TE=100ms/14.5ms (for BS pulse with 8ms pulse duration)-7ms (for BS pulse

with 0.6ms pulse duration) and matrix=256× 256.) Figure 3.4-(a) shows the ref-

erence B1 map obtained by a Fermi pulse with 8ms pulse duration and 4kHz offset

frequency. Note that for this reference map, both φTD and φFD approximations

give the same results. When pulse duration and offset frequency are set to the

lower values such as 0.6ms and 2kHz, respectively for the same RF voltage, the
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Figure 3.4: (a) Reference B1 map (in terms of T) calculated with φBS relation
(φTD ≈ φFD) for a Fermi pulse with 8ms duration and 4kHz offset frequency
where (ω1/ωRF ) ≤ 0.1, (b) B1 map (in terms of T) calculated with φTD re-
lation for a Fermi pulse with 0.6ms duration and 2kHz offset frequency where
(ω1/ωRF ) ≤ 0.2, (c) B1 map (in terms of T) calculated with φFD relation for a
Fermi pulse with 0.6ms duration and 2kHz offset frequency where (ω1/ωRF ) ≤ 0.2,
(d) Difference between the reference B1 map and B1 map calculated with φTD
relation, (e) Difference between the reference B1 map and B1 map calculated with
φFD relation.

difference between the reference B1 map and the B1 map calculated with φTD

becomes significant as shown in Figure 3.4-(d).

3.5.2 Effect of the Off-Resonance Frequency

In Figure 3.5, we present a comparison of the phase shifts obtained through Bloch

simulations, observed in the experiments, obtained by Eq. (3.1), and obtained by

Eq. (3.25) for different B1 magnitudes and offset frequencies. From the applied

voltages, the excitation RF peak |B+
1 | is estimated to be 29 µT . Although,

at 1kHz and 4kHz frequencies, all results match very closely, when the offset
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frequency is 100Hz, the results of Eq. (3.1) start to deviate from the results

of Bloch equations and from the results of experiments, whereas Eq. (3.25) gives

closer results. It should be noted that at low offset frequencies, precise knowledge

of the B0 field and therefore, the B0 frequency offset is critically important. In

these experiments, the B0 offset frequency was measured as 25 Hz, and this was

taken into account during the simulations.

With the data shown in Figure 3.5, percent errors (i.e. |φn1−φn2|/(φn1)×100)

between the results of the simulations and the results of Eq. (3.1) and also between

the simulations and the results of Eq. (3.25) were calculated to investigate the

accuracy of the equations in relation to the approximation ωRF >> ω1. The error

for each pulse shapes was calculated as smaller than 3% at 4 kHz offset frequency

for up to 29 µT B1 values for which (ω1/ωRF ) ≤ 0.3 applies. For the Fermi

pulse shape with 1 kHz offset frequency the error was smaller than 5 %, when

(ω1/ωRF ) ≤ 0.5. For an SLR pulse shape with 1 kHz offset frequency, the error

between the result of the simulations and the results of Eq. (3.1) was smaller than

5%, when (ω1/ωRF ) ≤ 0.55 and the error between the results of the simulations

and the results of Eq. (3.25) was smaller than 5%, when (ω1/ωRF ) ≤ 0.62. For

all of the pulse shapes with 100 Hz offset frequency, the error between the results

of the simulations and the results of Eq. (3.1) was more than 8%, but the error

between the results of the simulations and the results of Eq. (3.25) was less than

5%, when (ω1/ωRF ) ≤ 0.55.

In Figure 3.6, we demonstrate that there is a limitation for reducing the offset

frequency to increase the phase. As seen in this figure, inverse proportional-

ity between the phase and the offset frequency starts to become invalid after

some frequency. This figure also shows that the results of the frequency domain

approximation (φFD) follow the results of the simulations quite well for all the

simulated frequency points, even though the time domain approximation (φTD)

fails at lower offset frequencies.

Moreover, it can be argued that use of low offset frequencies may be coun-

terproductive because the MR signal level may decrease due to on-resonance

effects. In our experiments, it is observed that when the BS pulses with 100 Hz
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offset frequency were used, the signal level decreased by up to 50% while |B+
1 |

increased from 0.5 µT to 5 µT . On the other hand, in the |B1| range for which

ω1/ωRF ≤ 0.5, there was a 10% decrease of the signal level. Therefore, when

ω1/ωRF ≤ 0.5 is satisfied, low offset frequencies can be used.

3.5.3 Effect of the crusher gradients

The percentage of the excited spins at different frequencies is related to the band

of the RF pulse in the Fourier domain. For example, when a hard pulse with

8ms pulse duration and 4kHz offset frequency is used as an excitation pulse,

simulations indicate that it causes excitation of 11% of the spins on the on-

resonance, whereas for Fermi and SLR pulse shapes with the same pulse duration

and offset frequency, excitation of the on-resonance spins is negligible. When the

offset frequency of the pulse decreases, band of the pulse in the Fourier domain

comes closer to zero frequency and as a result of that the spins on the on-resonance

may excite. A similar scenario can be observed when the pulse duration decreases,

since band of the pulse in Fourier domain increases.

In order to minimize the effect of the tilting the magnetization outside of the

desired frequency, a sequence is modified by adding crusher gradients with 1ms

duration. In order to observe the effect of these gradients another sequence is

generated by removing crusher gradients and by applying the phase encoding

gradient before the off resonant RF pulse and the phase results obtained with

these sequences are compared. For these experiments 8ms hard, Fermi and SLR

pulses with 4kHz and 1kHz offset frequencies are used. In Figure 3.7, comparison

of the central line phase distributions obtained from phase images for each pulse

shape and offset frequency is shown. For both 4kHz and 1kHz offset frequencies,

when crusher gradients are applied to the sequence, the phase distribution for

each pulse shape shows similar characteristics. However, when there is no crusher

gradient, the effect of the tilting the magnetization outside of the region of interest

can be seen on the phase distributions, especially on the results for hard pulse

shape.
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3.6 Discussion and Conclusion

In this study, we have presented a new approximated Fourier domain expression

to increase the understandability of the BS based B1 mapping method. Using

this expression, |B+
1 | values can be predicted from the phase data by using the

Fourier transform of the BS RF pulse.

Simulations and experiments show that the method works well even for short

pulse durations and low offset frequencies when the condition ω1/ωRF ≤ 0.5 is

valid. Note that the usage of a BS pulse with a short pulse duration is crucial

to decrease the TE value and increase the magnitude signal and a low offset

frequency can be preferable to increase the phase shift obtained by the method,

especially for low B1 magnitudes.

During these simulations and experiments crusher gradients were also used,

as suggested in [41], and their effects were monitored. Our observations indicate

that crusher gradients have to be used to remove the echo originating from tilting

off-slice spins by the off-resonant pulse, especially when low offset frequencies and

small pulse durations are used.
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Figure 3.5: Relation of phase to magnitude of B1 for (a) Hard, (b) Fermi, and
(c) SLR pulses with 100 Hz offset frequency and 8 ms pulse duration. Relation
of phase to magnitude of B1 for (d) Hard, (e) Fermi, (f) SLR pulses with 1 kHz
and 4 kHz offset frequencies and 8 ms pulse duration.
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Figure 3.6: Relation of ωRF to the phase shift for (a) Hard, (b) Fermi, and
(c) SLR pulses with a 8 ms pulse duration and |B+

1 | = 0.5 µT (to satisfy the
approximation ωRF >> ω1 where ω1 = γB1 ).
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Figure 3.7: One line phase distribution patterns for (a) 8 ms Hard, Fermi and
SLR pulses with 4 kHz offset frequency when there are crusher gradients (b)
8 ms Hard, Fermi and SLR pulses with 4 kHz offset frequency when there are
no crusher gradients (c) 8 ms Hard, Fermi and SLR pulses with 1 kHz offset
frequency when there are crusher gradients (d) 8 ms Hard, Fermi and SLR pulses
with 1 kHz offset frequency when there are no crusher gradients.
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Chapter 4

Imaging using B1 gradients

4.1 Preface

The content of this chapter was presented in part at the Scientic Meeting of

International Society of Magnetic Resonance in Medicine in 2013 [44].

4.2 Introduction

Current clinical MR systems use the main field gradient (B0 gradients) for spa-

tial MR signal encoding. Another solution to encode the spatial signal is to use

the linear variations of the RF fields (B1 gradients). MRI without B0 gradients

could alleviate several related disadvantages, including acoustic noise, eddy cur-

rent problems, limited rise and fall times of gradient pulses, and peripheral nerve

stimulation. Furthermore, when B1 gradients are used instead of slice selection,

phase encoding, and readout B0 gradients, a gradient coil with expensive ampli-

fiers can be removed from the MR system, giving the patient more space in the

magnet bore and reducing the system cost.

On the other hand, B1 gradients present some disadvantages. They have

39



smaller strength compared with B0 gradients. Also, while using different RF coils

to generate B1 gradients in the three spatial directions a coupling problem can be

observed, which may lead to artifacts in the image [45]. In earlier studies [45–47],

usage of B1 gradients instead of B0 gradients has been proposed to encode the

spatial information. In [46], it was demonstrated that B1 gradients can be used

in the detection of motion. [45] is a review article that surveys the capabilities of

B1 gradients in the domains already covered by B0 gradients and evaluate their

advantages and disadvantages with respect to B0 gradients. In [47], a ladder-

shaped coil was proposed to generate a constant B1 gradient and images of water

phantoms were obtained with the proposed coil.

In this study, we use B1 gradients to encode flow along one direction and

for shear wave imaging. For each case, the used methods and the performed

experiments are discussed in the following sections in more detail.

4.3 Flow Imaging using B1 gradients

4.3.1 Introduction

Magnetic resonance imaging is a non-invasive method to visualize the anatomy

of the heart and vessels. In addition, the dynamic components of blood flow

and cardiovascular function can be characterized with this imaging tool and this

characterization provides insight into normal and pathological physiology.

Phase contrast (PC) MRI is a widely used method to visualize and quantify

the blood flow and tissue motion by applying flow-encoding gradients [18–21]. In

PC acquisitions, the velocity of the magnetization can be obtained from the phase

of the image with the help of the flow-encoding gradients. The most common flow

encoding gradient is a bipolar gradient, which comprises two lobes of equal area

and opposite polarity. Because the net area under the bipolar gradient is zero,

there is no net phase accumulation for stationary spins. On the other hand, for

spins moving along the direction of the gradient, a net phase, which is linearly
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proportional to the spins’ velocity, accumulates [22]. In addition, the direction of

the motion can be determined using the knowledge of the bipolar gradient axis.

In the literature, using B1 gradients to encode flow was proposed as an al-

ternative to conventional methodologies using B0 gradients [48, 49]. The study

in [48], combines gradient-recalled acquisition in a steady state with B1 gradients.

This approach is sensitive to the rate of blood flow and it is claimed that this

method might be useful for imaging very slow, nonuniform flow through capillary

beds and in the extravascular space. In [49], a new pulse sequence using B1 gra-

dients was proposed to determine the flow velocity. With this proposed sequence,

the signal from the stationary samples was expected to be null.

In our study, we propose another solution to encode flow by using Bloch-

Siegert (BS) [34, 42] phase shifts generated by a spatially dependent B1 field.

(Note that a similar idea was recently presented in [50] such that the properties of

spatially dependent BS phase shift is used for phase encoding.) For two different

pulse sequences using BS pulses, the solution is tested and the results of the

experiments demonstrate the feasibility of using BS shift with B1 gradients in

detecting the flow.

4.3.2 Theory

In general, the phase of an MR signal can be expressed as:

φ(τ) = γ
∫ τ

0
Ḡ(t) · r̄(t)dt (4.1)

where Ḡ(t) is a time dependent B0 gradient, r̄(t) is the position vector and γ

is the gyromagnetic ratio. Basically, for a spin with a constant velocity, υ, and

initial position, x0, and for a bipolar gradient in the direction parallel to the flow

with duration T and constant magnitude G, this phase becomes as follows:
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φ(τ) = γ(
∫ T/2

0
G(x0 + υt)dt−

∫ T

T/2
G(x0 + υt)dt) (4.2)

= −γGυT 2/4. (4.3)

As discussed in Section 3, the phase shift due to the Bloch Siegert shift can

be written as follows:

φBS ≈
∫ T/2

−T/2

γ2|B1(t)|2

2ωRF (t)
dt. (4.4)

where ωRF is the angular offset frequency of the Bloch Siegert pulse. When the

offset frequency is changed from +ωRF to −ωRF at the half duration of the BS

pulse, BS pulse acts like a bipolar pulse and in the case of inhomogeneous B1

field, the flow data can be carried on the Bloch Siegert phase shift. Spatially

variant B1 field can be expressed as B1(t) = B10 +∇B1x(t), where B10 and ∇B1

are the constant and the gradient parts of B1(t) field, respectively. When the

spatially variant B1 field has a bipolar behavior and x(t) = υt, the BS phase shift

becomes:

φBS ≈
∫ 0

−T/2

γ2|B10 +∇B1x(t)|2

2ωRF (t)
dt−

∫ T/2

0

γ2|B10 +∇B1x(t)|2

2ωRF (t)
dt (4.5)

≈ γ2B10∇B1υT
2

4ωRF (t)
. (4.6)

Note that BS pulse shape is taken as a hard pulse shape. As shown in this

approximate expression, the BS phase shift is proportional with the flow velocity.

With the knowledge of the B1 field distribution and the phase shift, the flow

velocity can be estimated with this method. The usage and the verification of

the proposed method are given in the following sections.
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4.3.3 Materials and Methods

To verify the proposed method, two pulse sequences shown in Figure 4.1 are

used. Both sequences are designed by modifying the sequence used in BS Shift

B1 mapping method. For sequence programming Siemens IDEA tool was used.

In both sequences there are crusher gradients in the readout direction before

and after the BS pulses to minimize the effect of the tilting the magnetization

outside of the desired frequency (previously mentioned in Chapter 3). In the

first sequence, there are two BS pulses separately with ωRF and −ωRF offset

frequencies, whereas the initial RF pulse is at larmor frequency. In the second

sequence two BS pulses are combined and the offset frequency is set as ωRF for

the first half duration and −ωRF for the second half duration.

RF

Readout

Phase

Slice Selection

ωRF - RFω
ωRF

- RFω

(a) (b)

Figure 4.1: MR flow imaging pulse sequences using B1 gradients and Bloch Siegert
shift. Note that crusher gradients are indicated by the circles.

To check the reliability of the obtained flow velocity results with the proposed

method, we also perform experiments using classical flow imaging method with

bipolar B0 gradients. The duration of the gradient and the maximum peak are

set to 2.5 ms and 5mT/m, respectively. To remove the background phase from

the desired phase shift, two images are acquired. The first image is acquired by

using a BS pulse with the offset frequency of ωRF for the first half and −ωRF for

the second half, whereas, the second image is acquired by using a BS pulse with

the offset frequency of −ωRF for the first half and ωRF for the second half. For

the experiments using B0 gradients, again the difference of two acquisitions, one
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with positive polarity flow encoding gradient and one with negative polarity is

used.

All experiments were performed using a Siemens Magnetom TimTrio 3T scan-

ner and transmit array system. To generate a uniform excitation, a birdcage coil

is used and the BS pulses are transmitted with a 3 cm diameter loop coil. The

experimental set-up is shown in Figure 4.2. Loop coil is placed perpendicular to

B0 field and its position inside the birdcage coil is arranged such that minimum

coupling between the coils occurs. Direction of the flow is set to be in the x-axis.

The B1 maps of the coil to determine the B1 gradient are obtained using BS Shift

B1 mapping method discussed in Chapter 3.

Birdcage
Coil

Loop
Coil

Figure 4.2: Flow imaging setup.

4.3.4 Experiments and Results

Figure 4.3 shows the B1 and B1 gradient maps of the loop coil for two water tubes.

In these results FOV is 200mm and matrix=256x256. B1 map and B1 gradient

map are normalized to the applied voltage. For the applied voltage during the

experiments, the peak B1 magnitude at the center (x = 0) is measured as 12.5µT

and B1 gradient for the slice at x = 1cm is calculated as 2mT/m, approximately.
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Figure 4.3: Images of two tubes in flow experiments (a) Magnitude image (b)
B1 map of the loop coil in terms of T/V (c) B1 gradient map of the loop coil
in terms of Tm−1V −1. (Note that rectangular shapes in each figure show the
position of the coil and in (c) the rectangular shape with dash lines indicates the
slice position for the experiments.)

Figure 4.4 demonstrates the magnitude and phase shift images of two tubes while

water is flowing through the tubes in opposite directions. Imaging plane is cho-

sen as perpendicular to the flow direction as shown with a dotted rectangular

shape in Figure 4.3-(c). It is placed on yz-plane at 1cm distant from the loop

coil. The imaging parameters were: FOV=80mm, TR/TE=100ms/14.5ms, ma-

trix=256x256 and slice thickness=5mm. The phase difference image obtained by

using bipolar flow encoding B0 gradients is shown in Figure 4.4-(b). When the

first sequence given in Figure 4.1 is used, the phase shift is obtained as given

in Figure 4.4-(c) and similarly, when the second sequence given in Figure 4.1 is

used, the phase shift is obtained as given in Figure 4.4-(d).

As shown in Figure 4.4-(b), the phase difference encoded by bipolar flow en-

coding B0 gradients is around ±0.78 rad. Using Eq. 4.3 and the specified param-

eters for the bipolar gradient (2.5ms duration and 5mT/m gradient magnitude),

the flow velocity along the x-axis is calculated ± 0.36m/s for ±0.78 rad phase

difference. In Figure 4.4-(c) the phase difference image encoded with the first

proposed sequence, in which two separate BS pulses are used, is demonstrated.

This experiment was repeated 3 times and the mean flow velocity along the x-axis

is calculated as ±(0.35±0.07)m/s with the help of Eq. 4.6. Similarly, Figure 4.4-

(d) shows the phase difference image encoded with the second proposed method
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Figure 4.4: Images of two tubes with a water flow in opposite directions(a) Mag-
nitude image. Phase difference image obtained with (b) Bipolar flow encoding
B0 gradients, (c) First proposed sequence, (d) Second proposed sequence.

using BS shift. Again, the experiment was repeated for 3 times and the mean

flow velocity along the x-axis is calculated as ±(0.29± 0.025)m/s.

Flow imaging experiments were repeated for the case that an imaging plane

was chosen parallel to the flow direction. Figure 4.5 shows the B1 and B1 gradi-

ent maps normalized to the applied voltage used in the experiments. For these

experiments, FOV was set as 80mm and matrix was 128×128. Figure 4.6 demon-

strates the magnitude and phase difference images obtained with the proposed

flow encoding methods. In Figure 4.6-(c) and (d), the flow seems to change di-

rection along a single tube, since the direction of the B1 gradient changes at two

sides of the coil. So, both the magnitude and the direction of the B1 gradient

have to be taken into account to calculate the flow velocity. Figure 4.7 shows the

flow velocity maps obtained by three different methods. The difference between

the calculated flow velocities obtained by bipolar flow encoding B0 gradients and

BS shift based flow encoding method is less than 10%. For the second proposed

method which uses a BS pulse with the offset frequency of ωRF for the first half
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Figure 4.5: (a) B1 map of the loop coil (in terms of T/V) (b) B1 gradient map
of the loop coil in terms of T/m/V.

and −ωRF for the second half, the distortion in the phase difference image also

disturbs the flow velocity map. The possible reason for this distortion is the

nonuniform offset frequency change in a BS pulse.

The results of the flow calculations indicates that when a sufficient B1 gradient

is generated at the volume of interest, BS shift pulses can be used for flow imaging

similar to the bipolar B0 gradients.

4.3.5 Conclusion

The main aim of this study is to demonstrate the feasibility of using B1 gradients

instead of B0 gradient. In this study, we have proposed two sequences using

Bloch Siegert shift and B1 gradients to encode the velocity of the flow. This

is an alternative solution to the flow imaging using bipolar B0 gradients. The

proposed method has been experimentally verified by comparing the resultant

velocity measurements obtained by using bipolar flow encoding B0 gradients. As

mentioned before in [49], using B1 gradients makes it possible to encode very

slow motions. As a result, our proposed sequences can also be used as alternative

solutions to encode slow motions.

On the other hand, the proposed flow encoding methods suffer from the prob-

lems observed in the BS shift based methods. Since the BS pulses may cause

undesired magnetization tilting, high crusher gradients are needed to suppress
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Figure 4.6: Images of two tubes with a water flow in opposite directions(a) Mag-
nitude image. Phase difference image obtained with (b) Bipolar flow encoding
B0 gradients, (c) First proposed sequence, (d) Second proposed sequence.

this effect. If the crusher gradients are insufficient, the undesired off-slice spins

may cause distortion in the resultant image and that may also affect the flow

velocity map. Besides, nonlinear B1 gradients in the other directions (i.e. dif-

ferent than the flow direction) have to be taken into account for reconstruction

of the flow maps. Note that the reconstruction algorithms of a flow map is not

investigated in this study.

4.4 Shear Wave Imaging using B1 gradients

4.4.1 Introduction

Manual palpation is the standard technique used to understand stiffness change

in tissues (especially in the breast tissue) and to detect symptoms of diseases.

However, this method is not useful in the detection of the tumor and its size
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Figure 4.7: Flow velocity maps (in terms of m/s) obtained with (a) Bipolar
flow encoding B0 gradients, (b) First proposed sequence, (c) Second proposed
sequence.

when the tumor is inaccessible [51]. Magnetic resonance elastography (MRE) is

a non-invasive imaging technique used for the visualization of elastic properties

of biological tissues. By this technique, the propagation of the low frequency

transverse acoustic strain waves in tissue-like media can be directly visualized [23].

MRE is a phase contrast based method similar to the methods used in flow

and diffusion imaging in MRI [22]. The technique proposed in [23] is a fully

dynamic phase contrast method in which a cyclic motion generated in the tissue

is synchronized with the motion sensitization gradients. Resultant MR phase

images carry information regarding particle displacements due to this motion.

By analyzing these images, the transmission of shear waves in a tissue can be

captured.

Currently, MRE is being used clinically in breast and liver tissues as a diag-

nostic tool and the experimental studies are being continued in brain, cardiac,

hyaline cartilage, bone, lungs, blood vessels and prostate [52–56]. In these stud-

ies, to increase the spatial resolution, the frequency of the applied shear waves is

increased. But, high frequency waves attenuate much faster than low-frequency

waves. As a result, design of a suitable actuation system becomes important.

Similarly, for very stiff tissues such as bone and cartilage, much higher vibration

frequencies (in the kilohertz range) than soft tissues are required to evaluate the

elasticity. Especially for the early diagnosis of the osteoarthritis, and degenera-

tive disc disease that causes low back pain, non-invasively measuring cartilage and
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bone elastic properties becomes critical [55, 57]. However, current clinical MRI

scanners cannot encode wave motion at such high frequencies due to the gradient

hardware limitations. As a solution for this problem, in [24], a specific actuator

and gradient hardware was constructed. But using gradient coils at higher fre-

quencies causes an increase in the eddy currents induced by fast switching rates.

Furthermore, using gradient coils at higher frequencies can cause an increase in

the noise and it may also increase the risk of peripheral nerve stimulation.

In our study, we propose to use B1 gradients instead of B0 gradient as an

alternative solution to the solution presented in [24]. In our solution, the signal is

received only from the spins with motion at the desired frequency and therefore

the displacement of the shear wave can be calculated by using the magnitude

image. To verify the method, phantom experiments are performed and it is shown

that B1 gradients can be used to detect the shear properties of investigated tissues

at frequencies in the kilohertz range.

4.4.2 Theory

The phase of the transverse plane magnetization can be written as follows:

φ(τ) = γ
∫ τ

0
Ḡ(t) · r̄(t)dt (4.7)

where Ḡ(t) is time dependent B0 gradient, r̄(t) is the position vector and γ is

the gyromagnetic ratio. For the case of propagating shear wave, position vector

(r̄(t)) can be expressed as the following:

r̄(t) = r̄0 + ξ̄0exp(−j(k̄ · r̄ − ωt+ α)) (4.8)

where r̄0 is the mean position, ξ̄0 is the peak displacement, ω is the angular

frequency of the mechanical excitation or the modulation frequency of the focused

ultrasound to generate the shear wave, k̄ is the wave number and α is the initial

phase offset between the wave generation and the motion encoding gradients. For
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a trapezoidal gradient shape with magnitude G and the negligible ramp times,

the phase relation becomes [23]:

φ(τ) =
2γNT (Ḡ · ξ̄0)

π
sin(k̄ · r̄ + α) (4.9)

where T is the period of the motion encoding gradient cycles and N is the total

number of these cycles. If the motion encoding gradients are sinusoidal, the phase

relation becomes [23]:

φ(τ) =
γNT (Ḡ · ξ̄0)

2
cos(k̄ · r̄ + α) (4.10)

For a typical clinical MR scanner, the maximum gradient amplitude and slew

rate limitations are given as 22 mT/m and 120 mT/m/msec, respectively [24].

To encode the shear waves propagation accurately the phase shift has to be

high. Because the phase shift is proportional with the gradient magnitude, strong

magnetic gradients are needed for high phase shifts. However, when the frequency

of the shear wave is higher than 2 kHz, the maximum gradient magnitude that can

be generated falls below 10 mT/m due to the hardware limitations. This inverse

relation between the gradient magnitude and the frequency causes a decrease at

the phase shift for high vibration frequencies. On the contrary, when B1 gradients

are used instead of B0 gradients, the frequency of the B1 field can be increased

while the peak B1 gradient magnitude is being kept same.

In this study, we propose to use RF gradients to encode shear wave at frequen-

cies in kilohertz range which is a similar approach proposed in [49] to measure

the slow coherent motion. In our method, the phase of the RF pulse is alternated

from 0 to π in synchrony with motion and the expected signal for the proposed

method is as follows:

Mxy = M0sin(γ
∫ τ

0
B1(r(t), t)dt) (4.11)

where Mxy is the transverse component of the magnetization, M0 is the initial
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magnetization, B1(r(t), t) is the inhomogeneous RF field and τ is the pulse dura-

tion. When B1(r(t), t) is defined as B1(r(t), t) = B1 +∇B1r(t), where ∇B1 is the

B1 gradient, B1 is the constant RF field, and r̄(t) = r̄0 + ξ̄0exp(−j(k̄ · r̄−ωt+α)),

the final expression becomes:

Mxy = M0sin
(

2γτ( ¯∇B1 · ξ̄0)
π

sin(k̄ · r̄ + α)
)

(4.12)

In this expression, the resultant signal becomes zero when there is no motion

which means that the expected signal comes only from the spins with motion

at the same frequency with the frequency of the generated wave. This expres-

sion also shows that the flip angle of the signal is directly proportional with the

displacement of the tissue when RF field has a constant gradient.

In the following sections, the usage of the typical MR elastography method,

the usage and the verification of the proposed method in this study are given.

4.4.3 Materials and Methods

Typical MRE sequence using sinusoidal motion encoding gradients is given in

Figure 4.8. In order to remove the background phase form the desired phase shift,

two images are acquired, one with positive polarity motion encoding gradient and

one with negative polarity. The phase difference of these two acquisitions produce

twice the phase shift given in Eq. 4.10 [58].

Initially, MR elastography method using the sequence given in Figure 4.8 is

tested with phantom experiments. In these experiments two actuator systems,

electromagnetic actuator and high-powered focused ultrasound (FUS), are used

to generate shear waves in the desired region.

Figure 4.9 shows MR elastography setup using electromagnetic actuator. The

z-axis is the parallel axis to B0 field and the normal vector to the plane of the

actuator coil is oriented perpendicularly to B0 field. The coil is connected to the

excitation plane which is positioned on the object under investigation. Applying
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RF

Readout

Phase

Slice Selection

MEGsMEGs

Figure 4.8: MR elastography pulse sequence diagram using motion encoding gra-
dients (MEGs). Note that in this plot MEGs are on readout direction and its
place can be changed according to the direction of the motion.

an alternating current results in periodic oscillation of the coil and this periodic

motion is transferred to the excitation plate [59, 60]. The shear wave excitation

with this actuator becomes only parallel to axis of B0 field, z-axis.

Electromagnetic
Actuator

Agar Phantom

Figure 4.9: MR elastography setup using electromagnetic actuator, direction of
the motion is along the z-axis.

Note that, electromagnetic drivers are inexpensive and simple in terms of design

and implementation. Amplitude of the vibration depends on the number of the

turns, current induced in the coil and the diameter of the coil. The main problem

related with this actuator system is that, due to the current in the coil, imaging
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artifacts may occur.

High-powered focused ultrasound transducer used in the experiments is a

single element power transducer designed by IMASONIC. The transducer has a

diameter of 50 mm, a focal length of 50 mm, and was operated at a frequency

of 1MHz. The efficiency from electrical power to acoustical power is given as

80%. The experimental set-up is shown in Figure 4.10. FUS transducer is placed

inside a water tank and a phantom is on a latex layer above the transducer. For

the experiments, the peak of the motion encoding gradient is set to 20mT/m

and the multiplication of the cycle number and the period (NT) is kept constant

at 40ms. The imaging parameters were: FOV=200mm, TR/TE=100ms/44.5ms,

matrix=256x256 and slice thickness=5mm.

water tank

FUS

Transducer

Phantom

Figure 4.10: MR elastography setup using electromagnetic actuator, direction of
the motion is along the z-axis.

During FUS experiments, to monitor the temperature increase at the focal

region, temperature maps are also obtained. It is known that the water proton

resonance frequency (PRF) depends on the local magnetic field strength. When

temperature increases, the magnetic field in the medium decreases and there is

a linear relationship between PRF shift and temperature change given as fol-

lows [61]:

∆φT = αγB0TE∆T, (4.13)

where ∆φT is the phase change, γ is the gyromagnetic ratio, α is the PRF-thermal

coefficient, B0 is the static magnetic field, TE is the echo time and ∆T is the
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temperature change. In calculations α is taken as −0.01ppm/◦C.

Agar phantom

Electromagnetic
Actuator

Loop
Coil

Figure 4.11: MR elastography setup using electromagnetic actuator for high vi-
bration frequencies.

RF

Readout

Phase

Slice Selection

RF Phase

π

0

Figure 4.12: MR elastography pulse sequence diagram using B1 gradients.

For the MRE experiments using B0 gradients, the frequency range was kept

between 100Hz to 1kHz. At shear wave frequencies above 1 kHz, the phase values

decrease due to the decrease in B0 gradients. At shear wave frequencies higher

than 1kHz, we tested our new approach using B1 gradients to detect the shear

wave. In Figure 4.11, the experimental setup is shown. To generate sufficient

vibration at the frequencies in kilohertz range, a new electromagnetic actuator

was built similarly as proposed in [24]. The frequency range of the actuator,
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in which a sufficient displacement in the tissue can be generated, is measured

between 1kHz to 5kHz [62]. The direction of the generated shear wave is along

z-axis. %4−%5 agar phantoms with 2× 1× 3cm dimensions are prepared to be

used as a model of the stiff and small tissue (e.g. cartilage tissue). To acquire a

sufficient B1 gradient value that could be used in the detection of the shear wave

displacement, a simple one turn loop coil with 1cm diameter was used. The loop

coil is placed under an agar phantom perpendicular to the B0 field. The B1 maps

of the coil are obtained using BS Shift B1 mapping method, discussed in Chapter

3.

Figure 4.12 shows the pulse sequence used in this approach. A Fermi pulse

shape is used as an envelope of the excitation pulse instead of a hard pulse and

the phase of the pulse is alternated from 0 to π periodically with the period of

the vibration. (Note that, a Fermi pulse can be defined as a rectangular pulse

with ramps.) The imaging parameters were: no slice selection, FOV=116mm,

TR=100ms and matrix=256×256. Note that, because the band of the excitation

pulse is wide, no slice selection is used and phantom size is adjusted as a one slice

thickness. On the other hand, slice selection can also be used, since a Fermi pulse

has smaller band than the band of a hard pulse.

All experiments were performed using a Siemens Magnetom TimTrio 3T scan-

ner. By using MR external trigger, the RF cycles and motion encoding gradients

are synchronized with the mechanical wave.

4.4.4 Experimental Results

In Figure 4.13, propagation of a half cycle sinusoidal shear wave with 5ms dura-

tion (i.e. half cycle of a sinusoidal pulse with 100Hz frequency) is demonstrated

with the phase images obtained for five different time delays between the motion

encoding gradients and the motion. In this experiment, the imaging parameters

are set as: FOV=200mm, matrix=256 × 256, and TR=100ms. Since starting

time of motion encoding gradients is shifted as much as the time delay, images
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Figure 4.13: Phase images when the time delay between the motion encoding
gradient and motion is (a) 0ms, (b) 8ms, (c) 10ms, (d) 15ms, (e) 20ms.

for TE={10, 18, 20, 25, 30} are observed. As mentioned before, an electromag-

netic actuator is used to generate shear waves along the z-axis. The imaging

plane is set as the transverse plane (xy-plane, perpendicular to the shear wave

direction) and motion encoding gradients are applied along the slice selection

direction, parallel to the motion direction. Because of rapid phase changes in

the images (i.e. 2π phase jumps), phase unwrapping algorithm is applied to

each phase shift image. Using the propagation of the wave, the wave velocity is

calculated as (1.06± 0.1)m/s for 1% agar phantom.

Figure 4.14 demonstrates the shear wave propagation generated at the focal

region in the phantoms while using FUS transducer with 100Hz and 200Hz mod-

ulation frequencies. Note that, for this figure, the principal axis of the ultrasound

beam is perpendicular to the image plane. The motion encoding gradients were

applied in the same direction with the motion, which was also perpendicular to

the image plane. For each frequency, the phase shifts were obtained for zero

and π phase delays between the motion encoding gradients and the motion. The

electrical power to the transducer was 12.5W and no temperature increase was
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Figure 4.14: Phase difference images of coronal section of agar phantoms (a)
100Hz modulation frequency with zero phase delay, (b) 100Hz modulation fre-
quency with π phase delay, (c) 200Hz modulation frequency with zero phase delay,
(d) 200Hz modulation frequency with π phase delay.

observed at the focal region during these agar phantom experiments. Using the

propagation of the wave, the wave velocity is calculated as (2.9 ± 0.3)m/s for a

2% agar phantom.

In order to analyze a temperature increase around the focal region and the

acoustic path of the transducer, an experiment with bovine muscle was performed.

In Figure 4.15, the magnitude image and the temperature map is given when the

electrical power to the transducer was 24.5W. (Note that the FUS transducer is

on with 1/10 duty cycle for 2.4min sequence duration.) At the end of 2.4min, the

maximum temperature increase was around 8◦ at the focal region and there was

not a notable temperature increase along the acoustic path of the transducer, as

expected.

For the MRE experiments that the new method was tested, B1 field gradients
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Figure 4.15: (a) Magnitude image of a bovine muscle, (b) Temperature change
at the focal region and the acoustic path of the transducer.

of the loop coil is calculated from the B1 maps. In Figure 4.16, B1 map, B1

contour plot and the B1 gradient map are shown for the xz-plane, which is the

perpendicular plane to the normal axis of the coil. Figure 4.16-(c) shows that at

both edges of the phantom there is approximately 5mm region with constant B1

gradient magnitude. Note that, because the phantom used in the experiments has

a one slice thickness, we assumed that the field variation on the parallel plane to

the normal axis of the coil is negligible. By using the linear relation between the

applied voltage and the peak magnitude of the B1 field, B1 gradient magnitude

is adjusted to 25mT/m.

The proposed method using B1 gradients was tested for three different vibra-

tion frequencies, 2kHz, 3kHz and 4kHz. Figure 4.17-(a),(b) and (c) demonstrate

the magnitude images obtained with the method using B1 gradients for 2kHz,

3kHz and 4kHz shear wave frequencies, respectively. Their one line plots (signal

versus position plots) obtained along the white dashed lines are also shown in

Figure 4.17(d),(e) and (f) for 2kHz, 3kHz and 4kHz vibration frequencies, respec-

tively. The wavelength of the shear wave for each vibration frequency and the

wave velocities are calculated approximately with the help of these one line plots.

Each experiment was repeated 3 times for 5% agar phantom. For 2kHz shear wave

frequency, the mean wave velocity is calculated as (11.5 ± 1.4)m/s by using the

wavelength measurement. Similarly for 3kHz and 4kHz shear wave frequencies,
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Figure 4.16: (a) B1 map of 1 cm loop coil in xz-plane, (b) Contour plot for the
B1 map, (c) B1 gradient map obtained from B1 map.

the mean wave velocities are calculated as (12.2±1.4)m/s and (12.9±1.3)m/s, re-

spectively. On the other hand, if the initial magnetization, M0 is known, the wave

displacement in the tissue can also be calculated. Note that the reconstruction

algorithms of a stiffness map is not investigated in this study.

4.4.5 Conclusion and Discussion

In this study, typical MR elastography method was tested with two different

actuators, the electromagnetic actuator and FUS transducer. With the help of

these initial studies, the problem due to the gradient hardware limitations was

defined. As a result a method using B1 gradients instead of B0 gradients has

been proposed. In this method, spins are excited by B1 gradients and only the

signal from the spins with motion is carried on the magnitude images.
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Figure 4.17: Magnitude images obtained with the method using B1 gradients for
(a) 2kHz, (b) 3kHz, (c) 4kHz vibration frequencies. One line plots (signal versus
position plots) obtained along the white dashed lines on magnitude images for
(d) 2kHz, (e) 3kHz, (f) 4kHz vibration frequencies.

The experiments are verified that B1 gradients can be used to detect the shear

properties at the frequencies in the kilohertz range instead of the B0 gradients.

With this alternative method the limitations due to finite rise- and fall-time of

the gradient waveforms and therefore the maximum frequency of the wave that

can be detected in the tissue can be solved. So, it would be possible to measure

the mechanical properties of a very stiff and small tissues (e.g. cartilage) inside

the body. Besides, TE value used in this method is much shorter than TE values

used in the method based on motion encoding B0 gradients. Note that, usage of

short TE values is one of the major issues to prevent a signal loss. For instance,

the used TE value in [55] is 24ms ,whereas with our method, this value is only

7ms which is an important improvement especially for imaging the tissues such

as cartilage.

On the other hand, as a limitation in order to obtain the desired B1 gradient

at the level of B0 gradient, very high RF power is needed and that may cause
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an increase in the specific absorption rate(SAR). To solve this safety problem,

longer TR durations can be used. Another disadvantage is related to the high

sensitivity of the method to the inhomogeneity of the B0 field. When there is an

inhomogeneity in the B0 field, the stationary spins may tilt and that causes an

artifact. One of the solution for this problem can be to improve the shimming.

Besides, nonuniform phase alternation of RF pulse due to hardware or program-

ming errors also causes spins to tilt. To solve this problem, design of the RF

pulse has to be optimized.

In this study the proposed method, using B1 gradients for shear wave imaging,

was tested only for a single motion direction. To improve the proposed method,

the next step is to design an RF coil system to generate gradients in each direc-

tions. With the help of the TX-array system, RF coils, generating B1 gradients

in three directions, can be driven separately.
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Chapter 5

Conclusion

In this dissertation, B0 and B1 gradients in MRI are analyzed and novel methods

using B1 gradients are proposed. In the first study of this thesis, safety of the

gradient fields for the patients with active implantable medical devices is inves-

tigated. Specifically, simplified expressions for the electric field inside the cylin-

drical homogeneous body model for a perfectly uniform gradient field are derived

to understand the nerve stimulation risk when there is an implant. Reliability

of the expressions are tested with multiple phantom and ex-vivo experiments. In

the second study, Bloch-Siegert shift B1 mapping method are analyzed and a new

approximated Fourier domain expression is proposed to increase the understand-

ability of the method. Fourier domain expression increase the usability of the B1

mapping method for short Bloch Siegert pulse durations and low offset frequen-

cies. In the third study, B1 gradients are studied with the purpose of imaging

flow and shear waves. For flow imaging using B1 gradients, the same idea in the

Bloch-Siegert shift B1 mapping method is used and the flow velocity is related to

the Bloch-Siegert phase shift and B1 gradient. On the other hand, in shear wave

imaging using B1 gradients, B1 gradients are used in the initial excitation and

the information of the displacement of the motion is carried on the magnitude

signal. It is shown that maximum frequency limitation due to the finite rise- and

fall-time of the gradient waveforms can be solved with B1 gradients.

The practical applications of the studies presented in this thesis may be listed
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as below. The first study presented in this thesis indicate that extensive analysis

ofB0 gradients in MRI is important for safety issues. By using realistic simplifying

assumptions, it is possible to obtain simplified electric field expressions that might

help in formulating worst-case scenarios for stimulation risks of patients with

implants, which might assist in performing MRI on these patients. The second

study presented in this thesis can be used in devising a more accurate Bloch-

Siegert shift based B1 mapping method. The third study presented in this thesis

can be used for B1 gradient based imaging of flow and shear waves where usage

of B0 gradients are insufficient. As an example, imaging of slow flows as seen

in capillaries or imaging of shear waves in stiff tissues such as cartilage can be

performed using the methods proposed in this study.
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