
OUT-OF-CORE IMPLEMENTATION OF THE
PARALLEL MULTILEVEL FAST

MULTIPOLE ALGORITHM

a thesis

submitted to the department of electrical and

electronics engineering

and the graduate school of engineering and science

of bilkent university

in partial fulfillment of the requirements

for the degree of

master of science

By

Barışcan Karaosmanoğlu

August 2013

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bilkent University Institutional Repository

https://core.ac.uk/display/52926315?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Prof. Dr. Levent Gürel (Advisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Assoc. Prof. Dr. Vakur Ertürk

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Assist. Prof. Dr. Özgür Ergül

Approved for the Graduate School of Engineering and Science:

Prof. Dr. Levent Onural
Director of the Graduate School

ii



ABSTRACT

OUT-OF-CORE IMPLEMENTATION OF THE
PARALLEL MULTILEVEL FAST MULTIPOLE

ALGORITHM

Barışcan Karaosmanoğlu

M.S. in Electrical and Electronics Engineering

Supervisor: Prof. Dr. Levent Gürel

August 2013

We developed an out-of-core (OC) implementation of the parallel multilevel

fast multipole algorithm (MLFMA) to solve electromagnetic problems with re-

duced memory. The main purpose of the OC method is to reduce in-core memory

(primary storage) by using mass storage (secondary storage) units. Depending on

the OC implementation, the in-core data may be left in one piece or divided into

partitions. If the latter, the partitions are written out into mass storage unit(s)

and read into in-core memory when required. In this way, memory reduction is

achieved. However, the proposed method causes time delays because reading and

writing large data using massive storage units is a long procedure. In our case,

repetitive access to data partitions from the mass storage increases the total time

of the iterative solution part of MLFMA. Such time delays can be minimized by

selecting the right data type and optimizing the sizes of the data partitions. We

run the optimization tests on different types of mass storage devices, such as hard

disks and solid state drives.

This thesis explores OC implementation of the parallel MLFMA. To be more

precise, it presents the results of optimization tests done on different partition

sizes and shows how computation time is minimized despite the time delays. This

thesis also presents full-wave solutions of scattering problems including hundreds

of millions of unknowns by employing an OC-implemented parallel MLFMA.

Keywords: Out-of-core methods, memory reduction, computational electromag-

netics, fast solvers, multilevel fast multipole algorithm, parallel computing, elec-

tromagnetic scattering.

iii



ÖZET

PARALEL ÇOK SEVIYELİ HIZLI ÇOKKUTUP
ALGORİTMASININ ÇEKİRDEK DIŞI UYGULAMASI

Barışcan Karaosmanoğlu

Elektrik ve Elektronik Mühendisliği Bölümü, Yüksek Lisans

Tez Yöneticisi: Prof. Dr. Levent Gürel

Ağustos 2013

Elektromanyetik problemlerini indirgenmiş bellek ile çözebilmek adına paralel

çok seviyeli hızlı çokkutup yönteminin (ÇSHÇY) çekirdek-dışı (ÇD) uygulaması

geliştirilmiştir. ÇD yöntemlerinin esas amacı, yığınsal bellek (ikincil bellek)

birimleri kullanılarak çekirdek-içi bellek (birincil bellek) kullanımını azaltmaktır.

ÇD uygulamanın türüne göre, çekirdek-içi veri tek parça halinde bırakılabilir

ya da parçalara bölünebilir. Parçalar, yığınsal bellek birimlerine yazıldıktan

sonra gerektiğinde geri okunarak çekirdek-içi bellege alınır. Bu sayede bellek

indirgenmesi sağlanmış olur. Fakat, önerilen yöntem, yığınsal bellek birimlerine

büyük veri yazılmasının ve okunmasının uzun sürmesinden dolayı gecikmelere yol

açar. Bizim durumumuzda, yineli bir şekilde yığınsal bellekteki veri parçalarına

erişilmesi, ÇSHÇY’nin döngülü çözüm kısmının toplam süresini artırmaktadır.

Bahsedilen zaman gecikmeleri, doğru veri türünü ve eniyilenmiş veri parça boyut-

larını kullanarak azaltılabilir. Sabit diskler ve katıhal diskleri gibi çeşitli yığınsal

bellek birimlerinde eniyileme testleri yapılmıştır.

Bu tezde paralel ÇSHÇY’nin CD uygulaması incelenmiştir. Daha net olarak,

farklı parça boylarında yapılan eniyileme test sonuçları sunulmuş ve oluşan zaman

gecikmelerine ragmen çözüm süresindeki düşüş gösterilmiştir. Ayrıca bu tezde,

paralel ÇSHÇY’nin CD uygulaması ile çözülmüş yüzlerce milyon bilinmeyenli

saçılım problemlerinin tam dalga sonuçları sunulmuştur.

Anahtar sözcükler : Çekirdek-dışı yöntemler, bellek indirimi, hesaplamalı elek-

tromanyetik, hızlı çözücüler, çok seviyeli hızlı çokkutup algoritması, paralel

hesaplama, elektromanyetik saçılım.

iv



Acknowledgement

I would like to express my gratitude to my supervisor Prof. Levent Gürel for

his supervision, guidance, and suggestions throughout the development of this

thesis. I would also like to express my deepest gratitude to him for supporting

my studies on the computational electromagnetics.

I also would like to thank Assoc. Prof. Vakur Ertürk and Assist. Prof. Özgür

Ergül for reading and commenting on this thesis.

I was fortunate to work with BiLCEM researchers, Mert Hidayetoğlu, Aslan

Etminan, Mahdi Kazempour, and Manouchehr Takrimi. I thank them all for

their collaboration and for their friendship.

v



Contents

1 Introduction 1

2 Background 3

2.1 Surface Integral Equations . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Discretization of Surface Integral Equations . . . . . . . . . . . . 4

2.2.1 Method of Moments . . . . . . . . . . . . . . . . . . . . . 4

2.2.2 RWG Functions . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.3 Discretization of EFIE . . . . . . . . . . . . . . . . . . . . 6

2.2.4 Discretization of MFIE . . . . . . . . . . . . . . . . . . . . 7

2.2.5 Discretization of CFIE . . . . . . . . . . . . . . . . . . . . 8

2.3 Multilevel Fast Multipole Algorithm . . . . . . . . . . . . . . . . . 8

2.3.1 Factorization of the Green’s Function . . . . . . . . . . . . 10

3 Implementation 12

3.1 Memory Profiling . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2 Disk Type and Data Type Benchmark . . . . . . . . . . . . . . . 14

vi



CONTENTS vii

3.3 Out-of-Core Near-Field Matrix-Vector Multiplication . . . . . . . 14

3.4 Out-of-Core Radiation and Receiving Patterns . . . . . . . . . . . 17

3.5 Out-of-Core Translation . . . . . . . . . . . . . . . . . . . . . . . 17

4 Experiment Results 19

4.1 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.1.1 Near-field Buffer Optimization . . . . . . . . . . . . . . . . 22

4.1.2 Aggregation Buffer Optimization . . . . . . . . . . . . . . 23

4.1.3 Radiation/Receiving Patterns Buffer Optimization . . . . 23

4.1.4 212M-Unknowns Sphere Problem Buffer Optimization . . . 24

4.2 Solution of Sphere and Almond Geometries with Optimized

MLFMA-OC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5 Conclusions 33



List of Figures

2.1 (a) Multilevel clustering of the scatterer. (b) Construction of the

multilevel tree structure. . . . . . . . . . . . . . . . . . . . . . . . 9

3.1 Total memory allocation of a 23M-unknowns sphere problem. . . . 13

3.2 HDD and SSD write and read benchmarks with binary and ASCII

data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3 Change of the index of the near-field matrix (array) during calcu-

lation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.4 Total memory allocation of a 23M-unknowns sphere problem for

different steps of MLFMA-OC. . . . . . . . . . . . . . . . . . . . 18

4.1 A 23M-unknowns sphere scattering problem solution using

MLFMA-OC and a time-memory graph of different parts of

MLFMA using OC. . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.2 Problem size scaling of 0.8M, 1.5M, 3M, 23M, 53M, and 93M un-

knowns on 64 processes; and problem size scaling with increasing

process number of 23M, 53M, 93M, and 212M unknowns on 16,

32, 64, and 128 processes. . . . . . . . . . . . . . . . . . . . . . . 21

viii



LIST OF FIGURES ix

4.3 The dependence of the CPU time on the size of the near-field

buffer. Results are obtained with HDD (red lines) and SDD (blue

lines) separately. . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.4 The dependence of the CPU time on the size of the aggregation

buffer. Results are obtained with HDD (red lines) and SDD (blue

lines) separately. . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.5 The dependence of the CPU time on the size of the radia-

tion/receiving pattern buffer. Results are obtained with HDD (red

lines) and SDD (blue lines) separately. . . . . . . . . . . . . . . . 25

4.6 The dependence of total iterative solution times on the total mem-

ory change for buffer size. Results are obtained with HDD (red

lines) and SDD (blue lines) separately. . . . . . . . . . . . . . . . 26

4.7 OC buffer optimization benchmarks of a 212M-unknowns sphere

scattering problem for 128 processes with an SSD. . . . . . . . . 27

4.8 Optimization of “total iterative solution times versus total mem-

ory” results for a 3M-unknowns sphere scattering problem. Testing

HDD (green lines) and SSD (blue lines) separately. For compari-

son purposes, MLFMA solution requires 308 MB memory and 77.5

seconds total iterative solution time. . . . . . . . . . . . . . . . . 28

4.9 RCS on the azimuth plane of a 1.5M and 6M-unknown NASA

Almond geometry. . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.10 RCS of a 670M-unknowns sphere with 680λ diameter. . . . . . . . 31

4.11 RCS on the azimuth plane of a 610M-unknown NASA Almond

geometry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32



List of Tables

4.1 Iteration Time and Peak Memory for the NASA Almond Problem 29

4.2 Iteration Time and Peak Memory for Sphere Problem . . . . . . . 29

x



Chapter 1

Introduction

In this thesis, we present the implementation of an out-of-core (OC) method

for the multilevel fast multipole algorithm (MLFMA). Out-of-core implementa-

tions are used on many types of solvers and linear algebra packages [1]. There

are various examples of OC implementations, such as simple matrix-vector mul-

tiplications (MVM) and N -body simulations [2]. Because OC algorithms aim to

reduce current memory consumption, they have been applied on the method of

moments (MOM)-based electromagnetic solvers [3]. A solver based on parallel

MOM using an OC method is introduced in [4] and a parallel fast multipole

method (FMM) using an OC method is introduced in [5]. However, solutions

of large-scale electromagnetics problems require solvers with reduced computa-

tional complexity and low memory requirement. Therefore, instead of MOM,

MLFMA, which is the multilevel implementation of FMM, can be a preferred

solver since it has O(N logN) computational complexity and memory require-

ment. Although [6] compares an OC implementation of the sequential MLFMA

and in-core MLFMA, the technical details are not presented.

The main objective of this thesis is to reduce memory for the parallel MLFMA

using OC techniques without increasing the total computational complexity. It is

well known that secondary mass storage usage within an in-core algorithm causes

an inevitable increase in work time. However, this time loss in exchange for

the memory savings is important. Thus, we investigate OC methods and proper

1



buffer sizes to find an optimal buffer size with the minimum time loss caused by

the OC operations.

In the next section, we provide background information about surface integral

equations (SIEs) and present the formulation for converting a 3-D physical prob-

lem (discretizing SIEs) into a 2-D matrix equation using MOM. Then, using the

addition theorem, we provide the MLFMA formulations for far-field interactions.

In the third section, we explain the implementation of the OC method into

MLFMA. We perform memory profiling, detect peak memories and discuss the

effect of data types and the storage device types. Last, we share the details of

OC implementation on major MVM elements.

In the fourth section, we present the experimental results and perform opti-

mization tests for various sizes of sphere scattering problems. Last, we present

the full-wave solutions of large-scale sphere and NASA Almond geometries using

optimal OC buffers.

2



Chapter 2

Background

2.1 Surface Integral Equations

Surface integral equations are widely used to formulate scattering and radiation

problems for 3-D arbitrary geometries [7, 8]. Equivalent surface currents are de-

fined on the arbitrary 3-D object and integral equations can be obtained using

physical boundary conditions. For the perfect electric conductor (PEC) prob-

lems, the electric-field integral equation (EFIE), magnetic-field integral equation

(MFIE) and combined-field integral equation (CFIE) are the most commonly

used formulations.

The EFIE formulation is obtained by a physical boundary condition that

states that the total tangential electric field must be zero on a conducting surface.

The mathematical expression of EFIE can be given as

t̂ ·
∫
S′
dr′G(r, r′) · J(r′) =

i

kη
t̂ ·Einc(r), (2.1)

where Einc is the incident field, S ′ is the surface of the object, J is the induced

surface current and η is the intrinsic impedance of the medium. In scattering

problems, J is the unknown. G(r, r′) is the dyadic Green’s function, defined as

G(r, r′) =

[
I +
∇∇
k2

]
g(r, r′), (2.2)

3



where

g(r, r′) =
eik|r−r

′|

4π|r − r′|
(2.3)

is the scalar Green’s function for the 3-D Helmholtz equation. The scalar Green’s

function is the response of a point source located at r, which is observed at point

r′.

Similar to EFIE, MFIE can be obtained using physical boundary conditions

on a tangential magnetic field on a conducting object:

J(r)− n̂×
∫
S′
dr′J(r′)×∇′g(r, r′) = n̂×H inc(r), (2.4)

where H inc is the incident magnetic field and n̂ is the normal unit vector on the

surface S ′.

Note that EFIE can be used on both open and closed geometries, whereas

MFIE can only be applied on closed geometries. Therefore, CFIE, the linear

combination of EFIE and MFIE, can only be applied on closed geometries. The

aim of CFIE is to obtain a better-conditioned linear system from both EFIE and

MFIE. The CFIE formulation is given as

CFIE = αEFIE + (1− α)MFIE, (2.5)

where α is a parameter between 0 and 1. Because it yields minimal iterations, α

is set between 0.2 and 0.3 [9].

2.2 Discretization of Surface Integral Equations

To numerically solve electromagnetic scattering and radiation problems of com-

plicated objects, SIEs must be discretized.

2.2.1 Method of Moments

SIEs can be converted into matrix equations using MOM. The equivalent surface

currents are expanded in terms of the basis functions. The coefficients of these

4



functions are calculated by solving matrix equations obtained by MOM. The

integral equations can be written as

L{f(r)} = g(r), (2.6)

where L is a linear operator on the equivalent surface currents and g is the right-

hand-side (RHS) function of EFIE and/or MFIE, which is the combination of

the incident electromagnetic fields generated by external sources. Considering

f as unknown, expanding f in a series of known basis functions and unknown

coefficients, we obtain

f(r) ≈
N∑

n=1

anbn(r). (2.7)

Testing (2.6) using the testing functions, which are the same as the basis function

(Galerkin scheme), we can obtain∫
drtm(r) ·

N∑
n=1

anL{bn(r)} =

∫
drtm(r) · g(r). (2.8)

Changing the order of summation and integration, the equation becomes

N∑
n=1

an

∫
drtm(r) · L{bn(r)} =

∫
drtm(r) · g(r), (2.9)

which yields a matrix equation

N∑
n=1

anZmn = vm, (2.10)

where

Zmn =

∫
drtm(r) · L{bn(r)}, (2.11)

and

vm =

∫
drtm(r) · g(r). (2.12)

2.2.2 RWG Functions

3-D surfaces are meshed using triangles. On these triangles, Rao-Wilton-Glisson

(RWG) functions [7] are used as linear basis and testing functions, which discretize

5



the SIEs. These functions are defined on each neighbouring pair of triangles.

These triangular basis functions can be written as

bn(r) =



ln
2A+

n

(r − r+
n ), r ∈ S+

n

ln
2A−n

(r−n − r), r ∈ S−n

0, otherwise.

(2.13)

In (2.13), ln is the common edge length and A+
n and A−n are the areas of the first

and second triangles, respectively.

Importantly, RWG functions are divergence conforming, which means their

divergence is finite everywhere, shown as

∇ · bn(r) =



ln
A+

n

, r ∈ S+
n

− ln
A−n

, r ∈ S−n

0, otherwise.

(2.14)

This property simplifies the further steps of the EFIE and MFIE discretization.

2.2.3 Discretization of EFIE

Once EFIE is discretized using MOM, the matrix elements can be obtained from

the formulation

ZEFIE
mn =

∫
Sm

drtm(r) ·
∫
Sn

dr′bn(r′)g(r, r′)

− i

k2

∫
Sm

drtm(r) ·
∫
Sn

dr′bn(r′) · [∇∇′g(r, r′)], (2.15)

where tm and bn are the testing and basis functions, respectively. However, the

double differentiation of the scalar Green’s function is hyper singular. Using

the divergence-conforming property of the RWG functions, this singularity can

be overcome and the double differentiation on the Green’s function is then dis-

tributed into two separate functions: testing and basis. Thus, the matrix element

6



formulation of EFIE becomes

ZEFIE
mn =ik

∫
Sm

drtm(r) ·
∫
Sn

dr′bn(r′)g(r, r′)

− i

k2

∫
Sm

dr∇ · tm(r)

∫
Sn

dr′∇′ · bn(r′)g(r, r′). (2.16)

The RHS of the discretized EFIE formulation is obtained by testing the incident

electric field, which gives

vEFIEm = − i

kη

∫
Sm

drtm(r) ·Einc(r). (2.17)

2.2.4 Discretization of MFIE

Using MOM for this discretization, the matrix elements can be obtained from the

formula

ZMFIE
mn =

∫
Sm

drtm(r) · bn(r)

−
∫
Sm

drtm(r) · n̂×
∫
Sn

dr′bn(r′)×∇′g(r, r′). (2.18)

Because the Galerkin scheme is used, the first term of (2.18) becomes a simple

integral, but the second term still includes a singularity from the differentiation of

the scalar Green’s function. After the limit-term extraction [10], (2.18) becomes

ZMFIE
mn =

∫
Sm

drtm(r) · bn(r)

−
∫
Sm

drtm(r) · n̂×
∫
Sn,PV

dr′bn(r′)×∇′g(r, r′), (2.19)

where PV is the principal value of the integral. Modifying the second integral

in (2.19) gives ∫
Sm

dr(tm(r)× n̂) · bn(r)×
∫
PV,Sn

dr′∇′g(r, r′). (2.20)

Similar to EFIE, the RHS of the discretized MFIE formulation is obtained by

testing the incident magnetic field, which gives

vMFIE
m = −

∫
Sm

drtm(r) · n̂×H inc(r). (2.21)

7



2.2.5 Discretization of CFIE

CFIE is a linear combination of EFIE and MFIE. The discretized formulations

of EFIE and MFIE give the CFIE matrix element formulation, shown as

ZCFIE = αZEFIE + (1− α)ZMFIE. (2.22)

2.3 Multilevel Fast Multipole Algorithm

To solve the matrix equation obtained from the discretized EFIE or MFIE, one

can use a direct solver or an iterative solver. Because direct solvers, such the Gaus-

sian elimination, have the computational complexity of O(N3), large problems

require an impossible time duration. On the other hand, the iterative solutions

require at least one MVM for each iteration. Direct MVM has both the com-

putational and memory complexity of O(N2), which still requires huge amounts

of time and memory. Using the addition theorem, FMM may be applied, and

the direct MVM computational complexity will reduce to O(N1.5). Applying

FMM in a multilevel fashion (MLFMA) [11] would result in the memory and

computational complexity of O(N logN).

The integro-differential operators L for SIEs include interactions in close dis-

tances and far distances. These two kinds of interactions can be handled sepa-

rately as

Z · a = ZNF · a + ZFF · a, (2.23)

where ZNF is the matrix of near-field interactions and ZFF is the matrix of far-

field interactions. The near-field matrix is directly used and multiplied with the

unknown coefficient vector but the far-field interactions are used following a tree

structure.

The tree structure is obtained from the clustering operation, as shown in

Fig. 2.1. Clustering basically places the geometry into a cube and then recursively

divides it into smaller cubes. During the clustering operation, cubes that are part

of the geometry will be divided into smaller cubes, and count as a parent cube

8



in the tree structure, whereas empty cubes will not be divided and not included

in the tree structure. This recursive dividing operation will continue until the

smallest cubes contain only a few basis functions. All these cubes are called

clusters.

(a)

(b)

Figure 2.1: (a) Multilevel clustering of the scatterer. (b) Construction of the
multilevel tree structure.

At the lowest level, the near-field matrix is calculated, and the interactions

of the basis functions with testing functions either share the same cluster or are

in clusters touching each other. Unlike the near-field matrix, the far-field matrix

9



is never calculated. At each level, the radiated fields of the basis functions or

clusters are aggregated into the centers of the parent clusters, using the local

interpolation method [12] to match the different field sampling rates between

two levels. Then, these fields are translated into the centres of the neighbouring

parent clusters. Last, the fields are disaggregated into child clusters or basis

functions using their receiving patterns. Interactions between clusters with no

neighbouring parents are not calculated for that level. To achieve the complexity

of O(N logN), interactions are calculated within an error range of the desired

accuracy level.

2.3.1 Factorization of the Green’s Function

Both FMM and its multilevel implementation, MLFMA, are derived from the

factorization and diagonalization of the Green’s function. Factorization of the

Green’s function is based on the addition theorem.

Consider two clusters, C and C
′
, which are at their far zone. To find the

interaction between the basis functions in cluster C and the testing functions in

cluster C
′
, the scalar Green’s function can be factorized as an integration on the

unit sphere:

g(r, r′) =
eik|r−r

′|

4π|r − r′|
=

eik|D−d|

4π|D − d|

≈ 1

4π

∫
Sm

d2k̂eik̂·dαT (k,D, ψ), (2.24)

where D = |D| is the distance between cluster C and cluster C
′
, and k̂ is the

normal unit vector on the unit sphere. In (2.24) αT is the translation function,

given as

αT (k,D, ψ) =
T∑
t=0

it(2t+ 1)h
(1)
t (kD)Pt(cosψ), (2.25)

which is a truncated sum. In (2.25), h
(1)
t denotes the spherical Hankel function

of the first kind, Pt is the Legendre polynomial, and ψ is the angle between unit

vectors k̂ and D̂.

10



The truncation number is Tl in any level l of MLFMA, and is obtained by the

excess bandwidth formula [13]

Tl ≈ 1.73kal + 2.16d
2/3
0 (kal)

1/3, (2.26)

where al denotes the cluster size and d0 is the necessary accurate digit number

in MLFMA.

After the diagonalization of the scalar Green’s function [14], the far-field ma-

trix equation is obtained from the integration:

ZFF
mn =

(
ik

4π

)2 ∫
d2k̂F rec

C′
m

(k̂) · αT (k,D, ψ)F rad
Cn

(k̂), (2.27)

where F rec
C′

m
is the receiving pattern of the mth testing function in cluster C

′
and

F rad
Cn

is the radiation pattern of the nth basis function in cluster C.

11



Chapter 3

Implementation

OC or external-memory algorithms are designed to process data that is too large

to fit into a computer’s main memory at one time. We use OC methods fre-

quently in daily life. One example is when taking notes from a textbook instead

of memorizing all the information in it. Indeed, it would be faster to use the

memorized data than to read the entire text. Further, memorizing some texts

might be impossible, which represents lack of memory in our case.

These experiments use this “existing” OC methodology and implement

MLFMA to increase the current capacity of the program. Thus, the magnitude

of the active memory in use is decreased for the same configurations.

In this section, we explain memory profiling for MLFMA and give disk/data

benchmarks, which are required to obtain efficient implementation. Then, we pro-

vide the OC implementation of MLFMA on near-field MVM, radiation/receiving

patterns and translation.

3.1 Memory Profiling

To implement the OC method successfully, we perform MLFMA memory pro-

filing, investigating the memory requirements of major elements in MVM. Main

12



bottlenecks, large memory allocations, and deallocations are tracked for different

sizes of problems. During this profiling, the program flow is divided into three

main parts: preprocessing, setup, and solution. Then, each part is investigated

separately.

0 10 20 30 40 50 60
0

5

10

15
x 10

4

Memory Checkpoint

M
e
m

o
ry

 (
M

B
)

Total Memory Allocation of MLFMA

 

 

23,405,664
Unknowns

SetupPreprocessing Iterative
Solution

Figure 3.1: Total memory allocation of a 23M-unknowns sphere problem.

Figure 3.1 shows the memory plot of a relatively large problem, a sphere with

23 million (23M) unknowns. Because the solution part is the main bottleneck,

that part is analyzed first. The main objective of this investigation is to un-

derstand the memory distribution of the MLFMA structure. Relatively larger

arrays used in MLFMA would be the first candidates for OC implementation.

The major parts of MLFMA are the near-field matrix (with memory complexity

O(N)), radiation/receiving patterns (with memory complexity O(N)) and MVM

(with memory complexity O(N logN)). Thus, memory reduction with the OC

method is implemented on the near-field MVM, radiation/receiving patterns, and

13



aggregation array. Aggregation array is used OC in the translation part.

The setup part is considered similar to the solution part. Calculating the

near-field matrix and obtaining radiation/receiving patterns is implemented by

the OC method. The preprocessing part is considered in another project.

3.2 Disk Type and Data Type Benchmark

Data transfer speeds between in-core and OC algorithms are very fast. In-core

methods use memory and thus all data are saved in a binary format. However, OC

methods use massive storage devices such as hard disk drives (HDDs) and solid-

state drives (SSDs) with various file formats. To observe the timing differences

between the disk types and data formats, we prepare a benchmark.

We allocate an array of size 4 and measure the times for writing out to the

disk and reading in. We then double the size of the array and measure the times

for writing out and reading in. This operation is repeated until the array size

reaches 227. Times are obtained for both binary and ASCII formats on an HDD

and an SSD. As evident from Fig. 3.2, the disk type does not affect data transfer

speed, but data type results in a huge time difference for both types; the ASCII

format requires much more space than the binary format so the data transfer

speed decreases in the former.

3.3 Out-of-Core Near-Field Matrix-Vector Mul-

tiplication

In the first implementation, the near-field array is filled completely and then

saved into the hard drive in small pieces. The second implementation aims to

reduce memory during the calculation of the near-field array. Two buffer arrays

are filled rather than one large near-field array, and then saved onto the disk.

14



10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
−6

10
−4

10
−2

10
0

10
2

Array Size

D
a

ta
 R

e
a

d
/W

ri
te

 D
u

ra
ti
o

n
 (

s
e

c
)

Disk/Data Type Benchmark

 

 

SSD Formatted Write

SSD Formatted Read

SSD Binary Write

SSD Binary Read

HD Formatted Write

HD Formatted Read

HD Binary Write

HD Binary Read

Figure 3.2: HDD and SSD write and read benchmarks with binary and ASCII
data.

In MLFMA, the object to be solved is placed into the smallest cube and then

divided into eight cubes, and non-empty cubes are divided into another eight

cubes (clusters), and so on, as explained earlier. In our case the smallest cluster

size is mostly set to 0.25λ. In MOM, each triangle (basis function) interacts with

every other triangle. However, MLFMA calculates the interactions of triangles

sharing the same cluster at the last level and the interactions of the triangles in

the neighbouring clusters. These interactions are the near-field interactions and

are stored in memory, then used in the iterative solution directly.

Near-field interactions allocate almost 20% of the total memory. Thus, they

are both calculated and use OC. In this study, there are two OC implementations

of the near-field interactions. The first implementation, the near-field array is

15



filled and then divided into small pieces of data. However, for some problems,

the memory required in the near-field calculations in the setup part of MLFMA

becomes a bottleneck. The second implementation, instead of allocating the

whole the near-field array, only two small buffers are allocated. Thus, memory

reduction in the calculation of near-field interactions is achieved.

Figure 3.3: Change of the index of the near-field matrix (array) during calculation.

The near-field indexing used in the calculation of the near-field interactions is

shown in Fig. 3.3. Because the required index does not monotonically increases,

two buffers are necessary. The loop index points to a region of intersection be-

tween the first and the second buffers. We need to guarantee that the whole

partition is saved into the hard drive when the loop index leaves the first buffer.

Then, the first buffer is emptied and the data in the second buffer is transferred

into the first buffer. Finally, the data in the second buffer is emptied and the

calculation for the next partition begins.

16



3.4 Out-of-Core Radiation and Receiving Pat-

terns

Similar to the near-field implementation, OC radiation and receiving patterns

are implemented in two different ways. In the first case, data is written out in

small partitions following the calculation of the patterns. This case aims to test

the memory reduction in the solution part. Second, the radiation and receiving

patterns are used out of core completely, from the beginning of the calculation to

the end of solution part. Instead of using the whole radiation/receiving pattern

matrix, small buffers are used only during the calculation. Unlike OC near-

field implementation, the required index for the pattern calculation increases

monotonically. Thus, the calculation of the patterns requires a single buffer for

each partition. When the calculation of a partition is finished, it is written out

into the disk.

Radiation and receiving patterns are filled in the order of theta angle, phi

angle, basis functions and each triangle of that basis function. The pattern is

defined as a 4-D matrix. Therefore, a base index is needed for keeping the OC

implementation simple. The chosen base is the index of unknowns. According

to this index, the loops of the radiation and receiving pattern calculations in the

original implementation are modified. The loop of unknowns and the triangles

loop are determined to be the main loops.

3.5 Out-of-Core Translation

In our MLFMA, during translation, incoming fields are obtained by multiplying

translation, aggregation and the surface currents, which means both aggregation

and disaggregation arrays are needed at the same time. Because the aggregation

and disaggregation arrays allocate major memory spaces, aggregation array is

used out of core. In the first implementation, aggregation array is saved into the

disk in a fixed buffer size, which is 1/50 of the array size. However, this causes too

17



much data reading from the disks because the required data blocks are separated.

To overcome this problem, the aggregation array is saved onto the disk by lining

up data blocks larger than the specified buffer size.

During the solution part of MLFMA, MVM follows three steps: aggregation,

translation and disaggregation. The aggregation part sums up every field gener-

ated by the surface currents on the basis functions and shifts them to the centre of

the clusters at each level. In translation, the fields are translated into the center

of the cluster that will be interacted with. Last, in disaggregation, the translated

fields are distributed to the test functions. The memory reduction of each OC

implementation for the different parts of MLFMA is given in Fig. 3.4.

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15
x 10

4

Memory Checkpoint

M
e
m

o
ry

 (
M

B
)

Total Memory Allocation of MLFMA

 

 

MLFMA

OC: NF+Rad/Rec+AGG

OC: NF+Rad/Rec

OC: NF Near−field

In−Core Data

Aggregation

23,405,664
Unknowns

Rad/Rec Pattern

Figure 3.4: Total memory allocation of a 23M-unknowns sphere problem for
different steps of MLFMA-OC.

18



Chapter 4

Experiment Results

In this section, we compare the scalings of the MLFMA-OC with the original

MLFMA, then present the optimization results of different parts of the MLFMA-

OC. Last, we share extremely large problem solutions using MLFMA-OC.

OC methods and their implementations must compromise between memory

and time. Using an OC algorithm will reduce memory usage but increase cpu

time. For a 23M-unknowns sphere problem different parts of MLFMA are used

out of core; their total iterative solution times are shown in Fig. 4.1. From right

to left, we show the results of using no OC memory storage, then using OC,

then the radiation/receiving patterns and near-field matrix using OC, and last,

near-field matrix, radiation/receiving patterns and aggregation using OC storage.

Observation of the scaling is an another method of determining the efficiency

of the OC implementation. Problem-size scaling is performed for the scattering-

form-a-sphere problems involving 0.8M, 1.5M, 3M, 23M, 53M, and 93M un-

knowns. The solutions are handled using 64 processors, comparing MLFMA

and MLFMA-OC. In this scaling we obtained total iterative solution times and

peak memory per processor. We also obtained problem-size scaling with increas-

ing process number. This scaling test results from the solutions of 23M, 53M,

93M, and 212M unknowns sphere scattering problems using 16, 32, 64, and 128

19



540 720 1200 1700 2150 3200 6160 8350

740

900

1320

2220

3000

4000

Average Process Memory (MB)

T
o

ta
l 
S

o
lu

ti
o

n
 T

im
e

 (
s
e

c
)

23M Unknown Sphere Problem MLFMA−OC

 

 

64 Procs

32 Procs

16 Procs

MLFMA

OC NF+VMI+AGG

OC NF+VMI

OC NF+VMI+AGG

MLFMA

OC NF

OC NF+VMI

OC NF

MLFMA

OC NF

OC NF+VMI+AGG

OC NF+VMI

Figure 4.1: A 23M-unknowns sphere scattering problem solution using MLFMA-
OC and a time-memory graph of different parts of MLFMA using OC.

processors, respectively. In this scaling we obtained sum of total iterative solu-

tion times of each process and total memory required for each problem size. The

problem-size scaling and second scaling test results of the MLFMA and MLFMA-

OC are quite similar, and this shows that the computational complexity is not

changed. The scaling results are shown in Fig. 4.2.

4.1 Optimization

Out-of-core implementation causes delays and time losses in our MLFMA simu-

lations. Although the scaling will not change, time losses might be reduced by

setting a proper size of data partition. We thus observe how a change of solution

20



20 40 64 80 145 310 540 970 2250 4250 7200

20

35
50
80

750
1200
1800

3500
5000

Total Memory (MB)

T
im

e
 (

s
e
c
)

Problem Size Scaling

 

 

MLFMA

MLFMA−OC SSD

MLFMA−OC HDD

22 51 144 251 462 1246

30000

45000

90000

230000
300000

590000
750000

Total Memory (GB)

T
im

e
 (

s
e
c
)

Problem Size Scaling with Increasing Process Number

 

 

MLFMA

MLFMA−OC SSD

MLFMA−OC HDD

Figure 4.2: Problem size scaling of 0.8M, 1.5M, 3M, 23M, 53M, and 93M un-
knowns on 64 processes; and problem size scaling with increasing process number
of 23M, 53M, 93M, and 212M unknowns on 16, 32, 64, and 128 processes.

time affects partition size. As in the previous simulation, we observe all three

parts of the implementation separately. We only measure time for the parts used

out of core. We perform several simulations for the HDD and the SSD.

We study the time-memory change for different sizes of sphere scattering prob-

lems and solve them with 64 processes, increasing the unknowns of the sphere.

Problem sizes are, 0.8M, 1.5M, 3M, 23M, 53M, and 93M, respectively. Because

several timing simulations are required for the near-field MVM, we skip the near-

field matrix calculation part and therefore do not obtain full solutions. In this

section, we explain buffer optimization of the OC near-field matrix, OC aggrega-

tion array and OC radiation/receiving patterns and present the results.

21



4.1.1 Near-field Buffer Optimization

The near-field buffer is kept between 4 KB and 400 MB. For the first four problem

sizes, the buffer range is between 4 KB and 40 MB. For the last two problem sizes,

the buffers are set between 40 KB and 400 MB. Time-buffer size results of the

near-field matrix buffer are given in Fig. 4.3. When the buffer size is too small

(between 4 and 40 KB), the number of partitions increases and the processes have

too many data partitions to read. When the buffer size is too large (between 40

and 400 MB), the number of partitions decreases, but the reading periods overlaps

and overall performance decreases. The range of the buffer size that minimizes

the near-field MVM time is between 0.4 and 0.7 MB, which can be declared as

the optimal buffer size for the near-field matrix.

0.004 0.04 0.4 4 40 400
0.06

0.08

0.1

0.12

0.14

0.8M Unknowns

Buffer Size (MB)

T
im

e
 (

s
e
c
)

0.004 0.04 0.4 4 40 400
0.1

0.15

0.2

0.25

1.5M Unknowns

Buffer Size (MB)

T
im

e
 (

s
e
c
)

0.004 0.04 0.4 4 40 400
0.2

0.4

0.6

0.8
3M Unknowns

Buffer Size (MB)

T
im

e
 (

s
e
c
)

0.004 0.04 0.4 4 40 400
0

5

10

15

23M Unknowns

Buffer Size (MB)

T
im

e
 (

s
e
c
)

0.04 0.4 4 40 400
0

10

20
53M Unknowns

Buffer Size (MB)

T
im

e
 (

s
e
c
)

0.04 0.4 4 40 400
0

20

40
93M Unknowns

Buffer Size (MB)

T
im

e
 (

s
e
c
)

Figure 4.3: The dependence of the CPU time on the size of the near-field buffer.
Results are obtained with HDD (red lines) and SDD (blue lines) separately.

22



4.1.2 Aggregation Buffer Optimization

Similar to the near-field buffer tests, the aggregation buffer test is kept between

4 KB and 400 MB. For the first four problem sizes of the aggregation buffer tests,

the buffer size range is between 4 KB and 40 MB. The last two problem sizes are

set between 40 KB and 400 MB. Time-buffer size results of the aggregation array

buffer are given in Fig. 4.4.

The time responses with respect to buffer sizes are similar to the near-field

times. For the small (between 4 and 40 KB) and large buffer sizes (between 40

and 400 MB) the times are higher than for the medium buffer sizes. The lowest

times are achieved for buffer sizes between 0.4 and 0.7 MB, hence this size range

is optimal for the aggregation array.

4.1.3 Radiation/Receiving Patterns Buffer Optimization

The buffer sizes of the radiation/receiving pattern matrix are determined differ-

ently than the near-field matrix (array) and aggregation array. The size of the

matrix is related to the number of far-field unknowns and the number of phi and

theta samplings on the last level. Because the smallest cluster size changes for

the 93M-unknowns problem, the buffer size changes as well.

For this part, buffer sizes are kept between 0.13 and 1373 MB. For the first four

problem sizes, the buffer size range is between 0.13 and 1373 MB. For the fifth

problem size, the buffer is set between 1.3 and 1620 MB. For the last problem,

the buffer size ranges between 0.97 and 2900 MB. Time-buffer size results of the

radiation/receiving pattern buffer are given in Fig. 4.5.

The total iterative solution times of the buffers used for the near-field ma-

trix, aggregation array and radiation/receiving patterns are given in Fig. 4.6.

Although the buffers are not maximally optimized, lower time values with de-

creased memory space can be obtained and optimization is improved.

23



0.004 0.04 0.4 4 40 400
0.2

0.25

0.3

0.35

0.4

0.8M Unknowns

Buffer Size (MB)

T
im

e
 (

s
e
c
)

0.004 0.04 0.4 4 40 400
0.4

0.5

0.6

0.7

0.8

1.5M Unknowns

Buffer Size (MB)

T
im

e
 (

s
e
c
)

0.004 0.04 0.4 4 40 400
1

1.5

2

3M Unknowns

Buffer Size (MB)

T
im

e
 (

s
e
c
)

0.004 0.04 0.4 4 40 400

10

15

20

25

23M Unknowns

Buffer Size (MB)
T

im
e
 (

s
e
c
)

0.04 0.4 4 40 400
20

25

30

35

53M Unknowns

Buffer Size (MB)

T
im

e
 (

s
e
c
)

0.04 0.4 4 40 400

60

80

100
93M Unknowns

Buffer Size (MB)

T
im

e
 (

s
e
c
)

Figure 4.4: The dependence of the CPU time on the size of the aggregation buffer.
Results are obtained with HDD (red lines) and SDD (blue lines) separately.

4.1.4 212M-Unknowns Sphere Problem Buffer Optimiza-

tion

After the optimization tests, a 212M-unknowns problem is solved with 128 pro-

cesses. We use only SSDs for this test because the total capacity of HDDs in the

computation cluster are not sufficient. We skip the near-field matrix calculations

and end the tests after the tenth iteration. The buffer size-timing benchmarks

and memory-total solution benchmarks are given in Fig. 4.7. The results are

similar to previous tests, with the optimal buffer range of the near-field matrix

and aggregation array between 0.4 and 0.7 MB and the radiation/receiving pat-

tern buffer between 0.97 and 1.9 MB. Although the optimum of the latter is

24



0.13 1.3 13 137 1373
0.014

0.016

0.018

0.02

0.022

0.8M Unknowns

Buffer Size (MB)

T
im

e
 (

s
e

c
)

0.13 1.3 13 137 1373

0.025

0.03

0.035

1.5M Unknowns

Buffer Size (MB)

T
im

e
 (

s
e

c
)

0.13 1.3 13 137 1373

0.06

0.08

0.1

3M Unknowns

Buffer Size (MB)

T
im

e
 (

s
e

c
)

0.13 1.3 13 137 1373

0.5

1

1.5
23M Unknowns

Buffer Size (MB)

T
im

e
 (

s
e

c
)

1.3 13 137 1373
0

2

4
53M Unknowns

Buffer Size (MB)

T
im

e
 (

s
e

c
)

0.97 9.7 97 976
0

10

20

30

93M Unknowns

Buffer Size (MB)

T
im

e
 (

s
e

c
)

Figure 4.5: The dependence of the CPU time on the size of the radiation/receiving
pattern buffer. Results are obtained with HDD (red lines) and SDD (blue lines)
separately.

determined to be 1.9 MB, the first three buffer sizes of MLFMA-OC (0.97 MB,

1.9 MB and 9.7 MB) take between 2.3 and 2.7 seconds, whereas MLFMA takes

1.3 seconds. Thus, the third radiation/receiving pattern buffer size still gives a

good result.

The optimal buffers (near-field buffer: 0.4 MB; aggregation buffer: 0.4 MB;

radiation/receiving pattern buffer: 9.7 MB) for the MLFMA-OC solution takes

7493 seconds using 4072 MB memory. The MLFMA solution takes 4578 seconds

using 9738 MB memory. Thus, MLFMA-OC requires 63% more time using 58%

less memory than MLFMA to solve a scattering problem involving a sphere with

212M unknowns. This result also shows that the optimal buffer size obtained for

25



18 20 23 27 57

25

30

35

0.8M Unknowns

Total Memory (MB)

T
im

e
 (

s
e
c
)

38 40 43 47 77

55

60

65

70

1.5M Unknowns

Total Memory (MB)

T
im

e
 (

s
e
c
)

63 69 73 104

100

110

120

130

3M Unknowns

Total Memory (MB)

T
im

e
 (

s
e
c
)

540 547 553 597

1000

1500

2000

23M Unknowns

Total Memory (MB)
T

im
e
 (

s
e
c
)

962 1026 1081 1386

1800

2000

2200

2400

2600

2800

53M Unknowns

Total Memory (MB)

T
im

e
 (

s
e
c
)

2244 2302 2359 2682

5000

10000

15000

93M Unknowns

Total Memory (MB)

T
im

e
 (

s
e
c
)

Figure 4.6: The dependence of total iterative solution times on the total memory
change for buffer size. Results are obtained with HDD (red lines) and SDD (blue
lines) separately.

128 processors is similar with the optimal buffers obtained for 64 processors.

Buffer sizes are determined by modifying the array size and predetermined

array sizes used for the optimization benchmark. Therefore, different optimiza-

tion ranges might be included more-optimal data sizes. We use a 3M-unknowns

sphere for this test; the total solution time is given in Fig. 4.6, where it is evi-

dent that all optimal buffer sizes are not overlapping. Starting with the original

buffer sizes, we change each buffer type to 0.5 and 1.5 times of its original size.

The optimization plot is given in Fig. 4.8, where the yellow point is the original

test. The near-field buffer is 0.4 MB, the aggregation buffer is 0.4 MB and the

radiation/receiving pattern buffer is 13.7 MB. The red points are the near-field

26



0.04 0.4 4 40 400

50

55

60

65

Buffer Size (MB)

T
im

e
 (

s
e
c
)

Near−Field Buffer

 

 

0.04 0.4 4 40 400

95

100

105

110

Buffer Size (MB)

T
im

e
 (

s
e
c
)

Aggregation Buffer

 

 

4000 5000 6000 7000

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

x 10
4

Peak Memory (MB)

T
im

e
 (

s
e
c
)

Total Solution

 

 

0.97 9.7 97 976 3200

5

10

15

20

25

30

35

40

Buffer Size (MB)

T
im

e
 (

s
e
c
)

Rad/Rec Pattern Buffer

 

 

MLFMA: 122 MB, 18.8 s

MLFMA: 9738 MB, 4578 s

MLFMA: 9738 MB, 26.2 s

MLFMA: 3241 MB, 1.3 s

Figure 4.7: OC buffer optimization benchmarks of a 212M-unknowns sphere scat-
tering problem for 128 processes with an SSD.

buffer trials; because this buffer already had a low time, these changes resulted

in a time increase. Blue points are the aggregation buffer trials, where the SSD

resulted in a slightly lower time for the 0.6 MB buffer size and the HDD resulted

in a slightly lower time for the 0.2 MB buffer. We see a major change in the radi-

ation/receiving pattern buffer trials (cyan points). The half-sized buffer (6.8 MB)

took less time, and the 1.5 buffer size (20.5 MB) took more time. At this level, we

change the aggregation buffers and the radiation/receiving pattern buffers and

perform a second test (round black points), which results in improved times. For

the third test (square black points), we set the radiation/receiving pattern buffers

to 0.65 MB, 1.3 MB and 2.7 MB; the optimal size turned out to be 2.7 MB.

27



65 70 75 80 85 90 95

94

96

98

100

102

104

106

108

110

112

114

Total Memory (MB)

T
im

e
 (

s
e
c
)

Total Solution

 

 

OC (SSD) − Solution

OC (HDD) − Solution

Near−field (SSD)

Aggregation (SSD)

Fourier (SSD)

Test Point (SSD)

Near−field (HDD)

Aggregation (HDD)

Fourier (HDD)

Test Point (HDD)

Optimization 2 (SSD)

Optimization 2 (HDD)

Optimization 3 (SSD)

Optimization 3 (HDD)

Figure 4.8: Optimization of “total iterative solution times versus total memory”
results for a 3M-unknowns sphere scattering problem. Testing HDD (green lines)
and SSD (blue lines) separately. For comparison purposes, MLFMA solution
requires 308 MB memory and 77.5 seconds total iterative solution time.

4.2 Solution of Sphere and Almond Geometries

with Optimized MLFMA-OC

In this section, we solve different sizes of sphere and NASA Almond scattering

problems, comparing MLFMA and MLFMA-OC using SSDs. We use the optimal

buffer sizes given in the previous section.

The sharp end of the NASA Almond geometry lies on the x-y plane and

its sharp edge points in the +x direction. The geometry is illuminated 180◦

from the x axis on the x-y plane. Thus, the round face of the geometry has been

28



illuminated. The solutions are handled using 128 processors. The in-core solution

represents MLFMA and the OC solution represents MLFMA-OC using multiple

SSDs. For each solution, we give the per iteration time and peak memory per

processor in Table 4.1 for each problem size.

Table 4.1: Iteration Time and Peak Memory for the NASA Almond Problem
# of Geometry Time (sec) Memory (MB)

Unknowns Size (λ) IC OC SSD IC OC SSD
1.5M 84.18 2.0 4.2 128 76
6M 168.36 9.6 14.7 338 180
24M 336.73 35.8 48.9 1252 647
97M 673.46 133.8 173.8 4927 2434

The NASA Almond geometry solutions result in OC method timings of 110%,

53%, 36%, and 30% time delays compared to the MLFMA solutions of spheres

with 1.5M, 6M, 24M, and 97M unknowns, respectively. On the other hand,

memory reductions for increasing problem sizes are 40%, 47%, 49%, and 51%.

Thus, for a large-scale problem, a memory reduction of 50% would only cause

a time increase of 30%. Figure 4.9 illustrates bistatic radar cross section (RCS)

results of 1.5M and 6M-unknowns NASA Almond geometries. The corresponding

sizes of geometries are 84.18λ and 168.36λ, respectively.

We obtain scattering solutions for various sizes of sphere geometries. The

problems are solved using 64 processes, comparing MLFMA and MLMFA-OC.

For the OC solution, SSDs are used as the secondary storage devices. For each

solution, per iteration time and peak memory per processor is given in Table 4.2

for each problem size.

Table 4.2: Iteration Time and Peak Memory for Sphere Problem
# of Geometry Time (sec) Memory (MB)

Unknowns Size (λ) IC OC SSD IC OC SSD
0.8M 15 2.0 2.6 79 18
1.5M 20 4.2 5.6 145 38
3M 30 7.7 11.0 308 63
23M 80 73.8 132.1 2278 540
53M 120 176.2 203.0 4243 962
93M 160 357.1 480.9 7223 2244

29



180 200 220 240 260 280 300 320 340 360
−60

−40

−20

0

20

Bistatic Angle (Degrees)

R
C

S
 (

d
B

m
s
)

180 200 220 240 260 280 300 320 340 360
−60

−40

−20

0

20

Bistatic Angle (Degrees)

R
C

S
 (

d
B

m
s
)

Figure 4.9: RCS on the azimuth plane of a 1.5M and 6M-unknown NASA Almond
geometry.

Sphere geometry solutions result in OC method timings of 30%, 33%, 43%,

80%, 15%, and 34% time delays compared to MLFMA solutions of 0.8M, 1.5M,

3M, 23M, 53M, and 93M unknowns, respectively. On the other hand, memory

reductions for increasing problem sizes are 78%, 74%, 80%, 77%, 78%, and 69%.

Thus, for a large-scale problem, a memory reduction of 70% would only cause a

time increase of at most 80%. The results from the sphere and the NASA Almond

show that it is possible to reduce the peak memory by half in less than double

the solution time.

Last, we test a sphere scattering problem involving 670 million unknowns.

The diameter of the sphere is 680λ. We obtain a solution using 128 processes

30



with 1% residual in 30 iterations. The MLFMA-OC buffers are 0.4 MB for near-

field and aggregation, and 0.5 MB for the radiation and receiving patterns. Peak

memory usage per processor is 7376 MB and the total solution takes 27.8 hours.

The RCS result is given in Fig. 4.10.

0 20 40 60 80 100 120 140 160 180
−40

−20

0

20

40

60

80

Bistatic Angle (Degrees)

R
e

la
ti
v
e

 R
C

S
 (

d
B

)

 

 

MIE Series

MLFMA−OC

178 178.5 179 179.5 180
0

10

20

30

40

50

60

70

Bistatic Angle (Degrees)

R
e

la
ti
v
e

 R
C

S
 (

d
B

)

 

 

MIE Series

MLFMA−OC

Figure 4.10: RCS of a 670M-unknowns sphere with 680λ diameter.

We also solve this problem with the same residual and input parameters but

different buffer sizes. The buffer size for the near-field is 7.6 MB, for aggregation

54 MB and for radiation/receiving patterns 195 MB. We obtain the same results,

with a total solution time of 30.1 hours. Compared to the previous solution, more

than two hours is saved by selecting more-optimal buffer sizes.

We solve a NASA Almond scattering problem involving 610 million of un-

knowns. The length of the geometry is 1704λ. We obtain a solution using 128

31



Figure 4.11: RCS on the azimuth plane of a 610M-unknown NASA Almond
geometry.

processes with 0.5% residual error in 120 iterations. The sizes of the MLFMA-

OC buffers are 0.4 MB for the near-field and aggregation, and 0.5 MB for the

radiation and receiving patterns. Peak memory usage per processor is 11886 MB

and the total solution takes 92.7 hours. The RCS result of the geometry is given

in Fig. 4.11.

32



Chapter 5

Conclusions

Using a low-complexity algorithm is necessary to solve extremely large-scale scat-

tering problems. MLFMA can handle such problems with computational and

memory complexity of O(N logN). However, even a low-complexity algorithm

may require large amount of memory for challenging real-life problems. One way

to reduce memory is to incorporate out-of-core methods into the main algorithm.

In this research, we implement an OC method into the parallel MLFMA, and

achieve memory reduction without increasing computational complexity. This

implementation succeeds through the following steps: investigation of best data

type for OC, memory peak detection, OC implementation and OC buffer size

tests.

Data types are tested on HDDs and SSDs. Disk types did not result in a

significant time difference. However, there was a major time difference between

using ASCII formatted and binary data. It was observed that transferring binary

data required much less time than ASCII-formatted data. Also, binary data

requires less space in the drive. Thus, binary data type is used for the OC

implementation.

After selecting the data type, memory profiling is performed. Memory peaks

are carefully detected and elements with major sizes are selected: near-field inter-

actions matrix, aggregation array, and radiation/receiving patterns. The first two

33



elements are fully calculated and used in an OC fashion, while the aggregation

array is used partially out-of-core. After we finish the OC implementation, sizes

of OC buffers are investigated. We found the optimal buffer-size interval for each

OC element, and minimized the OC solution time.

We performed various tests for different sizes of spheres and NASA Almond

geometries. Out-of-core implementation reduces the memory usage by almost

50% and the per-iteration solution time approximately becomes 1.5 times the

original MLFMA solution. Finally, full-wave solutions of scattering problems are

obtained for large sphere and NASA Almond geometries. Solving a sphere scat-

tering problem including 670 million unknowns is achieved using only 966 GB

memory and within 30 hours. Solving a NASA Almond scattering problem in-

cluding 610 million unknowns is achieved using only 1.5 TB memory and within

93 hours.

Future work will include the streamlining of the data read-in and write-out

operations in order to increase the performance of the OC implementation of the

parallel MLFMA. For example, first-in, first-out strategy may be used for this

purpose. The goal will be to protect the processors from getting affected from

the data traffic during the disk-read and disk-write operations.

34



Bibliography

[1] W. C. Reiley and R. A. van de Geijn, “Pooclapack: Parallel out-of-core

linear algebra package,” Austin, TX, USA, Tech. Rep., 1999.

[2] L. Nyland, M. Harris, and J. Prins, Fast N−Body Simulation with CUDA,

GPU Gems, 3rd ed.

[3] M. Yuan, T. K. Sarkar, and B. Kolundzija, “Solution of large complex prob-

lems in computational electromagnetics using higher-order basis in MoM

with out-of-core solvers,” IEEE Trans. Antennas Propag., vol. 48, no. 2, pp.

55–62, 2006.

[4] X.-W. Zhao, Y. Zhang, H.-W. Zhang, D. Garcia-Donoro, S.-W. Ting, T. K.

Sarkar, and C.-H. Liang, “Parallel MoM-PO method with out-of-core tech-

nique for analysis of complex arrays on electrically large platforms,” Prog.

Electromagn. Res., vol. 108, pp. 1–21, 2010.

[5] G. Sylvand, “Performance of a parallel implementation of the FMM for elec-

tromagnetics applications,” Int. J. Numer. Methods Fluids, vol. 43, no. 8,

pp. 865–879, 2003.

[6] J. M. Song and W. C. Chew, “Multilevel fast-multipole algorithm for solving

combined field integral equations of electromagnetic scattering,” Microwave

Opt. Tech. Lett., vol. 10, no. 1, pp. 14–19, 1995.

[7] S. M. Rao, D. R. Wilton, and A. Glisson, “Electromagnetic scattering by

surfaces of arbitrary shape,” IEEE Trans. Antennas Propag., vol. 30, no. 3,

pp. 409–418, 1982.

35



[8] X.-Q. Sheng, J. M. Jin, J. M. Song, W. C. Chew, and C.-C. Lu, “Solution of

combined-field integral equation using multilevel fast multipole algorithm for

scattering by homogeneous bodies,” IEEE Trans. Antennas Propag., vol. 46,

no. 11, pp. 1718–1726, 1998.

[9] Ö. Ergül and L. Gürel, “Improving the accuracy of the magnetic field integral

equation with the linear-linear basis functions,” Radio Sci., vol. 41, no. 4,

2006.

[10] L. Gürel and Ö. Ergül, “Singularity of the magnetic-field integral equation

and its extraction,” IEEE Antennas Wireless Propag. Lett., vol. 4, pp. 229–

232, 2005.

[11] W. C. Chew, E. Michielssen, J. M. Song, and J. M. Jin, Fast and Efficient

Algorithms in Computational Electromagnetics. Artech House, Inc., 2001.

[12] Ö. Ergül and L. Gürel, “Enhancing the accuracy of the interpolations and

anterpolations in MLFMA,” IEEE Antennas Wireless Propag. Lett., vol. 5,

no. 1, pp. 467–470, 2006.

[13] S. Koc, J. Song, and W. C. Chew, “Error analysis for the numerical evalua-

tion of the diagonal forms of the scalar spherical addition theorem,” SIAM

J., vol. 36, no. 3, pp. 906–921, 1999.

[14] R. Coifman, V. Rokhlin, and S. Wandzura, “The fast multipole method

for the wave equation: A pedestrian prescription,” IEEE Antennas Propag.

Mag., vol. 35, no. 3, pp. 7–12, 1993.

36


