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ABSTRACT

NOVEL METHODS FOR SAR IMAGING PROBLEMS

Salih Uğur

Ph.D. in Electrical and Electronics Engineering

Supervisor: Prof. Dr. Orhan Arıkan

June, 2013

Synthetic Aperture Radar (SAR) provides high resolution images of terrain reflec-

tivity. SAR systems are indispensable in many remote sensing applications. High

resolution imaging of terrain requires precise position information of the radar

platform on its flight path. In target detection and identification applications,

imaging of sparse reflectivity scenes is a requirement. In this thesis, novel SAR

image reconstruction techniques for sparse target scenes are developed. These

techniques differ from earlier approaches in their ability of simultaneous image

reconstruction and motion compensation. It is shown that if the residual phase

error after INS/GPS corrected platform motion is captured in the signal model,

then the optimal autofocused image formation can be formulated as a sparse

reconstruction problem. In the first proposed technique, Non-Linear Conjugate

Gradient Descent algorithm is used to obtain the optimum reconstruction. To

increase robustness in the reconstruction, Total Variation penalty is introduced

into the cost function of the optimization. To reduce the rate of A/D conversion

and memory requirements, a specific under sampling pattern is introduced. In the

second proposed technique, Expectation Maximization Based Matching Pursuit

(EMMP) algorithm is utilized to obtain the optimum sparse SAR reconstruction.

EMMP algorithm is greedy and computationally less complex resulting in fast

SAR image reconstructions. Based on a variety of metrics, performances of the

proposed techniques are compared. It is observed that the EMMP algorithm has

an additional advantage of reconstructing off-grid targets by perturbing on-grid

basis vectors on a finer grid.

Keywords: Synthetic Aperture Radar, Phase Error Correction, Compressed Sens-

ing, Total Variation, Expectation Maximization Based Matching Pursuit.
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ÖZET

SAR GÖRÜNTÜLEME PROBLEMLERİ İÇİN YENİ
METODLAR

Salih Uğur

Elektrik Elektronik Mühendisliği, Doktora

Tez Yöneticisi: Prof. Dr. Orhan Arıkan

Haziran, 2013

Sentetik Ac.ıklıklı Radar (SAR) yüzey yansımasının yüksek c.özünürlüklü

görüntüsünü sağlar. SAR sistemleri pek c.ok uzaktan algılama uygulamasının

vazgec.ilmezi olmus.tur. Yüzeyin yüksek c.özünürlüklü görüntülenmesi radar

platformu uc.us. rotasının hassas pozisyon bilgisini gerektirir. Hedef tespit ve

tanımlama uygulamalarında seyrek yansıtıcı yüzeylerin görüntülenmesi gerekir.

Bu tezde, seyrek hedef yüzeyleri ic.in yeni SAR görüntü geric.atımı teknikleri

gelis.tirilmis.tir. Bu teknikler daha öncekilerden, görüntü olus.turulması ve plat-

form hareket hatalarının giderilmesi is.lemlerinin es. zamanlı yapılmaları ac.ısından

farklılas.maktadır. Platform hareketinin INS/GPS yardımıyla düzeltilmesi son-

rası kalan faz bozukluğunun sinyal modeline katılmasıyla, en iyi otomatik

odaklanmıs. görüntü olus.turulması is.lemi bir seyrek geri c.atım problemi olarak

ortaya konulmaktadır. İlk önerilen teknikte, eniyi geri c.atımı elde etmek

ic.in Doğrusal Olmayan Es.lenik Bayır Küc.ülme algoritması kullanılmaktadır.

Geric.atımın gürbüzlüğünün arttırılması amacıyla Toplam Değis.im cezası da eniy-

ilemenin maliyet fonksiyonuna eklenmis.tir. Analog/sayısal c.eviricilerinin hız

ve hafıza gereksinimlerini düs.ürebilmek amacıyla özel bir alt örnekleme yapısı

gelis.tirilmis.tir. Önerilen ikinci teknik, eniyi seyrek SAR görüntü geric.atımı

ic.in Enbüyültümü Tabanlı Uyumlama Takibi algoritmasını kullanmaktadır.

Enbüyültümü Tabanlı Uyumlama Takibi algoritması fırsatc.ı bir algoritma olup

daha az hesaplama karmas.ıklığı ic.ermektedir ve bu sayede hızlı SAR görüntü geri

c.atımına olanak vermektedir. Önerilen tekniklerin performansları muhtelif perfor-

mans parametreleri baz alınarak kars.ılas.tırılmıs.tır. Enbüyültümü Tabanlı Uyum-

lama Takibi algoritmasının ek bir avantajı küc.ük değis.ikliklerle ızgara üzerinde

olmayan hedeflerin geri c.atımına da olanak vermesidir.

Anahtar sözcükler : Sentetik Ac.ıklıklı Radar, Faz Hatası Düzeltimi, Sıkıs.tırılmıs.
Algılama, Toplam Değis.im, Beklenti Enbüyültümü Tabanlı Uyumlama Takibi.
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Chapter 1

Introduction

Synthetic Aperture Radar (SAR) systems provide high resolution images of ter-

rain reflectivity. Typically, an airborne or spaceborne platform carries a monos-

tatic radar system on a straight flight path, while the radar transmits and receives

echoes from the area of interest. The received and digitized radar returns are co-

herently processed to obtain significantly higher resolutions in azimuth direction

that could have been obtained by a large aperture antenna.

SAR systems are widely used in ground surveillance, terrain mapping and

environmental monitoring applications due to their ability to provide high reso-

lution images. They have wide range of users from commercial, scientific, and

military fields. Commercial users focus on the manage and monitor the Earth’s

resources while scientific users has a much wider range from monitoring global cli-

mate change to discovering leakage detection on the sea. In military applications,

SAR is primarily used in intelligence, surveillance and reconnaissance (ISR) mis-

sions. Increased demand on high precision ISR outputs requires sub-meter or even

higher resolutions from SAR images. High resolution SAR systems are becom-

ing competitive alternatives and supplements of Electro-Optic/Infrared (EO/IR)

cameras for ISR applications. Also, capability of operating in all weather condi-

tions makes them very appealing for surveillance applications where performance

of EO/IR cameras heavily depend on the atmospheric conditions and time of the

day.
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In a typical digital SAR image reconstruction processing chain, the received

analog signal is first down-converted and sampled by using an A/D converter

operating above the Nyquist rate of sampling (Figure 1.1). The sampling rate of

Figure 1.1: Typical SAR image formation process.

the A/D converter depends on the bandwidth of the SAR system which deter-

mines the range resolution. The A/D converted signal is written in a memory for

further processing. The size of the required memory is derived from the data rate

of the A/D converter and the processing power of the SAR image formation pro-

cessor. The stored data is either processed in real-time by an on-board processor

or transferred by a data link to a ground station where the image formation takes

place.

SAR range resolution depends on the bandwidth of the transmitted signal

similar to classical radars. High bandwidth results finer resolution. Azimuth

resolution in SAR depends on the synthetic aperture length. Longer aperture

provides finer azimuth resolution.

SAR has two main modes, namely stripmap and spotlight. In stripmap mode

SAR (Figure 1.2), the radar antenna angle with respect to platform route is held

constant. It gives the strip image of larger scenes in coarser resolutions. In

spotlight mode SAR (Figure 1.3), the radar antenna is directed to a constant

position in the imaged scene throughout the data collection phase. In this mode

finer resolutions are obtained for relatively small scenes. In military ISR appli-

cations, typical SAR mission flow is as follows: First a stripmap mode image

of the scanned area is examined usually with the help of a computer to detect

possible targets. For detected ones, a spotlight mode mission is performed to

obtain high resolution images of the targets. The SAR image reconstruction re-

quires to collect all the data corresponding to the synthetic aperture. In other

2



Figure 1.2: Strip mode SAR geometry.

Figure 1.3: Spot mode SAR geometry.

3



words, reconstruction process waits for the SAR to collect all the data for the

corresponding image. Therefore there is a lag between the data collection and re-

construction times of the SAR image. Due to this lag, SAR image reconstruction

is called as a near-real time process.

Apart form the data collection geometry, SAR modes mainly differ by their

respective reconstruction algorithms. A variety of different reconstruction algo-

rithms have been proposed for both modes of operation. For stripmap mode,

range-Doppler [1, 2, 3], chirp scaling [4], and w − K [5] algorithms are com-

monly used techniques. Main feature of range-Doppler algorithm is to perform

all operations in one dimension at a time. Chirp scaling algorithm eliminates the

interpolator used for range cell migration correction in range-Doppler algorithm.

w − K algorithm corrects range and azimuth frequency dependence of azimuth

range coupling in two dimensional frequency domain. Polar Format Algorithm

(PFA) [6] and Filtered Back Projection (FBP) [7, 8] are the algorithms that are

widely used in spotlight mode image reconstruction. PFA utilizes the fact that

de-ramped SAR phase history signal is the Fourier transformation of the reflectiv-

ity of the scene to be imaged. FBP, originated from computer aided tomography,

reconstructs SAR image by back propagating received signals collected through

the synthetic aperture to imaged scene.

1.1 SAR Data Acquisition

In this part, we will first focus on the characteristics of the SAR data acquisition

in spotlight mode operation. Although they can be applied to other modes of

operation, our methods, especially the ones using Compresses Sensing (CS) tech-

niques assume the SAR is in spotlight mode for the sake of brevity originating

from the basic Fourier transform relation between the received signal and the

ground reflectance.

In spotlight mode SAR, at regular intervals along the flight path, the radar

transmits the real part of a linear frequency modulated (FM) chirp waveform

4



s(t), which is defined as:

s(t) =

 ej(ω0t+at2), |t| ≤ T
2

0, otherwise
(1.1)

where ω0 is the RF carrier frequency in radians, 2a is the FM rate and T is the

pulse duration. At each look angle, θ, which corresponds to a different azimuth

Figure 1.4: Spotlight mode SAR imaging geometry.

position along the synthetic aperture (see Figure 1.4), the relation between the

received and demodulated signal yθ(t), and the scene reflectivity x(z1, z2) can be

expressed as [6],

yθ(t) =
∫∫
√

z21+z22≤L
x(z1, z2) exp{−jΩ(t)(z1 cos(θ) + z2 sin(θ))}dz1dz2 (1.2)

where L is the spatial extent of the ground patch and

Ω(t) = (2/c)(ω0 + 2a(t− (2Rθ/c))), (1.3)

5



is the radial spatial frequency. Rθ in Ω(t) formulation corresponds to distance

between the platform and the imaged target scene center at a look angle θ. The

demodulated signal yθ(t) can also be written as the band-pass filtered Fourier

transform of the projection of the ground reflectivity x(z1, z2) at the angle θ, by

using the projection slice theorem [7]:

yθ(t) =
∫ L

−L
qθ(u) exp{−jΩ(t)u}du, (1.4)

where u is the axis from the platform to the center of the imaged area at the

angle θ, and qθ(u) is the projection of the scene reflectivity x(z1, z2) at the angle

θ, given by;

qθ(u) =
∫∫

δ(u− z1 cos(θ)− z2 sin(θ))x(z1, z2)dz1dz2, (1.5)

and is called the range profile [9]. Matrix based formulation of the spotlight mode

SAR image reconstruction problem can be written by discretizing the integral in

Eq. 1.2 using its uniform Riemann sum approximation [10]:

yθ = Gθ x, (1.6)

where, x and yθ are vectorized forms of the 2-D ground reflectivity distribution

and the demodulated received signal, respectively. The vectorized form of x

is obtained by stacking the columns of the 2-D ground reflectivity distribution

matrix and the vectorized form of yθ corresponds to the fast-time samples taken

at the look angle θ. Finally, Gθ is the complex valued discrete SAR projection

operator at the angle θ relating the received signal to the unknown reflectivities.

The received signal at each azimuth position is sampled by an A/D converter.

All the signals received along the synthetic aperture can be written in a vector

form by stacking their respective signal samples. This is achieved by appending

the range bins taken from an azimuth location to the bins taken from the next

azimuth location. The discretized reflectivity matrix can also be written in a

vector form by stacking its respective columns. The relation between the received

signal vector and the reflectivity vector then can be written as [9],

y = G x+w, (1.7)

6



where y is the received signal (the measurement vector), G is the complex valued

discrete SAR projection operator matrix (composed of all Gθ throughout the

synthetic aperture), x is the reflectivity vector and w is the additive complex

white Gaussian measurement noise vector. Assuming N azimuth and N range

points results N × N rectangular grid for SAR image. This image has total

number of m = N × N pixels. Then, y,x, and w are m × 1 vectors. G is a

matrix with size m×m.

1.2 Phase Error Due To Platform Motion in

SAR

SAR systems need accurate distance and angle information between the SAR

platform and the reference point in the terrain of interest in order to establish

the synthetic aperture precisely. However, especially in airborne SAR applica-

tions, due to the limited accuracy of the navigational sensors, there is always

some residual error left in the estimation of the actual flight path. These un-

compensated platform motion errors cause uncertainties in distance and angle

measurements which result in phase errors in the received SAR signal. Let δR

represents this measurement error which results mixing error and causes phase

errors in the received signal. Hence the demodulation output of Eq. 1.4 becomes

[11]:

yθp(t) = ejδR Ω(t)
∫ L

−L
qθ(u) exp{−jΩ(t)u}du = ejϕ(t) yθ(t), (1.8)

where yθp(t) is the received signal with phase error due to an error of δR in the

platform position from the scene center. Since Ω(t) = (2/c)(ω0+2a(t−(2Rθ/c))),

the phase error term ϕ(t), has a constant part and a time varying part. Following

Eq. 1.8, the exponential multiplication of the phase error can be inserted to the

signal model and the measurement relation of Eq. 1.7 becomes:

yp = Φ y = Φ G x+w, (1.9)

7



Here, Φ is a diagonal matrix representing phase errors for every measurement

taken from the imaged scene and is given below,

Φ =



ejϕ1

ejϕ2

. . .

ejϕm

 . (1.10)

Here m is the total number of measurements and ϕi’s are the phase errors in

radians incurred at the ith measurement bin. The error in the range compressed

data due to phase error is generally ignored, because the resultant range error is

typically a small fraction of a range resolution bin [11]. Therefore, phase errors

do not depend on the range axis and they are assumed to be the same for all the

data corresponding to an azimuth point,

yp1

yp2
...

ypN

 =



ejϕ1

ejϕ2

. . .

ejϕN





G1

G2

...

GN

x+w, (1.11)

where ypi is the partition of the measurement vector yp which contains all the

range points corresponding to the azimuth point i, ϕi is the phase error at the

azimuth point i, Gi is the partition of the matrix G corresponding to the range

bins of the azimuth point i and N is the total number of azimuth points. From

now on, Gi is used instead of Gθ for representing matrix partition of G in order

not to confuse with angle.

Phase errors are the main cause of degradations in high resolution SAR im-

ages limiting achievable performance especially in the azimuth direction. These

errors, depending on their nature, can cause geometric distortions, loss of res-

olution/contrast, decrease in SNR and even generate spurious targets [6]. An

example of a SAR image distorted by phase error is given in Figure 1.5.b. The

synthetically generated original image is presented in Figure 1.5.a. Both of these

images are reconstructed by PFA. Figure 1.5.c gives the phase error in radians

added to the original image.
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Figure 1.5: (a) Synthetically generated SAR image. (b) SAR image with phase
error. (c) Added phase error in radians.
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Modern SAR systems have high range and azimuth resolutions which ne-

cessitate large bandwidths even in excess of 500MHz. These systems typically

requires higher operational frequencies because of the desired bandwidths in the

RF and antenna subsystems. Higher operational frequencies increase the required

accuracy levels of motion compensation techniques. If not compensated, these

motion errors cause greater amount of phase errors at higher frequencies. As a

result, higher operational frequencies create significant challenges for autofocus

techniques. Furthermore, classical image reconstruction techniques for higher

frequency SAR systems require full band, fast A/D converters to digitize the re-

ceived signal resulting in larger onboard storage systems. In addition, if the raw

data is to be transmitted to another platform for processing, transmission of full

band data requires more time or bandwidth.

1.3 SAR Motion Compensation by Phase Gra-

dient Autofocus Technique

SAR platforms are generally equipped with an Inertial Measurement Unit (IMU)

to estimate their actual track which can have considerable difference than the

planned one. Even when the IMU is used, there is an error left in the estimation

of the actual track which causes a phase error in the SAR signal. Autofocus

algorithms are image restoration techniques which can be applied to overcome

the degradations related to phase errors. There are several autofocus techniques

[6, 12, 13, 14, 15, 16, 17, 18, 19, 20] to estimate and correct phase errors by using

dedicated algorithms on raw SAR data. These algorithms can be applied to a wide

range of SAR images successfully. Once a reliable estimate for the phase error is

available, the raw SAR data is corrected to obtain highly improved reconstruc-

tions. The autofocus problem is still an active research area in SAR community.

The main difficulty in autofocus problem is the nonlinear coupling between the

unknown target scene reflectances and the phase error. Recently proposed mod-

ern autofocus techniques apply algorithms based on a bilinear parametric model

via semidefinite relaxation [21, 22] and claim improved performances over existing

10



methods.

Phase Gradient Autofocus (PGA) algorithm [18] is a widely used technique

to compensate phase error in SAR images. It is a non-parametric estimator and

its basic algorithmic steps are given in Figure 1.6[11]. PGA first center shifts

Figure 1.6: PGA algorithm: PGA is applied to complex valued image data. It
finds and center shifts the most powerful scatterers in each range bin. After
applying windowing and transforming the data to range compressed domain,
PGA estimates the phase error. These steps are repeated for a fixed number of
times or until a certain threshold is reached.

the brightest pixels on the complex image in each range bin. Then, it applies

windowing to suppress the effects of other targets residing in the same range

bin. PGA estimates the phase error in the range compressed domain. Then, it

applies phase correction using its estimate. These steps are iterated until there

is negligible difference between iterations at which point the phase error estimate
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is obtained. Usually, around three iterations of the PGA is sufficient to estimate

phase errors. The PGA algorithm is applied to the phase error distorted image
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Figure 1.7: (a) Original SAR image. (b) SAR image with phase error. (c) SAR
image reconstructed by PFA and autofocused by using PGA technique.

of Figure 1.5.b and the resultant image is given in Figure 1.7.c.
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Chapter 2

SAR Image Reconstruction and

Autofocus by Compressed

Sensing

Recent developments in Compressed Sensing (CS) techniques have an impact on

the SAR image reconstruction as well. Unlike classical SAR image processing

techniques, CS methods can operate on downsampled data to reconstruct SAR

images where targets of interest are sparse in a certain transform domain. CS

SAR image reconstruction techniques proposed in the literature model the image

forming process as a sparse inverse reconstruction problem. In [23, 24], the in-

verse problem is formulated as a convex l1 norm minimization and its solution is

obtained by linear programming or approximated by greedy pursuit algorithms.

The l1 norm minimization term in the cost function of the convex minimization

problem enforces sparsity. A similar approach is also used in [25] for sparse recon-

struction of SAR images which uses the basis pursuit algorithm for the solution of

the problem and demonstrates the super resolution property. Several computa-

tional tools are available in the literature [26, 27] which can be applied to l1 norm

minimization problems. In [10], the cost function with l1 term is solved by finding

roots on the Pareto curve [26]. But they also modify the reconstruction problem

by adding a total variation penalty into the cost function to reduce the speckle
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noise effects, which requires development of a dedicated solver. In Fourier imaging

applications, the effect of p-norm regularization under amplitude and phase errors

is studied in [28], where it is stated that for p < 2 gradient descent optimizations

reduce amplitude and phase irregularities. In [29] phase errors are accounted as

SAR observation model errors and an iterative sparsity-driven method for simul-

taneous SAR imaging and autofocus is proposed. A coordinate descent technique

is used to minimize the cost function. This method uses the fully sampled raw

data to reconstruct the SAR image. Similarly, joint formulation of SAR recon-

struction and autofocus has been proposed in [30], where only 50% of the Nyquist

rate samples are used for the processing. There are also several other sparse SAR

image reconstruction algorithms that are recently reviewed and compared in [31].

In this chapter, a new CS based sparse SAR image reconstruction technique

is proposed. The proposed technique also performs autofocus enabling simulta-

neous image reconstruction and correction of phase errors. The proposed tech-

nique models the phase error as part of the data acquisition and then employs

a CS based approach for image reconstruction and optimal phase error correc-

tion. The non-linear conjugate gradient descent algorithm is used to minimize

the cost function. In addition to phase error correction, the proposed technique

also incorporates total variation (TV) penalty into the cost function, hence it

is called as the CS-PE-TV technique. Typical CS applications rely on l1 norm

minimization approaches. However, adding TV penalty into the cost function of

the SAR image reconstruction improves the quality of the reconstruction by sup-

pressing intensity variations caused by speckle noise, without a smoothing effect

on the boundaries [10]. As a novel way of integrating both TV penalty and phase

error into the cost function of the sparse SAR image reconstruction problem, the

proposed technique improves the overall reconstruction quality.

To facilitate practical implementation, a new under-sampling methodology is

presented in this study. It reduces the A/D conversion rate to obtain the required

samples for CS SAR image reconstruction, allowing us to overcome the hardware

limitations of wide band SAR applications.
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2.1 Compressed Sensing: A Short Review

Compressed sensing (CS) is a relatively new signal processing technique [32, 33].

It can provide reliable reconstruction of a signal from a set of linear under-

determined measurements. In order to apply CS, the signal should have a sparse

representation in a known basis. Since sparsity is encountered in many natural

signals, CS has found diverse applications. Consider the following linear mea-

surement model:

y = G x, (2.1)

where G is the measurement matrix, y is the measured signal and x is the un-

known signal which can be represented sparsely in a known basis:

x = Ψ α, (2.2)

where columns of Ψ are basis vectors and α is the vector of sparse representation

coefficients. Then Eq. 2.1 can be written as,

y = A α, (2.3)

where A = G Ψ. The sparse solution for the linear model of Eq. 2.1 is found by

solving the following l0 norm minimization problem,

min ∥α∥0 such that y = A α, (2.4)

where ∥α∥0 describes the l0 norm which is the number of non-zero entries in α.

The solution to the problem in Eq. 2.4 is combinatorial in nature with prohibitive

computational load in practical applications. Convex relaxation of the l0 problem

to the following l1 problem,

min ∥α∥1 such that y = A α, (2.5)

enables use of efficient solution techniques and programming tools for its so-

lution [34, 35, 36, 37, 38, 39, 40, 41]. Commonly used sparse reconstruction

algorithms are claimed as second order cone programming (SOCP), gradient de-

scent approaches, greedy search algorithms, weighted least squares and Bregman

iterations.
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Uniqueness of the sparse solution of Eq. 2.4 is guaranteed when spark(A)/2 ≥
∥α∥0 is satisfied [42], where spark of a matrix A is defined as the size of the small-

est linearly dependent column subset. The spark(A) not only controls uniqueness

in Eq. 2.4 but also controls it in Eq. 2.5. No sparsity bound implies the equiva-

lence of Eqs. 2.4 and 2.5 unless spark(A)/2 ≥ ∥α∥0. A stronger condition than

the spark of a matrix is the Restricted Isometry Property (RIP), which is defined

as,

(1− δs)∥α∥2 ≤ ∥Aα∥2 ≤ (1 + δs)∥α∥2 (2.6)

such that δs > 0, ∥α∥0 < s,

where isometry constant δs satisfies, 0 ≤ δs < 1 [43]. RIP provides an upper

bound for the sparsity of a signal so that its energy is preserved by a given

amount through the transformation by the operator. It is proven that Eqs. 2.4

and 2.5 provide the same solution if α is sparse and A holds RIP [43, 44]. Un-

fortunately, even for moderate dimensional operators, finding RIP of a given

operator is computationally impractical. However, a few classes of matrices are

shown to posses RIP almost certainly [33, 43, 44] which include random matri-

ces with independent identically distributed entries, Fourier ensemble matrices,

and general orthogonal measurement ensembles. Note that the general orthogo-

nal measurement ensembles can be generated by randomly selecting n rows from

m×m orthonormal matrix and re-normalizing the columns [43].

Application of CS techniques has increased dramatically since its mathemat-

ical foundations were laid in 2006 [32, 33]. Medical and electro-optic imaging

applications benefit significantly from CS techniques due to the well known bases

that are used for sparse representation of the imaged scenes [45]. Applications of

CS to radar and SAR are also investigated [23, 24, 25, 10, 31, 46, 47, 48, 49]. The

main difficulty in applying CS to SAR imaging is finding an appropriate basis for

the sparse representation of SAR images. Due to their speckle noise content, SAR

images of terrain cannot be sparsely represented in known domains. Speckle noise

is caused by the coherent contributions of multiple distributed reflecting objects

in a resolution cell [50]; it creates difficulties in finding sparse basis for SAR im-

ages. However, for radar scenes with highly reflective man-made objects, either

wavelet or standard basis vectors can be chosen for the sparse representation of
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the scene reflectivity distribution [51]. Hence, CS techniques can be applied to

SAR image reconstructions of target scenes containing highly reflective objects.

2.2 SAR Raw Data Sampling Technique for

Compressed Sensing Applications

CS techniques recover an S-sparse signal of length N with high probability if the

measurement matrix satisfies RIP and the number of measurements are greater

than O(S log(N/S)) [52]. Reconstructing a sparse signal with fewer measure-

ments than its corresponding Nyquist rate helps reduce the sampling rate and

the amount of raw data to be processed. Reduced sampling rates allow usage of

slower A/D converters in SAR systems. Furthermore the reduced amount of raw

data reduces the memory requirements of the system and the necessary data link

bandwidth capacity if the raw data is transferred to a ground segment for image

reconstruction.

Using lower rate A/D conversion in wide bandwidth SAR has the same effect

as downsampling the original data. However, regular downsampling does not

generate measurement matrices with RIP [53]. RIP can be achieved by randomly

discarding some of the raw data [25] or any irregular transmission along the flight

path [49]. But randomly discarding some of the regularly spaced samples cannot

be easily implemented in practice by using lower rate A/D converters. Instead,

jittered under-sampling which controls the maximum gap in the data is proposed

[54]. First the A/D converter is programmed to sample data on a coarse but

uniformly spaced grid. Then at the actual time of sampling, a sampling jitter

is used to provide samples that lies almost randomly on a finer grid. Although

jittered under-sampling requires accurate jitter control, it provides satisfactory

results providing samples similar to desired random under-sampling. Also, a new

A/D converter is proposed which performs sub-Nyquist sampling [55]. It presents

a new hardware design for A/D converters to be used in CS applications which

contain basically an RF front end and classical A/D converters.
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Figure 2.1: Example of the proposed under-sampling pattern for K = 4 .

We propose a simple downsampling scheme that can be implemented using

slower rate A/D converters, without any jitter control and hardware change. In

this approach, the data is first downsampled by K in the range direction. The

time of the initial sample at each azimuth location is pseudo-randomly chosen.

This adds randomness to the data in the azimuth direction. Figure 2.1 presents an

example of the under-sampling pattern for K = 4. The randomness in the range

direction is obtained by randomly discarding a small ratio, L, of the downsampled

data. This way, the prerequisites of CS are met despite the loss of a small portion

of the data. As a result, this method of under-sampling reduces the rate of

the A/D converter by a factor of K and reduces the memory requirement by

a factor of (1 − L)/K. Table 2.1 lists the reduced A/D rate and the memory

requirement for different values of parameters K and L. Note that the first row

in the table is given as a reference and indicates the case of original data without

any downsampling.
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Table 2.1: A/D rate and the memory requirement for different values of param-
eters K and L.

K L New A/D rate Memory requirement

1 0 1 100%

2 0.2 1/2 40%

3 0.1 1/3 30%

4 0.1 1/4 22.5%

2.3 The Proposed Autofocused Sparse SAR Im-

age Reconstruction Technique in the Com-

pressed Sensing Framework

The under-sampling scheme described in Section 2.2 results in the following mea-

surement relation where the number of measurements is a fraction of the number

of unknowns:

yu = Φ Gu x+w, (2.7)

where yu and Gu represent the under-sampled measurement vector and the pro-

jection matrix respectively. Therefore, arbitrary scenes of reflectivity cannot be

recovered from the available measurement data. However, if few objects with high

reflectivity dominate the scene, sparse reconstruction techniques can provide re-

construction of these objects from the available data. Here, Φ also corresponds

to the under-sampled phase error matrix but it is not indicated as subscripted by

u for the sake of brevity.

Assume the transformation matrix Ψ transforms the reflectivity vector x to

a sparse domain,

yu = Φ Gu Ψ α+w = Φ A α +w. (2.8)
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In the presence of phase errors, sparse SAR image reconstruction can be formu-

lated as a constrained l1 norm minimization problem:

min
Φ,α

∥α∥1 such that ∥yu −ΦAα∥2 ≤ σ, (2.9)

which is known as the Basis Pursuit Denoising (BPDN) formulation. While

reconstructing sparse SAR images containing man-made targets, the number of

pixels a target covers can be estimated by dividing the size of target area to the

area of a pixel in the reconstructed SAR image. With this estimation and the

transformation in which the image is sparse, one can set an upper limit τ to the

l1-norm of the target image. Then the SAR image reconstruction problem can

be transformed into the following Lasso formulation [26, 56],

min
Φ,α

∥yu −ΦAα∥2 such that ∥α∥1 ≤ τ. (2.10)

By integrating the phase error into the formulation, the required optimization

should be carried out in terms of two sets of variables, α and Φ. To obtain

an optimal solution, Eq. 2.10 can be solved by first finding optimal Φ for a

given α, then transforming the problem to a minimization over α alone [57].

To minimize the cost in Eq.2.10 for a given α, the phase error matrix Φ that

minimizes ∥yu − ΦAα∥2 should be obtained. As detailed in Section 1.2 phase

errors are assumed to be the same for all the data corresponding to an azimuth

location, resulting in:

min ∥yu−ΦAα∥22 =
N∑
i=1

min ∥yui − ejϕiAiα∥22, (2.11)

where yui is the partition of the measurement vector corresponding to the azimuth

point i, Ai is the partition of the matrix A corresponding to the range bins of the

azimuth point i, and N is the total number of azimuth points. Minimization of

the term on the left side of the equation requires minimization of the individual

terms in the summation, which can be expanded as:

∥yui − ejϕiAiα∥22 = yui
Hyui − ejϕiyui

HAiα− e−jϕiαHAi
Hyui + αHAi

HAiα.

(2.12)
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For each term, the minimizing ϕi can be found as:

∂

∂ϕi

∥yui − ejϕiAiα∥22 = j e−jϕiαHAi
Hyui − j ejϕiyui

HAiα = 0. (2.13)

The unique solution for ϕi can be obtained as:

ϕ̂i = ̸ (αH Ai
H yui). (2.14)

With this result, Eq.2.10 can be reduced to an optimization over α only:

min
α

∥yu −ΦAα∥2 such that ∥α∥1 ≤ τ, ϕi = ̸ (αH Ai
H yui). (2.15)

The same approach can also be applied for the BPDN formulation given in Eq. 2.9.

Note that, since the min-min problem is not convex, the optimization in Eq. 2.15

has a non-convex feasible set. Therefore, local search techniques typically con-

verge to a local minima of the problem. If the cost surface is such that the cost

of the local minima is significantly higher than the global minima, a global opti-

mization technique should be used. As illustrated in the next section, obtained

results indicate that the cost of the local minima obtained by the proposed ap-

proach and the cost of the global minimum are acceptably close; therefore a slower

converging global optimization technique such as Particle Swarm Optimization is

not utilized for this problem.

At this stage of the formulation, to further improve the image reconstruction

quality, TV penalty is integrated into the cost function [53, 58, 59, 60, 61]. In-

tegrated TV penalty smooths the target and its environment and hence reduces

the noise content of the image, which also increases the effectiveness of the phase

error correction. By adding TV penalty, the cost function becomes:

min
x

∥yu −Φ Gux∥2 + β TV (x) (2.16)

such that ∥ΨHx∥1 ≤ τ, ϕi = ̸ (xH Gui
H yui).

Note that the relations α = ΨHx and Aα = Gux are used. Here, TV stands for

total variation and defined as,

TV (x) =
∑
i,j

√
|∇ix|2i,j + |∇jx|2i,j , (2.17)
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where subscripts i, j denote pixel locations in a two dimensional image. ∇i and

∇j denote discrete gradients of the image in two directions and are given by,

(∇ix)i,j = x(i, j) − x(i− 1, j), (2.18)

(∇jx)i,j = x(i, j) − x(i, j − 1). (2.19)

The constrained optimization problem of Eq. 2.3 can be written as an uncon-

strained problem in the Lagrangian form:

argmin
x

g(x) = ∥ΨHx∥1 + β TV (x) + γ ∥yu −Φ Gux∥22 (2.20)

such that : ϕi = ̸ (xH Gui
H yui), 1 ≤ i ≤ N.

By using the non-linear conjugate gradient descent algorithm with backtracking

line search [53, 62], a numerical solution to Eq. 2.20 can be obtained. There

are more efficient algorithms published in the literature to solve l1 minimization

problems. The ones using Bregman methods are especially promising [63, 64, 65].

However, in all these techniques, the transformation in the data fidelity part of

the cost function is a known matrix. But in our case, there is non-linear coupling

between unknown reflectances and phase error. Therefore, the matrix contains

the unknown x, due to the multiplication by the phase error Φ, which leads us

to use the conjugate gradient method. As part of the optimization iterations,

the required gradient of the cost function can be computed as detailed in the

Appendix A. Profiling Matlab [66] implementation of this numerical approach

revealed that most of the CPU time is consumed by multiplications of large

scale matrices. Therefore, by exploiting the structure of the involved matrices,

significant computational improvements can also be achieved [67, 68].

2.4 Results of the Proposed Technique on Syn-

thetic and Real SAR Data

In this section, results on both synthetic and real SAR data, obtained from

MSTAR database [69], are presented. Raw SAR data is under-sampled as de-

tailed in Section 2.2. Two different setups are used for the sparse reconstructions
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of the synthetic and the MSTAR data. For the synthetic data, an A/D converter

with 1/3 of the original rate is used and L is chosen as 0.1, which results in 70%

memory reduction. For the MSTAR data, half rate A/D converter is used and L

is chosen as 0.2, which results in 60% memory reduction. Hence, synthetic data

results are obtained by using only 30% of the original raw data while the MSTAR

results are obtained by using only 40% of the original raw data.

The parameters β and γ in Eq. 2.20 can be used to adjust the relative weights

of the different components in the cost function. For example, increasing the

weight of the TV part smooths the noisy areas containing sudden changes in

the image. Because this work is not aimed to put forward specific properties in

the images, equal weights (β = γ = 1) are chosen for balanced contribution of

different parts in the cost function unless otherwise specified.

2.4.1 Synthetic Data Reconstructions

The synthetic image used in the trials is shown in Figure 2.2.(a). Reconstructed

images of the artificial scene by Polar Format Algorithm (PFA) [6] for the same

phase error, but at two different noise levels are shown in Figures 2.2.(b) and

2.2.(c) respectively. Both of these reconstructions are obtained using 3 times

more data than the proposed sparse reconstruction technique.

In synthetic data experiments, the transformation Ψ, which maps x to the

sparsity domain, is chosen as the identity matrix. This works quite well when

the speckle noise is negligible. However, the reconstruction performance degrades

when the speckle noise increases since noise starts having large projection on the

impulsive basis components.

The obtained sparse reconstructions are shown in Figures 2.2.(d) and 2.2.(e).

In the case with higher SNR (Figure 2.2.d), CS-PE-TV works quite well, almost

completely removing the phase error. In the case with lower SNR (Figure 2.2.e),

CS-PE-TV concentrates much of the energy of the target and corrects phase error

effects very well. However, it does not wholly reconstruct the original target and
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Figure 2.2: The synthetic images by PFA and the reconstructions by CS-PE-TV
are illustrated. (a) Original reflectivity image. (b) Image with phase error and
speckle noise (SNR = 31 dB) reconstructed by PFA. (c) Image with phase error
and speckle noise (SNR = 19 dB) reconstructed by PFA. (d) Image with phase
error and speckle noise (SNR = 31 dB) reconstructed by CS-PE-TV. (e) Image
with phase error and speckle noise (SNR = 19 dB) reconstructed by CS-PE-TV.

24



has some artifacts left in the scene. Compared to the case with higher SNR,

the main reason for the performance degradation in the case with lower SNR

is the speckle noise, which starts having larger projections on the sparse basis

components.

2.4.2 MSTAR Reconstructions

MSTAR database [69] contains publicly available SAR data of several target

types. The ones used in the reconstruction trials are illustrated in the row (a)

of Figure 2.3. Each contains a target in an environment with high speckle noise.
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Figure 2.3: Three target images of MSTAR database that are used in the trials.
All the images are reconstructed by PFA. Row (a) gives the original images. Row
(b) presents the images with inserted phase error. Row (c) shows the reconstruc-
tions of images autofocused by PGA.

These images are reconstructed using PFA. The row (b) of Figure 2.3 gives the

same images with artificially inserted phase error. They are reconstructed again
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by PFA. The applied phase error characteristics have been given in Figure 2.5.

In order to corrupt the phase of the MSTAR images, corresponding raw data is

needed. But MSTAR database contains only the complex valued SAR images.

Therefore, the procedure explained in [70] is applied to convert SAR images to

raw SAR data. Then phase error is inserted to raw SAR data as an exponential

multiplication [11].

Row (c) of Figure 2.3 shows the images reconstructed by PFA and autofocused

by the Phase Gradient Algorithm (PGA) [17, 18]. PGA first center shifts the

brightest pixels in each range bin, then applies windowing to suppress the effects

of other possible targets in the same range bin. Finally, it estimates the phase

error in the azimuth dimension and applies phase correction. Generally, one to

three iterations of the PGA are sufficient to estimate and correct the phase errors

successfully.
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Figure 2.4: Three target images of MSTAR database that are used in the trials.
Row (a) gives the results of CS reconstructions. Row (b) presents the results of
CS-PE reconstructions. Row (c) gives the images reconstructed by CS-PE-TV.
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The results obtained by the proposed sparse SAR image reconstruction tech-

nique on the MSTAR data are illustrated in Figure 2.4. For CS reconstructions,

only a fraction of the whole data, obtained by the method explained in Sec-

tion 2.2, is used. Since wavelet frames are appropriate for representing SAR im-

ages containing man-made targets, Daubechies-4 wavelets are used as the sparsity

transform in the trials with MSTAR data.

For comparison purposes, row (a) of Figure 2.4 shows the results of sparse

reconstruction with no phase error correction, which will be referred to as CS

reconstructions. Row (b) displays the results for the case of applying autofocused

sparse reconstruction without a TV penalty, which will be referred to as CS-PE

reconstructions. This reconstruction is obtained by solving Eq. 2.20 with β = 0.

The results of the proposed CS-PE-TV reconstructions are presented on row (c)

of Figure 2.4.

As expected, CS reconstructions suffer from significant degradation due to

uncompensated phase error. The images reconstructed by CS-PE show improved

phase error correction compared to CS results. But the noisy nature of the

images prevents further improvements. Adding TV penalty into the cost func-

tion improves the overall image reconstruction quality and success of phase error

correction. This deduction is clearly demonstrated by comparing the results of

CS-PE-TV to the results of CS-PE. The CS-PE-TV reconstructs the images and

autofocuses them simultaneously with success.

The phase error applied to the images and its estimate obtained by the appli-

cation of CS-PE-TV are shown in Figure 2.5. The estimated phase error closely

follows the general form of the applied phase error. The root mean square error

of the estimation is only 1.9% of the radar’s wavelength.

In order to quantify and compare the image reconstruction performance of

the proposed CS-PE-TV technique especially on the MSTAR data, the following

metrics are used:
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Figure 2.5: The phase error applied to the image (solid line) and the phase
error estimate (dotted line). Y-axis units represent the fractions of the SAR
wavelength.

1. Mean Square Error, which is defined as [71]:

MSE =
1

N2
∥ |x| − |x̂| ∥22, (2.21)

where x is the original image, x̂ is the reconstructed image, and N2 is the

total number of pixels in the image.

2. Target-to-Background Ratio (TBR) [71, 72] : This is the ratio of the ab-

solute maximum of the target region to the absolute average of the back-

ground region. It gives an indication of how target pixels are discernible

with respect to background pixels:

TBR = 20 log10

 maxi∈T (|(x)i|)
1

NB

∑
j∈B |(x)j|

 , (2.22)

where x is the image and NB is the number of pixels in the background

region of the image. T and B represent target and background regions,

respectively.

3. Entropy of the image [71]: This is a metric related to sharpness of the
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image:

H(x) = −
∑
i

pi log2 pi, (2.23)

where the discrete variable p contains the histogram counts of the image x.

Entropy is small for sharper images so it is preferable for an algorithm to

result in low entropies for image formation.

These metrics give indications about the performance of the reconstructions es-

pecially on the target classification applications. The quantitative performance

metrics for the images illustrated in Figure 2.4 are given in Table 2.2. The table

Table 2.2: Performance metrics for the imagery reconstructed by different meth-
ods.

MSE TBR Entropy

PFA 6.2.10−3 27.02 2.88

PFA-PGA 2.5.10−4 29.55 2.50

Target CS 5.7.10−3 30.68 2.50

(1) CS-PE 5.2.10−3 28.91 2.76

CS-PE-TV 3.6.10−3 31.59 2.42

PFA 7.7.10−3 23.99 3.34

PFA-PGA 1.9.10−3 27.08 2.95

Target CS 6.8.10−3 27.56 3.01

(2) CS-PE 6.0.10−3 25.65 3.29

CS-PE-TV 4.5.10−3 28.41 2.94

PFA 10.9.10−3 24.31 2.96

PFA-PGA 9.3.10−4 26.23 2.80

Target CS 10.4.10−3 27.48 2.73

(3) CS-PE 9.8.10−3 24.77 3.13

CS-PE-TV 7.2.10−3 30.23 2.42

lists the results for three targets which are reconstructed by using five different
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techniques. For each target the first row lists the metrics of the images recon-

structed by PFA. The second row lists the results for the images reconstructed

by PFA and autofocused by PGA. The results of the CS, CS-PE and CS-PE-TV

techniques are listed in the third, fourth and fifth rows respectively. Note that

these results can be improved by post processing the images. However, we are

interested in comparing the performances of the applied methods alone, so no

post processing is performed on the images.

PFA-PGA, which makes use of data obtained at Nyquist sampling rate, gives

the best results in terms of the MSE metric. For the TBR and entropy metrics the

CS-PE-TV technique provides better results than the PFA-PGA technique. The

main disadvantage of the CS-PE-TV method compared to the PFA-PGA method

is the computational complexity which currently limits the application of the CS-

PE-TV technique to offline reconstructions. However, with the rapid advances

in signal processor hardware, the application of CS to SAR image reconstruction

can become feasible in the near future.

PFA performs poorly by all metrics. Even the CS technique performs better

than the PFA. This result confirms the statement that p-norm regularizations

reduce the amplitude and phase irregularities for p < 2 [28]. The CS-PE is an

improvement over CS for the MSE metric. Phase error model integration to

the problem tries to compensate the effects of the phase error and guarantees

more localized target images. But TBR and the entropy of the image degrade

with CS-PE as compared to CS. Because the lack of TV penalty in the CS-PE

technique increases the entropy. TV penalty, in the CS technique smooths the

constant areas and thereby reduces the average of the background region in the

TBR formulation.

With phase error model integrated and the TV penalty added, CS-PE-TV

outperforms all the other techniques (except the PFA-PGA technique in MSE

parameter as indicated above). Almost all the metrics listed in the table indi-

cate an improvement for the images reconstructed by the CS-PE-TV technique.

Therefore, adding phase error in the signal model embeds autofocus property

into the image reconstruction. Furthermore, adding in TV penalty to the cost
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function improves the overall reconstruction performance for SAR images with

high speckle noise. In conclusion, these results demonstrate that the proposed

CS-PE-TV technique provides robust, simultaneous SAR image reconstruction

and autofocus.

The main drawback of the CS-PE-TV technique is its high computational

complexity as indicated before. Non-Linear Conjugate Gradient Descent algo-

rithm demands high computational power to apply it to SAR image reconstruc-

tion. Retaining the advantages of CS methodology on SAR image reconstruction,

a new technique applying EMMP algorithm is proposed in the next chapter to im-

prove the image reconstruction speed. EMMP algorithm is greedy and computa-

tionally less complex, which results fast reconstructions compared to Non-Linear

Conjugate Gradient Descent algorithm based techniques. The next chapter gives

details of the proposed sparse SAR image reconstruction technique based on

EMMP algorithm [73, 74, 75].
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Chapter 3

Autofocused Sparse SAR Image

Reconstruction by EMMP

Algorithm

As detailed in Chapter 2, CS based radar has several advantages such as reduced

memory size or decreased A/D converter rates or possibility of eliminating the

match filtering process [23]. SAR image reconstruction by using sparsity driven

penalty function has been investigated in [23, 24, 9, 71, 10]. SAR image re-

construction by CS is generally formulated as a convex l1 norm minimization

problem and it is solved by either linear programming or greedy pursuit algo-

rithms. Although these techniques do not consider phase errors in SAR image

reconstruction problem, the proposed techniques in [76], [29] and [77] provide

sparse reconstructions in the presence of phase errors. However, compared to the

commonly used SAR autofocus techniques, these approaches require significantly

longer computational times.

In the proposed autofocused SAR image reconstruction technique introduced

in Chapter 2, non-Linear conjugate gradient descent algorithm is used to find the

optimized solution for a sparsity driven cost function. Non-linear conjugate gra-

dient descent algorithm has a high computational complexity requiring significant
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time and resources. To overcome these shortcomings, a novel autofocused SAR

reconstruction technique is proposed in this chapter. This technique is based on

a new sparse reconstruction method called Expectation Maximization Matching

Pursuit (EMMP) algorithm [73]. The EMMP algorithm uses the compressive

measurements as incomplete data and iteratively applies expectation and maxi-

mization (EM) steps to reliably estimate the complete data which corresponds to

dominant reflectors in the scene of interest. The objective of EM iterations is to

provide more reliable estimates to the complete data so that accurate and efficient

estimation of the fewer number of parameters in each disjoint parameter set can

be conducted in the maximization step. Once, more accurate estimates for the

parameters are available, marginal contribution of a disjoint set can be estimated

by subtracting the expected marginal contributions of the other remaining set of

parameters from the available measurements, which is called as the expectation

step. In EMMP algorithm, also the phase error can be estimated at each step of

the iterations together with the reflectivity distribution. The algorithm is greedy,

therefore it is not assured to obtain the global optima. However, its computa-

tional efficiency makes it a viable choice in practical applications. As will be

detailed in this section, the EMMP based autofocused SAR reconstruction tech-

nique has smaller reconstruction errors compared to l1 norm minimization[78].

Hence, both the accuracy and convergence rate of the iterations significantly in-

crease, enabling fast and high resolution SAR image reconstructions even under

severe phase errors. Note that, in addition to the preliminary results presented

in [74], the proposed approach is extended to perform autofocus as part of the

EMMP iterations [75].

3.1 Simultaneous Reconstruction and Autofo-

cus of Sparse SAR Images Based on EMMP

Algorithm

It is common in real life applications to have signals that have sparse repre-

sentations in known dictionaries, such as Fourier, wavelet or a union of them.
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Sparse signals can be represented closely as a linear combination of a few of the

dictionary elements.

One important application of SAR systems is imaging of man-made structures.

Since, typically reflection from man-made structures are significantly stronger

than that of the piece of a terrain in a resolution cell, reflectivity distribution

over the imaged area can be modeled as a sparse distribution over an appropriate

set of vectors such as wavelets.

CS techniques guarantee reliable reconstruction of a sparse signal of length

N if the measurement matrix satisfies Restricted Isometry Property (RIP) and

the number of measurements are at least O(K log(N/K)) where K is the level

of sparsity of the signal [52], which can be significantly smaller than N . Thus,

for sparse reconstructions, the required number of samples can be significantly

reduced below the Nyquist rate, resulting in important hardware savings. To

exploit the potential reduction in the sampling rate, the method described in [76]

can be used to under-sample the measured data. Assuming that the reflectivity

vector is sparse in the column space of a given matrix Ψ with representation

coefficients α, measurements model given in Eq.2.8 can be written equivalently

as:

yu = Φ Gu Ψ α+w = Φ A α+w. (3.1)

Here matrix A is known but matrix Φ, which captures the phase errors is an

unknown matrix. In the absence of phase errors, the SAR image reconstruction

has been formulated in CS methodology in two different approaches previously.

In Basis Pursuit Denoising (BPDN) [26] formulation, the scene with minimum

l1 norm is reconstructed such that the resulting fit error to measurements is less

than a threshold σ. In LASSO formulation [56], the scene with a known l1 norm

τ , is chosen to minimize the fit error. Although in principle these formulations are

equivalent for a properly chosen (σ, τ) pair, it is not straightforward to determine

σ for SAR image reconstructions especially if the terrain reflectivity is highly

variable. However, an appropriate choice for τ can be obtained based on the size

and reflectivity of the dominant reflectors in the imaged area. Hence, it is easier

to choose a proper τ , to the l1-norm of the target. Therefore, LASSO formulation
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is more suitable for SAR image reconstructions with dominant reflectors in the

target scene.

In CS applications, it is desired to obtain the most sparse signal representa-

tion, which requires to use l0 norm minimization [32, 33]. Since l0 norm opti-

mization requires combinatoric search that is not feasible for SAR applications,

generally it is relaxed to l1 norm minimization problem as in the above formula-

tions. It is proven that l0 and l1 norm minimization problems provide the same

solution if α is sparse and A holds the RIP [43, 44]. Unfortunately, it is diffi-

cult to prove that a matrix holds the RIP. However, a few classes of matrices

have desired RIP [33, 43, 44] which include random matrices with independent

identically distributed entries, Fourier ensemble matrices, and general orthogonal

measurement ensembles.

Unlike BPDN and LASSO formulations, the proposed EMMP approach pro-

vides a near optimal solution to the following l0 norm problem:

min
α

∥yu −Aα∥2 such that ∥α∥0 ≤ K, (3.2)

where K is the sparsity level of the signal. Sparsity level K can be estimated for

man-made targets based on the area of these targets in the scene. Hence, it is

actually easier to choose K, because the choice for τ in the LASSO formulation

also requires reflectivity information about these targets. To obtain a sparse and

autofocused reconstruction, the optimization should be carried out in terms of

two sets of variables, α and Φ to account for the phase error:

min
α,Φ

∥ yu − ΦAα ∥2 such that ∥α∥0 ≤ K. (3.3)

By using the Expectation Maximization (EM) [79] framework, the EMMP

algorithm operates between two spaces: the incomplete and complete data spaces.

The incomplete data space corresponds to the available SAR measurements yu,

and the complete data space is the set of measurement vectors yi that would

correspond to the contribution of a single scatterer in the scene. The mapping
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between the complete and incomplete data spaces is:

yu = Φ [A1A2 . . .AN] [α1α2 . . . αN ]
T + w

= Φ
N∑
i=1

αiAi + w . (3.4)

Assuming that only K of αi’s are nonzero, i.e., αi is K-sparse, the measurements

can be written as:

yu = Φ
K∑
i=1

yi + w , (3.5)

where yi = αiAi, which is what should have been measured if there were only

the ith reflector in the scene and there were no noise and phase error.

In the presence of phase errors, to minimize the cost in Eq.3.3, the problem

can be solved in two sequential steps by first finding optimal Φ for a given α,

then solving the optimization over α alone [57]:

min
α

f0(α) such that ∥α∥0 ≤ K, (3.6)

where,

f0(α) = inf
Φ

{ ∥ yu − ΦAα ∥2 } . (3.7)

To minimize the cost in Eq.3.7 for a given α, the phase error matrix Φ that

minimizes ∥yu−ΦAα∥2 should be obtained. Phase errors generally do not depend

on the range axis so they are assumed to be the same for all the data corresponding

to a certain azimuth location [11]. Then the minimization can be formulated

equivalently as:

min ∥yu − ΦAα∥2 =
∑
θ

min ∥yθ − ejϕθAθα∥2, (3.8)

where yθ is the partition of the under-sampled measurement vector, Aθ is the

partition of the matrix A and ejϕθ is the phase error, all for corresponding to the

look angle θ. Minimization of the term on the left side of the equation requires

minimization of the individual terms in the summation. In this formulation, the

unique solution for phase error estimate ϕθ, for each look angle θ can be obtained

as:

ϕ̂θ = ̸ (αH Aθ
H yθ). (3.9)
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With this result, Eq.3.3 can be reduced to an optimization over α only:

min
α

∥yu −ΦAα∥2 such that ∥α∥0 ≤ K,

ϕθ = ̸ (αH Aθ
H yθ). (3.10)

These sequential steps are combined within the EMMP algorithm, which is

summarized in Figure 3.1. In the algorithm, CD corresponds to the complete

data matrix, r corresponds to the residual vector and ϵ corresponds to the termi-

nation criteria which can be set to the average energy of background pixels around

the region of interest. The inputs of the EMMP algorithm are the measurement

matrix A, the measurements yu, the sparsity level K, and a termination param-

eter ϵ. Initially, the complete data matrix is set to zero and the residual vector is

initialized to yu. As in the EM algorithm, in EMMP algorithm iterations, given

estimates for yi and Φ, the ith sparse component of α is found as the best match-

ing vector among the columns of A to Φ−1yi, for 1 ≤ i ≤ K. The selected index

list and the complete data matrix are updated. Then, Φ is re-estimated by using

the obtained α, and the iterations are restarted. The iterations are continued un-

til the termination criteria or a pre-determined number of iterations are reached.

Determining the correct K value is an important issue related to the performance

of the proposed algorithm and this issue is investigated in Section 3.3

3.2 Simulation Results

We tested the proposed technique to illustrate its performance on synthetic data

as well as data from MSTAR database [69]. For synthetic data, an A/D converter

operating at one-third of the Nyquist rate is used. For Slicy data of MSTAR

database, an A/D converter operating at one-fourth of the Nyquist rate is used.

For military target data of MSTAR database, a half rate A/D converter is used.

In addition to the rate reduction of the A/D converter, another 10% reduction

on the obtained samples is achieved by using pseudo-random sampling scheme

detailed in [76].

MATLAB implementation of the proposed EMMP algorithm running on a
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Input:

A measurement matrix

yu measurement vector

K sparsity level

ϵ termination criteria threshold

Initialization:

Φ = I phase error estimate

CD = 0 complete data matrix

r = yu residual vector

while loop repeat until 1
N
∥r∥22 < ϵ

for i = 1 : K

Expectation:

ŷi = yu −∑
j ̸=iCD(:, j)

Maximization:

proj = AT ŷi

λ = arg max|proj|
p = A(:, λ)

yi = p pT ŷi

Keep and Update:

λL(i) = λ λ list

CD(:, i) = yi

end for loop

calculate residual r = yu −∑K
j=1CD(:, i)

Â = A(:, λL)

α = zeros(N, 1)

α(λL) = min∥yu −∑K
j=1 α(λL(j))Â(:, j)∥2

Phase Error Estimate:

ϕ̂θ = ̸ (αH AH
θ yθ)

yu = Φ−1yu

end while loop

Output: x = Ψα solution vector

Figure 3.1: EMMP algorithm with phase error estimation.
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laptop converges in about 20 iterations in about 20 seconds to 5 minutes depend-

ing on the size of the image, which is significantly faster than alternative gradient

descent based optimization techniques for CS reconstructions. For real-time ap-

plications, the proposed approach can be implemented on off-the-shelf processor

boards to further reduce the computation time.

3.2.1 Synthetic Data Results

The proposed technique is first applied on the synthetic SAR data. To provide

a benchmark, the synthetic SAR data with no phase error is processed with Po-

lar Format Algorithm (PFA) and the resultant image shown in Figure 3.2.(a)

is obtained. To investigate effect of motion errors, the synthetic SAR data is

distorted by phase errors at each azimuth vantage point. The result obtained

by the PFA algorithm is shown in Figure 3.2.(b). For comparison, reconstructed

SAR image by using the well known Phase Gradient Autofocus algorithm (PGA)

[18] is shown in Figure 3.2.(c). Usually, three iterations of PGA is sufficient to

compensate phase errors reasonably. As seen from Figure 3.2.(c), although the

image is corrected to some extent compared to Figure 3.2.(b), phase error related

degradations are still visible. In Figure 3.2.(d), the reconstruction obtained by

using the proposed EMMP based approach is shown. Although this reconstruc-

tion is obtained by using only 30% of the data required by the PGA technique,

it is visibly better focused than the result of PGA shown in Figure 3.2.(c)

3.2.2 Slicy Data Results

The results obtained for two types of Slicy target are shown in Figure 3.3. The

first row presents PFA reconstructions with no phase error. The PFA recon-

structions with synthetically induced phase error are shown in the second row.

Reconstructions by PFA and autofocused by PGA technique are given in the

third row. The fourth row presents the reconstructions obtained by the proposed

EMMP technique. Note that the proposed algorithm uses only 22.5% of the raw

data.
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Figure 3.2: The synthetic target reconstructions are illustrated. (a) The original
image reconstructed by PFA. (b) The original image with inserted phase error.
(c) The autofocused image by PGA. (d) Image reconstructed by the proposed
technique. While the images (a), (b) and (c) use data obtained at the Nyquist
rate, for (d) the EMMP uses only 30% of the Nyquist rate data.
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Figure 3.3: Two Slicy target reconstructions are shown in two columns. First
row: PFA reconstructions with no phase errors; Second row: PFA reconstructions
with synthetically induced phase errors; Third row: PFA-PGA reconstructions;
Fourth row: proposed EMMP reconstructions. While PFA and PFA-PGA use
data obtained at the Nyquist rate, in Slicy target reconstructions the EMMP uses
only 22.5% of the Nyquist rate data.
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The results show that the quality of the reconstructions of the proposed

EMMP technique are better than that of the PFA-PGA technique while the

proposed EMMP technique requires a fraction of the data for reconstruction.

Even though some minor blurs caused by phase errors left in PFA-PGA recon-

structions, phase error degradations are almost totally removed from the images

reconstructed by the proposed EMMP technique. Unlike the previously proposed

CS SAR reconstruction techniques, the processing time of the proposed EMMP

technique is also comparable to the PFA-PGA technique.

To illustrate the extend of autofocusing provided by the proposed algorithm,

significantly large phase error is synthetically induced in the raw data. As shown

in Figure 3.4, the proposed EMMP technique provides an acceptable estimate to

the synthetically induced phase error.
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Figure 3.4: The synthetic (solid line) and the estimated phase error (dashed line)
in radians.

To provide more objective comparisons between the the proposed EMMP and

the PFA-PGA techniques, the metrics MSE, TBR and Entropy defined in Section

2.4.2 are used. Table 3.1 lists these metrics for the images illustrated in Figure

3.3. The data presented in Table 3.1 indicates that PFA-PGA technique has a

better performance only for the MSE metric of the Slicy 1 target. For all other

cases, the EMMP technique outperforms the PFA-PGA technique. Note that,
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Table 3.1: Metrics for the Slicy target imagery reconstructed by PFA-PGA
and the proposed EMMP techniques. The PFA-PGA technique, which is re-
constructed by PFA and autofocused by PGA uses whole raw SAR data. The
proposed EMMP technique uses only 22.5% of the Nyquist rate data.

Slicy Target 1 Slicy Target 2

MSE TBR H MSE TBR H

PFA-PGA 4.0.10−3 41.1 4.91 9.3.10−4 36.0 4.59

EMMP 9.1.10−3 ∞ 0.14 5.8.10−5 ∞ 0.12

elimination of the speckle by the EMMP technique causes the TBR metric to

become infinity. The results show that the EMMP technique serves well for the

target classification without further windowing and speckle noise removal. It is

important to note that, unlike the classical PFA-PGA technique, the proposed

EMMP technique has variable ϵ and K parameters that can be adjusted for the

target class of interest to provide significant control over the reconstructions.

3.3 Effect of Sparsity Parameter on Image Re-

construction Quality of the Proposed Tech-

nique Based on EMMP Algorithm

In this section the effect of correct determination of the sparsity parameter, K, on

the reconstructed image quality is investigated. Military target image of MSTAR

database is used, with 40% of the Nyquist rate data, in reconstructions by the

proposed technique. Figure 3.5.(a) gives the original image used in this trials. The

image has high speckle noise content to indicate the incorrect determination of K

parameter increases the noise level of the reconstructed image. Figs. 3.5.(b)-(f)

illustrate the resultant images reconstructed by the proposed EMMP technique

for a range of sparsity level K.

Figure 3.5 illustrates that for K, lower than the actual sparsity level of the

target, reconstructed images lack important features of the target. For K values
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Figure 3.5: The effect of the sparsity parameter, K on image reconstructions
by the proposed EMMP technique is illustrated. A military target image from
MSTAR database is used for the trials. Only 40% of the Nyquist rate data
is used for the reconstructions by the proposed technique. (a) Original image,
(b) K = 30, (c) K = 40, (d) K = 50, (e) K = 70, and (f) K = 80.
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close to the actual sparsity level of the target (which is approximately 50), recon-

structions provide better results. For K beyond the actual sparsity of the target,

it results increased noise in the reconstructed images. Quantitative metrics also

support these observations. Table 3.2 illustrates the quantitative image recon-

struction metrics for different K values. Again the best results are obtained for

the reconstructions with K values around the actual sparsity of the target.

Table 3.2: Effect of sparsity parameter on image reconstruction quality metrics.
A military target image from MSTAR database is used for the trials. Only 40%
of the raw data is used for the reconstructions by the proposed technique.

K MSE TBR H

30 5.010−3 74.8 0.32

40 2.710−3 ∞ 0.26

50 1.910−3 ∞ 0.32

60 2.610−3 65.1 0.46

70 2.510−3 66.5 0.49

80 2.310−3 60.2 0.60

3.4 Comparison of Sparse SAR Image Recon-

struction Performances of the Techniques

Based on EMMP and Non-Linear Conju-

gate Gradient Descent Algorithms

In this section, MSTAR images reconstructed by the technique based on non-

linear conjugate gradient descent algorithm and presented in Section 2.4.2 are

reconstructed by the technique based on EMMP algorithm for comparison pur-

poses. The original MSTAR target images, the synthetic motion error induced

images both reconstructed by PFA, the images reconstructed by PFA and autofo-

cused by PGA, and the images reconstructed by the technique based on non-linear
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Figure 3.6: Three target images of MSTAR database that are used in the trials.
Row (a) gives the original images reconstructed by PFA. Row (b) presents the
images with inserted phase error and reconstructed by PFA. Row (c) gives the
images reconstructed PFA and autofocused by PGA. Row (d) gives the images
reconstructed by CS-PE-TV technique. Row (e) shows the images reconstructed
and autofocused by the proposed technique based on EMMP algorithm.
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conjugate gradient descent algorithm are again given in the rows (a), (b), (c), and

(d) of Figure 3.6 as a benchmark. Reconstructions obtained by the EMMP algo-

rithm for the same target scene are shown in row (e) of Figure 3.6. Note that, only

40% of the Nyquist sampled raw data is used in these reconstructions. Compared

to the non-linear conjugate gradient descent algorithm reconstructions given in

row (d) of Figure 3.6, reconstructions provided by the EMMP algorithm are of

similar. Also, it is observed that the EMMP algorithm provide an effective auto-

focusing on the reconstructions. Compared to the non-linear conjugate gradient

descent algorithm, the advantage of the EMMP algorithm is its computational

efficieny and significantly more suppressed speckle noise.

While suppressing all speckle noise effects, the technique based on the EMMP

algorithm also removes shadows of targets in the imaged scene. Shadow infor-

mation in SAR images is valuable and can be used in image classification ap-

plications. The technique based on the non-linear conjugate gradient descent

algorithm also suppresses shadows. Generally CS based SAR image reconstruc-

tion techniques construct only target features but lost shadow data. Retaining

shadows in SAR images while reconstructing them by CS techniques has a big

impact and will be investigated as a future work. Multichannel autofocus [16, 19]

and filtered variation [80] methods seem two potential techniques to solve shadow

problem in CS SAR image reconstruction.

The performance metrics defined in Section 2.4.2 are given in Table 2.2 for

MSTAR images reconstructed by the technique based on non-linear conjugate

gradient descent algorithm. For comparison, same metrics are given in Table

3.3 for MSTAR images reconstructed by the EMMP algorithm. The metrics

given in Table 2.2 for PGA and CS-PE-TV reconstructions are repeated in

Table 3.3 for reference. For the MSE metric, EMMP algorithm gives a better

result than the result of the non-linear conjugate gradient descent algorithm, for

target (1). But for other two targets, the results of the non-linear conjugate

gradient descent algorithm are better. In terms of the MSE, it is observed that

there is no significant quantitative difference between the reconstructions of these

algorithms. However, in terms of the TBR and Entropy metrics, the EMMP

algorithm provides significantly better reconstructions. Almost total removal of
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the speckle noise provides the edge for the EMMP algorithm over the non-linear

conjugate gradient descent algorithm. To achieve improved performance levels

with respect to the TBR and Entropy metrics with the reconstructions of the non-

linear conjugate gradient descent algorithm, a post-processing step designed to

suppress the speckle noise can be incorporated to the processing chain. Compared

to the non-linear conjugate gradient descent algorithm, the main advantage of the

EMMP algorithm is its computational efficiency. An MSTAR reconstruction with

the non-linear conjugate gradient descent algorithm takes about 20 hours while

the same reconstruction with the EMMP algorithm takes only 3-5 minutes.

Table 3.3: Comparison of performance metrics for the imagery reconstructed by
techniques PFA-PGA, CS-PE-TV, and EMMP.

MSE TBR Entropy

PFA-PGA 2.5.10−4 29.55 2.50

Target 1 CS-PE-TV 3.6.10−3 31.59 2.42

EMMP 1.9.10−3 ∞ 0.32

PFA-PGA 1.9.10−3 27.08 2.95

Target 2 CS-PE-TV 4.5.10−3 28.41 2.94

EMMP 5.4.10−3 ∞ 0.33

PFA-PGA 9.3.10−4 26.23 2.80

Target 3 CS-PE-TV 7.2.10−3 30.23 2.42

EMMP 9.6.10−3 ∞ 0.41

In our SAR imaging techniques detailed in this chapter and the previous

chapter, targets are considered as having reflectivity centers on the grid points.

Specifically, the measurement matrix, relating measurements to unknown reflec-

tivities, is formed by basis vectors corresponding to on-grid reflectivity centers.

The technique with EMMP algorithm presented in this chapter has a side benefit

by easily taking into account the off-grid targets case. In the technique using
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EMMP algorithm, the measurement matrix could cover the basis vectors corre-

sponding to off-grid points. It perturbs on-grid basis vectors to match off-grid

reflectivity responses whose details are given in the next chapter.
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Chapter 4

Off-Grid Sparse SAR Image

Reconstruction Based on EMMP

Algorithm

In Chapter 4, we introduced a robust and efficient SAR image reconstruction

technique based on EMMP algorithm. The proposed reconstruction technique

provides accurate reconstructions of sparse target scenes. However, it is implicitly

assumed that the targets on the scene are located on a discrete range and cross-

range grid. Since, this is not a guaranteed condition in practice, it is important

to investigate the performance of the proposed technique when targets can be

located arbitrarily, which is called as the off-grid target reconstruction problem.

In this chapter, by using a recently proposed perturbation technique, the EMMP

based reconstruction algorithm is adapted to the case of off-grid targets. In the

proposed approach, basis vectors corresponding to on-grid point reflectors are

perturbed to adapt to the positions of the off-grid targets.

The received SAR signal at contiguous positions on the flight path which are

called as “slow time samples” is discretized by an A/D converter providing “fast

time samples”. Hence, slow and fast time samples constitute two-dimensional
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raw SAR data. By using the received signal on a discrete grid, classical SAR im-

age formation processes provide SAR images with each pixel corresponding only

on-grid reflectivity centers. But reflectivity centers of targets generally are not lo-

cated at exactly on-grid points as illustrated by Figure 4.1. When standard SAR

image reconstruction techniques are used, presence of off-grid targets only cause

sampling of the point response function of the reconstruction system at a shifted

grid. Thus, off-grid target reconstruction does not cause any significant loss in the

performance. However, compressed sensing techniques are typically not robust

to off-grid targets. For instance, the case shown in Figure 4.1 might cause a re-

construction where pixels far from the target location have significant amplitudes

in the reconstructed image. Therefore, unlike classical SAR reconstruction, CS

Figure 4.1: Off-grid and on-grid points on a discrete grid.

SAR techniques suffer unacceptable degradation in image quality in the presence

of off-grid reflectors. This problem is addressed in recent works on CS SAR im-

age reconstruction [81]. Also, a similar approach including iterative refinement

of the dictionary elements is proposed for the problem of parameter estimation

for signals characterized for the problem of parametrized functions [82].

In EMMP-SAR imaging technique described in the previous chapter, the mea-

surement matrix, relating measurements to unknown reflectivities, is formed by

51



basis vectors corresponding to on-grid reflectors. To take into account off-grid

case in EMMP-SAR technique, the measurement matrix should cover the basis

vectors corresponding to off-grid points. The proposed technique perturbs on-grid

basis vectors to match off-grid reflector responses.

In the proposed technique, the target is modeled as containing multiple re-

flectivity points which can be located on off-grid points. The proposed technique

aims to find the off-grid reflectivity point estimates of a target. If there exist

closely located multiple targets in the imaged scene, the proposed technique can

be applied to all targets iteratively.

4.1 Proposed Off-Grid Sparse SAR Image Re-

construction Technique Based on EMMP

Algorithm

CS based optimizations aim to obtain the most sparse signal representation, which

corresponds to l0 norm minimization [32]. But the application of l0 norm mini-

mization generally is not feasible, because it requires combinatoric search which

results prohibitive computational load. Instead, CS optimizations are formulated

as l1 norm minimizations, as in BPDN (Eq. 2.9) and LASSO (Eq. 2.10) formula-

tions whose solutions require less computational loads. In addition, the solutions

obtained by l0 and l1 norm minimizations are proved to be equivalent if α is

sparse and matrix A holds RIP [43].

Contrary to BPDN and LASSO formulations, the EMMP approach provides

a near optimal solution to the l0 norm problem of Eqs. 3.2 which is re-written

here,

min
α

∥y −Aα∥2 such that ∥α∥0 ≤ K, (4.1)

where K is the sparsity level of the signal. Similar to τ parameter in LASSO

formulation, K can be estimated for man-made targets based on the area of these

targets in the scene. The basics of EMMP algorithm are detailed in Section 3.1
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Find On-Grid Reflectors

run EMMP with sparsity level K

Find Off-Grid Reflectors

for every point reflector ( i = 1 . . . K )

perturb Ai

form new dictionary matrix Aip

run EMMP with Aip and sparsity level 1

find ith off-grid point

end for loop

Output: Off-grid points

Figure 4.2: The proposed SAR-EMMP algorithm

The proposed perturbation technique based on the EMMP algorithm is sum-

marized in Figure 4.1. First it finds the on-grid point reflectors by calling the

EMMP algorithm. The sparsity level, K is adjusted according to the target to be

imaged. The result of the first run of the EMMP algorithm is the on-grid target

position estimates. Together with estimated on-grid points, the corresponding

basis vectors are also found as given in Eq. 3.4. In order to adjust for actual re-

flectivity centers which can be located on off-grid points, the basis vectors, Ai’s,

are perturbed around the neighborhood of the estimated on-grid point. The per-

turbation is handled by constructing a finer grid around the estimated on-grid

point as illustrated by Figure 4.3. In computer graphics area, adaptive spatial

subdivision techniques similar to finer grid construction have been used widely

for ray tracing, object collision, etc. [83]. These finer grid points generate basis

vectors forming a new dictionary matrix. Therefore, for every on-grid position, a

new dictionary matrix Aip is formed from the small set of perturbed basis vectors

Aipj . Then, the EMMP algorithm is run with this new dictionary matrix, Aip

and with the sparsity level set to 1. This time the algorithm provides estimates

on a finer grid for the off-grid point around the on-grid point i. These steps are

repeated for all on-grid points resulting all the corresponding off-grid point esti-

mates on a finer grid. If the resulted resolution is considered inadequate, then the

steps of the algorithm can be repeated hierarchically for even finer grids resulting

higher resolutions for the off-grid points.
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Figure 4.3: Grid points for the reconstruction of the basis vectors. For the first
run of the EMMP algorithm the points with full circles are used to reconstruct
the basis vectors. The first run gives the on-grid point estimates. Around that
point, resolution is increased by constructing a finer grid. Hence, for the second
run of the EMMP algorithm the points with empty circles are used to reconstruct
the basis vectors.
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4.2 Simulations

A synthetically generated SAR data is used to illustrate the performance of the

proposed technique. The measurement data is undersampled randomly by the

method explained in [76], so only 40% of the original raw data is used in the

reconstruction by the proposed technique. The identity matrix is used as the

sparsity transform because the image domain is sparse for the synthetic data.

The azimuth and range coordinates of the off-grid target reflectivity centers are

given in the Actual Coordinates column of Table 4.1.

Table 4.1: The actual and resulting coordinates of the off-grid reflectivity centers.

Point Actual Coordinates (m) Output Coordinates (m)

No Azimuth Range Azimuth Range

1 0.342 0.114 0.3 0.1

2 2.133 2.215 2.1 2.2

3 −2.267 2.283 −2.3 2.3

4 2.221 −2.119 2.2 −2.1

5 −2.313 −2.225 −2.3 −2.2

The image reconstructed by the classical PFA (Polar Format Algorithm) [7]

is given in Figure 4.4. Due to off-grid target points, the image is blurred and the

energy of the off-grid points spreads to the neighboring on-grid points.

For comparison, the image reconstructed by the technique using Non-Linear

Conjugate Gradient Descent algorithm and detailed in the Chapter 2 is given

in Figure 4.5. Similar to PFA reconstruction, the image is again blurred due to

the energy spread of the off-grid points to the neighboring on-grid points. This

is an expected result because the measurement matrix used in the formulation

contains basis vectors corresponding only the on-grid reflectivity points.

The image given in Figure 4.6 is reconstructed by the technique using EMMP

algorithm and detailed in the previous chapter with sparsity parameter K = 5.

The image presents only the neighboring on-grid points with reduced energy.

Reconstructing the image by the technique of the previous chapter with different
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Figure 4.4: The image reconstructed by PFA. The pixel resolution is 1 m. in
both azimuth and range directions.
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Figure 4.5: The image reconstructed by the technique using Non-Linear Conju-
gate Gradient Descent algorithm which is detailed in the Chapter 2. The pixel
resolution is 1 m. in both azimuth and range directions.
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Figure 4.6: The image reconstructed by EMMP algorithm with sparsity param-
eter K = 5. The pixel resolution is 1 m. in both azimuth and range directions.

K parameters reveals the effects of the off-grid points. The effect of K parameter

on image reconstruction quality is analyzed in [78]. Figure 4.7 displays an output

image reconstructed by the technique of the previous chapter with K = 10.

The effects of the off-grid points are clearly seen as their energy disperses to the

neighboring pixels.

The proposed technique based on the iterative application of EMMP algorithm

to find the off-grid target points is applied to the synthetically generated data.

The technique is applied to the data just one iteration which results finer grid

resolution around the on-grid locations. One iteration of the technique resulted

accuracy level set to the tenths digit. The results are listed in the Output Coor-

dinates column of Table 4.1. The resulted coordinates obtained by the proposed

technique match with the actual coordinates up to tenths digit which proves the

efficient application of the method. Because grids become finer in every applica-

tion and they determine the resolution of the reconstruction, so higher resolutions

can be obtained by repeated application of the technique to the off-grid points.

But this method has a resolution limit reached when the base vectors created by

finer grids do not result a residual change greater than ϵ in EMMP algorithm.

The relation between the achievable resolution level of the reconstruction and
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Figure 4.7: The image reconstructed by EMMP algorithm with sparsity param-
eter K = 10. The pixel resolution is 1 m. in both azimuth and range directions.

the parameter ϵ, which is related to the noise level of the measured data will be

investigated thoroughly in a future work.

The perturbation of basis vectors around the neighborhood of the on-grid

points results the detection of off-grid points with high precision. The EMMP al-

gorithm is a fast one compared to other alternative CS reconstruction techniques

like conjugate gradient methods. The proposed technique calls the EMMP algo-

rithm inside a for loop with small sized Aip matrix just for the neighboring off-grid

points and with sparsity level K = 1, which results computationally efficient and

fast method.
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Chapter 5

Conclusions and Future Work

SAR imaging of man-made targets has found many applications. Platform motion

caused phase errors are the main cause of SAR image degradations. Autofocus

algorithms are applied to SAR images to compensate phase error effects. Sparsity

found in man-made target SAR images brings the application of CS techniques

to SAR image reconstruction. CS techniques can be applied to sparse SAR image

reconstruction to gain practical advantages such as reduced memory requirement

and A/D converter rates.

This thesis focuses on the main problems of sparse SAR image reconstruction.

Especially, the platform motion caused phase errors and their compensation are

examined in detail. New and robust techniques are proposed to reconstruct and

autofocus SAR images simultaneously. Combining SAR image reconstruction

and phase error compensation processes into a single step is an advantage over

the classical image reconstruction techniques. To take advantage of applying CS

framework and so to reduce the rate of A/D conversion and memory requirement,

a specific under sampling pattern is also introduced. In addition to techniques

dealing with phase error compensation, a new method is also proposed for off-grid

SAR image reconstruction.

In Chapter 2, a compressive sensing framework is proposed for simultane-

ous motion compensation and image reconstruction for SAR data obtained at a
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fraction of Nyquist rate of sampling. Under-sampling is performed by using re-

duced rate A/D converters which also decrease the required memory size and the

bandwidth of the data link. To improve performance, a total variation penalty

on the reconstructed image is also incorporated into the proposed optimization

technique. Non-Linear Conjugate Gradient Descent algorithm is used to obtain

the optimum solution of the cost function. Detailed investigation of the recon-

structions of both synthetic and real data sets demonstrates that, under well

recognized performance metrics, the proposed CS-PE-TV technique improves

performance over the common PFA-PGA technique and other alternative CS

based techniques. Research on the more efficient optimization of the proposed

CS-PE-TV cost function is expected to reduce the computational requirements

of the proposed technique and increase its applicability.

In Chapter 3, autofocused SAR image reconstruction is modeled again as

a CS problem but it is now solved by using EMMP algorithm. The proposed

EMMP based autofocused SAR reconstruction technique provides efficient re-

constructions of SAR images even under severe phase errors. Since, it requires

only a fraction of the Nyquist rate samples, the proposed technique also relaxes

the requirements on the SAR hardware. Unlike alternative l1 norm minimiza-

tion based approaches, the proposed technique provides near optimal solution to

the desired l0 norm minimization problem efficiently by a sequential search pro-

cedure in 1-dimensional search spaces. Moreover, EMMP algorithm converges

faster compared to Non-Linear Conjugate Gradient Descent algorithm for CS

reconstructions while providing comparable quality outputs. Comparison with

PFA-PGA technique over synthetic and real data sets with man-made targets

shows that the proposed technique provides comparable or more improved recon-

structions. In addition, since EMMP reconstructions are highly localized with

significantly suppressed speckle, it enables improved target classification. Ap-

plication of CS to SAR image reconstruction provides to emphasize the desired

features of the target by carefully adjusting the parameters in the cost function.

This characteristic can have impacts in SAR image classification area. Control-

ling target features by cost function parameters and hence obtain the dominant

target features for classification can be examined deeply in a future work.
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Our proposed techniques based on non-linear conjugate gradient descent and

EMMP algorithms retain target features in SAR images while suppressing shad-

ows of targets in the imaged scene. This is a general characteristic of CS based

SAR image reconstruction techniques. But shadow information in SAR images

is valuable and can be used in image classification applications. Therefore, re-

taining shadows in SAR image reconstruction by CS techniques has a big impact

and will be investigated as a future work.

For targets with off-grid reflectivity centers, an EMMP based technique is pro-

posed providing efficient SAR image reconstruction in Chapter 4. This technique

is the same as the technique described in Chapter 3 with small modifications.

Therefore the EMMP algorithm based technique has an advantage of providing

reconstruction of SAR images of off-grid targets. The proposed technique is based

on the iterative application of the EMMP algorithm to find the off-grid target

points. EMMP algorithm provides fast reconstructions due to the faster conver-

gence of the EMMP algorithm compared to alternative gradient descent based

optimization techniques for CS reconstructions. Numerical experiments on the

synthetic data set show that the proposed technique provides off-grid coordinates

for reconstruction with high precision. Repeated application of the technique to

the off-grid points determines the resolution of the off-grid reconstruction. The

resolution limit is reached when the base vectors created by finer grids do not

result a residual change greater than ϵ. The relation between the achievable res-

olution level of the reconstruction and the parameter ϵ, which is related to the

noise level of the measured data will be investigated thoroughly in a future work.
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[29] G. O. Önhon and M. C. etin, “Joint sparsity-driven inversion and model error

correction for radar imaging,” in IEEE International Conference on Acous-

tics Speech and Signal Processing, pp. 1206–1209, 2010.

[30] S. I. Kelly, G. Rilling, M. Davies, and B. Mulgrew, “Iterative image formation

using fast (re/back)-projection for spotlight-mode SAR,” in IEEE Radar

Conference, pp. 835–840, 2011.

[31] L. C. Potter, E. Ertin, J. T. Parker, and M. C. etin, “Sparsity and compressed

sensing in radar imaging,” Proceedings of the IEEE, vol. 98, pp. 1006–1020,

June 2010.

[32] D. L. Donoho, “Compressed sensing,” IEEE Transactions on Information

Theory, vol. 52, pp. 1289–1306, April 2006.

[33] E. Candès and T. Tao, “Near-optimal signal recovery from random projec-

tions: Universal encoding strategies?,” IEEE Transactions on Information

Theory, vol. 52, pp. 5406–5425, December 2006.

[34] S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic decomposition

by basis pursuit,” SIAM Journal on Scientific Computing, vol. 20, no. 1,

pp. 33–61, 1998.

[35] S. Mallat and Z. Zhang, “Matching pursuits with time-frequency dictionar-

ies,” IEEE Transactions on Signal Processing, vol. 41, pp. 3397–3415, De-

cember 1993.

65



[36] J. A. Tropp, “Greed is good: Algorithmic results for sparse approximation,”

IEEE Transactions on Information Theory, vol. 50, pp. 2231–2242, October

2004.

[37] J. A. Tropp, “Just relax: Convex programming methods for identifying

sparse signals in noise,” IEEE Transactions on Information Theory, vol. 52,

pp. 1030–1051, March 2006.

[38] R. Baraniuk, V. Cevher, M. Duarte, and C. Hedge, “Model-based compres-

sive sensing,” IEEE Transactions on Information Theory, vol. 56, pp. 1982–

2001, April 2010.

[39] J. A. Tropp and A. C. Gilbert, “Signal recovery form random measurements

via orthogonal matching pursuit,” IEEE Transactions on Information The-

ory, vol. 53, pp. 4655–4666, December 2007.

[40] I. F. Gorodnitsky and B. D. Rao, “Sparse signal reconstruction from lim-

ited data using FOCUSS: A re-weighted minimum norm algorithm,” IEEE

Transactions on Signal Processing, vol. 45, pp. 600–616, March 1997.

[41] W. Yin, S. Osher, D. Goldfarb, and J. Darbon, “Bregman iterative algo-

rithms for l1-minimization with applications to compressed sensing,” SIAM

Journal on Imaging Sciences, vol. 1, pp. 143–168, 2008.

[42] D. L. Donoho and M. Elad, “Optimally sparse representation in general

(nonorthogonal) dictionaries via l1 minimization,” The Proc. Nat. Aca. Sci.,

vol. 100, pp. 2197–2202, March 2003.

[43] E. Candès, J. Romberg, and T. Tao, “Stable signal recovery from incom-

plete and inaccurate measurements,” Communications on Pure and Applied

Mathematics, vol. 59, no. 8, pp. 1207–1223, 2006.

[44] E. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact

signal reconstruction from highly incomplete frequency information,” IEEE

Transactions on Information Theory, vol. 52, pp. 489–509, February 2006.

[45] E. Candès and M. B. Wakin, “An introduction to compressive sampling,”

IEEE Signal Processing Magazine, vol. 25, pp. 21–30, March 2008.

66



[46] M. Herman and T. Strohmer, “Compressed sensing radar,” in IEEE Radar

Conference, pp. 1–6, May 2008.

[47] M. Herman and T. Strohmer, “High resolution radar via compressed sens-

ing,” IEEE Transactions on Signal Processing, vol. 57, pp. 2275–2284, June

2009.

[48] G. E. Smith, T. Diethe, Z. Hussain, J. S. Taylor, and D. R. Hardoon,

“Compressed sampling for pulse doppler radar,” in IEEE Radar Conference,

pp. 887–892, May 2010.

[49] Q. Huang, L. Qu, B. Wu, and G. Fang, “UWB through-wall imaging based on

compressive sensing,” IEEE Transactions on Geoscience and Remote Sens-

ing, vol. 48, pp. 1408–1415, March 2010.

[50] C. Oliver and S. Quegan, Understanding Synthetic Aperture Radar Images.

SciTech Publishing, 2004.

[51] G. Rilling, M. Davies, and B. Mulgrew, “Compressed sensing based com-

pression of SAR raw data,” in SPARS’09 - Signal Processing with Adaptive

Sparse Structured Representations, March 2009.

[52] R. Baraniuk, “Compressive sensing,” IEEE Signal Processing Magazine,

vol. 24, pp. 118–121, July 2007.

[53] M. Lustig, D. Donoho, and D. M. Pauly, “Sparse MRI: The application

of compressed sensing for rapid MR imaging,” Magnetic Resonance in

Medicine, vol. 58, pp. 1182–1195, December 2007.

[54] G. Hennenfent and F. J. Herrmann, “Simply denoise: Wavefield reconstruc-

tion via jittered undersampling,” Geophysics, vol. 73, pp. 19–28, June 2008.

[55] M. Mishali, Y. C. Eldar, O. Dounaevsky, and E. Shoshan, “Xampling: Ana-

log to digital at sub-Nyquist rates,” IET Circuits, Devices & Systems, vol. 5,

pp. 8–20, January 2011.

[56] R. Tibshirani, “Regression shrinkage and selection via the Lasso,” J. Roy.

Statist. Soc. Ser. B., vol. 58, pp. 267–288, 1996.

67



[57] W. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University

Press, 2004.

[58] E. Candès and J. Romberg, “Practical signal recovery from random projec-

tions,” in Computational Imaging III : Proc. SPIE International Symposium

on Electronic Imaging, pp. 76–86, 2005.

[59] L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise

removal algorithms,” Physica D, vol. 60, pp. 259–268, 1992.

[60] M. M. Bronstein, A. M. Bronstein, M. Zibulevsky, and H. Azhari, “Re-

construction in diffraction ultrasound tomography using nonuniform FFT,”

IEEE Transactions on Medical Imaging, vol. 21, no. 11, pp. 1395–1401, 2002.

[61] K. T. Block, M. Uecker, and J. Frahm, “Undersampled radial MRI with mul-

tiple coils. Iterative image reconstruction using a total variation constraint,”

Magnetic Resonance in Medicine, vol. 57, pp. 1086–1098, 2007.

[62] D. P. Bertsekas, Nonlinear Programming. Athena Scientific, 1995.

[63] J. F. Cai, S. Osher, and Z. Shen, “Split Bregman methods and frame based

image restoration,” SIAM Multiscale Modeling and Simulation, vol. 8, no. 2,

pp. 337–369, 2009.

[64] J. F. Cai, S. Osher, and Z. Shen, “Linearized Bregman iterations for com-

pressed sensing,” Mathematics of Computation, vol. 78, no. 267, pp. 1515–

1536, 2009.

[65] J. F. Cai, S. Osher, and Z. Shen, “Linearized Bregman iterations for frame-

based image deblurring,” SIAM Journal on Imaging Sciences, vol. 2, no. 1,

pp. 226–252, 2009.

[66] The MathWorks, Inc., Natick, MA, USA.

[67] K. Goto and R. A. V. de Geijn, “Anatomy of high-performance matrix multi-

plication,” ACM Transactions on Mathematical Software, vol. 34, May 2008.

68



[68] J. A. Gunnels, G. M. Henry, and R. A. V. de Geijn, “A family of high-

performance matrix multiplication algorithms,” in ICCS 2001, Lecture Notes

in Computer Science, vol. 2073, pp. 51–60, 2001.

[69] https:///www.sdms.afrl.af.mil. The Sensor Data Management System

MSTAR public data.

[70] M. C. etin, Feature-Enhanced Synthetic Aperture Radar Imaging. PhD thesis,

College of Engineering, Boston University, Boston, 2001.

[71] S. Samadi, M. C. etin, and M. A. Masnadi-Shirazi, “Sparse representation

based synthetic aperture radar imaging,” IET Radar, Sonar and Navigation,

vol. 5, pp. 182–193, February 2011.

[72] M. C. etin, W. C. Karl, and D. A. C. non, “Feature enhancement and ATR

performance using nonquadratic optimization-based SAR imaging,” IEEE

Transactions on Aerospace and Electronic Systems, vol. 39, pp. 1375–1395,

October 2003.
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Appendix A

Gradient of the Cost Function

The technique which simultaneously reconstructs and autofocuses sparse SAR

images is detailed in Chapter 2. The cost function (Eq. 2.20) in the proposed

technique is solved numerically by the non-linear conjugate gradient descent al-

gorithm with backtracking line search [53, 62]. In the optimization iterations of

the algortihm, the gradient of the cost function is to be computed. This appendix

presents the gradient of the cost function in Eq. 2.20.

The first term of the cost function in Eq. 2.20 includes absolute values. The

absolute value is not a smooth function so it is approximated by,

|x| =
√
xx∗ + ϵ, (A.1)

where ϵ is a small positive smoothing parameter. By using this approximation,

the gradient of the first term in the cost function given in Eq. 2.20 becomes,

∇∥ΨHx∥1 = Ψ W−1
1 ΨH x, (A.2)

where W1 is a diagonal matrix with corresponding elements,

wi =
√
|(ΨHx)i|2 + ϵ1. (A.3)

Since the total variation is also a non-smooth function, the following approxima-

tion is used,

TV (x) =
∑
i,j

√
|∇ix|2i,j + |∇jx|2i,j + µ, (A.4)
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where µ is a small positive smoothing parameter. With this approximation, the

gradient of the total variation part of the cost function is given by [60],

∇ TV (x) = Ii,j − Ii+1,j + Ji,j − Ji,j+1, (A.5)

where

Ii,j =
(∇ix)i,j√

(∇ix)2i,j + (∇jx)2i,j + µ
, (A.6)

Ji,j =
(∇jx)i,j√

(∇ix)2i,j + (∇jx)2i,j + µ
. (A.7)

The third term in the cost function is re-written below,

∥yu −Φ Gux∥22 = yH
u yu + xHGH

u Gux − yH
u Φ Gux − xHGH

u Φ
Hyu. (A.8)

The last two terms of the above equation can be expanded as,

∥yu −Φ Gux∥22 =yH
u yu + xHGH

u Gux

−
N∑
i=1

ejϕiyH
uiGuix −

N∑
i=1

e−jϕixHGH
uiyui. (A.9)

Putting the relation ϕi = ̸ (xH GH
ui yui) which is obtained by Eq. 2.14 into the

above equation,

∥yu −Φ Gux∥22 = yH
u yu + xHGH

u Gux − 2
N∑
i=1

|yH
uiGuix|. (A.10)

By using the approximation in Eq. A.1, the gradient of the third term of the cost

function is given by,

∇∥yu −Φ Guix∥22 = 2 GH
u Gu x

− 2
N∑
i=1

yH
uiGuix√

xHGH
uiyuiyH

uiGuix+ ϵ2
GH

ui yui. (A.11)

By combining gradients of all these three terms, the following final expression for

the gradient of the cost function is obtained:

∇g(x) = ΨW−1
1 ΨH x + β (Ii,j − Ii+1,j + Ji,j − Ji,j+1) +

γ ( 2GH
u Gux− 2

N∑
i=1

yH
uiGuix√

xHGH
uiyuiyH

uiGuix+ ϵ2
GH

uiyui). (A.12)
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Eq. A.12 is the final form of the gradient function required in the optimization it-

erations of the cost function in Eq. 2.20 by using the non-linear conjugate gradient

descent algorithm with backtracking line search.
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