
PERFORMANCE MODELING OF
COMMUNICATION NETWORKS OFFERED
WITH A MIXTURE OF PERSISTENT TCP

AND UDP FLOWS

a thesis

submitted to the department of electrical and

electronics engineering

and the graduate school of engineering and science

of bilkent university

in partial fulfillment of the requirements

for the degree of

master of science

By

Gökhan Çalış

July, 2013

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bilkent University Institutional Repository

https://core.ac.uk/display/52926303?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Assoc. Prof. Dr. Nail Akar(Advisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Assoc. Prof. Dr. Sinan Gezici

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Assoc. Prof. Dr. Şenan Ece Güran Schmidt

Approved for the Graduate School of Engineering and Science:

Prof. Dr. Levent Onural
Director of the Graduate School

ii

ABSTRACT

PERFORMANCE MODELING OF COMMUNICATION
NETWORKS OFFERED WITH A MIXTURE OF

PERSISTENT TCP AND UDP FLOWS

Gökhan Çalış

M.S. in Electrical and Electronics Engineering

Supervisor: Assoc. Prof. Dr. Nail Akar

July, 2013

A damped fixed-point approximation is proposed to characterize the throughput

of persistent TCP and UDP flows in a network of router links supporting per-class

queuing and Deficit Round Robin (DRR) scheduling among classes. In particu-

lar, we study the case of two classes where one of the classes uses drop-tail queue

management and is intended for UDP traffic. The other class targeting TCP

traffic is assumed to use Active Queue Management (AQM). The effectiveness

of the proposed analysis method in this scenario is validated by extensive NS3

simulations. Moreover, we study, using the proposed fixed-point algorithm, the

potential gain of employing the many-to-one communications paradigm with re-

spect to the conventional one-to-one communications in which a client downloads

a specific content from one server only.

Keywords: TCP, UDP, AQM, DRR, Per-class queuing.

iii

ÖZET

SÜREKLİ VE KARMA TCP VE UDP AKIŞLARI İLE
BESLENEN İLETİŞİM AĞLARININ PERFORMANS

MODELLEMESİ

Gökhan Çalış

Elektrik Elektronik Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Assoc. Prof. Dr. Nail Akar

Temmuz, 2013

Sürekli TCP ve UDP akışları içeren, sınıf başına kuyruklamayı destekleyen ve

sınıflar arasında ise Açık Çevrimsel Sıralı (DRR) çizelgeleme yapan ağları karak-

terize etmek için sönümlü sabit nokta iterasyonları önerilmektedir. Özellikle iki

sınıf içeren durumlar çalışıldı. Bu sınıflardan birinde UDP trafiği için kuyruktan

düşürme kuyruk yönetimi öngörüldü. TCP trafiğine yönelik diğer sınıf için ise Ak-

tif Kuyruk Yönetimi (AQM) kullanıldı. Önerilen analiz metodunun verimliliğini

doğrulamak için geniş çaplı NS3 simulasyonları yapıldı. Ayrıca, önerilen sabit

noktalı algoritma kullanılarak çoktan bire iletişim tekniğinin daha konvansiyonel

bire bir iletişim tekniğine göre kazancı değişik senaryolarda irdelendi.

Anahtar sözcükler : TCP, UDP, AQM, DRR, Sınıf başına kuyruklama.

iv

Acknowledgement

I would like to thank Assoc. Prof. Dr. Nail Akar for his guidance and his support

throughout this study. It was great experience and pleasure for me to work with

him. Also, I would like to thank Assoc. Prof. Dr. Sinan Gezici and Assoc.

Prof. Dr. Şenan Ece Güran Schmidt for agreeing to serve on my committee. In

addition, I would like to thank my friends and my parents for their support.

v

Contents

1 Introduction 1

2 TCP Analysis 5

2.1 Single Congested Router . 5

2.2 Network Topology Analysis with Deficit Round-Robin Scheduling

and Active Queue Management 6

2.3 TCP Model . 9

2.4 Matlab Algorithm . 10

3 Numerical Results 15

3.1 Y Network . 16

3.2 Simple Network . 18

3.3 US Network . 20

4 Many-to-one Communication 27

4.1 Ring Topology . 28

4.2 US Network . 32

vi

CONTENTS vii

5 Conclusion and Future Work 36

List of Figures

2.1 Drop Tail . 7

2.2 Altered RED . 7

2.3 Nested Fixed-Point Algorithm . 13

3.1 Y Network . 16

3.2 Y Network Results . 17

3.3 Simple Network . 19

3.4 Simple Network Results on Bar Graph 20

3.5 US Network . 21

3.6 US Network Physical Distances 21

3.7 TCP Flows when w
(1)
v =0.25 ∀v 23

3.8 UDP Flows when w
(1)
v =0.25 ∀v 23

3.9 TCP Flows when w
(1)
v =0.50 ∀v 24

3.10 UDP Flows when w
(1)
v =0.50 ∀v 24

3.11 TCP Flows when w
(1)
v =0.75 ∀v 25

viii

LIST OF FIGURES ix

3.12 UDP Flows when w
(1)
v =0.75 ∀v 25

3.13 TCP Flows when no-isolation is employed 26

3.14 UDP Flows when no-isolation is employed 26

4.1 Ring Topology . 28

4.2 Random1 Policy Results for Ring Network 30

4.3 Random2 Policy Results for Ring Network 30

4.4 Random3 Policy Results for Ring Network 31

4.5 Minimum1 Policy Results for Ring Network 31

4.6 Minimum2 Policy Results for Ring Network 32

4.7 Random1 Policy Results for US Network 33

4.8 Random2 Policy Results for US Network 34

4.9 Random3 Policy Results for US Network 34

4.10 Minimum1 Policy Results for US Network 35

4.11 Minimum2 Policy Results for US Network 35

List of Tables

3.1 Simulation Results for Simple Network 19

3.2 All Flows . 22

3.3 TCP Flows . 22

3.4 UDP Flows . 22

4.1 Simulation Results for Ring Network 29

4.2 Simulation Results for US Network 33

x

Chapter 1

Introduction

In today’s Internet, a substantial amount of traffic using Simple Mail Transfer

Protocol (SMTP), File Transfer Protocol (FTP) and Hypertext Transfer Proto-

col (HTTP) is carried at the transport layer by Transmission Control Protocol

(TCP). The TCP along with User Datagram Protocol (UDP) are the most dom-

inant protocols of today’s Internet transport layer. Using the simplest drop-tail

queue management mechanism on links carrying TCP traffic results in the so-

called “full queues” and “lock-out” problems which are discussed in [1]. The

first full queues problem can be described as the buffer being occupied entirely

most of the time which leads to large queuing delays and reduced TCP through-

put. On the other hand, the lock-out problem refers to a case in which a single

or a few flows dominate the queue space while other flows using the same link

starve because of synchronization or other timing effects. In order to mitigate

the full queues problem, Active Queue Management (AQM) techniques can be

used which drop packets without waiting for the queue to be full [1]. The AQM

drop decision is generally probabilistic on certain queue parameters to mitigate

the lock-out problem [1]. In the literature, there are several AQM techniques

proposed such as Random Early Detection (RED) [2],[3], Early Random Drop

(ERD) [4], Random Exponential Marking (REM) [5].

In the literature, different analytical expressions have been proposed for char-

acterizing the throughput of TCP’s congestion control mechanism as a function

1

of the packet loss and round trip delay [6],[7],[8],[9],[10]. In this study, we use

the model proposed in [9] which captures not only the fast retransmit mechanism

of TCP Reno but also the effect of the time-out mechanism. The other TCP

models proposed in [6],[7],[8] ignore certain features of TCP and consequently

over-estimate TCP throughput while proposing simpler expressions. Using fixed-

point iterations with the analytical expression for TCP flows’ sending rates, one

can study the behaviour of a TCP flow in a network of AQM routers offered with

persistent TCP flows [11].

Increasing use of real time voice and video applications leads to more and more

UDP traffic in today’s Internet. Since UDP does not have a congestion control

mechanism as TCP has, TCP flows sharing the same link with UDP flows may

starve because of UDP flows’ non-responsive behaviour. Obviously, this is not

desirable for applications using TCP. To mitigate the TCP starvation problem,

“fair queuing” may be used. Fair queuing is a set of techniques that allows each

flow or group of flows passing through a network device to have a fair share

of network resources; Weighted Round Robin (WRR) and Deficit Round Robin

(DRR) are specific examples to fair queuing [12],[13]. DRR scheduling is a fair

queuing technique proposed by [13] and DRR is shown to achieve near-perfect

fairness in terms of throughput while requiring less computational work to process

a packet when compared with other mechanisms. In this study, we use per-class

queuing and DRR scheduling in router links where TCP flows and UDP flows

may choose to join different traffic classes to tackle the TCP starvation problem.

The main idea in this study is to isolate UDP and TCP traffic (using DRR

scheduling) so that TCP flows do not starve because of other UDP flows. Also,

RED is assumed to be used as the AQM mechanism for the queues serving TCP

flows and drop-tail is assumed to be used as the queue-management mechanism

for the queues serving UDP flows only. Hence, we can analyze TCP and UDP

throughput in different scenarios. The fixed-point algorithm has been proposed

to analyze networks offered with TCP traffic only [11]. In the current study, we

improve this fixed-point algorithm to analyze networks offered with both TCP

and UDP flows in a network using per-class queuing and DRR scheduling among

the classes. We focus on the particular case of two classes, namely classes 1 and 2,

2

where TCP flows are only allowed to join Class 2 whereas UDP flows either join

Class 1 or Class 2. With this setting, it is possible to analyze networks with and

without TCP/UDP traffic isolation. Moreover, we validate the proposed analysis

method with NS3 simulations in a number of scenarios.

Another topic we investigate in this thesis is the many-to-one communications

paradigm. The problem can be described as follows. A client is assumed to require

a specific content which resides at multiple servers. The well-known one-to-one

communications paradigm allows the client to choose one of the many servers

and setup a connection with this server to retrieve the content. In the many-to-

one communications paradigm, a server sets up a multipoint-to-point connection

between the client and a group of servers to download the content. In this manner,

content is downloaded concurrently from multiple servers. We assume that a TCP

friendly congestion control mechanism is to be used between the client and each

server in the group. The server placement problem in a network is studied in

[14] and it is shown that distributing content can be beneficial in terms of traffic

engineering. Although we do not place servers optimally, we distribute them over

the network. We would like to use the fixed-point approximation algorithm to

study the following questions:

1. What is the benefit of using multiple servers in terms of client throughput?

2. What is the number of servers to connect so as to achieve a reasonable gain

in client throughput?

3. How are the servers to be selected?

In this thesis, we perform a study to answer these questions using the proposed

fixed-point algorithm as the analysis instrument. In the scenarios we studied,

we have shown that it is possible to attain an % 19 gain in client throughput

when using two servers as opposed to one single server if the servers are selected

randomly from the set of all servers hosting the content.

Our contributions in this thesis are as follows:

3

1. We introduce damped fixed point iterations for studying networks offered

with TCP persistent traffic only. We note that damping was not mentioned

in the original work [11].

2. We extend the work in [11] by studying networks offered with both TCP

and UDP flows. We also allow per-class queuing and DRR scheduling in

network links for TCP/UDP isolation.

3. We study, using the proposed fixed-point algorithm, the potential gain of

employing the many-to-one communications paradigm with respect to the

conventional one-to-one communication paradigm. This study needs to be

viewed as a proof of concept for many-to-one communications rather than

a complete suite of protocols to implement.

The thesis is organized as follows. Chapter 1 addresses the introduction to

the problems studied in the thesis. In Chapter 2, we present the fixed-point it-

erations to obtain per-flow throughputs in networks offered with persistent TCP

and UDP flows. In Chapter 3, the proposed method is validated by NS3 simula-

tions. Chapter 4 studies the gain of employing the many-to-one communication

paradigm. Finally, we conclude.

4

Chapter 2

TCP Analysis

2.1 Single Congested Router

Before going into network of nodes, let’s start with one link case which is analyzed

in [11]. Assume TCP flows share one congested link, which implements AQM.

Call the link v with transmission capacity Cv bits per second and buffer size of

Bv bits. There is a probability function pv(xv) for this link v, whose argument

xv is the queue length of link v. One of the popular AQM mechanism is Random

Early Detection (RED) and one of the recommended variant of RED [15] is given

in (2.1):

pv(xv) =



0, 0 ≤ xv ≤ tmin
v

xv−tmin
v

tmax
v −tmin

v
pmax
v , tmin

v ≤ xv ≤ tmax
v

pmax
v + xv−tmax

v

tmax
v

(1− pmax
v), tmax

v ≤ xv ≤ 2tmax
v

1, 2tmax
v ≤ xv ≤ Bv

(2.1)

where tmin
v ,tmax

v and pmax
v are configurable RED parameters.

Now, assume we have a network of such links in which all links implement

RED as described in (2.1) as their AQM mechanism. Moreover, we use per-class

queuing and DRR scheduling for the TCP and UDP traffic classes. This scenario

5

is of main interest to us where the goal is to isolate TCP and UDP flows in a

complex network using DRR scheduling. Also, since RED is used for all links as

AQM in TCP queues, using such probability functions for all links in a network,

one can find TCP flows’ end-to-end loss rates and with the help of the TCP

flows’ propagation delays, which can be calculated easily, one can derive TCP

flows’ sending rates and characterize the throughput analysis of such a network

which includes both TCP and UDP flows. The detailed analysis for this general

case is discussed next.

2.2 Network Topology Analysis with Deficit

Round-Robin Scheduling and Active Queue

Management

Let us assume that the flows traversing a set of routers are persistent in the

network. Consider a link v, in a network with total of V links, with transmission

capacity Cv bits per second and uses DRR scheduling with 2 classes. Hence,

we have 2 different queues, Q
(1)
v and Q

(2)
v , on each link v and capacities can

be assigned as desired. Call the weights for each queue as w
(1)
v and 1 − w

(1)
v

respectively, denote the current given capacities as C
(1)
v and C

(2)
v . On Q

(1)
v , simple

queue management, tail drop, is used since we do not place TCP flows on Q
(1)
v ,

call the probability drop function of tail-drop queue management as p
(1)
v (x

(1)
v),

where x
(1)
v is the current queue length of Q

(1)
v . However, on Q

(2)
v , both TCP and

UDP flows can be placed. Therefore, RED is used with probability drop function

p
(2)
v (x

(2)
v), where x

(2)
v is the current queue length of Q

(2)
v . Also, buffer sizes for Q

(1)
v

and Q
(2)
v are denoted by B

(1)
v and B

(2)
v on each link v, respectively. Then, we can

modify (2.1) into (2.3) for our purposes:

p(1)v (x(1)v) =

0, 0 ≤ x
(1)
v ≤ B

(1)
v

1, otherwise
(2.2)

6

0 B
(1)
v

1

Queue Size

D
ro

p
P

ro
ba

bi
lit

y

Figure 2.1: Drop Tail

t
(2)min
v t

(2)max
v 2t

(2)max
v B

(2)
v

p
(2)min
v

p
(2)max
v

1

Queue Size

D
ro

p
P

ro
ba

bi
lit

y
Figure 2.2: Altered RED

p(2)v (x(2)v) =



0, 0 ≤ x
(2)
v ≤ t

(2)min
v

x
(2)
v −t

(2)min
v

t
(2)max
v −t(2)min

v

p
(2)max
v , t

(2)min
v ≤ x

(2)
v ≤ t

(2)max
v

p
(2)max
v + x

(2)
v −t

(2)max
v

t
(2)max
v

(1− p(2)max
v), t

(2)max
v ≤ x

(2)
v ≤ 2t

(2)max
v

1, 2t
(2)max
v ≤ x

(2)
v ≤ B

(2)
v

(2.3)

However, on MATLAB we need to have a one-to-one function in order to get

convergence in the fixed-point algorithm therefore (2.1) is altered slightly, which

is given in (2.4). Note that in MATLAB simulations, p
(2)min
v will be set as small

as possible in order to make the altered RED function look like (2.1), since NS3

simulations will be using (2.1).

p
(2)
v (x

(2)
v) =



p
(2)min
v

t
(2)min
v

x
(2)
v , 0 ≤ x

(2)
v ≤ t

(2)min
v

p
(2)min
v + x

(2)
v −t

(2)min
v

t
(2)max
v −t(2)min

v

(p
(2)max
v − p(2)min

v), t
(2)min
v ≤ x

(2)
v ≤ t

(2)max
v

p
(2)max
v + x

(2)
v −t

(2)max
v

t
(2)max
v

(1− p(2)max
v), t

(2)max
v ≤ x

(2)
v ≤ 2t

(2)max
v

1, 2t
(2)max
v ≤ x

(2)
v ≤ B

(2)
v

(2.4)

For traffic demand, we assume there are K
(1)
U UDP class 1 flows, labelled

7

as i
(1)
u =1,...,K

(1)
U , K

(2)
U UDP and K

(2)
T TCP flows for class 2 flows labelled as

i
(2)
U =1,...,K

(2)
U and i

(2)
T =1,...,K

(2)
T respectively. Let V

i
(2)
T

be the set of links ordered

as the route of flow i
(2)
T , which is found using Dijkstra’s Shortest Path algorithm

[16]. In order to express TCP sending rates, round trip time and end to end loss

rates need to be calculated. Denoting the one-way propagation delay of a link

v by RTTv, the expected round trip time for flow i
(2)
T , denoted by R

i
(2)
T

, can be

expressed as:

R
i
(2)
T

= 2
∑

v∈V
i
(2)
T

RTTv +
∑

v∈V
i
(2)
T

x(2)v /C(2)
v (2.5)

where the first term is the two-way propagation delay for TCP flow i
(2)
T and the

second term is the queuing delay experienced by the flow i
(2)
T on the route. Let

q
i
(2)
T

be the end-to-end loss probability of TCP flow i
(2)
T , which can be expressed

as follows:

q
i
(2)
T

= 1−
∏

v∈V
i
(2)
T

(1− p(2)v). (2.6)

Similarly, let V
i
(1)
U

and V
i
(2)
U

be the set of links ordered as the route of UDP

flows i
(1)
U and i

(2)
U respectively, then end-to-end loss probabilities for the flows can

be expressed as follows:

q
i
(1)
U

= 1−
∏

v∈V
i
(1)
U

(1− p(1)v), (2.7)

q
i
(2)
U

= 1−
∏

v∈V
i
(2)
U

(1− p(2)v). (2.8)

8

2.3 TCP Model

In the literature, there are several expressions for TCP sending rate. In our

model, we are using the TCP model given in [9]. The model proposed by [9]

analytically characterizes the TCP steady-state throughput as a function of the

loss rate and round trip time. The model is shown to capture both TCP’s fast

retransmit mechanism and TCP’s timeout mechanism [9].

The maximum congestion window size, Wmax, is determined at the beginning

of TCP flow establishment [9]. Hence, if there is no loss, the window size can grow

up to Wmax. The window limitation affects TCP rate based on the relationship

between the window size and Wmax resulting with 2 different expressions for

TCP sending rate [9]. Before going further into TCP formula let’s define couple

of equations first; denote unconstrained window size by Wu the mean of which is

given at (2.9) [9].

E[Wu, qi(2)T
] =

2 + b

3b
+

√√√√8(1− q
i
(2)
T

)

3bq
i
(2)
T

+ (
2 + b

3b
)2 (2.9)

where the parameter b is the number of packets acknowledged by a received

ACK. Many TCP receivers send one cumulative ACK for two consecutive packets

received therefore b is typically 2. Let’s call the probability that loss in a window

of size w is detected by time-outs as Q(w, q
i
(2)
T

):

Q(w, q
i
(2)
T

) = min

(
,
(1− (1− q

i
(2)
T

)3)(1 + (1− q
i
(2)
T

)3)(1− (1− q
i
(2)
T

)w−3))

1− (1− q
i
(2)
T

)w

)
.

(2.10)

Using both (2.9) and (2.10), TCP sending rate can be characterized as:

9

T (R
i
(2)
T
, q

i
(2)
T

) =



1−q
i
(2)
T

q
i
(2)
T

+E[Wu]+Q(E[Wu],q
i
(2)
T

) 1
1−q

i
(2)
T

R
i
(2)
T

(b
2
E[Wu]+1)+Q(E[Wu],q

i
(2)
T

)T0

F (q
i
(2)
T

)

1−q
i
(2)
T

, E[Wu] < Wmax

1−q
i
(2)
T

q
i
(2)
T

+Wmax+Q(Wmax,q
i
(2)
T

) 1
1−q

i
(2)
T

R
i
(2)
T

(b
8
Wmax+

1−q
i
(2)
T

q
i
(2)
T

Wmax
+2)+Q(Wmax,q

i
(2)
T

)T0

F (q
i
(2)
T

)

1−q
i
(2)
T

otherwise

(2.11)

where

F (q
i
(2)
T

) = 1 + q
i
(2)
T

+ 2q2
i
(2)
T

+ 4q3
i
(2)
T

+ 8q4
i
(2)
T

+ 16q5
i
(2)
T

+ 32q6
i
(2)
T

(2.12)

and T0 denotes period of timeout.

Here, only the functions appearing in TCP sending rate formula are expressed

but detailed derivation of these functions can be found in [9].

2.4 Matlab Algorithm

We propose the method of damped fixed-point iterations in the algorithm. When

the classical method is used, the algorithm can oscillate between 2 points as

a result it does not converge, in order to solve this issue damped fixed-point

iteration method is performed. The difference between the two methods is that

in damped, instead of using the current iteration value for the starting point of

next iteration, moving average of current value and previous iteration’s value is

calculated and the result is taken as the starting point of next iteration. By using

damped method in the algorithm, abrupt jumps between two successive iterations

are prevented which helps to convergence. For the kth iteration, moving average

operation for the current queue length of link v is described in (2.13).

(x(2)v)k+1 = α(x(2)v)k + (1− α)(x(2)v)k−1, 0 ≤ α ≤ 1 (2.13)

In order to make a decision about capacities, demand on each link must be

calculated. To calculate UDP demands, first call the sending rates of UDP flows

10

as T (q
i
(1)
U

) and T (q
i
(2)
U

) that goes through Q
(1)
v and Q

(2)
v respectively. Recall that

the sending rate of TCP flows can be calculated using (2.11). We also know

the individual loss probabilities on each link therefore total demand on link v’s

queues, D
(1)
v and D

(2)
v , can be calculated. Let S

i
(1)
U

be the set of UDP flows who

traverse link v and goes into queue Q
(1)
v and also let Z

v,i
(1)
U

be the set of links

ordered as the route of the flow i
(1)
U until it reaches the link v. Similarly, we have

S
i
(2)
U

and Z
v,i

(2)
U

for UDP flow i
(2)
U ; S

i
(2)
T

and Z
v,i

(2)
T

for TCP flow i
(2)
T . Then, D

(1)
v

and D
(2)
v can be calculated as:

D(1)
v =

∑
i
(1)
U ∈Si

(1)
U

T (q
i
(1)
U

)
∏

v∈Z
v,i

(1)
U

(1− p(1)v), (2.14)

D(2)
v =

∑
i
(2)
U ∈Si

(2)
U

T (q
i
(2)
U

)
∏

v∈Z
v,i

(2)
U

(1− p(2)v) +
∑

i
(2)
T ∈Si

(2)
T

T (R
i
(2)
T
, q

i
(2)
T

)
∏

v∈Z
v,i

(2)
T

(1− p(2)v).

(2.15)

In order to run the fixed-point iterations, new values for the drop probabil-

ities are needed and on each queue they can be calculated using demands and

capacities easily as follows:

p(1)v =

1− C
(1)
v

D
(1)
v

C
(1)
v ≤ D

(1)
v

0 otherwise
(2.16)

p(2)v =

1− C
(2)
v

D
(2)
v

C
(2)
v ≤ D

(2)
v

0 otherwise
(2.17)

After the fixed-point algorithm converges, we have the demand and capacity

values on each link. Hence, the decision about the capacities needs to be done.

Recall that the first given weighted capacities always should be available to be

used. If the flows cannot use the all capacity, only then the other queue can use

the extra capacity. Hence, the first case is that if the demand on the link is lower

11

than the instantaneous capacity of that link, then lower the capacity to be equal

to the demand. The lowered amount of the capacity is given to the other queue.

The examples are given considering the demand and capacity of Q
(1)
v of link v

but the procedure is similar to apply the Q
(2)
v of link v.

if D
(1)
v ≤ C

(1)
v then

C
(2)
v ←− C

(2)
v + (C

(1)
v −D(1)

v)

C
(1)
v ←− C

(1)
v − (C

(1)
v −D(1)

v)

end if

The first case is easy to understand but when the demand is higher than the

instantaneous capacity, the decision needs to be done carefully such that other

inequalities needs to be taken into account as well. It’s important to compare the

demand and the first given weighted capacity. Even though the demand may be

higher than the instantaneous capacity, the queue cannot use more than its right,

the first capacity assigned by the weights, unless the other queue decides to give

the unused capacity of itself to it. Hence, the instantaneous capacity cannot go

beyond the first assigned value unless the other queue gives some extra capacity

to it.

if D
(1)
v ≥ C

(1)
v and D

(1)
v ≤ Cvw

(1)
v and C

(1)
v ≤ Cvw

(1)
v then

C
(1)
v ←− D

(1)
v

C
(2)
v ←− Cv − C(1)

v

end if

if D
(1)
v ≥ C

(1)
v and D

(1)
v ≥ Cvw

(1)
v and C

(1)
v ≤ Cvw

(1)
v then

C
(1)
v ←− Cvw

(1)
v

C
(2)
v ←− Cv(1− w(1)

v)

end if

There is one case that is not analyzed yet, which is when demand is higher

than the instantaneous capacity and both demand and instantaneous capacity

12

Figure 2.3: Nested Fixed-Point Algorithm

are higher than first weighted capacity. This case refers to the situation in which

other queue cannot use it’s right and gave some of unused capacity to other queue.

In that cases, we do not change the assigned capacities. The assigned capacities

can be changed if only the queue needs some of the capacity it gave earlier.

Until Q
(1)
v capacity assignments are finalised for each link v, which require

some number of iterations in fixed-point algorithm, we do not change Q
(2)
v for

any v. After the Q
(1)
v are set, the same procedure can be applied for Q

(2)
v which

would yield different capacity assignments for both Q
(1)
v and Q

(2)
v , therefore we

would have to go back to Q
(1)
v iterations and so on, which results in a nested

fixed-point algorithm. At some point, we converge some values so that between

2 consecutive UDP and TCP blocks separately, the difference is so negligible, in

that case we finish the iterations. Illustration of the whole process can be seen

on 2.3.

13

Initialization;

p
(1)
v ← 0; p

(2)
v ← 0; x

(2)
v ← 0; ∀v ∈ V ;

C
(1)
v ← Cvw

(1)
v ; C

(2)
v ← Cv(1− w(1)

v); ∀v ∈ V ;

while The maximum throughput difference between 2 iterations is greater than ε do

Start with Class 1 first;

while The maximum throughput difference between 2 iterations of Class 1 is greater than ζ

do

Calculate the individual end-to-end drop probabilities q
i
(1)
U

of flows from p
(1)
v (2.7);

Calculate the demand on each link v, D
(1)
v (2.14);

Calculate new p
(1)
v for each link v according to D

(1)
v and C

(1)
v (2.16);

end

Make the decision on new capacities;

if D
(1)
v ≤ C(1)

v then

C
(2)
v ←− C(2)

v + (C
(1)
v −D(1)

v);

C
(1)
v ←− C(1)

v − (C
(1)
v −D(1)

v);

else if D
(1)
v ≥ C(1)

v and D
(1)
v ≤ Cvw

(1)
v and C

(1)
v ≤ Cvw

(1)
v then

C
(1)
v ←− D(1)

v ;

C
(2)
v ←− Cv − C(1)

v ;

else if D
(1)
v ≥ C(1)

v and D
(1)
v ≥ Cvw

(1)
v and C

(1)
v ≤ Cvw

(1)
v then

C
(1)
v ←− Cvw

(1)
v ;

C
(2)
v ←− Cv(1− w(1)

v);

end

Continue with Class 2;

while The maximum throughput difference between 2 iterations of Class 2 is greater than η

do

Calculate the individual end-to-end drop probabilities of flows q
i
(2)
U

and q
i
(2)
T

from p
(2)
v

(2.8, 2.6) ;

Calculate new sending rates for TCP flows, T (R
i
(2)
T

, q
i
(2)
T

) and the demand on each

link v, D
(2)
v (2.11, 2.15) ;

Calculate new p
(2)
v for each link v according to D

(2)
v and C

(2)
v (2.17);

Use dampening to adjust the values of p
(2)
v (2.13);

end

Make the decision on new capacities;

if D
(2)
v ≤ C(2)

v then

C
(1)
v ←− C(1)

v + (C
(2)
v −D(2)

v);

C
(2)
v ←− C(2)

v − (C
(2)
v −D(2)

v);

else if D
(2)
v ≥ C(2)

v and D
(2)
v ≤ Cv(1− w(1)

v) and C
(2)
v ≤ Cv(1− w(1)

v) then

C
(2)
v ←− D(2)

v ;

C
(1)
v ←− Cv − C(2)

v ;

else if D
(2)
v ≥ C(2)

v and D
(2)
v ≥ Cv(1− w(1)

v) and C
(2)
v ≤ Cv(1− w(1)

v) then

C
(2)
v ←− Cv(1− w(1)

v);

C
(1)
v ←− Cvw

(1)
v ;

end

end

Algorithm 1: Nested Fixed-point iterations

14

Chapter 3

Numerical Results

In order to understand the accuracy of the algorithm proposed, different network

topologies are studied. Both simple topologies with few nodes and few flows and

complex topologies with relatively more nodes and more flows are considered. In

addition, the topologies are analyzed using not only MATLAB but also simulated

using the NS3 simulator.

In all MATLAB analysis, we used the same RED parameters when AQM is

performed. In terms of packets, we have t
(2)min
v =30, t

(2)max
v =90 and B

(2)
v =180 also

probability values of p
(2)min
v =0.001 and p

(2)max
v =0.1; see Figure 2.2. The timeout

period, T0 in (2.11) is set to 0.2s. However, in NS3 simulations we have p
(2)min
v =0.

The reason for adding slope in first interval for MATLAB simulations was dis-

cussed before. Also, in MATLAB analysis ε,ζ and η values used in Algorithm 1

are set ε=ζ=η=1bps. Finally, the α parameter used in the dampening phase of

Algorithm 1 is set to 0.0003.

Since the default NS3 simulator does not include any source code related to

our study, simulations are done based on the study by [17]. The study involves

NS3 source codes which implements DRR scheduling with AQM queues. The

codes presented there are altered in order to simulate our network topologies.

15

Figure 3.1: Y Network

To mention briefly, there are 2 types of nodes, edge and core, in NS3 simula-

tions. Edge nodes color the flows for their type. It may be the port numbers, IP

addresses of source or destination etc., but the idea is make some of flows have

the same color. In our case, port numbers are used for coloring operation, UDP

flows and TCP flows are separated according to their port numbers. Core nodes

simply take the traffic from edge nodes in which flows are already colored, and

uses DRR scheduling over these colored flows. RED policy is used as AQM in

one of the queues and drop-tail is used in the other queue. There is also another

queue which is called Expedited Forwarding (EF) queue which uses drop-tail

queue management. The EF queue is the high priority queue while the queues

used in DRR scheduling are low priority queues. In our simulations, we only

put ACK packets to EF queue while TCP and UDP flows go through 2 different

queues in low priority queues. Also note that, in NS3 simulations, Dijkstra’s

Shortest Path algorithm is used to find routes and the exact routes are taken into

consideration for MATLAB simulations to have the exact scenario.

3.1 Y Network

Y network is a simple network with only 4 nodes and consist of 2 types of flows.

Network topology can be seen on Figure 3.1. Although the network seems simple,

it is not trivial to guess the behavior of the flows in a topology given below.

In this network, we have 5 identical TCP flows from Router A to D and

16

Figure 3.2: Y Network Results

another 5 TCP flows from Router B to D. However, the uncommon links have

different capacities and propagation delays. Let’s denote the capacity of Link 1

as C1 and one way propagation delay of that link as RTT1. Similarly we can

define C2, C3, RTT2 and RTT3. By keeping Link 3 as the bottleneck, we can

analyze the effect of RTT3 in simulations. In the simulation settings, we have

C1=10 Mbps, C2=100 Mbps, C3=10 Mbps, RTT1=1 ms and RTT2=20 ms. The

one-way propagation delay of the common link, RTT3, varies between 1 ms and

120 ms. Hence, we can analyze the effect of having a link with high capacity but

also with a long propagation delay versus a link with less capacity but with less

propagation delay.

The results of both MATLAB and NS3 simulations can be seen on Figure 3.2.

For NS3 simulations, 15 points are selected such that we have RTT3 as 1 ms, 2

ms, 5 ms, 10 ms, 20 ms, 30 ms, 40 ms, 50 ms, 60 ms, 70 ms, 80 ms, 90 ms, 100

ms, 110 ms and 120 ms. For each point on the graph, 20 simulations are done

with simulation length of 300 ms in NS3. In MATLAB, logarithmically spaced

vector is generated for the delay values between 1 ms and 120 ms and the vector

has 100 elements.

17

It can be observed that flows from A to D get more throughput in all cases

despite coming from a link with less capacity. However, as the common link’s

delay increases, both types of flows experience more and more similar propaga-

tion delays which results in more and more closer throughput values for the two

types of flows. The MATLAB analysis presents similar results with NS3 simu-

lations and it captures the general behavior. We observe that if the topology is

assumed to have some bottleneck link, then it may not worth to get links with

higher capacities at other ends since the flows coming from there will eventually

experience the bottleneck links and would have to drop lots of packets anyway.

However, it is obvious that, if we had higher capacity on the common link such

that it would not be bottleneck (e.g. C3=150 Mbps), then flows from B to D

would get much more throughput.

Overall, the Y Network indicates that TCP throughput may not be easy to

estimate even in such simple networks. However, the topology does not include

any DRR scheduling with UDP flows, which are needed to verify our analysis

tool.

3.2 Simple Network

In this hypothetical network, which can be seen on Figure 3.3, we analyze a

topology which includes both TCP and UDP flows. We have both AQM and

DRR scheduling in this scenario as discussed before. However, for the sake of

simplicity, all UDP flows goes through the same queue so we have full isolation

between UDP and TCP flows. As discussed before, TCP flows go for Class

2 queues which implement RED as their AQM, while UDP flows join Class 1

queues which implement Drop-Tail queue management.

The network includes 1 TCP and 1 UDP flow from Router 1,2 and 3 to

10,11 and 12 respectively. All links in the topology have the same capacity and

propagation delay such that Cv=10 Mbps for v=1,...,11 and RTTv=2 ms for v

=1,...,11. Since all links are identical, the weights to be used for DRR scheduling

18

Figure 3.3: Simple Network

Flows vs. Tput in Mbps w
(1)
v =0.25 (NS3) w

(1)
v =0.25 w

(1)
v =0.50 (NS3) w

(1)
v =0.50 w

(1)
v =0.75 (NS3) w

(1)
v =0.75

TCP1-10 2,590 2,525 1,724 1,679 0,911 0,837
TCP2-11 2,596 2,525 1,762 1,679 0,869 0,837
TCP3-12 2,437 2,451 1,724 1,643 0,887 0,827
UDP1-10 0,455 0,494 1,050 1,107 1,726 1,784
UDP2-11 0,456 0,494 1,046 1,107 1,733 1,784
UDP3-12 1,434 1,511 2,667 2,788 3,850 3,932

Table 3.1: Simulation Results for Simple Network

are also same in each individual simulation. In total, 3 different simulations are

performed in which w
(1)
v is set to be 0.25, 0.50 and 0.75 respectively for all v.

Recall that w
(1)
v is the weight of a queue which accepts UDP flows. Also, all UDP

sending rates are set to 10 Mbps so that both queues can be full and there is no

capacity transfer between the queues. Finally, NS3 simulations are done 5 times

each having length of 500 ms. The results for both NS3 and MATLAB simulations

are presented in Table 3.1 for which NS3 simulation results are indicated by

“(NS3)” while others are MATLAB results. The exact data on Table 3.1 can be

seen on Figure 3.4 for better comparison and understanding of difference between

NS3 and MATLAB simulations.

It can be observed from both Table 3.1 and Figure 3.4 that the analysis tool

we have on MATLAB produces reasonable results compared to NS3 simulation

results. There are slight differences but it was expected since we cannot have

%100 similarity between real simulations and analysis results. However, still the

network is not complex and we need more flows in a bigger topology to verify our

analysis tool.

19

Figure 3.4: Simple Network Results on Bar Graph

3.3 US Network

US network, based on a former NSF network topology which has been used in

many studies that have been published, is used as our final topology to verify our

analysis tool. The US network consists of 14 nodes with 21 links and because

it is a real network, some links are short while others are long which results in

a different propagation delay for each link. Physical distances between nodes,

which are given in [18], are used to find propagation delays and can be seen on

Figure 3.6. Detailed information about US Network can be found in [18],[19].

The capacities of the links are chosen to be identical in this scenario, Cv=10

Mbps, v=1,2,...,21. Furthermore, we have 20 TCP and 20 UDP flows in the

simulation. For simplicity, all UDP flows’ rates are fixed to a constant and equal

to 3 Mbps. The sources and destinations are chosen randomly but it is considered

to have a scenario where we have wide range of TCP and UDP throughput values.

All flows’ sources and destinations can be seen on Table 3.2.

In total, 3 different simulations are performed in which w
(1)
v is set to be 0.25,

0.50 and 0.75 respectively ∀v. For NS3 simulations, all cases are simulated 2

times with one simulation having length of 1000 ms. Histograms of TCP and

20

Figure 3.5: US Network

Figure 3.6: US Network Physical Distances

21

Table 3.2: All Flows

Table 3.3: TCP Flows
Flow Source Destination
TCP1 CO DC
TCP2 TX CA1
TCP3 MI TX
TCP4 UT TX
TCP5 IL WA
TCP6 UT CO
TCP7 NJ WA
TCP8 WA CA2
TCP9 PA MI
TCP10 PA NE
TCP11 GA CO
TCP12 MI CA2
TCP13 PA CA2
TCP14 TX IL
TCP15 MI CA1
TCP16 NY MI
TCP17 NE CO
TCP18 PA TX
TCP19 NJ GA
TCP20 CO NY

Table 3.4: UDP Flows
Flow Source Destination
UDP1 DC GA
UDP2 CA2 CO
UDP3 NE UT
UDP4 NJ CA2
UDP5 UT CA2
UDP6 UT NE
UDP7 CO DC
UDP8 NE CA2
UDP9 DC NY
UDP10 NE CA1
UDP11 UT TX
UDP12 IL UT
UDP13 IL PA
UDP14 UT CA1
UDP15 TX GA
UDP16 CA1 UT
UDP17 NJ WA
UDP18 NY MI
UDP19 NE IL
UDP20 UT NE

UDP throughput values can be seen on Figure 3.7, 3.8, 3.9, 3.10, 3.11, 3.12.

Also, no-isolation case results are presented on Figure 3.13, 3.14 in which class 1

and class 2 flows goes into the same RED implemented queues.

Generally, our analysis tool capture the behaviour of the network. There

are some differences but it was expected from such a large network. Some of the

differences in the results are due to the fact that in MATLAB analysis, we did not

consider the amount of traffic generated by ACK packets but in NS3 simulation,

ACK traffic is generated and it uses some of the capacity in the opposite way

of the original flow. Although ACK traffic may not seem significant, as number

of TCP flows increases so does the ACK flows which results in increased ACK

traffic. In NS3 for every 2 packets (2x1000 bytes) received, 1 ACK packet (40

bytes) is send so ACK traffic is % 2 of the traffic received and MATLAB code

could be modified accordingly.

22

Figure 3.7: TCP Flows when w
(1)
v =0.25 ∀v

Figure 3.8: UDP Flows when w
(1)
v =0.25 ∀v

23

Figure 3.9: TCP Flows when w
(1)
v =0.50 ∀v

Figure 3.10: UDP Flows when w
(1)
v =0.50 ∀v

24

Figure 3.11: TCP Flows when w
(1)
v =0.75 ∀v

Figure 3.12: UDP Flows when w
(1)
v =0.75 ∀v

25

Figure 3.13: TCP Flows when no-isolation is employed

Figure 3.14: UDP Flows when no-isolation is employed

26

Chapter 4

Many-to-one Communication

Assume we have a network in which n different contents are available and each

content can be placed in any kn servers, we have mn clients for content n and

these clients can connect any of kn servers to download content n. We create

different scenarios by randomizing kn, mn and location of each server and client

for each simulation while keeping n constant. In the network, one client may want

to download more than one content and one server can contain more than one

content. Same as before, we have Cv capacity for link v and one way propagation

delay of RTTv.

We study different policies to analyze many-to-one communication.

1. Randomly choose 1 server for each client.

2. Randomly choose 2 servers for each client.

3. Randomly choose 3 servers for each client.

4. Choose the server closest to each client.

5. Choose 2 servers closest to each client.

In policies 4 and 5, by closest we mean fewest number of hops between client

and server and if there are more than one server which has the same cost to the

27

Figure 4.1: Ring Topology

client, then we randomly choose any of such servers to serve the client. In the

following scenarios, it is assumed that, if the client connects more than one server,

the total throughput it gets from the servers is sum of the individual throughput

values. However, in real life this may not be easy and specific coding (e.g. Raptor

Codes [20]) may be required so that the client would not download the same parts

of the data from the servers.

4.1 Ring Topology

Assume we have a ring network which has 5 core nodes with 2 edge nodes con-

nected to each core. Also there are 1 potential server and 4 potential clients

connected to each edge node. The topology can be seen on Figure 4.1. Moreover,

in this network we have following properties:

28

Policies Mean Throughput in Mbps Coefficient of Variation
Random1 0.29433 0.6372
Random2 0.35040 0.5287
Random3 0.37736 0.5260
Minimum1 0.32772 0.7750
Minimum2 0.38587 0.5103

Table 4.1: Simulation Results for Ring Network

1. n=3

2. kn = U(4,10)

3. mn = U(1,14)

4. Cv = 1 Mbps, v=1,2,...,65

5. RTTv = 1 ms, v=1,2,...,65

The content n is placed at kn servers out of 10 servers and we have mn clients

for that specific content, which can be placed at any other 40 spaces.

In total, 100 simulations are done in MATLAB with 2272 clients are generated

for each policy. Mean throughput values of 2272 clients for each policy can be

seen on Table 4.1 along with the coefficient of variation of each policy, which is

the ratio of the standard deviation to the mean. Moreover, histogram of each

policy can be observed on Figure 4.2, 4.3, 4.4, 4.5, 4.6. As we can see from

the results, connecting more servers significantly improves the total throughput

client gets. In random server cases, we have %19 gain between “Random1” and

“Random2” and %8 gain between “Random2” and “Random3”. Furthermore,

similar results are acquired for minimum cost cases in which we have %17 gain

between “Minimum1” and “Minimum2”. Also note that by connecting more

than one server, the fairness of the systems improves since coefficient of variation

decreases.

29

Figure 4.2: Random1 Policy Results for Ring Network

Figure 4.3: Random2 Policy Results for Ring Network

30

Figure 4.4: Random3 Policy Results for Ring Network

Figure 4.5: Minimum1 Policy Results for Ring Network

31

Figure 4.6: Minimum2 Policy Results for Ring Network

4.2 US Network

Assume, 4 client and 1 server positions are available to each node of US Network,

Figure 3.5. Hence, we can have 14 servers and 56 clients at most in the scenario.

Call the 14 nodes of the US Network as core nodes and we have servers and clients

at edge nodes which are attached to each core node. Similar to the previous

section, we have the following properties in this network:

1. n=4

2. kn = U(4,14)

3. mn = U(1,20)

4. Cv = 1 Mbps, v=1,2,...,91

5. RTTv for core nodes are determined from Figure 3.6 and for edge links, we

have 20 km of fibre length.

32

Policies Mean Throughput in Mbps Coefficient of Variation
Random1 0.2350 0.7732
Random2 0.2680 0.6149
Random3 0.2746 0.5582
Minimum1 0.2348 0.9628
Minimum2 0.2844 0.6356

Table 4.2: Simulation Results for US Network

Figure 4.7: Random1 Policy Results for US Network

In MATLAB, 20 scenarios are created with 910 clients for each policy. On

Table 4.2, mean throughput values for each policy is presented along with co-

efficient of variation of each policy. Histogram of each policy can be observed

on Figure 4.7, 4.8, 4.9, 4.10, 4.11. It can be observed that significant amount

of gain is achieved when using more than one server. In particular, % 14 gain

is achieved between “Random1” and “Random2” and % 2 gain between “Ran-

dom2” and “Random3”. Moreover, we observe % 21 gain between “Minimum1”

and “Minimum2”. Similar as before, connecting more servers decreases coefficient

of variations which indicates better fairness in terms of throughput.

33

Figure 4.8: Random2 Policy Results for US Network

Figure 4.9: Random3 Policy Results for US Network

34

Figure 4.10: Minimum1 Policy Results for US Network

Figure 4.11: Minimum2 Policy Results for US Network

35

Chapter 5

Conclusion and Future Work

In this thesis, a fixed-point algorithm-based method is proposed to characterize

the throughput of networks offered with a mixture of persistent TCP and UDP

flows. The network is assumed to include router links which support per-class

queuing and DRR scheduling. In particular, the case of two classes is studied

where one of the classes goes through drop-tail queues and intended for UDP

traffic whereas the other class goes through queues which implement a specific

AQM mechanism. By using per-class queuing, TCP/UDP isolation is achieved

for better TCP application performance. The proposed algorithm is validated by

various NS3 simulations and the results indicate that the analysis tool captures

the behavior of such networks in all cases. There is less than %5 difference in the

results between the analysis tool and NS3 simulations for the mean throughput

values. Moreover, at most % 25 error is observed for one flow’s results. The dif-

ference in the results can partially be explained by not taking ACK packet traffic

into account in the analysis. As a future work, the algorithm can be modified to

capture the effect of the ACK traffic. Moreover, the proposed method is used to

analyze the potential gain of employing many-to-one communication over classical

one-to-one communication. We observed significant amount of gains, more than

% 14, when using 2 random servers as opposed to 1 random server in both sce-

narios. Similarly, more than % 17 gain is achieved when using 2 closest servers as

opposed to 1. Furthermore, coefficient of variation is decreased when using more

36

than one server which indicates better fairness in terms of throughput. However,

in order to collect more reliable data, more scenarios should be created. Also

note that the analysis needs to be viewed as a proof of concept for now. In the

future, one can employ specific protocols to study such scenarios in real internet

traffic.

37

Bibliography

[1] B. Braden, D. Clark, J. Crowcroft, B. Davie, S. Deering, D. Estrin, S. Floyd,

V. Jacobson, G. Minshall, C. Partridge, L. Peterson, K. Ramakrishnan,

S. Shenker, J. Wroclawski, and L. Zhang, “Recommendations on queue man-

agement and congestion avoidance in the internet,” RFC 2309, April 1998.

[2] S. Floyd and V. Jacobson, “Random early detection gateways for congestion

avoidance,” Networking, IEEE/ACM Transactions on, vol. 1, pp. 397 –413,

aug 1993.

[3] M. Hassan and R. Jain, eds., High performance TCP/IP networking: Con-

cepts, issues, and solutions. Pearson, 2004.

[4] E. S. Hashem, Analysis of random drop for gateway congestion control. PhD

thesis, 1989. PHD.

[5] S. Athuraliya, S. Low, V. Li, and Q. Yin, “REM: Active queue management,”

Network, IEEE, vol. 15, no. 3, pp. 48–53, 2001.

[6] T. J. Ott, J. H. B. Kemperman, and M. Mathis, “The stationary behavior

of ideal TCP congestion avoidance,” 1996.

[7] J. Mahdavi, “Tcp-friendly unicast rate-based flow control.” http://

www.psc.edu/networking/papers/tcp_friendly.html, 1997.

[8] M. Mathis, J. Semke, J. Mahdavi, and T. Ott, “The macroscopic behavior of

the TCP congestion avoidance algorithm,” SIGCOMM Comput. Commun.

Rev., vol. 27, pp. 67–82, July 1997.

38

[9] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, “Modeling TCP through-

put: a simple model and its empirical validation,” SIGCOMM Comput. Com-

mun. Rev., vol. 28, pp. 303–314, Oct. 1998.

[10] R. Kooij, R. van der Mei, and R. Yang, “TCP and WEB browsing per-

formance in case of bi-directional packet loss,” Computer Communications,

vol. 33, pp. S50–S57, 2010.

[11] T. Bu and D. Towsley, “Fixed point approximations for TCP behavior in an

AQM network,” SIGMETRICS Perform. Eval. Rev., vol. 29, pp. 216–225,

June 2001.

[12] L. Ji, T. Arvanitis, and S. Woolley, “Fair Weighted Round Robin scheduling

scheme for DiffServ networks,” Electronics Letters, vol. 39, no. 3, pp. 333–

335, 2003.

[13] M. Shreedhar and G. Varghese, “Efficient fair queueing using Deficit Round

Robin,” SIGCOMM Comput. Commun. Rev., vol. 25, pp. 231–242, Oct.

1995.

[14] A. Sharma, A. Venkataramani, and R. K. Sitaraman, “Distributing con-

tent simplifies ISP traffic engineering,” SIGMETRICS Perform. Eval. Rev.,

vol. 41, pp. 229–242, June 2013.

[15] S.Floyd, “Recommendation on using the gentle variant of RED.” http:

//www.icir.org/floyd/red/gentle.html, Mar. 2000.

[16] J.-C. Chen, “Dijkstra’s shortest path algorithm,” Journal of Formalized

Mathematics, vol. 15, 2003.

[17] S. Ramroop, “A diffserv model for the ns-3 simulator.” http://www.eng.

uwi.tt/depts/elec/staff/rvadams/sramroop/, 2011.

[18] A. Betker, C. Gerlach, R. Hülsermann, M. Jäger, M. Barry, S. Bodamer,

J. Späth, C. Gauger, and M. Köhn, “Reference transport network scenarios,”

MultiTeraNet Report, July, 2003.

[19] B. Chinoy and H.-W. Braun, “The National Science Foundation Network,”

tech. rep., Technical Report GA-A21029, SDSC, 1992.

39

[20] M. A. Shokrollahi and M. Luby, “Raptor codes,” Foundations and Trends in

Communications and Information Theory, vol. 6, no. 3-4, pp. 213–322, 2009.

40

