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ABSTRACT

NOISE ENHANCED DETECTION IN RESTRICTED
NEYMAN-PEARSON FRAMEWORK

Şan Gültekin

M.S. in Electrical and Electronics Engineering

Supervisor: Assoc. Prof. Dr. Sinan Gezici

July, 2013

Hypothesis tests frequently arise in many different engineering problems. Among

the most frequently used tests are Bayesian, minimax, and Neyman-Pearson.

Even though these tests are capable of addressing many real-life problems, they

can be insufficient in certain scenarios. For this reason, developing new hypothesis

tests is an important objective. One such developed test is the restricted Neyman-

Pearson test, where one tries to maximize the average detection probability while

keeping the worst-case detection and false-alarm probabilities bounded.

Finding the best hypothesis testing approach for a problem-at-hand is an im-

portant point. Another important one is to employ a detector with an acceptable

performance. In particular, if the employed detector is suboptimal, it is crucial

that it meets the performance requirements. Previous research has proven that

performance of some suboptimal detectors can be improved by adding noise to

their inputs, which is known as noise enhancement.

In this thesis we investigate noise enhancement according to the restricted

Neyman-Pearson framework. To that aim, we formulate an optimization problem

for optimal additive noise. Then, generic improvability and nonimprovability

conditions are derived, which specify if additive noise can result in performance

improvements. We then analyze the special case in which the parameter space is

discrete and finite, and show that the optimal noise probability density function is

discrete with a certain number of point masses. The improvability results are also

extended and more precise conditions are derived. Finally, a numerical example

is provided which illustrates the theoretical results and shows the benefits of

applying noise enhancement to a suboptimal detector.

Keywords: Detection, hypothesis-testing, Neyman-Pearson, noise enhanced de-

tection.
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ÖZET

KISITLANDIRILMIŞ NEYMAN-PEARSON
ÇERÇEVESİNDE GÜRÜLTÜ İYİLEŞTİRMELİ SEZİM

Şan Gültekin

Elektrik ve Elektronik Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Doç. Dr. Sinan Gezici

Temmuz, 2013

Hipotez testleri pek çok mühendislik probleminin önemli bir bileşenidir. Sık kul-

lanılan testler arasında Bayesian, minimax ve Neyman-Pearson testleri yer alır.

Her ne kadar bu testler pek çok problemin modellenmesi için yeterli olsalar da,

bazı senaryolarda yetersiz kalabilmektedirler. Bu sebeple, yeni hipotez testleri

geliştirmek önemli bir araştırma konusudur. Bu şekilde geliştirilmiş testlerden

biri de kısıtlandırılmış Neyman-Pearson testidir; bu testteki amaç ortalama sezim

olasılığını en yüksek düzeye çıkarırken en kötü sezim ve yanlış alarm olasılıklarını

sınırlamaktır.

Verilen bir problem için en iyi testi seçebilmek önemlidir. Bir o kadar önemli

olan diğer bir nokta ise yüksek performanslı bir detektör seçebilmektir. Bil-

hassa, eğer seçilen detektör optimal değilse, onun performans kriterlerini sağlayıp

sağlamadığını tespit etmek son derece önemlidir. Yapılan araştırmalar op-

timal olmayan bazı detektörlerin girişine gürültü eklenerek performanslarının

artırılabileceğini ortaya koymuştur. Buna gürültü iyileştirmesi denmektedir.

Bu tezde kısıtlandırılmış Neyman-Pearson çerçevesinde gürültü iyileştirmesi

incelenmektedir. Bunun için öncelikle optimal ek gürültü için bir optimizasyon

problemi formüle edilmektedir. Bu formülasyonu takiben iyileştirilebilirlik ve iy-

ileştirilemezlik için yeter koşullar sunulmaktadır ki bu koşullar ek gürültünün

performans gelişimi sağlayıp sağlamayacağını belirlemektedir. Bundan sonra

parametre uzayının ayrık ve sonlu olduğu bir özel durum incelenmektedir. Bu

incelemede optimal gürültü olasılık dağılımı fonksiyonunun ayrık ve belirli bir

sayıda kütle noktasından oluştuğu ortaya konmaktadır. Önceden elde edilmiş

olan iyileştirilebilirlik sonuçları da buraya uyarlanmaktadır. En son olarak da,

elde edilmiş olan kuramsal sonuçları örnekleyen ve optimal olmayan detektörlere
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gürültü iyileştirmesi uygulamanın faydalarını gösteren bir sayısal örneğe yer ver-

ilmektedir.

Anahtar sözcükler : Sezim, hipotez testi, Neyman-Pearson, gürültü iyileştirilmeli

sezim.
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Chapter 1

Introduction

1.1 Objectives and Contributions of the Thesis

Within the detection theory framework, one can specify three main hypothesis

testing approaches: Bayesian, minimax, and Neyman-Pearson [1]. The Bayesian

approach can be employed when the prior probabilities of hypotheses as well as

the costs of decisions under all scenarios are known. On the other hand, minimax

approach can be used if the prior probabilities of hypotheses are unknown but

the costs are known. Finally, the Neyman-Pearson approach is a common choice

if neither the prior probabilities nor the costs are known. All of these approaches

are applicable to both simple and composite hypothesis testing problems.

Bayesian, minimax, and Neyman-Pearson tests are optimum for certain sce-

narios. Yet, there are many cases in which the actual scenario does not correspond

to one of these optimality scenarios. For example, the costs may be known but

there can be some uncertainty on the knowledge of the prior probabilities. In

that case, the Bayesian approach will be too optimistic whereas the minimax

approach will be too conservative. In such cases the need for alternative hypoth-

esis testing criteria arises. For example, for the case above, there are alternative

methods such as the restricted Bayesian approach [2], which aims to compromise

the Bayesian and minimax approaches.
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In [3], the restricted Neyman-Pearson (RNP) approach is investigated. RNP

is similar to the restricted Bayesian approach in the sense that, this time, the prior

distribution of the parameter in the composite hypothesis testing framework is

assumed to be known with some uncertainty. In the composite Neyman-Pearson

hypothesis testing framework, both of the null and alternative hypotheses can

be composite. For the null hypothesis, the general approach is to apply a false

alarm constraint for all values of the parameter. For the alternative hypothesis,

however, there are a number of methods to employ. Two of these methods are as

follows: In the first one, the average detection probability is maximized, which is

called the max-mean approach. In the second one, the minimum of the detection

probabilities is maximized, which is called the max-min approach. Note that

the former assumes perfect knowledge of the prior distribution of the parameter

whereas the latter assumes no such knowledge. In this respect, the former and

latter are similar to the Bayesian and minimax approaches respectively. What the

RNP approach does is to compromise the max-mean and max-min approaches.

In other words, in the RNP framework, the aim is to maximize the average

detection probability under constraints on the worst-case detection and false-

alarm probabilities [2, 3]. It is worthwhile to note that since this approach uses

the available prior distribution information to a degree, it encompasses both

probabilistic and nonprobabilistic descriptions of uncertainty.

Recently performance improvements that can be obtained via “noise” have

been investigated for various problems in the literature ([4]-[19]). Although in-

creasing noise levels or injecting additive noise to a system usually results in

degraded performance, it can also lead to performance enhancements in some

cases [20]-[30]. Enhancements obtained via noise can, for instance, be in the

form of increased signal-to-noise ratio (SNR), mutual information or detection

probability, or in the form of reduced average probability of error [5]-[18].

In hypothesis-testing problems, additive noise can be used to improve perfor-

mance of a suboptimal detector according to Bayesian, minimax, and Neyman-

Pearson criteria. In [20], the Bayesian criterion is considered under uniform cost

assignment, and it is shown that the optimal noise that minimizes the probability

of decision error has a constant value. The study in [17] obtains optimal additive

2



noise for suboptimal variable detectors according to the Bayesian and minimax

criteria based on the results in [20] and [16]. In [32], noise enhanced M -ary com-

posite hypothesis-testing is studied in the presence of partial prior information,

and optimal additive noise is investigated according to average and worst-case

Bayes risk criteria. In [31], noise enhanced hypothesis-testing is investigated in

the restricted Bayesian framework, which generalizes the Bayesian and minimax

criteria and cover them as special cases [2, 33].

In the Neyman-Pearson framework, additive noise can be utilized to increase

detection probability of a suboptimal detector under a constraint on false-alarm

probability [18]. In [21], an example is provided to illustrate improvements in de-

tection probability due to additive independent noise for the problem of detecting

a constant signal in Gaussian mixture noise. A theoretical framework is estab-

lished in [16] for noise enhanced hypothesis-testing according to the Neyman-

Pearson criterion, and sufficient conditions are obtained for improvability and

nonimprovability of a suboptimal detector via additive noise. In addition, it is

shown that optimal additive noise can be realized by a randomization between

at most two different signal levels. Noise enhanced detection in the Neyman-

Pearson framework is studied also in [18], which provides an optimization theo-

retic framework, and proves the two point mass structure of the optimal additive

noise probability distribution.

Noise benefits are also studied for composite hypothesis-testing problems.

Such problems are encountered in various scenarios such as radar systems, non-

coherent communications receivers, and spectrum sensing in cognitive radio net-

works [1]-[35]. Noise enhanced hypothesis-testing is investigated for composite

hypothesis-testing problems according to the Bayesian, Neyman-Pearson, and

Restricted Bayesian criteria in [31, 32, 36]. However, no studies have considered

the noise enhanced hypothesis-testing problem according to RNP criterion.

In this thesis, noise enhancement is investigated for composite hypothesis-

testing problems according to the RNP criterion [37]. A formulation is provided

for obtaining the probability distribution of the optimal additive noise in the

RNP framework. Also, sufficient conditions of improvability and nonimprovability

3



are derived in order to determine when the use of additive noise can or cannot

improve performance of a given detector. In addition, a special case in which

there exist finitely many possible values of the unknown parameter under each

hypothesis is considered, and the optimal additive noise is shown to correspond

to a discrete random variable with a certain number of point masses in that

scenario. Furthermore, particular improvability conditions are derived for that

special case. Finally, numerical examples are presented in order to illustrate

the improvements obtained via additive noise and to provide applications of the

improvability conditions. Since a generic composite hypothesis-testing problem

with prior distribution uncertainty is investigated in this thesis, the results can

be considered to generalize the previous studies in the literature [16, 18, 36].

1.2 Organization of the Thesis

The rest of the thesis is organized as follows. In Chapter 2, the noise enhanced

hypothesis-testing problem is formulated according to the RNP approach. Chap-

ter 3 presents the theoretical results; in particular, it presents improvability and

nonimprovability conditions as well as the special case of discrete and finite pa-

rameter space. The results here are illustrated and supported by the numerical

evaluations in Chapter 4. Finally, concluding remarks are made in Section 5.
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Chapter 2

Problem Formulation

Consider a binary composite hypothesis-testing problem formulated as

H0 : pXθ (x) , θ ∈ Λ0 , H1 : pXθ (x) , θ ∈ Λ1 (2.1)

where pXθ (·) denotes the probability density function (PDF) of observation X for

a given value of the parameter, Θ = θ, the observation (measurement), x, is

a K-dimensional vector (i.e., x ∈ RK), and Λi is the set of possible parameter

values under Hi for i = 0, 1 [1]. Parameter sets Λ0 and Λ1 are disjoint, and their

union forms the parameter space Λ; that is, Λ = Λ0 ∪ Λ1.

In this thesis, we consider a practical scenario in which there exists imper-

fect prior information about the parameter. In particular, we assume that the

prior probability distribution of the parameter under each hypothesis is known

with some uncertainty [38]. Let w0(θ) and w1(θ) represent the imperfect prior

probability distributions of parameter θ under H0 and H1, respectively. These

probability distributions may differ from the true prior probability distributions,

which are not known by the designer. For instance, w0(θ) and w1(θ) can be ob-

tained via estimation based on previous decisions (experience). Then, uncertainty

is related to estimation errors, and higher amount of uncertainty is observed as

estimation errors increase [3].

5



For theoretical analysis, we consider a generic decision rule (detector), which

is expressed as

ϕ(x) = i, if x ∈ Γi , (2.2)

for i = 0, 1, where Γ0 and Γ1 form a partition of the observation space Γ. The aim

in this thesis is to investigate the effects of adding independent “noise” to inputs of

given generic detectors as in (2.2) and to obtain optimal probability distributions

of such additive “noise” in the restricted NP framework. As investigated in recent

studies such as [5, 31, 17, 21, 16, 18], addition of independent noise to observations

can improve detection performance of suboptimal detectors in some cases.

Let n denote the “noise” component that is added to original observation x.

Then, the noise modified observation is formed as y = x+n, where n has a p.d.f.

denoted by pN(·). The detector in (2.2) uses the noise modified observation y in

order to make a decision. As in [31, 16, 18], we assume that the detector in (2.2)

is fixed, and that the only way of enhancing the performance of the detector is

to optimize the additive noise component, n.

According to the RNP criterion [2, 3], the optimal additive noise should max-

imize the average detection probability under constraints on the worst-case de-

tection and false-alarm probabilities. Therefore, the probability distribution of

the optimal additive noise can be obtained from the solution of the following

optimization problem:

max
pN(·)

∫
Λ1

Py
D(ϕ; θ)w1(θ) dθ

subject to Py
D(ϕ; θ) ≥ β, ∀θ ∈ Λ1 (2.3)

Py
F(ϕ; θ) ≤ α, ∀θ ∈ Λ0

where Py
D(ϕ; θ) and Py

F(ϕ; θ) denote respectively the detection and false-alarm

probabilities of a given decision rule ϕ, which employs the noise modified ob-

servation y, for a given value of Θ = θ, β is the lower limit on the worst-case

detection probability, α is the false-alarm constraint, and w1(θ) is the imperfect

prior distribution of the parameter under hypothesis H1. The objective function

6



in (2.3) corresponds to the average detection probability based on the imperfect

prior distribution; that is,
∫
Λ1

Py
D(ϕ; θ)w1(θ) dθ = E{Py

D(ϕ; Θ)} , Py
D(ϕ). In

addition, Py
D(ϕ; θ) and Py

F(ϕ; θ) can be expressed as

Py
D(ϕ; θ) = E {ϕ(Y ) |Θ = θ} =

∫
Γ

ϕ(y) pYθ (y) dy θ ∈ Λ1 (2.4)

Py
F(ϕ; θ) = E {ϕ(Y ) |Θ = θ} =

∫
Γ

ϕ(y) pYθ (y) dy θ ∈ Λ0 (2.5)

where pYθ (·) is the PDF of the noise modified observation for a given value of

Θ = θ.

In order to express the optimization problem in (2.3) more explicitly, we first

manipulate Py
D(ϕ; θ) in (2.4) as follows:

Py
D(ϕ; θ) =

∫
Γ

∫
RK

ϕ(y) pXθ (y − n) pN(n) dn dy (2.6)

=

∫
RK

pN(n)

[∫
Γ

ϕ(y)pXθ (y − n) dy

]
dn (2.7)

,
∫
RK

pN(n)Fθ(n) dn (2.8)

= E{Fθ(N)} (2.9)

for θ ∈ Λ1, where the independence of X and N is used to obtain (2.6) from (2.4),

and Fθ is defined as

Fθ(n) ,
∫
Γ

ϕ(y) pXθ (y − n) dy. (2.10)

Note that Fθ(n) corresponds to the detection probability for a given value of

θ ∈ Λ1 and for a constant value of additive noise, N = n. Therefore, for n = 0,

Fθ(0) = Px
D(ϕ; θ) is obtained; that is, Fθ(0) is equal to the detection probability

of the decision rule for a given value of θ ∈ Λ1 and for the original observation x.

Based on similar manipulations as in (2.6)-(2.9), Py
F(ϕ; θ) in (2.5) can be

expressed as

Py
F(ϕ; θ) = E{Gθ(N)} (2.11)
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for θ ∈ Λ0, where

Gθ(n) ,
∫
Γ

ϕ(y) pXθ (y − n) dy. (2.12)

Note that Gθ(n) defines the false alarm probability for a given value of θ ∈ Λ0 and

for a constant value of additive noise, N = n. Hence, for n = 0, Gθ(0) = Px
F(ϕ; θ)

is obtained; that is, Gθ(0) is equal to the false alarm probability of the decision

rule for a given value of θ ∈ Λ0 and for the original observation x.

From (2.9) and (2.11), the optimization problem in (2.3) can be reformulated

as

max
pN(·)

∫
Λ1

E{Fθ(N)}w1(θ) dθ

subject to min
θ∈Λ1

E{Fθ(N)} ≥ β (2.13)

max
θ∈Λ0

E{Gθ(N)} ≤ α

In addition, based on the following definition,

F (n) ,
∫
Λ1

Fθ(n)w1(θ) dθ , (2.14)

the optimization problem in (2.13) can be expressed in the following simpler form:

max
pN(·)

E{F (N)},

subject to min
θ∈Λ1

E{Fθ(N)} ≥ β (2.15)

max
θ∈Λ0

E{Gθ(N)} ≤ α.

Based on the definitions in (2.10) and (2.14), it is noted that F (0) = Px
D(ϕ); that

is, F (0) is equal to the average detection probability for the original observation

x (i.e., the average detection probability in the absence of additive noise).

The exact solution of the optimization problem in (2.15) is very difficult to

obtain in general as it requires a search over all possible additive noise PDFs.

8



Hence, an approximate solution can be obtained based on the Parzen window

density estimation technique [31, 36, 39]. In particular, the additive noise PDF

can be parameterized as

pN(n) ≈
L∑
l=1

µl φl(n) (2.16)

where µl ≥ 0,
∑L

l=1 µl = 1, and φl(·) is a window function that satisfies φl(x) ≥ 0

∀x and
∫
φl(x)dx = 1, for l = 1, . . . , L. A common window function is the

Gaussian window, for which φl(n) is given by the PDF of a Gaussian random

vector with a certain mean vector and a covariance matrix. Based on (2.16), the

optimization problem in (2.15) can be solved over a number of parameters instead

of PDFs, which significantly reduces the computational complexity. However,

even in that case, the problem is nonconvex in general; hence, global optimization

algorithms such as particle swarm optimization (PSO) need to be used [31, 40].

9



Chapter 3

Theoretical Results

3.1 Improvability and Nonimprovability Condi-

tions

Since the optimization problem in (2.15) is complex to solve in general, it can

be useful to determine beforehand if additive noise can or cannot improve the

performance of a given detector. For that purpose, we obtain sufficient condi-

tions for which the use of additive noise can or cannot provide any performance

improvements compared to the case of not employing any additive noise. To that

aim, we first define improvability and nonimprovability in the RNP framework as

follows:

Definition 1: According to the RNP criterion, a detector is called improv-

able if there exists additive noise N such that E{F (N)} > Px
D(ϕ) = F (0) and

min
θ∈Λ1

Py
D(ϕ; θ) = min

θ∈Λ1

E{Fθ(N)} ≥ β, and max
θ∈Λ0

Py
F(ϕ; θ) = max

θ∈Λ0

E{Gθ(N)} ≤ α.

Otherwise, the detector is called nonimprovable.

In other words, for improvability of a detector, there must exist additive noise

that increases the average detection probability under the worst-case detection

and false-alarm constraints.

10



According to Definition 1, we first obtain the following nonimprovability con-

dition based on the properties of Fθ(·) in (2.10), Gθ(·) in (2.12), and F (·) in

(2.14).

Proposition 1: Assume that there exits θ∗ ∈ Λ0 (θ
∗ ∈ Λ1) such that Gθ∗(n) ≤

α (Fθ∗(n) ≥ β) implies F (n) ≤ F (0) for all n ∈ Sn, where Sn is a convex set1

consisting of all possible values of additive noise n. If Gθ∗(n) is a convex function

(Fθ∗(n) is a concave function), and F (n) is a concave function over Sn, then the

detector is nonimprovable.

Proof: The proof is similar to those in [31] and [22]. The convexity of Gθ∗(·)
implies that the false alarm probability in (2.9) is bounded, via Jensen’s inequal-

ity, as

Py
F(ϕ; θ

∗) = E{Gθ∗(N)} ≥ Gθ∗ (E{N}) . (3.1)

As Py
F(ϕ; θ

∗) ≤ α must hold for improvability, (3.1) requires that Gθ∗ (E{N}) ≤ α

must be satisfied. Since E{N} ∈ Sn, Gθ∗ (E{N}) ≤ α implies that F (E{N}) ≤
F (0) due to the assumption in the proposition. Hence,

Py
D(ϕ) = E{F (N)} ≤ F (E{N}) ≤ F (0) , (3.2)

where the first inequality results from the concavity of F . Then, from (3.1) and

(3.2), it is concluded that whenever the false-alarm constraint is satisfied, the

average detection probability can never be higher than that in the absence of

additive noise; that is, Py
F(ϕ; θ

∗) ≤ α implies Py
D(ϕ; θ

∗) ≤ F (0) = Px
D(ϕ). For

this reason, the detector is nonimprovable. Based on similar arguments, the

alternative nonimprovability condition in terms of Fθ (stated in the parentheses

in the proposition) can be proven as well. �

The nonimprovability conditions in Proposition 1 can be useful in determining

when it is unnecessary to solve the optimization problem in (2.15). When these

conditions are satisfied, additive noise should not be employed in the system at all

1It is reasonable to model Sn as a convex set since convex combination of individual noise
components can be obtained via randomization [31, 41].
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since it cannot provide any performance improvements according to the restricted

NP criterion.

In addition to the nonimprovability conditions in Proposition 1, we obtain

sufficient conditions for improvability in the remainder of this section. Assume

that F (x), Fθ(x) ∀ θ ∈ Λ1, and Gθ(x) ∀ θ ∈ Λ0 are second-order continuously dif-

ferentiable around x = 0 . Then, we define the following functions for notational

convenience:

g
(1)
θ (x, z) , zT∇Gθ(x) (3.3)

f
(1)
θ (x, z) , zT∇Fθ(x) (3.4)

f (1)(x, z) , zT∇F (x) (3.5)

g
(2)
θ (x, z) , zTH(Gθ(x)) z (3.6)

f
(2)
θ (x, z) , zTH(Fθ(x)) z (3.7)

f (2)(x, z) , zTH(F (x)) z (3.8)

where ∇ and H represent the Gradient and Hessian operators, respectively. For

example, ∇Gθ(x) is a K-dimensional column vector with its ith element being

equal to ∂Gθ(x)
∂xi

, where xi denotes the ith component of x, and H(Gθ(x)) is a

K ×K matrix with its element in row l and column i being given by ∂2Gθ(x)
∂xl∂xi

.

Based on the preceding definitions, the following proposition provides suffi-

cient conditions for improvability.

Proposition 2: Let L0 and L1 denote the sets of θ values that maximize Gθ(0)

and minimize Fθ(0), respectively. Then the detector is improvable if there exists

a K-dimensional vector z such that one of the following conditions is satisfied for

all θ0 ∈ L0 and θ1 ∈ L1:

• f (1)(x, z) > 0, f
(1)
θ1

(x, z) > 0, and g
(1)
θ0
(x, z) < 0 at x = 0.

• f (1)(x, z) < 0, f
(1)
θ1

(x, z) < 0, and g
(1)
θ0
(x, z) > 0 at x = 0.

• f (2)(x, z) > 0, f
(2)
θ1

(x, z) > 0, and g
(2)
θ0
(x, z) < 0 at x = 0.

12



Proof: For the improvability of a detector in the RNP framework, there must

exist a noise PDF pN(n) that satisfies E{F (N)} > F (0), min
θ∈Λ1

E{Fθ(N)} ≥ β,

and max
θ∈Λ0

E{Gθ(N)} ≤ α, which can be expressed as
∫
RK pN(n)F (n) dn > F (0),∫

RK pN(n)Fθ(n) dn ≥ β, ∀θ ∈ Λ1 , and
∫
RK pN(n)Gθ(n) dn ≤ α, ∀θ ∈ Λ0 . Em-

ploying a similar approach to that in the proof of Theorem 2 in [31], we consider

a noise PDF with L infinitesimal noise components, pN(n) =
∑L

j=1 λj δ(n− ϵj).

Then, the conditions above become

L∑
j=1

λj F (ϵj) > F (0) ,
L∑

j=1

λj Fθ(ϵj) ≥ β , ∀θ ∈ Λ1 ,

L∑
j=1

λj Gθ(ϵj) ≤ α , ∀θ ∈ Λ0 .

(3.9)

As ϵj’s are infinitesimally small, F (ϵj), Fθ(ϵj), and Gθ(ϵj) can be approximated

via the Taylor series expansion as F (0)+ϵTj f+0.5 ϵTj Hϵj, Fθ(0)+ϵTj fθ+0.5 ϵTj H
f
θϵj,

and Gθ(0)+ϵTj gθ+0.5 ϵTj H
g
θϵj, respectively, where f (fθ, gθ) and H (Hf

θ, H
g
θ ) are

the Gradient and Hessian of F (x) (Fθ(x), Gθ(x)) at x = 0, respectively. Hence,

(3.9) leads to

L∑
j=1

λj ϵ
T
j Hϵj + 2

L∑
j=1

λj ϵ
T
j f > 0 ,

L∑
j=1

λj ϵ
T
j H

f
θϵj + 2

L∑
j=1

λj ϵ
T
j fθ ≥ 2 (β − Fθ(0)) , ∀θ ∈ Λ1 , (3.10)

L∑
j=1

λj ϵ
T
j H

g
θϵj + 2

L∑
j=1

λj ϵ
T
j gθ ≤ 2 (α−Gθ(0)) , ∀θ ∈ Λ0 .

Express ϵj as ϵj = ρj z for j = 1, 2, . . . , L, where ρj for j = 1, 2, . . . , L are

infinitesimal real numbers, and z is a K-dimensional real vector. Then, based

on the definitions in (3.3)-(3.8), the conditions in (3.10) can be simplified to the

13



following:

(
f (2)(x, z) + c f (1)(x, z)

) ∣∣∣
x=0

> 0 , (3.11)(
f
(2)
θ (x, z) + c f

(1)
θ (x, z)

) ∣∣∣
x=0

>
2 (β − Fθ(0))∑L

j=1 λj ρ
2
j

, ∀θ ∈ Λ1 , (3.12)

(
g
(2)
θ (x, z) + c g

(1)
θ (x, z)

) ∣∣∣
x=0

<
2 (α−Gθ(0))∑L

j=1 λj ρ
2
j

, ∀θ ∈ Λ0 , (3.13)

where c , 2
∑L

j=1 λj ρj
/∑L

j=1 λj ρ
2
j . Because β = Fθ(0) for θ ∈ L1 (α = Gθ(0)

for θ ∈ L0) and β < min
θ∈Λ1\L1

Fθ(0)
(
α > max

θ∈Λ0\L0

Gθ(0)
)
, the right-hand-side of

(3.12) ((3.13)) goes to minus infinity for {θ ∈ Λ1 | θ /∈ L1} (plus infinity for

{θ ∈ Λ0 | θ /∈ L0} ). Hence, we should consider only the θ ∈ L1 case for θ ∈ Λ1

and the θ ∈ L0 case for θ ∈ Λ0. Thus, (3.11), (3.12), and (3.13) can be expressed

as

(
f (2)(x, z) + c f (1)(x, z)

) ∣∣∣
x=0

> 0 (3.14)(
f
(2)
θ1

(x, z) + c f
(1)
θ1

(x, z)
) ∣∣∣

x=0
> 0 (3.15)(

g
(2)
θ0
(x, z) + c g

(1)
θ0
(x, z)

) ∣∣∣
x=0

< 0 . (3.16)

Note that c can take any real value by definition via the selection of appropriate

λi and infinitesimal ρi values for i = 1, 2, . . . , L . Then, based on (3.14)-(3.16),

the following conclusions are made for the three bullets in the proposition:

• If the conditions in the first bullet of Proposition 2 are satisfied, c can

be set to a sufficiently large positive number to satisfy the inequalities in

(3.14)-(3.16).

• If the conditions in the second bullet of Proposition 2 are satisfied, c can

be set to a sufficiently large negative number to satisfy the inequalities in

(3.14)-(3.16).

• If the conditions in the first bullet of Proposition 2 are satisfied, c can be

set to zero to satisfy the inequalities in (3.14)-(3.16). �
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Proposition 2 implies that under the stated conditions, one can always find a

noise PDF that increases the average detection probability under the constraints

on the worst case detection and false alarm probabilities. In other words, the con-

ditions in the proposition guarantee the existence of additive noise that improves

the detection performance according to the RNP criterion.

In addition to the improvability conditions in Proposition 2, we can obtain

alternative sufficient conditions for improvability based on the approaches in [31,

16]. For that purpose, we first define two new functions J(t) and H(t) as follows:

J(t) , sup

{
F (n)

∣∣ max
θ∈Λ0

Gθ(n) = t

}
(3.17)

H(t) , inf

{
min
θ∈Λ1

Fθ(n)
∣∣ max

θ∈Λ0

Gθ(n) = t

}
(3.18)

which represent, respectively, the maximum average detection probability and

the minimum worst-case detection probability for a given value of the maximum

false-alarm probability considering constant values of additive noise. As an initial

observation from (3.17) and (3.18), one can conclude that if there exists t0 ≤ α

such that J(t0) > F (0) and H(t0) ≥ β, then the detector is improvable, since

under such a condition there exists a noise component n0 that satisfies F (n0) >

F (0), min
θ∈Λ1

Fθ(n0) ≥ β and max
θ∈Λ0

Gθ(n0) ≤ α (i.e., performance improvement can

be achieved by adding a constant noise component n0 to the observation).

Since improvability of a detector via constant noise component is not very

common in practice, the following improvability condition is presented for more

practical scenarios.

Proposition 3: Define the minimum value of the detection probability and the

maximum value of the false alarm probability in the absence of additive noise as

β̃ , min
θ∈Λ1

Px
D(ϕ; θ) and α̃ , max

θ∈Λ0

Px
F(ϕ; θ) , respectively, where β̃ ≥ β and α̃ ≤ α .

Assume that H(α̃) = β̃, where H is as defined in (3.18). Then the detector is

improvable if J(t) in (3.17) and H(t) in (3.18) are second-order continuously

differentiable around t = α̃, and satisfy J
′′
(α̃) > 0 and H

′′
(α̃) ≥ 0.

Proof: As J(t) in (3.17) and H(t) in (3.18) are second-order continuously

15



differentiable around t = α̃, one can find ϵ > 0, n1, and n2 such that max
θ∈Λ0

Gθ(n1) =

α̃ + ϵ and max
θ∈Λ0

Gθ(n2) = α̃ − ϵ [31]. Then, in the following, it is proved that an

additive noise component with pN(n) = 0.5 δ(x − n1) + 0.5 δ(x − n2) improves

the detector performance according to the restricted NP criterion (i.e., under the

worst-case detection and false alarm constraints). First, under the condition of

H
′′
(α̃) ≥ 0, the minimum value of the detection probability and the maximum

value of the false alarm probability in the presence of additive noise are shown

not to remain below β and exceed α, respectively:

min
θ∈Λ1

E{Fθ(N)} ≥ E

{
min
θ∈Λ1

Fθ(N)

}
≥ 0.5H(α̃ + ϵ) + 0.5H(α̃− ϵ) ≥ H(α̃) = β̃ ≥ β

(3.19)

max
θ∈Λ0

E{Gθ(N)} ≤ E

{
max
θ∈Λ0

Gθ(N)

}
= 0.5(α̃ + ϵ) + 0.5(α̃− ϵ) = α̃ ≤ α . (3.20)

In addition, due to the assumptions in the proposition, J(t) is convex in an

interval around t = α̃. As E{F (N)} can achieve the value of 0.5 J(α̃ + ϵ) +

0.5 J(α̃−ϵ), which is always larger than J(α̃) due to convexity, it is concluded that

E{F (N)} > J(α̃). Since J(α̃) ≥ F (0) by definition of J(t) in (3.17), E{F (N)} >
F (0) is satisfied. Therefore, the detector is improvable. �

Proposition 3 can be employed in a similar manner to Proposition 2 in order

to determine if a given detector is improvable according to the RNP framework.

The main advantage of Proposition 3 is that J(t) and H(t) are always single-

variable functions irrespective of the dimension of the observation vector, which

facilitates simple evaluation of the conditions in the proposition. However, in

some cases, it can be challenging to obtain an expression for J(t) in (3.17) and

H(t) in (3.18). On the other hand, Proposition 2 deals directly with Gθ(·), Fθ(·),
and F (·) without defining auxiliary functions as in Proposition 3; hence, it can be

employed more efficiently in some cases. However, it should also be noted that

the functions in Proposition 2 are always K-dimensional, which can make the

evaluation of the conditions more complex than those in Proposition 3 in some

other cases.
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3.2 Special Case: Discrete and Finite Parame-

ter Space

The results obtained in the previous section are generic in the sense that there

are no specific restrictions on the parameter sets Λ0 and Λ1 corresponding to

hypotheses H0 and H1, respectively. In this section, we provide more detailed

theoretical analysis for the special case in which the parameter sets consist of

finitely many elements. Let Λ0 = {θ01, θ02, . . . , θ0M} and Λ1 = {θ11, θ12, . . . , θ1N}.

The most important simplification in this case is that the optimal p.d.f. of

additive noise can be represented by a discrete probability distribution with at

most M + N point masses under mild conditions as specified in the following

proposition.

Proposition 4: Suppose that each component of additive noise is upper and

lower bounded by two finite values; that is, nj ∈ [aj, bj] for j = 1, . . . , K where aj

and bj are finite.2 If Fθ(·) and Gθ(·) are continuous functions for all θ in Λ1 and

Λ0 respectively, then the PDF of an optimal additive noise can be expressed as

pN(n) =
M+N∑
l=1

λl δ(n− nl) , (3.21)

where
∑M+N

l=1 λl = 1 and λl ≥ 0 for l = 1, 2, . . . ,M +N .

Proof: The proof is omitted since it can be obtained similarly to the proofs

of Theorem 4 in [31] and Theorem 8 in [36], which are based on the approach in

[16]. �

Based on Proposition 4, the optimization problem in (2.15) can be expressed

2This is a reasonable assumption because additive noise cannot take infinitely large values
in practice.
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as

max
{λl,nl}M+N

l=1

M+N∑
l=1

λl F (nl)

subject to min
θ∈Λ1

M+N∑
l=1

λl Fθ(nl) ≥ β

max
θ∈Λ0

M+N∑
l=1

λlGθ(nl) ≤ α

M+N∑
l=1

λl = 1 , λl ≥ 0 for l = 1, 2, . . . ,M +N

(3.22)

Compared to (2.15), the optimization problem in (3.22) has much lower com-

putational complexity in general since it requires optimization over a number of

variables instead of over all possible PDFs. However, depending on the number

of possible parameter values, M +N , the computational complexity can still be

high in some cases.

Next, we obtain sufficient conditions for improvability according to the RNP

criterion. Let Sβ (Sα) denote the set of indices for which Fθ1i(0) (Gθ0i(0)) achieves

the minimum value of β (maximum value of α), and let S̄β (S̄α) represent the set

of indices with Fθ1i(0) > β (Gθ0i(0) < α ); that is,

Sβ = {i ∈ {1, 2, . . . , N} | Fθ1i(0) = β} (3.23)

S̄β = {i ∈ {1, 2, . . . , N} | Fθ1i(0) > β} (3.24)

Sα = {i ∈ {1, 2, . . . ,M} | Gθ0i(0) = α} (3.25)

S̄α = {i ∈ {1, 2, . . . ,M} | Gθ0i(0) < α} . (3.26)

Note that Sβ ∪ S̄β = {1, 2, . . . , N} (Sα ∪ S̄α = {1, 2, . . . ,M}); hence, Fθ1i(0) =

Px
D(ϕ; θ1i) ≥ β for i = 1, 2, . . . , N (Gθ0i(0) = Px

F(ϕ; θ0i) ≤ α for i = 1, 2, . . . ,M ).

Based on the functions in (3.3)-(3.8), we define new functions as f
(n)
i (x, z) ,

f
(n)
θ1i

(x, z) and g
(n)
i (x, z) , g

(n)
θ1i

(x, z). Also let Fn and Gn (n = 1, 2) represent the

sets that consist of f (n)(x, z), f
(n)
i (x, z) for i ∈ Sβ , and g

(n)
i (x, z) for i ∈ Sα ;
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namely,

Fn =
{
f (n)(x, z), f

(n)
i (x, z) for i ∈ Sβ

}
(3.27)

Gn =
{
g
(n)
i (x, z) for i ∈ Sα

}
, (3.28)

for n = 1, 2. Note that Fn (Gn) has |Sβ| + 1 (|Sα|) elements, where |Sβ| (|Sα|)
denotes the number of elements in Sβ (Sα). Representing by Fn(j) (Gn(j)) the jth

element of Fn (Gn ), it is noted that Fn(1) = f (n)(x, z) and Fn(j) = f
(n)
Sβ(j−1)(x, z)

for j = 2, . . . , |Sβ| + 1 (Gn(j) = g
(n)
Sα(j)

(x, z) for j = 2, . . . , |Sα|), where Sβ(j − 1)

is the (j − 1)th element of Sβ (Sα(j) is the jth element of Sα). Furthermore, the

following sets are defined for the indices j ∈ Sβ (j ∈ Sα) for which F1(j) (G1(j))

is zero, negative or positive:

Sz
β =

{
j ∈ {1zβ, 2zβ, . . . , (|Sβ|+ 1)zβ} | F1(j) = 0

}
(3.29)

Sn
β =

{
j ∈ {1nβ, 2nβ, . . . , (|Sβ|+ 1)nβ} | F1(j) < 0

}
(3.30)

Sp
β =

{
j ∈ {1pβ, 2

p
β, . . . , (|Sβ|+ 1)pβ} | F1(j) > 0

}
(3.31)

Sz
α = {j ∈ {1zα, 2zα, . . . , (|Sα|)zα} | G1(j) = 0} (3.32)

Sn
α = {j ∈ {1nα, 2nα, . . . , (|Sα|)nα} | G1(j) < 0} (3.33)

Sp
α = {j ∈ {1pα, 2pα, . . . , (|Sα|)pα} | G1(j) > 0} (3.34)

where we denote j as jα (jβ) in order to emphasize that j is coming from set Sα

(is not coming from set Sα) and we use z, n, and p to denote the subsets.

In the following proposition, an indicator function IA(x) is used, which is

defined as IA(x) = 1 if x ∈ A and IA(x) = 0 otherwise. Based on the defini-

tions in (3.23)-(3.34), the following proposition provides sufficient conditions for

improvability in the RNP framework.

Proposition 5: When Λ consists of a finite number of elements, a detector is

improvable according to the RNP criterion if there exists a K-dimensional vector

z such that the following two conditions are satisfied at x = 0 :

1. F2(j) > 0 , ∀j ∈ Sz
β and G2(j) < 0 , ∀j ∈ Sz

α .
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2. One of the following is satisfied:

• Any three of |Sn
β |, |S

p
β|, |Sn

α | and |Sp
α| is zero, or |Sn

β |+|Sp
α| = 0, or |Sn

α |+|Sp
β| = 0.

• |Sn
β |+ |Sn

α | is an odd number, |Sn
β |+ |Sp

α| > 0, |Sn
α |+ |Sp

β| > 0 and

min
j∈Sn

β∪S
p
α

(
F2(j)ISn

β
(j) + G2(j)ISp

α
(j)
) ∏
l∈Sn

β∪S
p
β∪Sn

α∪S
p
α\{j}

(
F1(l)ISn

β∪S
p
β
(l) + G1(l)ISn

α∪S
p
α
(l)
)

> max
j∈Sp

β∪Sn
α

(
F2(j)ISp

β
(j) + G2(j)ISn

α
(j)
) ∏
l∈Sn

β∪S
p
β∪Sn

α∪S
p
α\{j}

(
F1(l)ISn

β∪S
p
β
(l) + G1(l)ISn

α∪S
p
α
(l)
)
.

(3.35)

• |Sn
β |+ |Sn

α | is an even number, |Sn
β |+ |Sp

α| > 0, |Sn
α |+ |Sp

β| > 0 and

min
j∈Sp

β∪Sn
α

(
F2(j)ISp

β
(j) + G2(j)ISn

α
(j)
) ∏
l∈Sn

β∪S
p
β∪Sn

α∪S
p
α\{j}

(
F1(l)ISn

β∪S
p
β
(l) + G1(l)ISn

α∪S
p
α
(l)
)

> max
j∈Sn

β∪S
p
α

(
F2(j)ISn

β
(j) + G2(j)ISp

α
(j)
) ∏
l∈Sn

β∪S
p
β∪Sn

α∪S
p
α\{j}

(
F1(l)ISn

β∪S
p
β
(l) + G1(l)ISn

α∪S
p
α
(l)
)
.

(3.36)

Proof: According to Proposition 4, the optimal additive noise has a discrete

probability distribution with at most M + N point masses. Then, a detector is

improvable if there exists a noise PDF pN(n) =
∑M+N

l=1 λl δ(n− nl)that satisfies

E{F (N)} > F (0), min
i∈{1,2,...,N}

E{Fθ1i(N)} ≥ β, and max
i∈{1,2,...,M}

E{Gθ0i(N)} ≤ α,

which can be stated as

M∑
l=1

λl F (nl) > F (0)

min
i∈{1,2,...,N}

M+N∑
l=1

λl Fθ1i(nl) ≥ β

max
i∈{1,2,...,M}

M+N∑
l=1

λlGθ0i(nl) ≤ α .

(3.37)

Similarly to the approach in the proof of Proposition 2, consider the improv-

ability conditions in (3.37) for infinitesimal noise components, nl = ϵl = ρl z
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for l = 1, 2, . . . ,M + N , where ρl’s are infinitesimal real numbers, and z is a

K-dimensional real vector. Then, based on similar manipulations, the following

conditions are obtained:

(
f (2)(x, z) + c f (1)(x, z)

) ∣∣∣
x=0

> 0 (3.38)(
f
(2)
i (x, z) + c f

(1)
i (x, z)

) ∣∣∣
x=0

>
2 (β − Fθ1i(0))∑M

j=1 λj ρ
2
j

, i = 1, 2, . . . , N (3.39)

(
g
(2)
i (x, z) + c g

(1)
i (x, z)

) ∣∣∣
x=0

<
2 (α−Gθ0i(0))∑M

j=1 λj ρ
2
j

, i = 1, 2, . . . ,M (3.40)

where c , 2
∑M

j=1 λj ρj
/∑M

j=1 λj ρ
2
j .

Because Fθ1i(0) > β, ∀i ∈ S̄β and Gθ0i(0) < α, ∀i ∈ S̄α, the right-hand-side of

(3.39) and (3.40) becomes minus infinity for i ∈ S̄β and plus infinity for i ∈ S̄α,

respectively. Therefore, it is sufficient to consider i ∈ Sβ and i ∈ Sα only. Hence,

(3.38)-(3.40) can be expressed as

(
f (2)(x, z) + c f (1)(x, z)

) ∣∣∣
x=0

> 0 (3.41)(
f
(2)
i (x, z) + c f

(1)
i (x, z)

) ∣∣∣
x=0

> 0, ∀i ∈ Sβ (3.42)(
g
(2)
i (x, z) + c g

(1)
i (x, z)

) ∣∣∣
x=0

< 0, ∀i ∈ Sα. (3.43)

From the definitions in (3.27) and (3.28), (3.41)-(3.43) can be written as(
F2(j) + cF1(j)

)∣∣∣
x=0

> 0 for j = 1, 2, . . . , |Sβ|+ 1 (3.44)(
G2(j) + cG1(j)

)∣∣∣
x=0

< 0 for j = 1, 2, . . . , |Sα| . (3.45)

It is again observed that c can take any real value by selecting appropriate λi

and infinitesimal ρi values for i = 1, 2, . . . ,M + N . Therefore, from (3.29) and

(3.32), it is concluded that for the conditions in (3.44) and (3.45) to hold,

F2(j)
∣∣
x=0

> 0 ∀j ∈ Sz
β and G2(j)

∣∣
x=0

< 0 ∀j ∈ Sz
α (3.46)
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must be satisfied, which is the first condition in the proposition.

In addition to (3.46), one of the following conditions must be satisfied for the

improvability conditions in (3.44) and (3.45) to hold:

• When any three of |Sn
β |, |S

p
β|, |Sn

α |, and |Sp
α| are zero, as stated in the first

part of the second condition in Proposition 5, all the second terms that are

nonzero in (3.44) and (3.45) are either all non-negative or all non-positive

and the corresponding signs of the inequalities are the same. Therefore,

there always exists a c that satisfies the improvability conditions in (3.44)

and (3.45) when the first condition in Proposition 5 (cf. (3.46)) is satisfied.

When |Sn
β |+ |Sp

α| = 0, as stated in the first part of the second condition in

Proposition 5, assume that |Sn
α | is an odd number (this does not reduce the

generality of the result in the proposition). Then, (3.44) and (3.45) can be

stated after some manipulations as

F2(j)
∣∣∣
x=0

> 0, ∀j ∈ Sz
β (3.47)

G2(j)
∣∣∣
x=0

< 0, ∀j ∈ Sz
α (3.48)(

F2(j)
∏

l∈Sp
β∪Sn

α\{j}

(
F1(l)ISp

β
(l) + G1(l)ISn

α
(l)
)

+c
∏

l∈Sp
β∪Sn

α

(
F1(l)ISp

β
(l) + G1(l)ISn

α
(l)
))∣∣∣

x=0
< 0, ∀j ∈ Sp

β (3.49)

(
G2(j)

∏
l∈Sp

β∪Sn
α\{j}

(
F1(l)ISp

β
(l) + G1(l)ISn

α
(l)
)

+c
∏

l∈Sp
β∪Sn

α

(
F1(l)ISp

β
(l) + G1(l)ISn

α
(l)
))∣∣∣

x=0
< 0, ∀j ∈ Sn

α . (3.50)

In obtaining (3.49) and (3.50), (3.44) and (3.45) are multiplied by∏
l∈Sp

β∪Sn
α\{j}

(
F1(l)ISp

β
(l) + G1(l)ISn

α
(l)
)
, which is a positive (negative) quan-

tity when j ∈ Sn
α (j ∈ Sp

β) since |Sn
α | is an odd number. The conditions
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in (3.47) and (3.48) are satisfied from the first condition in Proposition 5.

Therefore, there always exists a c that satisfies the improvability conditions

in (3.49) and (3.50) as the second terms and the sign of the inequalities in

(3.49) and (3.50) are the same. When |Sn
α | is an even number, only the sign

of the inequalities (3.49) and (3.50) change; hence, the same result is valid

as well.

When |Sp
β| + |Sn

α | = 0, as stated in the first part of the second condition

in Proposition 5, via similar manipulations as in the previous paragraph,

it can be proved that the detector is improvable with the first condition in

Proposition 5.

• When |Sn
β |+ |Sn

α | is an odd number, |Sn
β |+ |Sp

α| > 0, |Sn
α |+ |Sp

β| > 0, (3.44)

and (3.45) can be written as

F2(j)
∣∣∣
x=0

> 0, ∀j ∈ Sz
β (3.51)

G2(j)
∣∣∣
x=0

< 0, ∀j ∈ Sz
α (3.52)((

F2(j)ISn
β
(j) + G2(j)ISp

α
(j))

) ∏
l∈Sn

β∪S
p
β∪Sn

α∪S
p
α\{j}

(
F1(l)ISn

β∪S
p
β
(l) + G1(l)ISn

α∪S
p
α
(l)
)

+c
∏

l∈Sn
β∪S

p
β∪Sn

α∪S
p
α

(
F1(l)ISn

β∪S
p
β
(l) + G1(l)ISn

α∪S
p
α
(l)
))∣∣∣

x=0
> 0, ∀j ∈ Sn

β ∪ Sp
α

(3.53)((
F2(j)ISp

β
(j) + G2(j)ISn

α
(j))

) ∏
l∈Sn

β∪S
p
β∪Sn

α∪S
p
α\{j}

(
F1(l)ISn

β∪S
p
β
(l) + G1(l)ISn

α∪S
p
α
(l)
)

+c
∏

l∈Sn
β∪S

p
β∪Sn

α∪S
p
α

(
F1(l)ISn

β∪S
p
β
(l) + G1(l)ISn

α∪S
p
α
(l)
))∣∣∣

x=0
< 0, ∀j ∈ Sp

β ∪ Sn
α .

(3.54)

In obtaining (3.53) and (3.54), (3.44) and (3.45) are multiplied by∏
l∈Sn

β∪S
p
β∪Sn

α∪S
p
α\{j}

(
F1(l)ISn

β∪S
p
β
(l)+G1(l)ISn

α∪S
p
α
(l)
)
, which is a positive (neg-

ative) quantity when j ∈ Sn
β ∪ Sn

α (j ∈ Sp
β ∪ Sp

α) since |Sn
β |+ |Sn

α | is an odd

23



number. The conditions in (3.51) and (3.52) are satisfied from the first con-

dition in the proposition. Also, under the condition in (3.35), there always

exists a c that satisfies the improvability conditions in (3.53) and (3.54).

• When |Sn
β | + |Sn

α | is an even number, |Sn
β | + |Sp

α| > 0, and |Sn
α | + |Sp

β| > 0

(3.44) and (3.45) can be expressed by four conditions similar to those in

(3.51)-(3.54) with the only difference being that the signs of the inequalities

in (3.53) and (3.54) are switched. In that scenario, the first and the second

conditions are satisfied from the first condition in the proposition. In addi-

tion, under the condition in (3.36), there always exists a c that satisfies the

third and the fourth conditions. �

Whenever the two conditions in Proposition 5 are satisfied, it is guaranteed

that the detection performance can be improved via additive noise. Although

the expression in the proposition may seem complicated at first, it is noted that,

after defining the sets in (3.23)-(3.34), it is simple to check the conditions. An

example application of Proposition 5 is provided in the next section.

The following improvability condition can be obtained as a corollary of Propo-

sition 5.

Corollary 1: Assume that F (x), Fθ1i(x), i = 1, 2, . . . , N , and Gθ0i(x), i =

1, 2, . . . ,M are second-order continuously differentiable around x = 0 and that

min
i∈{1,2,...,N}

Fθ1i(0) > β and max
i∈{1,2,...,M}

Gθ0i(0) < α . Let f denote the gradient of

F (x) at x = 0. Then, the detector is improvable

• if f ̸= 0; or,

• if F (x) is not concave around x = 0 .

Proof: Because min
i∈{1,2,...,N}

Fθ1i(0) > β and max
i∈{1,2,...,M}

Gθ0i(0) < α , the right-

hand-side of (3.39) and (3.40) in the proof of Proposition 5 become minus infinity

and plus infinity for any i, respectively. Then, it is sufficient to consider the
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condition in (3.38) only; namely,

(
f (2)(x, z) + c f (1)(x, z)

) ∣∣∣
x=0

> 0 . (3.55)

This condition can be expressed as zTHz+ c zT f > 0 in terms of the Gradient f

and the Hessian H of F (x) at x = 0. As c can take any real value by definition

as discussed before and as z can be chosen arbitrarily small, the improvability

condition is always satisfied if f ̸= 0 . On the other hand, if f = 0, the improv-

ability condition becomes zTHz > 0 . In that case, if F (x) is not concave around

x = 0 , H is not negative semidefinite. Then, there exists z such that zTHz > 0

is satisfied. Therefore, the detector is improvable. �
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Chapter 4

Numerical Results

In this chapter, the binary hypothesis-testing problem considered in [3] is studied

in order to illustrate theoretical results in the previous chapter. The hypotheses

are specified as follows:

H0 : X = V , H1 : X = Θ+ V (4.1)

whereX ∈ R, Θ is the unknown parameter, and V is symmetric Gaussian mixture

noise that has the following PDF

pV (v) =
Nm∑
i=1

ωi ψi(v −mi) , (4.2)

where ωi ≥ 0 for i = 1, . . . , Nm,
∑Nm

i=1 ωi = 1, and ψi(x) =

1/(
√
2π σi) exp (−x2/(2σ2

i )) for i = 1, . . . , Nm. Since noise V is symmetric,

its parameters satisfy ml = −mNm−l+1, ωl = ωNm−l+1 and σl = σNm−l+1 for

l = 1, . . . , ⌊Nm/2⌋, where ⌊y⌋ denotes the largest integer smaller than or equal to

y. (If Nm is an odd number, m(Nm+1)/2 is set to zero for symmetry.)

The unknown parameter Θ in (4.1) is modeled as a random variable with the
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following PDF.

w1(θ) = ρ δ(θ − A) + (1− ρ) δ(θ + A) (4.3)

where A is a positive constant that is known exactly, whereas ρ is known with

some uncertainty. (Please see [3] for the motivations of this model.)

Based on the preceding problem formulation, the parameter sets under H0

and H1 as specified as Λ0 = {0} and Λ1 = {−A,A}, respectively. Also, the

conditional PDF of the original observation X for a given value of Θ = θ is

obtained as

pXθ (x) =
Nm∑
i=1

ωi√
2π σi

exp

(
−(x− θ −mi)

2

2σ2
i

)
. (4.4)

Suppose that the following detector is employed.

ϕ(y) =

0 , A/2 > y > −A/2

1 , otherwise
, (4.5)

where y = x+n, with n representing the additive noise term. This is a reasonable

detector for the model in (4.1) since noise V is zero mean, and Θ is either A of

−A. Although it is not the optimal detector for the specified problem, it can be

employed in practical scenarios due to its simplicity.

From (2.10), (2.12), and (2.14), Fθ1i for θ11 = A and θ12 = −A, Gθ0i for

27



θ01 = 0, and F can be calculated as follows:

FA(n) =
Nm∑
i=1

wi

(
Q

(
−A/2−mi − n

σi

)
+Q

(
3A/2 +mi + n

σi

))
,

F−A(n) =
Nm∑
i=1

wi

(
Q

(
3A/2−mi − n

σi

)
+Q

(
−A/2 +mi + n

σi

))
,

G0(n) =
Nm∑
i=1

wi

(
Q

(
A/2−mi − n

σi

)
+Q

(
A/2 +mi + n

σi

))
,

F (n) = ρFA(n) + (1− ρ)F−A(n) ,

(4.6)

where Q(x) = (1/
√
2π )

∫∞
x

e−t2/2dt is the Q-function.

In the numerical example, Nm = 4 is considered for the symmetric Gaussian

mixture noise, and the mean values of the Gaussian components in the mixture

noise are specified as [0.01 0.6 −0.6 −0.01] with the corresponding weights of

[0.25 0.25 0.25 0.25]. Also, the variances of the Gaussian components in the

mixture noise are assumed to be the same; i.e., σi = σ for i = 1, . . . , Nm.

In Figures 4.1, 4.2, and 4.3, average detection probabilities are plotted with

respect to σ for various values of β in the cases of α = 0.35, α = 0.4, and α = 0.45,

respectively, where A = 1 and ρ = 0.8. It is observed that the use of additive

noise enhances the average detection probability, and significant improvements

can be achieved via additive noise for low values of the standard deviation, σ.

As the standard deviation increases, the amount of improvement in the average

detection probability reduces. In fact, after some values of σ, the constraints on

the minimum detection probability or the false alarm probability are not satisfied;

hence, the RNP solution does not exist after certain values of σ. (Therefore, the

curves are plotted up to those specific values in the figures.) Another observation

from the figures is that the average detection probabilities decrease as β increases.

This is expected since a larger value of β imposes a stricter constraint on the

worst-case detection probability (see (2.3)), which in turn reduces the average

detection probability. In other words, there is a tradeoff between β and the

average detection probability, which is an essential characteristic of the RNP

approach [3].
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Figure 4.1: Average detection probability versus σ for various values of β, where
α = 0.35, A = 1 and ρ = 0.8.
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Figure 4.2: Average detection probability versus σ for various values of β, where
α = 0.4, A = 1 and ρ = 0.8.
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Figure 4.3: Average detection probability versus σ for various values of β, where
α = 0.45, A = 1 and ρ = 0.8.
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Table 4.1: Optimal additive noise PDFs, in the form of pN(n) = λ1 δ(n − n1) +
λ2 δ(n − n2) + (1 − λ1 − λ2) δ(n − n3), for various values of σ, where β = 0.82,
α = 0.35, A = 1 and ρ = 0.8.

σ λ1 λ2 n1 n2 n3

0 0.4181 0.3019 0.1136 0.4887 -0.4807
0.01 0.5043 0.2157 0.4146 0.1718 -0.4115
0.1 0.6886 0.3114 0.2818 -0.2818 –
0.15 0.6032 0.3968 0.2544 -0.2544 –
0.2 0.5481 0.4519 0.1796 -0.1796 –

Table 4.2: Optimal additive noise PDFs, in the form of pN(n) = λ1 δ(n − n1) +
λ2 δ(n − n2) + (1 − λ1 − λ2) δ(n − n3), for various values of σ, where β = 0.8,
α = 0.4, A = 1 and ρ = 0.8.

σ λ1 λ2 n1 n2 n3

0 0.6098 0.1902 0.4750 0.2088 -0.2804
0.05 0.5375 0.2624 0.3002 0.2956 -0.2755
0.1 0.7689 0.2311 0.2821 -0.2821 –
0.2 0.6653 0.3347 0.1796 -0.1796 –
0.3 1 – 0.0384 – –

Tables 4.1, 4.2, and 4.3 illustrate the optimal additive noise PDFs for various

values of σ in the cases of β = 0.82 with α = 0.35 , β = 0.80 with α = 0.40,

and β = 0.78 with α = 0.45 respectively, where A = 1 and ρ = 0.8. From

Proposition 4, it is known that the optimal additive noise in this example can be

represented by a discrete probability distribution with at most three point masses

(since Λ0 = {0} and Λ1 = {−A,A}; i.e., M = 1 and N = 2). Therefore, it can

be expressed as pN(n) = λ1 δ(n − n1) + λ2 δ(n − n2) + (1 − λ1 − λ2) δ(n − n3).

It is observed from the tables that the optimal additive noise PDFs have three

point masses for certain values of σ, whereas they have two point masses or a

single point mass for other σ’s. These results are in accordance with Proposition 4,

which states that an optimal PDF can be represented by a probability distribution

with at most three point masses for the considered scenario.

In order to determine if any of the conditions in Proposition 2 are satisfied for

the example above, the numerical values of f (2), f
(2)
θ1

, and g
(2)
θ0

are calculated and
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Table 4.3: Optimal additive noise PDFs, in the form of pN(n) = λ1 δ(n − n1) +
λ2 δ(n−n2)+(1−λ1−λ2) δ(n−n3), for various values of σ for β = 0.78, α = 0.45,
A = 1 and ρ = 0.8.

σ λ1 λ2 n1 n2 n3

0 0.4510 0.12 0.2209 -0.2763 0.4344
0.05 0.5888 0.2912 0.2955 0.2848 -0.2895
0.15 0.7734 0.2266 0.2547 -0.2547 –
0.35 1 – 0.0608 – –
0.45 1 – 0.0238 – –

Table 4.4: Numerical values of the auxiliary functions defined for Proposition 2.

σ f (1) f
(1)
A f

(1)
−A g

(1)
0 f (2) f

(2)
A f

(2)
−A g

(2)
0

0.05 0.1614 0.2694 -0.2705 0.0011 10.8 10.8 10.8 -21.6
0.10 0.3627 0.6046 -0.6052 6.049×10−4 6.0489 6.0489 6.049 -12.1
0.15 0.3225 0.5376 -0.5378 2.25×10−4 2.25 2.25 2.25 -4.5
0.20 0.2905 0.4841 -0.4842 5.502×10−5 0.5507 0.5507 0.5507 -1.1
0.25 0.2856 0.4759 -0.4759 -2.758×10−5 -0.2669 -0.2669 -0.2669 0.5515
0.30 0.2683 0.4772 -0.4771 -5.764×10−5 -0.5395 -0.5395 -0.5395 1.153

tabulated in Table 4.4.1 It is observed that, in this specific example, Fθ1(0) has

two minimizers; one is at θ1 = −A and the other is at θ1 = A. Therefore, sets L1

and L0 in Proposition 2 are defined as L1 = {−A,A} and L0 = {0}, respectively.
Hence, the conditions in Proposition 2 must hold for two groups: f (2), f

(2)
A , g

(2)
0

and f (2), f
(2)
−A, g

(2)
0 . From Table 4.4, it is noted that f (2), f

(2)
A and f

(2)
−A are always

positive whereas g
(2)
0 is always negative for the given values of σ. For this reason,

the third condition in Proposition 2 is satisfied for both groups for those values of

σ, implying that the detector is improvable as a result of the proposition, which

is also verified from Fig.s 4.1–4.3.

Finally, the conditions in Proposition 5 are checked in the following. We

consider the Gaussian mixture noise in (4.1) with σ = 0.05, and calculate the

values of f (1), f
(1)
A , f

(1)
−A, g

(1)
0 , f (2), f

(2)
A , f

(2)
−A, and g

(2)
0 . These values are tabulated

in 4.4. From the signs of the first derivatives it is straightforward to construct

1Because scalar observations are considered, the signs of f (2), f
(2)
θ1

, and g
(2)
θ0

in (3.6)-(3.8) do
not depend on z; hence, z = 1 is used for Table 4.4.
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the following sets:

• Sz
β = ∅

• Sn
β = {1nβ}

• Sp
β = {1pβ, 2

p
β}

• Sz
α = ∅

• Sn
α = ∅

• Sp
α = {1pα}

where F1(1
p
β) = f (1), F1(2

p
β) = f

(1)
A , F1(1

n
β) = f

(1)
−A, and G1(1

p
α) = g

(1)
0 . Now the

conditions in Proposition 5 are checked.

1. Since both Sz
β and Sz

α are empty sets, the first condition is automatically

satisfied.

2. The first bullet of the second condition is not satisfied. Since |Sn
β |+|Sn

α | = 1

is an odd number, we have to check the condition in the second bullet, which

reduces, for this example, to the following:

min{f (2)
−Af

(1)
A g

(1)
0 f (1), g

(2)
0 f

(1)
A f

(1)
−Af

(1)} > max{f (2)f
(1)
A f

(1)
−Ag

(1)
0 , f

(2)
A f

(1)
−Ag

(1)
0 f (1)} .

Due to the signs of the derivatives, it turns out that the two inputs of the

min function on the left-hand side are positive whereas the two inputs of

the max function on the right-hand side are negative so that the inequality

is satisfied.

Hence, the detector is improvable as a result of Proposition 5. Moreover, when

σ = 0.10, σ = 0.15, or σ = 0.20, the signs of the derivatives are the same as those

in the case of σ = 0.05. Therefore, for all these cases the detector is improvable.

Now consider the case in which σ = 0.25. Again, the values of f (1), fA
(1),

f−A
(1), g0

(1), f (2), fA
(2), f−A

(2), and g0
(2) are tabulated in Table 4.4. In this

scenario, the sets are obtained as follows:
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• Sz
β = ∅

• Sn
β = {1nβ}

• Sp
β = {1pβ, 2

p
β}

• Sz
α = ∅

• Sn
α = {1nα}

• Sp
α = ∅

where F1(1
p
β) = f (1), F1(2

p
β) = f

(1)
A , F1(1

n
β) = f

(1)
−A, and G1(1

n
α) = g

(1)
0 . Now the

conditions in Proposition 5 are checked.

1. Since both Sz
β and Sz

α are empty sets, the first condition is satisfied.

2. The first bullet of the second condition is not satisfied. Since |Sn
β |+|Sn

α | = 2

is an even number, we have to check the condition in the third bullet, which,

reduces, for this example, to the following:

min{f (2)
A f

(1)
−Ag

(1)
0 f (1), g

(2)
0 f

(1)
A f

(1)
−Af

(1), f (2)f
(1)
A f

(1)
−Ag

(1)
0 } > max{f (2)

−Af
(1)
A g

(1)
0 f (1)}

For this case it turns out that all the three inputs of the min function on

the left-hand side are positive and the single input to the max function on

the right-hand side is negative so that the inequality is not satisfied.

Hence, the improvability conditions in Proposition 5 are not satisfied for this

scenario. Similar calculations show that the same holds for σ = 0.30 as well.
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Chapter 5

Conclusion

In this thesis, we have studied noise enhancement in the RNP framework. To that

aim, we have formulated an optimization problem for the optimal additive noise

PDF. Then, generic improvability and nonimprovability conditions have been

derived, which determine if the employing additive noise becomes beneficial. We

have also narrowed down the problem such that the parameter space is discrete

and finite. In that scenario, we have shown that the PDF of the optimal additive

noise is discrete with a certain number of point masses. Moreover, we have

derived a more implicit improvability condition. Finally, the theoretical results

have been supported by a numerical example in which the benefits of applying

noise enhancement can be observed.
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