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ABSTRACT

PERCEPTUALLY DRIVEN STEREOSCOPIC CAMERA
CONTROL IN 3D VIRTUAL ENVIRONMENTS

Elif Bengü Kevinç

M.S. in Computer Engineering

Supervisor: Asst. Prof. Dr. Tolga Çapın

August, 2013

Depth notion and how to perceive depth have long been studied in the field

of psychology, physiology, and even art. Human visual perception enables to

perceive spatial layout of the outside world by using visual depth cues. Binocular

disparity among these depth cues, is based on the separation between two different

views that are observed by two eyes. Disparity concept constitutes the base of

the construction of the stereoscopic vision.

Emerging technologies try to replicate binocular disparity principles in or-

der to provide 3D illusion and stereoscopic vision. However, the complexity of

applying the underlying principles of 3D perception, confronted researchers the

problem of wrongly produced stereoscopic contents. It is still a great challenge

to give realistic but also comfortable 3D experience.

In this work, we present a camera control mechanism: a novel approach for dis-

parity control and a model for path generation. We try to address the challenges of

stereoscopic 3D production by presenting comfortable viewing experience to users.

Therefore, our disparity system approaches the accommodation/convergence con-

flict problem, which is the most known issue that causes visual fatigue in stereo

systems, by taking objects’ importance into consideration. Stereo camera param-

eters are calculated automatically with an optimization process. In the second

part of our control mechanism, the camera path is constructed for a given 3D

environment and scene elements. Moving around important regions of objects is

a desired scene exploration task. In this respect, object saliencies are used for

viewpoint selection around scene elements. Path structure is generated by using

linked Bézier curves which assures to pass through pre-determined viewpoints.

Though there is considerable amount of research found in the field of stereo

creation, we believe that approaching this problem from scene content aspect
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provides a uniquely promising experience. We validate our assumption with user

studies in which our method and existing two other disparity control models are

compared. The study results show that our method shows superior results in

quality, depth, and comfort.

Keywords: Stereoscopic 3D, Camera Control, Disparity Control.



ÖZET

3B SANAL ORTAMLARDA ALGIYA DAYALI
STEREOSKOPİK KAMERA KONTROLÜ

Elif Bengü Kevinç

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Asst. Prof. Dr. Tolga Çapın

Ağustos, 2013

Derinlik kavramı ve derinliğin nasıl algılandığı psikolojide, fizyolojide, hatta

sanatsal çalışmalarda uzun süredir incelenmektedir. İnsanlardaki görsel algı sis-

temi, dış dünyanın yerleşimini görsel derinlik ipuçlarını kullanarak anlamaktadır.

Bu derinlik ipuçlarından biri olan binoküler disparite iki göz tarafından yakalanan

iki farklı görüntü arasındaki ayrılığa dayalı olarak oluşmaktadır.

Gelişen teknolojiler 3B yanılsamasını sağlamak ve stereoskopik görüntüleri

oluşturabilmek amacıyla binoküler disparite prensiplerini kopyalamayı dene-

mektedirler. 3B algısının oluşturulabilmesi için gereken prensiplerin uygu-

lanabilirliğinin karmaşıklığı, araştırmacıları yanlış şekilde üretilen stereoskopik

içerikler oluşturmaları problemiyle karşı karşıya getirmiştir. Gerçekçi ve konforlu

3B deneyimi sunabilmek hala zor bir çalışma konusudur.

Çalışmamızda disparite kontrolünü sağlayan yeni bir yaklaşım ile yol

oluşturmayı sağlayan bir modelden oluşan kamera kontrol mekanizması

sunulmuştur. Kullanıcılara konforlu bir seyir deneyimi sunmak adına stereoskopik

3B üretimi esnasında karşılaşılan sorunların üzerine eğilmeye çalışılmıştır. Ako-

modasyon ve yakınsama uyuşmazlığı 3B sistemlerde karşılaşılan göz yorgunluğuna

neden olan en büyük problemdir. Bu nedenle sunduğumuz disparite sistemi

akomodasyon ve yakınsama kavramlarının uyuşmamasından doğan problemi,

sahne elemanlarının önem derecelerini dikkate alarak ele almaktadır. Stereo

kamera parametreleri bu evrede optimizasyon işleminden geçirilerek otomatik

olarak hesaplanmaktadır. Kontrol mekanizmamızın ikinci kısmında ise verilen

bir 3B ortam için kameranın izleyeceği yol oluşturulmaktadır. Önemi yüksek

olan objelerin dikkat çeker kısımlarına bakarak o sahneyi incelemek, tercih edilen

bir sahne analiz yöntemidir. Sahne elemanları etrafındaki bakış noktalarının

seçilebilmesi için objelerin dikkat çekerlilikleri kullanılmıştır. Yol yapısı belirlenen
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bakış noktalarından geçmekte olan, birbirlerine bağlı Bézier eğrileri kullanılarak

oluşturulmuştur.

Stereo oluşturulması için çok çeşitli çalışmalar bulunmakla birlikte bu konuya

sahne içerikleri açısından yaklaşmak ümit verici bir deneyim sağlamıştır. Sunmuş

olduğumuz yaklaşımın geçerliliği, kendi methodumuzu var olan diğer iki disparite

kontrol modelleriyle karşılaştırdığımız deneyler ile gösterilmiştir. Deneyler metho-

dumuzun görsel kalite, derinlik ve rahatlık üzerine üstün sonuçlar gösterdiğini

doğrulamaktadır.

Anahtar sözcükler : Stereoskopik 3D, Kamera Kontrolü, Disparite Kontrolü.
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Gizem Mısırlı, Elif Eser, Seher Acer, Zeynep Korkmaz, Can Telkenaroğlu, Sami

Arpa, Bertan Gündoğdu, and Shatlyk Ashyralyyev. They coloured my life in

many ways, and always with me during tough times. Thanks to them, my grad-

uate education is filled with unforgettable memories. I am so lucky to have these

people in my life.

Finally, I would like to acknowledge the Scientific and Technical Research
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Chapter 1

Introduction

Understanding the layout of the outside world is important to perceive shapes and

to estimate distances of objects which are main capabilities of our visual system.

Therefore, the question of how our surrounding is understood has always been

an important issue in a variety of fields. Physiologists try to solve how the brain

shows the world as a result of a visual construction process and psychologists

analyse how this shaping process occurs by approaching from perception angle.

Even artists ponder this issue in order to replicate this feature in their work of

art in order to create more realistic products. All these researches focus at one

point that main principles exists in order to perceive surrounding.

Visual cortex is responsible of constructing visual representation of the world

we are living in, which is also called as depth perception. Spatial layout between

the objects is processed in the cortex by using depth cues which are responsible

of constructing the outside world. These depth cues can be categorized as pic-

torial, oculomotor, binocular, and motion-related cues [2]. Among depth cues,

binocular cues come to the fore with its feature of providing depth information

and distance, while other cues help to understand spatial relationships between

objects located in the three-dimensional (3D) space of our surrounding. Figure

1.1 shows a wireframe cube known as Necker cube. Visual depth cues except

binocular cues are not sufficient to understand locations of sides of the cube with

respect to each other. The most basic working principle underlying human visual
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Figure 1.1: Which part is front? Which part is back? Where the dot is standing
on? A wireframe structure so-called Necker Cube contains no depth cues.

perception mechanism in order to comprehend the world in 3D is based on separa-

tion between two different views that are observed by two eyes, which is binocular

disparity, and replicating this feature enables to convey depth realistically. There-

fore stereoscopic displays use the same principle and produce binocular disparity

by providing two different perspective images, captured from two cameras, for

two eyes. Binocular disparity is the underlying principle of stereoscopic 3D.

3D analogy is an intriguing concept and earlier studies on depth illusion date

back to 17th century. In the late 17th century, it was discovered that presenting

two separate images instead of one image enhance the depth feeling in the paint-

ings. The desire of feeling immersion led to rising of stereoscopic products in the

19th century. After the rise of the film industry, 3D notion attracted producers

and first 3D movie was released in 1952. However, image quality issues restrained

to create high quality 3D production which is a process far beyond of that analog

age. 3D became a breakthrough in the mainstream cinema in the beginning of

the 21st century with the help of technological developments; thrived in many

other entertainment areas. 3DTV sets are sold at remarkable numbers, more tv

channels begin 3D broadcasting, 3D games attracted people day by day. Informa-

tion display industry also resort to utilities that 3D presents, since complex data

can be comprehended easier by using 3D technology rather than flat 2D images.

In spite of all these rapid developments, stereoscopic content production and vi-

sualization is still a great challenge in order to provide realistic and comfortable

viewing experience. The fundamental problem lies in the complexity of applying

2



the underlying principles of 3D perception of the human visual system (HVS)

and its capabilities/limitations for displaying content in stereoscopic displays.

In this study, we address the challenges of presenting a comfortable viewing

experience while displaying stereoscopic contents. The horizontal separation of

two eyes, as being the basis to create depth feeling, is applied as the main principle

in stereoscopic displays. The horizontal separation of two eyes is the basis to

create depth perception as it is explained in the above. We present a novel

method to calculate screen disparity, which creates a perceived depth around

the display screen. The perceived depth in stereoscopic scenes is achieved by

adjusting stereoscopic camera parameters automatically. Interaxial separation,

one of the stereoscopic camera parameters, is the distance between two cameras

and corresponds to interocular distance or eye separation in HVS. This camera

parameter is responsible of generating two slightly different images of the scene

like two captured vision from left and right eyes. Convergence distance is the

other camera parameter and refers to the distance between the center of two

cameras and a point or a plane focused. Convergence distance arise from the

need to replicate the effect generated when eyes are rotated. The difference in

the views, or screen disparities, are designated by using these stereoscopic camera

parameters by taking “stereoscopic comfort zone”, which is a notion used for

comfortable range of the perceived depth, into consideration.

Our stereoscopic camera system starts with a user-based disparity calibration

phase. Perceived depth range varies from person to person, since stereoscopic

comfort zone limits change for each user. The maximum and minimum disparity

limits that the user is able to perceive is found via this phase. After disparity

calibration, our system starts to show given scene content in 3D with screen

disparity values that are calculated through our approach.

Our stereo rendering approach composes of three consecutive steps. Depth

range is calculated in the first part which simply calculates interaxial separation

and convergence distance by geometrically modelling the stereoscopic vision with

respect to the user’s personal disparity extrema. Then we map scene depth to the

obtained depth range. However, we believe that this geometric approach is not

3



sufficient to handle accommodation/convergence conflict that is the main reason

of uncomfortable 3D experience. We enhance this methodology by incorporating

scene elements’ importances into our algorithm in the second part. With this

aim, our system analyzes of the scene environment and finds attention-grabbing

objects. Then, the location of the convergence plane is modified according to

significance scores of these objects. Our aim is to specify the location of the con-

vergence plane, on which scene elements are captured with exactly zero disparity.

This is achieved by locating convergence plane nearer to objects with higher sig-

nificance rather than other scene elements. This motivation comes from that

the user focuses on attention-grabbed scene elements longer and little disparity

value of these elements ensures comfort viewing experience. Finally, optimiza-

tion of stereo camera parameters is performed in the third part. The distance

between the convergence plane and scene elements which have relatively higher

significance score and lower radial distance from the user’s center of attention

that is center of the display in our case, is minimized. At the same time, our

system aims to maximize the total screen disparity. Our system repeats these

process steps for every frame and automatically adapts interaxial separation and

converge distance for any scene content. With the user tests we validate that

our approach among existing stereo rendering methods presents a more comfort-

able 3D experience remarkably without losing image quality, or perceived depth

aspects.

Researches in the stereo field focus on disparity computation and miss out

the other main part of the camera control systems: path finding. Though our

proposed system can be used interactively with user input where the user freely

navigates in the dynamic environment, we extend the system with saliency based

path generation in order to visualize interactive scenes in 3D. Therefore, we com-

bine our disparity control mechanism with camera path finding approach in order

to produce an entire 3D camera system. Path generation is done by calculating

object saliency, which is used to obtain viewpoints around objects. Passing direc-

tions of the camera is also based on these viewpoint selection. Then, the directions

of the camera are converted to control points, which refers to key locations that

camera passes from. Camera path is generated based on Bézier curves between

4



control points. The overall process is performed in a semi-automatic manner.

Chapter 2 presents main principles in order to comprehend underlying con-

cepts of our system. Then, existing approaches in disparity control and stereo

content production is represented comprehensively in Chapter 3. Proposed sys-

tem is explained in detail in Chapter 4 and camera control mechanism is explained

in Chapter 5. User study to validate our methodology and experimental results

are presented in Chapter 6. Chapter 7 concludes the thesis with a summary of

the overall system and future work is discussed finally.
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Chapter 2

Background

How do we perceive our surrounding world is a question with several answers, and

also a complicated procedure processed by HVS. To replicate this process in 3D

generation by providing realistic depth feeling illusion is a complicated process as

well. Depth perception, stereo geometry, and accommodation/converge conflict

are the three key concepts that underlie stereo content production pipeline and

our system makes use of characteristics of these concepts. In order to comprehend

stereoscopic systems, a summary of basic principles behind them is given in the

following sections.

2.1 Depth Perception

Depth cues, which help the human visual system to perceive the spatial rela-

tionships between the objects, construct the core part of our depth perception.

These depth cues are investigated under two main titles; which are oculomotor

and visual depth cues.

Oculomotor Depth Cues

Oculomotor system is responsible of movements of eye muscles as well as

pupillary control like constriction or dilation. Therefore, oculomotor depth cues

6



include the data obtained by muscular activities of the eye lens. In order to

fixate on an object, eyes show a muscular response like focusing on object which

is known as accommodation, rotating to object which is known as vergence, also

pupil size is increased or decreased. These are three depth cues processed by

oculomotor system in physiology.

Visual Depth Cues

Visual depth cues are divided into two groups: monocular and binocular depth

cues.

Monocular: These depth cues give visual feedback that comes from one eye

to HVS. Pictorial and motion based cues constitutes monocular depth cues. Pic-

torial ones provide to extract depth information from a single and flat 2D view

and include occlusion, cast shadow, shading, linear perspective, relative height,

relative size, texture gradient, aerial perspective etc. Pictorial cues are also used

by artists in 2D paintings for centuries. Motion based cues allow us to under-

stand a depth information during a motion, by using movements of objects or

viewers. The difference of their motion in a short time period creates difference

between their images relative position on retina. The difference between images

on each view gives an approximate movement information. These cues include

motion parallax, motion perspective, and dynamic occlusion. Although, all these

monocular cues give information about outside world and positions of objects

from one single view, they are not enough to give illusion of depth and absolute

distance. Binocular cues come into play at this point.

Binocular: Binocular visual depth cues make a comparison between point

of views of two eyes by using discrepancies between two retinal images on two

eyes. Stereoscopic production researches focus on binocular visual depth cues in

order to take advantage of this concept in stereoscopic applications. Binocular

disparity, also known as stereopsis, constitutes the base of the stereo geometry

in the construction of the stereoscopic vision, which is covered extensively in the

following subsection.

7



2.2 Stereo Geometry

In stereoscopic image creation, the main difficulty arises while controlling the

stereoscopic camera parameters. There are two principal parameters to control

disparity: interaxial separation (tc) and convergence distance (Zc). Disparity

is used to gather absolute depth information of the observed scene. Therefore,

proper interplay of interaxial separation with convergence distance is an impor-

tant process in order to create realistic 3D percept.

When the viewer is looking to an object or a surrounding field, left and right

eyes do not see exactly the same view due to the fact that left and right eyes

view the world from slightly different angles. The difference between two eyes is

called interocular distance or eye separation. This separation generates different

left and right retinal images which hold views captured by two eyes. Binocular

disparity is the difference between these two retinal images, forming binocular

vision. In stereoscopic systems two cameras are placed at slightly different posi-

tions from each other horizontally. These cameras are used to represent left and

right eyes. The distance between two cameras is called as interaxial separation

which corresponds to interocular distance in the HVS.

Convergence and divergence constitute the vergence notion. This notion is

the synchronical movement of two eyes in physiology. Convergence represents

movement of two eyes rotating towards each other when eyes are focused on a

close object; whereas, divergence represents movement of two eyes rotating away

from each other when eyes are focused on a farther object. Since both convergence

and divergence define the rotating movement of the eyes, convergence is used

solely in the literature in order to reduce terms. Similarly, convergence distance

corresponds to the distance between the plane or object in focus and the middle

point between two cameras in stereoscopic applications. Convergence distance in

stereoscopic applications replicate the vergence effect in HVS.

In HVS, interocular distance and vergence movements generate retinal images.

Similarly in stereoscopic systems, interaxial separation and convergence distance

generate disparities, or screen parallaxes. A virtual environment that is captured

8
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Figure 2.1: Employment of two cameras in a virtual space at the top, correspond-
ing screen space at the bottom

with two cameras and corresponding 3D view on a display screen is given in

Figure 2.1.

There are two setup types for converging cameras explained as follows:

• Toed-in setup: Two cameras are rotated inward towards a plane or

object in focus. This approach adapts the convergence mechanism of HVS

literally.

• Parallel sensor-shifted setup: The rotation of two cameras remain

still and cameras stand in parallel as their view directions are in parallel

too. Image shift is used in the camera sensors to replicate the resulting

disparity if cameras were actually rotated.

Parallel sensor-shifted setup is preferable instead of toed-in setup in stereoscopic

9



systems especially for virtual environments. Although toed-in seems to be a

more natural way since convergence mechanism works alike HVS, parallel ap-

proach produces stereoscopic images with higher qualities and less artifacts. The

underlying reason that toed-in is an approach with stereoscopic impairments is

Keystone distortion. The positioning of left and right cameras at an angle toward

each other causes to capture slightly different image planes. This condition brings

about the problem of capturing a trapezoid-like image in opposite directions by

two cameras. Scene part closer to the left camera looks larger on the right part

of the screen surface; whereas, scene part closer to the right camera looks larger

on the left part of the screen surface. This situation induce to have incorrect

vertical parallax, which is one of the dominant factors of visual discomforts like

eye-strain. Since both left and right cameras are directed toward the same image

plane, parallel camera configuration does not suffer from Keystone distortion and

only generates the desired horizontal parallax.

Figure 2.2 is an illustration of the relation among interaxial separation and

convergence distance geometrically. Given this parallel sensor-shifted camera

setup geometry, two equations are extracted by using similar triangles:

tc
2(h− d

2
)

=
Zv

f
(2.1)

tc
2h

=
Zc

f
(2.2)

These two equations are employed to obtain the disparity of an object, located

at a distance Zv away from two cameras, depends on interaxial separation (tc)

and convergence distance (Zc), and is given as:

d = ftc(
1

Zc

− 1

Zv

) (2.3)

The distance between the projection of a 3D point on the one camera’s image

plane and the projection of the intersection point of the two camera viewing
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Figure 2.2: Parallel sensor-shifted camera setup configuration in a virtual envi-
ronment

directions on the same image plane constructs one pair of the disparity, while

the other pair comes from the other camera’s image plane. In this equation, d

represents this disparity. Focal length of the cameras is denoted by f . The vision

of a 3D point in a real world or a virtual environment on the camera sensor’s

image plane is projected on f in toed-in configuration; however, this case is not

same for parallel setups. The projection shifts by h on the image plane, that is

why the parallel camera setup is entitled as sensor-shifted.

There is a correlation between disparity and parallax notions. Since disparity

represents a distance on image plane of the cameras, it is called as image disparity

either. Parallax represents the difference in the produced left and right views on

the screen plane. The conversion from image disparity d to screen parallax p

11



simply requires scaling the image disparity from image sensor metric to display

size metric, by multiplying it with a scale factor Ws/Wi, where Wi and Ws denote

the image sensor width and screen width respectively.

p = d(Ws/Wi) (2.4)

While maintaining stereoscopic depth, the viewer reconstructs a 3D environ-

ment around the display screen. This constructed 3D environment involves ob-

jects that actually appear on the display screen but perceived as they stand in

front or behind the screen. The distance, how much further away each object

appears than the display screen, is determined by each object’s corresponding

parallax values. The distance of this perceived point between the viewer is Z,

while the distance between the viewer and physical display screen is the viewing

distance Zd. The correlation between Zd and Z is given as:

Z =
Zdte
te − p

=
Zdte

te − d(Ws/Wi)
(2.5)

where p is parallax and te is the human interocular distance, and the physio-

logically average of interocular distance is approximately 65 mm.

The perceived depth, generated around the display screen, is affected by the

type of the parallax as well as the amount of the parallax. Amount determines

the distance between the appeared position of the reconstructed object and the

display screen; while, type determines the region of the appeared position. Re-

gions are divided into three, in the light of following cases: viewer space includes

positions in front of the screen, screen space includes positions behind the screen,

and positions are located on the screen as it is illustrated in Figure 2.3.

• Zero parallax: On the plane at convergence distance the retinal positions

of objects appear at the same point which results, in turn, they appear at

the physical screen surface (Z = Zc). This condition is called zero parallax

setting. Two conditions occur when object distances Z are different from

Zc.
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Figure 2.3: Positive, zero, and negative parallaxes for screen space respectively.

• Positive parallax: In this case, (Z > Zc), the object appears inside the

screen space, which is the condition that objects appears behind the display

screen. When this condition occurs, the object has a positive disparity, or

screen parallax.

• Negative parallax: On the other hand, in the case (Z < Zc), the object

has a negative disparity, or parallax. These objects appear as if they are

physically located in front of the screen.

Physiological experiments have proven that the human visual system has more

tolerance to positive parallax than negative parallax [3]. However, the human

visual system is still limited to comfortably perceive all objects which appear in

positive or negative parallax regions. It has been shown that locating the scene in

a limited area around the screen surface gives more reasonable results for avoiding

accommodation-convergence conflicts.

The perceptual effects of the stereoscopic camera parameters are summarised

in the Table 2.1. Interaxial separation (tc) directly affects the disparity and

eventually the amount of depth perceived in the final image. The convergence
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Table 2.1: The review of the perceptual effects of stereo parameters (adapted
from Milgram and Kruger [1])

distance, on the other hand, does not affect the overall perceived depth, but

effects objects’ individual perceived depths.

2.3 Accommodation and Convergence Conflict

Accommodation and convergence are two important oculomotor cues which have

a big role on binocular viewing after binocular disparity. Accommodation refers

to the eye lens activity when eyes are fixated at a point or region and driven

by a monocular cue that is retinal blur. The object or area is observed sharper;

whereas, remaining regions look smoother as if blur effect is applied. This oc-

casion enables HVS not to process details and insignificant parts of the scene.

Convergence denotes the rotation of two eyes towards each other when eyes are

focused at a point or region. Both cues are used in conjunction with each other.

They are triggered by looking to same specific location, HVS operates such that

eyes converge to and accommodate at the same point. Nevertheless, replicated

stereoscopic vision is in contrast to vision in real world. The working principle of

stereoscopic displays is based on providing an amount of perceived depth around

the display screen. This means, the scene is located on the display screen phys-

ically; however, scene elements are visualized around the display screen. As a

result, the conflict is caused by the fact that when looking at the stereoscopic

3D display, viewer’s eyes are accommodated on the display plane, while they are
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forced to converge towards scene elements on the perceived depth Zc at a distance

of the display.

Figure 2.4: Convergence and accommodation

The discrepancy between focused positions causes an undesirable phenomena,

so-called accommodation and convergence conflict, happens for all planostereo-

scopic displays, i.e. displays where the views are presented on a planar screen.

There is a threshold for a relaxing configuration for HVS to bear this discrepancy

between accommodation and convergence. If threshold is exceeded, the viewer

gradually suffers from eye-strain, visual fatigue, and diplopia. This threshold

varies for everyone and investigated under stereoscopic comfort zone. There are

several earlier studies on the issue of stereoscopic comfort zone. The conclusion

pointed out by these studies is that the amount of perceived depth in stereo-

scopic displays should be limited; and the conflicts related to accommodation

and convergence should be controlled.
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Chapter 3

Related Work

3D notion has recently gained importance and a number of techniques have

been proposed for 3D camera systems for real environments, stereoscopic post-

production pipeline and editing of stereoscopic images, also stereoscopy adjust-

ment in virtual environments, which are presented in this section respectively,

while the second section summarises a large body of studies on camera control

for virtual environments.

3.1 Stereoscopy Production Studies

Rapid development in technology and industry revived 3D production which be-

came popular again after almost fifty years. This current renaissance, as called

in 3D literature, aroused 3D production based research. There is considerable

amount of researches found in the field of stereo creation and these are repre-

sented under three main subsections.
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3.1.1 3D Camera Systems and Stereo Acquisition

The conventional way for capturing real scenes in 3D is done by using two physical

camera equipments. Relative positions of two cameras and their lens settings are

important to produce good stereo content. One of the recent approaches which

focus on production of high quality stereoscopic content capture is presented by

Zilly et al.[4] as a software system. Their system, called as Stereoscopic Analyzer,

is a 3D production tool for stereo shooting by assisting stereographers and cam-

era teams in real environments. Video streams are used to compute disparities

by correcting deficiencies such as camera misalignments and keystone distortions.

Their system analyses depth structure of the captured scene and proposes proper

suggestions for stereo camera parameters, also provides to adjust camera calibra-

tion manually.

Heinzle et al. [5] develop a computational stereo camera system for controlling

physical camera and rig properties automatically with a control loop that com-

prise capture and analysis of 3D stereoscopic parameters. They propose their

system as being a combinable design for existing stereo camera rigs. The system

architecture includes configurable unit which performs scene analysis in real time

and programmable unit to utilize different algorithms for different scene and shot

properties.

3.1.2 Stereoscopic editing on still images

Recent work on stereoscopic image editing focuses on correction of imperfect

stereoscopic images and videos. Koppal et al. [6] present an editor for live

stereoscopic shots. They concentrate on the viewer’s experience and transform

desired visual experience settings into camera parameters. As a previewing step,

an estimation of the viewers’ 3D perception is predicted from robustly obtained

scene videos or still images. Replanning of the shot is done by using new camera

parameters that are procured from editing tool if the predicted perceived effect

is found as incorrect or insufficient by the user.
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Lang et al. [7] focus on the problem of remapping the disparity range of

stereoscopic images and video. Perceptual aspects of stereo vision are formal-

ized into disparity mapping operators which control and retarget depth range

in the produced stereoscopic images and videos to different displays and view-

ing conditions in a nonlinear way. These operators are implemented based on

steroscopic warping strategy. A sparse set of stereo correspondences, presented

algorithm computes disparity and image-based saliency estimates, and uses them

to compute a deformation of the input views so as to meet the target disparities.

Didyk et al. [8] have recently proposed a disparity model that estimates the

perceived disparity change in processed stereoscopic images to control distortions

and make enhancements. They perform psychophysical experiments in order to

derive a metric for modelling disparity. Their study also presents a backward

compatible stereo application that produces images which looks ordinary; more-

over, if required equipments are used depth illusion occurs. Didyk et al. [9] also

extend their disparity model by considering luminance effect on the perception

of disparity. In their work, they presented disparity retargeting as one of its

applications.

3.1.3 Stereo parameter adjustment in virtual environ-

ments

Post processing and image shifting methods are used for retargeting disparity

in offline applications such as digital cinema and 3D content retargeting. On

the other hand, interactive applications require real-time techniques. Among

recent works, Jones et al. [10] propose a geometrical framework for real-time

stereoscopic camera parameters calculation by providing a transformation be-

tween camera space and screen space in order to map specified depth range of

the scene to perceived one. They also ensure that no depth distortion occurs with

viewer movements while using head tracked displays. Their model is employed

for generating still images, digital photography, and real time computer graphics.

Oskam et al. [11] present a controller for real-time applications which produces
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a final disparity value for the viewed frame by calculating camera convergence and

interaxial separation, while scene depth is assigned to a desirable depth by using

control points. Stereoscopic camera parameters change automatically by taking

minimum and maximum scene depth values into account in order to handle exces-

sive binocular disparities. Since unpredictable object or viewer motion changes

the depth of the scene instantly, a temporal constraint interpolation phase is per-

formed to avoid sudden depth jumps which result in uncomfortable stereoscopic

perception.

3.2 Camera Control Studies

The viewer’s experience of a 3D environment is highly correlated with the success

of the presentation of the scene. The camera motion, position, and orientation

and their conjunction with scene elements are used to present a scene. There

are several studies which address the camera control issue in different fields such

as data visualization, 3D games, and virtual walk-throughs. In addition to vir-

tual environments, camera control techniques are employed for real world camera

systems especially in robotics.

3.2.1 Path Planning and Scene Exploration

Knowledge of the environment is used to assist users in order to make them ex-

plore the environment or navigate in the environment, classified under two parts

based on local or global awareness. The aim is observing scene objects by de-

termining important viewpoints around them while maintaining occlusion free

camera paths in object-based assistance systems. Navigation and exploration

in the environment establish the framework of environment based assistance.

Robotics based approaches and path planning techniques are used for naviga-

tion and exploration tasks. These techniques are analysed under potential fields,

cell decomposition, and roadmaps. Potential fields, a sub topic of theoretical

physics, use the same principle of charged particle interactions in electrostatic
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fields. Similarly obstacles and the camera is put in charged particles positions.

Khatib [12] proposes a solution is based on steepest descent algorithm. Low cost

is an advantage of potential fields technique that provides usability in real time

aplications; however, management of local minima causes problems for highly

dynamic environments. Cell decomposition is a technique that divides environ-

ment into smaller regions as cells and builds a network between these regions.

Roadmaps specify candidate configurations and connect consecutive ones with a

graph search algorithm.

Salomon et al. [13] describe an approach for navigating avatars in complex

environment based on a variant of the probabilistic roadmap planning algorithm.

Their algorithm searches roadmap graph for a path between two points by per-

forming path smoothing and collision detection via bounding volumes. Nieuwen-

huisen et al. [14] exploit probabilistic roadmap method in the pre-process step in

order to compute a path through the environment. Resulting path is improved

by using circular blends between edges, parabolic blends, Beziers, or clothoids

may be used as alternatives.

3.2.2 Cinematographic Practice in Camera Control

Cinematography provides guidelines for how the camera should be moved and

positioned. Scene descriptions, camera angles, shot types, and camera movement

types compose principles of cinematography. In order to implement a camera

system by using cinematographic principles, the system must know the layout

of the scene, principal characters, important objects, while principles must be

encoded in the system as well.

Kneafsey and McCabe [15] summarize existing studies on camera control

through cinematographic principles. They classify techniques by approaching

simply positioning and orienting the camera within virtual world for still images,

for shots with a moving camera e.g. for museum walkthroughs, for following

moving subjects.
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3D computer graphics applications observe the scene from a particular charac-

ters point-of-view or from a small set of prespecified viewpoints. Camera place-

ment by cinematic rules is generally ignored. The approach in the study of

Christianson et al. [16] extends camera placement approach by applying cin-

ematic principles; therefore, it benefits from storytelling capabilities. They de-

scribe several cinematography principles and then formalize them into declarative

language which is used to adapt cinematography principles in computer graphics

applications.
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Chapter 4

Automatic Adjustment of

Stereoscopic Parameters

In this part of our camera control mechanism, we propose a novel method for

adjustment of stereoscopic camera parameters, interaxial separation and conver-

gence distance, in order to improve viewer comfort during 3D experience. We

have tested our system in order to gauge the effectiveness of our approach by

comparing with existing methodologies.

4.1 General Architecture

Our method exploits parallel sensor-shifted setup instead of toed-in setup for dis-

parity calculation due to stereoscopic impairments explained in Chapter 2. We

enhance this geometrical framework by utilizing stereoscopic comfort zone prin-

ciples and incorporating importance of scene elements. A number of researches

address disparity control problem by correcting disparity on captured images in

the post production pipeline. However, we approach this issue for interactive en-

vironments where the position of the camera is dynamically changing. We render

the environment by employing two virtual cameras for real-time disparity range

adoption. Figure 4.1 shows an overview of the proposed method.
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Figure 4.1: An overview of our methodology
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Our proposed stereo rendering method consists of four main stages. The first

stage applies a disparity calibration phase, where the depth range extrema that

the viewer is able to perceive is found. A depth assessment process is applied in

the second stage in order to calculate scene depth. Scene elements are analysed in

the third stage in order to extract attention-grabbing objects and these objects’

corresponding significance scores, locations in the virtual environment, also po-

sitions on the display surface. Finally, stereo parameters are calculated through

an optimization phase that is performed according to our two assumptions for

comfortable and effective 3D experience. Total screen disparity is aimed to be

maximized and convergence distance is aimed to be located to nearer to the most

attention-grabbing objects.

4.2 Depth Range Control

The most naive approach for stereoscopic rendering is based on assignment of

fixed values for interaxial separation and convergence distance. This is an expe-

dient solution, since it may provoke excessive disparities, also deprives updating

parameters continuously. A control facility for perceived depth range around

the screen display is required in order to make scene elements appear within the

stereoscopic comfort zone. This control mechanism enables to map a specific

range of scene distances to a perceived depth range by updating parameters for

changing scene contents.

Several studies, like the model of Jones et al. [10] and the model of Guttmann

et al. [17], make use of depth range control approach. Depth range control em-

ploys geometric formulation of stereo vision, which are presented comprehensively

in Chapter 3. Oskam et al. [11] propose that a series of points in the scene can be

mapped onto a series of points in the target space by using Equation 4.1 which

is obtained by the conjunction of similar triangles in 3D Display and Camera

Geometry.
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fbci − fbccvg − cidiccvg = 0fori = 0, 1, ..., n (4.1)

where f is focal length, d is image disparity, b and ccvg stands for interaxial

separation and convergence distance. If we utilize this equation for two con-

straints, which stand for minimum and maximum distances of the scene, then we

obtain the following equations 4.2 and 4.3 to calculate convergence distance and

interaxial separation.

Zc =
ZmaxZmin(dmax − dmin)

(Zmaxdmax − Zmindmin)
(4.2)

tc =
ZmaxZmin(dmax − dmin)

f(Zmax − Zmin)
(4.3)

where Zmax is the distance between the camera and the farthest visible scene

element, Zmin is the distance between the camera and the nearest visible scene

element, dmax is maximum disparity value of the farthest object, and dmin is

minimum disparity of the nearest object. We obtain Zc, the distance between

zero parallax plane and viewpoint plane, and tc, the separation between two

virtual cameras.

4.3 Attention-Aware Disparity Control

In order to improve viewer comfort in 3D experience, significant scene elements

should appear within the stereoscopic comfort zone of viewers. In other words,

scene elements should be located nearer to the convergence plane; consequently,

they appear in regions closer to the display screen. Stereoscopic comfort zone

is illustrated in Figure 4.2. However, scene contents cannot be rearranged and

objects cannot be relocated in pre-produced scenes. Consequently, convergence

distance should be adjusted by maintaining the total disparity as high as possible.
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Figure 4.2: The stereoscopic comfort zone

4.3.1 Viewer-Based Disparity Calibration

Perceptual experiments indicate that in stereoscopic systems, the same disparity

range creates different visual feedback for different users, due to the fact that

stereoscopic comfort zone limits change for each person. There is a significant

variation in the physiological capabilities of each people. A content may present

a comfortable 3D experience to a viewer, while the same content with the same

disparity range may cause eyestrain to another viewer. This fact brings about

the need for a user-adaptive control in stereoscopic systems.

Some stereoscopic products, especially 3D games, make use of individual con-

trol over depth and let the viewer adjust disparity while displaying 3D contents.

It is not an ideal solution to provide proper amount of disparities for that viewer.

The viewer may adjust depth range so high in order to generate depth-rich con-

tents, which results in excessive disparities and uncomfortable experience. Con-

versely, the viewer may keep disparity range lower than it is expected in order to

avoid visual fatigue, which decreases depth illusion. We perform this disparity
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Figure 4.3: A screenshot from disparity calibration stage

calibration stage in order to detect the viewer’s perceived depth limits and pro-

vide a 3D experience where scene elements appear within the stereoscopic comfort

zone of that viewer.

Disparity calibration stage of our system is shown in Figure 4.3. The scene

content composes of only two elements, two side-by-side cubes with zero parallax

setting. The viewer moves one of the objects in the forward direction, where

the object appears in front of the display surface in order to find the maximum

disparity limit for positive parallax. If the viewer is not able to fuse two distinct

images on the screen for two eyes, then corresponding disparity to this position

is assigned as the positive parallax limit for this viewer. Similarly, the same

procedure is repeated by moving the other object in the backward direction. If

the viewer loses 3D effect and observes the object like a 2D still image, then this

corresponds to the maximum disparity limit for negative parallax.

We believe that a simple scene structure rather than a complex environment

is more suitable for finding limits of perceived depth range. When the viewer is

looking for the maximum disparity limits, his/her focus is at one object and cor-

responding disparity amount. Remaining scene objects in a complex environment

confuses the viewer, since they appear in front of or behind the focus object and

have disparities over limits.
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4.3.2 Scene Depth Calculation

When mapping of scene elements into a target depth space is the case, also that

is the motivation of our research, the virtual world distances have a direct effect

on generated disparity value as it is explained in Section 2. Therefore, correct

extraction of the minimum and maximum distances of the furthest and closest

point of the scene is an important process that should be done rigorously. Depth

buffer is used for calculation of these distances.

Using Depth Buffer

The scene content gives us the location information about closest and furthest

scene elements; however, using depth buffer provides a better solution in order

to gather visible scene depth extrema. All objects may not seen by the camera,

they may be occluded by other objects if the scene depth range is too high. In

this case, the distance between the furthest element and the camera is assigned

for maximum depth distance of the scene; however, depth range of visible scene is

lower. This case leads to low disparity range for the visible scene content. In order

to avoid this kind of an issue, depth buffer is used to gather depth information

for each frame.

Depth buffer transforms the z distance of each pixel’s corresponding 3D point

between zNear, near clipping plane and zFar, far clipping plane of the camera in

a non linear way, then stores this transformed value in the buffer. This value is in

the range of [0, 1], where 0 corresponds to the zNear, 1 corresponds to the zFar,

and remaining values’ corresponding 3D positions are distributed in a non linear

way between zNear and zFar. Depth buffer representation of a scene is given in

Figure 4.4.

Eq. 4.4 gives the relation between depth buffer value and corresponding z

distance of a point.

Z =

Zfar

Zfar−Znear
+

ZfarZnear

Znear−Zfar

Zbuffer

(4.4)
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Figure 4.4: A grey-scale output of a sample view rendered by corresponding depth
buffer values in pixels

Min Max Reduction

Depth buffer provides to gather maximum and minimum distances of the vis-

ible scene; however, extraction of this information is a costly process. It requires

a search operation, in which comparison of each pixel value with minimum and

maximum values is performed for every frame. Therefore, we take the advantage

of parallel processing feature of the GPU, in order to efficiently obtain minimum

and maximum depths in the scene in real-time applications.

Reduction operation on GPU provides to adjust sizes of input and output

textures. In our case, we search for minimum and maximum values among all

pixel values from the captured still image of the visible scene. This captured

image is given as an input texture to reduction process, then parallel mechanism

of GPU comes into play. Texture is divided into 2x2 sample blocks and local

maximum and minimum of each 2x2 group of pixel values is designated in the

parallel manner. After values are determined, input texture of size M by M is

reduced to a texture of size M/2 by M/2. This procedure is repeated until the

size of output texture becomes 1 by 1. This output texture stores minimum and

maximum values. A simple illustration of min max reduction is shown in Figure

4.5. Greßet al.[18] present a GPU-based collision detection method which is an

example research that utilizes GPU for reduction process.
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Figure 4.5: Min max reduction

4.3.3 Analysis of Scene Elements

Our motivation for generating a camera control system relies on presentation of

attention-grabbing scene elements comfortably and realistically. Therefore, it is

an important task to characterise significances of scene elements. There are three

features of a scene element we need to gather.

Significance score is the most prominent feature of a scene element. This

score indicates the importance degree of scene elements. In our system, applica-

tion developer or scene author assign these scores after scene content is prepared.

Forward distance is the distance between the scene element and camera.

We need forward distance values since we modify convergence distance in accor-

dance with this distance.

Radial distance is the distance between the scene element and forward

camera axis. If a scene element draws attention, the viewer prefers to watch this

element closer and tries to position it onto the center of the display.

We need to perform an analysis of scene elements in order to detect impor-

tant scene attributes and gather these three features. A sample pseudocode for

analysis phase Algorithm 1 is given below, where S stands for significance score,
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Figure 4.6: (a) Analysis of scene elements based on their significance scores. (b)
Corresponding view of the scene.

Z for forward distance, and R for radial distance.

Algorithm 1 Scene content analysis algorithm

1: e[ ]← getSignificantElements()
2: . Acquiring all significance score assigned elements in the current scene
3: j ← 0
4: for ∀e[i] do
5: if e[i] is visible in the current frame then
6: e[i].Z ← ForwardDistanceFromCamera()
7: if e[i].Z ≤ Dmax then
8: . Dmax: maximum forward distance allowed
9: o[j]← e[i]
10: . implies o[j].S ← e[i].S and o[j].Z ← e[i].Z
11: o[j].R← RadialDistanceFromCameraAxis()
12: j ← j + 1
13: end if
14: end if
15: end for
16: return o[ ]

4.3.4 Disparity Production

Required geometric formulations, that are employed in our system, are explained

in the previous sections. However, we believe that disparity production issue

should not approached from geometric aspect only. For a more perceptual ap-

proach, there is a need for a control mechanism that optimizes calculated camera

parameters in accordance with two assumptions.
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• Convergence plane should tend to be nearer to both important scene ele-

ments and elements with lower radial distances.

• Total scene disparity should be maximized.

The center of attention represents scene parts, where the viewer focuses on longer

than remaining scene elements. Attention-grabbing objects or environments are

positions that viewers focus on, also viewers tend to look toward the center of the

display device. A comfortable presentation is required for the center of attention.

The first assumption stands for locating scene elements in the center of attention

nearer to zero parallax state, which results in minimization of visual artifacts

i.e. ghosting effect for these objects. For a realistic one, the second assumption

enables to compensate disparity which are decreased for our first assumption.

We first formulate an energy term Eo(Zc) in order to move convergence plane

towards scene elements with higher significance scores and with relatively less

radial distances from the forward axis of virtual camera.

Eo(Zc, tc) =
n∑

i=1

Si

R2
i

(Zi − Zc)
2 , (4.5)

where n is the number of significant scene elements found in the scene analysis

stage.

Eq. 2.3 is employed in order to define a second energy term Ed(Zc, tc) which

maximizes total scene disparity, consequently total perceived depth is maximized

as well.

Ed(Zc, tc) =
n∑

i=1

Siftc

(
1

Zc

− 1

Zi

)
, (4.6)

Our objective function E(Zc, tc) is a combination of these two energy terms

and presented in the following Eq. 4.7. In our case, optimization problem consists

of the minimization of Eo(Zc) which aims to compute a value as close as to the

center of attention and the maximization of Ed(Zc, tc) which pursues to obtain
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a value as much as for a larger perceived depth range. Therefore, the system

searches for the optimal parameter set by minimizing E(Zc, tc).

E(Zc, tc) = Êo(Zc)− Êd(Zc, tc), (4.7)

where Êo(Zc) and Êd(Zc, tc) are the normalized energies of Eo(Zc) and

Ed(Zc, tc) s.t.

Êo(Zc) = Eo(Zc)/ (Zmax − Zmin)2 , (4.8)

Êd(Zc, tc) = Ed(Zc, tc)/ (dmax − dmin) , (4.9)

Normalization process for Eo(Zc) and Ed(Zc, tc) is required in order to make

our methodology applicable to any given scene content with different depth ranges

and viewers with different stereoscopic comfort zone limits.

There are two constraints, which are dmax and dmin, employed during the

minimization of E(Zc, tc) in order to ensure that resulting optimized parameters

will not produce a disparity value that exceeds upper or lower bounds of the

viewer’s comfort zone which are specified in the disparity calibration phase.

dmax ≥ ftc

(
1

Zc

− 1

Zi

)
≥ dmin, ∀i | 1 ≤ i ≤ n, (4.10)

This nonlinear system is solved by utilizing improved stochastic ranking evo-

lution strategy (ISRES) algorithm [19] in NLOpt library [20]. ISRES algorithm

is based on a simple evolution strategy augmented with a stochastic ranking that

decides by carrying out a comparison, which utilizes either the function value or

the constraint violation. The optimization process results in interactive speed,

that enables to update stereo camera parameters dynamically by employing this

process for each frame. There are two cases that our system switches from op-

timization phase to depth range control (DRC) method and these situations are
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indicated below.

• If only a single element is within the center of attention in a frame, then the

system detects only one element that has a significance score. In this case,

the system locates convergence plane on this scene element i.e. Z = Zc and

computes the other parameter interaxial separation by using DRC method.

• If no scene element, which has an assigned significant score, is visible in a

frame, then importance notion cannot be employed in this case. The system

computes stereo camera parameters by DRC method in these frames.

Temporal Control: Our system considers snapshots in time for calculation

of stereo camera parameters; therefore, resulting disparities are found for each

frame. Since the scene depth changes from time t − 1 to t, a discontinuity may

cause a large variance between corresponding disparity values dt−1 and dt if there

is an instant scene depth change is observed. This situation results in undesired

visual artifacts and excessive disparities. Therefore, the system controls optimized

parameters over time and produces final ones through a threshold function f(·)
that is presented in Eq. 4.11 in order to provide temporal coherence and avoid

instant depth jumps.

f (x(t)) =


x(t− 1) + x1, if x(t)− x(t− 1) ≤ x1;

x(t− 1) + x2, if x(t)− x(t− 1) ≥ x2;

x(t− 1) + k (x(t)− x(t− 1)) , otherwise.

(4.11)

where k is chosen to be 0 < k < 1.
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Chapter 5

Scene Exploration

We define stereoscopic camera control issue as a two-part process. Since our

camera control mechanism addresses producing a comfortable and realistic 3D

experience, our main motivation is automatic calculation of stereoscopic camera

parameters which is explained comprehensively in the previous section. However,

we believe that camera control is not only a parameter calculation process and

a camera control system should also include a mechanism for scene exploration

task. With this motivation, we extend our system by presenting a model for path

generation.

The entire system is proposed in order to generate a perceptually driven cam-

era control mechanism which makes use of HVS and perception principles. In

the first phase, this feature is derived from important scene elements and their

assigned significance scores which are employed in the optimization phase of au-

tomatic adjustment of parameters. We aim to utilize significance characteristics

of scene elements in the second phase while exploring scene environment. In or-

der to offer this kind of a model for scene exploration task, we utilize saliency

concept that is used for finding attention-grabbing regions of 3D models. Three

main parts constitute the skeleton of scene exploration mechanism: viewpoint

selection, path generation and camera transformation. The flow of the system is

given in the Figure 5.1.
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Figure 5.1: A step-by-step working principle of scene exploration mechanism.

Viewpoint selection part deals with importance regions of scene elements,

while path generation part focuses on modelling of the path. The last phase

executes camera motion in the light of path characteristics obtained from previous

phases. A step-by-step working principle of our path generation mechanism is as

follows:

• Saliency values of each important scene elements are calculated,

• Start and finish positions are determined,

• Control points are specified,

• Quadratic Bézier curves are fitted between specified control points and

linked with each other,

• Positions on Bézier curves are parametrized,

• Each point on Bézier curves corresponds to the camera position for each

frame.

• Camera orientation towards the important objects is executed.
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5.1 Viewpoint Selection Using Saliency

The scene content has a significant role for exploring task in our approach, since

our main motivation is based on producing a path which presents important scene

elements rather than other regions of the scene content. Our assumption relies

on the fact that important scene elements’ corresponding significant scores are

assigned directly proportional with their attention-grabbing degree. We want

the viewer to observe the scene by moving around important objects, in this

way we can form our path model into an attention-aware structure. The need

of a viewpoint selection technique comes into play at this point, to determine a

position around each important object. Underlying idea is constructing a path

between these positions which ensures to view important scene elements.

Viewpoint selection is not only used in the field of path planning, but also it is

a key issue in computational geometry, robot motion, graph drawing etc. based

applications. The most accepted judgement about the quality of a viewpoint is

in highly correlated with how much information this viewpoint gives about the

environment or scene element. Vazquez et al. [21] propose a viewpoint selection

algorithm which selects a set of good views to understand the scene. Their

algorithm is based on viewpoint entropy that is derived from Shannon Entropy

of Information Theory. Viewpoint entropy stands for the amount of information

that one of the selected point of views provides. The amount of information is

obtained by the projected areas and number of faces of scene elements.

The work of Vazquez et al. [21] is a satisfying solution for determination

of a viewpoint around objects; however, it is not an approach which considers

attention grabbing regions of objects. The problem evolves from the fact that

presentation of detailed regions of objects is prior than crude geometry. Surface

visibility is an example for the latter that ignores details but highlights total

amount of projected areas. Thus, this approach may not be adequate for choos-

ing most attractive viewpoint. Our viewpoint selection procedure is based on a

more perceptual approach, so-called saliency, than visible scene elements in the

capture. We employ the work of Lee et al. [22] who proposed mesh saliency con-

cept in order to formalize searching process for the most significant parts of an
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Figure 5.2: An important scene object on the left and corresponding salient
regions are given on the right.

object that is investigated in cognitive science. Their work is based on calculating

mean curvatures of meshes and finding regions which show considerably different

mean curvatures than their neighbors. Salient parts of a 3D object are detected

at the end of this process.

The computation of saliency is a costly procedure which cannot be processed in

real-time, since the method deals with calculation of mean-curvature properties of

each mesh and examination of their differences. Also, the processing time depends

on the object size that yields different output-time for different objects. On the

other hand, we achieve to calculate stereo camera parameters for each frame in

real-time in the disparity adjustment stage. Therefore, saliency computation for

each important object is applied in the pre-production stage in order to ensure

that our system runs is in real-time. An important scene object that is one of

the components of our scene and saliency output of the same object are given in

Figure 5.2.

In addition to computation of saliency values for important objects in the

scene, our system also detects the most salient part of the object. This most

salient part represents the viewpoint of each important object. These deter-

mined viewpoints are used in the path generation stage. Therefore, the viewer
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is guaranteed to be able to observe important scene contents by passing through

positions that are located onto the directions which are objects’ the most salient

regions.

5.2 Path Generation

We confront the need for a curvature-based path structure in order to provide an

exploration experience by strolling around important scene elements in a smooth

manner. Different curve types are analysed in order to select the proper one for

our need. We decide to employ quadratic Bézier curves among them; however,

the disadvantageous side of Bézier curve is not providing same speed between

curves, also within a curve too. In order to handle this problem, arc length

parametrization is used which yields to provide a smooth camera movement that

makes same distance in each frame. In the light of this work flow, our path

generation mechanism is investigated under two main categories.

Bézier Curves

Several curve types are convenient to model a path structure. B-spline is

one of the basic functions to generate curve shapes. The curve-fitting feature of

B-spline provides to produce a smooth curve structure. On the other hand, this

feature causes the difficulty for estimating the exact positions on the curve, since

the curve is fitted to the control points that generates a structure positioned not

around but between these control points. In a crowded scene, this situation may

cause overlapping of curve positions and scene elements, which raises the problem

of occlusion. In addition to this problem, computational complexity of B-spline

function is more than tolerable limit for a real time application. Therefore, B-

spline is not a suitable solution for our path structure.

A special case of a cardinal spline that is Catmull-Rom spline presents a

reasonable solution for this issue. Curves are generated between two control

points in this technique; however, slope of a curve is controlled by two other

control points. In order to adjust the slope to a desired level, locating two other

39



control points requires a careful attention.

Instead of examined curve types, we make use of Bézier curve, a basic para-

metric curve that is easier to compute. Bézier curve is employed extensively in

computer graphics for modelling smooth curves. Similarly, it is constructed us-

ing control points, where the number of control points represent the order of the

curve.

In our case, control points are designated around important scene elements in

order to move around them. If we divide whole path into smaller segments, then

each segment corresponds to one curve around each important scene element. One

control point stands for the start position of the movement around the object, the

other one is obtained from the viewpoint selection phase. The last one represents

the finish position of the movement for that object; whereas, it stands for the start

position of another movement of another important object as well. The resulting

curve is generated by interpolating endpoints while the remaining control point

influence the curvature. In our case, three control points are sufficient in order

to generate one Bézier curve around each important object in the scene content.

Therefore, we employ quadratic Bézier curve in our system. The combination

of these quadratic curves around important scene elements generates the overall

path structure in the scene. The mathematical basis for quadratic Bézier curve

is given in Eq. 5.1.

B(t) = (1− t)2P0 + 2(1− t)tP1 + t2P2, t ∈ [0, 1] (5.1)

where P1, P2, and P3 are three control points respectively, each parametric

entry produces a position along the curve and denoted by t. In our case, t is

incremented by 0.005 for each frame.

Arc Length Parametrization

Bézier curve is in the shape of an arc, in which each calculated B(t) value

corresponds to a point on the arc length, that is also the position of the camera in

each frame. However, Bézier equation is not a linear function, distances between a
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point and successive ones are not equal. Therefore, resulting camera motion does

not change at a constant speed which is an undesirable outcome of employing

Bézier for a smooth camera motion. In order to address this issue, arc length

parametrization is utilized to find camera positions which provides to move at a

constant speed [23]. In the process, the curve length is estimated by calculating

the linear distance between consecutive positions. Then, the curve is sampled and

divided into equal distances. Each parametric entry that corresponds to the each

sampled position is calculated by using ratios and proportions between sampled

position and its closest two points, also previous value of the parametric entry.

At the end of this procedure, equally incremented new positions along the curve

are found which provides a smooth camera motion with constant speed.

Another case that should be considered for a correct camera motion is based

on equalising camera speed among each curve. Each Bézier curve around an

important element is generated by using different three control points. This

situation leads to the problem of generating curves with different lengths. Small

variances between each curve yields observable change of speed, which is handled

by our system as well.

5.3 Camera Transformation

Points along the Bézier curve is finalized after arc length parametrization. Since

these points correspond to the positions on the camera path, camera moves from

one to another at each frame. Orientation of the camera has an important role

like translation of the camera in order to maintain continuity during a camera

motion. When camera is rotating, smooth transitions should be satisfied, oth-

erwise instant changes of rotation causes an unnatural viewing experience. In

our system, camera rotates towards important scene elements, since displaying

attention-grabbing scene elements is an important exploration task. Camera ori-

entation is performed differently in the two regions of the Bézier curve and dis-

junctive is the control point obtained from viewpoint selection. In the first half of
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the Bézier curve, camera looks towards the important scene element. The direc-

tion of the third control point which represents finish position of that curve looks

towards to the next important object. Therefore, camera viewpoint direction is

linearly interpolated from that direction to the third control points’ direction in

the second half of the curve. This linear transition generates a smooth rotation

between each quadratic curve.

42



Chapter 6

User Study and Evaluations

Our assumption is proposing a novel method for stereo rendering that presents

both comfortable and realistic 3D illusion without losing perceived depth feeling.

In order to evaluate the effectiveness of our proposed method, we have conducted

several user study cases in two different scenes. Three aspects of the displayed

contents, image quality, perceived depth, and visual (dis)comfort, are individually

graded by subjects. Also, we compared our method with two other existing

methodologies which are Naive approach where fixed stereo parameters are used

and Depth Range Control where scene range is mapped to the desired perceived

depth range. Subjects are asked to select one of the methods after displaying the

content in pair-wise manner in order to assess the relative preference of the user.

Experiment procedure is detailed in the following sections. The resulting output

in comparison with Naive approach is given in 6.1.

6.1 Testing of Disparity Control

Subjects

We recruited 15 subjects, aged between 20 to 28, with a mean average 25.

The subjects were among voluntary undergraduate and graduate students with
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Figure 6.1: (a) An example capture of the scene with parameters calculated by
Naive Method (b) The same capture with parameters calculated by our method
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Figure 6.2: Sample snapshots of outdoor and indoor scene contents.

computer science background; and most of them did not have previous detailed

experience on rendering on stereoscopic displays. The subjects were not informed

about the purpose of the experiment. They were tested for proper stereoscopic

visual acuity using random dot stereogram tests. The subjects who failed the

random dot stereogram test did not participate in the user study.

Equipment

We used Nvidia GeForce GT 540M as graphics card and a 2.20 GHz Quad-

Core laptop with 6 GB RAM for rendering. The stereoscopic pairs are displayed

on a 40 inch 3D display with active shutter glasses, with a resolution of 1920 x

1080, in a dimly lit environment. The subjects were seated at a viewing distance

of 2m.

Scenes

We built two interactive scenes (Figure 6.2) for the tests. The first scene

45



contains an indoor setting, where several groups of human characters, each of

which performing various gestural movements, randomly distributed in a room.

The second one is a city scene, which presents more dynamic environment in

terms of variety of characters and their movements. Important scene elements

are virtual human characters in both scenes. Significance scores are assigned in

compatible with attention-grabbing degree of the character. As an example, a

dancing character is more significant than a standing one. In each test, the user

was asked to navigate freely in the environment.

Procedure

In the beginning of the experiment, each subject is being informed about the

3D stereo vision and possible encountered issues by giving related text document.

Also, written instructions that describe tasks needed to be performed during

experiment are presented to the subjects. The three attributes, which are used to

grade displayed contents, are explained to the subjects in order to avoid potential

incomprehension about the topic.

Figure 6.3: Presentation of test materials

We have followed the double stimulus continuous quality scale (DSCQS)

method for the experiment design, given in Figure 6.3. DSCQS is one of the

mostly used method for the subjective assessment of the quality of television pic-

tures [24]. According to this procedure, subjects were shown a content, either test

or reference; after a break, the other content was presented to subjects. Then,

both contents were shown for the second time, to obtain the subjective evalua-

tions. This process is illustrated in Figure 6.3. ITU-R BT.2021 [25], which is
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a commonly employed recommendation that includes subjective methods for the

assessment of stereoscopic 3DTV systems, states that DSCQS can be successfully

used for the assessment of stereoscopic imaging technologies. Therefore, we de-

cided to employ DSCQS method for the experiment procedure and order of test

material, to make our user study more reliable.

Interactive tasks are performed in two different scene settings under two main

phases. Each phase includes two sessions, corresponding two evaluation process

and four test cases. As presentation of test materials is illustrated in Figure 6.3,

two of test cases correspond to T1 and T3 are shown consecutively. These test

cases are rendered with two different methods which stand for reference and test

content in DSCQS. T2 is a mini break, where a mid-grey level screen is displayed

for approximately 3 seconds. After that, T1 and T3 are shown again, while the

subjects are asked to evaluate the presented materials at the same time. The

same procedure is repeated in the second session. This time, one of the test cases

is switch to the remaining stereo rendering method, while the second test case is

shown with our method again. Moreover, both in the two sessions, subjects do

not know which stereo rendering is shown first, The order of the reference and

the test contents was determined in a randomized manner.

Assessment of Contents

Displayed stereoscopic contents, which are rendered with three different dis-

parity adjustment methods including our approach, are evaluated by three pri-

mary perceptual dimensions: quality, depth, and comfort. These three criteria

affect the quality of immersion feeling in stereoscopic systems according to [25].

Subjects evaluated both test and reference contents of all the cases separately.

The meaning of each criterion, which were explained to the viewers before the

experiment begins, is given as follows:

• Image Quality: Image quality denotes the perceived overall visual quality

of the shown content. Ghosting, defined as the incomplete fusion of the

left and right image so that the image looks like a double exposure, is a

critical factor determining the image quality of stereoscopic content. A
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good quality 3D stereo image should eliminate the ghosting effect.

• Perceived Depth: This criterion measures the overall perceived depth range

of the scene content as reported by the user, so that the effect of the methods

on apparent depth should be taken into account.

• Visual (Dis)comfort: This assessment item measures the subjective sen-

sation of discomfort that can be associated with the improperly produced

stereoscopic contents. A good quality 3D stereo image should provide a

comfortable viewing experience. Otherwise, long-term exposure causes vi-

sual discomfort issues such as eye strain, fatigue, headache.

The quality of the displayed content is strongly related with sense of presence,

a psychological state that describes the involvement and immersion feeling of an

individual in a virtual environment. Two questionnaire types are used to measure

effectiveness of virtual environments [26]. Presence Questionnaire (PQ) stand

for measuring presence in a tested virtual environment. Immersive Tendencies

Questionnaire (ITQ) is utilized to find out the capabilities and tendencies of

individuals to experience presence. Underlying idea of PQ and ITQ is employed

in our experiments. Random-dot stereogram test is used to adopt ITQ principles.

For assessment of the stereoscopic content, an evaluation process is conducted at

the end of each session aiming to employ PQ features simply. We first asked the

subjects to rate the quality, depth, and comfort of both the reference and test

methods separately, by filling out a 5-point Likert scale for each method. For

grading of quality, depth, and comfort, we used the discrete scale with the labels

“bad”, “poor”, “fair”, “good”, and “excellent”. An example for this grading

part is shown in Figure 6.4. We also asked the subjects to assess the relative

comparison of the reference and our methods. For this purpose, at the end of

each pair, we asked the subjects the following questions in the response form:

• Which session provided better image quality?

• Which session offered more depth?

• Which session was more comfortable to watch?
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Which session was more  
comfortable to watch? 

 

 

Grade comfort of Session 1 

 

 

Grade comfort of Session 2 

 

 
 

No 

Difference 

Session 2 Session 1 

Excellent Bad Poor Fair Good 

Excellent Bad Poor Fair Good 

Figure 6.4: An example snippet from our questionnaire

6.2 Discussion

In order to analyze the results of the conducted user studies, firstly we computed

the average scores of user ratings, as well as user preferences. These ratings and

preferences are obtained by evaluation forms which are filled by each user.

Figure 6.5 illustrates the rating results for three employed perceptual dimen-

sions, image quality, depth, and comfort. In each chart, the average grade is

indicated in a circle. The results show that our method yields better average

scores than other approaches in all three dimensions. Specifically, our method

has achieved a considerable improvement in the stereoscopic image quality, due to

the fact that our method ensures elimination of ghosting effect of the important

objects which have higher significant scores. Since, convergence plane is located

closer to these objects which results in lower screen parallax around them on the

display image. Regarding to the Figure 6.5 the average rating of our method

in the perceived depth is slightly better than the other two methods, also less

number of subjects have evaluated our method as “bad” or “poor”, compared to

the other methods. The comfort ratings also reveal that our method is generally

rated better than the other methods.

Figure 6.6 shows results of the preferences by comparing three perceptual

dimensions of our method with other methods. These preferences are collected

from the questions described in the Assessment of Contents. Different from the

rating analysis of the methods, this chart shows the preferences in percentages for

our method directly in comparison with other two methods. The study showed
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Figure 6.5: Comparison between three methodologies

that our approach was preferred over the other two methods, with a 64,28 %

preference ratio; whereas 21,48 % of the results preferred the Naive over ours

and 25 % of the cases showed preferences of DRC. The high performance of the

Naive method is due to the fact that the static disparity levels were chosen to be

compatible with the scenes, for a fair comparison.

To evaluate the cinematographic quality of each method, we have plotted a

depth chart [27][28], which shows the distribution of the depth budget over time.

The charts in Figure 6.7 shows the minimum and maximum depth values of the

scene, with respect to the physical display surface. Figure 6.7 also shows the

perceived depth of the most attention-grabbing object. The highest significant

score assigned scene element is selected to be the most attention-grabbing object

in the environment (orange curve). The results show that our method achieves the

goal of keeping the most significant object appears closer to the display screen as

much as possible. Based on these results, we can claim that our method prevents

the accommodation-convergence conflict in a large extent.

50



Figure 6.6: Comparison results of our methodology with Naive and DRC ap-
proaches
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Figure 6.7: Depth charts obtained by three different stereo rendering methods,
Naive method (a), DRC (b), and our proposed method (c)
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Figure 6.8: A sample scene prepared for the scene exploration task

In order to test the presented scene exploration approach, we have prepared

an environment consisting of different 3D objects in the shape of sculptures and

figurines 6.8. Significance scores assigned to these 3D objects; therefore, our ap-

proach asserts to generate a path, in which camera direction looks towards salient

parts of these objects. Another sample scene environment composes of two scene

elements with corresponding camera locations is given in Figure 6.9.

Figure 6.9: Orientation of the camera
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Chapter 7

Conclusion

We have presented a camera control system by utilizing HVS perception principles

for 3D contents. Our camera control mechanism composes of two main parts.

We have introduced a novel approach for stereoscopic rendering which addresses

calculation of stereoscopic camera parameters automatically and dynamically in

the first part of the system. Our approach conveys scene depth in any arbitrary

interactive 3D scene content by automatically calculating the stereoscopic camera

parameters that are convergence and camera separation. Our method specifies

a depth configuration according to the distribution and importance degree of

attention-grabbing elements and depth range of the scene. It also automatically

finds the camera parameters for mapping total scene depth to this specified depth

range.

This new method for stereoscopic camera parameter adjustment allows 3D

scene content creators to adjust available perceived depth in a way that the

perceived depth is controlled and limited to the stereoscopic comfort zone of the

users. This process is ensured by employing a disparity calibration phase, where

the viewer’s perceived depth limits are found. Also, accommodation/convergence

conflict is handled by keeping the focus or the convergence of the camera closer

to the elements of interest.
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The other part of our system addresses scene exploration issues in a virtual en-

vironment. We employ linked and quadratic Bézier curves as the base for smooth

curves around important scene elements to generate corresponding path in any

arbitrary environment. Mesh saliency is used in order to find the most attention-

grabbing regions of important objects that is used as the viewpoint selection

phase. Therefore, output path passes through these saliency-based viewpoints.

However, the process is done in a semi-automatic manner since control points

around important objects are selected by the user. In order to convert the sys-

tem into a fully automatic system, positions of control points should be found

as a future work. With regard to test the efficiency of our proposed path frame-

work, several user studies can be conducted by comparing our approach with

different path finding algorithms as a future work. Also, different approaches can

be compared with saliency for the viewpoint selection phase.

We have presented the results of user studies in order to comprehend the effec-

tiveness of our disparity adjustment approach. Also, we compared our approach

with two other existing disparity control methodologies, Naive and Depth Range

Control. Results prove that our method shows superior results in quality, depth,

and comfort.
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