
IMPROVING THE PERFORMANCE OF
SIMILARITY JOINS USING GRAPHICS

PROCESSING UNIT

a thesis

submitted to the department of computer engineering

and the graduate school of engineering and science

of bilkent university

in partial fulfillment of the requirements

for the degree of

master of science

By

Zeynep Korkmaz

November, 2012

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bilkent University Institutional Repository

https://core.ac.uk/display/52926244?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Prof. Dr. Cevdet Aykanat (Advisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Assoc. Prof. Dr. Hakan Ferhatosmanoğlu (Co-Advisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Prof. Dr. Özgür Ulusoy

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Assoc. Prof. Dr. Oğuz Ergin

Approved for the Graduate School of Engineering and Science:

Prof. Dr. Levent Onural
Director of the Graduate School

ii

ABSTRACT

IMPROVING THE PERFORMANCE OF SIMILARITY
JOINS USING GRAPHICS PROCESSING UNIT

Zeynep Korkmaz

M.S. in Computer Engineering

Supervisors: Prof. Dr. Cevdet Aykanat and

Assoc. Prof. Dr. Hakan Ferhatosmanoğlu

November, 2012

The similarity join is an important operation in data mining and it is used in

many applications from varying domains. A similarity join operator takes one or

two sets of data points and outputs pairs of points whose distances in the data

space is within a certain threshold value, ε. The baseline nested loop approach

computes the distances between all pairs of objects. When considering large set

of objects which yield too long query time for nested loop paradigm, accelerat-

ing such operator becomes more important. The computing capability of recent

GPUs with the help of a general purpose parallel computing architecture (CUDA)

has attracted many researches. With this motivation, we propose two similarity

join algorithms for Graphics Processing Unit (GPU). To exploit the advantages of

general purpose GPU computing, we first propose an improved nested loop join

algorithm (GPU-INLJ) for the specific environment of GPU. Also we present a

partitioning-based join algorithm (KMEANS-JOIN) that guarantees each parti-

tion can be joined independently without missing any join pair. Our experiments

demonstrate massive performance gains and the suitability of our algorithms for

large datasets.

Keywords: Similarity join, k-means clustering, general purpose graphics process-

ing unit, CUDA.

iii

ÖZET

BENZERLİK BİRLEŞİMLERİNİN PERFORMANSININ
GRAFİK İŞLEME BİRİMİ KULLANILARAK

ARTTIRILMASI

Zeynep Korkmaz

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Yöneticileri: Prof. Dr. Cevdet Aykanat ve

Doç. Dr. Hakan Ferhatosmanoğlu

Kasım, 2012

Benzerlik birleşimi, veri madenciliğinin önemli işlemlerindendir ve çeşitli alanlar-

dan birçok uygulamada kullanılmaktadır. Bir benzerlik birleşimi işleci bir ya da

iki veri noktası kümesi alır ve veri uzayında birbirleri arasındaki uzaklık belirli bir

eşik değeri, ε, arasında olan veri noktası ikililerini çıktı olarak verir. Baz alınan iç

içe geçmiş döngü algoritması bütün veri nesneleri arası uzaklık hesabı yapar. İç içe

geçmiş döngü algoritması için çok fazla sorgu zamanı tutan, büyük veri kümeleri

dikkate alındığında, böyle bir operasyonu hızlandırmak daha da önemli olmak-

tadır. Günümüz grafik işlemcilerinin, genel amaçlı paralel hesaplama mimarisinin

de (CUDA) katkısıyla, hesaplama kapasiteleri birçok araştırmaya ön ayak olmak-

tadır. Bu motivasyonla, iki tane Grafik İşleme Birimi (GİB) tabanlı benzer-

lik birleşimi algoritması önermekteyiz. İlk olarak, genel amaçlı GİB programla-

manın avantajlarından faydalanmak için, GİB’in kendine özgü özelliklerine uy-

gun olan, geliştirilmiş iç içe geçmiş döngü algoritması (GPU-INLJ) önermekteyiz.

Ayrıca herhangi bir birleşim ikilisi kaybına yol açmadan, her bölümün birbirinden

bağımsız olarak benzerlik birleşimini sağlamayı garanti eden, bölümleme tabanlı

benzerlik birleşimi algoritması (KMEANS-JOIN) önerilmektedir. Deneylerimiz

büyük performans kazancı ve algoritmamızın büyük veri kümelerine uygunluğunu

göstermektedir.

Anahtar sözcükler : Benzerlik birleşimi, k-means kümeleme, genel amaçlı grafik

işleme birimi, CUDA .

iv

Acknowledgement

I would like to express my deepest gratitude to my supervisor Prof. Dr. Cevdet

Aykanat and Assoc. Prof. Dr. Hakan Ferhatosmanoğlu for their guidance and

encouragement throughout the development of this thesis. I would also like to

thank Prof. Dr. Özgür Ulusoy and Assoc. Prof. Dr. Oğuz Ergin for reviewing

and commenting on this thesis.

I would like to thank to the Scientific and Technological Research Council of

Turkey (TÜBİTAK) for providing financial assistance during my study.

My special thanks go to Mustafa Korkmaz, who contributed to the studies in

this thesis.

I am grateful to my friends Seher and Enver for their moral support during

my study. I am also grateful to my valuable friends Can, İlker, Salim and Şükrü

for their kindness and encouragement. I also feel very lucky to have valuable

friends, Seher, Gizem, Bengü, Elif and Gökçen who have always been with me.

Finally, I owe my deepest gratitude to my parents, Mendane and Mustafa

Saka, and my husband Mustafa Korkmaz for their love and encouragement.

v

Contents

1 Introduction 1

1.1 Contribution . 2

1.2 Outline . 3

2 Background 4

2.1 Similarity Join . 4

2.2 K-means Clustering . 7

2.3 GPGPU Programming and CUDA 8

3 Related Work 12

3.1 CPU based Similarity Join . 12

3.2 GPU based Similarity Join . 18

3.3 GPU based K-Means Clustering 19

4 Solving Similarity Join Problem on GPU 20

4.1 Parallel Nested Loop Algorithm 20

vi

CONTENTS vii

4.2 Improved Parallel Nested Loop Algorithm 22

4.3 Parallel Clustering Based Partitioning and Epsilon Window Algo-

rithm . 26

4.3.1 Partitioning Data . 26

4.3.2 Epsilon Overlaps between Clusters 28

4.3.3 Replicated Clusters . 29

4.3.4 Creating Sorted Array . 32

4.3.5 Epsilon Join in Replicated Clusters 32

4.3.6 Avoiding the Redundant Distance Comparison 33

4.4 Reclustering based Epsilon Join 35

5 Evaluation 37

5.1 Implementation Details . 37

5.1.1 Challenges and Optimizations 37

5.1.2 Dataset . 39

5.2 Experimental Results . 40

5.2.1 Dataset Size . 41

5.2.2 Epsilon (Join) Selectivity 46

5.2.3 Number of Clusters (k) Selectivity 52

5.2.4 Reclustering with Different Workloads 54

6 Conclusion and Future Work 57

List of Figures

2.1 (a) The Non-self Similarity Join. and (b) The Self Similarity Join.. 5

2.2 Memory Hierarchy in CUDA . 11

3.1 ε-kdB Tree Structure . 14

3.2 Level Files of MSJ . 15

3.3 (a) The ρ-split function: D-index. and (b) The modified ρ-split

function: eD-index . 17

3.4 Two dimensional two level directory example 19

4.1 CUDA block and corresponding shared memory 22

4.2 GPU-based improved parallel nested loop algorithm Steps (a) First

step (b) Second step (c) Third step (d)Final step 24

4.3 Voronoi Diagram based partitions and corresponding cluster cen-

troids . 27

4.4 Epsilon overlaps over the hyperplane between clusters 28

4.5 The data point p belongs to the cluster with centroid c2, however,

it lies on the ε-bound line. 29

viii

LIST OF FIGURES ix

4.6 Finding an upper bound for data replication 30

4.7 RE-JOIN algorithm schema . 36

5.1 Representation of a dataset with 100K data points 39

5.2 Variation of running time of CPU-NLJ, GPU-NLJ and GPU-INLJ

with increasing dataset size. ε: 0.5 42

5.3 Variation of running time of GPU-NLJ, GPU-INLJ and KMEANS-

JOIN with increasing dataset size. ε: 0.5 and k: 20 42

5.4 Effect of dataset size on running time of main components of

KMEANS-JOIN. ε: 0.5 and k: 20 43

5.5 Percentage contribution of main components of KMEANS-JOIN

algorithm in terms of running time. ε: 0.5 and k: 20 44

5.6 Effect of dataset size on running time of GPU-NLJ-join kernel,

GPU-INLJ-join kernel and KMJ-join kernel. ε: 0.5 and k: 20 . . 45

5.7 Total number of replicated data points and corresponding number

of join pairs for varying number of data size in KMEANS-JOIN

algorithm. ε: 0.5 and k: 20 . 46

5.8 Effect of ε on running time of GPU-NLJ, GPU-INLJ and

KMEANS-JOIN, datasize: 100K and k: 20 47

5.9 Effect of ε and k on compared-pairs-ratio of KMEANS-JOIN,

datasize: 100K . 48

5.10 Total number of replicated data points and corresponding number

of join pairs for varying values of ε in KMEANS-JOIN algorithm.

datasize: 100K clustered dataset and k: 20 49

LIST OF FIGURES x

5.11 Total number of replicated data points and corresponding number

of join pairs of color moments dataset for varying values of ε in

KMEANS-JOIN algorithm. k: 20 49

5.12 Effect of ε on running time of CPU-NLJ, GPU-NLJ, GPU-INLJ

and KMEANS-JOIN algorithms for color moments dataset 50

5.13 Total number of replicated data points and corresponding number

of join pairs for varying values of ε in KMEANS-JOIN algorithm.

datasize: 100K uniform dataset and k: 20 51

5.14 Effect of ε on running time of CPU-NLJ, GPU-NLJ, GPU-INLJ

and KMEANS-JOIN algorithms for 100K uniform dataset 51

5.15 Effect of k on running time of KMEANS-JOIN algorithms 52

5.16 Effect of k on running time of APRX-KMEANS-JOIN algorithms

ε: 0.4 . 53

5.17 Effect of k on precision values of APRX-KMEANS-JOIN algo-

rithms ε: 0.4 . 54

List of Tables

5.1 Speedup of KMEANS-JOIN algorithm over CPU-NLJ, GPU-NLJ,

and GPU-INLJ for varying dataset size 44

5.2 Speedup of GPU-NLJ and GPU-INLJ over CPU-NLJ for varying

dataset size . 45

5.3 Running times (seconds) for Update Intensive RE-JOIN 55

5.4 Running times (seconds) for Query Intensive RE-JOIN 56

xi

Chapter 1

Introduction

Effective retrieval of knowledge is an important issue in database systems. As a

result of increase in the database size, a second requirement is the efficiency. Al-

though the primary design goal of the GPUs is processing of the graphics, the chip

level parallelism encourages the developers to carry out general purpose comput-

ing on GPUs. Therefore, many research communities such as data management

started to use the computational capabilities of GPUs for computationally in-

tensive applications. The CUDA programming model, which is developed by

NVIDIA [1], allows programmers write scalable parallel programs using abstrac-

tions as extension of the C language for utilizing multi-threaded GPUs.

The similarity join is a basic and powerful database operation for similarity

based analysis and data mining in which we are given a large set D of objects

which are usually associated with a vector from a multidimensional feature space.

A well known application of the similarity join is searching pairwise similar objects

in datasets. The most common similarity join type is ε-join (distance range join)

which takes an application defined ε threshold and the query outputs pairs of

points whose distances are not larger than ε.

If we focus on the complexity of similarity join queries, the baseline nested

loop algorithm for similarity join operator has a complexity of O(n2) where n is

the number of data points in the data set D. Thus, accelerating similarity join

1

operator and exploiting the parallelism potential of it is crucial for performance

improvements and applications that employs it. Our aim in this thesis is to

provide faster ε-join queries for a high number of data objects. For this purpose,

we use general purpose computing on GPUs and CUDA programming model.

1.1 Contribution

In this thesis, we aim to accelerate similarity join operation using GPU. Firstly,

we focus on baseline nested loop join algorithm, where no indexes exist and

no preprocessing is performed. Then we implement a communication scheme

between CUDA blocks which uses shared memory as much as possible to gain

more speed up. Achieving high performance gains in this improved parallel nested

loop approach yields a motivation to use it in independent partitions of the data

set for faster query time. The major contributions of this thesis are as follows:

• We first propose an efficient GPU implementation for the nested loop join.

It differs from previously proposed approaches in using shared memory more

efficiently and paying attention to the memory operations. The proposed com-

munication scheme between CUDA blocks also satisfies the correctness of the join

results.

•We propose another approach for similarity join which uses parallel k-means

clustering algorithm to partition the data, and provide ε boundaries between

clusters to guarantee obtaining the ε-join results properly. After acquiring in-

dependent partitions, the join operation for these partitions can be handled by

the improved parallel nested loop join algorithm proposed in this thesis. In this

approach, each step of the algorithm; partitioning, calculating epsilon bounds,

finding replicated points and finally join operation is implemented in GPU which

provides faster and scalable performance results.

• One of the major problems in parallel join algorithms is the redundant or

multiple join pairs. We propose a duplicate join pair removal technique which also

eliminates the number of redundant distance comparison between data points.

2

This technique only requires bitwise operations which are performed very fast on

GPU. It overcomes the problem of any pair appear in multiple clusters caused by

replicating data points between clusters.

• Finally, we propose a solution for similarity join problem in a dynamic

dataset which is updated by new data points iteratively. In this problem, new

data points arrive and we keep them in a cluster based index. This cluster based

index provides producing the join results faster when epsilon query is requested

on the updated dataset.

1.2 Outline

The rest of this thesis is organized as follows. In Chapter 2, some background

information for the proposed work; similarity join problem, k-means clustering

algorithm and general purpose GPU programming is given. In Chapter 3, we

mention about the previously proposed CPU- and GPU-based related works.

In Chapter 4 we present our GPU-based solutions for similarity join problem

using GPU. Then, we demonstrate our experimental evaluations in Chapter 5

and finally we conclude the thesis in Chapter 6.

3

Chapter 2

Background

In this section, first similarity join problem is defined; secondly k-means clustering

algorithm and then a brief description of General Purpose Graphics Processor

Unit (GPGPU) programming and Compute Unified Device Architecture (CUDA)

are given.

2.1 Similarity Join

The similarity join is a basic operation for similarity based analytic and data

mining on feature vectors. In such applications, we are given one (D) or two

large sets (S and D) of objects which are associated with a vector from a mul-

tidimensional space, the feature space. In similarity join, pairs of objects must

satisfy a join condition on (D×D) or (D×S). In general, join condition provide

the similarity between objects in metric spaces, especially in Euclidean distance.

The most common similarity join operator type is the ε-join which is also

called as distance range join. The scope of this thesis is restricted to the distance

range join and we will use similarity join and ε-join instead of distance range

join. There are two versions of the similarity join problem, which are self join

and non-self join.

4

(a) (b)

Figure 2.1: (a) The Non-self Similarity Join. and (b) The Self Similarity Join..

In Figure 2.1-a, the small circles represent the points of set D and the triangles

represent the points of S. It visualizes the non-self ε-join query. The formal

definition is given below:

Definition 1: For two data sets S and D; let S and D be sets of feature

vectors of a d-dimensional vector space and ε ∈ R+ be a given threshold. Then

the non-self similarity join consists of all pairs:

(p ∈ S, q ∈ D)|
√

(p− q)T (p− q) ≤ ε

In Figure 2.1-b, the circles represent the points of set D, and visualizes the

self-ε-join query. The formal definition is given below:

Definition 2: For a data set D; let D be a set of feature vectors of a d-

dimensional vector space and ε ∈ R+ be a given threshold. Then the self simi-

larity join consists of all pairs:

(p, q) ∈ (D ×D)|
√

(p− q)T (p− q) ≤ ε

5

The baseline solution for the similarity join algorithm is the nested loop

paradigm. The nested loop join iterates each object of set D in the outer loop and

in the inner loop, each object from D scans the each object from S by calculating

the distance and comparing it with ε threshold. If it is self similarity join query,

than the inner loop also contains the objects from the set D. The pseudo code

for nested loop similarity join is given in Algorithm 1.

Algorithm 1 The Nested Loop Similarity Join Algorithm

1: for all p ∈ D do

2: for all q ∈ S do

3: if dist(p, q) ≤ ε then

4: (p, q) is a result pair

5: end if

6: end for

7: end for

Another solution for the similarity join algorithm is the indexed nested loop

join. In this solution, in the outer loop, the objects of set D iterates over a

index structure on the objects of set S. The nested loop join can be improved

by replacing the inner loop with a multidimensional index structure. From the

ε-join point of view, the index structure in the inner loop provides a range in

which the outer loop objects scan over. The pseudo code for indexed nested loop

similarity join is given in Algorithm 2.

Algorithm 2 The Indexed Nested Loop Similarity Join Algorithm

1: for all p ∈ D do

2: range← index(p,D, ε)

3: for all q ∈ range do

4: if dist(p, q) ≤ ε then

5: (p, q) is a result pair

6: end if

7: end for

8: end for

6

The more sophisticated solutions for similarity join problem will be introduced

in the Chapter 3.

2.2 K-means Clustering

The k-means algorithm [2] [3] is a well known and widely used clustering method.

It assigns each data point to the closest cluster by looking at the distances between

data points and centroids of the clusters. The centroid of a cluster is defined as

the mean position of the data points in that cluster. More formal definition is

given below.

Definition 3: Let D ⊆ Rd be a set of data points (D1...n) of a d-dimensional

vector space, the clustering is to partition the n data points into k clusters (P1...k)

with centroids C1...k, where k ≤ n in order to minimize the sum of squares of

distances of each cluster.

min
∑k

i=1

∑
Dj∈Pi

(‖Dj − Ci‖)2

The standard k-means algorithm [3] is a heuristic solution for an NP-hard

problem in Euclidean space. As shown in Algorithm 3, there are two main steps

in each iteration. First one is the updating cluster centroids which computes

the mean from assigned objects of each cluster. Second one is the labelling of

data points which assigns each data object to its closest cluster by computing the

distance between cluster centroids. The algorithm terminates when the centroids

no longer move.

Algorithm 3 The Standard k-Means Algorithm

1: Select k data points as initial centroids

2: repeat

3: Assign each data point to the cluster of closest centroid

4: Recompute the means of clusters and update centroids

5: until Centroids do not change

7

In this thesis, we take the grouping advantage of k-means algorithm that data

points within one cluster have similar characteristic. However, in each iteration

of k-means algorithm, the labelling step, which calculates the distance between

data points and new cluster centroids dominates the computation time and it

is very costly. Since the labelling step for each data points is independent of

each other, it can be performed in parallel. Parallelizing k-means algorithm

or square error clustering has also proposed in order to overcome this costly

computation requirement and considerable speed-ups were reported previously [4]

[5]. Improving the performance of k-means clustering algorithm can be achieved

by using GPU computing. Existing GPU-based k-means algorithms [6] [7] are

given in Section 3.3. In this study, we also need a fast clustering algorithm and

use GPU for performance improvement in clustering. We use the software which

includes CUDA based implementation of k-means clustering algorithm under the

open-source MIT licence [8].

In this thesis, we use k-means clustering algorithm to partition data into sets

of points that are close to each other and use its property that the partitions

represent the Voronoi cells generated by the means and data is split halfway

between cluster means [9].

2.3 GPGPU Programming and CUDA

Recent improvements in the performance of GPUs is increasing with parallelism.

The growth of processor performance and hardware parallelism show that the

modern GPUs are suitable for the needs of a problem with tremendous paral-

lelism and effectively solve general purpose computational problems, which is

called as general purpose computation on graphics processors (GPGPU). Run-

ning the parallel algorithms on GPUs provides massive speedups over similar

CPU algorithms.

NVIDIA developed CUDA [1], a general purpose parallel computing archi-

tecture with a parallel programming model for NVIDIA GPUs with hundreds of

8

cores. This programming model provides developing scalable parallel programs by

using some extensions to C programming language. It also helps to solve complex

computational problems efficiently. This innovative architecture increase the per-

formance and ability of GPGPU. In CUDA programming model, there are some

important extensions of C programming language to express parallelism which

are hierarchy of thread groups, shared memories and barrier synchronization.

In CUDA, there are some terms that are important to understand the pro-

gramming model. These are host, device and kernel.

• Host: Host in CUDA includes CPU and RAM. Codes written in host

is same as standard C programming language and generally are used for some

initializations and transferring data between GPU and CPU.

• Device: Device in CUDA refers to GPU environment which includes GPU

and GPU memory. Parallel executions of program are run in device. Its is

completely different than CPU environment and many challenges need to be

overcome.

• Kernel Function: Kernel in CUDA refers to functions that run in CUDA

threads. Kernel is a C function which is executed in multiple CUDA threads

multiple times and all threads use the same kernel function. A kernel can be

defined using the global identifier and the thread organization of the execution

can be written in function call in <<< and >>> as block grid dimension and

thread block dimension.

In CUDA programming model, there are also some parallel programming

structures which are thread hierarchy and memory hierarchy.

• Thread Hierarchy: CUDA executes the threads as thread blocks, which

refers to a structure including a certain number of threads that are executed

concurrently. As a result of block size restrictions, CUDA executes thread blocks

in grids. A grid organization decides how many times the kernel will be executed

as blocks. A grid can be identified as 1, 2 and 3 dimensional blocks. In CUDA

programming model, current thread and block can be identified by using the

9

built-in variables which are threadIdx and blockIdx respectively. As a result of

CUDA thread hierarchy, iterative executions are different than traditional loops.

• Memory Hierarchy: We demonstrate the three most common memory

types in CUDA which are global memory and shared memory. An illustration of

memory types is shown in Figure 2.2 [1].

Global memory is the main memory of the device because it is also visible

from the host and its lifetime is same with an application. The data that we

need to use, is transferred from the host to global memory. It is also visible to

all threads regardless of their grid or block information. However, it is relatively

much slower than other CUDA memory types like shared memory and it is not

cached. A variable which declared only with device qualifier, resides in global

memory space.

Shared Memory has the life time of its corresponding block and is only accessi-

ble from all the threads in that block. A variable which declared with shared

qualifier, resides in shared memory space of a thread block. Its space is quite

little, however, it is much more faster than global memory. This trade-off is the

main struggle in CUDA. Most of the speed optimization is bounded up to shared

memory usage.

Another type of memory is local memory. Every thread uses implicitly its

local memory. Thus, its life time is related with its thread.

10

Figure 2.2: Memory Hierarchy in CUDA

11

Chapter 3

Related Work

Join queries are major parts of many data mining algorithms, and they are also

very time consuming because of high complexity. For this purpose, many re-

searches have been addressed to increase the performance of join algorithms. In

Section 2.1, nested loop and indexed nested loop paradigms are introduced. This

chapter includes more sophisticated algorithms and the scope of these algorithms

varies from spatial joins to similarity joins. There are many index structures that

have been employed for join processing, such as R-Trees [10], Seeded Trees [11],

and ε-kdb Trees [12]. There are also some partitioning methods [13] [14] which

require data point replication. Also there exists join algorithms based on metric

space indexing method [15] and join algorithms based on sorting [16] [17].

3.1 CPU based Similarity Join

In this section, we explain some of the previously proposed CPU based algorithms

related to join queries.

Efficient Processing of Spatial Joins Using R-Trees: Spatial joins ba-

sically combine two or more datasets based on their spatial relationship. Spatial

joins consist of two main steps which are filter and refinement steps. In the filter

12

step, tuples that cannot belong to the result set are eliminated. In the refinement

step, possible results decided in the filter step are checked if they belong to the

result set. Spatial joins, especially the refinement steps, are expensive operations

and efficiently performing them has attracted many researchers. There are some

spatial index structures such as R-trees [18], and it is used to improve the perfor-

mance of spatial joins. Brinkhoff et al. [10] proposed a join algorithm on R-trees.

This algorithm requires R-tree index on join inputs and performs a synchronized

depth-first search of indices.

Seeded Tree: Lo and Ravishankar proposed an approach to perform spatial

joins using seeded trees [11]. In spatial databases, there can be some situations

where the inputs are intermediate results of a complex query, thus the join inputs

do not have a spatial index on them. In this technique, the indices are not required

on the inputs. It dynamically constructs index trees at join time. Seeded trees

are R-tree like structures but they are allowed to be height unbalanced. In this

technique, large number of random disk accesses during tree construction take

the place of smaller numbers of sequential disk accesses.

Partition Based Spatial Merge Join: Patel and DeWitt proposed PBSM

method for performing spatial join operation [14]. The algorithm first divides

the input into manageable partitions and joins those partitions by using plane-

sweeping technique. One of the beneficial contributions of PBSM algorithm is

that it does not require indices on both inputs. The PBSM is a generalization of

sort merge join. The algorithm first compute the number of partitions and these

partitions act as buckets in hash joins and they are filled with corresponding

entities.Then it joins all pairs of corresponding partitions and sorts the pairs and

eliminates the duplicates. The data space in this approach is partitioned regularly

and multiple assignment is needed for both input sets.

Spatial Hash-Joins: In this study, Lo and Ravishankar applied hash-join

paradigm to spatial joins [13]. In this approach, first the number of partitions

(buckets) are computed and the first input set is sampled to initialize the parti-

tions. Then the buckets for second input set are partitioned using the buckets

of first input set. Then the assignment function map the objects into multiple

13

buckets, if necessary. Finally the corresponding buckets are joined to produce the

result. The data space in this approach is partitioned irregularly and multiple

assignment is needed only for one dataset.

ε-kdB Tree: ε-kdB Tree is an indexing structure for the multidimensional

join problem and proposed by Shim et al. [12]. This structure partitions the data

space into grids and the join pairs of a point is found in the neighbouring cells.

However, when considering the high number of dimensions, those neighbour grid

cells increases to 3d − 1. ε-kdB Tree uses only a part of dimension to partition

rather than considering the cells one by one. This reduces the number of neigh-

bouring cells that are considered for the join operation. Constructing ε-kdB Tree

starts with a single leaf node and pointers to the data points are stored in the

leaf nodes. It is assumed that the coordinates of the points in each dimension

lie between 0 and +1. When the number of points in a leaf node exceeds the

threshold, the leaf node is split and becomes an interior node. If the leaf node

is at ith level, the ith dimension is used for splitting and the node is split into

b1/εc parts. Figure 3.1 [12], shows an example of ε-kdB Tree structure for two

dimensional space.

Figure 3.1: ε-kdB Tree Structure

14

Multidimensional Spatial Joins (MSJ): Koudas and Sevcik proposed Size

Seperational Spatial Join algorithm (S3J) [16] which uses hierarchical decompo-

sition for the data space and does not require replication of input sets as done

in [14] and [13]. This algorithm uses space filling curves to order the points in

multidimensional space. MSJ [17] is a generalization of Size Seperational Spatial

Join algorithm [16]. Given two d-dimensional datasets, and ε distance predicate,

the algorithm scan each data set and divide them into level files. Figure 3.2 visu-

alize the level files. For doing this, the Hilbert values of the level files where the

hypercubes(data points) belong are transformed. Then the level files are sorted

into non-decreasing order of Hilbert values. Finally the merge phase of the par-

titions is performed. This approach has scalability problems with the increasing

dimensionality.

Figure 3.2: Level Files of MSJ

Generic External Space Sweep (GESS): Dittrich and Seeger proposed

Generic External Space Sweep (GESS) et al. [19]. GESS reduces the number

of expensive distance computations by using a replication algorithm. Each fea-

ture vector is transformed into a hypercube with side length ε. The proposed

replication algorithm creates codes for the representation of subspaces of each

hypercube. GESS does not require partitioning the hypercubes into level files as

done in [17], because it employs a sorting operator which applies lexicographic

ordering on the hypercubes. Finally the Orenstein’s Merge Algorithm [20] is used

15

for the join phase.

Epsilon Grid Order (EGO): Epsilon Grid Order [21] was proposed for

solving the similarity join problem of very large datasets. It tries to solve the

scalability problem which is an important issue in grid based approaches such as

Multidimensional Spatial Joins [17] and ε-kdB Tree [12]. EGO uses an external

sorting algorithm and a scheduling strategy during the join phase rather than

keeping the large amount of data in the main memory. The sort order is obtained

by laying an equidistance grid with cell length ε over the data space and then

comparing the grid cells lexicographically [21]. The EGO solve the problem of

IO scheduling when the ε intervals of some points do not fit in the main mem-

ory by proposing crab stepping heuristic. This heuristic minimizes the reads of

neighbouring cells.

Similarity Join in Metric Spaces Using eD-Index: Previously, some

techniques based on metric space indexing was also used for similarity joins.

Dohnal et al. [15] proposed a metric space index called eD-index for self similarity

join problem. The eD-Index is an extension of the D-Index [22] structure. The

D-Index partitioning uses multiple ρ-split function [23] around separate pivots. It

partitions the set into three subsets using the parameter ρ, the medium distance

dm, and the pivot, as shown in Figure 3.3-a [15]. In Figure 3.3-a, the inner and

outer shaded areas contain the objects that their distance to pivot are less than

or equal to dm − ρ and greater than dm + ρ respectively. These sets are called

separable sets and the all others form the exclusion set. The eD-Index extends

the D-Index by modifying the ρ-split function so that the separable and exclusion

sets overlap of the distance ε. The objects which belong to both separable and

exclusion sets shown in Figure 3.3-b [15] within the dotted lines, are replicated

to prevent missing join pairs.

16

(a) (b)

Figure 3.3: (a) The ρ-split function: D-index. and (b) The modified ρ-split

function: eD-index

The Quickjoin Algorithm: Jacox et al. [24] proposed a method for dis-

tance based similarity join problem called Quickjoin which is conceptually similar

to the Quicksort [25] algorithm. The Quickjoin partition the data into subsets

recursively until they are small enough to be efficiently processed by using nested

loop join algorithm and it provides windows around the boundaries of partitions.

Also, the hyperplane partitioning [26], and the ball partitioning which partitions

the data based on their distance to a random object are used to partition the

data. The main difference between the Quickjoin and eD-Index [15] is that the

Quickjoin creates subsets of ε regions which are processed separately, however,

the eD-Index extends the partitions by ε.

List of Twin Clusters: Paredes and Reyes proposed List of Twin Clusters

(LTC) [27], which is a metric index to solve similarity join problem and indexes

both input sets jointly. LTC is based on List of Clusters (LC) [28], but uses

clusters with fixed radius. The data structure in LTC considers two list of over-

lapping clusters. Thus the twin cluster of range query object would contain the

most relevant and candidate objects.

17

3.2 GPU based Similarity Join

The performance benefit of GPGPU technology has been recently used in

database management problems [29] [30]. In [31], the authors present a GPU

based relational query processor for main memory databases. Also, the sort op-

eration which is important for query processing is improved using GPU [32]. Re-

cently, the performance of well-known multidimensional index structure R-Tree

has been improved by using GPU [33] [34].

There are a few study related to join queries on GPU. In [35], some data

parallel primitives are demonstrated and these primitives are used to implement

relational join algorithms such as sort-merge and hash joins with and without

index support. In [36] and [37], which are most related studies to ours, the

similarity join algorithm on GPU is examined.

LSS: A GPU-Based Similarity Join: In [37], a similarity join algorithm

called LSS is proposed. LSS requires sort and search routines and it is based on

the concept of space filling curves for pruning the search space. Basically LSS

builds multiple space filling curves over one of the input sets and reduces the size

of interval searches which are performed for the data points of other input set.

LSS utilizes a GPU-based bitonic sort [38] algorithm to determine the z-order of

objects.

Index Supported Similarity Join on Graphics Processor: In [36], a

GPU-based parallelization of nested loop join (NLJ), and an indexed join algo-

rithm are proposed. Parallelization of NLJ is performed by creating a thread

which is actually the current query point, for each iteration of the outer loop and

each thread is responsible for the distance calculations and comparison with ε

threshold. This algorithm [36] and an our proposed improvements on it, espe-

cially paying attention to the GPU specifications and proposed communication

scheme between CUDA blocks are also mentioned in Section 4.1.

18

Figure 3.4: Two dimensional two level directory example

Another algorithm which provides an index structure to support similarity join

on GPU (NLJ with index support) is also given in [36], [39]. In this algorithm,

similar to the parallel NLJ, each individual thread traverses the index structure for

inner loop in parallel. For the index structure, the data is partitioned according

to the dimensions. For example, as shown in Figure 3.4 [36], in a two level

directory, first level partitions the data over the first dimension and the second

level partitions the data over the second level.

3.3 GPU based K-Means Clustering

Clustering is one of the most important data mining method which is widely

used in many different areas. K-Means is one of the most famous and easy

to implement clustering algorithm, however, it has performance disadvantages

in large datasets. Therefore, improving the performance of k-Means is highly

important in order to overcome computational requirement of many applications

that use k-Means. Some recent works [40] [41] [6] [7] study performing k-Means

clustering algorithm efficiently on GPU and important speedups were reported.

In [6], a hybrid approach which parallelizes distance calculations on GPU and

sequentially updates the cluster centroids is proposed. A CUDA based k-Means

algorithm is also proposed in [7] and differs from previous approaches by utilizing

triangle inequality to avoid unnecessary distance calculations.

19

Chapter 4

Solving Similarity Join Problem

on GPU

In this chapter, we describe our solutions for improving the performance of sim-

ilarity join algorithm. Comparing the results of each approach is given and dis-

cussed in Chapter 5. In Section 4.1, the GPU based parallelization of nested loop

algorithm for similarity join (NLJ) which is proposed in [36], is explained. Then,

we present our contribution and improvements over NLJ in Section 4.2. Finally,

we propose clustering and reclustering based join algorithms in Section 4.3 and

in Section 4.4 respectively.

4.1 Parallel Nested Loop Algorithm

The Nested Loop Similarity Join algorithm is highly parallelizable and its poten-

tial for performance improvement is promising. High computing capabilities of

recent GPUs is beneficial in order to explore this parallelizm and produce consid-

erable improvements. In [36], a GPU-based parallel nested loop join algorithm

is presented and In this section, we mention about this baseline algorithm. The

pseudo code for the parallel nested loop similarity join algorithm (GPU-NLJ)

is given in Algorithm 4.

20

Algorithm 4 GPU-NLJ

1: Input: S ∈ Rd, ε

2: q ← currentData[d]

3: shared sharedMem[d × NTHREADS]

4: globalIndex ← threadIdx.x + blockDim.x × blockIdx.x

5: localIndex ← threadIdx.x

6: q ← data[globalIndex × d]

7: for i = globalIndex + 1 to |S| do

8: synchronize threads

9: p ← sharedMem[localIndex × d] ← data[i × d]

10: if dist(p, q) ≤ ε then

11: count ← atomicInc(1)

12: synchronize threads

13: results[count] ← (p, q) {(p,q) is a result pair}
14: end if

15: end for

As shown in Algorithm 1, the inner loop operations are independent of each

other and can be performed in parallel. In Algorithm 4, to parallelize NLJ algo-

rithm by using GPU, first a thread which corresponds the current query point, is

created for each iteration of the outer loop. Thus each thread takes the responsi-

bility of the inner loop which performs the distance calculation and comparison

in parallel. We avoid duplicate pairs by starting the inner loop index from the

index of current query point. We use atomic operations [1] provided by CUDA

to store the join pairs into the results array and avoid race condition, which oc-

curs when threads share a common resource. The atomicInc operation overcomes

this problem and provides incrementing the address of result array counter for

concurrent writings to satisfy correct addresses for the result pairs.

21

4.2 Improved Parallel Nested Loop Algorithm

In Section 4.1, we explain the GPU-based parallel NLJ algorithm and we will

report in Chapter 5 that it has significant performance improvement over NLJ

algorithm on CPU (CPU-NLJ). However, it does not exploit the computing po-

tential of GPU efficiently. Previously proposed GPU based similarity join studies

[37] [36] tries to prune the search space of each data point belongs to the outer

loop. In this study, first we aim to exploit the parallelism potential of NLJ algo-

rithm on GPU. For this purpose, we propose a communication scheme between

CUDA blocks which provides usage of shared memory as much as possible and

compare the distance between Si and Sj data points only once where i 6= j and

S ∈ Rd to gain more speedup.

Before starting explaining our proposed improved NLJ (GPU-INLJ) algo-

rithm, the importance of shared memory usage should be mentioned. Each CUDA

thread block has its shared memory and the lifetime of shared memory is same

as its corresponding thread block. Major problem of shared memory is its capac-

ity (48KB). However, it is much faster than global memory. Thus the usage of

shared memory is crucial for high performance. In fact most of the speed opti-

mization is bounded up to shared memory usage. The trade-off between space

and performance is the main struggle in CUDA programming.

To better explain the GPU-INLJ algorithm, Figure 4.1 shows a CUDA block,

threads in it and its corresponding shared memory. In Figure 4.2, this illustration

is used to explain the steps of proposed algorithm.

Figure 4.1: CUDA block and corresponding shared memory

22

At the beginning of the computation, the data is divided into a number of

threads per block sized chunks and these chunks are distributed to the corre-

sponding blocks. These chunks are only half size of the reserved shared memory

per block, since other chunks will later reside on the other half of the shared

memory. As an illustration, in Figure 4.2-a, an example of blocks of data is

given.

Figure 4.2-b shows the first step in which each block copies itself to its cor-

responding second half of the shared memory. Different from the next steps, in

this step, each thread compares the corresponding data point (current) with the

data points whose indexes are greater than the index of current data point. This

step achieves to avoid idle comparison especially in diagonals.

Figure 4.2-c shows the second step. In this step, each block copies the data

chunk in global memory which is mapped to the next block in modular fashion.

Then each thread compares the corresponding data point in first half of the shared

memory with all the data points in the second half of the shared memory.

Figure 4.2-d shows the final step. As in the previous step, each block copies

the data chunk in global memory which is mapped to the next block of its next.

To formulate the algorithm, (numberofblocks + 1)/2 steps are performed

to guarantee that all pairs are compared. For iteration i, we copy the ((n +

i)mod(numberofblocks))th chunk to the nth block then each thread in a block

compares the corresponding data point in the first half with each data point in

second half of the shared memory.

The pseudo code for the GPU-INLJ algorithm is given in Algorithm 5:

23

(a)

(b)

(c)

(d)

Figure 4.2: GPU-based improved parallel nested loop algorithm Steps (a) First

step (b) Second step (c) Third step (d)Final step

24

Algorithm 5 GPU-INLJ

1: Input: S ∈ Rd, ε

2: shared sharedMem[2 × NTHREADS][d]

3: globalIndex ← threadIdx.x + blockDim.x × blockIdx.x

4: localIndex ← threadIdx.x

5: NBLOCKS ← gridDim.x

6: sharedMem[localIndex] ← S[globalIndex × d]

7: synchronize threads

8: for i=0 to NBLOCKS / 2 do

9: index ← (blockIdx.x + i) × NBLOCKS

10: index ← (index × blockDim.x) × d + (threadIdx.x × d)

11: sharedMem[localIndex + NTHREADS] ← S[index]

12: synchronize threads

13: if i = 0 then

14: for j= localIndex+1 to NTHREADS do

15: q ← sharedMem[j + NTHREADS]

16: p ← sharedMem[localIndex]

17: if dist(p, q) ≤ ε then

18: count ← atomicInc(1)

19: results[count] ← (p, q) {(p,q) is a result pair}
20: end if

21: end for

22: else

23: for j= 0 to NTHREADS do

24: q ← sharedMem[j + NTHREADS]

25: p ← sharedMem[localIndex]

26: if dist(p, q) ≤ ε then

27: count ← atomicInc(1)

28: results[count] ← (p, q) {(p,q) is a result pair}
29: end if

30: end for

31: end if

32: end for

25

4.3 Parallel Clustering Based Partitioning and

Epsilon Window Algorithm

In this section, we introduce parallel clustering based partitioning and epsilon win-

dow algorithm (KMEANS-JOIN) for similarity join problem. In Section 4.2,

we propose GPU-INLJ algorithm which provide a new communication scheme be-

tween CUDA blocks via shared memory to improve the GPU-NLJ algorithm and

achieve considerable speedups over it. With this motivation, we come up with a

solution that partitions the data and replicate the data points into ε-boundaries of

clusters to satisfy storing points into same partition which lie within ε distance of

each other. Finally each independent partitions employ the GPU-INLJ algorithm

to result join pairs. Algorithm 6 shows the major components of KMEANS-JOIN

algorithm. KMJ-clustering is a GPU based k-Means Clustering algorithm.

KMJ-epsilon-bound is a GPU kernel function which finds the data points that

need to be replicated and clusters to which the data points are replicated. KMJ-

sorted-array creates an array sorted by cluster id including the replicated data

points, and finally KMJ-join-kernel is a GPU kernel function which performs

the similarity join operation for each independent partition.

Algorithm 6 KMEANS-JOIN

1: Input: S[s1, s2, ..., s|S|] ∈ Rd, ε, k

2: centroids: C[c1...ck] and membership: M [|S|] ← KMJ-clustering(S, d, k)

3: overlapped data points: O ← KMJ-epsilon-bound (S, C, M)

4: count ← count-replicated-points(O)

5: sorted− S[(s1)c1 ...(sn)c1 , ..., (s1)ck ...(sm)ck]← KMJ-sorted-array(S, O, M,

count)

6: KMJ-join-kernel(sorted-S, ε, k)

4.3.1 Partitioning Data

For our similarity join algorithm, first we need to divide the data into partitions

to reduce the join cost. In the partitioning step which is called KMJ-clustering,

26

the main purpose is to cluster data points so that the points in the same partition

are more likely to be joined according to the predefined threshold value ε. Thus

we need to consider closeness of the data points while partitioning. Another

important issue is the efficiency that requires a fast partitioning approach. For

this purpose, we choose the k-Means clustering algorithm which converges very

fast and can be parallelized by using GPU. Also the k-Means clustering algorithm

provides partitioning the data space into Voronoi cells [9] which is explained in

Section 2.2. For k-Means clustering implementation, we use the software which

includes CUDA based implementation of k-means clustering algorithm under the

open-source MIT licence and provided in [8]. It takes S[s1, s2, ..., s|S|] ∈ Rd dataset

and number of clusters k as inputs and outputs the cluster centroids C[c1...ck]

and an array M [|S|] which stores the cluster index of each data point belongs.

As shown in Figure 4.3, the partitions represent the Voronoi cells generated

by the means and data is split halfway between cluster means. In Figure 4.3, c1,

c2 and c3 are the cluster centroids.

Figure 4.3: Voronoi Diagram based partitions and corresponding cluster centroids

27

4.3.2 Epsilon Overlaps between Clusters

In the proposed KMEANS-JOIN algorithm, the final clusters of data will be

considered as independent partitions and sent to KMJ-join-kernel which employs

GPU-INLJ algorithm separately from each others without any communication

requirements. Since the main aim is to perform ε-join operation, only clustering

the data cannot guarantee the proper join results. For example, there can be

objects that are close to each other in ε distance, but assigned to different clusters

and this may cause missing join results. For this purpose, we suggest ε-overlaps

between cluster boundaries. To visualize this approach, in Figure 4.4, we extend

ε-overlaps over the hyperplane which is at equal distance between cluster centroids

c1 and c2. Suppose that the distance between cluster centroids: |c1, c2| = 2c+ 2ε.

In Section 4.3.3, we will explain how the data points are replicated to other

clusters.

Figure 4.4: Epsilon overlaps over the hyperplane between clusters

28

4.3.3 Replicated Clusters

After clustering the data and divide it into separate partitions, we need to extend

the hyperplane by ε and determine the data points that belong to a cluster but

also need to be replicated to others whose ε-boundary also contains them. For

this purpose, we need to determine an upper bound UB(p) for the data point p in

Figure 4.5 which belongs to cluster with centroids c2 and lies within the ε-bounds

of cluster with centroids c1 as explained in Section 4.3.2.

Figure 4.5: The data point p belongs to the cluster with centroid c2, however, it

lies on the ε-bound line.

To determine an upper bound, for a point p which belongs to cluster c2, we

define a function as follows:

∀p ∈ c2, f(p) = |p, c1|2 − |p, c2|2 (4.1)

We follow the findings in [42], we derive the Equation 4.2 for ε boundaries:

f(p) ≤ 2ε× |c1, c2| = UB(c1, c2) (4.2)

29

The right hand side of Equation 4.2 forms an upper bound for the functional

values of points that lie within the ε boundary of c2 with respect to c1.

As shown in Figure 4.6, if a point is on the edge, then the functional value of

it is equal to the upper bound, otherwise the inequality is strict. The functional

values of points p1 and p1 which belong to c2 in Figure 4.5 are as follows:

f(p1) = 2ε× |c1, c2| (4.3)

f(p2) ≤ 2ε× |c1, c2| (4.4)

Figure 4.6: Finding an upper bound for data replication

For data point replication, we only need to know the distances between the

cluster centroids, and the distances between each point and the cluster centroids.

Thus, the replication process of each data point is independent from each other

and the replicated clusters can be determined in parallel.

Using the observations in Equation 4.2, we come up with a replication scheme

which checks if any point s belongs to ci needs to be replicated to cj by calculating

if the difference of the square of its distance to cj and ci is less than or equal to

the UB(s):

30

s ∈ ci and s is replicated to cj, if f(s) ≤ UB(ci, cj)

Algorithm 7 explains the data replication and ε-bound algorithms.

Algorithm 7 KMJ-epsilon-bound

1: Input: S ∈ Rd, ε, k, M, O, C

2: p ← currentData[d]

3: globalIndex ← threadIdx.x + blockDim.x × blockIdx.x

4: localIndex ← threadIdx.x

5: if globalIndex < |S| then

6: p ← S[globalIndex × d]

7: pc ← M[globalIndex]

8: for i=0 to k do

9: compute upper bound UB(p)

10: a ← dist(p, pc)

11: b ← dist(p, Ci)

12: if b2 − a2 ≤ UB(p) then

13: report into O that p is replicated to Ci

14: end if

15: end for

16: end if

KMEANS-JOIN algorithm supports maximum 64 clusters. In Algorithm 7,

we store the replicated points in a one dimensional and |S| size overlapping array

(O) which allocates long integer types. Thus, each element in O represents a

data point and keeps 64 bits. For a data point, we set its bits which represent

the cluster id where that data point is replicated to. If we consider an 8 clusters

example, assume that the ith data point is replicated to the 0th, 3th and 7th

clusters. In this case O[i] stores 10001001. We will use this storage schema

in creating an array sorted (KMJ-sorted-array) by cluster id including the

overlapped data points and reducing the redundant distance comparison which

also eliminates the duplicate join pairs.

31

4.3.4 Creating Sorted Array

After finding the data points that need to be replicated and the clusters which the

data points are replicated to, we create an array stores data points both original

and replicated ones which are sorted (KMJ-sorted-array) by cluster id. As

shown in Algorithm 8, we find the clusters where points are replicated to by pro-

cessing the overlapping array O which is obtained as described in Section 4.3.3.

In this step we obtain the final replicated clusters which will be handled indepen-

dently by KMJ-join-kernel.

Algorithm 8 KMJ-sorted-array

1: Input: S[s1, s2, ..., s|S|] ∈ Rd, O, M, k
2: for i=0 to k do
3: store s into sorted− S if it belongs to cluster k, and increment index
4: for j=0 to |S| do
5: overlap ← O[j]
6: if overlap mod 2 = 1 then
7: sorted− S[index] ← sj
8: increment index
9: end if
10: overlap ← overlap / 2
11: O[j] ← overlap
12: end for
13: end for

4.3.5 Epsilon Join in Replicated Clusters

After obtaining the final replicated clusters, each of them can be joined indepen-

dently. Thus we perform KMJ-join-kernel which employs the improved parallel

nested loop join (GPU-INLJ) algorithm explained in Section 4.2, for each inde-

pendent partition and report the join results. The pseudo code of KMJ-join-kernel

is given in Algorithm 9.

32

Algorithm 9 KMJ-join-kernel

1: Input: sorted− S[(s1)c1 ...(sn)c1 , ..., (s1)ck ...(sm)ck] , ε, k

2: for i=0 to k do

3: GPU-sorted-S ← sorted− S[(s1)ci ...(sn)ci]

4: GPU-INLJ(GPU-sorted-S, ε)

5: end for

4.3.6 Avoiding the Redundant Distance Comparison

The data point replication process of KMEANS-JOIN algorithm results in du-

plicate join pairs. This situation does not only output a join pair more than

once, but also increases the number of distance comparisons which affects the

computation time. In this thesis, we present a methodology which completely

avoids the redundant distance comparison caused by the duplicated join pairs.

For this purpose, we modify the GPU-INLJ by adding a few binary operations.

In this approach we take the advantage of overlapping array O which stores 64

bit integers for each data point and on which we can perform bitwise operations.

The main aim in this algorithm is to perform join operation between two data

points p and q only once in one of the clusters where p and q are both replicated

to. To explain in detail, assume that p and q are within the ε threshold and they

belong to the clusters c1 and c4 respectively. p is replicated to clusters c4, c6, and

c7. q is replicated to clusters c1 and c7. In this case, p and q appear together

in clusters c1, c4, and c7 and independent join operation for each cluster outputs

the pair (p, q) three times. In this algorithm, we perform this join operation only

in the cluster c7 which has the greatest id. We perform the bitwise operation as

shown in Algorithm 10 to provide this condition.

33

Algorithm 10 Eliminate-duplicate-pairs

1: Input: O, M , ck: current cluster id

2: q is the current query point. p is the join candidate of q

3: pm ← 1 << M [p] and qm ← 1 << M [q]

4: po ← O[p] and qo ← O[q]

5: pall ← pmORpo

6: qall ← qmORqo

7: p-qcommon ← pallANDqall

8: lower-bound ← p-qcommon/2

9: upper-bound ← 1 << ck

10: if upper-bound > lower-bound then

11: perform distance comparison in join kernel

12: end if

In Algorithm 10, if we consider our example pm (00000010) and qm (00010000)

represent the original clusters and po (11010000) and qo (10000010) represent

the replicated clusters of p and q respectively. We obtain the both cluster and

replicated clusters memberships pall (11010010) and qall (10010010) by bitwise

ORing. Then we find the common clusters p-qcommon (10010010) where p and

q appear together by bitwise ANDing the pall and qall. In order to perform

the distance comparison, the current cluster ck must be the greatest cluster id

among the common clusters stored in p-qcommon. To provide this condition we use

following inequality:

2i > 2i−1 + 2i−2 + 2i−3 + ...+ 20 (4.5)

Then we need to find the binary representation of our current cluster ck which

is upper-bound. We obtain the lower-bound by dividing p-qcommon by 2.

34

4.4 Reclustering based Epsilon Join

In this section, we enhance our solution for data sets which are updated by new

data points gradually. To explain the problem, let assume that we have a dataset

S[s1, s2, ..., s|S|] ∈ Rd and performed KMEANS-JOIN (see Section 4.3) with ε

threshold parameter. Then a bunch of new data points has arrived and continue

to arrive iteratively. Also, between these iterations, an epsilon query with same

ε parameter is requested. The problem here is to respond to this epsilon query

as efficient as possible.

To solve this problem, we propose an algorithm called RE-JOIN. In this al-

gorithm, first we perform KMEANS-JOIN on the initial data set and obtain the

cluster centroids C[c1...ck] and join result according to the ε parameter. When

a number (n) of new data points p1, p2, ..., pn has started to arrive, they are im-

mediately assigned to clusters whose centroids C[c1...ck] are the closest to each

data point. Then a defined cluster quality metric (qm) is calculated and com-

pared with a predefined threshold value (t). If qm exceeds the threshold t, then

it means that a reclustering is required. In this case, we employ the GPU based

KMJ-clustering (see Section 4.3.1) and obtain new clusters including new data

points that arrived in the previous iteration. In the other case when qm is still

less than the threshold t, then it means that there is no need for a reclustering.

When an epsilon query with same ε parameter is requested, KMEANS-JOIN al-

gorithm without KMJ-clustering is again employed to produce join results. Since

we have the ε-join results of previous dataset before the updates and ε query

request, a variation of KMJ-join-kernel is implemented to avoid redundant pair

comparisons. Figure 4.7 gives the algorithm schema of RE-JOIN.

As mentioned earlier, RE-JOIN decides the necessity of reclustering by com-

paring a cluster quality metric with a predefined threshold value. We defined

total-cluster-distance-change as a cluster quality metric. It is computed as, first

calculating the updated cluster centroids Cu[(cu)1...(c
u)k] after new data points

has been assigned. Then the distance between updated cluster’s centroid (cu)i

and its corresponding previous centroid ci is calculated where i = (1, 2, ..., k). Fi-

nally, k number of distances are added to the total-cluster-distance-change which

35

has an initial value of zero.

Figure 4.7: RE-JOIN algorithm schema

36

Chapter 5

Evaluation

In this chapter, first we give implementation specific details, dataset information

and explain CUDA based challenges that we face with and optimizations that

we come up with. Then, we report the experimental evaluations of proposed

algorithms and make comparisons in terms of dataset size, join selectivity and

running time, and discuss the results.

5.1 Implementation Details

In this Section, we give the details of datasets we use and some challenges and

optimizations in CUDA programming are explained. We conduct our experiments

on a NVIDIA Geforce GTx 560 GPU which includes 384 CUDA cores and has

1 GB Memory and Intelr CoreTM i5-2500 3.30 GHz processor which includes 4

Cores, 6M Cache.

5.1.1 Challenges and Optimizations

There are some performance tunings on GPUs such as global memory accesses

and shared memory bank conflicts. In CUDA, there 32 banks which provide the

37

communication between shared memory and threads and each is responsible from

a single thread and 32 bit data. If these 32 banks are assigned to different data

addresses, then they run concurrently. If two different threads want to access the

same 32 bits at the same time, then the bank conflict occurs. In this situation,

bank provide the data to one of the threads first, and then to the other. This is a

2-way bank conflict. In CUDA, 32 threads form a warp and all the threads within

a warp run in parallel. If all threads in a warp want to access the same memory

address at the same time, then broadcast occurs rather than 32-way bank conflict.

This provides the transferring of all required data to all demanding threads at

one data transfer time. As explained in Section 4.2, in our proposed GPU-INLJ

algorithm, the data is divided into a number of threads per block sized chunks

and these chunks are only the half size of reserved shared memory per block.

Each thread in a chunk is responsible from a 8 dimensional float type of data

point (query point) and each of them wants to access every dimensions of all

data points which reside in the other half of the reserved shared memory. Also

each chunk contains 32 data points whose one dimension consists of 32-bits. Thus

each thread access the ith dimension at the same time and broadcast occurs and

32 broadcast operations are performed rather than 32 × 32 data transfer.

The minimum number of threads per block in CUDA is same as the warp size

which is 32. In general, small block size limits the total number of threads and

128 or 256 number of threads per block is sufficient. However, in our experiments,

we choose the threads per block number (NTHREADS) as 32. The reason of this

choice is minimizing the granularity because of the padding operation. We pad

the dataset to an odd factor of NTHREADS because the main loop of GPU-

INLJ algorithm operates for odd number of blocks and (number of blocks +

1)/2 steps are performed to guarantee that all pairs are compared. Thus at

most (NTHREADS × 2)−1 number of padded data is required. In order to

minimize this value, we choose 32 threads per block. Padded data avoids the

unnecessary and expensive branch operations which are required for index and

memory controls.

38

5.1.2 Dataset

For our experiments, we generated 8 dimensional synthetic data with varying

number of data points type of float and data values ranging from 0 to 10. Since

we do not use any index structure in our GPU based NLJ and INLJ algorithms,

the distribution of the dataset is not important. However, for KMEANS-JOIN

algorithm, since we first cluster the data, we generate clustered synthetic data

which consists of ten clusters with varying number of data points. To illustrate

the dataset (see Figure 5.1), first we use principle component analysis to reduce

the number of dimension to 2. A dataset with 100K data points is shown in

Figure 5.1.

Figure 5.1: Representation of a dataset with 100K data points

We also generate 8 dimensional synthetic data with uniform distribution and

data values ranging from 0 to 10 type of float, in order to evaluate the perfor-

mance of KMEANS-JOIN algorithm comparing to the GPU-based NLJ and INLJ

algorithms.

Finally, we perform our algorithms on areal data set from UCI-KDD repository

which is Corel Image Features Data Set We use the color moments data which

39

consists of 68040 data points with 9 dimensional.

5.2 Experimental Results

In our experimental results, we evaluate the performance of the proposed algo-

rithms in terms of size of the dataset, ε parameter (join) selectivity, number of

clusters (k) selectivity and speedup. Also we measure the number of replicated

data points according to the k and ε. Experimental results are conducted on the

following algorithms which solve similarity join problem:

• CPU based Nested Loop Join (CPU-NLJ) algorithm

• GPU based Nested Loop Join (GPU-NLJ) algorithm which is also men-

tioned in [36]. GPU-NLJ also contains the data transfer between CPU and GPU.

NLJ-join-kernel only includes the kernel function which performs join opera-

tion.

• GPU based Improved Nested Loop Join (GPU-INLJ) algorithm which is

our proposed work and improve the GPU-NLJ providing a communication scheme

between CUDA thread blocks and increasing the shared memory usage. GPU-

INLJ also contains the data transfer between CPU and GPU. INLJ-join-kernel

only includes the kernel function which performs join operation.

• GPU based Partitioning and Epsilon Bound (KMEANS-JOIN) algorithm

which uses k-Means clustering algorithm to partition the data and provide epsilon

boundaries between partitions to avoid missing join pairs. Also it uses the GPU-

INLJ algorithm in each partition to produce join results.

We also evaluate the main components of KMEANS-JOIN algorithm which

are as follows:

1. KMJ-clustering: A GPU based k-Means Clustering algorithm.

2. KMJ-epsilon-bound: A GPU kernel function which finds the data points

40

that need to be replicated and clusters to which the data points are repli-

cated.

3. KMJ-sorted-array: Create an array sorted by cluster id including the

overlapped data points

4. KMJ-join-kernel: A GPU Kernel function which performs the similarity

join operation for each independent partition. Running time measurements

for KMJ-join-kernel includes the all join operations of all partitions.

5.2.1 Dataset Size

In this section, we evaluate the running time performances of proposed algorithms

by varying the dataset size from 100K to 500K. In order to show the effect of

dataset size, we use the synthetic clustered dataset.

Figure 5.2 compares the running time performance (including data transfers)

of CPU-NLJ, GPU-NLJ and GPU-INLJ algorithms for varying dataset size, when

ε is 0.5. As shown in Figure 5.2, both GPU-NLJ and GPU-INLJ are not affected

by the computation load as CPU-NLJ is. The reason of this result is that each

thread in GPU makes slightly less computation than CPU. However CPU makes

all the computation in a single thread and variation on the data size directly

affects the performance.

From Figure 5.2, we can also show that our proposed GPU-INLJ widens the

spread between CPU-NLJ when dataset size is getting larger. The reason is that

the GPU-INLJ is adaptive for larger data set and needs only extra one iteration,

if numberofthreads × 2 data point is included into the dataset. Also the effect

of the dataset size for GPU-NLJ and GPU-INLJ is dramatically less than it has

for CPU, because the distance calculations and comparisons which GPU perform

for a thread slightly fewer than CPU does.

Figure 5.3 makes performance comparison in terms of the running times (in-

cluding data transfers) of GPU-NLJ, GPU-INLJ and KMEANS-JOIN (including

41

100K 200K 300K 400K 500K
0

100

200

300

400

500

600

700

800

900

1000

Dataset size

T
im

e
(s

ec
on

ds
)

GPU NLJ
GPU INLJ
CPU NLJ

Figure 5.2: Variation of running time of CPU-NLJ, GPU-NLJ and GPU-INLJ
with increasing dataset size. ε: 0.5

its all components) algorithms for varying dataset size, when ε is 0.5 and num-

ber of clusters is 20. In Figure 5.3, we can see the performance improvement of

GPU-INLJ better than GPU-NLJ. Although, the GPU-NLJ also includes shared

memory usage, it is slower than our improved algorithm GPU-INLJ which has

2× speedup over GPU-NLJ.

100K 200K 300K 400K 500K
0

20

40

60

80

100

120

Dataset size

T
im

e
(s

ec
on

ds
)

KMEANS−JOIN (k:20)
GPU NLJ
GPU INLJ

Figure 5.3: Variation of running time of GPU-NLJ, GPU-INLJ and KMEANS-

JOIN with increasing dataset size. ε: 0.5 and k: 20

42

As shown in Figure 5.3, KMEANS-JOIN outperforms the GPU-INLJ. In par-

ticular, the running time of KMEANS-JOIN grows slower than the running time

of GPU-INLJ does. Also, it is up to 5 times faster than GPU-INLJ and scales

better.

Figure 5.4 displays performance comparison in terms of running times of main

components of KMEANS-JOIN algorithm for varying dataset size, when ε is 0.5

and k is 20. It can be seen that the running times of all components except

KMJ-join-kernel increase almost linearly with increasing dataset size. Also, in

Figure 5.5 which is an inference of Figure 5.4, we give the percentage contri-

bution of main components of KMEANS-JOIN algorithm in terms of running

time. We can see that the percentage contribution of execution time of KMJ-

clustering decreases when the dataset size getting larger, however, the percentage

contribution of execution time of KMJ-join-kernel increases. All other compo-

nents’ percentage contribution remain almost same. These results show that the

fast convergence property of k-Means clustering algorithm and its GPU based

implementation have significant impacts on the scalability of KMEANS-JOIN

algorithm. Almost quadratic increase in KMJ-join-kernel is inherited from GPU-

INLJ algorithm which is employed in KMJ-join-kernel. However, we will see the

impact of partitioning the data on join operation.

100K 200K 300K 400K 500K
0

5

10

15

Dataset size

T
im

e
(s

ec
on

ds
)

KMJ−join−kernel

KMJ−epsilon−bound

KMJ−sorted−array

KMJ−clustering

Figure 5.4: Effect of dataset size on running time of main components of

KMEANS-JOIN. ε: 0.5 and k: 20

43

Figure 5.5: Percentage contribution of main components of KMEANS-JOIN al-

gorithm in terms of running time. ε: 0.5 and k: 20

We also give the speedup results of proposed algorithms for varying number

of dataset size. Table 5.1 shows that KMEANS-JOIN significantly outperforms

all other algorithms and is up to 4.7 times faster than GPU-INLJ algorithm. We

can also see from Table 5.2 that, GPU-INLJ has up to 13 times performance

improvement by CPU-NLJ. Finally we parallelize the CPU-NLJ algorithm by

using OpenMP (OMP-CPU-NLJ) on a system mentioned in 5.1and show that

it is up to 2 times faster than serial code.

Table 5.1: Speedup of KMEANS-JOIN algorithm over CPU-NLJ, GPU-NLJ, and

GPU-INLJ for varying dataset size

100K 200K 300K 400K 500K

KMEANS-JOIN over CPU-NLJ 18.65 36.70 42.30 54.40 65.15

KMEANS-JOIN over GPU-NLJ 3.02 4.61 4.96 6.21 7.37

KMEANS-JOIN over GPU-INLJ 1.82 3.07 3.22 3.98 4.69

44

Table 5.2: Speedup of GPU-NLJ and GPU-INLJ over CPU-NLJ for varying

dataset size
100K 200K 300K 400K 500K

GPU-INLJ over CPU-NLJ 10.24 11.96 13.14 13.65 13.87

GPU-NLJ over CPU-NLJ 6.15 8.00 8.50 8.74 8.9

OMP-CPU-NLJ over CPU-NLJ 2.10 1.95 1.99 1.96 1.60

Figure 5.6 displays performance comparison of GPU-NLJ-join-kernel, GPU-

INLJ-join-kernel, and KMJ-join-kernel algorithms in terms of the running time

for varying dataset size, when ε is 0.5 and k is 20. As mentioned in Section 5.2,

these algorithms do not include the data transfers between CPU and GPU, only

considers the join operation. In Figure 5.6, although KMJ-join-kernel employs the

GPU-NLJ for each partition and performs k number of GPU-NLJ-join-kernel, we

can see that the execution time of KMJ-join-kernel is faster and grows much slower

than others. This result shows the impact of data partitioning on join operation.

Since we divide the data into smaller chunks, the join cost has decreased.

100K 200K 300K 400K 500K
0

20

40

60

80

100

120

Dataset size

T
im

e
(s

ec
on

ds
)

NLJ−join−kernel
INLJ−join−kernel
KMJ−join−kernel

Figure 5.6: Effect of dataset size on running time of GPU-NLJ-join kernel, GPU-

INLJ-join kernel and KMJ-join kernel. ε: 0.5 and k: 20

We also analyse the effect of dataset size in terms of number of replicated data

points and corresponding number of join pairs for KMEANS-JOIN algorithm.

45

As seen in Figure 5.7, the number of join pairs increase with increasing dataset

size and relatively smaller than the number of replicated data points. Although

the data replication does not affect the overall performance of KMEANS-JOIN

algorithm as shown in Figure 5.4, a further optimization for this step may be

required.

100K 200K 300K 400K 500K
0

1

2

3

4

5

6

7
x 10

4

Dataset size

C
ou

nt

replicated data
join pairs

Figure 5.7: Total number of replicated data points and corresponding number of

join pairs for varying number of data size in KMEANS-JOIN algorithm. ε: 0.5

and k: 20

5.2.2 Epsilon (Join) Selectivity

In this section, we evaluate the effect of ε threshold parameter on the running time

of proposed algorithms. For this experiment, we fix the dataset size to 100K and

change the ε values from 0.2 to 1. Also we measure the compared-pairs-ratio

of KMEANS-JOIN algorithm with different k and ε values.

Figure 5.8 makes performance comparison in terms of running times of GPU-

NLJ, GPU-INLJ, and KMEANS-JOIN algorithms for varying ε values when is

data size is 100K and k is 20. As seen in Figure 5.8, the performance of KMEANS-

JOIN is less affected by epsilon and its KMJ-epsilon-bound component almost

never changes.

46

0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

Epsilon

T
im

e
(s

ec
on

ds
)

GPU NLJ GPU INLJ KMEANS−JOIN KMJ−epsilon−bound

Figure 5.8: Effect of ε on running time of GPU-NLJ, GPU-INLJ and KMEANS-

JOIN, datasize: 100K and k: 20

For a dataset S, the number of pair comparison is performed in the nested

loop join paradigm is as;

|S| ∗ (|S| − 1)

2
(5.1)

The proposed GPU-INLJ algorithm does not reduce the cost given in Equa-

tion 5.1, however, it uses the computation capability of GPU as much as possible

and efficiently as presented in Section 4.2, and outperforms the GPU-NLJ and

CPU-NLJ algorithms. However, KMEANS-JOIN also reduces the join cost, which

has a significant impact on execution time. We evaluate join cost of S by using

compared-pairs-ratio which is computed as;

number of pairs comparison

|S| ∗ (|S| − 1)/2
(5.2)

By using Equation 5.2, the compared-pairs-ratio for GPU-NLJ and GPU-INLJ

is 1. However, as shown in Figure 5.9, it is much smaller for KMEANS-JOIN

and slightly growing according to the increasing ε. Another result derived from

Figure 5.9 is the number of clusters (k) also affects the compared-pairs-ratio.

when k is 10, the compared-pairs-ratio is smaller than when k is 5, because each

47

partition has smaller number of data points and number of pairs comparison

performed by GPU-INLJ decreases according to the Equation 4.5. However this

trend does not continue for large number of k values. When the number of clusters

increases, replicated number of data points, and thereby, the size of partitions

also increases.

0.2 0.4 0.6 0.8

0.16

0.18

0.2

0.22

0.24

0.26

Epsilon

C
om

pa
re

d
pa

irs
 r

at
io

KMEANS−JOIN (k:10)
KMEANS−JOIN (k:5)

Figure 5.9: Effect of ε and k on compared-pairs-ratio of KMEANS-JOIN,

datasize: 100K

We also show the effect of ε threshold parameter in terms of number of repli-

cated data points and corresponding number of join pairs for KMEANS-JOIN

algorithm when the dataset size is fixed to 100K for synthetic clustered dataset

and the number of clusters is 20. As seen in Figure 5.10, until ε is 1, number of

replicated data points is greater than number of join pairs which is also shown in

Figure 5.7 for varying dataset size. After ε is 1, number of replicated data points

is almost half of the number of join pairs.

In Figure 5.11, shows the relation between replicated data points and number

of join pairs for color moments dataset. The number of replicated data points is

always higher than the number of join pairs and also higher than the dataset size

which is 68040. As a result of the increase in the number of replicated data points,

as seen in Figure 5.12, KMEANS-JOIN algorithm is affected from increasing ε

more than other algorithms.

48

0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7
x 10

4

Epsilon

C
ou

nt

Replicated data

Join pairs

Figure 5.10: Total number of replicated data points and corresponding number of

join pairs for varying values of ε in KMEANS-JOIN algorithm. datasize: 100K

clustered dataset and k: 20

0.1 0.2 0.3 0.4 0.5
0

1

2

3

4

5

6

7

8

9
x 10

4

Epsilon

C
ou

nt

Replicated data

Join pairs

Figure 5.11: Total number of replicated data points and corresponding number

of join pairs of color moments dataset for varying values of ε in KMEANS-JOIN

algorithm. k: 20

49

0.1 0.2 0.3 0.4 0.5
0

2

4

6

8

10

12

14

16

18

Epsilon

T
im

e
(s

ec
on

ds
)

GPU NLJ
GPU INLJ
KMEANS−JOIN (k:20)
CPU NLJ

Figure 5.12: Effect of ε on running time of CPU-NLJ, GPU-NLJ, GPU-INLJ and

KMEANS-JOIN algorithms for color moments dataset

In Figure 5.13, shows the relation between replicated data points and number

of join pairs for 100K synthetic uniform dataset. The number of replicated data

points is always higher than the number of join pairs. The number of replicated

data points is also higher than the dataset size (100K) which is same in color mo-

ments dataset, however, in uniform dataset it is about 6 times of 100K. Thus each

of the final replicated clusters, which are performed by join kernel independently,

are very close to the original dataset size.

As a result of the increase in the number of replicated data points for uni-

form dataset, as seen in Figure 5.14, KMEANS-JOIN algorithm is affected from

increasing ε more than other algorithms. However, our proposed GPU-INLJ al-

gorithm still outperforms the CPU-NLJ and GPU-NLJ algorithms. This results

show that the GPU-INLJ algorithm can be an alternative of KMEANS-JOIN

algorithm for uniform distributed datasets.

Since CPU-NLJ, GPU NLJ and GPU-INLJ algorithms performs the nested

loop, there is not an important change in their performance for increasing ε values

as shown in Figure 5.12 and Figure 5.14. The increasing number of join pairs

according to the increasing ε values and reporting them result the running time

of NLJ algorithms increase slightly.

50

0.5 1 1.5 2 2.5 3 3.5
0

1

2

3

4

5

6
x 10

5

Epsilon

C
ou

nt

Replicated data

Join pairs

Figure 5.13: Total number of replicated data points and corresponding number of

join pairs for varying values of ε in KMEANS-JOIN algorithm. datasize: 100K

uniform dataset and k: 20

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0

5

10

15

20

25

30

35

Epsilon

T
im

e
(s

ec
on

ds
)

CPU NLJ
GPU NLJ
GPU INLJ
KMEANS−JOIN (k:20)

Figure 5.14: Effect of ε on running time of CPU-NLJ, GPU-NLJ, GPU-INLJ and

KMEANS-JOIN algorithms for 100K uniform dataset

51

5.2.3 Number of Clusters (k) Selectivity

In this section, we evaluate the effect of number of clusters (k) parameter on the

running time of KMEANS-JOIN algorithm. For this experiment, we use color

moments dataset and synthetic uniform and clustered datasets with 100K size.

Figure 5.15 compares running time KMEANS-JOIN algorithm for different

datasets with varying k values. As seen in Figure 5.15,since the final cluster sizes

decreases as the k parameter increases, performance for 100K clustered dataset

is improving. However, it is almost stabled for large k values, because of the

increase in the number of replicated points. The running time for uniform dataset

is highly affected by increasing k values. Even for small k values, as a result of

uniform distribution, data replication occurs too much and this directly affects

the performance of KMEANS-JOIN algorithm. The stability of the running time

for color moments dataset is caused by the compensation of increasing replica size

by increasing number of clusters which aims to decrease the size of final replicated

clusters.

2 4 8 16 32 64
1

2

3

4

5

6

7

8

9

10

Number of cluster (k)

T
im

e
(s

ec
on

ds
)

Color Moments

100K − Clustered data

100K − Uniform data

Figure 5.15: Effect of k on running time of KMEANS-JOIN algorithms

In this section, we modify the KMEANS-JOIN algorithm to produce approx-

imate join results (APRX-KMEANS-JOIN) which yields missing join pairs. For

this purpose, we extract the replication process from KMEANS-JOIN algorithm,

52

and send the clusters which are obtained by kmeans clustering to join kernel. We

evaluate the results in terms of performance gain and precision. The precision is

calculated by dividing the number of join pairs produced by APRX-KMEANS-

JOIN by accurate number of join pairs. Approximate join results do not include

the false hits.

In Figure 5.16, effect of k on the running time of APRX-KMEANS-JOIN for

clustered dataset with varying number of data points from 200K to 500K and

color moments dataset is given. From the running times in Figure 5.16, APRX-

KMEANS-JOIN is faster than KMEANS-JOIN algorithm.

2 4 8 16 32 64
0

5

10

15

20

25

30

35

40

Number of cluster (k)

T
im

e
(s

ec
on

ds
)

200K
300K
400K
500K
Color Moments

Figure 5.16: Effect of k on running time of APRX-KMEANS-JOIN algorithms ε:

0.4

As seen in Figure 5.17, the precision values for uniform dataset is above 0.9.

When we consider the performance improvement gained by APRX-KMEANS-

JOIN over KMEANS-JOIN, these results shows that if there is an acceptable

limit for the precision loss of join results, then APRX-KMEANS-JOIN can be

preferred.

53

2 4 8 16 32 64
0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Number of cluster (k)

P
re

ci
si

on

200K 300K 400K 500K Color Moments

Figure 5.17: Effect of k on precision values of APRX-KMEANS-JOIN algorithms

ε: 0.4

5.2.4 Reclustering with Different Workloads

In this section, we conduct experiments to evaluate the performance of RE-JOIN

algorithm which is explained in Section 4.4.

First we change the number of new data points which are updated to initial

dataset and perform the reclustering step according to the different quality metric

(qm) values which are 50 and 100. The suitability of these values are decided

experimentally. We also perform the cases where there is no reclustering (NR)

or a reclustering step always occurs after an update process (AR).

For update intensive RE-JOIN experiments, we set the size of initial dataset

to 50K and as shown in Table 5.3, update this dataset with the number of data

points. Table 5.3 shows the running times of different reclustering methods for

update intensive RE-JOIN algorithm, which only performs one ε-query opera-

tion per update process. We compare update intensive RE-JOIN algorithm with

KMEANS-JOIN algorithm by performing it multiple times on same data sizes as

RE-JOIN is performed. For update intensive RE-JOIN algorithm, it can be seen

that for small size of updates RE-JOIN outperforms KMEANS-JOIN, however

the performance of RE-JOIN decreases for greater size of updates.

54

For query intensive RE-JOIN experiments, we set the size of initial dataset to

50K and update this dataset with 1K data points. Table 5.4 shows the running

times of different reclustering methods for query intensive RE-JOIN algorithm,

which performs multiple ε-query operation per 4-update process. We compare

query intensive RE-JOIN algorithm with KMEANS-JOIN algorithm by perform-

ing it multiple times on same data sizes as RE-JOIN is performed with multiple

ε values shown in Table 5.4. As seen in Table 5.4, contrary to load intensive RE-

JOIN, query intensive RE-JOIN algorithm outperforms multiple KMEANS-JOIN

algorithm for each reclustering methods except NR. In this method, new data

points are assigned to the cluster whose centroid is closest. Since reclustering is

not performed, the quality of clusters degrades which causes increase in the size

of replicated data points. The best performance results among the reclustering

methods are obtained by comparing quality metric with a threshold value 100.

This method decides the necessity of reclustering by checking the quality met-

ric of updated clusters and avoid unnecessary kmeans clustering as well as high

number of replicated data points.

Table 5.3: Running times (seconds) for Update Intensive RE-JOIN

Updated data points

0.5K 1K 2K 4K 6K

qm > 50 143.6 71.7 39.1 24.1 18.8

qm > 100 144.7 72.5 39.2 23.2 17.7

Always recluster 143.8 71.5 39.07 24.1 18.6

Never recluster 155.5 78.1 41.6 25.1 18.8

Multi KMEANS-JOIN 151.1 77.2 39.03 19.2 13.4

55

Table 5.4: Running times (seconds) for Query Intensive RE-JOIN

Number of Query per Update

5 15 25 35

qm > 50 107.3 272.8 442 606.6

qm > 100 105.27 270.3 441 601.9

Always recluster 107.5 272.5 442.9 608.8

Never recluster 118.3 302.7 490.9 678.9

Multi KMEANS-JOIN 115.4 307.3 494.7 690.6

56

Chapter 6

Conclusion and Future Work

Similarity join operation is a building block for many applications in data mining

and information retrieval. Similarity join can be performed by the nested loop

paradigm, however, it is highly time consuming as a result of its computational

complexity. Thus, accelerating join queries is crucial and has attracted many

researches. Spatial index structures, partitioning methods and metric space in-

dexing methods have been employed for this purpose. Recently, with the emerging

general purpose GPU computing, the performance benefit of GPU has started to

be used in database management problems. In this study, we aim to use GPU to

exploit the parallelism potential of similarity join problem.

In this thesis, we have addressed the question, how similarity join algorithms

can be efficiently executed on Graphics Processing Units (GPU). First we men-

tioned how similarity join algorithm based on nested loop can be parallelized

(GPU-NLJ). Then we presented our improved nested loop join algorithm (GPU-

INLJ) which propose a communication scheme between CUDA blocks. In GPU-

INLJ, our aim is to exploit the parallelism potential of NLJ algorithm on GPU

rather than pruning the search space of each query point belongs to the outer loop

in nested loop paradigm. Our proposed algorithm increases the shared memory

utilization and avoids duplicate pair results.

We also propose another GPU based solution for similarity join problem called

57

KMEANS-JOIN which partitions the dataset and provide epsilon boundaries be-

tween partitions to avoid missing join pairs. KMEANS-JOIN first partitions the

data using GPU based k-means clustering and replicate the data points into ε-

boundaries of clusters to satisfy storing points into same partition which lie within

ε of each other. Then we use the proposed GPU-INLJ join algorithm for each

partition and store the join pairs. We also show that each step of KMEANS-JOIN

algorithm can be performed by using GPU.

In KMEANS-JOIN, we solve the problem of any pair appear in multiple clus-

ters caused by replicating data points between clusters by performing very fast

bitwise operations. This technique not only removes the duplicate join pairs, but

also avoids the redundant distance comparisons.

We have conducted several experiments on the proposed algorithms and

achieved significant performance improvements. First we showed that GPU based

parallelization of nested loop join algorithm (GPU-NLJ) outperforms the serial

nested loop join algorithm. Then we demonstrated that our proposed GPU-INLJ

algorithm beats the GPU-NLJ and achieves up to 2 times speedup. Finally we

showed the performance improvement achieved by KMEANS-JOIN algorithm

which is 4 times faster than GPU-INLJ algorithm. We also experimentally high-

lighted that KMEANS-JOIN not only exploits the parallelism, but also reduces

the number of compared pairs.

As a future work, we plan to improve KMEANS-JOIN algorithm, by per-

forming join kernel for each independent partition in parallel which will further

increase the performance of algorithm.

58

Bibliography

[1] NVIDIA, NVIDIA CUDA Programming Guide 2.0. 2008.

[2] J. B. Macqueen, “Some Methods for classification and analysis of multivari-

ate observations,” in Procedings of the Fifth Berkeley Symposium on Math,

Statistics, and Probability, vol. 1, pp. 281–297, 1967.

[3] S. Lloyd, “Least squares quantization in pcm,” IEEE Trans. Inf. Theor.,

vol. 28, no. 2, pp. 129–137.

[4] I. Dhillon and D. Modha, “A data-clustering algorithm on distributed mem-

ory multiprocessors,” in In Large-Scale Parallel Data Mining, Lecture Notes

in Artificial Intelligence, pp. 245–260, 2000.

[5] D. Judd, P. K. McKinley, and A. K. Jain, “Large-scale parallel data cluster-

ing,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 20, pp. 871–876, 1998.

[6] M. Zechner and M. Granitzer, “Accelerating k-means on the graphics pro-

cessor via cuda,” in Intensive Applications and Services, 2009. INTENSIVE

’09. First International Conference on, pp. 7 –15, april 2009.

[7] J. Wu and B. Hong, “An efficient k-means algorithm on cuda,” in Parallel

and Distributed Processing Workshops and Phd Forum (IPDPSW), 2011

IEEE International Symposium on, pp. 1740 –1749, may 2011.

[8] S. Giuroiu, “A cuda implementation of the k-means clustering algorithm.”

[9] Wikipedia, “K-means clustering — wikipedia, the free encyclopedia,” 2012.

59

[10] T. Brinkhoff, H.-P. Kriegel, and B. Seeger, “Efficient processing of spatial

joins using r-trees,” in Proceedings of the 1993 ACM SIGMOD international

conference on Management of data, SIGMOD ’93, (New York, NY, USA),

pp. 237–246, ACM, 1993.

[11] M.-L. Lo and C. V. Ravishankar, “Spatial joins using seeded trees,” SIGMOD

Rec., vol. 23, pp. 209–220, May 1994.

[12] K. Shim, R. Srikant, and R. Agrawal, “High-dimensional similarity joins,”

pp. 301–311, 1997.

[13] M.-L. Lo and C. V. Ravishankar, “Spatial hash-joins,” SIGMOD Rec.,

vol. 25, pp. 247–258, June 1996.

[14] J. M. Patel and D. J. DeWitt, “Partition based spatial-merge join,” SIGMOD

Rec., vol. 25, pp. 259–270, June 1996.

[15] V. Dohnal, C. Gennaro, and P. Zezula, “Similarity join in metric spaces using

ed-index,” in Database and Expert Systems Applications, vol. 2736 of Lecture

Notes in Computer Science, pp. 484–493, Springer Berlin / Heidelberg, 2003.

[16] N. Koudas and K. C. Sevcik, “Size separation spatial join,” in Proceedings of

the 1997 ACM SIGMOD international conference on Management of data,

SIGMOD ’97, (New York, NY, USA), pp. 324–335, ACM, 1997.

[17] N. Koudas and K. C. Sevcik, “High dimensional similarity joins: Algorithms

and performance evaluation,” IEEE Transactions on Knowledge and Data

Engineering, vol. 12, pp. 3–18, 2000.

[18] A. Guttman, “R-trees: a dynamic index structure for spatial searching,” in

Proceedings of the 1984 ACM SIGMOD international conference on Man-

agement of data, SIGMOD ’84, ACM, 1984.

[19] J.-P. Dittrich and B. Seeger, “Gess: a scalable similarity-join algorithm for

mining large data sets in high dimensional spaces,” in Proceedings of the

seventh ACM SIGKDD international conference on Knowledge discovery and

data mining, KDD ’01, (New York, NY, USA), pp. 47–56, ACM, 2001.

60

[20] J. A. Orenstein, “Spatial query processing in an object-oriented database

system,” in Proceedings of the 1986 ACM SIGMOD international conference

on Management of data, SIGMOD ’86, (New York, NY, USA), pp. 326–336,

ACM, 1986.

[21] C. Böhm, B. Braunmüller, F. Krebs, and H.-P. Kriegel, “Epsilon grid order:

an algorithm for the similarity join on massive high-dimensional data,” in

Proceedings of the 2001 ACM SIGMOD international conference on Man-

agement of data, SIGMOD ’01, (New York, NY, USA), pp. 379–388, ACM,

2001.

[22] V. Dohnal, C. Gennaro, P. Savino, and P. Zezula, “D-index: Distance search-

ing index for metric data sets,” Multimedia Tools Appl., vol. 21, pp. 9–33,

Sept. 2003.

[23] P. N. Yianilos, “Excluded middle vantage point forests for nearest neighbor

search,” tech. rep., NEC Research Institute, July 1998.

[24] E. H. Jacox and H. Samet, “Metric space similarity joins,” ACM Trans.

Database Syst., vol. 33, no. 2, pp. 7:1–7:38, 2008.

[25] C. A. R. Hoare, “Quicksort,” The Computer Journal, vol. 5, 1962.

[26] J. K. Uhlmann, “Satisfying general proximity/similarity queries with metric

trees,” Information Processing Letters, vol. 40, pp. 175–179, 1991.

[27] R. Paredes and N. Reyes, “List of twin clusters: A data structure for similar-

ity joins in metric spaces,” Similarity Search and Applications, International

Workshop on, vol. 0, pp. 131–138, 2008.

[28] E. Chávez and G. Navarro, “A compact space decomposition for effective

metric indexing,” Pattern Recogn. Lett., vol. 26, no. 9, pp. 1363–1376.

[29] N. K. Govindaraju, B. Lloyd, W. Wang, M. Lin, and D. Manocha, “Fast

computation of database operations using graphics processors,” in Proceed-

ings of the 2004 ACM SIGMOD international conference on Management of

data, SIGMOD ’04, (New York, NY, USA), pp. 215–226, ACM, 2004.

61

[30] C. Sun, D. Agrawal, and A. El Abbadi, “Hardware acceleration for spatial

selections and joins,” in Proceedings of the 2003 ACM SIGMOD international

conference on Management of data, SIGMOD ’03, (New York, NY, USA),

pp. 455–466, ACM, 2003.

[31] B. He, M. Lu, K. Yang, R. Fang, N. K. Govindaraju, Q. Luo, and P. V.

Sander, “Relational query coprocessing on graphics processors,” ACM Trans.

Database Syst., vol. 34, pp. 21:1–21:39, Dec. 2009.

[32] N. Govindaraju, J. Gray, R. Kumar, and D. Manocha, “Gputerasort: high

performance graphics co-processor sorting for large database management,”

in Proceedings of the 2006 ACM SIGMOD international conference on Man-

agement of data, SIGMOD ’06, (New York, NY, USA), pp. 325–336, ACM,

2006.

[33] L. Luo, M. Wong, and L. Leong, “Parallel implementation of r-trees on the

gpu,” in Design Automation Conference (ASP-DAC), 2012 17th Asia and

South Pacific, pp. 353 –358, 30 2012-feb. 2 2012.

[34] B. Yu, H. Kim, W. Choi, and D. Kwon, “Parallel range query processing on

r-tree with graphics processing unit,” in Proceedings of the 2011 IEEE Ninth

International Conference on Dependable, Autonomic and Secure Computing,

DASC ’11, (Washington, DC, USA), pp. 1235–1242, IEEE Computer Society,

2011.

[35] B. He, K. Yang, R. Fang, M. Lu, N. Govindaraju, Q. Luo, and P. Sander,

“Relational joins on graphics processors,” in Proceedings of the 2008 ACM

SIGMOD international conference on Management of data, SIGMOD ’08,

(New York, NY, USA), pp. 511–524, ACM, 2008.

[36] C. Böhm, R. Noll, C. Plant, and A. Zherdin, “Indexsupported similarity join

on graphics processors,” in BTW, pp. 57–66, 2009.

[37] M. D. Lieberman, J. Sankaranarayanan, and H. Samet, “A fast similarity join

algorithm using graphics processing units,” in Proceedings of the 2008 IEEE

24th International Conference on Data Engineering, ICDE ’08, (Washington,

DC, USA), pp. 1111–1120, IEEE Computer Society, 2008.

62

[38] K. E. Batcher, “Sorting networks and their applications,” in Proceedings

of the April 30–May 2, 1968, spring joint computer conference, AFIPS ’68

(Spring), (New York, NY, USA), pp. 307–314, ACM, 1968.

[39] C. Bhm, R. Noll, C. Plant, B. Wackersreuther, and A. Zherdin, “Data mining

using graphics processing units,” in Transactions on Large-Scale Data- and

Knowledge-Centered Systems I (A. Hameurlain, J. Kng, and R. Wagner,

eds.), vol. 5740 of Lecture Notes in Computer Science, pp. 63–90, Springer

Berlin / Heidelberg, 2009.

[40] B. Hong-tao, H. Li-li, O. Dan-tong, L. Zhan-shan, and L. He, “K-means on

commodity gpus with cuda,” in Computer Science and Information Engi-

neering, 2009 WRI World Congress on, vol. 3, pp. 651 –655, 31 2009-april 2

2009.

[41] Y. Li, K. Zhao, X. Chu, and J. Liu, “Speeding up k-means algorithm by

gpus,” in Computer and Information Technology (CIT), 2010 IEEE 10th

International Conference on, pp. 115 –122, 29 2010-july 1 2010.

[42] G. R. Hjaltason and H. Samet, “Index-driven similarity search in metric

spaces (survey article),” ACM Trans. Database Syst., vol. 28, pp. 517–580,

Dec. 2003.

63

