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Approved for the Graduate School of Engineering and Science:

Prof. Dr. Levent Onural
Director of the Graduate School

ii



ABSTRACT

DETERMINISTIC AND STOCHASTIC ERROR
MODELING OF INERTIAL SENSORS AND

MAGNETOMETERS

Görkem Seçer

M.S. in Electrical and Electronics Engineering

Supervisor: Prof. Dr. Billur Barshan

August 2012

This thesis focuses on the deterministic and stochastic modeling and model pa-

rameter estimation of two commonly employed inertial measurement units. Each

unit comprises a tri-axial accelerometer, a tri-axial gyroscope, and a tri-axial

magnetometer. In the first part of the thesis, deterministic modeling and cali-

bration of the units are performed, based on real test data acquired from a flight

motion simulator. The deterministic modeling and identification of accelerome-

ters is performed based on a traditional model. A novel technique is proposed for

the deterministic modeling of the gyroscopes, relaxing the test bed requirement

and enabling their in-use calibration. This is followed by the presentation of a

new sensor measurement model for magnetometers that improves the calibration

error by modeling the orientation-dependent magnetic disturbances in a gimbaled

angular position control machine. Model-based Levenberg-Marquardt and model-

free evolutionary optimization algorithms are adopted to estimate the calibration

parameters of sensors. In the second part of the thesis, stochastic error model-

ing of the two inertial sensor units is addressed. Maximum likelihood estimation

is employed for estimating the parameters of the different noise components of

the sensors, after the dominant noise components are identified. Evolutionary

and gradient-based optimization algorithms are implemented to maximize the

likelihood function, namely particle swarm optimization and gradient-ascent op-

timization. The performance of the proposed algorithm is verified through ex-

periments and the results are compared to the classical Allan variance technique.

The results obtained with the proposed approach have higher accuracy and re-

quire a smaller sample data size, resulting in calibration experiments of shorter

duration. Finally, the two sensor units are compared in terms of repeatability,

present measurement noise, and unaided navigation performance.
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ÖZET

EYLEMSİZLİK DUYUCULARININ VE
MANYETOMETRELERİN DETERMİSTİK VE

STOKASTİK HATA MODELLEMESİ

Görkem Seçer

Elektrik ve Elektronik Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Prof. Dr. Billur Barshan

Ağustos 2012

Bu tezde orta performanslı ve düşük maliyetli, yaygın kullanımdaki iki eylemsiz-

lik duyucu ünitesinin deterministik ve stokastik hata modellemesi ele alınmıştır.

Her bir ünite, üç boyutta ölçüm alabilen bir ivmeölçer, bir dönüölçer ve

bir manyetometre içermektedir. Tezin ilk bölümünde, bir uçuş hareket

simülatörü üzerinde kontrollü deneyler sonucunda elde edilen veriler kullanılarak

ünitelerin deterministik hata modellenmesi ve kalibrasyonu gerçekleştirilmiştir.

İvmeölçerler için klasik hata modelleri ve parametre kestirim yöntemleri kul-

lanılmıştır. Dönüölçerlerin hata model parametrelerinin kestirimi için yeni bir

yöntem önerilmiştir. Bu yeni yöntem, dönüölçerlerin klasik yöntemlerle kalib-

rasyonunda kullanılan açısal hız kontrol cihazlarına olan gereksinimi ortadan

kaldırmıştır. Manyetometreler için ise gimballi sistemlerde bulunan açısal po-

zisyona bağlı olarak değişen bozucu manyetik etkileri de içeren yeni bir model

öne sürülerek kalibrasyon hataları azaltılmıştır. Sensörlerin kalibrasyonu için

model tabanlı Levenberg-Marquardt ve modelden bağımsız evrimsel eniyileme al-

goritmaları kullanılmıştır. Tezin ikinci kısmında, eylemsizlik duyucu ünitelerinin

stokastik modellemesi yapılmıştır. Duyucu ölçümlerinin içerdiği baskın gürültü

tipleri belirlendikten sonra, bu gürültülere ilişkin model parametreleri en büyük

olabilirlik kestirimi yöntemiyle kestirilmiştir. Ölçümlerin olabilirlik fonksiy-

onunu en büyükleyen stokastik model parametrelerinin kestirimi için evrim-

sel ve gradyan-tabanlı eniyileme algoritmaları kullanılmıştır. Bu algoritmalar,

parçacık sürü optimizasyonu ve artan gradyan optimizasyonudur. Önerilen al-

goritmanın başarımı deneylerle kanıtlanmış ve sonuçlar klasik Allan değişinti

yöntemi ile karşılaştırılmıştır. Buna göre, önerilen yöntemler aracılığıyla daha

kısa süreli deney verileri kulanılarak daha yüksek doğruluklu kestirimler elde

edildiği gözlenmiştir. Sonuç olarak, iki ünite tekrar edilebilirlik, ölçümlerdeki

gürültü miktarı ve yöngüdüm başarımı açısından karşılaştırılmıştır.
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for their guidance and criticism.

I would also like to thank some friends for their support and friendship: Tuğrul
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Chapter 1

Introduction

Inertial sensors and magnetometers are measurement devices having a broad

range of application areas. Basic types of inertial sensors are accelerometers,

gyroscopes, and inclinometers.

The size, weight, and the cost of inertial sensors have decreased consider-

ably during the last two decades. Formerly, these devices have been mainly

used in aeronautics and maritime applications because of the high cost associ-

ated with the high accuracy requirements. The availability of lower cost, medium

performance inertial sensor units has opened up new possibilities for their use.

Some of the more recent application areas are physical therapy and home-based

rehabilitation [12], medical diagnosis and treatment [13], telesurgery [14, 15],

biomechanics [16, 17], detecting and classifying falls [18, 19, 20], remote moni-

toring of the physically or mentally disabled, the elderly, and children [21], er-

gonomics [22], shock and vibration analysis in the automotive industry, naviga-

tion of unmanned vehicles [23, 24, 25], state estimation and dynamic modeling

of legged robots [26, 27], sports science [28], ballet and other forms of dance [29],

animation and film making, computer games [30, 31], professional simulators,

virtual reality, and stabilization of equipment through motion compensation.

The sensing units usually contain gyroscopes and accelerometers, and some-

times, magnetometers in addition. Some of these devices are sensitive around
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a single axis whereas others are multi-axial (usually two- or three-axial). Two

examples are shown in Figure 1.1.

(a) (b)

Figure 1.1: Illustrations of the IMUs used in the thesis [1, 2]. (a) MicroStrain
3DM-GX2 and (b) Xsens MTx.

Accelerometers are devices sensing the specific acceleration which is the accel-

eration relative to free fall [3]. In its simplest form, the accelerometer contains a

proof mass connected via a spring to the case of the instrument as shown in Fig-

ure 1.2. If the accelerometer falls freely within a gravitational field, there will be

no extension or compression of the spring since the case and the proof mass will

fall together. Thus, the output of the sensor will remain at zero while the accel-

eration of the sensor will be equal to the gravitational acceleration g. Conversely,

an accelerometer measures acceleration corresponding to the gravitational force

stopping it from falling when it is stationary. Therefore, accurate knowledge of

the gravitational field is essential to compensate this offset in the measurements.

Gyroscopes are devices sensing the angular rate. The most basic and original

form of gyroscopes are mechanical and makes use of the inertial properties of

a wheel or rotor spinning at high speed [32]. Schematic drawing of such a me-

chanical gyroscope sensing the angular rate of the input axis is shown in Figure

1.3. Torque is induced about the output axis when a torque is applied about the

input axis because of the constantly spinning disk. This phenomenon is known

as precession in rigid body dynamics [33]. Induced torque is proportional to the

angular rate of the input axis. This rate can be measured by sensing the induced

2



Figure 1.2: A simple accelerometer [3].

torque (i.e., sensing the tension on the restraining springs). The internal view of

a rate gyroscope used in 1950s is illustrated in Figure 1.4.

Since inertial sensors provide rate output, their output needs to be integrated

once or twice to get angular/linear position information. Thus, even very small

errors at their output accumulate very quickly, and the output tends to drift in

time.

(����		����

�����1

Figure 1.3: A simple mechanical spinning mass rate gyroscope [3].

In addition to inertial sensors, there are other types of sensors (e.g., a magnetic

compass) used to determine the kinematics of a body. Magnetic field sensors

called magnetometers are main elements of them. Magnetometers are instruments

measuring the strength and direction of the nearby magnetic fields. They are
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Figure 1.4: The JG7005 rate gyroscope used in 1950s [4].

used in a wide range of disciplines from archeology [34] to inertial navigation

[35]. Their general application in inertial navigation is to determine the attitude

by comparing their measurements with the Earth’s own magnetic field [36].

None of these sensors are perfect. Their measurements deviate from actual

signals as they suffer from certain errors. It is a commonly adopted approach to

characterize and calibrate the sensors’ errors accordingly in order to improve the

measurements’ accuracy. Some of these errors are constant while some change in

time. Characterization of these changeable components are hard and require long

term experiments. The most powerful of them is bias drift [23, 37]. It refers to

average measurement of sensors when the input is zero. It depends on operating

temperature of the sensors. Operating temperature of the device is determined

by environmental factors (e.g., ambient temperature) and initial warm-up of the

sensors. Hence, bias drift error generally cannot be compensated as much as

other error terms and plays a significant role in the performance of the sensors.
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Inertial sensors can be classified into one of the following performance cate-

gories [38]: marine, navigation, tactical, industrial, and consumer grades. Inertial

navigation systems (INS) having marine grade inertial sensors provide the best

accuracy (1.8 km per day) and cost over one million USDs on the average. Navi-

gation grade INSs generally cost 100,000 USDs and have a typical error of 1.5 km

per hour. Unaided inertial navigation operation for a few minutes can be achieved

by tactical grade inertial sensors. These units typically cost between 5,000–30,000

USDs. Industrial grade INSs typically cost 7,000–10,000 USDs. They can only

provide stand-alone inertial navigation solutions for a few seconds. They are typ-

ically used in pedestrian dead-reckoning systems, antenna tracking, and low-cost

unmanned aerial vehicles. The lowest grade of inertial sensors is the consumer

grade. Consumer grade inertial sensors attract the interest of researchers because

of their decreasing cost by the developments in MEMS technology. However, they

can be used for navigation purposes for a short period of time only if they are cal-

ibrated precisely. They are relatively inexpensive compared to the other classes.

More detailed information on the performance categories of inertial sensors and

their quantitative comparison can be found in [38].

In this thesis, we study the calibration problem of two widely used consumer

grade MEMS-based tri-axial inertial measurement units (IMU) and compare them

in terms of navigation performance: 3DM-GX2 of MicroStrain (U.S.A.) [39] and

MTx of Xsens (The Netherlands) [40]. Both sensors are light, small, and depicted

in Figure 1.1 [1, 2]. They have three orthogonal accelerometers, gyroscopes, and

magnetometers. MTx is also a part of higher-level system Xbus Kit [41] that

synchronizes multiple MTx units. General specifications of the units indicating

their performance are also given in Table 1.1. More detailed specifications and

manufacturers’ calibration sheets of both units are provided in Appendix D.

It is obvious in the table that the error becomes considerably large in a few

seconds if navigation is performed by any of these units. Hence, proper calibration

of the units is needed. After finding the deterministic and stochastic calibration

parameters, both standalone and aided (e.g., GPS) performance of the units can

be improved. This is the main objective of this thesis. Now, we will provide a

brief summary on the prior work.
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(a)

MicroStrain accelerometer gyroscope magnetometer
meas. range ±50 m/s2 ±1200◦/sec ±1.2 Gauss
bias stability ±0.05 m/s2 ±0.2◦/sec 0.01 Gauss
nonlinearity 0.2% 0.2% 0.4%
max. data rate 1000 Hz

(b)

Xsens accelerometer gyroscope magnetometer
meas. range ±50 m/s2 ±1200◦/sec ±0.75 Gauss
bias stability ±0.02 m/s2 ±1◦/sec 0.001 Gauss
nonlinearity 0.1% 0.2% 0.2%
max. data rate 512 Hz

Table 1.1: General specifications of (a) MicroStrain 3DM-GX2 and (b) Xsens
MTx units.

1.2 Earlier Work on Deterministic Calibration

When it comes to unaided operation of an INS, deterministic error calibration is

a must, especially for systems having MEMS-based inertial sensors [42, 43, 44, 45,

46]. Accordingly, deterministic error terms need to be identified. Methods used

for deterministic error model identification of inertial sensors can be classified

into two categories: traditional and in-field methods.

Traditional methods are usually adopted in the aerospace industry, where

navigation and tactical grade units are used, and satisfactory results are usually

obtained. They rely on applying reference signals to the sensors and comparing

measurements with the reference dataset. The test procedure changes depending

on what type of machine is used to generate the excitation signals. In general, cen-

trifuge and angular position control machines are used for accelerometers. When

an angular position control machine (e.g., a flight motion simulator (FMS)) is

used, the accelerometer is positioned and held stationary at reference orienta-

tions and calibration parameters are calculated based on sensor measurements

and reference accelerations associated with the reference orientations and grav-

itational acceleration [3]. The limitation of this procedure is that acceleration
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signals applied to the sensors lie between −1g and +1g. This may cause inaccu-

rate modeling outside the [−1,+1]g interval. This method is called the 1g test.

An angular position control machine is shown in Figure 1.5. As for the centrifuge

machine case, reference acceleration signals are applied to the sensors by rotat-

ing the centrifuge [47]. Then, deterministic error terms can be identified by the

same signal processing algorithm as used in the former procedure. Furthermore,

excitation signals are usually not restricted to the [−1,+1]g interval for this case

which means that high acceleration values are sustainable [47]. For illustrative

purposes, a centrifuge machine is shown in Figure 1.6.

Figure 1.5: An angular position control machine used for inertial sensor calibra-
tion [5].

Similar methods are adopted for traditional gyroscope deterministic calibra-

tion as well. One of the two commonly employed procedures is based on the

positioning gyroscopes at reference orientations and finding the unknown calibra-

tion parameters using the sensor measurements and the reference angular rates

associated with the reference orientations and the Earth’s angular velocity [3]

which is analogous to the accelerometer case. However, this is not practical for

MEMS-based gyroscopes as they cannot sense the Earth’s turn rate [48] and a

very limited excitation signal set can be used for deterministic error parameter

7



Figure 1.6: A centrifuge machine used for inertial sensor calibration [6].

identification as in the accelerometer case. This procedure can be realized by

an angular position control machine. The second procedure is based on rotating

gyroscopes at reference turn rates [49] using single axis rate tables. An example

single axis rate table is shown in Figure 1.7. Gyroscopes do not experience any

considerable calibration error at any turn rate by this method since the dataset

used for calibration is not limited to a narrow interval as in the first procedure.

Figure 1.7: A rate table used for gyroscope calibration [7].
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Magnetometer experiments need to be carefully designed since external fac-

tors, such as the magnetic permeability of the material of the test bed and the

external magnetic sources such as electric motors, affect the magnetometer mea-

surements [50, 51]. These effects are usually constant for a certain environment.

Hence, magnetometer calibration parameters need to be estimated specific to

the real application platform. The main principle of magnetometer error iden-

tification is holding magnetometers at known orientations and comparing their

measurements with the Earth’s true magnetic field at where experiments are con-

ducted [50]. For example, magnetometers used in aircraft are usually calibrated

by making certain movements, known as swinging, after being mounted on the

aircraft [52, 53].

There has been more effort put on intelligent calibration procedures with lower

cost especially after the development of MEMS inertial sensors since traditional

methods depend on highly expensive and special machines. It would be senseless

that customers, having a low budget and using these low-cost sensors, have to

buy such expensive machines for deterministic calibration. Hence, intelligent and

inexpensive calibration procedures called in-field calibration methods have been

developed [54, 55, 56, 57] since the error terms are identified on the field and gen-

erally during the application. In-field calibration techniques have become more

popular among researchers since low-cost inertial sensor design has accelerated

and has been drawing a lot of attention in the industry. The working principle of

the in-field calibration techniques depend on some facts or constraints specific to

the application. One example is that the norm of the ideal accelerometer mea-

surements has to be equal to the gravitational acceleration when the sensors are

stationary.

1.3 Earlier Work on Stochastic Calibration

Accurate navigation performance cannot be achieved by the standalone utilization

of inertial sensors even if deterministic calibration is done perfectly, which is not

likely in practice due to repeatability issues [48]. The stochastic nature of the
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measurements restricts the success of INSs. Inertial sensors are typically used in

conjunction with other sensing systems, such as Global Positioning System (GPS)

[58, 59], laser [60], odometry [61] for that reason. GPS is the most commonly

used aid sensor among them [62]. GPSs can provide more accurate navigation

information but they are not sufficient on their own due to their low update

rate and frail/delicate structure [63] (i.e., blocking of satellite signals) in systems

requiring real-time navigation. Furthermore, they become inoperable indoors.

For these reasons, localization systems combining an IMU and GPS are favored.

Such systems bring together the advantage of the IMU’s real-time navigation

capability and the accuracy of the GPS at low frequencies.

Kalman filter and its variations are often used in integrated INS/GPS navi-

gation systems [64, 65, 66]. Therefore, the process and measurement noise mod-

els need to be constructed to ensure that the fusion algorithm works properly.

Stochastic modeling and calibration of inertial sensors is an important step of

this work.

Here, we provide a brief survey and review of the prior work on stochastic

modeling and calibration of inertial sensors and magnetometers. Approaches to-

ward identification of stochastic model parameters of inertial sensors are mainly

focused on the Allan variance (AV), which is a type of statistical analysis tool.

It has been adopted firstly by time and frequency standards community for the

characterization of frequency instability of oscillators [67]. Using the AV for

stochastic identification of inertial sensors is mainly based on fitting the theoret-

ical AV of the noise content in the measurements of inertial sensors to the actual

AV obtained through experiments. Detailed discussion on the theoretical AV of

the noise processes in inertial sensor output can be found in [68, 69]. The first

work in which AV is used for the stochastic analysis of inertial sensors is [70].

Then, the AV has become a very popular stochastic parameter estimation tool

for inertial sensors and it has been acknowledged to be a standard method for

stochastic calibration of inertial sensors by the IEEE [37, 10]. The main problem

of the AV method is its limited accuracy. Some of the noise terms in the inertial

sensor outputs have slow dynamics [71] so lengthy datasets may be needed to in-

volve them in the stochastic model depending on the operation time requirement
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of the INS. However, an exceedingly long dataset has to be acquired to make fair

estimates due to the accuracy issue of the AV. This increases both the duration

of experiments, storage requirements of the observations, and the computational

cost. In this regard, some improvements to the AV have been proposed in the

literature and novel forms of AV using the dataset more efficiently are suggested:

modified AV [72] and overlapping AV [73]. However, they mostly suffer from

computational time issue. Comparing the price paid for the computational time

and the improvement obtained by these enhanced AV techniques lead people

to prefer standard AV method. A general estimation scheme of the parameters

by AV is presented in [74]. Although AV is the most widely used technique,

adaptive methods are also studied in the literature and used sometimes. Online

techniques such as adaptive Kalman filtering are commonly employed since si-

multaneous sensor fusion and stochastic parameter estimation can be performed

[66, 75, 76, 77]. Besides modeling measurement noise and including it in a fusion

filter, another approach is to remove the noise in the measurements. In references

[78, 79], wavelet analysis is used for this purpose and it is shown that substantial

improvements are obtained in both standalone and aided navigation solutions.

As seen from the literature survey, a limited number methods has been con-

sidered in the literature for the stochastic identification of the noise parameters

of inertial sensors. The underlying reason might be that most inertial sensors had

not required detailed calibration because the sensors had already been highly ac-

curate before MEMS inertial sensors were developed, and scientists had sticked

to the reliable and traditional methods. Furthermore, there is still a lack of

advanced methods meeting the stochastic identification needs of MEMS inertial

sensors. Hence, implementation of novel methods in stochastic model identifica-

tion is worth trying because of their success in other application areas.
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1.4 Contributions and Organization of the The-

sis

Regarding the deficiencies of deterministic and stochastic error identification

methods, we propose some novel techniques to improve their results. Our main

contributions in this thesis can be summarized as follows:

• We propose a novel in-field calibration algorithm, which enables the calibra-

tion of MEMS gyroscopes by simple and hand-made rotations. This relaxes

the special machinery requirement of the gyroscope calibration problem.

The algorithm is based on the attitude of the sensors (e.g., one complete

revolution of the gyroscope about one of its mechanical case axes made by

using the hands) and makes use of the particle swarm optimization (PSO)

technique since it would be pretty hard to set up a derivative-based opti-

mization algorithm. At the end of the calibration, minor residual errors

are achieved. This demonstrates the practical potential of the proposed

algorithm.

• We adopt the general approach (traditional 1g test) for accelerometer deter-

ministic error identification. Effectiveness of the method is shown through

experiments.

• To the best of our knowledge, a method maximizing the both exact and

approximate likelihood functions after deriving their expressions for the

noise terms in inertial and magnetic sensors’ outputs does not exist. In this

thesis, both exact and approximate maximum likelihood estimation (MLE)

schemes are derived for stochastic identification after a statistically equiva-

lent autoregressive-moving average (ARMA) noise process is developed. We

use two distinct algorithms for the maximization of the likelihood function:

gradient-ascent optimization (GAO) and PSO. It is proven by experiments

that much better results in terms of accuracy, consistency, and time con-

sumption are obtained with these approaches compared to the classical

methods (i.e., AV).
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Before proceeding to the detailed discussion of the topics, a brief outline of the

thesis is given: In Chapter 2, we begin with developing the deterministic sensor

model and then provide the experimental results of our proposed algorithms. In

Chapter 3, we first develop the necessary framework for MLE by providing an

ARMA model regarding the noise content of the inertial sensors and magnetome-

ters. We then compare the experimental results of the MLE technique employing

two different optimization algorithms and the traditional AV technique in terms

of processing time, accuracy, and consistency. In Chapter 4, we compare our

two IMUs in terms of measurement quality regarding the results of deterministic

and stochastic identification and make the concluding remarks. We also provide

directions for future research in the same chapter.
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Chapter 2

Deterministic Modeling and

Calibration

To compensate for the localization errors originating from the drifting behavior

of inertial sensors, a sensor error model is built. In this context, the general

measurement model of an inertial sensor can be expressed as

~em = o (~et) + ~vm, (2.1)

where ~em, ~et, ~vm ∈ R3 denote the output of the sensor, the true value of the

excitation signal, and the stochastic noise, respectively. Moreover, o(.) : R3 →
R3 is a general functional operator modeling the behavior of inertial sensors.

Magnetometers are modeled differently since there exist some additional factors

affecting their output.

The parameters involved in the above model need to be estimated accurately.

Most of the previous works [3, 37, 80] approach the calibration problem by sepa-

rating the problem into two distinct parts as deterministic and stochastic model

identification because of their different mathematical characteristics. In this the-

sis, we follow the same approach and consider deterministic and stochastic mod-

eling separately.

Before moving on to a detailed description of the study, the notation used
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throughout the thesis is described: ~am, ~ωm and ~hm denote the accelerometer,

gyroscope, and magnetometer measurement vectors, respectively. The ~at, ~ωt,

and ~ht denote the true specific acceleration, angular rate, and magnetic field

strength vectors. Any vector ~ν expressed in the frame F is denoted by ~νF and the

direction cosine matrix (DCM) between any two frames F1 and F2 is denoted by

CF2

F1
where ~νF2 = CF2

F1
~νF1 . Orthonormal basis vectors of the x, y, and z axes of

any frame F are respectively shown by~iF,~jF, and ~kF. Furthermore, ax, ay, az, gx,

gy, gz and mx, my, mz abbreviations found in the tables in this thesis represent

the x, y, z axes accelerometers, gyroscopes, and magnetometers, respectively.

2.1 A Deterministic Model for Accelerometers

and Gyroscopes

Accelerometer and gyroscope outputs can be sufficiently modeled using polynomi-

als [37]. In most practical applications, 2nd and higher-order terms are neglected.

In this regard, the following equation is used to model o(.) in Equation (2.1) for

accelerometers and gyroscopes:

~em = (I + S)~et +~b+ ~vm where S =


sx 0 0

0 sy 0

0 0 sz

 ~b =


bx

by

bz

 (2.2)

Here~b and S respectively denote the bias vector and the scale factor error matrix.

I is a 3× 3 identity matrix.

In general, sensitivity axes of inertial sensors are often not coincident with

the axes of the body whose motion they are supposed to detect. Therefore, the

transformation between those two sets of axes needs to be determined beforehand.

Otherwise, the sensor model, given above, would be insufficient for calibration.

For this purpose, we define several sets of axes:

• Non-orthogonal sensor sensitivity frame (ŝ frame): This frame rep-

resents the set of actual sensitivity axes of the sensor. Deviation from

15



ˆ
,

s s
i i
� �

s
j
�

sk
�

ŝ
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Figure 2.1: The s and ŝ frames.

orthogonality stems from manufacturing tolerances in general. Its effects

on navigation performance are not trivial.

• Orthogonal sensor sensitivity frame (s frame): This frame is the or-

thogonalized version of the ŝ frame. Without loss of generality, components

of this frame can be described as follows, as illustrated in Figure 2.1:

– ~is is coincident with ~iŝ.

– ~js lies along the remaining perpendicular component of ~j ŝ after its

projection onto ~is.

– ~ks is on the same direction as the component of ~kŝ perpendicular to

the plane spanned by ~is and ~js.

The kinematic transformation between the frames ŝ and s is given below,

where ~ν ŝ = T~νs:

T =


1 0 0

sin(αzy) cos(αzy) 0

cos(αyz) sin(αyz) sin(αxz) sin(αyz) cos(αxz)

 (2.3)

• Sensor enclosure frame (p frame): This frame is made up of the orthog-

onal axes system of the sensor mechanical casing. Due to manufacturing
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tolerances and packaging issues, it cannot be aligned with the s frame in

practice. This situation can be represented by the DCM corresponding to

a series of rotations about the axes as expressed below:

Cs
p = RxRyRz, (2.4)

where

Rx =


1 0 0

0 cosφ sinφ

0 − sinφ cosφ

 , Ry =


cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ

 ,

Rz =


cosψ sinψ 0

− sinψ cosψ 0

0 0 1


are the basic rotation matrices about the x, y, z axes, respectively.

• Body frame (b frame): This frame is comprised of the orthogonal axes of

the platform to which the inertial sensors are attached. This frame should

be known so that the body can be navigated.

After all of the deterministic factors mentioned above are considered, the resulting

form of the sensor measurement model can be expressed as follows:

~em = (I + S)TCs
pC

p
b ~et +~b+ ~vm, (2.5)

where ~em can be replaced with either ~am or ~ωm, while ~et can be replaced with

either ~at or ~ωt.

The error terms in Equation (2.5), which is the sensor measurement model

for accelerometers and gyroscopes, can be summarized as follows:

• S is the scale factor error matrix and represents the measurement error of

the sensors in proportion to the input signal.

• T is the non-orthogonalization matrix related to frame ŝ. It is alternatively

known as the cross-axis sensitivity matrix.
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• Cs
p is the misalignment matrix and represents the imperfect alignment of

the frames p and s.

• Cp
b is the transformation matrix between the frames b and p.

• ~b is the bias error vector and represents the constant measurement errors

on all axes. The bias errors usually change with the operating temperature

of the sensor.

• ~vm is the additive measurement noise vector.

2.2 A Deterministic Model For Magnetometers

As stated before, magnetometers are used to find the attitude of frame b with

respect to the Earth’s frame of reference by measuring the Earth’s magnetic field

vector, denoted by ~hnede . The so-called North-East-Down (NED) frame is selected

for this purpose which is depicted in Figure 2.2.

 

Figure 2.2: The frame ned with its basis vectors (adopted from [8]).

We use the superscript ned for the NED frame. The unit vectors ~ined, ~jned,

and ~kned lie respectively along the north, east, and down directions. In the real

world, magnetometers are not solely exposed to ~hnede as expected. Particularly,

this problem occurs in indoor environments where there may be other external

impacts changing the magnetic field vector, measured by the sensor. Those effects
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strongly depend on the presence of ferromagnetic materials in the vicinity of the

sensor and the presence of sources that radiate magnetic fields. Errors are grouped

into two types as soft and hard iron errors [51]. A more detailed discussion on

these error types is given below:

• Hard iron error (δ ~B): They are defined as the time-invariant, unwanted

magnetic fields generated by the ferromagnetic materials with permanent

magnetic fields that are part of the structure of the platform on which the

sensors are placed or equipment installed near the magnetometer [81]. The

resultant magnetic field is the superposition of ~hnede and δ ~B. δ ~B can be

represented by the following vector:

δ ~B =
[
δx δy δz

]T
(2.6)

• Soft iron error (Ksi): They are introduced into the system by the in-

teraction of the external magnetic field with the ferromagnetic materials in

the vicinity of the sensor [51]. Magnetic permeability of the materials has a

direct influence on this interaction. Ksi can be represented by the following

symmetric matrix:

Ksi =


k11 k12 k13

k21 k22 k23

k13 k23 k33

 (2.7)

With the addition of Ksi, δ ~B, and the transformation matrix Cb
ned projecting

~hnede onto the b frame, Equation (2.5) is extended and the magnetometer mea-

surements can be modeled by the following equation [51, 53]:

~hm = (I + S)T (KsiC
s
pC

p
bC

b
ned

~hnede + δ ~B) +~b+ ~vm (2.8)

2.3 Deterministic Calibration of the Sensors

The navigation errors tend to accumulate very rapidly and consequently the out-

put drifts in time (i.e., proportionate with time cube for translational position
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and time square for angular position) [64]. Drift errors are more enhanced es-

pecially when consumer grade MEMS type of inertial sensors are used. Thus,

precise calibration of deterministic model parameters is essential.

It can be seen from Equations (2.5) and (2.8) that the sensor dynamics for

inertial sensors and magnetometers have some similarity. Therefore, similar tech-

niques can be used for the calibration of these sensors. The most straightforward

method is to apply a specific set of reference signals and observe the correspond-

ing outputs of the sensors. By comparing the observations and the reference data

set, calibration parameters are estimated. We give a brief description of this

approach for the three sensor types below.

• accelerometer: The traditional method for accelerometers is known as

both multi-position calibration and the 1g test [3]. Accelerometers are held

stationary at different and known orientations throughout this test. As a

result, calibration is performed according to the sensor measurements and

the local gravity vector, denoted by ~gL [59, 66, 67, 70].

• gyroscope: The calibration of general purpose and inexpensive gyroscopes

(i.e., MEMS gyroscopes) requires the application of different angular veloc-

ities whereas high-precision gyroscopes (i.e., fiber optic gyroscopes), that

are capable of measuring the Earth’s turn rate, can be calibrated by the

multi-position method. Calibration parameters are determined by process-

ing the gyroscope measurements with respect to the applied angular rate

values [66, 67, 68, 69, 70, 74].

• magnetometer: Magnetometers are positioned at known orientations

in a similar way to accelerometers. Unknown model parameters can be

estimated by comparing the magnetometer measurements and the mag-

netic field vector ~hne at the point where the experiments are conducted

[51, 53, 82, 83].

When traditional approaches are utilized, a machine controlling the angular posi-

tion and velocity is needed for the calibration of these sensors. The precision of the

machine in position and velocity control directly affects the estimation accuracy
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of the sensor model parameters and the related cost increases proportionately.

This cost has motivated researchers to develop in-field calibration methods that

do not require any external equipment. For accelerometers and magnetometers,

in-field calibration methods rely on the fact that the magnitude of the input sig-

nal is equal to the magnitude of ~gL and ~he under the condition that the sensors

are stationary. On the other hand, more advanced techniques are needed for gy-

roscope calibration that are usually based on comparing the computed attitude

with the true attitude obtained by simple, hand-made rotations [55, 56, 57].

Besides the calibration test procedures, another challenge for deterministic

model identification is to develop robust and accurate parameter estimation al-

gorithms. Various techniques have been studied in the literature. Simplicity of

the estimation algorithm greatly depends on the complexity of the sensor model.

Thus, batch least-squares like fundamental linear methods are adopted when or-

thogonality and misalignment errors are ignored (soft and hard iron errors are

also assumed to be zero for magnetometers) and measurement equations reduce

to a linear system of equations [57, 84, 85]. In [86], rank constraints of the lin-

ear system of equations are exploited for parameter estimation. However, it is

essential to use more complex algorithms that consider the nonlinearities in the

sensor dynamics. Otherwise, the measurement errors cannot be adequately com-

pensated for. In this regard, ellipsoid parameter estimation techniques are used

quite extensively since both Equations (2.5) and (2.8) are a kind of ellipsoid ana-

lytical expressions. These techniques are divided into two categories as geometric

and algebraic fit methods [87] and are based on different aspects of the calibra-

tion models. Regarding Sections 2.1 and 2.2, ~em corresponding to a specific time

instant k can be expressed in general terms as

~em[k] = H~et[k] + ~̂b+ ~vm. (2.9)

Since Equation (2.9) defines an ellipsoid, ellipsoid parameter estimation tech-

niques can be employed. For the general sensor model given in the above equa-

tion, the two approaches can be summarized as:
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• Geometric techniques try to find the calibration parameters by

arg min
H,~̂b

∑
k

‖ ~em[k]−H~et[k]− ~̂b ‖ . (2.10)

• Algebraic techniques rely on a different model, arranged form of Equa-

tion (2.9), and try to estimate the calibration parameters by

arg min
H ,̂~b

∑
k

[
(~em[k]− ~̂b)T (H−1)TH−1(~em[k]− ~̂b)− ~et[k]T~et[k]

]2

. (2.11)

It is shown in [87] that geometric techniques are superior to algebraic techniques in

terms of fitness accuracy but require exact knowledge of ~et, not available in some

cases. References [51, 82, 88] report on some of the works on sensor calibration

that employ ellipsoid parameter estimation methods.

In this thesis, we have used Acutronic’s high precision, three-degree-of-

freedom flight motion simulator (FMS) to conduct deterministic calibration ex-

periments for our sensors. In Table 2.1, technical specifications of the FMS can

be found. Furthermore, the FMS and its rotation axes are illustrated in Figure

2.3.

For calibration purposes, both MicroStrain and Xsens IMUs are mounted to

the fixture plate of the FMS, located on the shaft of the inner axis, at the same

time. This is illustrated in Figure 2.4. Then, a trajectory of the axes of the FMS

is determined for the experiments, which is called a calibration procedure. The

calibration procedure, loaded into the FMS controller computer after program-

ming, is summarized below:

1. The inner axis of the FMS is aligned with the level (ground) as shown in

Figure 2.5.

2. The inner axis of the FMS is rotated by 270◦ in 12 steps. FMS is held

stationary at each of those steps for 5 seconds.

3. The inner axis of the FMS is aligned with the gravity vector ~gL as shown

in Figure 2.6. It is assumed in this thesis that ~gL points perpendicular to

the level. This is explained in Section 2.3.1.
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roll (inner axis) pitch (middle axis) yaw (outer axis)
orthogonality (arcsec) – 5 5
wobble (arcsec) 2 3 5
angular freedom continuous continuous continuous
positioning accuracy (arcsec) 1 1.5 1.5
rate range (deg/sec) ±1000 ±500 ±300
rate resolution (deg/sec) 0.00001 0.00001 0.00001
rate accuracy (%) 0.0001 0.0001 0.0001
acceleration (deg/sec2) 10000 1500 400
bandwith (−3 dB) (Hz) 50 22 30

Table 2.1: Specifications of the FMS [11].

roll (inner axis)

pitch (middle axis)

yaw (outer axis)

Figure 2.3: Acutronic FMS overview (adopted from [9]).
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(a) overview

 

(b) close-up

Figure 2.4: (a) Overview and (b) close-up views of fixture plate onto which
MicroStrain and Xsens IMUs are mounted.

24



gravity

roll (inner axis)pitch (middle axis)

yaw (outer a
xis)

Figure 2.5: FMS at calibration procedure step 1.

4. The FMS makes a half turn around its middle axis while it stops and waits

for 5 seconds at each step of 22.5◦.

5. The FMS is taken back to its angular position at step 3.

6. The inner axis of the FMS is rotated by 90◦.

7. TheFMS performs the same motion as in step 4.

The main concern while designing this scenario is to ensure that the accelerom-

eters and magnetometers experience a complete reference signal set for calibra-

tion. The acceleration values of both IMUs are illustrated together in Figure 2.7.

It can also be noted that this procedure is a type of multi-position calibration

method and calibration of gyroscopes using the same approach cannot simply be

realized because the angular rates of the FMS axes are unknown and the Earth’s

turn rate cannot be sensed by our low-cost consumer grade gyroscopes.

During the calibration tests, accelerometer, gyroscope, and magnetometer

outputs of both MicroStrain and Xsens units are simultaneously recorded at a
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gravity
roll (inner axis)

yaw (outer axis)

pitch (middle axis)

Figure 2.6: FMS at calibration procedure step 3.

sampling rate of 100 Hz. Since only the orientations of the sensors’ mechanical

enclosures with respect to the FMS frame, represented by the transformation

Cp
b , when the angular rate of the FMS is zero, are known, the subset of all

the measurements that belong to those moments is kept while the rest are dis-

carded. This subset is chronologically rearranged and time indices in the subset

are renumbered as a consecutive array. The number of samples in the final form

of the measurements is denoted by N . The exact mathematical relation between

the frames ned and b, shown on the FMS in Figure 2.8, is unknown but its struc-

ture is known so that Cb
ned can be represented in the parametric way as given

in Equation (2.12). Furthermore, ~gnedL and ~hnede are known since the location and

orientation with respect to the level of the facility, at where the experiments have

been performed, is known.
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Figure 2.7: Signal sets applied to (a) MicroStrain and (b) Xsens accelerometers
in frame b.

Cned
b =


cos Ψ sin Ψ 0

− sin Ψ cos Ψ 0

0 0 1

 (2.12)

Nonlinear optimization techniques can be used to estimate the model pa-

rameters of accelerometers and magnetometers by minimizing the error between

the actual and estimated sensor measurements according to Equations (2.5) and

(2.8) since ~gnedL and ~hnede are known. We use the Levenberg-Marquardt algorithm

(LMA) [89] for this purpose. Background information on the LMA is provided

in Appendix A. On the other hand, the true angular rates are not available as

mentioned before. This prevents adopting the same algorithm for gyroscope cal-

ibration. Therefore, the error of the estimated angular position rather than the

angular rate is selected as the performance criterion.

An analytical relation between the actual and computed orientations should

be developed to use the LMA or a similar optimization algorithm for estimating

the gyroscope calibration parameters. However, since the derivation of this error

model is not an easy task, to relax this difficulty we use a model-free calibration

algorithm. Evolutionary optimization algorithms satisfy this requirement. Due

to its implementation simplicity and known success, we have employed PSO for

the identification of gyroscope model parameters.
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Figure 2.8: The configuration of ned and b frames (adopted from [9]).
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2.3.1 Accelerometer Calibration

The following definitions are needed to ensure that the LMA operates properly

for accelerometer calibration.

• The vector ~y comprises of accelerometer measurements. For our tri-axial

accelerometers, it consists of a total of 3N elements.

~y =
[
~aTm[1] ~aTm[2] · · · ~aTm[N ]

]T
(2.13)

The variable ~am[k] ∀ k ∈ N denotes the output vector of accelerometers at

time step k. Measurement sets of MicroStrain and Xsens IMUs are depicted

in Figure 2.9.
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Figure 2.9: Measurements of (a) MicroStrain and (b) Xsens accelerometers in
frame b.

• f(.) is determined as

f(~θ) =
[
o
(
Cp

b [1]~gbL
)T

o
(
Cp

b [2]~gbL
)T · · · o

(
Cp

b [N ]~gbL
)T ]T

, (2.14)

where o(.) is the sensor model of accelerometers and gyroscopes given in

Equation (2.5), and Cp
b [k] represents the Cp

b at time instant k.

• In accordance with f(.), ~θ is determined as

~θ =
[
bx by bz sx sy sz φ θ ψ αzy αyz αxz

]T
(2.15)
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where the description of its elements can be found in Section 2.1. For the

ideal sensor that requires no calibration,

~θ =
[

0 0 0 0 0 0 0 0 0 0 90 0
]T
. (2.16)

For this special case of ~θ, the right hand side of the equation is denoted by

~θw/o.

The value of ~gnedL at the location where the experiments are conducted can be

found by [3]:

~gnedL = ~g0 −
‖ ωnede ‖2 (R0 + h)

2

[
sin 2Λ 0 (1 + cos 2Λ)

]T
, (2.17)

where Λ, h, ~g0, ~ωnede , and R0 represent the latitude angle, altitude, standard grav-

ity vector, the Earth’s turn rate vector, and the radius of the Earth, respectively.

Furthermore, the ~gbL in Equation (2.14) can be approximated by the ~gnedL after

rounding its x-axis component to zero, assuming that our consumer grade ac-

celerometers cannot sense such relatively small values because of the geometrical

relation between the frames n and b, shown in Figure 2.8 and given in Equa-

tion (2.12), and the structure of ~gnedL . Therefore, the ~gbL used in the calibration

procedure is

~gbL =
[

0 0 9.8176
]
. (2.18)

Before processing the acquired observations with LMA, we present the accel-

eration errors of the two units in Figure 2.10.

Input parameters of the LMA are selected empirically as follows: $ = 1, ε1 =

10−10, ε2 = 10−10 and ~θ0 is initialized randomly (see Appendix A). It is observed

that LMA converges to a minimum in about 15 iterations for the MicroStrain

unit and 11 iterations for the Xsens units. The calibration parameters obtained

at the end of the runs are given in Table 2.2. Using these calibration parameters,

considerable improvement is obtained in the model fit and the errors are consider-

ably reduced. These are shown in Figure 2.11 and Table 2.3. In Table 2.3, f(~θw/o)

is calculated by using that the ~θ is equal to the right hand side of Equation (2.16)

(i.e., the ideal sensor case where no errors of any type are present).
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Figure 2.10: Uncalibrated acceleration measurement errors of all axes of both
units.
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Figure 2.11: Calibrated acceleration measurement errors of all axes of both units.
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(a)

M
ic
ro

S
tr
a
in ~b

diag(S)
φ θ ψ αzy αyz αxz(

m/s2
)

(deg) (deg) (deg) (deg) (deg) (deg)−0.094
−0.013
0.049

 −0.002
−0.003
−0.002

 1.081 −0.133 0.323 0.029 90.026 0.123

(b)

X
se
n
s

~b
diag(S)

φ θ ψ αzy αyz αxz(
m/s2

)
(deg) (deg) (deg) (deg) (deg) (deg)−0.003

−0.001
−0.002

 −0.002
−0.002
−0.002

 0.485 −0.002 −0.292 −0.043 89.993 0.093

Table 2.2: Accelerometer calibration set of the (a) MicroStrain and (b) Xsens
units.

According to the performance measures given in Table 2.3, it is observed that

the Xsens accelerometer would have better navigation performance than MicroS-

train without deterministic calibration. Moreover, the variation of the Xsens ac-

celerometer measurements around the true values is still lower than MicroStrain

after calibration, although the improvement achieved by deterministic calibration

is greater for MicroStrain than Xsens.

(a)

MicroStrain
‖ ~y − f(~θw/o) ‖ ‖ ~y − f(~θ∗) ‖

(m/s2) (m/s2)
ax 19.97 3.41
ay 20.17 3.04
az 20.03 2.83

(b)

Xsens
‖ ~y − f(~θw/o) ‖ ‖ ~y − f(~θ∗) ‖

(m/s2) (m/s2)
ax 5.30 2.47
ay 9.91 2.76
az 7.13 2.32

Table 2.3: Measurement errors of the (a) MicroStrain and (b) Xsens accelerome-
ters before and after deterministic calibration.
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2.3.2 Gyroscope Calibration

Gyroscope measurements need to be compensated to correct attitude computa-

tions during navigation according to a corresponding calibration parameter set.

As explained previously, Equation (2.5) can be used to model both accelerom-

eters and gyroscopes, but gyroscope calibration parameters must be obtained

in a different way than accelerometers since the reference angular rates are nei-

ther available nor computable. In that regard, the error in the computed b-to-p

frame DCM, denoted by C̃p
b , is considered to be the performance criterion and is

minimized by PSO.

Computation of the orientation based on gyroscope measurements requires

integration of the DCM. The differential equation corresponding to the integration

of the DCM can be expressed by

˙CF2

F1
= CF2

F1
ΩF1

F2,F1
, (2.19)

where ΩF1

F2,F1
is the skew symmetric form of the angular rate vector of F1 frame

with respect to F2 expressed in F1 denoted by ~ωF1

F2,F1
[3]. The propagation of CF2

F1

between two consecutive time steps (tk−1 and tk) can be expressed as [3]:

CF2

F1
[k] = CF2

F1
[k − 1] exp

∫ tk

tk−1

ΩF1

F2,F1
(t) dt. (2.20)

If the sampling interval (Ts = tk − tk−1) is sufficiently small, Equation (2.20) can

be approximated by

CF2

F1
[k] = CF2

F1
[k − 1] exp

(
TsΩ

F1

F2,F1
[k − 1]

)
(2.21)

After replacing F1 and F2 with frames p and b, we can make the transition

from the general to our special case, computation of C̃p
b . Calibrated gyroscope

measurements, denoted by ~̃ωpt , are used instead of ~ωpt for the computation of C̃b
p

since ~ωpt is unknown. The ~̃ωpt can be obtained by compensating the gyroscope

measurements ~ωm as follows:

~̃ωpt = Cp
s T

−1(I + S)−1(~ωm −~b), (2.22)

Equation (2.22) is derived from Equation (2.5). After ~̃ωpt is obtained, C̃b
p[·] where

we use [·] for the time step that C̃b
p belongs to, can be calculated for a given

initial orientation.
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As stated before, we use PSO for gyroscope deterministic calibration param-

eter estimation. A brief description of the PSO and the selection of the configu-

ration parameters can be found in Appendix B. The following assignments and

configuration settings are realized to implement PSO for gyroscope calibration.

• The fitness function h(.) described in Appendix B to be minimized by PSO

is selected as the error between the estimated and the actual DCMs. This

can be expressed as
N∑
k=1

‖ Cb
p[k]− C̃b

p[k] ‖fro, (2.23)

where ‖ . ‖fro denotes the Frobenius norm operator.

• The parameter set that PSO tries to optimize in the search space is the

same as in the accelerometer calibration case since their underlying models

are the same. Therefore, ~θ is the same as in Equation (2.15).

• The population size in PSO is selected as 90. The population size is deter-

mined by trial and error and following guidelines provided in [90, 91].

• Initial positions of the particles are determined randomly in the search

space.

• Inertia weight, social, and cognitive parameters are respectively selected as

m = 0.8, ϕp = 2, and ϕg = 2 as suggested in Appendix B.

Calibration parameter set obtained at the end of the PSO, denoted by ~θ∗ and

the best h(.) values without and with deterministic calibration using ~θ∗ are given

in Tables 2.4 and 2.5. In Table 2.5, h
(
~θw/o

)
is calculated by using that the ~θ is

equal to the right hand side of Equation (2.16) (i.e., the ideal sensor case where

no errors of any type are present).

In contrast to the accelerometers, the MicroStrain gyroscope has better er-

ror characteristics than Xsens in terms of accuracy for both the calibrated and

uncalibrated cases. Finally, it can be stated that a significant reduction in the

attitude error is achieved for both types of sensors by calibration.
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(a)

M
ic
ro

S
tr
a
in ~b

diag(S)
φ θ ψ αzy αyz αxz

(rad/s) (deg) (deg) (deg) (deg) (deg) (deg)−0.002
0.000
−0.003

 −0.002
0.001
0.000

 0.855 −0.117 0.240 0.049 90.326 −0.176

(b)

X
se
n
s

~b
diag(S)

φ θ ψ αzy αyz αxz
(rad/s) (deg) (deg) (deg) (deg) (deg) (deg) 0.000
0.001
−0.002

  0.000
−0.002
0.001

 0.156 −0.146 −0.202 0.010 89.991 −0.332

Table 2.4: Gyroscope calibration set of the (a) MicroStrain and (b) Xsens units.

h(~θw/o) h(θ∗)
MicroStrain 12.09 0.64
Xsens 16.91 0.68

Table 2.5: Measurement errors before and after the calibration of both IMUs.

2.3.3 Magnetometer Calibration

The magnetometer error model is relatively more complicated compared to the

accelerometer and gyroscope models since the soft iron error (Ksi), hard iron

error (δ ~B), and Cb
n are also involved in the model of magnetometers. However,

the accelerometers and magnetometers share a common part in terms of reference

data availability: ~hnede at the location where the experiments are conducted can be

looked up as in the accelerometer case where ~gL is known. Therefore, we decided

to utilize LMA for the calibration model parameter estimation of magnetometers.

The following assignments are made for the proper operation of LMA:

• The vector ~y is formed by arranging the ~hms as

~y =
[
~hTm[1] ~hTm[2] · · · ~hTm[N ]

]T
, (2.24)

where ~hm[k] ∀ k ∈ N denotes the output vector of the magnetometer at

time step k.
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• f(.) can be expressed in the same way as Equation (2.14) if o(.) is deter-

mined as in Equation (2.8). The o(.) is a multi-input function for this case,

which takes Cp
b [k] and ~hnede as input. The function f(.) used here can be

expressed as

f(~θ) =
[
o
(
Cp

b [1],~hnede

)T
o
(
Cp

b [2],~hnede

)T
· · · o

(
Cp

b [N ],~hnede

)T ]T
,

(2.25)

• The errors δ ~B and ~b are augmented into a single bias vector ~̃b, as shown

below in order to avoid redundancy in the parameter set.

~̃b = (I + S)~δB +~b

The new ~θ is determined as in Equation (2.15).

~θ =
[
b̃x b̃y b̃z sx sy sz φ θ ψ αzy αyz αxz ~kTij Ψ

]T
, (2.26)

where ~kij =
[
k11 k12 k13 k22 k23 k33

]T
consists of the elements in

the upper right triangle of Ksi in Equation (2.7).

The value of ~hnede at the location where experiments are conducted is found to be

as follows from the World Magnetic Model 2010 [92]:

~hnede =
[

0.2523 0.0217 0.4004
]T

(2.27)

Before providing the implementation results of the calibration, we show raw

magnetometer measurements in Figure 2.12. The signal set looks highly corrupted

at a first glance due to the high asymmetry. However, an exact interpretation

about the irregularity of the dataset is not possible since Cb
ned, which is needed

to evaluate ~hnede in our sensors’ frame, is not known.

Configuration parameters and the initial parameter guess ~θ0 of LMA are se-

lected in the same way as in accelerometer deterministic model parameter iden-

tification, and LMA is run. Residual calibration errors are shown in Table 2.6.

The residual errors are not small unlike the inertial sensors, and because of

this it is highly unlikely to get even a normal operation performance from our
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Figure 2.12: Magnetometer measurements of both IMUs.

magnetometers. When the dataset is carefully examined, there seems to be a

time-varying bias component in the measurements. Such time-varying behavior

is generally related to the temperature-dependent bias in the literature. How-

ever, it cannot be the explanation for this case since the operating temperature

of the sensors do not change significantly because of the short duration of the

deterministic experiments. Then, we focus on a different kind of phenomenon

and consider the orientation-dependent magnetic fields radiated by the actuation

systems in gimbaled systems (e.g., our FMS). We incorporated this effect within

hard iron errors since the actuation systems are the dominant factors for the hard

iron error vector. The augmented magnetometer model that we propose, can be

expressed as

~hm = (I + S)T (KsiC
s
pC

p
bC

b
ned

~hnede +Cp
b δ
~B) +~b+ ~vm. (2.28)

Since the resultant effect of the hard iron errors on the measurements now changes

with the Cp
b , we separate the δ ~B and the ~b which are combined during the first

identification. The new ~θ is as follows:

~θ =
[
δBx δBy δBz bx by bz sx sy sz φ θ ψ αzy αyz αxz ~kTij Ψ

]T
.

(2.29)

The residual errors before and after calibration are given in Table 2.6.

Uncalibrated measurement errors are given in the first column of Table 2.6.

Since the uncalibrated case is independent of the sensor model, it is not associated
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(a)

MicroStrain
‖ ~y − f(~θw/o) ‖ ‖ ~y − f(~θ∗) ‖ ‖ ~y − f(~θ∗) ‖

(Gauss) (Gauss), (Equation (2.5)) (Gauss), (Equation (2.28))

mx 17.7 9.30 6.49

my 29.6 19.6 6.38

mz 67.5 14.7 7.80

(b)

Xsens
‖ ~y − f(~θw/o) ‖ ‖ ~y − f(~θ∗) ‖ ‖ ~y − f(~θ∗) ‖

(Gauss) (Gauss), (Equation (2.5)) (Gauss), (Equation (2.28))

mx 148 18.3 8.96

my 134 23.1 12.9

mz 151 30.1 10.9

Table 2.6: Measurement errors of the (a) MicroStrain and (b) Xsens accelerome-
ters before and after deterministic calibration.

with any model equation. The f(~θw/o) is calculated by using

~θ =
[

0 0 0 0 0 0 0 0 0 0 90 0 1 0 0 1 0 1 0
]T
, (2.30)

which is the ideal sensor case where no errors of any type are present. The ele-

ments of the second and third columns of Table 2.6 are the residual calibration

results corresponding to the models in Equations (2.5) and (2.28), respectively.

The improvement in the calibration with the proposed magnetometer model is

obvious. However, the residual errors are still not sufficient for using the mag-

netometers as a compass to find the attitude in a navigation system. In order

to have a precise magnetometer calibration, which will be fully functional in a

navigation system, for our case, it is necessary to develop new and more complex

measurement error models.
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Chapter 3

Stochastic Modeling and

Calibration

Recalling that measurement noise vector ~vm has three inter-independent mea-

surement noise elements that are effective on each axis. Therefore, it is sufficient

to work on a scalar noise model for the stochastic modeling and identification

of 3-D inertial sensors and magnetometers. Algorithms for the identification of

the key parameters of this scalar model can be repetitively applied to the sensors

of each axis. Since the stochastic error model of the noise in the sensor outputs

consist of various types of random processes [68], the total scalar noise term that

we use throughout this section, is denoted by vtot(t). Quantization noise, white

noise, bias instability, random walk, and ramp instability are the typical noise

contributors in inertial sensors:

• Quantization noise is introduced into the measurements after analog sen-

sor measurements are converted to digital signals of fixed number of bits

determined by the resolution of the analog-to-digital converter. It is the

equivalent model of the residual errors after sampling and quantization.

Hence, any digital signal is susceptible to this noise. The value of quanti-

zation noise at time t is denoted by vq(t).
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• White noise, present in most practical systems, is caused by the high-

frequency noise terms whose correlation time is smaller than the sensor

output sampling time as described in [74]. Photon shot noise in a fiber

optic gyroscope is an example of high-frequency noise [93]. The value of

white noise at time t is denoted by vw(t).

• Bias instability noise is originated by the electronics such as carbon resistors

and semiconductor devices [94, 95] in inertial sensors. It is known as the

most difficult noise to handle mathematically in stochastic modeling [93].

The value of bias instability noise at time t is denoted by vb(t).

• Random walk noise is the noise term whose origin is not certain for sure

but generally associated with the aging effects in oscillators [93]. The value

of random walk noise at time t is denoted by vrw(t).

• Ramp instability noise is indeed a model of a deterministic behavior but it

is handled in stochastic modeling since it is possible to formulate a random

model for the ramp instability noise. It is usually associated with the ex-

ternal environmental factors such as temperature variations [93]. The value

of ramp instability noise at time t is denoted by vri(t).

The resultant stochastic process, denoted by vtot(t), is equal to the sum of the

corresponding noise terms as

vtot(t) = vq(t) + vw(t) + vb(t) + vrw(t) + vri(t). (3.1)

Theoretical PSDs of those stochastic signals can be found in Table 3.1 [37]. The

objective of stochastic identification is to estimate the unknown descriptive pa-

rameters of their PSDs. These parameters, Q,N,B,K, and R, are associated

with the processes, vq(t), vw(t), vb(t), vrw(t) and vri(t), respectively.

The same additive relation also holds in the frequency domain, since all of the

noise terms are independent of each other:

Stot(f) = Sq(f) + Sw(f) + Sb(f) + Srw(f) + Sri(f), (3.2)

where

Sx(f) =

∫ +∞

−∞
e−jwπfτrx(τ)dτ (3.3)
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is the PSD of the random process vx(t) whose autocorrelation function is rx(τ) =

E[vx(t)vx(t+ τ)].

Equation (3.3) allows the PSD to be utilized as a tool for stochastic identifica-

tion by equating the theoretical PSD to the experimentally found one. However,

the sensor output may not usually involve all of the stochastic processes in Equa-

tion (3.1). For this reason, overfitting of the model in Equation (3.2) becomes

an issue and the stochastic parameters are estimated poorly. This issue can be

overcome by first identifying the existing significant noise terms in the output

and building the theoretical model accordingly.

AV is an another tool that serves the same purpose as the PSD but in the time

domain. Compared to PSD analysis, it presents a more detailed understanding

of the dataset and provides average estimation of the stochastic parameters. AV

can be described as a method representing the root mean square (RMS) random

drift error as a function of averaging time.

The AV of a dataset ~Ω is denoted by σ2
Ω(τ), and the square root of the AV

is called the Allan deviation (AD). Elements of ~Ω are the consecutive sampled

instances and can be shown by

~Ω =
[

Ω1 Ω2 · · · ΩN

]T
, (3.4)

where N is the total number of instances. The computation procedure of σ2
Ω(τ)

is summarized below.

1.) ~Ω is divided into clusters of length τ which are its sub-vectors. The kth

cluster, denoted by ~Ωτk , where k = 1, . . . ,M =
N

τ
, is expressed as

~Ωτk =
[

Ω(k−1)τ+1 Ω(k−1)τ+2 Ω(k−1)τ+3 · · · Ωkτ

]T
, (3.5)

2.) A new data series, denoted by ~̃Ωτ is formed by the average values of the

clusters. It can be expressed as

~̃Ωτ =
[

Ω̃τ1 Ω̃τ2 Ω̃τ3 · · · Ω̃τM

]T
, (3.6)
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where Ω̃τk =
1

τ

τ∑
i=1

~Ωτk [i].

3.) The AV σ2
Ω(τ) is computed by

σ2
Ω(τ) =

1

2(M − 1)

M−1∑
k=1

(Ω̃τk+1
− Ω̃τk)

2. (3.7)

The σ2
Ω(τ) is also related to SΩ(f). This relationship can be expressed as

σ2
Ω(τ) = 4

∫ ∞
0

SΩ(f)
sin4 (πfτ)

(πfτ)2
dτ . (3.8)

Derivation of Equation (3.8) can be found in [69]. According to this equation,

ADs of the random noise terms in the outputs of the inertial sensors can be

conveniently calculated from their PSDs. PSDs and ADs of the random processes

in Equation (3.1) are given in Table 3.1. Their derivation can be found in [74].

noise component symbol PSD AD

quantization noise 1 vq(t) TsQ
2 sin2(πfTs)

(πfTS)2

Q
√

3

τ

white noise vw(t) N2 N√
τ

bias instability 1 vb(t)
B2

2πf

B
√

2 ln 2√
π

random walk vrw(t)
K2

(2πf)2

K
√
τ√

3

ramp instability vri(t)
R2

(2πf)3

Rτ√
2

Table 3.1: PSDs and ADs of the noise terms of an inertial sensor.

It is not possible to perfectly estimate the AV of a real dataset since the

accuracy of the AV estimation is limited by N and changes with τ . This can be

shown as

accuracy , 1− 1√
2(M − 1)

. (3.9)

1ADs of vq and vb are approximations. Their actual expressions can be found in [74].
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For the most uniform case, all of the random noise terms can be present in

the output of an inertial sensor. However, it is known from practice that different

noise terms are dominant over different τ ranges and the slopes of the noise terms

in the log-log plot of σ2
Ω(τ) versus τ are different. A typical log-log AD curve is

illustrated in Figure 3.1.

quantization noise

slope -1

white noise
slope -½

bias instability

slope 0

random
walk

slope ½

ra
m

p
in
st

ab
ili
ty

sl
op

e 
1

A
D

Figure 3.1: Typical AD curve (adapted from [10]).

To estimate the stochastic parameters, AV of the data is calculated for dif-

ferent τ values according to the three-step procedure outlined above. Next, the

noise terms constituting the overall stochastic model are heuristically determined

from the AD curve. Finally, the experimentally obtained AD curve is fitted to

the theoretical AD of the underlying stochastic model.

During the stochastic calibration experiments, inertial sensors are kept sta-

tionary. However, the sensor outputs do not remain constant during the exper-

iments because of their temperature-dependent behavior. This drift should be

compensated for before proceeding to the AV-based stochastic analysis.

3.1 Maximum Likelihood Estimation of Stochas-

tic Process Parameters

When the stochastic model of an INS is used in a navigation fusion filter, its dy-

namics are expressed in standard state-space format traditionally. Random walk
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noise component continuous-time dynamic model

quantization noise vq(t) = Q
√
Ts ṅq(t)

white noise vw(t) = Nnw(t)

bias instability v̇b(t) = −βvb(t) + B
√

2β nb(t)

random walk v̇rw(t) = Knrw(t)

ramp instability

 v̇ri(t)

v̈ri(t)

 =

 0 1

−ω2
0 −ω0

√
2

 vri(t)

v̇ri(t)



+

 0

R
√

2ω0

√
2

nri(t)
Table 3.2: Continuous-time differential equations of all the random noise terms.

and white noise can be directly expressed in state-space form among the underly-

ing random noise contributors. However, some approximation models should be

used to represent the rest of the processes. Many different approximation models

have been studied for bias and ramp instability [96, 97, 98]. First- or second-

order Gauss-Markov processes are specified to be optimal in terms of accuracy

and computational burden for bias and ramp instability, respectively. On the

other hand, quantization noise can be approximated by the time derivative of the

white noise process. Details of those approximation models can be found in [74].

Differential equations governing the dynamics of the associated random pro-

cesses are given in Table 3.2 where nq(t), nw(t), nb(t), nrw(t), and nri(t) represent

zero mean, unit variance white Gaussian noise processes that are independent of

each other.

The state-space equations of a continuous-time system are:

~̇x(t) = A~x(t) + B~u(t) + ~np(t)

~y(t) = C~x(t) + D~u(t) + ~nm(t)
(3.10)

where ~np(t) and ~nm(t) denote the process and measurement noise terms dis-

tributed according to N (~0,Σp) and N (~0,Σm), respectively. In practice, inertial
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sensor outputs are observed as discrete samples; therefore, discrete versions of the

noise models are needed for evaluation and analysis. A systematic explanation of

the discretization of a general continuous-time linear state-space system can be

found in [99].

Assuming that the input u(t) passes through a zero-order hold system, the

system in Equation (3.11) can be discretized as:

~x[k + 1] = Ad ~x[k] + Bd ~u[k] + ~np[k]

~y[k] = Cd ~x[k] + Dd ~u[k] + ~nm[k]
(3.11)

where ~np[k] and ~np[k] are now distributed according to N (~0, Σ̄p) and N (~0, Σ̄m)

and
Ad = eATs

Bd =

(∫ Ts

τ=0

eAτdτ

)
B

Cd = C

Dd = D

Σ̄p =

∫ Ts

0

eAτΣpe
AT τdτ

Σ̄m = Σm.

(3.12)

The method outlined above is not applicable for the discretization of the

quantization noise since the dynamics equation of this component does not fit

into the classical state-space model. For this reason, quantization noise is simply

discretized by Euler’s Backward Method [100]. Discrete state-space forms of the

noise processes, obtained after the necessary calculations are given in Table 3.3.

Discrete-time difference equations given in Table 3.3 can be equivalently ex-

pressed in the discrete-time domain using the time shift operator z−1. Associated

discrete-time transfer functions of the noise terms can be found in Table 3.4.

In Tables 3.3 and 3.4, nq[k], nw[k], nb[k], nrw[k], and nri[k] denote the samples

of the corresponding zero mean unit variance white Gaussian noise processes that

are all inter-independent at time step k.
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noise component discrete-time dynamic models

quantization noise vq[k] =
Q√
Ts

(nq[k]− nq[k − 1])

white noise Nnw[k]

bias instability vb[k] = e−βTs vb[k − 1] + B
√

1− e−2βTs nb[k − 1]

random walk vrw[k] = vrw[k − 1] + K
√
Ts nrw[k − 1]

ramp instability

[
vri[k]

v̇ri[k]

]
=

[
1 eTs

e−ω
2
0Ts e−ω0Ts

√
2

][
vri[k − 1]

v̇ri[k − 1]

]

+

[
0

R
(

1− e−2
√

2ω0Ts
) ]nri[k − 1]

Table 3.3: Discrete-time differential equations of all the random noise terms.

According to Equation (3.1), the time propagation equations can be integrated

into a multi-input single-output (MISO) system difference equation as

vtot[k] =
Q√
Ts

(
1− z−1

)
nq[k] + Nnw[k]

+
B
√

1− e−2βTsz−1

1− e−βTsz−1
nb[k] +

K
√
Tsz

−1

1− z−1
nrw[k]

+
ReTs

(
1− e−2

√
2ω0Ts

)
z−2

1−
(
1 + e−ω0Ts

√
2
)
z−1 +

(
eTs(1−ω

2
0)−e−ω0Ts

√
2
)
z−2

nri[k].

(3.13)

Equation (3.13) is sufficient to describe the dynamics of the stochastic part of

the inertial sensor output for the most extensive case. After rewriting the equation

using a common denominator for the different terms, we get the following:

vtot[k] =
ρqnq[k] + ρwnw[k] + ρbnb[k] + ρrwnrw[k] + ρrinri[k]

(1− z−1) (1− e−βTsz−1)D(z−1)
, (3.14)
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noise component discrete-time difference equations

quantization noise
Q√
Ts

(
1− z−1

)
nq[k]

white noise Nnw[k]

bias instability
B
√

1− e−2βTs z−1

1− e−βTsz−1
nb[k]

random walk
K
√
Ts z

−1

1− z−1
nrw[k]

ramp instability
ReTs

(
1− e−2

√
2ω0Ts

)
z−2

1− z−1
(
1 + e−ω0Ts

√
2
)

+ z−2
(
eTs(1−ω

2
0)−e−ω0Ts

√
2
)nri[k]

Table 3.4: Discrete-time transfer functions of all the random noise terms.

where ρq =
Q

Ts

(
1− z−1

)2 (
1− e−βTsz−1

)
D(z−1)

ρw = N
(
1− z−1

) (
1− e−βTsz−1

)
D(z−1)

ρb = B
(
1− z−1

)√
1− e−2βTsz−1D(z−1)

ρrw = K
√
Tsz

−1
(
1− e−βTsz−1

)
D(z−1)

ρri = ReTs
(
1− z−1

) (
1− e−2

√
2ω0Ts

) (
1− e−βTsz−1

)
z−2

D(z−1) = 1−
(

1 + e−ω0Ts
√

2
)
z−1 +

(
eTs(1−ω

2
0) − e−ω0Ts

√
2
)
z−2.

On the other hand, Equation (3.14) is not the only way to model the dynamics

of the stochastic nature of inertial sensors. It is also possible to form a single-

input single-output (SISO) auto-regressive moving average (ARMA) model that

satisfies the same statistical properties. This statistical equivalence is based on

the fact that the moving average (MA) parts of both models have the same auto-

correlation function [101]. After cross multiplying the terms in Equation (3.14),

its right and left hand sides can be respectively represented by two new sequences

denoted by vMA[k] and vAR[k] as follows:

vMA[k] = ρqnq[k] + ρwnw[k] + ρbnb[k] + ρrwnrw[k] + ρrinri[k]

vAR[k] = vtot[k]
(
1− z−1

) (
1− e−βTsz−1

)
η

(3.15)
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Secondly, the autocorrelation function of vMA[k] is deduced from Equa-

tion (3.15) and can be alternatively modeled by a single input fifth-order MA

process ṽMA[k] with the same autocorrelation function. This process is expressed

in its general form as

ṽMA[k] =
(
a0 + a1z

−1 + a2z
−2 + a3z

−3 + a4z
−4 + a5z

−5
)
n[k] (3.16)

where n[k] denotes the zero-mean and unit variance white Gaussian noise. Fi-

nally, the parameters of the process ṽMA[k] can be determined by solving the

autocorrelation equality condition: rvMA
[j] = rṽMA

[j] ∀ j. Here, we are going to

continue with the process ṽMA[k] in Equation (3.16) without giving the details of

the autocorrelation equality solution.

The auto-regressive (AR) part of Equation (3.14) can be expressed as

vAR[k] = vtot[k]
(
1 + γ1z

−1 + γ2z
−2 + γ3z

−3 + γ4z
−4
)

(3.17)

by expanding it and using the coefficients γi. As a result, the modified form

of the entire stochastic dynamic equation of the stochastic sensor noise can be

expressed as (
1 + γ1z

−1 + γ2z
−2 + γ3z

−3 + γ4z
−4
)
vtot[k]

=
(
a0 + a1z

−1 + a2z
−2 + a3z

−3 + a4z
−4 + a5z

−5
)
n[k].

(3.18)

With the results obtained up to this point, the necessary background is de-

veloped for the derivation of the likelihood function and stochastic calibration.

Before proceeding, we briefly describe the experiments performed for stochas-

tic calibration and their related consequences. During the stochastic calibration

experiments, inertial sensors are fixed to a table top and kept stationary for a

period of time. The duration of the experiment is determined by the navigational

requirements (e.g., operation time of the IMU). The stationarity in question leads

to a definite measurement plus noise at a fixed temperature. Since the sensor’s

operating temperature inevitably changes in a real experiment depending upon

the ambient temperature and the device heating up during operation, the mea-

surement of each axis of an inertial sensor can be modeled as

v̄tot[k] = b0 + η (T [k]) + vtot[k] (3.19)
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where b0 represents the sensor bias plus the constant sensible field, T [k] is the

operating temperature of the sensor, and vtot[k] is the output of the underlying

stochastic process at time instant k. The temperature-dependent bias behavior

effect is usually modeled by a lth-order polynomial function of temperature [3, 37]:

η (T [k]) =
l∑

i=1

ciT
i[k] (3.20)

It is obvious that the physical measurement part (i.e., b0 + η(T [k]) should be

considered to make fair stochastic parameter estimates. This can be addressed

in two ways:

• Estimation of those physical measurement parameters and their removal

before stochastic calibration

• Concurrent estimation of physical measurement and stochastic parameters

Traditional approaches (e.g., AV) tackle this issue by the former technique

and try to estimate stochastic model parameters by compensating for the de-

terministic part using a least-squares approach. In spite of proven success and

the common usage of this strategy in practice, it may lead to biased MLEs of

stochastic parameters. The former technique is adopted in this thesis due to

the redundancy in the unknown parameters (i.e., effect of b0 and η(T [k]) can be

canceled by the coefficients of the ARMA process vtot[k]). Hence, the physical

measurement part must be subtracted out first. Assuming that N is the total

number of samples collected from the sensor during an experiment, and physical

measurement part is removed from ~̄vtot after the characterization of b0 + η(T [k])

in the least-squares sense, MLE aims to find the parameter set maximizing the

likelihood function denoted by L
(
~̄vtot, ~θ

)
, where

~̄vtot =
[
v̄tot[1] v̄tot[2] · · · v̄tot[N ]

]T
~θ =

[
Q N B β K R ω0

]T
.

(3.21)

L
(
~̄vtot, ~θ

)
is determined to be the overall probability of ~̄vtot given ~θ, denoted by

Pr
(
~̄vtot | ~θ

)
. The aim of MLE is to maximize this conditional probability over
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the parameter set ~θ:

~θ∗ = arg max
~θ

Pr
(
~̄vtot | ~θ

)
(3.22)

Now, we are going to use some facts from random vector theory to simplify

Equation (3.22) to our case.

Let ~V ∈ Rd be a continuous random vector with the probability density

function p~V (~v). The probability density function of ~Z = g(~V ) where g(.) : Rd →
Rd can be calculated by

p~Z (~z) = p~V
(
g−1(~v)

)
|Jg(~z)| (3.23)

where Jg(.) is the Jacobian matrix operator of g−1(.) with respect to ~θ.

In this context, if ~V and ~Z are respectively defined as ~vtot and ~̄vtot, Jg(.) be-

comes the identity matrix and the following conditional probabilities become

equal:

Pr
(
~vtot | ~θ

)
= Pr

(
~̄vtot | ~θ

)
(3.24)

where ~vtot =
[
vtot[1] vtot[2] · · · vtot[N ]

]T
. Therefore, ~θ∗ referring to Equa-

tion (3.22) maximizes Pr
(
~vtot | ~θ

)
as well.

Assuming that n[k] given in Equation (3.16) is equal to 0 ∀ k < 1, the in-

put/output relation for the entire duration of the experiment can be expressed

as

A~̃n = S~vtot (3.25)

where

• ~̃n =
[
ñ[1] ñ[2] · · · ñ[N ]

]T
1×N

and ñ[k] = a0n[k].

• A =



1 0 · · · 0
ã1 1
ã2 ã1 1

ã3 ã2 ã1 1
...

ã4 ã3 ã2 ã1 1
. . .

ã5 ã4 ã3 ã2 ã1 1
0 ã5 ã4 ã3 ã2 ã1 1
...

. . . . . . . . . . . . . . . . . . . . . 0
0 · · · 0 ã5 ã4 ã3 ã2 ã1 1


N×N
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whose elements can be expressed by ãk =
ak
a0

∀ k = 1, . . . , 5.

• S =



1 0 · · · 0
γ1 1
γ2 γ1 1

γ3 γ2 γ1 1
. . .

...
γ4 γ3 γ2 γ1 1
0 γ4 γ3 γ2 γ1 1
...

. . . . . . . . . . . . . . . . . . 0
0 · · · 0 γ4 γ3 γ2 γ1 1


N×N

Since A is a full rank square matrix, Equation (3.25) can be rewritten as

~̃n = A−1S~vtot (3.26)

It should be noted that the determinant of the Jacobian of the transformation

between ~̃n and ~vtot is unity since both A and S are matrices having unity de-

terminant. Following this fact and Equation (3.23), one can obviously show that

Pr
(
~vtot | ~θ

)
= Pr

(
~̃n | ~θ

)
holds. Therefore, L

(
~̄vtot, ~θ

)
can be explicitly expressed

as
L
(
~̄vtot, ~θ

)
= Pr

(
~vtot | ~θ

)
= Pr

(
~̃n | ~θ

)
=
(
2πa2

0

)−N
2 exp

[
− 1

2a2
0

(
A−1S~vtot

)T (
A−1S~vtot

)] (3.27)

However, L
(
~̄vtot, ~θ

)
, given in this equation, is the approximate likeli-

hood function because of the assumption n[k] = 0 ∀ k < 1. To de-

rive the exact likelihood function [102], we define two new vectors ~̃n∗ =[
ñ[−4] ñ[−3] ñ[−2] ñ[−1] ñ[0]

]T
and ~̄n =

[
~̃nT ~̃n∗

T
]T

1×N+5
. The rela-

tionship between ~̄n and ~vtot can be expressed as

Ā~̄n = K~̃n∗ + S̄~vtot, (3.28)

where Ā, K, and S̄ are simply structured matrices as follows:

Ā =

 I5 05×N

0N×5 A


N+5×N+5

, K =

 I5

0N×5


N+5×5

, S̄ =

 05×N

S


N+5×N

.

The matrices I5 and 05×N respectively denote the identity matrix of size 5 and
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zero matrix of size 5×N . This equation introduces the transformation between ~̄n

and
[
~̃n∗

T
~vtot

]
. Since the Jacobian of this transformation is unity, the following

is satisfied:

Pr
(
~̄n | ~θ

)
= Pr

(
~̃n∗, ~vtot | ~θ

)
=
(
2πa2

0

)−N+5
2 exp

[
− 1

2a2
0

(
K~̃n∗ + S̄~vtot

)T (
K~̃n∗ + S̄~vtot

)] (3.29)

If ~̄n is considered to be the measurement noise, the ~̃n∗ can be estimated by

applying the generalized least-squares to Equation (3.28) as below:

ˆ̃
~n∗ = −

(
KT (ĀĀT )−1K

)−1
KT (ĀĀT )−1S̄ ~vtot (3.30)

An important property of the least-squares based estimators is the orthogo-

nality principle which can be formulated for our case as:(
~̃n∗ − ˆ̃

~n∗
)T
S̄ ~vtot = 0. (3.31)

Using this property, the quadratic term
(
K~̃n∗ + S̄~vtot

)T (
K~̃n∗ + S̄~vtot

)
in Equa-

tion (3.29) can be rewritten as(
K

ˆ̃
~n∗ + S̄~vtot

)T (
K

ˆ̃
~n∗ + S̄~vtot

)
+
(
~̃n∗ − ˆ̃

~n∗
)T
KTK

(
~̃n∗ − ˆ̃

~n∗
)
. (3.32)

Furthermore, Pr
(
~̃n∗, ~vtot | ~θ

)
can be decomposed as the product of Pr

(
~̃n∗ | ~vtot, ~θ

)
and Pr

(
~vtot | ~θ

)
. The first quadratic term on the right hand side of Equa-

tion (3.32) characterizes Pr
(
~vtot | ~θ

)
since that term is a function of signal ~vtot

but not of the starting residuals ~̃n∗. Therefore, the exact likelihood function

Pr
(
~vtot | ~θ

)
can be expressed based on this fact as follows:

L
(
~̄vtot, ~θ

)
= Pr

(
~vtot | ~θ

)
=
(
2πa2

0

)−N+5
2 exp

[
− 1

2a2
0

(
K

ˆ̃
~n∗ + S̄~vtot

)T (
K

ˆ̃
~n∗ + S̄~vtot

)] (3.33)

In this thesis, the approximate likelihood function is adopted generally. The

exact likelihood function is used in some special cases though. Since the max-

imization of the likelihood functions given in Equations (3.27) and (3.33) are
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analytically intractable, iterative optimization algorithms can be used. Here,

gradient-ascent optimization (GAO) and particle swarm optimization (PSO)

methods are employed for this purpose after the likelihood function of the stochas-

tic process vtot[k] denoted by L
(
~̄vtot, ~θ

)
is selected as f(~θ) for GAO and the fitness

function H(.) for PSO, and ~θ is selected as Equation (3.21).

3.2 Experimental Results

For stochastic analysis, we have collected 12 hours of data on four different days

at 100 Hz sampling rate from both MicroStrain and Xsens sensor units simultane-

ously. Therefore, a total of N = 4, 320, 000 observations are recorded from each

sensor unit. During the experiments, inertial sensors are fixed to a stationary

table. Simultaneously recorded data contain raw tri-axial accelerometer, gyro-

scope, and magnetometer outputs and temperature measurements. The datasets

are processed by using AV, PSO-, and GAO-based MLE techniques for parameter

estimation.

Throughout this section, a sample dataset is chosen randomly for both Mi-

croStrain and Xsens units separately and figures corresponding to that dataset

are presented each time an illustrative example is needed.

3.2.1 Allan Variance Analysis

First, the AVs of the datasets need to be examined. The first challenge to this

task is the requirement to cancel out the temperature dependent bias drift and

the constant bias. For this purpose, we have analyzed the variation of the sensor

outputs with temperature. In Figure 3.2, the x-axis accelerometer outputs of Mi-

croStrain 3DM-GX2 and Xsens units recorded on the third day of the experiments

are shown. Variation of the sensor measurements with the operating temperature

can be observed from the figures. It should be noted that the responses of the

sensor units differ subject to their own characteristics, whereas both units have
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Figure 3.2: The third day measurements of (a) MicroStrain and (b) Xsens tem-
perature sensors and accelerometers.

similar temperature trends since they are exposed to the same environmental

conditions. However, it is obvious that the MicroStrain unit heats up more than

the Xsens unit but this does not mean that the output of the MicroStrain unit

is more dependent on temperature. Inherently, AVs of raw datasets cannot be

estimated precisely due to the drift in the measurements caused by the operating

temperature changes during the experiments. The damaging impacts of the drift

error should be compensated for by estimating the temperature and developing

temperature-dependent drift models. As mentioned before, exponential [23] and

polynomial [37] functions are used for this purpose, respectively. To find a con-

venient bias drift model for our sensors, the variation of the measurements with

operating temperature have been examined and it is inferred that second-order
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Figure 3.3: Accelerometer measurements of (a) MicroStrain and (b) Xsens units
versus the operating temperature.

polynomials suitably model the output of the MicroStrain sensor whereas first-

order polynomials are suitable for the Xsens unit. In Figure 3.3, the variation

of drift as a function of temperature can be observed. Resulting sensor models

based on Equation (3.19) are summarized below in Equation (3.34) where v̄tot[k]

denotes the output of any inertial sensor at time instant k.

v̄tot[k] =

b0 + c1T [k] + c2T
2[k] + vtot[k] for MicroStrain,

b0 + c1T [k] + vtot[k] for Xsens.
(3.34)

The drift models in Equation (3.34) can be expressed as a linear system of equa-

tions as in Equation (3.35) after all N measurements are acquired.

MicroStrain Xsens
1 T [1] T 2[1]

1 T [2] T 2[2]
...

...
...

1 T [N ] T 2[N ]


︸ ︷︷ ︸

T


b0

c1

c2


︸ ︷︷ ︸
~ϕ

= ~̄vtot


1 T [1]

1 T [2]
...

...

1 T [N ]


︸ ︷︷ ︸

T

b0

c1


︸ ︷︷ ︸
~ϕ

= ~̄vtot (3.35)

In the next step, standard least-squares method is used to estimate the pa-

rameter vector ~ϕ that consists of b0 and temperature correlation coefficients ci.
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(a)

MicroStrain
c1 c2

mean std. mean std.

ax 1.16 · 10−2 2.92 · 10−3 1.44 · 10−4 3.27 · 10−5

ay −0.99 · 10−2 2.54 · 10−3 1.47 · 10−4 3.42 · 10−5

az 0.11 · 10−2 1.17 · 10−3 −1.66 · 10−4 5.00 · 10−5

gx 1.93 · 10−4 3.52 · 10−4 −4.65 · 10−9 5.85 · 10−6

gy −8.77 · 10−5 5.39 · 10−4 1.79 · 10−9 7.00 · 10−6

gz 7.01 · 10−4 8.34 · 10−4 −1.32 · 10−9 1.29 · 10−5

mx −1.08 · 10−3 2.19 · 10−3 1.49 · 10−5 3.11 · 10−5

my −9.18 · 10−4 1.66 · 10−3 1.77 · 10−5 3.00 · 10−5

mz 8.78 · 10−4 5.65 · 10−4 −1.42 · 10−5 9.51 · 10−6

(b)

Xsens
c1

mean std.

ax 1.48 · 10−3 5.82 · 10−4

ay 3.79 · 10−4 7.69 · 10−4

az −1.05 · 10−3 9.04 · 10−4

gx 2.00 · 10−4 6.23 · 10−5

gy −1.38 · 10−3 8.08 · 10−5

gz −2.76 · 10−4 1.06 · 10−4

mx 1.46 · 10−3 5.99 · 10−4

my 1.00 · 10−3 1.29 · 10−3

mz 2.52 · 10−3 8.06 · 10−4

Table 3.5: Estimated temperature correlation parameters of (a) MicroStrain and
(b) Xsens IMUs. The units of c1 are ◦C−1 (m/s2) for accelerometers, ◦C−1 (rad/s)
for gyroscopes, and ◦C−1Gauss for magnetometers. The units of c2 are the squares
of c1’s.

The resulting estimate is denoted by ~̂ϕ.

~̂ϕ =
(
TTT

)−1
TT ~̄vtot (3.36)

Since the sensors’ characteristic bias values (b0) are determined by determin-

istic calibration procedures, only ci coefficients are relevant here. The mean and

the standard deviation (which is abbreviated by std. in the tables) values of the

estimated cis that are computed over all stationary experiments are displayed in

Table 3.5.

Based on the results, the following observations are made:
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• Estimation variance of most of the sensors is small.

• Temperature correlation parameters are different for each axis of an IMU.

• Since the estimation variance values are lower, the Xsens unit outperforms

the MicroStrain unit in terms of repeatability.

As seen in Figure 3.2, the temperature rise during the initial two hours of

the experiments shows a trend similar to the step response of a first-order system

after the initial temperature—which is actually the ambient temperature—is sub-

tracted out from the data. Furthermore, the ambient temperature is considered

to be constant during the first two hours of the experiments whereas the oper-

ating temperature of the sensor units fluctuates afterwards due to the change in

the ambient temperature. Temperature of the sensor units during the initial two

hours are illustrated in Figure 3.4.
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Figure 3.4: Temperature of (a) MicroStrain and (b) Xsens IMUs during the first
two hours of operation.

If an analytical model is fitted to the change in the operating temperature of

the sensor units after switching on, assuming that the ambient temperature stays

constant, the sensor bias drift caused by the operating temperature variation can

be estimated by propagating the model in time. However, the estimation accu-

racy decreases as time passes since the ambient temperature gradually changes.

The estimation accuracy becomes quite poor compared to the beginning of the
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experiment after the change in the ambient temperature reaches a certain level.

This takes about one to two hours for our sensor units. Depending on the applica-

tion, this duration is sufficient for the estimation of the thermal model parameters

with a reasonable accuracy. The following model is used for this purpose [23]:

T [k] = Ta +GT (1− e−
kTs
τT ) (3.37)

Here, Ta, Ts, GT and τT represent the ambient temperature, sampling time which

is equal to 0.01 s for our case, the gain of the temperature model, and the time

constant of the system, respectively. The Ta and GT can be readily extracted

from the temperature data of the sensors. If the temperature readings belonging

to the first couple of seconds of the experiments are inspected carefully, it is

observed that the operating temperature of the sensor unit fluctuates around a

constant value for a while and then starts to increase so that Ta can be estimated

from the fluctuating portion. This fluctuating portion lasts nearly one second for

our IMUs as illustrated in Figure 3.5.
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Figure 3.5: Temperature of (a) MicroStrain and (b) Xsens IMUs during the first
second of operation.

After Ta is subtracted out, we use LMA to estimate GT and τT . Residual fitting

errors of each sensor unit are shown in Figure 3.6, and estimated parameters

of the sensor units are given in Table 3.6. Each sensor of the MicroStrain

unit has unique thermal model parameters while they are common for all sub-

sensors of the Xsens sensor unit as seen in Table 3.6. It can be observed in the
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Figure 3.6: Fitting errors of the (a) MicroStrain and (b) Xsens IMUs.

table that the increase in the operating temperature after switching on is a lot

more for the MicroStrain unit than the Xsens unit, although the change in the

measurement of Xsens unit is greater than the MicroStrain unit as seen in Figure

3.3. This means that the MicroStrain unit is more robust against operating

temperature changes compared to the Xsens unit. Furthermore, the variances

of the parameter estimates of the MicroStrain unit are lower than those of the

Xsens unit. In summary, the temperature-correlated bias of inertial sensors can

be estimated for a certain period of time based on only the ambient temperature

and this estimation is more precise for the MicroStrain unit than the Xsens.

Before proceeding to AV estimation of stochastic process parameters, bias

drift compensation is applied to the datasets according to Equation (3.38) by

simply subtracting the expected noise-free output set so that the remaining data

pertains only to the stochastic noise. Data after compensation are denoted by

~̂vtot as seen from the equation below:

~̂vtot = ~̄vtot − T ~̂ϕ (3.38)

In the next stage, AVs of the datasets are estimated. At the end of the AV

estimation scheme, a set of AD values for the discrete averaging times are obtained

by taking their square roots. According to those AD estimates, AD curves are

formed so that intrinsic noise content of the data can be specified. Two examples
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(a)

MicroStrain
GT (◦C) τT (s)

mean std. mean std.

ax, ay, az 18.051 0.992 592.324 16.232

gx 18.716 0.909 559.601 19.034

gy 17.846 0.843 599.502 23.652

gz 18.436 0.998 570.753 17.089

mx, my, mz 18.262 0.934 580.207 18.768

(b)

GT (◦C) τT (s)

mean std. mean std.

Xsens 6.508 2.126 742.766 94.561

Table 3.6: Mean and standard deviation values of thermal model parameter es-
timates of the (a) MicroStrain and (b) Xsens IMU.

of estimated AD curves, pertaining to the experiments of day three, are illustrated

in Figure 3.7 in dashed lines.

Noise content of the sensor outputs is determined by careful examination of

the AD estimates. According to this study, it is determined that all sensors

include white noise, bias instability noise, and random walk noise in their output.

Then, the characteristic parameters of the noise terms are estimated by fitting

the corresponding theoretical AD function to the estimated ADs of the datasets.

The governing overall theoretical AD function is the summation of the individual

ADs of these noise terms and can be expressed as

N√
τ

+ B

√
2 ln 2

π
+ K

√
τ

3
. (3.39)

Based on this theoretical AD function associated with both IMUs, stochastic

61



parameters can be estimated by solving
1/
√
τ1

√
2 ln 2/π

√
τ1/3

1/
√
τ2

√
2 ln 2/π

√
τ2/3

...
...

...

1/
√
τM

√
2 ln 2/π

√
τM/3



N

B

K


︸ ︷︷ ︸
~θs

=


σv̂tot(τ1)

σv̂tot(τ2)
...

σv̂tot(τM)

 (3.40)

in the same manner as in Equation (3.36). Here, M refers to the number of

clusters corresponding to the permissible minimum accuracy as in Equation (3.7).

60% is determined as the lowest bound for accuracy. The mean and standard

deviation values of the unknown N, B, and K are given in Table 3.7.

(a)

MicroStrain
N B K

mean std. mean std. mean std.

ax 5.69 · 10−4 1.26 · 10−5 1.04 · 10−3 6.69 · 10−5 1.32 · 10−5 3.67 · 10−6

ay 1.05 · 10−3 9.78 · 10−6 3.36 · 10−4 4.29 · 10−5 2.08 · 10−5 5.39 · 10−6

az 6.92 · 10−4 4.78 · 10−6 3.20 · 10−4 1.55 · 10−5 8.89 · 10−6 4.63 · 10−6

gx 5.90 · 10−4 5.32 · 10−6 5.10 · 10−5 3.07 · 10−6 2.59 · 10−6 5.27 · 10−7

gy 5.42 · 10−4 4.71 · 10−6 4.84 · 10−5 9.80 · 10−6 3.55 · 10−6 8.31 · 10−7

gz 5.16 · 10−4 3.70 · 10−7 6.49 · 10−5 3.92 · 10−6 3.09 · 10−6 7.39 · 10−7

mx 9.08 · 10−5 7.85 · 10−6 5.11 · 10−5 4.65 · 10−5 4.26 · 10−6 2.57 · 10−6

my 8.66 · 10−5 2.45 · 10−5 7.92 · 10−5 1.34 · 10−4 3.91 · 10−6 3.69 · 10−6

mz 9.85 · 10−5 1.18 · 10−6 7.06 · 10−5 8.27 · 10−6 3.72 · 10−6 1.42 · 10−6

(b)

Xsens
N B K

mean std. mean std. mean std.

ax 7.62 · 10−4 1.81 · 10−5 6.41 · 10−4 4.73 · 10−5 1.63 · 10−6 4.05 · 10−6

ay 8.34 · 10−4 2.01 · 10−5 1.92 · 10−4 1.01 · 10−5 5.84 · 10−6 2.50 · 10−6

az 6.81 · 10−4 7.09 · 10−6 6.74 · 10−4 5.81 · 10−5 2.46 · 10−5 3.56 · 10−6

gx 6.42 · 10−4 9.93 · 10−7 3.43 · 10−5 2.49 · 10−6 2.13 · 10−6 5.57 · 10−7

gy 6.26 · 10−4 1.25 · 10−6 2.72 · 10−5 2.14 · 10−6 2.35 · 10−6 1.66 · 10−7

gz 5.72 · 10−4 8.31 · 10−7 2.72 · 10−5 1.54 · 10−6 1.87 · 10−6 3.22 · 10−7

mx 6.98 · 10−5 1.15 · 10−5 9.30 · 10−5 8.10 · 10−5 7.91 · 10−6 7.30 · 10−6

my 4.89 · 10−5 3.45 · 10−5 1.28 · 10−4 1.95 · 10−4 7.33 · 10−6 7.58 · 10−6

mz 7.24 · 10−5 3.51 · 10−6 3.69 · 10−5 1.31 · 10−5 1.18 · 10−5 1.97 · 10−6

Table 3.7: Estimated stochastic process parameters of the (a) MicroStrain and
(b) Xsens IMUs through AV analysis.
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Values related to estimation repeatability in Table 3.7 (i.e., standard devia-

tion) suggest that the estimates are not sufficiently consistent for the particular

sensors of both IMUs even if the actual ADs are fitted very well for each individual

dataset of all sensors, as shown in Figure 3.7. In other words, estimation variance

of the stochastic process parameters of some sensors are high (e.g., estimation of

K of the x-axis accelerometer of the Xsens unit). Thus, identified parameters do

not yield a reliable and qualified stochastic model for related sensors. Fitted AD

curves according to the estimates and the actual AD curves are shown together

in Figure 3.7 for randomly selected datasets as stated before.
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Figure 3.7: Actual and fitted AD curves of the (a) MicroStrain and (b) Xsens
IMUs.

3.2.2 Results of PSO- and GAO-based MLE

In the second part of our work on stochastic identification, PSO- and GAO-based

MLE algorithms are implemented. For the implementation, initialization strategy

for the MLE algorithms, the likelihood function specific to our case and the like-

lihood function computation routines need to be developed. As can be seen from

the preliminary PSO and GAO discussions, initial guesses are made randomly in

the entire search space. On the other hand, it is known that having even crude

knowledge about the optimal parameter set and making initial guesses accord-

ingly greatly enhances the algorithms’ convergence speed. Therefore, we decided
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to use AV as a prior processing technique to have a fair initial guess and initialize

the particle positions accordingly. However, we cannot obtain an estimate for β

of the first-order Gauss-Markov process, which is the approximation of the bias

instability noise given in Table 3.2, after the AV analysis. The parameter β value

which leads to the minimum error between the first-order Gauss Markov model

and the original bias instability model, is used as initial guess. To find that value,

the PSD of the output of the approximate bias instability process given in Table

3.2, which will be denoted by Sb̃(f), can be written as

Sb̃(f) =
2B2β

β2 + (2πf)2
. (3.41)

The error between the original and approximate bias instability models can be

expressed by the squared difference between their PSDs as given in the equation

below:

B4

[
β2 − 4πβf + (2πf)2

2πf (β2 + (2πf)2)

]2

(3.42)

If the expression given in this equation is integrated over the frequency region,

the approximation error of the first-order Gauss-Markov process is obtained as

a function of β. Furthermore, reducing the integration band to [0.01, 100] Hz is

fairly sufficient from a practical point of view since the bias instability noise is

effective over this frequency band [74, 97]. We will not provide the mathematical

details of this definite integral since it is not the main focus of this section. If

the resultant error expression after the integration is minimized with respect to

β by a simple gradient-descent algorithm, the optimal value of β satisfying the

minimum error condition for approximate bias instability noise model is obtained

as 0.15, and this value is used in the further work as an initial guess.

The final form of the unknown parameter vector ~θ, after β is imported, is

given below:

~θ =
[
Q N B β K

]T
. (3.43)

The elements of this vector are the characteristic parameters of the correspond-

ing random processes, quantization noise, bias instability noise, white noise, re-

spectively. The relation between these parameters and the associated random

processes can be seen in Tables 3.1–3.4. The objective of PSO- and GAO-based
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stochastic identification is to estimate these parameters. Previous analysis gives

us a crude idea about the possibly optimal value ~θ, and this idea can be used to

initialize PSO and GAO.

As for the likelihood function, we prefer to work with the approximate one,

given in Equation (3.27) because the missing initial samples are not significant

compared to our huge sample set. We start with formulating ~vtot to define the

computation scheme of the chosen likelihood function since the temperature and

bias models of both IMUs are known from the previous discussion. In this regard,

~vtot can be calculated according to Equation (3.38) where T and ~ϕ specific to each

IMU are defined in Equation (3.35).

The ~vtot samples propagate in time according to the following stochastic

discrete-time difference equation:

vtot[k] = Nnw[k] +
B
√

1− e−2βTs

1− e−βTsz−1
nb[k] +

K
√
Tsz

−1

1− z−1
nrw[k]. (3.44)

After the necessary arrangements, a system equivalent to Equation (3.44) can

be described by

vtot[k]
(
1− e−βTsz−1

) (
1− z−1

)
= N

(
1− e−βTsz−1

) (
1− z−1

)
nw[k]

+ B
√

1− e−2βTsz−1
(
1− z−1

)
nb[k]

+ K
√
Tsz

−1
(
1− e−βTsz−1

)
nrw[k].

(3.45)

As stated before, the conversion of the multi-input stochastic system( whose

governing equations are given above) to the equivalent single-input stochastic

system as we did while deriving Equation (3.18) hinges upon the fact that the

input parts of both systems, which are the aforementioned MA parts should

have the same autocorrelation function. The vMA[k] for our IMU’s case can be

expressed as

vMA[k] = N
[
1−

(
1 + e−βTs

)
z−1 + e−βTsz−2

]
nw[k]

+ B
√

1− e−2βTs
(
z−1 − z−2

)
nb[k]

+ K
√
Ts
(
z−1 − e−βTsz−2

)
nrw[k].

(3.46)
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The elements of the autocorrelation function of the process vMA[k], denoted

by rvMA
are given as:

rvMA
[0] = N2

[
1 +

(
1 + e−βTs

)2
+ e−2βTs

]
+ 2B2

(
1− e−2βTs

)
+ TsK

2
(
1 + e−2βTs

)
rvMA

[1] = −N2
(
1 + e−βTs

)2 −B2
(
1− e−2βTs

)
− TsK2e−βTs

rvMA
[2] = N2e−βTs

rvMA
[k] = 0 ∀ k > 2.

(3.47)

Therefore, the SISO system statistically equivalent to vtot[k] which is recognized

to be an ARMA(2, 2) process can be expressed in parametric form as(
1 + γ1z

−1 + γ2z
−2
)
vtot[k] =

(
a0 + a1z

−1 + a2z
−2
)
n[k] (3.48)

where n[.] denotes zero-mean, unit variance white Gaussian noise. Coefficients of

the system given in Equation (3.48) can be computed by the following steps:

• Coefficients γ1 and γ2 can be found by expanding the left-hand side of

Equation (3.45), which is the AR part of the entire stochastic process vtot[k].

Therefore, their computations are straightforward and easy, as evident from

Equation (3.49) given below.

γ1 = 1 + e−βTs

γ2 = e−βTs
(3.49)

• The a0, a1 and a2 are the coefficients of ṽMA[k], which is the single-input MA

process equivalent of vMA[k] expressed in Equation (3.46). Their analytical

solutions are based on the equivalence of autocorrelations as mentioned

before and can be established through the following steps:

– In compliance with Equations (3.47) and (3.48), the elements of rvMA

can be alternatively found by

rvMA
[0] = a2

0 + a2
1 + a2

2

rvMA
[1] = a0a1 + a1a2

rvMA
[2] = a0a2

(3.50)
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– If Equation (3.50) is arranged conveniently, the following equations are

obtained:

a0 + a1 + a2 =
√
rvMA

[0] + 2rvMA
[1] + 2rvMA

[2]

a0 − a1 + a2 =
√
rvMA

[0]− 2rvMA
[1] + 2rvMA

[2]
(3.51)

– The a1 can be readily solved as

a1 =

√
rvMA

[0] + 2rvMA
[1] + 2rvMA

[2]−
√
rvMA

[0]− 2rvMA
[1] + 2rvMA

[2]

2
(3.52)

– If the necessary manipulations are done after substituting a1 in Equa-

tion (3.51), the reduced linear system of equations given below is ob-

tained:

a0 + a2 =
rvMA

[1]

a1

a0 − a2 =
√
rvMA

[0]− a2
1 − 2rvMA

[2]

(3.53)

– If the two independent relations in Equation (3.53) are solved together,

unknown a0 and a2 coefficients are obtained as:

a0 =
1

2

(
rvMA

[1]

a1

+
√
rvMA

[0]− a2
1 − 2rvMA

[2]

)
a2 =

1

2

(
rvMA

[1]

a1

−
√
rvMA

[0]− a2
1 − 2rvMA

[2]

) (3.54)

All of the parameters of Equation (3.48) can be found by Equations (3.52) and

(3.54) provided that N, B, K, β, and Ts are given. Particle positions are used for

this purpose during PSO while they can be interpreted from the current solution

vector during GAO. Using those parameters, Equation (3.48) can be modified as(
1 + γ1z

−1 + γ2z
−2
)
vtot[k] =

(
1 + ã1z

−1 + ã2z
−2
)
ñ[k], (3.55)

where ñ is the zero-mean white Gaussian noise with variance a2
0 and

ã1 =
a1

a0

and ã2 =
a2

a0

.

Furthermore, the A and S matrices relevant to our case need to be formed

to be able to compute L
(
~̄vtot, ~θ

)
according to Equation (3.22). Assuming that
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ñ[k] = 0 ∀ k < 1, A and S preserve their special matrix structures so that they

are expressed as

A =



1 0 · · · 0
ã1 1

ã2 ã1 1
. . .

...
0 ã2 ã1 1
...

. . . . . . . . . . . . 0
0 · · · 0 ã2 ã1 1


and S =



1 0 · · · 0
γ1 1

γ2 γ1 1
. . .

...
0 γ2 γ1 1
...

. . . . . . . . . . . . 0
0 . . . 0 γ2 γ1 1


. (3.56)

At this point, we obtain the computational procedure for the approximate

likelihood function which is needed during the execution of both GAO- and PSO-

based MLE methods. Therefore, given a point ~θi in the search space of unknown

parameters, the approximate likelihood function can be computed now. The

flowchart of the computational procedure for the approximate and exact like-

lihood functions is given in Figure 3.8. Furthermore, we also need to specify

the values of the configuration parameters associated with the optimization algo-

rithms (e.g., stopping criteria ε1 for GAO-based MLE and inertia parameter m

for PSO-based MLE) to perform stochastic identification. Details on configuring

the settings of PSO and GAO properly are discussed in Appendices B and C,

respectively. The configuration parameters are set as follows:

• GAO-based MLE: α0 = 50, τ = 0.8, kmax = 1, 000, ε1 = ε2 =

0.005, and c = 0.0001.

• PSO-based MLE: S = 70, m = 0.8, ~bl = −14~θ0, ~bu = 16~θ0, kmax =

1, 000, ∆max = 0.1, φp = 2, and φg = 2, where ~θ0 is the initial parameter

guess made randomly.

Now, we are ready to perform PSO and GAO. Stochastic model parameters

associated with all datasets are estimated using these two methods. In the fol-

lowing, first the results of PSO- and GAO-based MLE are given. Then, some

performance curves related to the estimated parameters are shown to compare

the two MLE methods and the AV approach among themselves, based on both

performance and other criteria such as processing time and robustness.
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The mean and the standard deviation values of the ~θ estimates of the Mi-

croStrain and Xsens IMUs obtained by PSO- and GAO- based MLE methods

are given in Tables 3.9 and 3.10. It can be readily observed in these tables

that the MLE techniques outperform the AV technique in terms of estimation

consistency. Therefore, it can be interpreted that MLE methods provide more

reliable stochastic parameter estimation compared to the AV. Furthermore, MLE

methods individually seem to have equally variant estimations. However, it is

surprising that the stochastic parameters of the different sensors in the same

IMU, found by PSO-based MLE, vary dramatically whereas it is the other way

around for GAO-based MLE. In our opinion, this points out that GAO-based

MLE is one step ahead of PSO-based MLE in terms of estimation consistency.

Another important criterion to make a comparison between the identification

methods is the likelihood function itself. In this regard, average log-likelihood

values obtained by all estimation methods for both IMUs are given in Table 3.8.

(a)

MicroStrain AV (×108) PSO-based MLE (×107) GAO-based MLE (×107)
ax −3.00 1.516 1.508
ay −2.68 1.288 1.289
az −2.07 1.519 1.515
gx −1.84 1.609 1.607
gy −1.90 1.641 1.639
gz −1.82 1.669 1.667
mx −2.18 2.377 2.376
my −3.17 2.367 2.367
mz −2.11 2.342 2.341

(b)

Xsens AV (×108) PSO-based MLE (×107) GAO-based MLE (×107)
ax −1.99 1.474 1.474
ay −1.90 1.406 1.452
az −2.51 1.480 1.399
gx −1.88 1.563 1.568
gy −1.88 1.568 1.579
gz −1.87 1.610 1.618
mx −2.47 2.416 2.460
my −1.14 2.473 2.512
mz −2.23 2.437 2.459

Table 3.8: Log-likelihood values obtained by the different estimation techniques
for (a) MicroStrain and (b) Xsens.
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(a)

MicroStrain
N B β K

mean std. mean std. mean std. mean std.
ax 3.70 · 10−3 3.66 · 10−3 4.50 · 10−3 2.76 · 10−3 112.92 112.69 3.42 · 10−4 2.54 · 10−4

ay 1.22 · 10−2 7.94 · 10−5 1.08 · 10−2 1.34 · 10−4 5.68 · 10−2 9.64 · 10−3 6.20 · 10−5 1.70 · 10−7

az 1.31 · 10−8 ≈ 0 7.26 · 10−3 6.93 · 10−5 246.70 12.77 2.19 · 10−4 4.59 · 10−5

gx 5.42 · 10−3 1.33 · 10−4 1.78 · 10−3 3.55 · 10−4 76.11 13.25 1.40 · 10−5 3.27 · 10−6

gy 5.74 · 10−9 ≈ 0 5.34 · 10−3 2.91 · 10−5 289.95 6.75 2.31 · 10−5 4.27 · 10−8

gz 6.15 · 10−9 5.38 · 10−9 5.06 · 10−3 8.29 · 10−6 221.26 0.33 2.13 · 10−5 3.59 · 10−6

mx 9.79 · 10−4 8.74 · 10−8 9.31 · 10−5 3.65 · 10−5 0.805 0.74 1.34 · 10−5 5.59 · 10−6

my 1.01 · 10−3 2.44 · 10−6 9.22 · 10−5 2.99 · 10−5 0.662 0.64 3.83 · 10−6 3.73 · 10−6

mz 1.07 · 10−3 5.44 · 10−6 2.18 · 10−4 1.16 · 10−5 1.215 4.47 · 10−2 1.63 · 10−5 4.88 · 10−6

(b)

Xsens
N B β K

mean std. mean std. mean std. mean std.
ax 7.40 · 10−3 4.95 · 10−5 3.00 · 10−3 1.03 · 10−4 14.61 1.91 1.80 · 10−4 3.59 · 10−6

ay 4.30 · 10−3 2.01 · 10−5 7.10 · 10−3 1.62 · 10−4 195.28 7.19 · 10−3 8.37 · 10−5 7.64 · 10−6

az 3.60 · 10−3 3.62 · 10−3 5.60 · 10−3 2.30 · 10−3 182.51 80.9 2.02 · 10−4 2.42 · 10−5

gx 6.40 · 10−3 2.15 · 10−6 1.02 · 10−4 3.00 · 10−5 3.24 · 10−2 1.18 · 10−2 5.53 · 10−6 1.92 · 10−6

gy 6.20 · 10−3 8.59 · 10−6 1.12 · 10−4 3.99 · 10−6 4.68 · 10−2 9.67 · 10−3 1.01 · 10−5 1.00 · 10−6

gz 5.70 · 10−3 1.79 · 10−6 1.14 · 10−4 6.69 · 10−6 5.24 · 10−2 2.27 · 10−2 8.94 · 10−6 6.85 · 10−7

mx 4.15 · 10−4 1.79 · 10−5 8.49 · 10−4 2.65 · 10−5 118.81 2.06 · 10−1 1.53 · 10−4 1.15 · 10−4

my 7.46 · 10−4 1.30 · 10−6 6.65 · 10−5 2.88 · 10−7 0.133 2.63 · 10−3 1.67 · 10−5 6.56 · 10−6

mz 8.60 · 10−4 3.27 · 10−5 1.15 · 10−4 1.02 · 10−5 9.56 · 10−2 5.52 · 10−3 3.05 · 10−5 2.78 · 10−6

Table 3.9: Estimated stochastic process parameters of (a) MicroStrain and (b) Xsens IMUs through PSO-based MLE.
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(a)

MicroStrain
N B β K

mean std. mean std. mean std. mean std.
ax 7.30 · 10−3 6.67 · 10−5 1.41 · 10−3 4.05 · 10−4 1.04 · 10−1 3.86 · 10−3 2.58 · 10−4 2.17 · 10−4

ay 1.22 · 10−2 6.63 · 10−5 1.13 · 10−4 1.77 · 10−4 1.47 · 10−1 1.49 · 10−3 3.14 · 10−4 3.05 · 10−5

az 7.28 · 10−3 8.01 · 10−5 7.75 · 10−4 7.62 · 10−5 1.45 · 10−1 5.54 · 10−4 7.20 · 10−5 6.00 · 10−6

gx 5.76 · 10−3 8.02 · 10−5 1.48 · 10−4 2.48 · 10−5 1.42 · 10−1 3.19 · 10−3 1.07 · 10−5 2.76 · 10−6

gy 5.36 · 10−3 7.44 · 10−5 2.05 · 10−4 6.92 · 10−5 1.50 · 10−1 3.61 · 10−3 8.37 · 10−6 7.27 · 10−6

gz 5.07 · 10−3 1.09 · 10−5 1.93 · 10−4 4.99 · 10−6 1.50 · 10−1 1.36 · 10−3 1.68 · 10−5 6.07 · 10−6

mx 9.81 · 10−4 1.77 · 10−6 1.32 · 10−4 2.26 · 10−4 1.50 · 10−1 3.36 · 10−5 7.31 · 10−5 4.62 · 10−5

my 1.00 · 10−3 3.89 · 10−6 8.46 · 10−5 5.90 · 10−5 1.50 · 10−1 1.56 · 10−5 8.69 · 10−5 1.39 · 10−4

mz 1.08 · 10−3 1.89 · 10−5 1.76 · 10−4 1.98 · 10−4 1.50 · 10−1 1.13 · 10−4 1.45 · 10−4 1.22 · 10−4

(b)

Xsens
N B β K

mean std. mean std. mean std. mean std.
ax 7.75 · 10−3 4.63 · 10−5 1.13 · 10−3 1.52 · 10−3 1.43 · 10−1 6.34 · 10−3 3.66 · 10−3 2.13 · 10−4

ay 8.36 · 10−3 1.56 · 10−4 4.86 · 10−4 2.50 · 10−5 1.46 · 10−1 2.84 · 10−4 3.40 · 10−5 8.16 · 10−6

az 1.21 · 10−2 8.41 · 10−3 9.26 · 10−4 1.10 · 10−3 1.46 · 10−1 2.63 · 10−3 7.66 · 10−3 1.50 · 10−4

gx 6.37 · 10−3 9.69 · 10−6 1.38 · 10−4 2.51 · 10−5 1.48 · 10−1 7.27 · 10−4 9.69 · 10−6 8.96 · 10−7

gy 6.22 · 10−3 1.62 · 10−5 1.23 · 10−4 1.17 · 10−5 1.48 · 10−1 5.30 · 10−4 9.86 · 10−6 2.04 · 10−6

gz 5.68 · 10−3 7.60 · 10−6 1.25 · 10−4 9.26 · 10−6 1.48 · 10−1 2.97 · 10−4 7.42 · 10−6 1.59 · 10−6

mx 8.42 · 10−4 1.13 · 10−4 2.66 · 10−4 2.86 · 10−4 1.49 · 10−1 7.02 · 10−4 2.21 · 10−4 2.45 · 10−4

my 7.47 · 10−4 8.36 · 10−6 1.44 · 10−4 1.66 · 10−4 1.49 · 10−1 1.24 · 10−3 7.39 · 10−5 1.15 · 10−4

mz 9.08 · 10−4 7.30 · 10−5 1.15 · 10−5 2.18 · 10−5 1.50 · 10−1 6.92 · 10−6 5.11 · 10−5 5.24 · 10−6

Table 3.10: Estimated stochastic process parameters of (a) MicroStrain and (b) Xsens IMUs through GAO-based MLE.
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It is observed in Table 3.8 that larger likelihood values are acquired by the

proposed MLE methods compared to the traditional AV technique. This means

that the MLE leads to more precise estimates. If the success of the MLE methods

is examined, it is observed that neither of them is superior to the other since the

log-likelihood values obtained with them are very close to each other. More

specifically, GAO-based MLE generally outperforms the PSO-based MLE for the

Xsens unit while it is the other way around for the MicroStrain unit as can be

seen in Figure 3.9. For the MicroStrain unit, PSO-based MLE provides tracking

of the even very slow changes of the true PSD while the PSD obtained by GAO-

based MLE does not fit very well to the actual PSD since it does not follow those

changes in PSD. On the other hand, for the Xsens unit, GAO-based MLE provides

a PSD very close to the true one whereas the PSD obtained by PSD-based MLE

is biased. The success of the MLE methods is obvious in these figures.

The last criterion is the elapsed time for the convergence of the algorithms.

Average processing durations are given in Table 3.11 for this purpose.

average processing time (s)
AV PSO-based MLE GAO-based MLE
3 86, 400 7, 200

Table 3.11: Average processing time of different estimation techniques for 12
hours of data.

Compared to AV, MLE techniques require an order of magnitude more time

to converge. Although it seems to be a serious disadvantage at a first glance, it

is not an issue in practice since stochastic identification is an offline task that

needs to be done only once before putting the sensors into use. However, we still

consider what happens in the case for which we have a lower number of samples to

process. Can we obtain the same results by MLE techniques with a lower absolute

processing time because of the lower number of samples taken into account? We

reran MLE techniques for two cases without using the results of the AV analysis

as initial guesses: data of six minutes and data of 24 minutes. We prefer to

use the exact likelihood function given in Equation (3.33) since the effect of the

assumption n[k] = 0 ∀ k < 1, that we made for approximate likelihood function,

might be significant for our test cases having small sample sets. Log-likelihood

values obtained after the runs are shown in Tables 3.12 and 3.13.
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(a)

MicroStrain AV (×108) PSO-based MLE (×107) GAO-based MLE (×107)
ax −1.790 1.517 1.515
ay −2.160 1.286 1.286
az −1.691 1.515 1.514
gx −2.443 1.601 1.601
gy −2.370 1.633 1.633
gz −2.209 1.665 1.663
mx −3.517 2.373 2.374
my −4.251 2.366 2.365
mz −1.977 2.342 2.341

(b)

Xsens AV (×108) PSO-based MLE (×107) GAO-based MLE (×107)
ax −2.538 1.477 1.474
ay −2.030 1.454 1.452
az −1.875 1.480 1.479
gx −2.026 1.568 1.568
gy −1.990 1.579 1.579
gz −2.020 1.618 1.618
mx −1.367 2.460 2.347
my −1.569 2.509 2.509
mz −1.090 2.453 2.454

Table 3.12: Log-likelihood values obtained by different estimation techniques with
data of six minute duration for the (a) MicroStrain and (b) Xsens units.

(a)

MicroStrain AV (×108) PSO-based MLE (×107) GAO-based MLE (×107)
ax −2.176 1.517 1.515
ay −2.311 1.288 1.288
az −1.831 1.515 1.515
gx −2.126 1.606 1.605
gy −2.142 1.637 1.637
gz −2.019 1.669 1.666
mx −6.931 2.375 2.375
my −6.665 2.367 2.366
mz −2.088 2.341 2.329

(b)

Xsens AV (×108) PSO-based MLE (×107) GAO-based MLE (×107)
ax −2.236 1.480 1.469
ay −1.924 1.457 1.414
az −1.818 1.481 1.478
gx −1.962 1.569 1.558
gy −1.944 1.579 1.560
gz −1.950 1.619 1.607
mx −1.642 2.444 2.432
my −1.404 2.507 2.474
mz −1.344 2.445 2.419

Table 3.13: Log-likelihood values obtained by different estimation techniques with
data of 24 minute duration for (a) MicroStrain and (b) Xsens units.
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As seen in Tables 3.12 and 3.13, MLE methods still provide highly accurate

stochastic identification even with the very small number of samples, whereas the

results of the AV method are unsatisfactory due to the accuracy issue of the AV.

Log-likelihood values achieved by the MLE methods using fewer samples are close

to the results of MLE methods using the entire sample set and they are even better

than the AV method using the entire sample set. Therefore, it can be stated that

MLE methods can reach greater success with a relatively small number of samples

meaning that the duration of the experiments for the stochastic identification can

be very short. We finally compare the algorithms in terms of the total amount of

time spent for the experiment and the average processing duration. We consider

the data of six minute duration for MLE methods and 12 hours of data for the

AV method and show the results in Table 3.14.

total amount of time (s)
AV PSO-based MLE GAO-based MLE

43, 203 1, 080 1, 800

Table 3.14: The sum of the duration of the experiment and the average processing
duration.

As a result, our proposed MLE methods can provide more consistent and ac-

curate results with less time consumption because they need fewer measurements

compared to classical estimation techniques (e.g., AV estimation).
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Figure 3.9: Performance curves of different estimation techniques for the (a)
MicroStrain and the (b) Xsens unit.
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Chapter 4

CONCLUSIONS AND FUTURE

WORK

In this thesis, we presented deterministic and stochastic error models for inertial

sensors and magnetometers and error model parameter estimation results. In

the first part, we formulated the deterministic measurement model of the sen-

sors using the results from earlier works. Then, we presented some identification

methods for the deterministic error parameters based on experimentally acquired

data. A classical method was preferred for accelerometers since the reference

data were available and satisfactory results were obtained. However, the classical

approach was not sufficient for gyroscopes due to the reference data limitation

of the FMS device that was used for the experiments (i.e., instantaneous angular

rates were not available). Therefore, we developed a novel estimation technique

based on the comparison of the computed attitude and the reference attitude

that the FMS provides. We used PSO, which is a model-free evolutionary opti-

mization technique, since the derivation of the attitude model based on sensor

error parameters would have been a highly complex task. We achieved sufficient

modeling accuracy with the proposed approach which can also be implemented

for in-field calibration problems. Magnetometers were the worst among all the

sensors and we could not manage to obtain modeling errors as small as those

of inertial sensors. Traditional magnetometer model-based identification led to
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poor results due to the unmodeled effects (e.g., orientation-dependent hard iron

errors). Hence, we proposed an extended sensor model for the magnetometers

and managed to improve the residual calibration errors by 50%.

In the second part, the objective was to model the measurement noise of the

sensors and identify the associated model parameters. To the best of our knowl-

edge, generalized exact and approximate likelihood functions have not been de-

rived and MLE has not been employed accordingly for all possible noise terms

in inertial and magnetic sensors . There is one study [103] which adopts the

likelihood function maximization idea but uses the simplified noise models that

do not take the effects of all noise terms into account. It is also stated in the

same paper that the proposed method leads to poor estimates when a complex

stochastic model is used for the total measurement noise. In this thesis, unlike

the traditional techniques, the likelihood function maximization approach that

considers the generalized noisy case, is proposed and employed. First, the pro-

cedure for MLE technique was developed after the measurement noise had been

modeled by an ARMA model which can be suitably adopted in INS/GPS filters

such as the Kalman filter. Before the MLE was employed using the experimental

data collected during the stationary position of the sensors, the mean and the

temperature-dependent part of the data had been removed. Two different op-

timization algorithms (PSO and GAO) were implemented, and the results were

compared to the classical AV-based estimation approach in terms of some per-

formance measures: quality of the estimates, fitted and actual data PSD and AV

curves, likelihood values, and the total amount of time spent for the experiments

and calibration. It has been shown that MLE methods outperform the AV-based

estimation in all aspects. More precise and consistent stochastic parameter es-

timates can be obtained using a dataset that is 80% smaller through the use of

MLE techniques.

It is not possible to compare the error model’s whole parameter estimates

obtained in this thesis with the specifications and data provided by the manufac-

turer (see Appendix D) since given information on measurement errors of sensors

is very limited. Regarding reference data, we can compare in terms of following

two error features:
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• bias stability: Bias stability refers to the minimum of AD of a sensor over

the entire operating temperature of a sensor. It is the least amount of noise

that one can achieve by averaging sensor measurements. Reference bias

stability values are given in Table 1.1. Estimated bias stability values can

be seen in Figure 3.9. Obtained bias stability estimates are much less than

manufacturer specified values. A possible explanation of this can be the

worsening effect of temperature on bias stability that is taken into account

by manufacturers. However, we do not have any observation about the

change of bias stability with temperature as we did not have a chance to

repeat our experiments at different ambient temperatures.

• misalignment: This error term can be compared only for Xsens unit since

reference data is provided only by them. It is stated in the specifications

sheet of Xsens IMU that the misalignment is not more than 0.1◦ in all

axes for all sensors. However, it is observed in this thesis that estimated

misalignment angles exceed 0.1◦ mostly. This exceeding difference is less

than 0.05◦ for gyroscope while it is approximately three times greater for

accelerometers. Exact values of misalignment angle estimates are given in

Tables 2.2 and 2.4.

The success of the results of both deterministic and stochastic model identifi-

cation problems can also be investigated in actual standalone and aided INSs in

future work. Some effort must be absolutely put on the more complex modeling

of the magnetometers to further improve the calibration accuracy. Furthermore,

the proposed calibration method of gyroscopes can be implemented for a real

in-field calibration problem dataset and compared to the other techniques.
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Appendix A

Levenberg-Marquardt Algorithm

(LMA)

LMA is a nonlinear optimization technique commonly used in a broad range of

applications. It tries to estimate the optimal parameter set of a function, denoted

by ~θ∗, iteratively by minimizing the sum of the squared distance between the ac-

tual and estimated outputs of that function, given ~θ, as shown in Equation (A.1).

That function intends to model the relation between the true output and the in-

put corresponding to it. The notation used in this subsection can be explained as

follows: We use f(.) and ~y to denote the function, whose parameters are uniden-

tified, and the true output vector of the function, respectively. The operator f(.)

generates the estimated output vector, given the unknown parameter set ~θ.

~θ∗ = arg min
~θ

∣∣∣∣∣∣~y − f(~θ)
∣∣∣∣∣∣ (A.1)

LMA is considered to be a hybrid of the steepest descent and Gauss-Newton

methods [104]. It converges to the minima by updating the current solution

vector, ~θ, through a series of augmented least-squares problems formed after

linearization of f(.) in the neighborhood of ~θ. This process is detailed below.

• f~θ) is linearized around ~θ by ignoring the second- and higher-order terms
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of its Taylor series expansion as

f(~θ + δ~θ) ≈ f(~θ) +
∂f(~θ)

∂~θ
δ~θ (A.2)

• Normal equations related to Equation (A.2) can be formed by

JTJ δ~θ = JT
(
~y − f(~θ)

)
, (A.3)

where J =
∂f(~θ)

∂~θ
.

• LMA solves a slight variation of the conventional normal equations, given

in Equation (A.3), which is called the augmented normal equations. They

are expressed in Equation (A.5) and are used to update ~θ according to

~θ = ~θ + δ~θ (A.4)

δ~θ = (JTJ + µI)−1JT
(
~y − f(~θ)

)
(A.5)

Here, the parameter µ denotes the scalar damping term related to LMA

and is updated at each iteration according to the internal logic of LMA as

well.

• LMA stops when any of the following occurs:

– the preset upper bound for the number of iterations is reached,

– the solution cannot be improved sufficiently,

– the fitting error drops below a certain level.

Pseudocode of the LMA algorithm is given below [104]. The input parameters

$, ε1, and ε2 are related to the configuration settings used to provide a proper

LMA operation. The parameter $ is about the initialization of the algorithm

whereas ε1 and ε2 are the termination condition parameters. The choice of $

depends on the quality of the initial parameter guess ~θ0. As a rule of thumb, a

small value (e.g., 10−6) is used if ~θ0 is believed to be a fair initial guess. Otherwise,

$ should be set to a value around one. Furthermore, ε1 and ε2 are generally set

to very small values like 10−10 to guarantee that the algorithm has converged.

More detailed discussion pertaining to LMA can be found in [104, 105, 106].
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Algorithm 1 ~θ∗=LMA(~θ0, $, ε1, ε2)

k ← 0
~θ ← ~θ0

µ← $maxJTJ
J ← ∂f(~θ)/∂~θ
while k ≥ kmax or stop = 0 do
k ← k + 1
δ~θ ← (JTJ + µI)−1JT (~y − f(X, ~θ))

if ‖ δ~θ ‖≤ ε2(‖ ~θ ‖ +ε2) then
stop← 1

else
~θnew ← ~θ + δ~θ
%← (‖ ~y − f(~θ) ‖2 − ‖ ~y − f(~θnew) ‖2)/(δ~θT (µδ~θ + δ~θ))
if % > 0 then
~θ ← ~θnew
J ← ∂f(~θ)/∂~θ

if ‖ JT (~y − f(~θ)) ‖∞≤ ε1 then
stop← 1

end if
µ← max(1

3
, 1− (2%− 1)3)

else
µ← 2µ

end if
end if

end while
~θ∗ ← ~θ

When adopting the LMA for the deterministic calibration of inertial sensors

and magnetometers, f(.) is selected according to one of the sensor model equa-

tions (Equations (2.5) and (2.8)). Then, ~θ is the set of unknown calibration

parameters involved in the model (bias error, scale factor error, misalignment,

etc.).
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Appendix B

Particle Swarm Optimization

(PSO)

Though PSO is originally proposed to simulate movements of bird flocks [107],

it has become very popular in many research fields (e.g., signal processing) be-

cause of its simplicity and the success rate in global convergence for optimization

problems. It is generally adopted as an offline optimization tool since it requires

a huge amount of computational power. The workflow of the algorithm can be

described roughly as the search of particles in the parameter space towards the

optimal solution. This optimality is measured according to a quality index which

can be described as the cost function H(.) to be either minimized or maximized.

The general PSO problem is portrayed below.

Let S be the number of particles in the swarm, ith of which has a position

~θi and a velocity ~υi in the search-space Rd. Let ~pi be the best known position of

that particle and ~θ∗ be the best known position of the entire swarm. Pseudo-code

of the basic PSO algorithm can be found below [108].

There are several parameters that are of great importance for the proper

operation of PSO:

• The parameter m denotes the inertia of the particles having an impact
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Algorithm 2 ~θ∗=PSO(S,~bl,~bu, ω, φp, φg, kmax, hmax,∆max)

for all i ∈ S do
k ← 0
~θi ∼ U

(
~bl,~bu

)
~pi ← ~θi
if H(~pi) > H(~θ∗) then
~θ∗ ← ~pi

end if
~υi ∼ U

(
−
∣∣∣~bu −~bl∣∣∣ , ∣∣∣~bu −~bl∣∣∣)

end for
repeat

for all i ∈ S do
rp ∼ U (0, 1)
rg ∼ U (0, 1)

~υi ← m~υi + φp rp

(
~pi − ~θi

)
+ φg rg

(
~θ∗ − ~θi

)
~θi ← ~θi + ~υi
if H(~θi) > H(~pi) then

~pi ← ~θi
if H(~θi) > H(~θ∗) then
~θ∗ ← ~θi
k∗ ← k

end if
end if

end for
k ← k + 1

until k < kmax or k∗ − k > ∆max

on how much particles tend not to change their current velocities at each

iteration.

• The parameter S denotes the population size of the swarm.

• The parameters φp and φg determine the amount of the contributions of the

entire swarm population’s and each particle’s own knowledge, respectively

while computing the particles’ new velocities. They are also called social

and global cognitive parameters, respectively.

• The parameters~bl and~bu represent the lower and upper bounds of the search

space. They are constraints of the problem rather than user-set parameters.
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• The parameters ∆max and kmax, which are the maximum solution update

rate and the iteration number limit, define the stopping condition of the

algorithm.

The selection of these parameters has been studied extensively in the literature

since PSO’s performance immensely depends on them. References [90], [91], and

[109] are important works and provide insights on choosing the parameter values

in practice. It is recommended to set 0.75 < m < 1 in order to introduce a real

dynamic system feature that bird flocks have, into the flow of the optimization.

A correlation between the population size parameter S and the dimension of

the unknown parameter vector ~θ is shown for the successful operation. The

parameters φp and φg are generally set to a value greater than 1. The selection

of ∆max and kmax is generally based on a trial and error approach.
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Appendix C

Gradient-Ascent Optimization

(GAO)

Gradient-ascent is a first-order optimization technique that is used to find a local

maximum of a given function. It approaches the maximum by updating the

current solution in the direction of the gradient of the cost function at each

iteration [110]. How much the current solution is updated in the direction of the

gradient at each iteration step is usually determined by a line search algorithm

[105]. An outline of GAO for the maximization of any f(~θ) : Rn → R is shown

below.

The stopping criteria of the algorithm compares the progress of the solution

and checks if the number of iterations has reached the kmax, which is the maximum

allowed iteration number. The parameters ε1 and ε2, which are used in the

stopping criteria as well, are considered to be the minimum acceptable step length

and the cost function improvement. Furthermore, the steplength subfunction in

the pseudo-code of GAO determines the amount of change of ~θ in the direction of

the gradient at each iteration step. The best α value is to provide the maximum

amount of increase in the function’s value. However, the solution of the optimal

α value requires the use of optimization techniques and is usually considered to

be out of GAO’s scope. Instead, line search methods are adopted [111, 112]. In
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Algorithm 3 ~θ∗=GAO(~θ0, kmax, ε1, ε2)

k ← 0
stop← 0
~θ ← ~θ0

while k ≤ kmax or stop = 0 do
~∇f ← ∂f(~θ)/∂~θ

~̂∇f ← ~∇f/ ‖ ~∇f ‖
α← steplength(~θ, ~̂∇f)

if α ≤ ε1 and f(~θ + α~̂∇f)− f(~θ) ≤ ε2f(~θ) then
stop← 1

end if
end while
~θ∗ ← ~θ

this study, backtracking line search technique based on Armijo condition [113] is

used. The final form of the algorithm’s work flow is as shown below.

The κ, α0, and c are configuration parameters of the backtracking line search

algorithm and the corresponding Armijo condition, respectively. The parameter

κ is associated with the decrease rate in the step length after a step length is

rejected. The parameter α0 is about the initial step length in the beginning of

each iteration and c is used in Armijo rule test. References [113, 114] suggest

to set 0 < κ < 1 (e.g., κ = 0.8), α0 > 1, and c � 1 (e.g., c = 0.0001),

respectively. Furthermore, ε1 and ε2 are parameters controlling the termination

of the algorithm. They are generally set to a small value like 10−3 to guarantee

that the algorithm has converged.

When adopting the GAO for stochastic identification, f(.) is selected as one of

the likelihood functions given in Equations (3.27) and (3.33). Hence, it is obvious

that GAO needs the derivative of the likelihood function with respect to ~θ. We

decided to utilize a numerical differentiation technique, five-point stensil [115],

rather than deriving the complicated differentials of L
(
~̄vtot, ~θ

)
. Accordingly, the

gradient vector ~∇f is calculated by

~∇f =
L
(
~̄vtot, ~θ − 2~δθ

)
+ 8L

(
~̄vtot, ~θ + ~δθ

)
− L

(
~̄vtot, ~θ + 2~δθ

)
− 8L

(
~̄vtot, ~θ − ~δθ

)
12~δθ

(C.1)
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Algorithm 4 ~θ∗=GAO(~θ0, α0, κ, c, kmax, ε1, ε2)

k ← 0
stop← 0
~θ ← ~θ0

while k ≤ kmax or stop = 0 do
α← α0
~∇f ← ∂f(~θ)/∂~θ

~̂∇f ← ~∇f/ ‖ ~∇f ‖
if f(~θ + α~̂∇f) ≥ f(~θ) + αc ~∇fT ~̂∇f then
α = ακ

end if

if α ≤ ε1 and f(~θ + α~̂∇f)− f(~θ) ≤ ε2 then
stop← 1

else
~θ = ~θ + α~̂∇f

end if
end while
~θ∗ ← ~θ

where ~δθ is the spacing between the grid points. As it decreases, accuracy of the

numerical differentiation improves.
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Appendix D

Sensor Specifications

Datasheets [39, 40] and calibration sheets specific to the units that we procured

are provided in the following pages.
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3DM-GX2™
Gyro Enhanced 
Orientation Sensor

Technical  Product Overview

Micro Sensors. Big Ideas.®

Introduction
3DM-GX2™ is a high-performance gyro enhanced orientation 
sensor which utilizes miniature MEMS sensor technology.   It 
combines a triaxial accelerometer, triaxial gyro, triaxial 
magnetometer, temperature sensors, and an on-board processor 
running a sophisticated sensor fusion algorithm.  

3DM-GX2™ off ers a range of output data quantities from fully 
calibrated inertial measurements (acceleration, angular rate 
and magnetic fi eld or deltaAngle & deltaVelocity vectors) to 
computed orientation estimates (pitch & roll or rotation matrix).   
All quantities are fully temperature compensated and corrected 
for sensor misalignment.   The angular rate quantities are further 
corrected for G-sensitivity and scale factor non-linearity to third 
order.

3DM-GX2’s communications interface hardware is contained 
in a separable module, and can therefore be easily customized.   
Currently available interface modules include a wireless 
transceiver, USB 2.0, RS232 and RS422.  An OEM version is 
available without the communications interface enabling the 
sensor to be integrated directly into a host system’s circuitboard, 
providing a very compact sensing solution.

Features & Benefi ts
• small, light-weight, low-power design ideal for size-sensitive 

applications including wearable devices

• fully temperature compensated over entire operational range 

• calibrated for sensor misalignment, gyro G-sensitivity, and gyro 
scale factor non-linearity

• simultaneous sampling for improved time integration 
performance

• available with wireless and USB communication interfaces

• user adjustable data rate (1 to 250Hz) and sensor bandwith 
(1 to 100Hz)

• outputs include Euler angles, rotation matrix, deltaAngle & 
deltaVelocity, acceleration and angular rate vectors

Applications
• inertial aiding INS and GPS, location tracking

• unmanned vehicles, robotics – navigation, artifi cial horizon

• computer science, biomedical – animation, linkage free 
tracking/control 

• platform stabilization

• antenna and camera pointing

www.microstrain.com



Copyright © 2007  MicroStrain Inc. 
3DM-GX2 is a trademark of MicroStrain Inc.  Specifi cations are subject to change without notice.
Updated July 13, 2007

MicroStrain Inc.
310 Hurricane Lane, Unit 4 
Williston, VT  05495 USA
www.microstrain.com 

Specifi cations 
Orientation range
(pitch, roll, yaw)

360° about all axes

Accelerometer range accelerometers: ± 5 g standard
± 10 g and ± 2 g also available

Accelerometer bias stability ± 0.010 g for ± 10 g range
± 0.005 g for ± 5 g range
± 0.003 g for ± 2 g range

Accelerometer nonlinearity 0.2%

Gyro range gyros: ± 300°/sec standard, ± 1200°/sec, ± 600°/
sec, ± 150°/sec, ± 75°/sec also available

Gyro bias stability ± 0.2°/sec for ± 300°/sec

Gyro nonlinearity 0.2%

Magnetometer range ± 1.2 Gauss

Magnetometer nonlinearity 0.4%

Magnetometer bias stability 0.01 Gauss

A/D resolution 16 bits

Orientation Accuracy ± 0.5° typical for static test conditions
± 2.0° typical for dynamic (cyclic) test conditions 
& for arbitrary orientation angles

Orientation resolution <0.1° minimum

Repeatability 0.20°

Output modes acceleration and angular rate, deltaAngle and 
deltaVelocity, Euler angles, rotation matrix

Interface options RS232, RS422, USB 2.0 and wireless - 2.45 GHz 
IEEE 802.15.4 direct sequence spread spectrum, 
license free worldwide (2.450 to 2.490 GHz) - 16 
channels

Wireless communication range 70 m

Digital output rates 1 to 250 Hz with USB interface
1 to 100 Hz with wireless interface

Serial data rate 115200 bps

Supply voltage 5.2 to 9.0 volts

Power consumption 90 mA

Connectors micro DB9

Operating temp. -40 to +70°C with enclosure
-40 to +85°C without enclosure

Dimensions 41 mm x 63 mm x 32 mm with enclosure
32 mm x 36 mm x 24 mm without enclosure

Weight 39 grams with enclosure, 16 grams without 
enclosure

Shock limit 1000 g (unpowered), 500g (powered)

3DM-GX2™ Inertial Measurement Unit and Vertical Gyro

Patent Pending

ph:   800-449-3878 
fax : 802-863-4093 
sales@microstrain.com 

The system architecture has been carefully designed to 
substantially eliminate common sources of error such as 
hysteresis induced by temperature changes and sensitivity 
to supply voltage variations.  The use of six independent 
Delta-Sigma A/D converters (one for each sensor) ensures 
that all sensors are sampled simultaneously, and that the 
best possible time integration results are achieved.  On-board 
coning and sculling compensation allows for use of lower 
data output rates while maintaining performance of a fast 
internal sampling rate.
3DM-GX2 incorporates an integral triaxial magnetometer; 
optionally, the magnetometer can be located remotely to 
reduce hard and soft iron interference. 
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ABOUT XSENS TECHNOLOGIES

Xsens has strong expertise in biomechanics and inertial
sensor technology. Thousands of Xsens inertial motion  
sensors have already been deployed in challenging human 
and machine motion applications such as motion capture,
training & simulation, biomechanics, marine technology
and automotive. Xsens’ customers include Daimler,
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and others. The combination of expertise in human motion 
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