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ABSTRACT

FOUR ESSAYS ON OVERLAPPING GENERATIONS
RESOURCE ECONOMIES:

OPTIMALITY, SUSTAINABILITY AND DYNAMICS

Fazl¬o¼glu, Burcu

Ph.D., Department of Economics

Supervisor: Assoc. Prof. Dr. H. Ça¼gr¬Sa¼glam

August 2012

This dissertation is made up of four essays on overlapping generations resource

economies. The �rst essay studies the e¤ects of energy saving technological

progress and substitution of renewable energy resources with non-renewable re-

sources on natural resource depletion and long run growth. A growth model

in two-period overlapping generations framework incorporating the presence of

both resources and resource augmenting technological progress is developed.

The e¤ect of an increase in the intensity of the renewable resources in produc-

ing energy on long run growth is found to be positive. Although exhaustible

resources are essential in production the economy can be sustained and the

balanced growth path is optimal.

In the second essay, the implications of assuming di¤erent energy intensities

for physical capital accumulation and the �nal good production is studied in

an overlapping generations resource economy where energy is obtained from

the extraction of the natural resources. Apart from the standard literature,

physical capital accumulation is assumed to be relatively more energy-intensive
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than consumption. Multiple steady states, indeterminacy and bifurcations are

obtained, without taking non-linearizing assumptions evident in the literature.

For the non-renewable resources if the share of energy resources is low enough,

local indeterminacy and hopf bifurcations may arise in the model.

The aim of third essay is to analyze can costly resource extraction and di¤eren-

tiating energy intensities induce dynamics other than saddles in an overlapping

generations resource economy. The capital accumulation sector is assumed to

be more energy intensive. The energy input is extracted from the natural re-

sources with some extraction costs. The main �nding of the essay is that both

naturally evident assumptions contribute to the richness of the dynamics. De-

pending on the share of resources in capital accumulation dynamics other than

saddle �indeterminacy, �ip and hopf bifurcations�can arise in the model for

the non-zero steady state.

In the fourth essay, a feedback mechanism between population and natural

resource to a standard model of renewable resource based OLG economy is

incorporated to check the stability of the dynamics. Multiple steady states

and indeterminacy have been obtained even in the absence of logistic regenera-

tion and independent of intertemporal elasticity of substitution. In particular,

transcritical bifurcations may arise in the model varying the rate of constant

regeneration with respect to population growth rate.

Keywords: Overlapping Generations Model, Natural Resources, Endogenous

population growth, Harvest Costs, Optimality, Sustainability, Dynamics, Bifur-

cations, Indeterminacy.
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ÖZET

ARDIŞIK NES·ILLER KAYNAK EKONOM·ILER·I
ÜZER·INE DÖRT MAKALE:

OPT·IMAL·ITE, SÜRDÜRÜLEB·IL·IRL·IK VE
D·INAM·IKLER

Fazl¬o¼glu, Burcu

Doktora, ·Iktisat Bölümü

Tez Yöneticisi: Yrd. Doç. Dr. H. Ça¼gr¬Sa¼glam

A¼gustos 2012

Bu çal¬̧sma, ard¬̧s¬k nesiller kaynak ekonomileri üzerine dört makaleden oluş-

maktad¬r. ·Ilk makalede, enerji tasarrufu sa¼glayan teknolojik geli̧smenin ve

yenilenebilir enerji kaynaklar¬n¬n yenilenemeyen kaynaklarla ikamesinin, kay-

naklar¬n tükenmesine ve uzun dönem büyümeye olan etkisi incelenmektedir.

Bu kapsamda, enerji kaynaklar¬n¬ ve kaynaklardan tasarruf eden teknolojik

ilerlemeyi içeren 2 periyotluk ard¬̧s¬k nesiller büyüme modeli geli̧stirilmi̧stir.

Enerji üretiminde, yenilenebilir enerji kaynaklar¬n¬n yo¼gunlu¼gunun artmas¬n¬n

büyüme üzerinde olumlu bir etkisinin oldu¼gu bulunmuştur. Modelde her ne

kadar yenilemeyen enerji kaynaklar¬ üretim için gerekli olsa da; ekonominin

sürdürülebilir oldu¼gu ve dengeli büyüme patikas¬n¬n pareto optimal oldu¼gu

sonuçlar¬na ulaş¬lm¬̧st¬r.

·Ikinci makale, �ziki sermaye birikimi ile nihai ürün üretiminin enerji yo¼gunluk-

lar¬n¬n farkl¬laşt¬r¬lmas¬n¬, enerjinin do¼gal kaynaklardan ç¬kart¬ld¬¼g¬bir ard¬̧s¬k

nesiller modeli kapsam¬nda incelemektedir. Literatürden farkl¬olarak, sermaye
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birikiminin nihai ürün üretimine k¬yasla daha enerji yo¼gun oldu¼gu varsay¬lm¬̧st¬r.

Literatürdeki do¼grusal olmayan dinamiklere yol açacak varsay¬mlar yap¬lmadan

modelde birden çok dura¼gan noktan¬n, belirsizli¼gin ve dallanmalar¬n oldu¼gu bu-

lunmuştur. Yenilenemeyen kaynaklara odaklan¬ld¬¼g¬nda ise kaynaklar¬n¬n ser-

maye üretimindeki pay¬n¬n yeterince düşük oldu¼gu durumlarda yerel belirsizli¼gin

ve hopf dallanmalar¬n¬n ortaya ç¬kabilece¼gi gösterilmi̧stir.

Üçüncü makale, do¼gal kaynaklar¬ ç¬kartman¬n maliyetlerini ve �ziki sermaye

birikimi ile nihai ürün üretiminin enerji yo¼gunluklar¬n¬n farkl¬oldu¼gunu dikkate

alan ard¬̧s¬k nesiller kaynak ekonomilerinde, eyer noktas¬karal¬l¬¼g¬d¬̧s¬nda di-

namiklere ulaş¬l¬p ulaş¬lamayaca¼g¬n¬ analiz etmektedir. Sermaye birikiminin

nihai ürün üretimine k¬yasla daha enerji yo¼gun oldu¼gu ve kaynaklar¬ ç¬kart-

man¬n maliyetli oldu¼gu varsay¬lm¬̧st¬r. Söz konusu varsay¬mlar¬n dinamikleri

zenginleştirdi¼gi tespit edilmi̧stir. Kaynaklar¬n tükenmemi̧s oldu¼gu dura¼gan nok-

tada yerel belirsizli¼gin transkritik ve hopf dallanmalar¬na yol açabilece¼gi göster-

ilmi̧stir.

Son makalede, ard¬̧s¬k nesiller ekonomilerinde nüfus büyümesi ve kaynaklar

aras¬nda bir geribildirim mekanizmas¬kurulmuş ve söz konusu mekanizman¬n

dinamiklerin dura¼ganl¬¼g¬n¬ nas¬l etkiledi¼gi incelenmi̧stir. Lojistik yenilenme

oran¬al¬nmadan ve dönemler aras¬ikame elastikiyeti üzerinde varsay¬mlar yap¬l-

madan, dura¼gan noktalarda ço¼gulluk ve lineer olarak al¬nan yenilenme oran¬n¬n

nüfus büyümesiyle ili̧skisine göre belirsizlik ve transkritik dallanmalar elde edilmi̧stir.

Anahtar Kelimeler: Ard¬̧s¬k Nesiller Modeli, Do¼gal Kaynaklar, ·Içsel Nüfus Art¬̧s

H¬z¬, Hasat Maliyetleri, Pareto Optimalite, Sürdürülebilirlik, Dinamikler, Dal-

lanmalar, Belirsizlik.
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CHAPTER 1

INTRODUCTION

How does scarcity of resources limits economic growth? To what extent substi-

tution of renewable energy resources with non-renewables, developing energy saving

technologies or physical capital accumulation relax this constraint on growth? What

is the role of population growth in this scenario? Can growth under the presence of

scarce resources be sustainable? These research questions have been the subject of

several scholarly papers in the literature of resource economics dating as back as to

Dasgupta and Heal (1974, 1979), Solow (1974), and Stiglitz (1974).

The �rst essay of the thesis (Chapter 2) studies the e¤ects of the �rst two solu-

tions "energy saving technological progress" and "substitution of renewable energy

resources with non-renewable resources" on natural resource depletion and long run

growth. Although there are numerous papers addressing these issues with non-

renewables (Guruswamy Babu and Kavi Kumar, 1997; John and Peccheccino, 1994)

and renewables (Gerlagh and Zwan, 2001; Koskela et al., 2008) separately, there

are limited studies within OLG framework considering these resources as alterna-

tive sources of energy and analyzing their e¤ect on dynamics of growth. Besides,

there are several papers studying the trade-o¤ between energy saving technolog-

ical progress, energy consumption and growth (see Van Zon and Yetkiner, 2003;

Boucekkine and Pommeret, 2004; Azomahou et al., 2004; Perez-Barahona and Zou,

2006; Yuan et al., 2009). Yet none of them gives particular attention to the intergen-

erational aspects (such as sustainability) or focuses on the presence of the natural

resources in an OLG economy.

1



The main contribution of this essay is that it is the �rst study that analyzes the

presence of both renewable and non-renewable energy resources and resource aug-

menting technological progress in an analytically solvable overlapping generations

model. In this essay, an analytical characterization of the balanced growth path is

provided and the conditions for the economy to exhibit positive long run growth is

analyzed. Then, the e¤ects of discount factor, resource augmenting technological

progress and intensity of resources in energy production on the depletion rate is

investigated. In addition, whether the long run growth is sustainable or optimal is

examined.

In parallel with the OLG literature (Galor and Ryder, 1989; Agnani et al.,

2005) the model necessitates su¢ ciently high labor share for the economy to exhibit

positive growth. However, compared with previous models the condition required is

less binding. In fact, the share of renewables in energy production, the technological

progress in producing energy and the regeneration factor are found among the key

variables a¤ecting the required labor share and hence the possibility of long run

growth. In terms of policy implications, the �rst essay shows that increasing the

intensity of the renewable resources in producing energy and developing technologies

improving the regeneration rate of renewables promotes long run growth. Moreover,

promoting energy saving technologies will support the sustainability of the resources

for future generations.

As a third solution, greater physical capital accumulation is suggested to over-

come the constraint that the natural resources put on growth. However, the vast

majority of the literature, assumes the same technology for the consumption and

capital accumulation sector which is contradictory with the evidence on energy in-

tensities of these sectors. The data suggests that physical capital production is

relatively more energy-intensive than consumption. Di¤ering energy intensities has

not been considered within the overlapping generations (OLG) framework.

Inspired by this idea, the second essay (Chapter 3) and third essay (Chapter

4) analyzes the implications of assuming di¤erent energy intensities for physical
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capital accumulation and the �nal good production in an overlapping generations

resource economy. In the second essay, harvest is assumed to be costless. How do the

standard results on stability of the dynamics, growth and optimality are modi�ed

under di¤ering energy intensities are evaluated. The analytical characterization of

the balanced growth path is presented, optimality of the balanced growth path is

discussed and the dynamics are studied. It is shown in the essay that dynamics are

drastically changing taking above mentioned assumption into account. In fact, for

the non-renewable resources local indeterminacy and hopf bifurcations are found if

the share of energy resources is low enough.

In the �eld of macroeconomics, as economic oscillations / cyclical �uctuations

has been observed for a long time, many theories have been built to explain these

cyclic behavior. There is a line of literature explaining the above mentioned cycles by

non-linear dynamics. Observing Hopf bifurcations is important as they give rise to

the existence of limit cycles1 varying a parameter. In addition, limit cycles are quite

important as they resemble business cycles. In the second essay, Hopf bifurcations

are obtained varying the share of energy resources. Therefore, this model claims

that the intensity of energy resources in the equipment good sector can serve as an

additional channel for explaining the cyclical �uctuations in the economies. Finding

local indeterminacy varying the share of energy resources helps to explain the cross-

country income di¤erences. In this context, this model shows that even though the

countries will eventually converge to the same steady state they may follow di¤erent

paths which can be welfare improving or decreasing. The path that the countries

choose are vulnerable to speculative attacks. Finding local indeterminacy can put

a light on how bubbles occur in economies.

The aim of third essay is to study the e¤ects of costly resource extraction in

addition to di¤erentiating energy intensities on dynamics. Within the overlapping

generations framework, Bednar�Friedl and Farmer (2010, 2011) are the only studies

focusing on harvest costs. As mentioned above, to my knowledge there is no pa-

1Limit cycles are unforced and self-excited period oscillations.
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per within OLG framework considering di¤ering energy intensities of consumption

good and capital accumulation sector. This essay attempts to analyze dynamics

that could arise by integrating costly extraction, di¤erent technologies for equip-

ment good and �nal good sector in an overlapping generations resource economy.

The uniqueness of the steady state as well as the dynamics around the steady state

is analyzed. The net e¤ect of modelling harvest costs and as well as di¤ering tech-

nologies are revealed independently.

The main �nding of the chapter is that both naturally evident assumptions con-

tribute to the richness of the dynamics. Multiple steady states exists in the model.

Depending on the share of resources in capital accumulation dynamics other than

saddle �indeterminacy, transcritical and hopf bifurcations�can arise in the model

for the non-zero steady state. As multiple steady states are evident in this essay,

this chapter contributes to the explanation of long term patterns of income across

countries. The model explains the occurrence of converge clubs across countries.

The essay shows that depending on the initial conditions of the economies some

countries may converge to the good steady state �with higher income levels� or

vice versa. Besides, if the energy intensity parameter can be considered as a choice

for countries, depending on the choice of energy intensities countries with di¤erent

initial conditions may converge to the same steady state indicating conditional con-

vergence. As conveyed in the second essay, through Hopf bifurcations the intensity

of energy resources in the equipment good sector becomes an additional channel

for explaining the cyclical �uctuations in the economies. Finding local indetermi-

nacy varying the share of energy resources helps to explain the cross-country income

di¤erences.

Vast of the standard economic growth literature assumes labor force grows at

a constant rate, following exponential growth. Allowing population to grow in an

exponential manner is not realistic, as scarce environmental resources will put a

constraint on growth. Smith (1974), describes such a constraint on population

growth by de�ning a feedback mechanism between population growth and carrying
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capacity of the environment.

As the carrying capacity of the environment is directly linked with the availabil-

ity of natural resources, the �nal essay of the thesis evaluates whether a feedback

mechanism between the population growth rate and per capita resource extraction

and resource availability modi�es the standard results in the area. Speci�cally, the

possibilities of non-linearities in an OLG growth model where the natural resource

is essential in production is investigated. The main contribution of this essay is to

show that multiple steady states and complex dynamics have been obtained even in

the absence of logistic regeneration and independent of intertemporal elasticity of

substitution.

Overall, the aim of this theses is to understand and present mechanics of resource

use and its implications for macroeconomic dynamics in an overlapping generations

framework with a special focus on sustainability (Chapter 2), optimality (Chapter

2,3) and especially dynamics (Chapter 3,4,5).

As mentioned above OLG framework is preferred to in�nitely lived agents frame-

work in this thesis. In OLG framework agents have �nite life time and are not

perfectly altruistically linked. In�nitely lived agents framework can be seen as a

special case of OLG models in which agents are perfectly altruistic �care about

their descendants�and have an in�nite horizon. OLG framework o¤ers a better ex-

planatory power for the discussion of resource problems due to three main reasons:

(i) First of all, besides being an input to energy production, resources are store of

values between generations (see Koskela et al., 2002; Valente, 2008; Birgit Bednar�

Friedl and Farmer; 2011) and are not held by one representative generation forever

as in�nitely lived representative agent framework assumes.

(ii) Secondly, current decisions on resource extraction taken by short-lived and

sel�sh individuals have consequences not only on current but on future generations

as well. Thus, both intratemporal and intertemporal e¤ects should be considered.

Solow (1974), Padilla (2002), Agnani (2005) note that these intergenerational as-

pects should be taken into account when analyzing environmental issues and/or

5



natural resource economies.

(iii) Finally, contrary to what the in�nitely-lived representative agent models

claim, there exists some empirical evidence that agents are not perfectly altruistically

linked (Altonji et al., 1992; Balestra, 2003).
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CHAPTER 2

ENERGY SAVING TECHNOLOGICAL

PROGRESS IN OVERLAPPING

GENERATIONS ECONOMIES WITH

RENEWABLE AND NON-RENEWABLE

RESOURCES

As the worldwide energy demand has continuously been increasing, the question

of whether the scarcity of natural energy resources limits economic growth receives

special attention. The recent �uctuations in the oil prices along with the threat of

climate change have further stimulated the interest in the issue of sustainability as

well. Among others, substitution of renewable energy resources with non-renewables

and developing energy saving technologies are the most prominent suggestions to

overcome the problem. While substitution to renewable resources is accepted to

contribute to more sustainable economic development paths (Daly, 1990; Andre and

Cerda, 2005); energy e¢ ciency programs are also o¤ered as a policy response by

several policy makers and environmental groups (Cabinet O¢ ce, 2001; DEFRA,

2005; Allan et. al, 2007).

This paper aims to answer whether substitution of non-renewable energy re-

sources with renewables and progress in energy saving technologies will bring growth

in the long run. A two-period overlapping generations model in which the energy

is an essential input in production and exogenous resource augmenting technical

change drives long-run growth is developed. To analyze how scarcity limits can be

7



alleviated by technological progress or substitution of non-renewable resources with

renewables, the following questions will be addressed:

(i) Under which circumstances will the economy prevail long run growth?

(ii) What determines the rate of depletion?

(iii) How will the intensity of renewables in energy production a¤ect growth?

(iv) What will be the e¤ect of the energy saving technological progress on the

long run growth?

(v) How will the patience of the generations and the population growth rate

a¤ect these results? (vi) Will the long run growth be optimal and sustainable?

Although there is a vast literature analyzing the sustainability of growth in the

presence of non-renewable or renewable resources, most of these papers focus on

just one type of resources. There are endogenous growth models with in�nitely

lived agents (ILA) dealing with sustainability of long run growth under exhaustible

resources (Stollery, 1998; Schou, 2000, 2002; Grimaud and Rouge, 2005, 2008; Groth

and Schou, 2007). They conclude that under technological progress no matter it is

taken as exogenous or endogenous growth is sustainable in the long-run despite

the �nite resource stock. Although there are numerous papers addressing these

issues with non-renewables (Guruswamy Babu and Kavi Kumar, 1997; John and

Peccheccino, 1994) and renewables (Gerlagh and Zwan, 2001; Koskela et al., 2008)

separately, there are limited studies within OLG framework considering these re-

sources as alternative sources of energy and analyzing their e¤ect on dynamics of

growth.

Few exceptions in the literature are Tahvonen and Salo (2001), Andre and Cerda

(2005), Di Vita (2006), Nguyen and Nguyen-Van (2008), Maltsoglou (2009) and

Hung and Quyen (2008). Tahvonen and Salo (2001) considers the problem of sub-

stitutability between exhaustible and renewable resources in terms of their costs

but not in terms of relative scarcity. Although Andre and Cerda (2005) takes nat-

ural growth and technological substitution possibilities into account, they focus on

the optimal combination of these resources in case of no technological progress and

8



other inputs (such as capital, labor). Di Vita (2006), Nguyen-Van (2008) and Malt-

soglou (2009) consider labor, physical capital and both types of energy resources

as inputs to production. Yet, these studies analyze the behavior of the economies

with in�nitely lived agents. They do not also consider the e¤ects of energy saving

technological progress2. Hung and Quyen (2008) is the only study within the OLG

framework while considering both inputs. However, they focus on the e¤ects of

endogenous fertility without any technological progress and renewable resource is

solar energy which is produced from backstop capital.

It is well known that although improvements in technology lowers the energy con-

sumption, through economic growth, it will in turn create further energy demand.

In fact, there are several papers studying the trade-o¤between energy saving techno-

logical progress, energy consumption and growth (see Van Zon and Yetkiner, 2003;

Boucekkine and Pommeret, 2004; Azomahou et al., 2004; Perez-Barahona and Zou,

2006; Yuan et al., 2009). Yet none of them gives particular attention to the intergen-

erational aspects (such as sustainability) or focuses on the presence of the natural

resources. Perez-Barahona (2011) investigates the e¤ect of energy saving techno-

logical progress on growth under the presence of an exhaustible resource but does

not consider an OLG framework and alternative sources of energy. Valente (2005)

accounts for a renewable resource in an OLG economy under resource augmenting

technology leaving alternative resource aside.

This paper tries to ful�ll the above mentioned gaps in the literature through

studying the presence of both renewable and non-renewable energy resources and

resource augmenting technological progress in an analytically solvable exogenous

growth overlapping generations model. To analyze the presence of both resources,

they are di¤erentiated according to their relative scarcity. Non-renewable resources

are scarce whereas renewables are not due to their regeneration property . The rea-

son behind assuming resource-saving technological progress stems from the evidence

2Nguyen and Nguyen-Van (2008) mentions that if they assume a Cobb-Douglas production
function then a parameter could capture the resource saving technological progress yet in the rest
of the paper they do not focus on the e¤ects of this parameter.
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that the energy-saving technological progress has proved to be signi�cant in the last

two decades. Newell et al. (1999) reveals that increasing energy prices result in

energy saving innovations in the USA. Through investigating the sectors of Dutch

economy, Kuper and Soest (2006) shows that energy saving technological progress

occurs after periods of high and rising energy prices.

The OLG framework is preferred to in�nitely lived agents (ILA) since the latter

ignore �generation overlap and treat society in each period as a single generation

caring about (and also discounting) the welfare of its immediate descendants, which

has complete control over the rate of resource use and the saving rate�(Mourmouras,

1991, p. 585). In addition, as Agnani et al. (2005) indicates, the OLGmodels can be

preferred to ILA in analyzing the sustainability of long-run growth with exhaustible

resources since the natural resources may act as stores of values between di¤erent

generations.

An analytical characterization of the balanced growth path (BGP) is provided

and the conditions for a positive long run growth is investigated. The model is

building upon Agnani et al. (2005), which studies the BGP of an OLG economy

with exogenous technical progress where exhaustible resources is an essential input

to the production. They show that a su¢ ciently high labor share is necessary

for the economy to exhibit a positive steady state growth rate. The results also

reveal that the share of labor in production has to be su¢ ciently high in order to

yield positive growth along the BGP. However, the constraint on labor share is less

binding, compared to Agnani et al. (2005). In this essay, it is shown that the share

of renewables in energy production, the resource saving technological progress and

the regeneration factor are among the key variables having an e¤ect on the required

labor share and hence the possibility of long run growth.

What determines the rate of depletion and how it is determined, is quite im-

portant as it paves the way for understanding the limits to growth. To answer this

question, the e¤ects of discount factor, resource augmenting technological progress

and intensity of resources in energy production on the depletion rate are investigated.
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As Smulders (2005) emphasizes, the increase in the discount factor and hence the

patience of the households, is expected to decrease the depletion rate �which is also

con�rmed in the results�whereas the e¤ect of the exogenous resource saving techno-

logical progress on the rate of depletion is accepted to be ambiguous due to opposing

income and substitution e¤ects. Under the productivity gains, households would at-

tach a greater value to energy resources in future periods since these resources will

be more productive. Households, thus, save more on these resources which demon-

strates the substitution channel. On the other hand, more output would be obtained

given a resource stock when the productivity increases. As a result, the households

would know that they will have more income in the future. The income e¤ect works

through consumption smoothing and the households will consume more. It is found

that along the BGP, the substitution e¤ect dominates the income e¤ect as long as

the depletion rate is slightly higher than its lower bound. Thus, the higher the

resource saving technological progress the economy deplete its energy resources less.

As regards the circumstances, increasing/decreasing the resource intensity of

energy production promote growth, the main �nding of the chapter is that the

e¤ects of an increase in the intensity of the renewable resources in producing energy

has positive long run growth e¤ects. It is shown that the patience of generations

has important long run implications in this context. For more patient economies,

an increase in resource saving technological progress will result in higher growth.

With the presence of renewables, it is shown that the constraint on the labor share

which is required to guarantee the long run growth is relaxed. It is also revealed

that the sustainability of the economy depends on the energy saving e¤ect of the

technological progress and the depletion rate of the resources which in turn depend

on the rest of the parameters in the economy. Finally, it is found that the BGP can

turn out to be optimal.

The paper is structured as follows: Section 1 presents the model and Section 2

de�nes the equilibrium conditions for a decentralized economy. Section 3 analyzes

the existence and the uniqueness of the BGP. The optimality and the sustainability
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conditions for BGP is analyzed in Section4. Section 5 performs the comparative

statics analysis and Section 6 concludes.

2.1. The Model

A two-period overlapping generations model in discrete time with an in�nite horizon

is considered. At each period t, a generation of agents appears and lives for two

periods, young and old. The population in period t consists of Nt young and Nt�1

old individuals. The growth rate of population is assumed to be constant so that

Nt+1 = (1 + n)Nt.

In comparison with a standard OLG model3, the novel feature of this analysis is

to consider energy as an essential input to production and take into account that it

is built upon both renewable and non-renewable resources4. At each period, a single

�nal good is produced in the economy by means of physical capital K, labor N; and

energy �. This physical good is either consumed or invested to build future capital.

The energy input is obtained from the stock of renewable and non-renewable energy

resources denoted by R and E; respectively. The renewable resource is assumed to

regenerate itself with g(R) where g0(R) > 0 at every period. These resources can

act as both stores of value and inputs to the production process.

All agents have rational expectations and each generation consists of a single

representative agent. Moreover, all agents in this economy are price-takers and all

the markets are competitive.

At a given date, young households work, consume and invest a part of their

income in physical capital which is rented and used by the �rms in the next pe-

riod. They invest another part of their income to purchase ownership rights for the

renewable and the non-renewable energy resources. When old, they consume their

entire income generated from the returns on their savings, and from selling their

stock of energy resources to the �rms.

3See de la Croix and Michel (2002) for a comprehensive treatment of the OLG models.
4See, for the discussion of energy being an essential input to production, Ayres et al. (2003;

2005; 2007) and Warr et al. (2006; 2008).
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Following Koskela et al. (2008), at the beginning of each period t, the old

agents (generation t � 1) are assumed to own the stock of all energy resources

and sell them to the �rms. As in Dasgupta and Heal (1974), it is assumed that

there are no extraction costs. Firms decide on the amount of renewable and non-

renewable energy resources that will be used in the production process, Zt and Xt,

respectively. Before the end of the each period t, �rms sell the remaining stock of

renewable resources Rt+1 and the non-renewable resources Et+1 to the young agents

(generation t)5. Accordingly, the evolution dynamics of the energy resources can be

formalized as follows:

Rt+1 = Rt + g(Rt)� Zt;

Et+1 = Et �Xt:

In his �rst period of life (when young at period t), the representative individual

is endowed with one unit of labor that he supplies inelastically to �rms. His income

is equal to the real wage wt: He allocates this income among current consumption ct;

savings st invested in �rms and the purchase of the ownership rights for the renewable

rt+1 and the non-renewable resources et+1: The budget constraint of period t is

wt = ct + st + P rt rt+1 + P et et+1;

where P rt and P
e
t denote the prices of renewable and non-renewable energy resources,

respectively. Note that Rt+1 = Nt+1rt+1; and Et+1 = Nt+1et+1:

In the second period of his life, the agent is retired and he consumes his entire

income generated from the returns on his savings Qt+1st = (1 + qt+1)st; and the

revenue from selling his stock of energy resources to the �rms. Accordingly, his

5In Olson and Knapp (1997), although old agents own the resource stock they do not sell all
of the resource to the �rms. Instead, they choose how much of their stock will be sold to the
production sector. Then through the asset market the unextracted resource stock is transferred
from the old generation to the young generation. The resource accumulation equations does not
di¤er by this speci�cation.
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consumption is

dt+1 = Qt+1st + P rt+1(rt+1 + g(rt+1)) + P
e
t+1et+1:

where zt+1 =
Zt+1
Nt+1

; xt+1 =
Xt+1
Nt+1

:

The preferences of the representative agent is de�ned over his consumption bun-

dle (ct; dt+1). The preferences are represented by an additively separable life-cycle

utility function U (c; d) = u (c) + �u (d) ; where � 2 (0; 1) is the subjective discount

factor. In particular, a logarithmic instantaneous utility function u is adopted since

the main concern of the paper is the existence of the balanced growth path and its

qualitative properties6.

Taking the prices of the energy resources and wages as given, the representative

agent maximizes his life-time utility by choosing the young and the old periods�

consumption and the ownership of the energy resources. The optimization problem

of the representative agent born at time t can be formalized as follows:

max
fct;dt+1;st;rt+1;et+1g

ln ct + � ln dt+1

subject to

wt = ct + st + P rt rt+1 + P et et+1; (1)

dt+1 = Qt+1st + P rt+1(rt+1 + g(rt+1)) + P
e
t+1et+1; (2)

ct � 0; dt+1 � 0; rt+1 � 0; et+1 � 0:

6See, among others, King and Rebelo (1993) and Agnani et al. (2005), for the need to assume
comsumer�s preferences with CIES in order to have the existence of a BGP.
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The following �rst-order conditions for the consumer�s optimization problem follows:

dt+1
ct

= �Qt+1; (3)

P et+1
P et

= Qt+1; (4)

P rt+1
P rt

=
Qt+1

(1 + g0(rt+1))
: (5)

Equation (3) gives the equalization of discounted marginal utilities where the mar-

ginal rate of substitution between the current and the future consumption is equal

to their relative prices. (4) and (5) present no-arbitrage conditions among di¤erent

types of savings implying that the marginal return on investing in the exhaustible

resource is equal to the marginal return on investing in the renewable resource tak-

ing the regeneration factor into account. In other words, an increase in the price of

the exhaustible resources from period t to t+1 is higher than that of the renewable

resources re�ecting the relative scarcity of the non-renewable resources.

Firms are owned by the old households and produce a homogenous consump-

tion/investment good under perfect competition. Production at the �nal good sector

is made through a Cobb-Douglas constant returns to scale technology7:

Yt = �t
�1K�2

t N
�3
t ; �i > 0 and

P
i

�i = 1; (6)

where

�t = AtX
�
t Z

1��
t ; 0 � � � 1; (7)

At+1 = (1 + a)At; a > 0: (8)

The energy input, �t is produced from non-renewable (Xt) and renewable energy

resources (Zt) by means of a Cobb-Douglas production technology. The intensity

7Taking into account the use of energy, Ayres (2008) shows that Cobb-Douglas production
function �ts to the economic growth for the US and Japan economy in the 20th century. Also,
Serrenho et al. (2010) show that the inclusion of energy-related variables, increases the explanatory
power of the models for a panel data of EU-15 countries between 1995 to 2007.
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of non-renewable resources in producing energy is captured by �. As � increases

the production of energy becomes more intensive in using non-renewable resources

than using renewable resources. The productivity of resources in producing energy is

represented by At. If the productivity of the resources in producing energy increases,

less amount of resources will be needed to produce the same amount of energy.

Therefore, the technical progress (increase in productivity) which is captured by

a is considered to be energy saving. Generally, technical progress is considered as

Hicks-neutral under Cobb-Douglas speci�cation. The importance of distinguishing

the energy-saving e¤ect of the technical progress from the input neutral technological

progress is that the prospects for sustainability depend on the energy-saving e¤ect

of technical progress and not on its global e¤ect on the output levels.

Note that the assumption of perfect substitutability between all inputs does not

stem from theoretical considerations only. As a matter of fact, the extent to which

capital and energy are substitutes or complements in production is highly debated in

the literature. Even in the early literature, Hudson and Jorgenson (1973) and Berndt

and Wood (1975) found that capital and energy were complements, while Humphrey

and Moroney (1975), Gri¢ n and Gregory (1976) and Halvorsen (1977) concluded

that they were substitutes. Apostolakis (1990), suggested that the studies based on

time-series data re�ect short-term relationships and hence these studies concludes

capital and energy to be complements. However, he claims that the cross-sectional

analysis re�ects the long term relationship thus the studies based on cross-sectional

data imply the perfect substitutability between energy and capital inputs.

As with constant returns to scale, the number of �rms does not matter and

the production is independent of the number of �rms that use the same technol-

ogy, a representative �rm is taken. Under this perfectly competitive environment,

the representative �rm producing at period t maximizes its pro�t by choosing the

amount of labor, physical capital and the energy inputs that will be utilized in the
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production process8:

max
fKt;Nt;Zt;Xtg

�t = A�1t X
��1
t Z

(1��)�1
t K�2

t N
�3
t � (qt + �)Kt�wtNt�P rt Zt�Pmt Xt; (9)

where 0 � � � 1 denotes the depreciation rate of capital.

At an interior solution of the �rm�s optimization problem, where all variables

are expressed in per capita terms (kt = Kt

Nt
; zt =

Zt
Nt
and et = Et

Nt
), the following �rst

order conditions are satis�ed :

�2A
�1
t xt

�1�zt
�1(1��)k�2�1t = qt + �; (10)

�3A
�1
t xt

�1�zt
�1(1��)k�2t = wt; (11)

�1(1� �)A�1t xt
�1�zt

�1(1��)�1k�2t = P rt ; (12)

�1�A
�1
t xt

�1��1zt
�1(1��)k�2t = P et : (13)

Re-arranging equations (12) and (13), the optimal mix between the exhaustible

and renewable energy resources can be obtained as:

(1� �)

�

xt
zt
=
P rt
P et
: (14)

By Equation (14), the optimal mix between the renewable and non-renewable re-

sources depend on their prices and the elasticity of substitution between the two

sources of energy resources.

8Maximization problem of the �rm is

max
fKt;Nt;Zt;Xtg

�t = A
�1
t X

��1
t Z

(1��)�1
t K�2

t N
�3
t � (qt + �)Kt

� wtNt � P rt (Rt + g(Rt)�Rt+1)� Pmt (Et � E _t+1);

if the cash �ow going through the �rm is the explicitly written. Taking into account the dynamics
of the energy resources, the consumption of the old individual at t+ 1 can be recast as Equation
(9).
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2.2. The Competitive Equilibrium

A dynamic competitive equilibrium of this overlapping generations economy is de-

termined by the sequence of prices fwt; qt; P et ; P rt g
1
t=0 ; and the feasible allocations

fct; dt; st; rt; et; xt; zt; yt;�t; kt+1;At+1g1t=0 given positive initial values for the state

variables fk0; E0; R0; A0g and the law of motion of At and Nt such that the con-

sumers maximize their life-time utility, �rms maximize their pro�ts and all markets

clear at every period t:

st = kt+1(1 + n); (15)

rt + g(rt) = (1 + n)rt+1 + zt; (16)

et = (1 + n)et+1 + xt; (17)

yt = ct + dt(1 + n)
�1 + st: (18)

Accordingly, a dynamic competitive equilibrium is a solution of the equation system,

(1)-(18). Equation (15) indicates that the capital stock at t+ 1 is fully determined

by saving decisions made at t, since the output is used either for consumption or

investment in capital goods. The following two equations, (16) and (17) reveal the

resource constraints for the energy resources. Equation (18) is the market clearing

condition in the output market which holds by Walras�law.

2.3. The Balanced Growth Path

In order to analyze the feasibility of positive long run growth in the economy and

hence the study focuses on the balanced growth path. To guarantee the analytical

solution of the balanced growth path it is assumed assume that the renewable re-

source regenerates linearly, i.e., g(Rt) = �Rt for some constant regeneration factor

0 < � < 1:9

9Mourmouras (1991) also utilizes a constant regeneration rate in an overlapping generations
framework. Apart from Mourmouras (1991) linear generation of renewables is widely used in the
in�nitely lived agents framework (see among others Nguyen and Van, 2008; Maltousoglu, 2009).
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In order to characterize the balanced growth path of this competitive economy

�rst growth factors of the variables are de�ned. The growth factor of any variable

at is denoted by a which is the ratio at+1=at: Along the balanced growth path

a � 1 will represent the growth rate of the corresponding variable. Then, the

system will be reduced in terms of the depletion rates of resources. How much of

the energy resources is used in the production compared to the total resource stock

is represented by these rates. The depletion rate of the non-renewable resources

are de�ned as � t = xt
et
and the depletion rate of the renewables can be de�ned as

�t =
zt

rt(1+�)
.

Proposition 1 Along a balanced growth path of this economy all variables grow at

a constant rate. The balanced growth path is described by the stationary depletion

rates, �� = � t = � t+1 and �� = �t = �t+1 which solve the following non-linear equations

(1 + n)

1� �� =
�2h

�3�
(1+�)

� �1�(1���)
(1+n)��

� �1(1��)(1���)
��

i + (1� �);

where

 = (1 + a)
�1

(1��2)

24�1� ��
1 + n

� �1�
(1��2)

�
(1 + �)(1� ��)

1 + n

��1(1��)
(1��2)

35 ;

19



and the following growth rates

y = k = c = d = s = w = ;

A = (1 + a); N = (1 + n);

e = x =
1� ��
1 + n

;

r = z =
(1 + �)(1� ��)

1 + n
;

en =
(1 + a)(1 + �)�(1� ��)�(1� ��)(1��)

1 + n
;

z = x(1 + �);

pe =
(1 + n)

1� �� ;

pr =
(1 + n)

(1 + �)(1� ��)
;

Q = 1; and �� = �� :

Proof. The equality of A = (1 + a); N = (1 + n) follows from the de�nition of

the technological progress and the population growth rate equations.

e = x is obtained by the ratio of Equation (17) in period t + 1 and t. After

evaluating the resulting equation on the balanced growth path it is �rst observed

that �� = � t = � t+1 and then x =
1���
1+n

is obtained:

To �nd the growth factor of capital per capita �rst Equation (13) is substituted

into Equation (4):

Qt+1 = �1A 
�1�
x �1(1��)z (19)

Then, using Equation (10) :

�1A 
�1�
x �1(1��)z � (1� �) = �2(At+1xt+1)

�1�(At+1zt+1)
�1(1��)k�2�1t+1 :

By evaluating this expression at t+ 1 and t and taking the ratio one gets

1 = �1A 
�1�
x �1(1��)z �2�1k ; (20)
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 � k = 
�1

(1��2)
A 

�1�
(1��2)
x 

�1(1��)
(1��2)
z :

q = Q = 1 orQt+1 =Qt = �Q are obtained from taking the ratio of Equation (4)

in period t+1 and t, evaluating on the balanced growth path and then substituting

Equation (19).

Evaluating Equation (5) along the balanced growth path, it is observed that to

guarantee a constant growth in renewable prices g0(rt+1) as to be constant. That is

why the growth of the renewable resource is g(rt) is assumed to be a linear function

of the previous period�s stock.

r = z is obtained by the ratio of Equation (16) in period t + 1 and t. After

evaluating the resulting equation on the balanced growth path �rst it is observed

that �� = �t = �t+1 and this yields r =
(1���)(1+�)

1+n
:

The growth factor of capital is equal to the output per capita i.e.k = y from

taking the ratio of the production function in period t+1 and t and then substituting

Equation (20). Similarly, the equality of the growth factor of capital and the wages

i.e.k = w can be shown by taking the ratio of Equation (12) in period t+ 1 and t

and then substituting Equation (20). The equality of k = s is obtained through

taking the ratio of Equation (15) in period t+ 1 and t.

The growth factor of the energy resource is obtained through taking the ratio of

Equation (7) in period t+ 1:

�= A
�
x

(1��)
z =

(1 + a)(1 + �)�(1� ��)�(1� ��)(1��)
1 + n

(21)

For the growth factor of price of the exhaustible resources taking the ratio of

Equation (14) in period t+ 1 and t, evaluating it on the balanced growth path and

then substituting Equation (20). P et =
k
x
= (1+n)

1��� follows: In parallel with the

growth factor of the price of the exhaustible resources, the ratio of Equation (13)

in period t + 1 and t is taken, evaluating it on the balanced growth path and then

substituting Equation (20) yields pr =
(1+n)

(1+�)(1���) :

From dividing Equation (12) to Equation (13) and substituting the growth fac-
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tors of the prices of the energy resources z = x(1 + �) and �� = �� :

d = c from taking the ratio of Equation (3) in period t+1 and t and evaluating

it on the balanced growth path. Moreover to showd = c = k �rst substitute

Equations (12), (13) and (15) into Equation (2) and obtain

dt+1 �Qt+1kt+1 (1 + n) =

�1A
�1�
t+1xt+1

�1�A
�1(1��)
t+1 zt+1

�1(1��)k�2t+1

�
1
��
(1� �) + �

1

��

�
:

Then taking the ratio of Equation (??) in period t + 1 and t and evaluating it on

the balanced growth path:

dt+1 �Qt+1kt+1 (1 + n)

dt �Qtkt (1 + n)
= �1A 

�1�
x �1(1��)�1z �2k

Using Equation (20) and the de�nition of growth factors yields

dtd
k

�Qt+1kt (1 + n) = dt �Qtkt (1 + n):

Qt+1 = Qt = �Q implies d = :

As a �nal step the growth factor of capital is characterized as follows. Substi-

tuting Equations (15), (4), (5) and (6) into Equation (2) and dividing both sides by

kt to obtain;

k(1 + n) =

A�1t xt
�1�zt

�1(1��)k
�2�1
t [

�3�

(1 + �)
��1(1��)

r
(1 + �)� r(1 + n)

��1�
e

(1� e(1 + n)
]

From Equation (19) and Equation (4):
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k(1 + n) =�
�1A 

�1�
x �1(1��)z �2k � (1� �)

� 1
�2

�
�3�

(1 + �)
� �1(1� �)

1� ��
��(1 + n)

� �1�
1� �

�(1 + n)

�

k(1 + n) =

24 �2�
�3�
(1+�)

� �1(1� �) 1���
��(1+n)

� �1�
1��
�(1+n)

� + (1� �)
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From the dynamics of the non-renewable resource stock (17), it can be inferred

that et is decreasing as long as there is a positive amount of extraction. Along the

balanced growth path, a constant decrease in non-renewable resource stock is only

possible with a constant depletion rate: �� = � t = � t+1: Similarly, to guarantee a

constant growth rate for the renewable resource stock, the depletion rate of re-

newables should also be constant �� = �t = �t+1 along the balanced growth path.

Therefore, the energy resources used in production will decline over time indicating

an asymptotic depletion. However, the rate of decrease in renewable resource stock

used in production will be smaller than that of the non-renewable resources due to

the regeneration factor. As the non-renewable stock is declining along the balanced

growth path, the price non-renewables are growing at a higher rate than income

and that of the renewable resources. However, the comparison between the price of

renewables and income depends on the relationship between the growth rate of the

population and regeneration factor. As the regeneration rate decreases or the pop-

ulation growth rate increases, the increase in the price of renewables will be higher

than that of income. In parallel with Agnani et al. (2005), Proposition 1 shows that

income, capital, consumption, savings and wages grow at the same rate and the

interest rate is constant along the balanced growth path. It should be noted that,

in line with Agnani et al. (2005), although the technological progress is modeled

as exogenous, the growth rate of the economy depends on all of the parameters of

the model, actually a feature of endogenous growth models. In contrast with the
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standard ILA economies with non-renewable resources, where the stationary deple-

tion rate depends exclusively on the subjective discount factor, the depletion rate

depends on all of the parameters of the model. In addition to this striking result,

the setting allows analyzing the e¤ects of the regeneration factor and the intensity

of non-renewables in energy production explicitly.

In order to prove the balanced growth path of this model described by the above

system has a unique solution with a constant depletion rate, the system of equations

will be recast in terms of a single depletion rate.

Corollary 2 Any balanced growth path of this economy is characterized by a sta-

tionary depletion rate, �� which is the solution of the following non-linear equation

(1 + n)

1� �� =
�2h

�3�
(1+�)

� �1(1���)
(1+n)��

i + (1� �);

where

 = (1 + a)
�1

(1��2)

�
(1� ��)
(1 + n)

� �1
(1��2)

(1 + �)
�1(1��)
(1��2) ;

and the following growth rates:

y = k = c = d = s = w = ;

pe =


x
=
(1 + n)

1� �� ;

pr =


z
=

(1 + n)

(1 + �)(1� ��) ;

e = x =
r

(1 + �)
=

z
(1 + �)

=
1� ��
1 + n

;

en = A
�
x

(1��)
z =

(1 + a)(1 + �)�(1� ��)
1 + n

;

A = (1 + a) ; n = (1 + n); and Q = 1:

Proposition 3 A unique stationary equilibrium exists if

�1

�3(1 + n)
�

(1+�)
+ �1

< �� < 1:
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Proof. Substituting ; the system can be solved from solving the following equation

involving only �� :

(1 + a)
�1

(1��2)
h
(1���)
(1+n)

i �1
(1��2) (1 + �)

�1(1��)
(1��2) (1 + n)

1� �� =

�2 (1 + a)
�1

(1��2)
h
(1���)
(1+n)

i �1
(1��2) (1 + �)

�1(1��)
(1��2)h

�3�
(1+�)

� �1(1���)
(1+n)��

i + (1� �): (22)

It could be easily checked that left hand side of the above equation is increasing

with respect to �� in [0,1) and right hand side of the equation is decreasing with re-

spect to �� in [ �1
�3(1+n)

�
(1+�)

+�1
; 1]: Thus, there exists a unique � ��

�
�1

�3(1+n)
�

(1+�)
+�1

; 1

�
:

Proposition 3 indicates that a unique balanced growth path exists if the deple-

tion rate is higher than some critical level which is positively related with the share

of energy input in production and inversely related with the share of the labor in

production, the growth rate of population and the discount factor. The positive

growth along the balanced growth path is not guaranteed under Proposition 3. In

fact, it is shown that even without the incorporation of scarce natural resources the

OLG economies may contract. To illustrate, Galor and Ryder (1989) examines an

OLG economy without natural resources and show that unless restrictions on the

nature of the interaction between technology and preferences are satis�ed the econ-

omy may contract. There are also studies indicating the possibility of contraction

if natural resources are taken into account. For instance, Agnani et al. (2005) show

that a high enough labor share is a necessary condition for the economy to exhibit

positive growth. In particular, they mention that the young generations need to

earn high enough wages to do savings on capital and exhaustible resources whose

prices are increasing along the balanced growth path. They conclude a minimum

amount of labor share is necessary to guarantee such a wage income.

Proposition 4 The economy will contract unless the labor share is high enough,
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i.e.,

�3 >
�1(1 + a)

�1 (1+�)
�
(1 + �)��1

[1� (1 + n)(1 + a)�1(1 + �)��1]
: (23)

Proof. Proposition 3 establishes a lower bound for the depletion rate in the econ-

omy by �1
�3(1+n)

�
(1+�)

+�1
< �� ; necessary for the existence of a balanced growth path.

Moreover, the upper bound for the depletion rate is established when  > 1: Thus,

�� 2
�

�1
�3(1+n)

�
(1+�)

+�1
; 1� (1+n)

(1+a)�(1+b)1��(1+�)1��

�
: Such a lower bound does not appear

in characterizing

the stationary depletion rate in the ILA economies. The economy will contract

if the the depletion rate is higher than its upper bound. In fact, the economy will

not exhibit a positive growth if the lower bound for the depletion rate is higher than

its upper bound.

It is shown that the share of labor in production has to be su¢ ciently high in

order to yield positive growth along the balanced growth path. This condition high-

lights that, a minimum amount of labor share is necessary for the young to earn

high enough wages to �nance their investments. However, the option of saving on

renewables other than just capital and non-renewable resources, relaxes the con-

straint on the labor share. As a result, compared with Agnani et al. (2005), the

constraint on labor share is less binding. This result stems from the fact that Agnani

et al. (2005) does not take into account the presence of renewables. With Propo-

sition 3, it is demonstrated that the share of renewables in energy production, the

technological progress in producing energy and the regeneration factor are among

the key variables a¤ecting the required labor share and hence the possibility of long

run growth. Comparing this result with ILA economies one observes that the labor

share does not appear in the above equation. Therefore, an economy having the

same parameters except the share of labor in production may contract in the OLG

framework but grow in the ILA setup.
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2.4. Sustainability and Optimality

After demonstrating the existence of the unique competitive balanced growth path,

the following propositions analyze whether this unique path is sustainable and/or

optimal. In line with recent literature, a sustainable path is de�ned to be a path

along which welfare is non-declining over time10.

Proposition 5 A necessary and su¢ cient condition for sustainability in this econ-

omy is to yield positive growth along the BGP y > 1; so that

(1 + a)(
1� ��
1 + n

)(1 + �)1�� > 1:

Proof. Using Equations (2), (4) and (5) yields

dt+1 = Qt+1 [st + P rt rt+1 + P et et+1] (24)

through substituting Equations (1) and (4) ,

ct =
�3yt
(1 + �)

(25)

Plugging Equation (25) and Equation (10) into Equation (24),

dt = �
�2�3yt
(1 + �)

yt+1
kt+1

Then, it is clear that

Ut(ct; dt+1) = log(
�23�2�
(1 + �)2

) + (1 + �) log yt + � log yt+1 � � log kt+1;

10Speci�cally, if Ut denotes the lifetime utility of an agent born in period t, sustainability
requires

Ut+1(ct+1; dt+2) > Ut(ct; dt+1)
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and the sustainability condition Ut+1(ct+1; dt+2) > Ut(ct; dt+1) reduces to

(1 + �) log y > 0

along the balanced growth path. A necessary and su¢ cient condition for sustain-

ability in this economy is to yield positive growth along the BGP so that y > 1;

i:e:;

(1 + a)(
1� ��
1 + n

)(1 + �)1�� > 1:

.

The above condition clearly shows that the sustainability of the economy depends

on the energy saving technological progress but not on the total factor productivity.

In addition, it depends on the depletion rate which in turn depends on all of the

structural parameters of the economy. It can be observed that the higher the pa-

tience of the individuals, the higher the share of renewables in production and the

regeneration rate, the more sustainable is the economy. However if the population

growth rate increases, as there are more future generations it will be more di¢ cult

to sustain growth.

To derive the conditions for intergenerational optimality, the social planners

problem is studied as in De La Croix and Michel (2002). The existence of a social

planner whose maximizes a discounted sum of the life-cycle utility of all current

and future generations with respect to the resource constraints of the economy is

assumed. The planners objective function is social welfare function whereas the

planner�s discount factor is the social discount factor. The optimal balanced growth

path is characterized by:

(a) Income, capital, consumption growing at the same rate  so that y = k =

c = d = :
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(b) Energy resources used in production will decline over time indicating an

asymptotic depletion:

e = x =
1

1 +R
;

where R denotes the subjective discount factor of the social planner.

(c)The rate of decrease in renewable resource stock used in production will be

smaller than that of the exhaustible resources: r = z = (1 +�)x. In accordance

with these, the below Proposition on the optimality of the competitive equilibrium

follows.

Proposition 6 The competitive balanced growth path is pareto optimal as long as

�� = R
1+R

:

Proof. A social planner solves the following problem11:

max
fct;dt;xt;zt;kt+1g1t=0

� ln d0+
1P
t=0

(
1

(1 +R)
)t
�
ln ct + (1 +R)�1� ln dt

�
subject to the aggregate resource constraints of the economy

yt = ct + dt(1 + n)
�1 + (1 + n)kt+1 � (1� �)kt (26a)

yt = At(xt)
�(zt)

(1��)k�2t (26b)

rt + g(rt) = (1 + n)rt+1 + zt (26c)

et = (1 + n)et+1 + xt (26d)

e0 >
1P
t=0

xt (26e)

r0 >
1P
t=0

zt �
1P
t=0

(1 + �)rt�1 (26f)

The �rst order conditions with respect to ct and dt yield

dt+1
ct

= �(1 + n)Rt+1 (27)

11See De La Croix and Michel (2002, pp.91).
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; then using Equation (26a) and (26b)

(1 +R)�t�1

A�1t (et � et+1)�1�(rt(1 + �)� rt+1)�1(1��)k
�2
t � dt

(1+n)
� kt+1(1 + n)� (1� �)kt

=

(1 +R)�t�1�1�d�1t : (app7)

From the �rst order conditions with respect to et+1 and rt+1

(1 +R)�t�1
�
A�1t (et � et+1)

�1��1(rt(1 + �)� rt+1)
�1(1��)k�2t

�
A�1t k

�2
t en

�1
t � dt

(1+n)
� kt+1(1 + n)� (1� �)kt

=�
�1�A

�1
t+1(et+1 � et+2)

�1��1(rt+1(1 + �)� rt+2)
�1(1��)k�2t+1

�
(1 +R)�t�1�1

A�1t+1k
�2
t+1en

�1
t+1 �

dt+1
(1+n)

� kt+2(1 + n)� (1� �)kt+1
;

and

(1 +R)�t�1
�
A�1t (et � et+1)

�1�(rt(1 + �)� rt+1)
�1(1��)�1k�2t

�
A�1t k

�2
t en

�1
t � dt

(1+n)
� kt+1(1 + n)� (1� �)kt

=�
�1�A

�1
t+1(et+1 � et+2)

�1�(rt+1(1 + �)� rt+2)
�1(1��)�1k�2t+1

�
(1 +R)�t�1�1

A�1t+1k
�2
t+1en

�1
t+1 �

dt+1
(1+n)

� kt+2(1 + n)� (1� �)kt+1
:

From the �rst order conditions with respect to kt+1

A�1t+1(et+1 � et+2)
�1�(rt+1(1 + �)� rt+2)

�1(1��)k�2t+1�
dt+1
(1 + n)

� kt+2(1 + n)� (1� �)kt+1 =

[A�1t k
�2
t en

�1
t � dt

(1 + n)
� kt+1(1 + n)�

(1� �)kt]
�
A�1t+1k

�2�1
t+1 en

�1
t+1 + (1� �)

�
(1 +R)�1:

After some algebra from �rst order conditions

(1 + �) + �2A
�1
t+1k

�2�1
t+1 en

�1
t+1=

ct+1
ct
(1 + R); (28)
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ct+1
ct
=

1

(1 +R)

�
kt+1
kt

��2 �xt+1
xt

��1��1�zt+1
zt

��1(1��)�At+1
At

��1
; (29)

ct+1
ct
=
(1 + �)

(1 +R)

�
kt+1
kt

��2 �xt+1
xt

��1��zt+1
zt

��1(1��)�1�At+1
At

��1
: (30)

The equality of A = (1 + b); N = (1 + n) follows from the de�nition of the

technological progress and the population growth rate equations. In addition along

the balanced growth path R = 1 or Rt+1 = Rt = �R.

Equality of e = x is obtained by the ratio of Equation (26c) in period t+1 and

t. After evaluating the resulting equation on the balanced growth path �rst observe

�� = � t = � t+1 and then obtain x =
1���
1+n

: The equality of r = z is obtained by

the ratio of Equation (26d) in period t + 1 and t. After evaluating the resulting

equation on the balanced growth path it �rst observed that �� = �t = �t+1 and then

r =
(1���)(1+�)

1+n
: By means of Equation (28), the below equation follows

c(1 +R)� (1� �) = �2(At+1xt+1)
�1�(At+1zt+1)

�1(1��)k�2�1t+1 : (31)

By evaluating this expression at t+ 1 and t and taking the ratio:

1 = �1A 
�1�
x �1(1��)z �2�1k ; (32)

 � k = 
�1

(1��2)
A 

�1�
(1��2)
x 

�1(1��)
(1��2)
z :

Observe that the growth factor of capital is equal to the output per capita, i.e.,

k = y from taking the ratio of Equation (26b) in period t + 1 and t and then

substituting in Equation (32). The growth factor of the energy resource is obtained

by taking the ratio of Equation (7) in period t+ 1:

�= A
�
x

(1��)
z =

(1 + a)(1 + �)�(1� ��)�(1� ��)(1��)
1 + n

:

By dividing Equation (29) to Equation (30), z = x(1 + �) and �� = �� :
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Note that d = c by taking the ratio of Equation (27) in period t+1 and t and

evaluating it on the balanced growth path. Moreover by Equation (29) it is clear

that d = c = k:

From Equation (29) and using the equality of c and k :

x =
1

(1 +R)
and �� =

R

1 +R
:

2.5. Comparative Statics

The e¤ects of the following parameters on the depletion rates of the resources and

on the long run growth is analytically proved: (i) a change in the depreciation rate,

(ii) a change in the discount rate, (iii) a change in the resource saving technological

progress (iv) a change in the intensity of non-renewables in energy production, and

(v) a change in the regeneration factor.

Proposition 7 (i) Higher depreciation of capital brings about lower depletion rates

and higher growth along the balanced growth path:

@��

@�
< 0;

@

@�
> 0:

(ii) More patient generations will deplete their natural resources less and bene�t

from higher growth along the balanced growth path:

@��

@�
< 0;

@

@�
> 0:

(iii) Economies with higher resource saving technologies grow faster along the

balanced growth path (@
@a
> 0) and deplete their resources less (@��

@a
< 0):

(iv) Economies with higher share of renewables in energy production have lower

depletion rates (@��
@�
< 0) and will exhibit higher growth (@��

@
> 0):

32



(v) Economies with higher regeneration rates in the renewable resources grow

faster along the balanced growth path ( @
@�

> 0) and deplete their resources less

( @��
@�

< 0):

Proof. Equation (22) can be reduced into a implicit equation involving only � as

A(��) =
(1 + a)

�1
(1��2)

h
(1���)
(1+n)

i �1
(1��2) (1 + �)

�1(1��)
(1��2) (1 + n)

1� �� �

�2 (1 + a)
�1

(1��2)
h
(1���)
(1+n)

i �1
(1��2) (1 + �)

�1(1��)
(1��2)h

�3�
(1+�)

� �1(1���)
(1+n)��

i � (1� �):

Thus, A[�; �; a; �1; �2; �3;�;�; n; � ] = 0 and

A�� =
(1 + a)

�1
(1��2)

h
(1���)
(1+n)

i �1
(1��2) (1 + �)

�1(1��)
(1��2) (1 + n)

1� �� 0B@ � �3
(1���)2(1��2)

� (1+�)2�1�2
((1+�)(�1+��)�1+(1+n)�3���)2

� (1+�)��1�2
(�1+��)(�1+�2)((1+�)(�1+��)�1+(1+n)�3���)

1CA

A�< 0 if �� >
�1

�3(1 + n)
�

(1+�)
+ �1

:

Taking the total derivative and looking for the comparative statistics with respect

to any parameter z ,: @�
@z
= �Az

A�
:Accordingly, one only needs to check the sign of

Az:

(i) Since A� = �1 , @�@� < 0: Moreover,

@

@�
= ��1

1

(�1 + ��) (�1 + �2)
@�

@�
> 0:

(ii) Since

A� = �
(1 + a)

�1
(1��2)

h
(1���)
(1+n)

i �1
(1��2) (1 + �)

�1(1��)
(1��2) (1 + n)2�3�2��

2

((1 + �) (�1 + ��)�1 + (1 + n)�3���)
2 ;
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, A� < 0 and hence @�
@�
< 0: Moreover,

@

@�
= ��1

1

(�1 + ��) (�1 + �2)
@�

@�
> 0:

(iii) Since

Aa = �
(1 + a)

�1�
(1��2)

�1
(1 + a)

�1(1��)
(1��2)

h
(1���)
(1+n)

i �1
(1��2) (1 + �)

�1(1��)
(1��2) (1 + n)��1

(1� �2)�
1

�1 + �� +
(1 + �)���2

(1 + �) (�1 + ��)�1 + (1 + n)�3���

�

,

Aa < 0 if
1

�1 + �� +
(1 + �)���2

(1 + �) (�1 + ��)�1 + (1 + n)�3���
< 0:

This condition can be recast as

�3(1 + n)
�

(1 + �)
>
(1� ��)
��

�1+(1� ��)�2:

Thus,
@�

@a
< 0 if �3(1 + n)

�

(1 + �)
>
(1� ��)
��

�1+(1� ��)�2:

Moreover,

@

@a
= ��1

1

(�1 + ��) (�1 + �2)
@�

@a
+

�1�

(1� �2)
(1 + a)�1  > 0 if

�3(1 + n)
�

(1 + �)
>
(1� ��)
��

�1+(1� ��)�2:

(iv) Since A� < 0 if

�3(1 + n)
�

(1 + �)
>
(1� ��)
��

�1+(1� ��)�2; and log
�

1

(1 + �)

�
< 0

Thus, @�
@�
< 0 if
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�3(1 + n)
�

(1 + �)
>
(1� ��)
��

�1+(1� ��)�2; and log
�

1

(1 + �)

�
< 0:

Moreover,

�= ��1
1

(�1 + ��) (�1 + �2)
@�

@�
+

�1
(1� �2)

 log

�
1

(1 + �)

�
:

� =
1

(�1 + �2)2
 log

�
(1 + a)

(1 + a)(1 + �)

�
�1�

1� �2 +
(1 + n) ((1 + �) (�1 + ��)�1 + ��((1 + �) (�1 + ��)�2 + (1 + n)�3�))

(�1 + ��)2 ((1 + �) (�1 + ��)�1 + (1 + n)�3���)

�

so that � > 0 if

�3(1 + n)
�

(1 + �)
>
(1� ��)
��

�1+(1� ��)�2 & log
�

1

(1 + �)

�
< 0

(v) Since

A� = �
(1 + a)

�1
(1��2)

h
(1���)
(1+n)

i �1
(1��2) (1 + �)

�1(1��)
(1��2)

�1
(1 + n)(1� �)�1

(1� �2)�
1

�1 + �� +
(1 + �)���2

(1 + �) (�1 + ��)�1 + (1 + n)�3���

�
;

, A� < 0 if

�3(1 + n)
�

(1 + �)
>
(1� ��)
��

�1+(1� ��)�2:

Thus, , @�
@�

< 0 if

�3(1 + n)
�

(1 + �)
>
(1� ��)
��

�1+(1� ��)�2:

Moreover, under the above mentioned assumption,

@

@�
= ��1

1

(�1 + ��) (�1 + �2)
@�

@a
+
�1(1� �)

(1� �2)
(1 + �)�1  > 0:
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As the depreciation rate � increases, capital becomes scarce compared to the en-

ergy resources. This scarcity will result in an increase in the price of capital relative

to the prices of energy resources. Thus, the agents will demand more resource assets

than capital for their savings. There will be less resource for production which will

in turn yield a lower depletion rate. As a result, the economy grows at a higher rate

along the balanced growth path.

The higher the discount factor � �i.e., the more patient the generations are�

when young households will consume less and save more. Since agents save more,

the depletion rate along the balanced growth path will decrease and therefore the

economy will grow at a higher rate along the balanced growth path.

As Smulders (2005) emphasizes, the e¤ect of the exogenous resource saving tech-

nological progress on the rate of depletion is accepted to be ambiguous due to the

opposing income and substitution e¤ects. Under the productivity gains, households

would attach a greater value to resources in future periods since these resources

will be more productive. Thus, households save more on these resources which

demonstrated the substitution channel. On the other hand, when the productivity

increases, more output would be obtained given a resource stock. As a result, the

households would expect to have more income in the future. The income e¤ect

works through consumption smoothing and households will consume more. In the

proposition stated above, it is shown that as long as the depletion rate along the

balanced growth path is slightly higher than the lower bound of the depletion rate,

the higher the resource saving technological progress, the economy will deplete its

corresponding energy resource less and have higher growth rate along the balanced

growth path. Thus, the higher the resource saving technological progress through

the income e¤ect, the economy will deplete its energy resources less.

Due to the regeneration property of renewable resources, economies with higher

share of renewables in energy production (lower �) have lower depletion rates as long

as the depletion rate at the balanced growth path is slightly higher than the existence

lower bound. Comparing identical economies with one having a higher share of
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renewables reveals that the economy which is using renewables more intensively in

energy production will deplete its resources less and this will induce higher growth.

Economies with higher regeneration rate have more renewable resources and the

constraint on growth due to limited energy sources become less binding. Thus,

through a lower depletion rate economies grow faster at the balanced growth path.

Similar to the cases discussed above, the depletion rate at the balanced growth path

must be slightly higher than the lower bound of it for this result to hold.

The e¤ect of an increase in the population growth rate (higher n) on the depletion

rate is found to be ambiguous. This unambiquity creates further unambiquity for the

e¤ect of an increase in population growth on the long run growth. As the population

is higher, there is a need for higher consumption. This will result in higher depletion

rates which indicates a positive relationship. At the same time, through an increase

in population growth rate, there will be an increase in the amount of labor utilized in

production. As labor substitutes the resources utilized in production, less resources

will be exhausted. As a result, the depletion rate will decrease which re�ects a

negative relationship.

Corollary 8 (i) For the more patient economies (higher �), the increase in resource

saving technological progress has a higher growth e¤ect.

(ii) If increasing the share of renewable resources in the energy production yields

a higher growth rate in the economy, that e¤ect will be even higher for more patient

economies.

From the comparative statics analysis, it can be observed that if an economy

is more patient the e¤ect of increasing the resource saving technological progress is

higher on growth. To begin with, it is seen that under technological progress the

economies deplete their resources less. If the agents in the economy are saving more

when they are young then the economies�resources will be depleted even lesser on

the balanced growth path. Thus, the e¤ect of developments in the technology will

bene�t growth more.
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For more patient economies, an increase in the share of renewables in the en-

ergy production induces a higher growth rate. This result can be interpreted in the

following manner. For economies whose renewable energy resources is highly devel-

oped with high regeneration and technological progress rates, increasing the share

of renewables will induce higher growth if the economy is more patient. If devel-

oped economies can be considered as economies with higher saving rates and with

fastly growing renewable energy production technologies, one could conclude that it

is optimal for that economies to support policies increasing the share of renewables

compared to the less patient developing economies.

2.6. Conclusion

In this chapter, the feasibility and the determinants of the long run growth within a

two-period overlapping generations model in which the energy is an essential input

and technical change is resource augmenting is studied.

This study can be considered as a contribution to the resource economic models

literature as the recent literature has mostly focused on just one type of resources

or utilizes in�nitely lived agents framework. In parallel with the OLG literature

(Galor and Ryder, 1989; Agnani et al., 2005) the model necessitates su¢ ciently

high labor share for the economy to exhibit positive growth. However, compared

with previous models the condition required is less binding. In fact, the share of

renewables in energy production, the technological progress in producing energy

and the regeneration factor are found among the key variables a¤ecting the required

labor share and hence the possibility of long run growth.

This study is able to o¤er a simpler analytical setting (i) to investigate the e¤ects

of an increase in productivity of resources in producing energy on the depletion rate

and (ii) to observe under which circumstances increasing/decreasing the resource

intensity of energy production will bring about growth. Indeed, it is shown that the

e¤ects of an increase in the intensity of the renewable resources in producing energy

promote long run growth. After analyzing the sustainability of the economy under
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the presence of both resources and it is observed that the sustainability depends

on the energy saving e¤ect of the technological progress and the depletion rate of

the resources which in turn depend on the rest of the parameters in the economy.

Finally, the balanced growth path is optimal in this setup.
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CHAPTER 3

THE USE OF NATURAL RESOURCES IN

CAPITAL ACCUMULATION IN AN

OVERLAPPING GENERATIONS RESOURCE

ECONOMY

How does the scarcity of natural resources limit growth and to what extent cap-

ital accumulation o¤sets this constraint on growth? These research questions have

been the subject of several scholarly papers in the literature of resource economics

dating as back as to Dasgupta and Heal (1974, 1979), Solow (1974), and Stiglitz

(1974). In these studies, resources are assumed to be extracted to acquire energy

to be used in the production of the �nal good. By this way, the limit on economic

growth is imposed directly by the use of the scarce resources in production. Greater

physical capital accumulation is suggested (unless non-renewable resources are sub-

stituted with renewables) to overcome this constraint. However, the overwhelming

majority of the literature, assuming the same technology for the consumption and

capital accumulation sector, tends to contradict with the evidence on energy intensi-

ties of these sectors. The data suggests that physical capital production is relatively

more energy-intensive than consumption, so that the non-renewable resources can

limit growth through the equipment production sector.

Di¤ering energy intensities has only been considered in Barahona (2011) �in an

in�nitely lived agent general equilibrium model-, but not yet within the overlapping
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generations (OLG) framework. Against this background, the aim of this chapter is to

analyze the e¤ects of di¤erentiating energy intensities of the physical capital and the

�nal good production in a overlapping generations resource model. OLG framework

o¤ers a better explanatory power for the discussion of resource problems due to three

main reasons. First of all, besides being an input to energy production, resources are

store of values between generations (see Koskela et al., 2002; Valente, 2008; Birgit

Bednar�Friedl and Farmer; 2011) and are not held by one representative generation

forever as in�nitely lived representative agent framework assumes. Secondly, current

decisions on resource extraction taken by short-lived and sel�sh individuals have

consequences not only on current but on future generations as well. Thus, both

intratemporal and intertemporal e¤ects should be considered. Solow (1974), Padilla

(2002), Agnani (2005) note that these intergenerational aspects should be taken into

account when analyzing environmental issues and/or natural resource economies.

Finally, contrary to what the in�nitely-lived representative agent models claim, there

exists some empirical evidence that agents are not perfectly altruistically linked

(Altonji et al., 1992; Balestra, 2003).

As modeled in Barahona (2011), the physical capital accumulation sector is

assumed to be more energy intensive than consumption where energy is obtained

from the extraction of resources. Thus, going beyond the standard literature, in this

study the accumulation of the capital stock is assumed to be determined not only

by the savings but also by the energy that it requires. In addition, instead of taking

resources to be the only way of saving (Krautkraemer and Batina, 1999; Koskela et

al., 2002), the resource stock and man-made capital are considered to be alternative

assets (Mourmouras, 1991; Farmer, 2000; Agnani et al., 2005; Birgit Bednar�Friedl

and Farmer, 2011).

The data supports the claim that capital accumulation sector is more energy

intensive than consumption sector in the following manner. Azomahou et al. (2004,

2006) build an energy intensity measurement (ratio between energy consumption

and value added) of 14 sectors of the economy from the Structural Analysis Data-

41



base of OECD and the Energy Balances and Energy Prices and Taxes of IEA. The

evidence shows that energy intensity is higher for sectors closely related to physi-

cal capital accumulation (ex: iron and steel sector (0.809), transport and storage

(0.85), non-ferrous metals (0.599), and non-metallic minerals (0.507). While, the

energy intensity is lower for the consumption goods related sectors (ex: food and

tobacco (0.134), textile and leather (0.082), and construction (0.018)).

This study addresses how do the standard results on stability of the dynamics,

growth and optimality are modi�ed under di¤ering energy intensities. With respect

to the assumptions on technological progress (exogenous or null), the results are

compared with the two strands of literature. Under technological progress, the

results can be compared with Agnani et. al. (2005) which examines the possibility of

positive growth in an OLG economy that use non-renewable resources in production

of the consumption/investment good. The results on balanced growth path are quite

similar to Agnani et al. (2005). In line with that study, although technological

progress�is taken to be exogenous, the growth rate of the economy depends on all

of the parameters of the model, as if the model is an endogenous growth model. In

addition, the balanced growth path of the economy can be optimal depending on the

choice of the depletion rate. However, contrary to the Agnani et. al (2005)�s �ndings,

multiple balanced growth paths are encountered rather than a unique balanced

growth path. Going beyond, the possible growth rates can be explicitly solved. Yet,

the e¤ect of the share of energy resources in capital accumulation on the growth

rate of the economy is not analytically clear and depends on the characteristics of

that economy.

Under no technological progress, the results can be compared with the resource

literature that studies the long run dynamics. After examining the steady state and

the stability properties of the model, the dynamic behavior is fully characterized with

respect to the share of energy resources in the production of capital accumulation.

The main contribution of this study comes from this characterization described

below. As widely accepted in the literature, the models converge to a single steady
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state or a single balanced growth path with saddle path dynamics under linear

regeneration of resources and with exogenous or no technological progress. For

instance, Mourmouras (1991) considers interactions between capital accumulation

and natural resource exploitation under linear regeneration of resources. Apart

from how capital accumulates regarding model is similar to ours while equilibrium

dynamics are saddle-path stable (Farmer & Friedl, 2010). In contrast, in this study,

local indeterminacy and hopf bifurcations arise in the model for the non-renewable

resources if the share of energy resources is low enough (less than 25 %). Multiple

steady states, indeterminacy and bifurcations are obtained, without taking non-

linearizing (logistic regeneration) assumptions evident in the literature1.

The chapter proceeds as follows. The model is presented in Section 1. The

competitive equilibrium is de�ned in Section 2. Section 3 characterizes the balanced

growth path and Section 4 discusses the optimality of the competitive equilibrium.

Section 5 presents the equilibrium dynamics and Section 6 examines the stability

of the long run dynamics. Conclusions and broader theoretical implications are

discussed in Section 7.

3.1. The Model

A perfect foresight overlapping generations economy without population growth in

discrete time with in�nite horizon is taken. Apart from the standard OLG frame-

work2, the model di¤erentiates the energy intensities of the physical capital and

the �nal good production. There are three sectors in the economy: the �nal good

production, the equipment (investment) good production and the extraction sector.

A single �nal good �which can be either consumed or invested�is produced in the

economy using physical capital and labor. The physical capital that is used in the

production process is produced by the investment sector. The physical capital is

1Even if logistic regeneration is taken into account, the long run dynamics exhibit saddle
path stability (see Farmer, 2000; Koskela et. al., 2002). Koskela et al. (2008) examines whether
renewable resource based OLG economies may have other types of dynamics than saddles or not. It
has numerically shown that �ip bifurcations may arise if the intertemporal elasticity of substitution
of the utility function is less than one half and the regeneration function is logistic.

2For the discussion of standart OLG models see De La Croix & Michel (2004).
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obtained by means of the installed capital stock from the previous period and the

energy resource extracted from the resource stock. Finally, the extraction sector

extracts the energy from the natural resource.

All agents have rational expectations and each generation consists of a single

representative agent. Moreover, all agents in this economy are price-takers and all

the markets are competitive.

The natural resource in the model has serves two purposes. It is both a store of

value as an asset and an input in the production of investment good as energy input.

Following a standard assumption, the initially old generation possesses the stock of

the natural resource. At the beginning of each period t, the old agents (generation

t � 1) own the resource stock Et = et:Nt. They choose how much of their stock to

extract as energy and sell to the equipment good sector Xt. The remaining part of

the natural resource is sold young agents as resource assets, At(= Et � Xt): From

period t to t + 1, the resource stock regenerates at a linear rate � (Mourmouras,

1991); where � > 13: The transition dynamics of the energy resources in per capita

terms can be formalized as follows:

et+1 = �(et � xt) = �at; (1)

where xt = Xt
Nt
and at = At

Nt
.

The representative individual receives an income equal to the real wage wt from

supplying his one unit of labor to the �rms when young. He allocates his income

between the current consumption ct; the savings of physical capital st; the purchase

of the ownership rights for the renewable resources at. In his last period of life

(when old at period t + 1), the agent is retired and he consumes dt+1 out of his

entire income and do not leave bequests. His income is generated from the return

on his savings made when young: Rt+1st ; from extracting the demanded portion

of the energy resources and selling it to the �rms Qt+1xt+1 and selling the rest to

the young Pt+1at+1 from the prices Qt and Pt respectively. Accordingly, the budget

3Note that as long as � = 1 the resource is non-renewable.
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constraints facing generation t is as follows:

ct + st + Ptat = wt ; (2)

dt+1 = Rt+1st +Qt+1xt+1 + Pt+1at+1: (3)

Generations derive utility over consumption where their two�period intertemporal

utility function is dependent on the level of consumption when young ct and when old

dt+1. A logarithmic instantaneous utility function u is taken in order to guarantee

the existence of the balanced growth path and its qualitative properties4.

Taking the prices of the energy resource and wages as given, the representative

agent born at time tmaximizes his utility by choosing the young and the old periods�

consumption and the ownership of the energy resource. The optimization problem

of the representative consumer born at time t can be formalized as follows:

max
fct;dt+1;st;et+1g

ln ct + � ln dt+1

where � 2 (0; 1) is the subjective discount factor:

subject to

ct + st + Ptat = wt ;

dt+1 = Rt+1st +Qt+1xt+1 + Pt+1at+1;

et+1 = �(et � xt) = at

ct � 0; dt+1 � 0; et+1 � 0; E0 > 0 given:

The �rst-order conditions are:
4See, among others, King and Rebelo (1993) and Agnani et al. (2005), for the need to assume

comsumer�s preferences with CIES in order to have the existence of a BGP.
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dt+1
ct

= �Rt+1; (4)

Pt+1
Pt

=
Rt+1

�
; (5)

Pt+1 = Qt+1: (6)

Equation (4) gives the equalization of discounted marginal utilities where the

marginal rate of substitution between the current and the future consumption is

equal to their relative prices. Equation (5) is the no-arbitrage condition among

di¤erent types of savings. Equation (6) is a no-arbitrage condition that implies that

in the equilibrium the asset price and the extracted energy price of the resource will

be the same.

Firms operating in the �nal goods sector are owned by the old households. Firms

produce the �nal good with the Cobb-Douglas constant returns to scale technology.

Equation (7) presents the production function in the �nal good sector at any date t.

The exogenous disembodied total factor productivity is represented by At (Equation

8). Under this perfectly competitive environment, at each period t, taking the prices

of inputs, the initial technology level and the initial level of capital stock as given,

the representative �rm maximizes its pro�t by choosing the amount of labor and

physical capital inputs.

max
fKt;Ntg1t=0

�t = Yt � PK
t Kt � wtNt;

Yt = AtK
�
t N

1��
t 0 < � < 1; (7)

At+1 = (1 + a)At a � 0: (8)

At an interior solution of the �rm�s optimization problem,where all variables are

expressed in per capita (kt = Kt

Nt
) terms, the following �rst order conditions are

satis�ed equating the price of the inputs to their marginal bene�ts:
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�Atk
��1
t = PK

t ; (9)

(1� �)Atk
�
t = wt: (10)

Equation (11) summarizes the goods market clearing condition of the economy.

The �nal good is either consumed by young agents Ct, or by old agents (generation

t� 1) Dt, or invested for the production of the future capital stock, St.

Yt = Ct +Dt + St (11)

In the standard OLG literature, the new capital stock at time t + 1 is fully

determined by the savings made at time t which are equal to the investments:

However, since the physical capital production is relatively more energy-intensive

than consumption, following Barahona (2011), we model the accumulation of the

capital stock to be determined not only by the savings made at time t; but also by

the energy that it requires. So, the resources put a constraint on the growth through

the capital accumulation sector. Thus, in Equation (12) the new capital at t + 1;

Kt+1 is produced from the natural energy resources Xt+1 and investment made at

time t; It with the following Cobb-Douglas technology:

Kt+1 = B�
t+1X

�
t+1I

1��
t ; (12)

St = It; (13)

B _t+1 = (1 + b)Bt; b � 0: (14)

It is worthwhile to mention that the savings are still equal to the investments

(Equation (13)) but only a fraction of the investments can generate the new capital

stock. Bt is the technological progress in the equipment good sector. In contrast

to At; Bt is energy saving and speci�c to the accumulation of the capital goods. If

Bt increases the productivity of the renewable resources in producing new capital
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increases, less amount of resources will be needed to produce the same amount of

new capital. Therefore, the technical progress (increase in productivity) which is

captured by b is considered to be energy saving. On the other hand, changes in

Bt represent investment-speci�c technological change, which is assumed to a¤ect

equipment sector only.

Under Cobb- Douglas speci�cation substitutability between energy and invest-

ment is assumed. Following the argument of Dasgupta (1979), in the model It is

interpreted as �nal good service. Thereby, as Barahona (2011) indicates the provi-

sion of a �ow of �nal good It; implies the provision of a certain energy �ow.

In the equipment good production sector at each period t, the representative

�rm maximizes its pro�t by choosing the amount of non-renewable resource input

that will be utilized in the production process:

max
fXtg1t=0

�t = PK
t Kt �QtXt;

s:t Kt = B�
tX

�
t I
1��
t�1 :

taking the prices of capital and resource input and the initial level of capital stock

as given. At an interior solution of the equipment �rm�s optimization problem the

following �rst order condition is satis�ed:

Qt = ��YtX
�1
t : (15)

The pro�t on investing on capital RtSt�1 at time t should be equal to the pro�t

on producing new capital (1 � �)PK
t Kt

5 to prevent arbitrage opportunities. The

below equation are follows from this no arbitrage condition:

5By choosing the optimal non-renewable resource stock (Equation (15)) maximum pro�t that
the representative �rm can obtain is as follows:

��t = P
K
t Kt � �PKt B�tX��1

t I1��t�1Xt = (1� �)PKt Kt
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Rt = (1� �)PK
t B

�
1��
t X

�
1��
t K

�
��1
t : (16)

3.2. The Competitive Equilibrium

A dynamic competitive equilibrium for this OLG resource economy is determined by

the sequence of prices
�
wt; Rt; P

K
t ; Pt; Qt

	1
t=0
and feasible allocations fct; dt; st; et; at; xt; it; yt; kt+1g

given the positive initial values for S�1; E0; A0; B0; N0 > 0 and the law of motion

of exogenous technological progresses At and Bt such that the consumers maximize

their life-time utility, �rms maximize their pro�ts and all markets clear at every

period t. The competitive equilibrium of this OLG resource economy is a solution

of the non-linear system of equations, (1)�(17) with the following market clearing

conditions:

It = St;

Nt = N0; (17)

kt+1 = B�
t+1x

�
t+1s

1��
t ;

yt = ct + dt + st;

et+1 = �(et � xt):

The economy at time t can be summarized in the Figure 1.
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Figure 1: The Economy at Time t.

3.3. The Balanced Growth Path:

Firstly, suppose there is exogenous technological progress in the production and the

equipment goods sectors a; b > 0: Let us characterize the BGP as the situation

where all the endogenous variables grow at a constant rate. The growth factor of

any variable gt will be by g which is the ratio gt+1=gt: Along the balanced growth
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path g � 1 will represent the growth rate of the corresponding variable.

Proposition 1 Suppose there is exogenous technological progress in the production

and the equipment goods sectors a; b > 0: Along a balanced growth path of this

economy all variables grow at a constant rate. If capital grows at a rate ;then all

the other variables grows at the following rates:

(i)

B = (1 + b); A = (1 + a)

k = ;

y = c = d = w = (1 + a)�;

s = 
�

��1
x (1 + b)

�
��1

1
1�� ;

A = (1 + a); B = (1 + b); N = 1;

e = x;

pK = (1 + a)��1;

p =
�(1 + a)

x
;

R = 1

x = 
����+1

� (1 + a)
��1
� (1 + b)�1

x =

�
�(1� �)

(1 + �)
+ ��� ���

(� + x)

�
�

�(1� �)
:

(ii) Balanced growth path of this economy exists. There can be multiple growth

paths with the following growth rates:

 = 
�

����+1
x (1 + a)

��1
����+1 (1 + b)�

�
����+1
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x1;2 = (2�(1� �))�1 �8><>:
�
�
�(�1 + 2� � �

(1+�)
) + �

(1+�)

�
�r

�2
�
�(�1 + 2� � �

(1+�)
) + �

(1+�)

�2
� 4�2(1� �)�(1� �) �

(1+�)

9>=>;
Proof. A = (1+a) and B = (1+b) follows from the de�nition of the technological

progress. n = 1 since there is no population growth.

e = x is obtained by the ratio of Equation (1) in period t + 1and t. After

evaluating the resulting equation on the balanced growth the equality of �� = � t =

� t+1 is observed and then x = �(1� ��) follows.

PK = A
��1
k comes from the evaluation of Equation(9) at t and t+1.

Using Equations (??), (6), (9) and (12) ,

Pt = ��Atk
�
t x

�1
t (18)

To �nd the growth factor of capital per capita substituting Equation (9) into the

Equation (5) and evaluating along the balanced growth path

Rt+1 = PKk
�1
x (19)

Then, using Equation (16) ,

PKk
�1
x = (1� �)PK

t B
�

��1
t x

�
��1
t k

�
��1
t

By evaluating this expression at t+ 1 and t and taking the ratio ,

1 = PK
�

1��
B 

�
1��
x 

�
��1
k

Since PK = A
��1
k the growth factor of capital per capita is
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1 = A
�

1��
B 

�
1��
x 

����+1
��1

k (20)

 � k = 
1��

����+1
A 

�
����+1
B 

�
����+1
x = (1 + a)

1��
����+1 (1 + b)

�
����+1 (1� ��)

�
����+1

Taking the ratio of Equation(19), evaluating along the balanced growth path

and then substituting PK = A
��1
k and Equation (20) , R = 1:

I tis observed that y = A
�
k from taking the ratio of Equation (??) in period

t+1 and t. Similarly, w = A
�
k can be shown by taking the ratio of Equation (10)

in period t+ 1 and t .

k = �B
1��
s �x is obtained through taking the ratio of Equation (12) in period

t+ 1 and t.

For the growth factor of price of the non-renewable resources taking the ratio of

Equation(18) in period t+1 and t, evaluating it on the balanced growth path. Thus

, P =
Ak�
x

= ( _1+a)�

1��� :

Observe that d = c from taking the ratio of Equation(4) in period t + 1 and

t and evaluating it on the balanced growth path. Moreover to show d = c = w:

�rst, substitute Equation (2), Equation (4) and Equation (10) into Equation (3)

and obtain

ct =
wt

(1 + �)
(21)

Evaluating the above equation along the balanced growth path yields the result.

As a �nal step the growth factor of capital is found as follows. Substituting

Equations (??), (21), (10) and (15) into the Equation (12);

k
1

1��
t+1 = Atk

�
t x

�
1��
t B

�
1��
t

�
(1� �)�

(1 + �)
� ��

et+1
�xt

�
and dividing both sides by kt:


1

1��
k 

�
��1
B 

�
��1
x = Atk

��1+ �
��1

t B
�

1��
t x

�
1��
t

�
(1� �)�

(1 + �)
� ��

et+1
�xt

�
(22)
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From Equations (15), (9) and (19) ,

[A
�1
x �k � (1� �)]

�(1� �)
= At+1k

��1+ �
��1

t+1 B
�

1��
t+1 x

�
1��
t+1

Substituting into Equation (22) ,:


1

1��
k 

�
��1
x 

�
��1
B =

�
A

�1
x �k � (1� �)

� 1

�(1� �)

�
(1� �)�

(1 + �)
� ��

et+1
xt

�
Assuming full depreciation ,:


1

1��
k 

�
��1
x 

�
��1
B =

�
A

�1
x �k

� 1

�(1� �)

�
(1� �)�

(1 + �)
� ��

�et
xt
+���

�
After some algebra ,:

x=

�
�(1� �)

(1 + �)
+ ��� ���

(� + x)

�
�

�(1� �)

Therefore, the BGP of this economy exists. There can be multiple growth paths

with the following growth rates:

 = 
�

����+1
x (1 + a)

��1
����+1 (1 + b)�

�
����+1

x1;2 =
�
�

q
�2
2 � 4�2(1� �)�(1� �) �

(1+�)

2�(1� �)


 = �(�1 + 2� � �

(1 + �)
) +

�

(1 + �)

In parallel with the literature, Proposition (1) shows that income, consumption

and wages grow at the same rate and the interest rate is constant along the balanced

growth path. Indeed, the results on balanced growth path are quite similar to

Agnani et al. (2005) where the constraint on growth is evolving due to the presence

of exhaustible resources in production. In fact, in line with their study, although

technological progress� is taken to be exogenous, the growth rate of the economy
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depends on all of the parameters of the model, actually a feature of endogenous

growth models. However, as the resource stock is used in the production of capital,

the growth rate of the economy is not equal to the growth rate the capital stock.

Also, in contrast with the previous studies the savings do not grow at the same

rate with capital. The growth rate of the savings along the BGP is depending on

the relationship between the improvement of the investment-speci�c technology, the

growth rate of capital and the extraction rate of the resources. This result indicates

that investment speci�c technological progress along with the savings o¤set the

limits that the non-renewable resource stock impose on the growth of the capital

stock.

Contrary to the Agnani et. al (2005)�s �ndings instead of a unique balanced

growth path, multiple balanced growth paths are encountered. Going beyond, the

possible growth rates can explicitly be solved. Yet, the e¤ect of the share of en-

ergy resources in capital accumulation on the growth rate of the economy is not

analytically on one direction, it depends on the characteristics of that economy.

3.4. Optimality

To derive the conditions for intergenerational optimality, the existence of a social

planner whose maximizes a discounted sum of utilities for all current and future

generations with respect to the resource constraints of the economy is taken. To

be restrictive the case of non-renewable resources is discussed, � = 1: The optimal

balanced growth path is characterized by:

(a) Capital growing at the rate k = ;

(b) Income and consumption growing at the same rate so that y = c = d =

(1 + a)�k ;

(b) Energy resources used in production will decline over time indicating an

asymptotic depletion: e = x =
1
1+�

; where � denotes the subjective discount

factor of the social planner.
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(c) In addition,

k = (1 + a)
1��

����+1 (1 + b)
�

����+1 
�

����+1
x :

Proposition below discusses the optimality of the competitive equilibrium.

Proposition 2 The competitive balanced growth path is pareto optimal as long as

�� = �
1+�

:

Proof. A social planner solves the following problem:

max
fct;dt;xt;zt;kt+1g1t=0

� ln d0+
1P
t=0

(
1

(1 + �)
)t+1

�
ln ct + (1 + �)�1� ln dt

�
subject to the aggregate resource constraints of the economy

yt = ct + dt + st � (1� �)kt (23a)

yt = Atk
�
t (23b)

et = et+1 + xt (23c)

e0 >
1P
t=0

xt (23d)

kt+1 = B�
t x

�
ts
�
t (23e)

Bt+1 = (1 + b)Bt (23f)

ct; dt > 0 (23g)

s�1; B0; e0 given. (23h)

The �rst order conditions with respect to ct and dt yield

dt
ct
= �(1 + �)�1 (24)

; then using Equation (23a) and (23b) ,
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1�
Atk�t � dt � k

1
(1��)
t+1 (et+1 � et+2)

��
1��B

��
1��
t+1 � (1� �)kt

� =
(1 + �)�1�d�1t : (25)

From the �rst order conditions with respect to kt+1 ,

1�
Atk�t � dt � k

1
(1��)
t+1 (et+1 � et+2)

��
1��B

��
1��
t+1 � (1� �)kt

� =
�
k

��
(1��)
t+1 (et+1 � et+2)

�
1��B

�
1��
t+1

�
�At+1k

��1
t+1 + (1� �)

�
(1 + �)�1

�
�
At+1k�t+1 � dt+1 � k

1
(1��)
t+2 (et+2 � et+3)

��
1��B

��
1��
t+2 � (1� �)kt+1

� :

From the �rst order conditions with respect to et+1 ,

k
1

(1��)
t+1 (et+1 � et+2)

��
1���1B

��
1��
t+1�

Atk�t � dt � k
1

(1��)
t+1 (et+1 � et+2)

��
1��B

��
1��
t+1 � (1� �)kt

� =
k

1
(1��)
t+2 (et+2 � et+3)

��
1���1B

��
1��
t+2 (1 + �)

�1�
At+1k�t+1 � dt+1 � k

1
(1��)
t+2 (et+2 � et+3)

��
1��B

��
1��
t+2 � (1� �)kt+1

� ; (26)

After some algebra from �rst order conditions and taking � = 1 ,

(1� �)�At+1k
��1� �

1��
t+1 x

�
1��
t+1 B

�
1��
t+1=

ct+1
ct
(1 + �); (27)

ct+1
ct
=

1

(1 + �)

�
kt+2
k _t+1

� 1
1��
�
xt+2
xt+1

� ��
1���1

�
Bt+2

Bt+1

� ��
1��

; (28)

The equality of A = (1 + a); B = (1 + b) follows from the de�nitions of the

technological progress. In addition, along the balanced growth path � = 1.

Equality of e = x is obtained by the ratio of Equation (23c) in period t + 1
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and t. After evaluating the resulting equation on the balanced growth path it is �rst

observed �� = � t = � t+1 and then x = 1� �� follows. By means of Equation (27),

c(1 + �) = (1� �)�At+1k
��1� �

1��
t+1 x

�
1��
t+1B

�
1��
t+1 : (29)

By evaluating this expression at t+ 1 and t and taking the ratio ,

1 = A
�

1��
B 

�
1��
x 

����+1
��1

k (30)

 � k = 
1��

����+1
A 

�
����+1
B 

�
����+1
x = (1 + a)

1��
����+1 (1 + b)

�
����+1 (1� ��)

�
����+1

Observe that the growth factor of capital is equal to the output per capita, i.e.,

y = A
�
k from taking the ratio of Equation (23b) in period t+ 1 and t. Note that

d = c by taking the ratio of Equation (24) in period t+ 1 and t and evaluating it

on the balanced growth path.

From Equation (28) ,

c(1 + �) = 
��
1��
B 

��
1���1
x 

1
1��
k (31)

Re-arranging and using Equation (30) ,

c(1 + �) = A
�
kx

From Equations (23a), (23b) and (23e) ,

k
1

1��
t+1 x

��
1��
t+1B

��
1��
t+1 = Atk

�
t � ct � dt

Dividing by k
1

1��
t x

��
1��
t B

��
1��
t and evaluating along the BGP ,

c = 
��
1��
B 

��
1��
x 

1
1��
k
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Substituting c from Equation (31) , x = 1
(1+�)

and = �
1+�

:.

The result on optimality is in parallel with the previous studies (see Agnani et

al. (2005)).

3.5. Equilibrium Dynamics

Under no technological progress the long run dynamics around the steady state is

analyzed. As Mourmouras (1991), Farmer (2000) and Bednar�Friedl and Farmer

(2011) suggests, the intertemporal equilibrium dynamics can be reduced into a two�

dimensional system which represents the law of motions of Et and Xt. Using the

market clearing conditions (Equations (12) and (13)) and �rst order conditions oh

households and �rms maximization problems (Equations (2),(3),(4),(5), and (10))

the below equation for kt+1 is derived.

k
1

1��
t+1= B

�
1��
t+1 x

�
1��
t+1

�
�(1� �) + ��(1� et

xt
)

�
yt (32)

In addition, plugging from the Equations (5), (6), (9) , (15) and (15) the fol-

lowing di¤erence equation for kt+1 is obtained:

�k
1

1��
t+1 xt

ytxt+1
= �(1� �)B

�
1��
t+1 x

�
1��
t+1 (33)

Substituting for kt:+1 in the above equations yields the the equation of motion for

resource harvest Equation (34). In order to study the dynamics the law of motion

of the natural resource Equation (35) is re-written.

xt+1 = �

 
�

(1+�)
(1� �) + ��

�(1� �)

!
xt �

��

(1� �)
et (34)

et+1 = �(et � xt) (35)

The planar system describing the dynamics are Equation (34) and Equation (35).
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The Jacobian matrix of the partial derivatives of the system will be

264 xt+1

et+1

375 =

264  1  2

 3  4

375
264 xt

et

375
with  1 =

�

(1� �)

�

(1 + �)

(1� �)

�
+

��

(1� �)
;

 2 = � ��

(1� �)

 3 = ��

 4 = �

Lemma 3 (Steady States) The steady states of equations (34) and (35) are char-

acterized by the following steady state equations:

x� =  1x
� +  2e

�; (36)

e� =  3x
� +  4e

� (37)

These equations have two sets of steady states:

(i) If  1 = 1 or ( 1 6= 1 and  4 = 1) the steady state is (x�; e�) = (0; 0) :

(iii) If  1 6= 1;  4 6= 1 and (1�  4) =
 2 3
(1� 1)

any (x; e) 2 R will be a steady

state. Then, there is a continuum of steady states.

Proof. Obvious.

Note that if resources are non-renewable so that � = 1; the only possible steady

state is (x�; e�) = (0; 0) :

3.6. Local Dynamics

In this section, the stability of the system and the occurrence of local indeterminacy

and bifurcations is analyzed. With the focus on non-renewable resources, the local

dynamics in the neighborhood of the steady state (x, e) = (0,0) is studied. The

share of energy in capital accumulation is found to play an important role in the
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occurrence of indeterminacy and bifurcations.

Proposition 4 (Stability of Dynamics) For non-renewable resources � = 1; for

di¤erent parameter combinations with ~� = �
(1+�)

(1��)
�
, the stability of the zero steady

state changes such that

Parameter Description

� share of capital in �nal good production � 2 (0; 1)

� share of resources in equipment good production � 2 (0; 1)

� discount factor � 2 (0; 1)

� regeneration rate � � 1

~� increases with patience rate decreases with the share of capital

1. If 1
2
< � < 1, the dynamics are non-complex and eigenvalues (in absolute

value) are on the di¤erent side of one, so that the steady state is a saddle.

2. If � = 1
2
, the dynamics are non-complex and

(a) if ~� < 1p
3
; eigenvalues (in absolute value) are on the di¤erent side of one,

so that the steady state is a saddle.

(b) if ~� > 1p
3
;both eigenvalues (in absolute value) are greater than one so

that the equilibrium dynamics are monotone unstable.

3. If 0 < � < 1
2
and 2(1� 2�) < ~� the dynamics are non-complex eigenvalues (in

absolute value) and are on the di¤erent side of one, so that the steady state is

a saddle.

(a) If ~� > (1 � 2�) +
p
2�2 � 3� + 1,eigenvalues (in absolute value) are on

the di¤erent side of one, so that the steady state is a saddle.

(b) If 2(1�2�) < ~� < (1�2�)+
p
2�2 � 3� + 1,eigenvalues (in absolute value)

are on the di¤erent side of one, so that the steady state is a saddle.

4. If 1
4
� � < 1

2
and ~� < 2(1 � 2�), the dynamics are non-complex and both

eigenvalues (in absolute value) are greater than one, so that the equilibrium

dynamics are monotone unstable.
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5. If 0 < � < 1
4
and ~� + 1

~�
< 2(1� 2�), the dynamics are complex such that:

(a) If � < 1 � ~�; both eigenvalues (in absolute value) are smaller than one,

so that local indeterminacy occurs where the the steady state is stable.

(b) If � > 1� ~�; both eigenvalues (in absolute value) are greater than one so

that the equilibrium dynamics are monotone unstable.

Proof. For � = 1; the two real eigenvalues of the system are de�ned by �1;2 =
(1+ 1)�

p
(1+ 1)

2�4( 1+ 2)
2

and the complex eigenvalues are

�1;2 =
(1 +  1)

2
� 1
2

p
(1 +  1)

2 � 4( 1 +  2)i:

The complexity of the dynamics are proved in the Appendix B. The stability

analysis is presented �rst. Note that, the trace T and the determinant D of the

associated Jacobian matrix, which respectively represent the sum and the product

of the two eigenvalues of the characteristic polynomial are: T =  1 + 1 and D =

�( 1 +  2) with T > 1 and D > 0:

1. Suppose 1
2
� � < 1: Then since the dynamics are non-complex as the discrim-

inant � = (1 +  1)
2 � 4( 1 +  2) > 0. Furthermore as D > 0; sign(�1) =

sign(�2): Since T > 1; one can conclude �1;2 > 0: Comparing �1 and �2 with 1,

one can observe that the dynamics are stable i¤ both eigenvalues are smaller

than one; i¤ (1+ 1)
2

< 1 �
p
�
2
: However, as 1 �

p
�
2

< 0 (see Appendix B

for the proof) and  1 > 0; stability case can not occur. The steady state is

saddle i¤ eigenvalues are on the di¤erent side of one. As �1;2 > 0; this implies

�1 > 1 and �2 < 1: This reduces to 1 �
p
�
2
< (1+ 1)

2
< 1 +

p
�
2
: Finally, for

1
2
< � < 1;the equilibrium dynamics are monotone unstable i¤ �1 > 1 and

�2 > 1 i¤ (1+ 1)
2

� 1+
p
�
2
: Yet, unstability is impossible as 1+

p
�
2
> (1+ 1)

2
(see

the Appendix B for the proof). As 1�
p
�
2
< (1+ 1)

2
(see the Appendix B for

the proof), for 1
2
< � < 1 the steady state is a saddle.
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2. Suppose � = 1
2
: From above it is known that stability case can not occur.

Moreover, the steady state is saddle i¤ 1�
p
�
2
< (1+ 1)

2
< 1+

p
�
2
whereas the

equilibrium dynamics are monotone unstable i¤ (1+ 1)
2

� 1 +
p
�
2
: For � = 1

2
;

it is shown in the Appendix B that 1�
p
�
2
< (1+ 1)

2
. Finally, (1+ 1)

2
� 1+

p
�
2

() ~� > 1p
3
: which completes the proof of Case 2.

3. Suppose 0 < � < 1
2
and ~� > 2(1 � 2�): The dynamics are stable i¤ both

eigenvalues are smaller than one; i¤ (1+ 1)
2

< 1 �
p
�
2
: For the stability case,

1 �
p
�
2
> 06: As shown in the Appendix B, if ~� > (1 � 2�) �

p
2�2 � 3� + 1

or ~� < (1 � 2�) +
p
2�2 � 3� + 1; then 1 �

p
�
2
< 0; so that the stability is

impossible. In addition, if

(1 � 2�) < ~� < (1 � 2�) +
p
2�2 � 3� + 1; stability is possible. However,

one still have to check whether (1+ 1)
2

< 1 �
p
�
2
or not. It is shown in the

Appendix B that (1+ 1)
2

> 1�
p
�
2
, for all 0 < � < 1

2
and ~� > 2(1� 2�) thus

stability case can not occur. The steady state is saddle i¤ eigenvalues are on

the di¤erent side of one. As �1;2 > 0; this implies �1 > 1 and �2 < 1: This

reduces to 1 �
p
�
2
< (1+ 1)

2
< 1 +

p
�
2
: Finally, the equilibrium dynamics are

monotone unstable i¤ �1 > 1 and �2 > 1 i¤ (1+ 1)
2

� 1 +
p
�
2
: Yet, unstability

is impossible as 1 +
p
�
2

> (1+ 1)
2
(see the Appendix B for the proof). For

0 < � < 1
2
the steady state is a saddle.

4. Suppose1
4
� � < 1

2
and ~� < 2(1 � 2�): The dynamics are stable i¤ both

eigenvalues are smaller than one; i¤ (1+ 1)
2

< 1 �
p
�
2
: First, as shown in the

Appendix B 1�
p
�
2
> 0 for all 1

4
� � < 1

2
and ~� < 2(1� 2�) . However, as

1�
p
�
2
< (1+ 1)

2
(see Appendix B for the proof) and  1 > 0; stability case can

not occur. The steady state is saddle i¤ eigenvalues are on the di¤erent side

of one. As �1;2 > 0; this implies �1 > 1 and �2 < 1: This reduces to 1�
p
�
2
<

(1+ 1)
2

< 1 +
p
�
2
: Finally,the equilibrium dynamics are monotone unstable i¤

�1 > 1 and �2 > 1 i¤ (1+ 1)
2

� 1 +
p
�
2
: Yet, unstability is impossible as

6If this equation holds with equality, it is proved that the system can not be stable.
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1 +
p
�
2
> (1+ 1)

2
(see the Appendix B for the proof). Then, the steady state is

a saddle.

5. j�1j = j�2j =
q

~�
2

(1��) : Comparing j�1j = j�2j with 1, one can observe that the

dynamics are stable i¤ both eigenvalues are smaller than one; i¤ j�1j < 1 i¤

~� < (1 � �): Similarly, one can observe that the dynamics are stable i¤ both

eigenvalues are larger than one; i¤ j�1j > 1 i¤ ~� > (1� �):

The dynamic behavior of the economy is fully characterized with respect to the

share of energy resources in the production of capital accumulation. In addition

to this parameter, the stability of the system changes with respect to the share

of capital in production and the discount rate. Proposition (4), shows that if the

share of energy resources in the production of capital accumulation is higher than

one half, the steady state is a saddle. However, if regarding share is equal to one

half, the stability of the system changes with respect to the ~� parameter. Note

that ~�; increases with the discount factor � whereas decreases with the share of

capital in production. If ~� is low enough (lower than one half), the steady state is a

saddle and unstable otherwise. One can interpret this �nding as ceteris paribus for

capital intensive (or less patient) economies the long run dynamics can turn out to

be saddle rather than unstable. On the other hand, if the share of energy resources

in the production of capital accumulation is less than one half and ~� is higher than

some threshold level 2(1� 2�); the steady state is a saddle. If ~� is lower than this

threshold level 2(1 � 2�) and the share of energy resources in the production of

capital accumulation is higher than one fourth but less than one half the dynamics

are unstable. On for small shares of energy resources in the production of capital

accumulation (less than 0.25) with small enough ~�; the dynamics are complex.

Corollary 5 (Hopf Bifurcation) Assume that 0 < � < 1
4
and ~� < 2(1� 2�): The

steady state is locally indeterminate for
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� < 1 � ~�, a Hopf Bifurcation occurs for � = 1 � ~�, and the steady state is

unstable for � > 1� ~�:
Parameter Description

� share of resources in equipment good production � 2 (0; 1)

~� increases with patience rate decreases with the share of capital

As the corollary presents, for small values of the share of energy in capital accu-

mulation, depending on the relationship between this share, capital share and the

discount rate, the steady state can be locally indeterminate. Moreover, a Hopf Bi-

furcation occurs for � = 1�~�: To summarize, in contrast to the Mourmouras (1991),

for the non-renewable resources if the share of energy resources is low enough (less

than 25 %) local indeterminacy and hopf bifurcations arise in the model.

3.7. Conclusion

Although the literature widely assumes the same technology for the consumption

and capital accumulation sector, the data suggests that physical capital production is

relatively more energy-intensive than consumption and the non-renewable resources

can limit growth through the equipment production sector. Using a overlapping

generations resource model, this chapter examines the implications of di¤erentiating

energy intensities of the physical capital and the �nal good production. The model

assumes the physical capital accumulation sector to be more energy intensive than

consumption where energy is obtained from the extraction of resources. Apart from

the standard literature, the accumulation of the capital stock is determined not only

by the savings but also by the energy that it requires.

Introduction of such a di¤erentiation has important implications for the standard

results in the area. In line with Agnani et al. (2005), although technological progress�

is taken to be exogenous, the growth rate of the economy depends on all of the

parameters of the model, as if the model is an endogenous growth model. The

balanced growth path of the economy can be optimal depending on the choice of the
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depletion rate. Contrary to the Agnani et. al (2005)�s �ndings, multiple balanced

growth paths are encountered rather than a unique balanced growth path whose

growth rate can be explicitly solved. The main �nding of the study suggests that

when taking the intensities into consideration dynamics other than saddle arise. In

fact, for the non-renewable resources local indeterminacy and hopf bifurcations are

found if the share of energy resources is low enough (less than 25 %).

For future research several issues can be considered. First, costless harvest as-

sumption could be replaced by introducing harvest costs. In addition, the logistic

regeneration could be introduced rather than the linear speci�cation. The dynamics

can be even more complex if logistic regeneration is allowed.
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CHAPTER 4

EXTRACTION COSTS AND

DIFFERENTIATED ENERGY INTENSITIES

IN AN OVERLAPPING GENERATIONS

RESOURCE ECONOMY

This paper stems from two stylized facts regarding resource economic modeling:

(i) Regardless of the type of the resource (windmills, �sheries, coal, petroleum,

hydrocarbon, etc.), natural resource extraction incur costs. These costs depend on

the size of the available resource stock and the amount extracted.

(ii) Equipment sector and the �nal good sector do not have the same resource

intensities. There is evidence that capital accumulation sector is more energy inten-

sive than consumption sector. In Azomahou et al. (2004, 2006), an energy intensity

measurement (ratio between energy consumption and value added) of 14 sectors of

the economy is constructed from the Structural Analysis Database of OECD and the

Energy Balances and Energy Prices and Taxes of IEA. Their �ndings indicate that

energy intensity is higher for sectors closely related to physical capital accumulation

(eg: iron and steel sector (0.809), transport and storage (0.85), non-ferrous metals

(0.599), and non-metallic minerals (0.507). On the other hand, the energy intensity

for the consumption goods related sectors (eg: food and tobacco (0.134), textile and

leather (0.082), and construction (0.018)) are found to be lower compared to the

capital intensive ones.
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Acknowledging these fundamental observations, one can question whether costly

resource extraction and di¤erentiating energy intensities induce non-linear dynam-

ics is a worthwhile research question to analyze. Costly resource extraction has

been analyzed in partial equilibrium framework frequently (e.g., see Clark, 1990;

Hartwick and Olewiler, 1986; Munro and Scott, 1985; Hanley et al., 1997; for a sur-

vey see Brown, 2000), there are still limited number of studies conducted in in�nitely

lived agents framework (Krutilla and Reuveny, 2004; Eliasson and Turnovsky, 2004;

Valente, 2005). Regarding the overlapping generation economy, Bednar�Friedl and

Farmer (2010, 2011) are the only studies focusing on this question due to several

limitations. As Farmer (2011) and Krutilla and Reuveny (2004) also notes the an-

alytical complexity driven by harvest costs limits the proper representation of this

natural fact in dynamic general equilibrium economic growth models (Berck, 1981).

On the other hand, although there is a vast literature analyzing the o¤setting ef-

fect of capital accumulation on the constraint that limited natural resources put on

growth, there is only one paper (Barahona,2011) considering di¤ering energy inten-

sities of consumption good and capital accumulation sector. Motivated by these

stylized facts, this paper is an attempt to explain non-linear dynamics (if any) that

could arise by integrating costly extraction, di¤erent technologies for equipment

good and �nal good sector in an overlapping generations resource economy.

As mentioned in Chapter 3, considering the use of resources in production or

more generally the constraint that resources put on growth, the OLG framework ap-

pears to have an explanatory power. Within the OLG framework, resources can be

considered as store of values between generations (see Koskela et al., 2002; Valente,

2008; Bednar�Friedl and Farmer; 2011) in addition to their role in the production

process. On the other hand, the ILA models cannot fully represent the sel�shness

of short-lived individuals and the e¤ects of their extraction decisions on the future

generations. As highlighted by Solow (1974), Padilla (2002), Agnani (2005), both

intratemporal and intertemporal e¤ects should be considered to have better under-

standing of environmental problems and/or natural resource economies. Last but
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not least, in contrast to what the in�nitely-lived representative agent models as-

sert, there exists some empirical evidence that agents are not perfectly altruistically

linked (Altonji et al., 1992; Balestra, 2003).

In this study, in a similar vein with the (2011), the technologies of consumption

good sector and the �nal good sector is di¤erentiated in an overlapping generations

resource economy with three sectors. The �nal good sector produces the consump-

tion with physical capital and labor. Physical capital is accumulated by means of

the investments (or pre-installed capital stock / savings) and the extracted energy

resources. By this way, the capital accumulation sector is assumed to be more en-

ergy intensive. The energy input is extracted from the natural resources with some

extraction costs.

There are two lines of literature modeling extraction costs. On the one hand,

as some claim (such as Krutilla and Reuveny, 2004; Eliasson and Turnovsky, 2004;

Bednar�Friedl and Farmer; 2011), harvesting may incur labor costs. In these stud-

ies, labor input is used to represent the e¤ort so that the young decides how to

allocate the labor across the resource sector and �nal good sector. In Krutilla and

Reuveny (2004) and Eliasson and Turnovsky (2004), the resource extraction costs

a¤ect resource dynamics, whereas in Bednar�Friedl and Farmer (2011) the harvest

costs are modeled as time costs a¤ecting the budget constraint of the young in-

dividuals through the reducing the time spent in production of the �nal good and

hence their earnings from production. On the other hand, the other line of literature

suggests that the extraction could incur costs in terms of the resource stock. This

way of modeling is evident in as Bednar�Friedl and Farmer (2010)�s study where

the resource extraction is integrated into the resource dynamics. Armstrong and

Sumaila (2001) and Escapa and Prellezo (2003) both assume that the technology of

extraction negatively a¤ects the natural growth rate of the resource. In this study,

Bednar�Friedl and Farmer (2010)�s assumption, which gross extraction turn only

partly into resource stock during the extraction process, is adopted. . This assump-

tion leads the model to resemble Hayashi (1982) where gross investment turns only
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partly into capital. In addition, it is assumed that the extraction costs depend on

the availability (amount) of the resource. Speci�cally, it is assumed that the scarcer

the resource is, the harder it is to extract and more harvest costs it incurs. Moreover,

in the numerical simulations a speci�c functional form evident in Bednar�Friedl and

Farmer (2010) is taken to compare the resulting dynamics.

Following Mournmouras (1991), the natural resource is assumed to regenerate

linearly. To visualize the net e¤ect of the di¤ering intensities as well as the harvest

costs, the logistic regeneration function are avoided which has the complex dynamics

generating property. Koskela et al. (2008) looks for other types of dynamics than

saddles in renewable resource based OLG economies. It has numerically shown

that �ip bifurcations may arise only if the intertemporal elasticity of substitution

of the utility function is less than one half and the regeneration function is logistic.

Besides, the �ndings can be compared with the linear speci�cation that is discussed

in Chapter 2 where only di¤ering intensities are considered. Such a comparison can

reveal the net e¤ect of harvest costs.

The uniqueness of the steady state as well as the dynamics around the steady

state is analyzed. The importance of analyzing this dynamics lies behind the fact

that if private savings may not be su¢ cient to sustain capital and resource accumula-

tion in the long run so that a non-trivial steady state might not exist (Bednar�Friedl

and Farmer, 2010). Regarding the uniqueness, multiple equilibria can be found after

the introduction of harvest costs (see Krutilla and Reuveny).

To isolate the e¤ect of harvest cost the �ndings are compared to the �ndings

of the model in Chapter 2. In Chapter 2, it is shown that multiple equilibria exist

and local indeterminacy and hopf bifurcations arise for the non-renewable resources

depending on the share of energy resources if one considers di¤ering technologies.

However, as there are in�nitely many non-zero steady states the stability analysis

could not be performed for that model. Now, with the inclusion of harvest costs

multiple equilibria exist and through the numerical simulations, it is shown that

indeterminacy, transcritical and hopf bifurcations can arise in the model for the
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non-zero steady state.

To observe the net e¤ect of di¤ering energy intensities the model is compared

with Bednar�Friedl and Farmer (2010). In the model, it is shown that multiple

equilibria exist and dynamics are saddle. While, taking the identical cost function

with the di¤erentiation of technologies through the numerical simulations it is shown

that dynamics other than saddle �indeterminacy, transcritical and hopf bifurcations�

can arise in the model for the non-zero steady state. Besides, although Bednar�Friedl

and Farmer (2011) model harvest costs in a more complicated fashion, they �nd a

unique steady state. More interestingly, they show that if regeneration is assumed

to be linear, then the dynamics are saddle.

The paper proceeds as follows. The model is presented in Section 2. The com-

petitive equilibrium is de�ned in Section 3. Section 4 examines the stability of the

long run dynamics. Numerical simulations are carried on in Section 5. Conclusions

and further research opportunities are discussed in Section 6.

4.1. The Model

The model is an extension of Chapter 3, studying an overlapping generations econ-

omy with manmade capital and a consumption good have a di¤erent technology

but extraction is assumed to be costless. In this chapter, it is assumed that re-

source extraction causes cost to the resource stock as extraction/harvest costs. As

in Chapter 3, as opposed to the standard OLG framework1, the model di¤erentiates

the energy intensities of the physical capital and the �nal good production. There

are three sectors in the economy: the �nal good production, the equipment (invest-

ment) good production and the extraction sector. The extraction sector harvests

the energy input from the natural resource. During the extraction process gross

extraction turn only partly into resource stock. The obtained energy resource and

the installed capital stock from the previous period from the physical good in the

investment sector. The �nal good �which can be either consumed or invested�is

1For the discussion of standart OLG models see De La Croix & Michel (2004).
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produced the using physical capital and labor.

All agents have rational expectations and each generation consists of a single

representative agent. Moreover, all agents in this economy are price-takers and all

the markets are competitive.

The natural resource can be either saved as an alternative asset to capital or

extracted to be used as an input to form energy. The initially old generation is

assumed to own the initial stock of the natural resource. At the beginning of each

period t, the old agents (generation t� 1) own the resource stock et2. They choose

how much of their stock to extract as energy and sell to the equipment good sector

xt. The remaining part of the natural resource is sold young agents as resource

assets: From period t to t + 1, the resource stock regenerates at a linear rate �

(Mourmouras, 1991); where � > 13:Cost of the extracting xt units of resource is

represented by h(et)xt:This function h satis�es the following properties: h0 < 0;

h00 > 0 and h(0) > 0 (as in Farmer & Friedl, 2006): These hypotheses imply that the

scarcer the resource is, the harder it is to extract and the more the harvest costs it

incurs. Also, note that if h(et) = 1; the extraction is costless. Then, the transition

dynamics of the energy resource can be summarized as below:

et+1= �(et�h(et)xt):

Under a perfect foresight overlapping generations economy4 in discrete time with

in�nite horizon the representative household�s two-period intertemporal utility is

de�ned over the level of consumption when young ct and when old dt+1with the

additively separable life-cycle utility function

U (ct; dt+1) = u (ct) + �u (dt+1)

; where � 2 (0; 1) is the subjective discount factor.
2As population size is taken to be constant all variables are in per capita terms.
3Note that as long as � = 1 the resource is non-renewable.
4without population growth
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When young, the resource stock et; is bought at the beginning of period t, from

the price Pt. The total income of the representative individual is generated from

supplying his one unit of labor to the �rms when young receiving the real wage wt

and selling the extracted resource stock xt to the equipment �rms from the price

Qt. The representative individual spends his income on the current consumption

ct; the savings of physical capital st; the savings on resource stock Ptet: When the

individual gets old (at period t+ 1), the agent is retired and he consumes dt+1 out

of his entire income and do not leave bequests. His income is generated from the

return on his savings made when young: Rt+1st ; selling the remaining resource to

the young Pt+1et+1. Accordingly, the budget constraints facing generation t is as

follows:

ct + st + Ptet = wt +Qtxt; (1)

dt+1 = Rt+1st + Pt+1et+1: (2)

Taking the prices of the energy resource and wages as given, the representative

agent born at time tmaximizes his utility by choosing the young and the old periods�

consumption and the ownership of the energy resource subject to Equations (1,2)

and the appropriate nonnegativity constraints. The �rst-order conditions follows:

dt+1
ct

= �Rt+1; (3)

Rt+1 =
Pt+1
Pt
(1� h0(et)xt); (4)

Qt
�h(et)

=
Pt+1
Rt+1

: (5)

Equation (3) gives the equalization of discounted marginal utilities where the

marginal rate of substitution between the current and the future consumption is

equal to their relative prices. Equation (4) is the no-arbitrage condition between
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return on capital and the adjusted return on resource assets. Equation (5) can be

interpreted as the return on net harvest is the discounted return on the resource

stock.

The representative �rm in the �nal goods sector is owned by the old households.

The �rms in �nal goods sector produces the consumption good with capital Kt and

labor Nt under the Cobb-Douglas constant returns to scale technology. Equation

(6) presents the production function in the �nal good sector at any date t.

At each period t, taking the prices of inputs, the initial technology level and the

initial level of capital stock as given, the representative �rm maximizes its pro�t by

choosing the amount of labor and physical capital inputs.

max
fKt;Ntg1t=0

�t = Yt � PKt Kt � wtNt;

Yt = K�
t N

1��
t 0 < � < 1 (6)

At an interior solution of the �rm�s optimization problem,where all variables are

expressed in per capita (kt = Kt

Nt
) terms, the following �rst order conditions are

satis�ed equating the price of the inputs to their marginal bene�ts.

�yt = PKt kt; (7)

(1� �)yt = wt: (8)

Apart from the standard literature where the consumption good and capital

accumulation have the same technology, it is assumed that the physical capital

production is relatively more energy-intensive than consumption. As in (2011), the

capital stock is accumulating by means of the investments �installed capital stock

from time t- and by the energy extracted. Thus, in Equation (9) the new capital

at t+ 1; Kt+1 is produced from the natural energy resources Xt+1 and investment
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made at time t; It with the following Cobb-Douglas technology.

Kt+1 = X�
t+1I

1��
t: (9)

In the equipment good production sector at each period t, the representative

�rm maximizes its pro�t by choosing the amount of non-renewable resource input

that will be utilized in the production process:

max
fXtg1t=0

�t = PKt Kt �QtXt;

s:t Kt = X�
t I
1��
t�1 :

At an interior solution of the equipment �rm�s optimization problem the

following �rst order condition is satis�ed:

Qt = ��YtX
�1
t : (10)

The pro�t on investing on capital RtSt�1 at time t should be equal to the pro�t

on producing new capital (1��)PKt Kt
5 to prevent arbitrage opportunities.The below

equation are follows from this no arbitrage condition:

Rt= (1� �)PKt X
�

1��
t K

�
��1
t : (11)

4.2. The Competitive Equilibrium

Equation (15) summarizes the goods market clearing condition of the economy. The

�nal good is either consumed by young agents Ct, or by old agents (generation t�1)
5By choosing the optimal non-renewable resource stock maximum pro�t that the representative

�rm can obtain is as follows:

��t = P
K
t Kt � �PKt B�tX��1

t I1��t�1Xt = (1� �)PKt Kt
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Dt, or invested for the production of the future capital stock, St.

yt= ct+dt+st (12)

As in Chapter 2 savings are still equal to the investments (Equation (13)) but

only a fraction of the investments can generate the new capital stock. Labor market

clears as labor supply is given by N0: Finally, resource market clears.

It = St; (13)

Nt = N0; (14)

et+1 = �(et � h(et)xt): (15)

De�nition 1 A dynamic competitive equilibrium for this OLG resource economy is

determined by the sequence of prices
�
wt; Rt; P

K
t ; Pt; Qt

	1
t=0

and feasible allocations

fct; dt; st; et; xt; it; yt; kt+1g given the positive initial values for S�1; E0; N0; h(0) > 0

such that the consumers maximize their life-time utility, �rms maximize their pro�ts.

The endogenous prices are obtained from clearing of the markets at every period t.

The competitive equilibrium of this OLG resource economy is a solution of the non-

linear system of equations, (1)�(15).

4.3. Equilibrium Dynamics

The long run dynamics around the steady state is analyzed. As Mourmouras (1991),

Farmer (2000) and Bednar�Friedl and Farmer (2011) suggests, the intertemporal

equilibrium dynamics can be reduced into a two�dimensional system which repre-

sents the law of motions of Et and Xt.

Substituting Equations((15),(3),(4),(5),(8)) into the Equation (2), the consump-

tion when young can be re-written as:
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ct=
1

(1 + �)

�
(1� �)yt +

qth
0(et)xtet
h(et)

�
(16)

Plugging Equation (16) into the goods market clearing and using Equations

((11),(7),(10)) yields:

st =
yt

xth(et)

��
(�� +

�

(1 + �)
)h(et) + ��

�

(1 + �)
h0(et)et

�
xt � ��et

�
(17)

On the other hand, plugging Equations ((5),(10),(11),(7)) into the Equation (4)

the following equation is derived for st :

st =
(1� �)�

�

xt+1
xt

h(et+1)

h(et)

yt
(1� h0(et+1)xt+1)

(18)

Equating Equation (17) to Equation (18) the �rst law of motion equation is

obtained:

xt+1 = �

��
(�� +

�

(1 + �)
)h(et) + ��

�

(1 + �)
h0(et)et

�
xt � ��et

�
�

18><>:(1� �)�h(et+1) + �h0(et+1)

264
�
(�� + �

(1+�)
)h(et) + �� �

(1+�)
h0(et)et

�
xt

���et

375
9>=>;

The second law of motion equation comes from the dynamics of the resource

stock. In order to study the dynamics we rewrite the law of motions as follows.

xt+1 = �

��
(��+

�

(1 + �)
)h(et) + ��

�

(1 + �)
h0(et)et

�
xt � ��et

�
� (19)

18><>:(1� �)�h(et+1) + �h0(et+1) �

264
0B@ (�� + �

(1+�)
)h(et)+

�� �
(1+�)

h0(et)et

1CAxt � ��et

375
9>=>;

et+1 = �(et � h(et)xt) (20)
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The planar system describing the dynamics are Equation (19) and Equation (20).

Lemma 2 (Steady States) The steady states of equations (19) and (20) are the

solutions of the following equations:

x =
(�� 1)
�

e

h(e)
(21)

x2
�
�(�� +

�(1� �)

(1 + �)
)h(e)h0(e) + ��

��

(1 + �)
h0(e)2e

�
��

���eh0(e) + �(�� +
�(1� �)

(1 + �)
)h(e) + ��

��

(1 + �)
h0(e)e

�
+ ���e = 0

Proof. Obvious.

Note that if resources are non-renewable so that � = 1; the only possible steady

state is (x�; e�) = (0; 0) :

From now on, the harvest function will be speci�ed. To control how the results

on dynamics change with respect to the speci�cation of di¤rerent intensities, the

harvest cost function in Farmer-Friedl (2010) is adopted where:

h(et) = 1+
�

et
; � > 0:

In above speci�ed function � represents the di¢ culty of extraction. Indeed, with

� = 0; the exrtaction is costless. Now, the steady states are found in Lemma (3):

Lemma 3 (Steady States) Assume that h(et) = 1+ �
et
with � > 0:The steady states

of equations in Lemma (2) are the solutions of the following equations:
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e3

"
e2 +

 
�2��� �

(1+�)
+ ((��+ �(1��)

(1+�)
)� � 1

(1+�)
)

�� �
(1+�)

�

!
e� 1

�2�

#
= 0;

with � =
(���� (�� 1)(��+ �(1��)

(1+�)
))�

�� �
(1+�)

(�� 1)2

These equations have three steady states:

(i) One of the steady states is "Zero Resource Steady State"

x� = 0;

e� = 0:

(ii) The second steady state is "Positive Resource Low Steady State":

e� = �
 
�2��� �

(1+�)
+ ((��+ �(1��)

(1+�)
)� � 1

(1+�)
)

2�� �
(1+�)

�

!
�vuut �2��� �

(1+�)
+ ((��+ �(1��)

(1+�)
)� � 1

(1+�)
)

2�� �
(1+�)

�

!2
+

1

�2�

x� =
(�� 1)
�

e�2

(e� + �)

Lemma 4 (iii) The third steady state is "Positive Resource High Steady State":

e� =

vuut �2��� �
(1+�)

+ ((�� + �(1��)
(1+�)

)� � 1
(1+�)

)

2�� �
(1+�)

�

!2
+

1

�2�

�
 
�2��� �

(1+�)
+ ((�� + �(1��)

(1+�)
)� � 1

(1+�)
)

2�� �
(1+�)

�

!
;

x� =
(�� 1)
�

e�2

(e� + �)
:
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Proof. Solving Equation in Lemma (3): yields

"
e2 +

(��+ �(1��)
(1+�)

)� � 1
(1+�)

)

�� �
(1+�)

h0(e)
e+

(���� (�� 1)(�� + �(1��)
(1+�)

))

�� �
(1+�)

(�� 1)2
h(e)

h0(e)2

#
e = 0

The proof follows from plugging h(et) = 1 + �
et
:

Lemma 5 The Jacobian matrix of the partial derivatives of the system will be

J =

264  1  2

 3  4

375
with  1 =

�(1� h0(e)x)

(1� �)�h(e)
��

(1� �)�h0(e)h(e)x+�r(xt; et)h0(e)h(e)x+
@r(xt; et)

@x
(1� h0(e)x)

�
;

 2 =
�(1� h0(e)x)2

(1� �)�h(e)

�
@r(xt; et)

@e
� (1� �)�h0(e)x� �r(xt; et)h00(e)x

�
 3 = �h(e)�

 4 = �(1� h0(e)x)

r(xt; et) =

��
(�� +

�

(1 + �)
)h(et) + ��

�

(1 + �)
h0(et)et

�
xt � ��et

�

Proof. From Equation (19) and de�ning

r(xt; et) =
��
(��+

�

(1 + �)
)h(et) + ��

�

(1 + �)
h0(et)et

�
xt � ��et

�

; along the steady state r(xt; et) = (1��)�h(e)x
�(1�h0(e)) re-writing

(1� �)�h(e) +r(x; e)h0(e)� = (1� �)�h(e)

(1� h0(e))
(22)
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:

 1 =
@xt+1
@x

=
�

((1� �)�h(e) +r(x; e)h0(e)�)2�264 @r(x;e)
@x

((1� �)�h(e) +r(x; e)h0(e)�)�

r(x; e)
�
(1� �)�@h(et+1)

@x
+ @r(x;e)

@x
h0(e)� +r(x; e)@h

0(et+1)
@x

�
�
375

=
�

((1� �)�h(e) +r(x; e)h0(e)�)2��
@r(x; e)
@x

(1� �)�h(e) +r(x; e)(1� �)�h0(e)h(e)� +r(x; e)2h00(e)h(e)�2
�

=
�(1� h0(e)x)2

((1� �)�h(e))2
��

@r(x; e)
@x

(1� �)�h(e) +r(x; e)(1� �)�h0(e)h(e)� +r(x; e)2h00(e)h(e)�2
�
;

from Equation(22)

=
�(1� h0(e)x)

(1� �)�h(e)
��

@r(x; e)
@x

(1� h0(e)x) +r(x; e)h0(e)�(1� h0(e)x) +
r(x; e)2h00(e)�2

(1� �)�

�
=
�(1� h0(e)x)

(1� �)�h(e)
��

@r(x; e)
@x

(1� h0(e)x) + (1� �)�h(e)xh0(e) +r(x; e)h00(e)�h(e)x
�

from Equation(22).
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 2 =
@xt+1
@e

=
�

((1� �)�h(e) +r(x; e)h0(e)�)2 �264 @r(x;e)
@e

((1� �)�h(e) +r(x; e)h0(e)�)�

r(x; e)
�
(1� �)�@h(et+1)

@e
+ @r(x;e)

@e
@h(et+1)

@e
�+r(x; e)�@h0(et+1)

@e

�
375

=
�

((1� �)�h(e) +r(x; e)h0(e)�)2 ��
@r(x; e)

@e
(1� �)�h(e)�r(x; e)(1� �)�

@h(et+1)

@e
�r(x; e)2@h

0(et+1)

@e
�

�
Since

@h(et+1)

@et
=

@h(et+1)

@et+1

@et+1
@et

= h0(e)
@et+1
@et

= h0(e)�(1� h0(e)x)

and from Equation(22);

 2 =
�(1� h0(e)x)2

((1� �)�h(e))2
�264 @r(x;e)

@x
(1� �)�h(e)� (1� �)�r(x; e)h0(e)�(1� h0(e)x)

�r(x; e)2�2h00(e)(1� h0(e)x)

375
=

�(1� h0(e)x)2

(1� �)�h(e)
�264 @r(x;e)

@x
� r(x;e)(1��)�h0(e)�(1�h0(e)x)

(1��)�h(e)

�r(x;e)2�2h00(e)(1�h0(e)x)
(1��)�h(e)

375
=

�(1� h0(e)x)2

(1� �)�h(e)
��

@r(x; e)
@x

� (1� �)�h0(e)x�r(x; e)�h00(e)x
�

from Equation(22).

 3 =
@et+1
@x

= �h(e)�

 4 =
@et+1
@e

= (1� h0(e)x)�
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4.4. Local Dynamics

This subsection examines the stability of the system and the occurrence of local

indeterminacy and bifurcations. Firstly, the local dynamics in the neighborhood of

the steady state (x, e) = (0,0) is presented in the following proposition.

Proposition 6 Suppose ��
(1+�)(1+�)�

< 16:For di¤erent parameter combinations, the

stability of the zero steady state changes such that,

Parameter Description

� share of capital in �nal good production

� share of resources in equipment good production

� discount factor

� regeneration rate

i. If � < 1� ��
(1+�)(1+�)�

eigenvalues (in absolute value) are on the di¤erent side of

one, then the steady state is a saddle point stable;

iii. If � > 1 � ��
(1+�)(1+�)�

; eigenvalues (in absolute value) are on the same side of

one, both eigenvalues are greater than one so that the equilibrium dynamics

are monotone unstable.

Proof. The Jacobian around (0,0) steady state is as follows:

J =

264 �(��+
�(1��)
(1+�)

)

(1��)� 0

 3 �

375 so that the corresponding eigenvalues are

�1 =
�(��+ �(1��)

(1+�)
)

(1� �)�

and �2 = �: Clearly, the second eigenvalue is gerater than one. So, the dynamics

are saddle for �1 < 1 and unstable otherwise. Re-writing �1 =
�(��+

�(1��)
(1+�)

)

(1��)� < 1,

yields � < 1� ��
(1+�)(1+�)�

: Similarly, �1 =
�(��+

�(1��)
(1+�)

)

(1��)� > 1, yields � > 1� ��
(1+�)(1+�)�

:

6If this assumption on parameters is not made, then the primary non-negativity assumptions
on parameters (� > 0; � > 0;� > 0 or � > 0) will not hold.
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In any case, to have a positive share of resources in capital accumulation sector (for

� > 0); ��
(1+�)(1+�)�

< 1 must be satis�ed.

For the zero steady state the stability of the system can be fully characterized

in terms of the share of resources in capital accumulation. As Proposition (6) states

if the regarding share is below some critical level the system follows saddle path

dynamics and unstability otherwise.

Proposition 7 The Jacobian matrix of the partial derivatives of the system around

the positive steady states is

J =

264  1  2

 3  4

375
with  1 =

��[�(e� + �) + �(�� 1)]
(e� + �)2

(�� 1)
�

+2666664
2�[�(e�+�)+(��1)]
(e�+�)2(1��)�

(��1)
�
�8><>:

�
(�� 1)(�� + �(1��)

(1+�)

�
��

�(��1)�� �
(1+�)

(e�+�)

�
� ���

9>=>;

3777775
+
[�(e� + �) + �(�� 1)]2

h�
��+ �(1��)

(1+�)

�
(e� + �)� (1� �)� �

(1+�)
�
i

(e� + �)3(1� �)��
;

 2 =
(�(e� + �) + �(�� 1))2

�e�(1� �)� ((e� + �))3
�"(�

���
(1 + �)

� �� + (1� �)�

�
�� ��e�

2

+
(�� 1)
�

e�
2
�

(e� + �)

)#
+

(�(e� + �) + �(�� 1))2

�(e� + �)4
2�e�(�� 1)2 �"

���� �(1� �)

(1 + �)
+
��� �

(1+�)

(e� + �)
+
(�� 1)
�

e�2���

(e� + �)

#

 3 = �(e
� + �)�

e�

 4 =
�e� + 2��� �

(e� + �)
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Proof. The proof involves long algebraic operations but it is basically derived by

substituting

x� =
(�� 1)
�

e�2

(e� + �)

into the (5).

Since this Jacobian too complex to analyze, the stability for the positive steady

states will be carried on through numerical simulations presented in the following

section.

4.5. Numerical Simulations

To pursue the dynamics, values for the parameters are speci�ed. In parametrization,

two criterias are taken into considertion: i) to be consistent with empirical facts and

ii) to be standard in the literature. The parametrization is as follows:

� � � �

0.3 0.99 1.007 0.08

Parameter Description

� share of capital in �nal good production � 2 (0; 1)

� share of resources in equipment good production � 2 (0; 1)

� discount factor � 2 (0; 1)

� regeneration rate � � 1

� parameter representing the accessibility of the resource � 2 (0; 1)

In the OLG economy, each period is taken to be 30 years long. The subjective

discount rate (�) was chosen to meet the annual discount factor 0.99, which is pretty

standard in calibration exercises. Under Cobb-Douglas technology with only capital

and labor as inputs, the values for capital and labor shares are taken to be standard

in the literature. Speci�cally, the share of capital (�) is 0.30, while the share of labor
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is 0.70. The assumption on the regeneration rate is taken as 1.007. The parameter

lamda re�ects the accessibility of the resource and it is a scale factor. As there is

no emprical evidence on lamda it is taken to be arbitrary � = 0:08 to quarantee

positive and real resource stock and extraction.

As one of the purpose of this study is to analyze the e¤ect di¤ering technologies,

the parameter � representing the share of resources in capital accumulation is of

critical importance. The dynamics of the system is characterized as � starts from

low intensity (0.05) to higher intensities (0.9) with 0.01 incrementals.

The below �gure (2) shows how the magnitude of the eigenvalues change as �

starts from low intensity (0.05) to higher intensities (0.9). The x-axis represents the

value of the real part and y-axis shows the value of the complex part of the eigen-

values of the corresponding caharcterictic polynomial of the Jacobian introduced in

the previous section. In Figure 2, the stability diagram is presented where regions

1 and 3 represent saddle, regions 5 and 6 represent complex eigenvalues, regions 6

and 7 represent stable solutions, regions 2, 4, 5 and 8 represent unstable solutions.
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Figure 2: Asymptotic Stability on the Plane.

Proposition 8 Given these parameter combinations, the stability of the non-zero

steady state changes such that,
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Parameter Description

� share of resources in equipment good production, � 2 (0; 1)

i) If � < 0:09; eigenvalues (in absolute value) are on the same side of one, both

eigenvalues are greater than one so that the equilibrium dynamics are unstable.

Moreover, eigenvalues are complex and oscillatory behavior is observed such

that unstable spirals arise. The economy falls into Region 5 in Figure 1.

ii) If 0:09 � � < 0:1; both eigenvalues (in absolute value) are smaller than one,

so that local indeterminacy occurs. Moreover, eigenvalues are complex and

oscillatory behavior is observed such that stable spirals arise. The economy

falls into Region 6 in Figure 1.

iii) If 0:1 � � < 0:12; both eigenvalues (in absolute value) are smaller than one,

so that local indeterminacy occurs. Moreover, eigenvalues are real and stable

nodes is observed such that stable nodes arise. The economy moves falls into

Region 7a in Figure 1.

iv) 0:12 � � < 0:2 eigenvalues (in absolute value) are on the di¤erent side of one,

then the steady state is a saddle point stable. Moreover, eigenvalues are real

and the economy falls into Region 1 in Figure 1.

v) If � � 0:20;eigenvalues (in absolute value) are on the same side of one, both

eigenvalues are greater than one so that the equilibrium dynamics are unstable.

Moreover, eigenvalues are real and steady state is a source. The economy falls

into Region 8 in Figure 1.

Proposition 9 Given these parameter combinations,

i) a Hopf Bifurcation occurs for � = 0:09:

ii) a Transcritical Bifurcation occurs for � = 0:12:
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To isolate the e¤ect of harvest cost the �ndings are compared to the �ndings

of the model in Chapter 2. In Chapter 2, it is shown that multiple equilibria exist

and local indeterminacy and hopf bifurcations arise for the non-renewable resources

depending on the share of energy resources if one considers di¤ering technologies.

However, as there are in�nitely many non-zero steady states the stability analysis

could not be performed for that model. Now, with the inclusion of harvest costs

multiple equilibria exist and through the numerical simulations it is shown that

indeterminacy, transcritical and hopf bifurcations can arise in the model for the

non-zero steady state. To observe the net e¤ect of di¤ering energy intensities the

model is compared with Bednar�Friedl and Farmer (2010). In the regarding model,

it is shown that multiple equilibria exist and dynamics are saddle. While, taking the

identical cost function with the di¤erentiation of technologies through the numerical

simulations it is shown that dynamics other than saddle �indeterminacy, �ip and

hopf bifurcations�can arise in the model for the non-zero steady state. Besides,

although Bednar�Friedl and Farmer (2011) model harvest costs in a more compli-

cated fashion, they �nd a unique steady state. More interestingly, they show that

if regeneration is assumed to be linear, the dynamics are saddle.

4.6. Conclusion

In this study, whether costly resource extraction and di¤rentiating energy intensities

induce dynamics other than saddles or not is examined in an overlapping generations

resource economy. Following Barahona (2011) and Chapter 2, the technologies of

consumption good sector and the �nal good sector is di¤erentiated where the capital

accumulation sector is asssumed to be more energy intensive. The extraction costs

are inversely related with the amount of the resource. Speci�cally, it is assumed

that the scarcer the resource is, the harder it is to extract and the more the harvest

costs it incurs.

The net e¤ect of modelling harvest costs and as well as di¤ering technologies on
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the standard dynamics are revealed independently. The main �nding of the paper

is that both naturally evident assumptions contribute to the richness of the dynam-

ics. Multiple equilibria exists in the model. In addition, depending on the share of

resurces in capital accumulation dynamics other than saddle �indeterminacy, trans-

critical and hopf bifurcations�can arise in the model for the non-zero steady state.

For future research several issues can be considered. First, the functional form

of the harvest cost may be diversi�ed. It will be interesting to analyze the e¤ects

of harvest costs increasing (or hump-shaped) with the resource stock. In a similar

fashion, harvest costs could ve modeled in terms of labor e¤ort as in previous studies.

Second, the e¤ects of shocks to the cost parameters can be explored. Finally, the

logistic regeneration could be introduced rather than the linear speci�cation.
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CHAPTER 5

INDETERMINACY AND BIFURCATIONS IN

AN OVERLAPPING GENERATIONS

RESOURCE ECONOMY WITH

ENDOGENOUS POPULATION GROWTH

RATE

Multiplicity of the steady states, indeterminacy and bifurcations have been ob-

tained in overlapping generations models (OLG) with natural resources. Yet, dy-

namics in these papers rest on the logistic function regeneration rate and some

assumptions on the intertemporal elasticity of substitution in consumption. The

aim of the paper is to show that multiple steady states, indeterminacy and bifurca-

tions may arise by endogenizing population growth even in the absence of logistic

regeneration or shocks and independent of intertemporal elasticity of substitution.

Vast of the standard economic growth literature assumes labor force grows at

a constant rate, following exponential growth. Allowing population to grow in an

exponential manner is not realistic, as scarce environmental resources will put a con-

straint on growth. Smith (1974), describes such a constraint on population growth

by de�ning a feedback mechanism between population growth and carrying capac-

ity of the environment. As indicated by Michetti et.al. (2007, pp.2), Smith (1974)

claims that population growth should posses the following properties in a more re-

alistic growth model: "1) when population is small in proportion to environmental

carrying capacity, then it grows at a positive constant rate, 2) when population
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is larger in proportion to environmental carrying capacity, the resources become

relatively more scarce and as result this must a¤ect the population growth rate

negatively". As the carrying capacity of the environment is directly linked with

the avaliability of natural resources, this paper is inspired by Smith�s (1974) idea

that a feedback mechanism between population and natural resources is essential

where population dynamics should be analyzed along with resource dynamics. Mo-

tivated by this idea, this study evaluates whether a feedback mechanism between

the population growth rate and per capita resource extraction and resource avail-

ability modi�es the standard results in the area. Speci�cally, the possibilities of

non-linearities in an OLG growth model where the natural resource is essential in

production is investigated.

Under in�nitely lived agents framework several authors described the popula-

tion growth using the logistic growth function (Verhulst, 1938; Schtickzelle and

Verhulst, 1981; Faria, 2004; Accinelli and Brida, 2005) instead of assuming con-

stant growth rates. While some papers (Verhulst, 1938; Schtickzelle and Verhulst,

1981; Faria, 2004) models population growth as a logistic function, other papers

(see Accinelli and Brida, 2005) models growth of population a generalized logistic

equation (Richard�s law). In this paper, the population growth rate is assumed to be

a function of per capita resource extraction. A speci�c functional form or relation-

ship between population growth rate and the extraction of the renewable natural

resources is not assumed in order to allow for di¤erent relationships evident in the

empirical literature. However, the �nal good is assumed to be produced from the

renewable resources and the labor so that the e¤ect of resource extraction rate per

capita on population growth is, in fact, re�ecting the e¤ect of output per capita.

In contrast to the model in this paper, the overwhelming majority of natural

resource-growth models under OLG framework assume that population size is con-

stant (see among others, Mourmouras, 1991; Farmer, 2000; Krautkramer and Ray-

mond, 1999) or grows at a given rate (see among others, Mourmouras, 1993; Valente,

2008; Kemp and Van Long, 1979). Under linear regeneration of renewable resources

91



and with exogenous or no technological progress, the models converge to a single

steady state or a single balanced growth path with the saddle path dynamics (see

Mourmouras, 1991). Allowing for logistic regeneration, Farmer (2000) is the �rst

to show the existence of the steady states and the saddle path dynamics depending

on the assumptions with respect to the parameters of the utility, production and

regeneration functions. Koskela et al. (2002) employing quasilinear utility and lo-

gistic regeneration functions shows that the long run dynamics exhibit saddle path

stability. Koskela et al. (2008) examines, whether renewable resource based OLG

economies may have other types of dynamics than saddles. They have numerically

shown that �ip bifurcations may arise if the intertemporal elasticity of substitution

of the utility function is less than one half and the regeneration function is logistic.

Compared to these integrating the endogenized population growth rate func-

tion into the a standard model of renewable resource based OLG economy with

logarithmic preferences, multiple steady states, indeterminacy and bifurcations are

obtained, without taking logistic regeneration or assuming that intertemporal elas-

ticity of substitution is less than one half, even in the absence of shocks. Transcritical

bifurcations, as well as local indeterminacy may arise in the model varying the rate

of constant regeneration with respect to population growth rate. In addition, for

the nonzero steady state of the economy, it is shown that if the elasticity of the

growth rate of the population with respect to the extraction rate is positive and

lower than some critical value �in other words inelastic enough�the long run dy-

namics are saddle path stable and unstable otherwise. Thus, it is shown that richer

dynamics can occur under weaker conditions than previous studies if the feedback

mechanism between population growth rate and natural resource extraction is taken

into account.

The paper is structured as follows. The model is introduced in the following

section. The equilibrium dynamics and the local stability of the system is analyzed

in Section . Section concludes.

92



5.1 The Model

A two-period OLG model in discrete time with an in�nite horizon is taken. The

setting di¤ers from the standard framework in two respects. First, the renewable

resources are considered to be essential to production and they can act as stores of

values. Second, under the presence of limited natural resources, the growth rate of

the population is allowed to change over time. In fact, the e¤ects of endogenizing

population growth by setting population growth rate as a function of per capita

extraction rate of the natural resources are analyzed.

At each period t, a generation of agents appears and lives for two periods, young

and old. The population in period t; consists of Nt young and Nt�1 old individuals.

The rate of population growth (1 + n(xt)) is assumed to be related with the natural

resource xt, used in production. However, the functional form of n(xt) is left

unspeci�ed in order not to limit the model with speci�c forms.

Nt+1= (1 + n(xt))Nt: (1)

The economy is initially endowed with a positive amount of the natural resource

E0 which belongs to the �rst generation of old agents. It is assumed that at the

beginning of each period t, the old agents (generation t � 1) own the stock of the

natural resource, Et. Incurring no extraction costs (see Dasgupta and Heal (1979)),

old agents decide on how much of this resource will be extracted for production Xt

and how much would be sold to the young (generation t) as assets At(= Et �Xt);

in line with Valente (2008). From period t to t+ 1; the assets bought by the young

regenerates at a rate � > 1: Therefore, the natural resource accumulates as a result

of both the natural regeneration1 and the depletion for production which can be

formalized as follows:
1Note that if � = 1, the resource turns out to be renewable.
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Et+1 = �At; (2)

et = at + xt; (3)

(1 + n(xt))et+1 = �(et � xt) ; (4)

where quantities of resource assets and extracted resources per young individual are

denoted by, et = Et
Nt
; at =

At
Nt
and xt = Xt

Nt
; respectively.

At a given date, each agent is endowed with one unit of labor when she is young

and supplies it to �rms inelastically. Young households receives a wage wt; which

is allocated between consumption of the good produced by the representative �rm

and the purchase of the ownership rights for the natural resource. When old, they

consume their entire income generated by selling their stock of natural resources to

the �rms from the price Pt and to the young from the priceQt. It is assumed that the

life-time well-being of the representative individual is measured by the logarithmic

function over young and old periods consumption, i.e., U (c; d) = u (c) + �u (d) ;

where � 2 (0; 1) is the subjective discount factor. Accordingly, the representative

agent born in period t, maximizes his utility with respect to the young and old

periods�consumption, taking wages and the price of the natural resource as given.

max
fct;dt+1;atg

ln ct + � ln dt+1
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subject to

ct +Qtat = wt; (5)

dt+1 = Pt+1(1 + n(xt))xt+1 +Qt+1(1 + n(xt))at+1; (6)

(1 + n(xt))et+1 = �at; (7)

at = et � xt; (8)

ct � 0; dt+1 � 0;

et+1 � 0; E0 > 0; given: (9)

The �rst order conditions for an interior solution of the maximization problem

of the representative household is as follows:

dt+1
�ct

= �
Qt+1
Qt

; (10)

Pt+1 = Qt+1: (11)

Equation (10) guarantees the equalization of the intertemporal marginal rate of

substitution and the change in prices taking the regeneration factor into account,

whereas the latter condition is the no-arbitrage condition.

Firms are owned by the old households and produce a homogenous consumption

good under perfect competition. At each period, a single �nal good Yt is produced

in the economy by means of labor Nt and the natural resource Xt according to the

following technology:

Yt = Xt
�N1��

t ; 0 < � < 1: (12)

Under the perfectly competitive environment, the representative �rm producing

at period t maximizes its pro�t by choosing the amount of labor and the resource

input that will be utilized in the production process:

max
fNt;Xtg

�t= X
�
t N

1��
t �wtNt�PtXt (13)

95



At an interior solution of the �rm�s optimization problem, where all variables

are expressed in per capita terms (yt = Yt
Nt
), pro�t maximization implies :

(1� �)yt = wt; (14)

�yt = Ptxt: (15)

Intertemporal equilibrium requires the clearing of the resource market, the clear-

ing of the labor market and the clearing of the goods market for all t:

(1 + n(xt))et+1 = �(et � xt) ; (16)

Lt = Nt; (17)

yt = ct + dt(1 + n(xt�1))
�1: (18)

5.2. Equilibrium Dynamics

As Mourmouras (1991), Farmer(2000) ans Bednar�Friedl and Farmer (2011) sug-

gest, the intertemporal equilibrium dynamics can be reduced into a two�dimensional

system which represents the law of motions of et and xt.

From equations (5), (6), (10), (11), (14) and (18), :

ct =
wt

(1 + �)
=
(1� �)yt
(1 + �)

; (19)

dt+1 =
(1 + n(xt))(�+ �)

(1 + �)
yt+1: (20)

Plugging equations (19) and (20) into (10), the law of motion for the resource

stock follows:

xt+1= �
�(1��)

(1+n(xt))(�+�)
xt:

The second equation of motion, is the dynamics of the natural resource stock:
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(1 + n(xt))et+1= �(et � xt) :

The economy is governed by the following dynamics:

xt+1 =
��(1� �)

(1 + n(xt))(�+ �)
xt; (21)

et+1 = � �xt
(1 + n(xt))

+
�et

(1 + n(xt))
: (22)

Lemma 1 (Steady States) The steady states of equations (21) and (22) are char-

acterized by the following steady state equations:

x

�
��(1� �)

(1 + n(x))(�+ �)
� 1
�

= 0; (23)

(
�

(1 + n(x))
� 1)e =

�

(1 + n(x))
x: (24)

These equations have two sets of steady states: One of the steady states is

x = 0;

e = 0:

The other steady state is the solution of the following equations:

1 + n(x) =
��(1� �)

�+ �
;

�x

1 + n(x)
=

�
�

1 + n(x)
� 1
�
e;

or,equivalently, for the second line,

e =
(�+ �)

�(1� �)
x:

Proof. Obvious.

There may be more than one solution depending on the structure of n(x). The

only assumption is that there are �nitely many such solutions. The �rst steady state
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is named as the zero steady state and the other as the nonzero steady state.

5.3. Stability

To analyze the stability properties of the steady states, the discrete dynamical sys-

tem of equations (21) and (22) is linearized around these states. The dynamics can

be characterized by the elements of the Jacobian matrix, as well as its determinant

and trace. Such a characterization can be found in below �gure (Figure 2, Chapter

4).
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In Figure 2, regions 1 and 3 represent saddle, regions 5 and 6 represent eigenvalues,

regions 6 and 7 represent stable solutions, regions 2, 4, 5 and 8 represent unstable

solutions.

The linearization around the zero steady state can be represented by the following

Jacobian matrix2:

J �

264
�

��(1��)
(1+n(0))(�+�)

�
0

: �
1+n(0)

375 : (25)

2Since @xt
@et

���
(x;e)

= 0, @et
@xt

does not have any e¤ect on eigenvalues. That is why it is left

uncomputed.
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The two real eigenvalues are

�1 =
�(1� �)

(�+ �)

�

(1 + n(0))
; �2 =

�

1 + n(0)
:

Proposition 2 For di¤erent parameter combinations, the stability of the zero steady

state changes such that,

Parameter Description

� share of resources in �nal good production � 2 (0; 1)

� discount factor � 2 (0; 1)

� regeneration rate � � 1

n population growth rate, n 2 (�1; 1)

i. If �
(1+n(0))

< 1; both eigenvalues (in absolute value) are smaller than one, so that

local indeterminacy occurs;

ii. If 1 < �
(1+n(0))

< �+�
�(1��) ; eigenvalues (in absolute value) are on the di¤erent side

of one, then the steady state is a saddle point stable;

iii. If 1 < �
(1+n(0))

and �
(1+n(0))

> �+�
�(1��) ; eigenvalues (in absolute value) are on the

same side of one, both eigenvalues are greater than one so that the equilibrium

dynamics are monotone unstable.

Proposition 3 Suppose n(0) is given. A transcritical bifurcation occurs, for � =

1 + n(0)):

Proof. (of Propositions 2 and 3)The determinant, trace, p(1) and p(�1) are as
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follows (Denote  = �
(1+n(0))

and � = �+�
�(1��) > 1):

D = det J =

�
�

1 + n(0)

�2
�(1� �)

(�+ �)
=
1

�
 2 2 [0; 1);

T = trJ =

�
�

1 + n(0)

��
�(1� �)

(�+ �)
+ 1

�
=  

�
1

�
+ 1

�
;

p(1) =

�
�

1 + n(0)

�2
�(1� �)

(�+ �)
�
�

�

1 + n(0)

��
�(1� �)

(�+ �)
+ 1

�
+ 1

=
1

�
 2 �

�
1

�
+ 1

�
 + 1;

p(�1) =

�
�

1 + n(0)

�2
�(1� �)

(�+ �)
+

�
�

1 + n(0)

��
�(1� �)

(�+ �)
+ 1

�
+ 1

1

�
 2 +

�
1

�
+ 1

�
 + 1;

4 = (trJ)2 � 4 det J

=

�
�

1 + n(0)

�2�
�(1� �)

(�+ �)
� 1
�2

> 0:

Note that p(1) can be considered as a polynomial with respect to  , in which

the coe¢ cient of  2 is 1
�
> 0 and the roots are f1; �g . Similarly, p(�1) can also be

considered as a polynomial with respect to  , in which the coe¢ cient of  2 is 1
�
> 0

and the roots are f��;�1g: Table 1 gives the sign of p(1) and p(�1) for di¤erent

 = �
(1+n(0))

:

[Insert Table 1 in Appendix B here].

Table 2 summarizes the stability regions3 for the zero steady state:

[Insert Table 2 in Appendix B here].

Proposition 2 states that local indeterminacy can occur if the constant regener-

ation rate is smaller than the population growth rate at the steady state in absolute

value. In the proof above, it is shown that if (1 + n(0)) < �; then the steady state

3For the abbr., SpU: Spiral Unstable; Sa: Saddle; MS: Monotone Stable; FB: Flip Bifurcation;
TB: Transcritical Bifurcation.
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is monotone stable. This equilibria is represented by Region 7c in Figure 2, where

the graphical representation of dynamic equilibria in a planar system is replicated

(see, Azeriadis (1993)). The axes are the trace and the determinant of the Jacobian.

In addition, it is proved that if 1 < �
(1+n(0))

< �+�
�(1��) , then the steady state is saddle

which is represented by Region 1. Therefore, a small change in the magnitude of the

regeneration factor can cause a stable economy to become saddle de�ning a tran-

scritical bifurcation. In a similar fashion, it is easy to check that the transcritical

bifurcation value of � is (1 + n(0)), where a small change in the magnitude of the

regeneration factor can move the economy from Region 7c to Region 1. The results

are summarized in Figure 3.
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Figure 3: Asymptotic Stability (For the zero-steady state)

Propositions 2 and 3 establishes that transictional bifurcation or local indetermi-

nacy can occur. In contrast to previous studies, theresults are independent from the

intertemporal elasticity of substitution of the utility function and without assuming

the regeneration function to be logistic (for a comparison, see (?)).
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The linearization around the nonzero steady state can be represented by the

following Jacobian matrix:

J �

264��(1��)�+�

�
1+n(x)�xn0(x)
(1+n(x))2

�
0

: �
1+n(x)

375 ;
=

264
�
1� xn0(x)

(1+n(x))

�
0

: �
1+n(x)

375 :
The two real eigenvalues are

�1 =

�
1� xn0(x)

(1 + n(x))

�
;

�2 =
�

1 + n(x)
=

�+ �

�(1� �)
> 1:

De�ne the elasticity of the growth rate of the population (1+n(x)) with respect

to the extraction rate of the resource x at the steady state as

" := "(n(x)+1);x
��
x
=

xn0(x)

(1 + n(x))
:

The eigenvalues can be recast as

�1 = (1� ") ; and

�2 =
�

1 + n(x)
=

�+ �

�(1� �)
> 1:

The next proposition proves that if the elasticity of the growth rate of the pop-

ulation with respect to the extraction rate is positive but lower than some critical

value, then the long run dynamics are saddle path stable and unstable otherwise.

Proposition 4 For the nonzero steady state, �2 > 1 is already known: Then,

Parameter Description

" weigheted elasticity of the growth rate of the population with respect to the extraction rate " 2 (�1;1)

i. If 0 < " < 2; then �1 2 (�1; 1); saddle path stability occurs,

102



ii. If " > 2 or " < 0; then �1 < �1; unstable equilibrium occurs.

Proof. The determinant, trace, p(1) and p(�1) are as follows

det J = (1� ")
�

1 + n(x)
;

trJ = 1� "+
�

1 + n(x)
;

p(1) =

�
1� �

1 + n(x)

�
";

p(�1) = (2� ")

�
�

1 + n(x)
+ 1

�
;

4 = (trJ)2 � 4 det J

=

�
1� "� �

1 + n(x)

�2
:

The stability possibilities4 with respect to �1 are summarized in Table 3:

[Insert Table 3 here].

The stability chart with respect to di¤erent parameter combinations is shown in

4The non-existence of bifurcations is expected, since �2 > 1 for any parameter combination.
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Figure 4.
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Figure 4: Asymptotic Stability for the Nonzero-Steady State.

5.3. Conclusion

The standard model of renewable resource based OLG economy through a feedback

mechanism between population and natural resource is extended to check the sta-

bility of the standard results in the area. The population growth rate is assumed

to be function of per capita resource extraction, yet a speci�c functional form or

relationship is not taken in order to be as general as possible.

Integrating the endogenized population growth rate function into a standard

model of renewable resource based OLG economy with logarithmic preferences, mul-

tiple steady states and indeterminacy are obtained, without taking nonlinearizing

assumptions common in the literature. In particular, �ip and transcritical bifur-

cations, as well as local indeterminacy may arise in themodel depending on the

constant regeneration rate with respect to population growth rate. The elasticity

of the growth rate of population with respect to the extraction rate gains special
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importance for the stability of the the long run dynamics. Thus, it is shown that

richer dynamics can occur under weaker conditions than previous studies if the feed-

back mechanism between population growth rate and natural resource extraction is

taken into account.

Last but not the least, it is worthwhile to point out here that the linear regen-

eration speci�cation in themodel provokes the question of how the stability of the

system changes under the non-linear regeneration case. Allowing the renewable re-

source to regenerate non-linearly (for instance logistically) could bring about even

more dynamics. This is on the research agenda.
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APPENDICES

A. PROOF OF PROPOSITION 4 IN CHAPTER 4

To prove this proposition �rst, some claims will be proved:

Claim 1 For the non-renewable resources, the discriminant � = (1+ 1)2�4( 1+

 2) can not be zero. Moreover,

� > 0() 2 (1� 2�)� ~� < 1
~�

and � < 0() 2 (1� 2�)� ~� > 1
~�
: (1)

Proof. Suppose not, let � = 0. Then, (1 +  1)2 = 4( 1 +  2): Since  1 =
~�+�
1�� and

 2 = � �
(1��) ; this condition implies

�
1+~�
1��

�2
= 4~�

1�� : This holds i¤
~� = (1� 2�) �q

(1� 2�)2 � 1: As (1� 2�)2 < 1; ~� will be complex. This can not be true as ~� is

real. If � > 0; then,
�
1+~�
1��

�2
> 4~�

1�� : This equation reduces to 2 (1� 2�)� ~� <
1
~�
:

Claim 2 Whether the dynamics are complex or not depends on the parameter com-

binations such that:

1. If 1
2
� � < 1 or

h
0 < � < 1

2
and ~� > 2(1� 2�)

i
then � > 0; the dynamics

are non-complex.

2. If 1
4
� � < 1

2
and ~� < 2(1� 2�), then � > 0; the dynamics are non-complex.

3. If 0 < � < 1
4
and ~� + 1

~�
< 2(1� 2�), the dynamics are complex.

Proof of Claim 6.1:

It is clear that if 1
2
� � < 1 or

h
0 < � < 1

2
and ~� > 2(1� 2�)

i
;the left hand

side of Equation(1) is negative. As ~� > 0; the right hand side is always positive, so

that � > 0.
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Proof of Claim 6.2:Suppose not. Then, for 1
4
� � < 1

2
and ~� < 2(1�2�);� < 0

so that 2 (1� 2�) > 1
~�
+~� . Then since all of the terms are non-negative this implies

2 (1� 2�) > 1
~�
and 2 (1� 2�) > ~�: This can be rewritten as 2 (1� 2�) > ~� > 1

2(1�2�) :

this holds i¤ 4 (1� 2�)2 > 1: This reduces to 2 (1� 2�) > 1 as (1� 2�) > 0: From

that , 1
4
> �; contradicting with the initial assumption on �:

Proof of Claim 6.3: Follows from Equation(1).

Claim 3 The following hold:

1. If 1
2
� � < 1 , then 1�

p
�
2
< 0:

2. If 1
2
< � < 1 , then 1 +

p
�
2
> (1+ 1)

2
:

3. If 1
2
� � < 1; then (1+ 1)

2
> 1�

p
�
2
:

4. Suppose 0 < � < 1
2
and ~� > 2(1 � 2�). If ~� > (1 � 2�) �

p
2�2 � 3� + 1 or

~� < (1� 2�) +
p
2�2 � 3� + 1; then 1�

p
�
2
< 0:

In addition, if 2(1� 2�) < ~� < (1� 2�) +
p
2�2 � 3� + 1then 1�

p
�
2
> 0:

5. If 0 < � < 1
2
and ~� > 2(1� 2�) then (1+ 1)

2
> 1�

p
�
2
:

6. If 0 < � < 1
2
and ~� > 2(1� 2�) then (1+ 1)

2
< 1 +

p
�
2
:

7. If 1
4
� � < 1

2
and ~� < 2(1� 2�); then 1�

p
�
2
> 0.

8. If 1
4
� � < 1

2
and ~� < 2(1� 2�); then (1+ 1)

2
< 1 +

p
�
2
:

9. If 1
4
� � < 1

2
and ~� < 2(1� 2�); then (1+ 1)

2
> 1�

p
�
2
:

Proof. Proof of Claim 7.1: Let us �rst show that 1 �
p
�
2
6= 0: Suppose the

contrary that 1 =
p
�
2
:Then, ~� = (1 � 2�) � 2

p
2�2 � 3� + 1: For ~� to be real,

2�2 � 3� + 1 � 0: This inequality is binding if and only if � = 0 or � = 1: For

� = 1
2
; , ~� = 0: Thus, since 1

2
< � < 1; 2�2 � 3� + 1 6= 0. If 2�2 � 3� + 1 > 0;

then rewriting 3 > 1
�
+ 2�: As 1

2
� � < 1 ) 3 < 1

�
+ 2�; contradicting with ~�

to be real. In order to show 1 �
p
�
2
< 0; assume not. Then, for this equality to
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hold, 4(1� �)2 � 1 > ~�
h
~� � 2(1� 2�)

i
: However, for 1

2
� � < 1; while RHS of the

equality is negative LHS is positive. So, there is a contradiction.

Proof of Claim 7.2: 1 +
p
�
2

> (1+ 1)
2

is equivalent to ( 1 � 1)
2 < �:

Suppose that 1
2
< � < 1. If 1

2
< � < 1; then �1 < (1� 2�) < 0: This implies

(1� 2�)2 < 1 so that ~�
2 � 2~� (1� 2�) + (1� 2�)2 < ~�

2 � 2~� (1� 2�) + 1 so that

( 1 � 1)
2 < �:

Proof of Claim 7.3: Suppose not. Then (1+ 1)
2

< 1�
p
�
2
which is equivalent

to  1�1 < �
p
�: LHS of this equality is positive with

h
~��(1�2�)
1��

i
> 0 as (1� 2�) �

0: Yet, the RHS is negative, yielding a contradiction.

Proof of Claim 7.4: If 1�
p
�
2
> 0 then 4(1� �)2 � 1 > ~�

h
~� � 2(1� 2�)

i
:

This reduces an equation of a parabola f(~�) := ~�
2 � 2~� (1� 2�) + 1 � 4 (1� �)2 :

Thus, 1�
p
�
2
> 0 i¤ f(~�) < 0:This completes the proof.

Proof of Claim 7.5 :Suppose not. Then (1+ 1)
2

< 1�
p
�
2
which is equivalent

to  1�1 < �
p
�: LHS of this equality is positive with

h
~��(1�2�)
1��

i
> 0 as 2 (1� 2�) <

~�: Yet, the RHS is negative, yielding a contradiction.

Proof of Claim 7.6 :1+
p
�
2
> (1+ 1)

2
is equivalent to ( 1 � 1)

2 < �: Suppose

that 0 < � < 1
2
. If 0 < � < 1

2
; then 0 < (1� 2�) < 1: This implies (1� 2�)2 < 1 so

that ~�
2 � 2~� (1� 2�) + (1� 2�)2 < ~�

2 � 2~� (1� 2�) + 1 so that ( 1 � 1)
2 < �:

Proof of Claim 7.7 :Let us �rst show that 1�
p
�
2
6= 0: Suppose the contrary

that 1 =
p
�
2
:Then, ~� = (1� 2�)� 2

p
2�2 � 3� + 1: For ~� to be real, 2�2� 3�+1 �

0:Since 1
4
� � < 1

2
; 2�2�3�+1 6= 0. If 2�2�3�+1 > 0; then rewriting 3 > 1

�
+2�: As

1
4
� � < 1

2
;) 3 > 1

�
+ 2�; thus ~� = (1� 2�)� 2

p
2�2 � 3� + 1 can hold. As 0 < ~�;

0 < (1�2�)�2
p
2�2 � 3� + 1, � > 1

2
. Therefore, ~� 6= (1�2�)�2

p
2�2 � 3� + 1:In

addition;as ~� < 2(1 � 2�); (1 � 2�) � 2
p
2�2 � 3� + 1 < 2(1 � 2�) , � > 1

2
: So,

1 �
p
�
2
6= 0:In order to show 1 �

p
�
2
> 0; assume not. Then, for this equality to

hold, 4(1� �)2 � 1 < ~�
h
~� � 2(1� 2�)

i
: However, for 1

4
� � < 1

2
;and ~� < 2(1� 2�)

while RHS of the equality is negative LHS is positive. So there is a a contradiction.

Proof of Claim 7.8:Same proof with Case (6) above.

Proof of Claim 7.9:Suppose not. Then (1+ 1)
2

< 1�
p
�
2
which is equivalent to
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 1 � 1 < �
p
�: If ~� � 1 � 2� i.e.  1 � 1 ; LHS of this equality is positive withh

~��(1�2�)
1��

i
> 0. Yet, the RHS is negative, yielding a contradiction. If ~� < 1 � 2�;

 1 � 1 < 0: Then, ( 1 � 1)
2 > � yielding a contradiction with 1

4
� � < 1

2
:
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B. TABLES IN CHAPTER 5
In this Appendix, the tables in Chapter 5 are presented.
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