
CONTROLLER DESIGN FOR HAPTIC SYSTEMS
UNDER DELAYED POSITION AND VELOCITY

FEEDBACK

A THESIS

SUBMITTED TO THE DEPARTMENT OF ELECTRICAL AND

ELECTRONICS ENGINEERING

AND THE GRADUATE SCHOOL OF ENGINEERING AND SCIENCE

OF BILKENT UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF SCIENCE

By

Ahmet Taha Koru

August, 2012

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bilkent University Institutional Repository

https://core.ac.uk/display/52926216?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


I certify that I have read this thesis and that in my opinion itis fully adequate, in

scope and in quality, as a thesis for the degree of Master of Science.

Prof. Dr. HitayÖzbay(Advisor)
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ABSTRACT

CONTROLLER DESIGN FOR HAPTIC SYSTEMS
UNDER DELAYED POSITION AND VELOCITY

FEEDBACK

Ahmet Taha Koru

M.S. in Electrical and Electronics Engineering

Supervisor: Prof. Dr. HitaÿOzbay

August, 2012

This thesis considers controller design for haptic systemsunder delayed position

and velocity feedback. More precisely, a complete stability analysis of a haptic sys-

tem, where local dynamics are described by some second-order mechanical dynamics,

is presented. Characteristic equation of this system with time delays involves quasi-

polynomials. By a change of variables in the characteristicequation, stability condi-

tions are obtained analytically and regions are plotted by using Matlab.

Next, using two optimization techniques (H∞ and stability margin optimization)

optimal choice for the controller gains is proposed.H∞ optimization minimizes track-

ing error between devices while avoiding large control action inputs.H∞ analysis re-

quires high computational cost for accurate results due to its dependency to frequency

domain. On the other hand, stability margin optimization defines a cost function that

expresses the trade-off between system bandwidth and robustness with low compu-

tational cost. The derived results are tested on a three degree of freedom real-time

experimental platform to illustrate the theoretical results. Finally robustness analysis

is performed for optimal parameters to find allowable delay perturbations.

Keywords: haptic systems, time delay, H-infinity optimization, stability limits, PD

control.
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ÖZET

GEĊIKMEL İ POŻISYON VE HIZ GEṘIBESLEMEṠINE
SAHİP HAPṪIK SİSTEMLERİÇİN KONTROLCÜ

TASARIMI

Ahmet Taha Koru

Elektrik-Elektronik Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Prof. Dr. HitaÿOzbay

Austos, 2012

Bu tez zaman gecikmeli pozisyon ve hız geribeslemesine sahip haptik sistem-

ler için denetleyici tasarımı ile ilgilidir. Mekanik sistemler ikinci dereceden di-

namik denklemler ile tanımlanmıştır. Zaman gecikmeli bu sistemin karakteristik

denklemi yarı-polinom (kuasi-polinom) içermektedir. Sistemin karakteristik den-

klemi, çeşitli değişken değişiklikleriyle basitleştirilerek, kararlılık analizi analitik

olarak gerçekleştirilmiş, kararlı parametreli gösteren grafikler Matlab yardımı ile elde

edilmiştir.

Daha sonra, iki farklı optimizasyon tekniği uygulanılarak, en uygun parametreler

hesaplanmıştır.H∞ optimizasyonu, iki mekanik sistemin birbirini takip etme hatalarını

minimize ederken, yüksek enerji gerektirmeyen parametreleri hesaplamaktadır.H∞

analizinin bilgisayar ortamında gerçekleştirilmesi, her bir frekans için işlem yapıldığı

için yüksek hesaplama bedeli gerektirmektedir.Öte yandan kararlılık marjı opti-

mizasyonu tekniği, sistemin bant genişliği ve gürbüzlüğü arasında denge kurmak-

tadır. Sadece belirli bir frekansta uygulandığı için düşük hesaplama bedeli vardır.

Mekanik sistemdeki ve zaman gecikmesindeki karışıklıklara karşı gürbüzlük analizi

yapılmıştır. Son olarak elde edilen sonuçlar üç serbestlik dereceli gerçek zamanlı

deney düzeneğinde test edilmiştir.

Anahtar s̈ozc̈ukler: haptik sistemler, zaman gecikmeli sistemler, H-infinity optimiza-

syonu, PD kontrolcü.

iv



Acknowledgement
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Chapter 1

Introduction

Teleoperation systems, which origins dates back to mid 1940’s, has been first consid-

ered to be mechanical real to real communication between themaster and slave robots

by Goertz. Technologic developments has paved the way for new research areas such

as space telerobotics, telesurgery, nuclear telerobotics[3, 7]. Along with real to real

coupling, new systems has developed which uses virtual interfaces instead of slave

robots. One of the research area of haptic systems with virtual environment is the

surgery simulations. Such a system allows student surgeonsto safely practice and im-

prove their skills [5, 4]. Also haptic feedback is used in computer-aided design(CAD)

in the manufacturing and automotive industry. Ability to touch the objects under de-

sign may increase creativity and efficiency of designers [1].

From the control theory point of view, design of haptic system involves two main

goals:

• Stability: Robust stability of the closed-loop system irrespective ofbehaviour

of the user or the environment despite difficulties such as time delays, dynamic

uncertainties.

• Transparency: Haptic system renders forces, which slave robot encounters, at

haptic side to convey sense of touch [1]. Realistic touch perception in haptic side

is desired.

1



CHAPTER 1. INTRODUCTION 2

These two constraints are conflicting [7]. In order to satisfy these requirements,

control system must be carefully designed to obtain high performance with low posi-

tion tracking error and realistic sense of touch while maintaining robustness. Commu-

nication medium leads to complications, since delays have strong impact on stability

and performance of overall system.

Many different techniques are proposed to control haptic systems, including pas-

sivity theory [2], remote compliance control [8], wave variable encoding [13] and etc.

[16, 7]. Wave-variable controllers does not guarantee position coordination between

interfaces [14]. Controllers with closed-loop force-feedback systems achieve realis-

tic force feedback, however they are sensitive to time delays and are highly fragile

[16]. We proposed a PD-control (feedback from position and velocity) approach in

this thesis, which is robust against delays.

PD-controllers, in [14, 10], control position difference between master and slave

robots, and contains a dissipating term to guarantee passivity. Thus, these controllers

actually are not PD but pretend as PD controllers. On the other hand, Lee and Spong

present a real PD control, where dissipating term is still used to obtain passivity. Dis-

sipating term decreases performance of the system.

In this thesis, we present a PD controller (without the dissipating term) design for

haptic systems under processing and communication delays.After defining the sys-

tem with dynamic equations which includes time delayed position and velocity terms,

we provide stability analysis. Since our stability analysis does not require passivity

assumptions, we come through with complete region of controller gains, for which

system is stable, by using classical tools of feedback control theory(such as phase and

gain margins). In section 3, optimal gains are chosen usingH∞ based optimization and

stability margin optimization. Stability analysis and optimal gains sections are from

our joint work with Liacu et al., a conference paper [11]. This thesis also includes

robustness analysis, gain scheduling strategy section anda new 1-DOF experimental

set-up. Robustness for such systems is crucial since they are used in surgical oper-

ations. Unstable behaviour for a solitary moment can cause serious damage or even

death of patient. Robustness of the system against perturbations in time delays and

plant parameters were analysed besides effect of unmodeleddynamics. Then, a gain



CHAPTER 1. INTRODUCTION 3

scheduling strategy is presented to get high performance ofsystem in transparency

point of view. Thus, high force feedback while interacting with an virtual object and

low viscous effect in free motion are obtained. Ultimately,theoretical results were ver-

ified with 1-DOF real-time experimental set-up, similar to the generic system shown

in Figure 1.1.

Figure 1.1: Illustration of a haptic system.



Chapter 2

Stability Analysis

2.1 Mathematical Model

A typical haptic system signal flow graph is shown in Figure 2.1.

An ideal haptic system should realistically mimic slave dynamics in haptic side, so

system should satisfy the following conditions:

• Small position tracking error with robust stability.

• Realistic force feedback is desired at haptic side. When slave robot in free mo-

tion, force feedback at haptic side should be as small as possible; while stiff

response is obtained when slave come into contact with environment.

A linear model describing dynamics of master/slave system can be written as:

Mhẍ1(t)+Bhẋ1 =−F1(t)+Fh(t), (2.1)

Mvẍ2(t)+Bvẋ2 =−F2(t)+Fe(t), (2.2)

wherex∗ ∈ R
n (∗ = h or v) are the generalized coordinates,F∗ ∈ R

n are the (general-

ized) input forces,M∗ are the positive inertia matrices,B∗ are the damping matrices

4



CHAPTER 2. STABILITY ANALYSIS 5
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Figure 2.1: General PD control scheme for haptic systems.

andFh, Fe correspond to the external forces exerted by human operatorand the en-

vironment, respectively [7]. The main idea can be resumed tousingtwo similar PD

controllers, one for controlling the haptic interface and another for the (corresponding)

virtual object. In such a configuration, it follows:

F1(t) = Kd1(ẋ1(t)− ẋ2(t − τ2))︸ ︷︷ ︸
delayed D-action

+Kp1(x1(t)−x2(t− τ2))︸ ︷︷ ︸
delayed P-action

, (2.3)

F2(t) = Kd2(ẋ2(t)− ẋ1(t − τ1))︸ ︷︷ ︸
delayed D-action

+Kp2(x2(t)−x1(t− τ1))︸ ︷︷ ︸
delayed P-action

, (2.4)

whereτ1,τ2 are the constant communication delays andKp1,Kd1,Kp2,Kd2 are the PD

control gains corresponding to the haptic and virtual controller respectively.

2.2 Stability Analysis

The system represented by Figure 2.1 and equations (2.1)-(2.4) can bu summarized in

the block diagram of Figure 2.2 whereP1 andP2 represent transfer functions of the

plants andC1 andC2 are the controllers.

From Figure 2.2 the equations describing the system response can be written as

follows:

X1(s) = P1(s)
(
Fh(s)−C1(s)

(
X1(s)−e−τ2sX2(s)

))
(2.5)

X2(s) = P2(s)
(
−Fe(s)+C2(s)

(
−X2(s)+e−τ1sX1(s)

))
(2.6)
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Figure 2.2: Bilateral Haptic System.

whereXi(s) denotes the Laplace transform of the time signalxi(t), i = 1,2; similarly

for Fh(s) andFe(s); τ1 > 0 andτ2 > 0 are the time delays. Transfer functionsPi(s) and

Ci(s) are taken as

P1(s) = P2(s) =
1

s(ms+b)
=: P(s) (2.7)

C1(s) =C2(s) = Kp+Kds=: C(s) (2.8)

wherem> 0, b> 0, Kp > 0, Kd > 0.

Re-arranging (2.5) and (2.6) we obtain

[
1+P1(s)C1(s) −P1(s)C1(s)e−τ2s

−P2(s)C2(s)e−τ1s 1+P2(s)C2(s)

] [
X1(s)

X2(s)

]
=

[
P1(s)Fh(s)

−P2(s)Fe(s)

]
(2.9)

Therefore, with the plant and controller definitions (2.7) and (2.8), the characteris-

tic equation of the feedback system is

(1+P(s)C(s))2− (P(s)C(s))2e−(τ1+τ2)s = 0 (2.10)

which is equivalent to

(
1+P(s)C(s)−P(s)C(s)e−τs) (1+P(s)C(s)+P(s)C(s)e−τs)= 0

where τ :=
(τ1+ τ2)

2
(2.11)

Note that

(1+PC)−1 =
s(ms+b)

ms2+(b+Kd)s+Kp
(2.12)
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is a stable second order system with positive coefficients for all Kp> 0, Kd > 0. Hence,

from (2.11) it is clear that the feedback system is stable if and only if the following two

equations do not have zeros inC+.

1+G(s)

(
1−e−τs

s

)
= 0 where G(s) =

Kp+Kds

ms+b
(2.13)

1+T(s) e−τs = 0 where T(s) =
Kp+Kds

s(ms+b)+Kp+Kds
(2.14)

Now define

K :=
Kp

b
τc :=

Kd

Kp
τp :=

m
b

thenG(s) andT(s) can be re-written as

G(s) = K
1+ τcs
1+ τps

(2.15)

T(s) =
K(1+ τcs)

τps2+(1+ τcK)s+K
. (2.16)

We can further make a frequency normalization

ŝ= τps (2.17)

and introduce new definitions

L :=
1

Kτp
=

b2

m Kp
α :=

τc

τp
=

b Kd

m Kp
h :=

τ
τp

=
(τ1+ τ2) b

2 m
(2.18)

so that the characteristic equations (2.13) and (2.14) can be re-written as

1+
1
L

(1+α ŝ)
(1+ ŝ)

(
1−e−hŝ

ŝ

)
= 0 (2.19)

1+
(1+α ŝ)

(Lŝ2+(L+α)ŝ+1)
e−hŝ = 0. (2.20)

We will try to find the controller parametersL andα (which defineKp andKd), as

functions ofh, that place all the roots of (2.19) and (2.20) inC−. In what follows we

will restrict ourselves the case whereKp andKd are positive, i.e.,L > 0 andα > 0.

Analysis of stability conditions of transfer functions (2.19) and (2.20) are based

on Nyquist Stability Criterion. Let us consider (2.19) first. Since|e− jhω | = 1 for all

ω ∈ R, the phase of(1−e− jhω) is between+π/2 and−π/2 for all ω > 0 and

lim
ωց0+

∠(1−e− jhω) = +
π
2
.
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Therefore,

0≤ ∠ f ( jω)≤−π , ∀ ω ∈ R, where f (ŝ) :=
1−e−hŝ

ŝ
. (2.21)

This means that ifα > 1, the phase of(1+ jαω)
(1+ jω) f ( jω) is always strictly grater than

(−π) for all ω ≥ 0. Thus, all the roots of (2.19) are inC− whenα > 1, independent

of L andh. Furthermore, whenα = 1 the equation (2.19) reduces to:

1+
1
L

f (ŝ) = 0.

Note that whenever∠ f ( jω) =−π , | f ( jω)|= 0 holds. This fact, together with (2.21),

implies that whenα = 1 all the roots of (2.19) are inC−, independent ofL andh. In

conclusion, the analysis of (2.19) becomes interesting only if α < 1. In this case, all

the roots of (2.19) are inC− if and only if the following condition is met:

L >

∣∣∣∣
1+ jαωp

1+ jωp

∣∣∣∣ | f ( jωp)|, (2.22)

whereωp is the smallestω > 0 satisfying:

tan−1(αω)− tan−1(ω)−
hω
2

=−π . (2.23)

The condition (2.22) gives an allowable region in the(α,L)-plane for all the roots of

(2.19) to be inC− whenα < 1.

Note that the following identity used in (2.23):

∠ f ( jω) =−
hω
2
, ∀ ω ∈ [0 ,

2π
h
],

We can re-arrange the equation (2.23) as:

π −
(
tan−1(ωp)− tan−1(αωp)

)
=

hωp

2
. (2.24)

It is a simple exercise to show that:

| f ( jωp)|=
sin(hωp/2)

ωp/2
=

2(1−α)√
(1−α)2ω2

p+(1+αω2
p)

2
.

Using this identity, after algebraic manipulations and forα < 1, (2.22) is now equiva-

lent to:

L >
2(1−α)

ω2
p+1

, (2.25)
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whereωp is determined from (2.24).

Now consider (2.20). The cross-over frequencyωc > 0 where:
∣∣∣∣

1+ jαωc

1−Lω2
c + j(L+α)ωc

∣∣∣∣= 1,

can be found as the feasible root of:

L2ω2
c

(
ω2

c +1−
2(1−α)

L

)
= 0.

Clearly, this has a non-zero real solution if an only if the following condition holds:

2(1−α)> L, (2.26)

in which case:

ωc =

√
2(1−α)

L
−1. (2.27)

This means that if (2.26) is not satisfied, then|T( jω)| is a uniformly decreasing func-

tion with T(0) = 1= ‖T‖∞ which, by the small gain theorem, implies that all the roots

of (2.20) are inC− independent ofh. Sinceωp is a positive real number, the con-

dition (2.25) also holds irregardless of delay valueh when (2.26) is not satisfied. To

complete the analysis, now assume (2.26) is satisfied andωc is as defined by (2.27). In

this case, by the Nyquist criterion, all the roots of (2.20) are inC− if and only if:

tan−1(αωc)− tan−1
(
(L+α)ωc

1−Lω2
c

)
−hωc >−π . (2.28)

To recapitulate, with the parameter definitions of (2.18), the feedback system de-

scribed by (2.9) is stable independent ofh if α ≥ 1. Whenα < 1, system is stable inde-

pendent ofh if L > 2(1−α)> 0 and is stable depending onh if 2(1−α)> L > 0. For

every fixedh> 0 the region of delay-dependent stabilizing{(α,L) : 2(1−α)> L > 0}

is determined from the intersection of the conditions (2.22) and (2.28).

Since (2.27) implies:

L =
2(1−α)

1+ω2
c

,

the condition (2.25) can be re-written as:

ωp > ωc. (2.29)
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Let us now re-consider (2.28). Using the notationL = 2(1−α)/(1+ω2
c ), then,

after simple algebraic manipulations, it is easy to see that:

tan−1(αωc)− tan−1
(
(L+α)ωc

1−Lω2
c

)
=− tan−1

(
2(1−α)ωc(1+αω2

c )

(1+αω2
c )

2− (2(1−α)ωc)2

)

=−2tan−1
(
(1−α)ωc

(1+αω2
c )

)
=−2

(
tan−1(ωc)− tan−1(αωc)

)
.

Thus the condition (2.28) is equivalent to:

π −2
(
tan−1(ωc)− tan−1(αωc)

)

ωc
> h. (2.30)

Recall from (2.29) and (2.24) thatωc is restricted to satisfyωp > ωc, whereωp is

defined from:
2
(
π −

(
tan−1(ωp)− tan−1(αωp)

))

ωp
= h. (2.31)

Resuming, the system is stable independent of delayh if α ≥ 1; or if α < 1 and

L > 2(1−α). Furthermore, the analysis for the case 2(1−α)> L > 0 reduces to the

following. Define:

gc(x) =
π −2

(
tan−1(x)− tan−1(αx)

)

x
,

gp(x) =
2
(
π −

(
tan−1(x)− tan−1(αx)

))

x
.

Clearly,gp andgc are uniformly decreasing functions andgp(x) > gc(x) for all x> 0.

So, if ωp is defined as the solution of the equationgp(x) = h andωo as the solution

of the equationgc(x) = h, thenωo < ωp and hence, forα < 1, the feedback system

shown in Figure 2.1 is stable if and only ifωc < ωo, which is equivalent to:

L >
2(1−α)

1+ω2
o

, where ωo > 0 is the solution of gc(x) = h . (2.32)

The stability condition (2.32) is expressed in terms ofL = b2/(m Kp) and α =

(b Kd)/(m Kp). From this condition we can determine the allowable range ofm Kp/b2

andKd/b for all h > 0. Note that the system is stable independent ofh whenα > 1.

The stability region is shown for two different time delay values in Figure 2.3.
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Theorem 1. The bilateral haptic system is asymptotically stable independent of the

delay values (τ1, τ2) if the controller gains satisfy the condition:

Kd ≥
m
b

Kp. (2.33)

Furthermore, when Kd/Kp < m/b, we have two cases:

1. If 0< mKp−bKd < b2/2, then the feedback system is stable independent of the

delay values (τ1, τ2).

2. If mKp−bKd > b2/2, then the closed-loop system is stable if and only if

mKp−bKd <
b2

2
(1+ω2

0), (2.34)

whereω0 > 0 is the solution of the equation:

π −2
(

tan−1(x)− tan−1
(

b Kd
m Kp

x
))

x
=

(τ1+ τ2)b
2m

. (2.35)
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Chapter 3

Optimal Gains

Once the parameter space is identified for stability of the feedback system, the next

question is to find the best controller parameters in this set. Clearly, parameters close

to the boundary of the stability region are not acceptable, since these will result in

fragility. On the other hand, parameters too deep in the stability region are not desirable

from the performance point of view.

Two different optimization techniques, which areH∞ and stability margin opti-

mization, are proposed in this chapter to find optimal parameters for haptic system.

3.1 H∞ Based Design

Let us define the position tracking error

e(t) := x1(t)−x2(t). (3.1)

From (2.9) we compute

E(s) =
P(s)

1+P(s)C(s)+P(s)C(s)e−τs(Fh(s)+Fe(s)). (3.2)

While trying to make the error small we may be forced to use high command signals

which may lead to actuator saturation. Since large control signals are not desirable, we

13
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also want to penalize the control. Again, from (2.9), the output of the controller,F2(t),

on the virtual side can be computed as

F2(s) =C(s)(e−τsX1(s)−X2(s))

=
(C(s)e−τs+(1+P(s)C(s)−P(s)C(s)e−2τs))P(s)(Fh(s)+Fe(s))
(1+P(s)C(s)+P(s)C(s)e−τs)(1+P(s)C(s)−P(s)C(s)e−τs)

In particular, whenFe = 0 we have

[
E(s)

F2(s)

]
=

(
T(s)

1+T(s)e−τs

)[
1/C(s)

e−τs

1+P(s)C(s)(1−e−τs)

]
Fh(s) (3.3)

whereT(s)=P(s)C(s)(1+P(s)C(s))−1. Therefore, optimal gains from theH∞ control

point of view are the ones which solve the problem

min
Kp,Kd

∥∥∥∥∥∥∥∥

P(s)
1+P(s)C(s)(1+e−τs)




ρ

C(s)
(1+P(s)C(s)(1−e−τs))




∥∥∥∥∥∥∥∥
∞

(3.4)

whereρ is a design parameter which represents the trade-off between small tracking

erroreand small control actionF2. Depending on the values ofρ we obtain the optimal

Kp andKd, for each fixedm= 1, b= 0.1 andτ = 0.05, as shown in Table 3.1.

Table 3.1:H∞ optimal gains for differentρ

b2ρ 0.01 0.1 1 10 50 100

Kp 0.8 17.1 85.0 246 305 310
Kd 8.8 10.2 15.2 43 55 51

We see that for large values ofρ (emphasizing tracking performance, i.e., trying

to make‖e‖2 small compared to‖F2‖2) H∞ optimal gains are in the order ofKp ∈

[240 , 310] andKd ∈ [40 , 55]. In the next section we will compare these values with

another set of gains obtained from a different optimality criterion.
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3.2 Stability Margin Optimization

Recall from (2.25) that one of the stability conditions is

(
b2

m Kp

) (
1+ω2

p

2(1−α)

)
> 1. (3.5)

Note thatωo < ωp so, if we define

GM1 :=

(
b2

m Kp

) (
1+ω2

o

2(1−α)

)

thenGM1 > 1 implies (3.5). So, we will try to makeGM1 as large as possible. On the

other hand, for large bandwidth in the system (fast response) we require thatωc is as

large as possible, i.e.

ω2
c +1=

m Kp

b2 2(1−α)

should be as large as possible. But this conflicts withGM1 should be large condition.

So, we will blend these two conflicting objectives and try to

maximize min{ρ1(ω2
c +1) ,

1
ρ1

GM1}

whereρ1 assigns a relative weight for each component of the problem.The solution

of this problem gives
m Kp

b2 =
1
ρ1

√
1+ω2

o

2(1−α)
. (3.6)

Under this choice, we have

GM1 = ρ1

√
1+ω2

o . (3.7)

Note that the right hand sides of (3.6) and (3.7) are functions of α onceρ1 andh =

τb/mare fixed.

Now, (m Kp/b2) is the controller gain, and to avoid actuator saturations this gain

should not be too high. So, we can define a new cost function which tries to makeGM1

large andKp small:

minimize

(
ρ2

ρ1
√

1+ω2
o

+
b2

m ρ2

1
ρ1

√
1+ω2

o

2(1−α)

)
(3.8)

whereρ2 assigns relative weights forGM1 andKp. Note thatρ1 does not play a role in

the solution of (3.8). Onceρ2 andh= τ b/mare fixed, the cost function defined in (3.8)
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depends onα only. Minimizing the cost function gives optimalα, then this givesωo

andKp via (3.6); and onceKp is known, we can findKd = α m Kp/b. Table 3.2 shows

the optimal gains for varyingρ2 whenρ1 = b2 = 0.01, m= 1 andh= τb/m= 0.005

are fixed.

Table 3.2: Optimal gains andGM1 for differentρ2, whenτ = 0.05, m= 1, andρ1 =
b2 = 0.01.

ρ2 10 20 30 40 50 60 80 100

Kp 94 207 301 389 425 436 446 453
Kd 2.4 6.3 12.7 34.3 82 127 207 291

GM1 1.33 2.9 4.2 5.5 6.0 6.1 6.16 6.2

Table 2 shows thatGM1 increases with increasingρ2, but for ρ2 ≥ 50 additional

gain inGM1 is very small. Therefore, a meaningful choice would beKp ∈ [390 , 410]

andKd ∈ [35 , 45]. Compared to theH∞ optimal gains corresponding to relatively large

ρ values, the aboveKp values are about 1.3 to 1.5 times higher, whereasKd values are

1.14 to 1.25 times lower. For the experimental tests, the valuesKp = 400 andKd = 40

are used and results are reported in the next section. These correspond toρ2 ≈ 42 in

the above table. For theH∞ optimal gains we may selectKp = 275 andKd = 45; we

expect the stability margins to be larger in this case, but the response will be slower.

For relatively smallρ values in theH∞ optimal design, we haveKp = 85 andKd = 15

(e.g. forb2ρ = 1) in which case the emphasis on tracking performance is diminished

compared to largerρ values. In the next section experimental results forKp = 400,

Kd = 40 case andKp = 85,Kd = 15 case will be illustrated.



Chapter 4

Robustness Analysis

4.1 Delay Perturbations

Smallest time delay which de-stabilizes the feedback system for a given set of con-

troller and plant parameters can be calculated from Theorem1, as follows:

τmax=
π −2

(
tan−1(ω0)− tan−1

(
b Kd
m Kp

ω0

))

ω0

m
b
, (4.1)

where

w0 =

√
2
b2(mKp−bKd)−1. (4.2)

This can be seen as the largest tolerable delay. Time domain simulations in Fig-

ure 4.1, 4.2 and 4.3 illustrate the results found in Table 4.1.

Table 4.1: Allowable perturbations of delay forH∞ optimal gain parameters when
m= 1 andb= 0.1

Kp 17.1 85.0 246 305 310 400
Kd 10.2 15.2 43 55 51 40

τmax 0.4589 0.1811 0.1202 0.1105 0.1080 0.0876

17
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Figure 4.1: System is stable forτ < 0.1202, marginally stable forτ = 0.1202 and

unstable forτ > 0.1202 whenKp = 246 andKd = 43.
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4.2 Parametric Plant Perturbations

In this section, we discuss stability robustness due to possible uncertainties in the plant

parametersm andb.

Introducing

C(s) :=C1(s) =C2(s), L1(s) := P1(s)C(s), L2(s) := P2(s)C(s), (4.3)

leads to a characteristic equation

1+L1(s)+L2(s)+L1(s)L2(s)−L1(s)L2(s)e
−2τs= 0. (4.4)

Using the identity

P1(s) =
1

s(m1s+b1)
(4.5)

and some algebraic manipulations, the characteristic equation can be written as:

m1s+b1 =
(1+L2(s)−L2(s)e−2τs)C

−(1+L2(s))
=: H(s). (4.6)

We can findm∗
1 andb∗1 pairs for marginally stable characteristic equation (4.6)as

in [12].

Allowable plant parameters and corresponding simulation results are shown below.

m∗
1 =

Im(H( jω))

ω
, b∗1 = Re(H( jω)) ∀ω. (4.7)
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4.3 Robustness Against Unmodeled Dynamics

Our plant model can be slightly different than the real modeldue to uncertainties such

as unmodeled dynamics and approximation of the parameters.To avoid undesirable

effects of these uncertainties, our controller gains should stabilize all possible plants.

If we define one of the plants as:

P1(s) = P(s)+∆(s) (4.8)

we can apply robust stability test. Characteristic equation of the perturbed system is:

(1+P(s)C(s))(1+(P(s)+∆)C(s))− (P(s)+∆)P(s)C(s)2e−2τs = 0 (4.9)

After some algebraic manipulations, characteristic equation becomes the charac-

teristic equation of nominal plant multiplied by a functionwith perturbed terms.

(1+P(s)C(s))(1+T(s)e−τs)(1+G(s) fτ(s))

[
1+∆m(

T(s)
1+T(s)e−τs

)(
1+G(s) f2τ (s)
1+G(s) fτ(s)

)

]

(4.10)

where

∆m(s) :=
P1(s)−P(s)

P(s)
fτ(s) =

1−e−τs

s
. (4.11)

In 4.10, transfer functionsT(s) and G(s) are defined the same way as in equa-

tions (2.13) and (2.14) and∆m is called multiplicative perturbation. In Chapter 3, we

provided controller parameters for which thenominal feedback system is stable and

performance criteria is satisfied. For robust stability, these parameters should also sat-

isfy following inequality:
∣∣∣∣
∣∣∣∣∆m(s)(

T(s)
1+T(s)e−τs)(

1+G(s) f2τ(s)
1+G(s) fτ(s)

)

∣∣∣∣
∣∣∣∣
∞

:= ||∆m(s)R(s)||∞ < 1 (4.12)

By using equation (4.12), we can derive allowable magnitudeof perturbation:

|∆m( jω)|<
1

|R( jω)|
(4.13)

Figure 4.10 shows that the only frequency range where tolerable uncertainty bound

is less than 100% is between 20rad/sec and 50 rad/sec (where tolerable uncertainty
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bound is between 50% and 100%); any unmodeled lightly dampedflexible modes in

this frequency range may destabilize the feedback system, otherwise the system is

quite robust to unmodeled dynamics.

To illustrate this result, the system is perturbed with:

W(s) =
ω2

n

s2+2ζ ωns+ω2
n

(4.14)

which represents an unmodeled flexible mode of the system. Perturbed plant is defined

as follows:

P1(s) = P(s)(1+W(s)). (4.15)

Corresponding simulation results with differentζ andωn are shown in Figure 4.11,

for controller gains chosen asKp = 400 andKd = 40.

Figure 4.12 shows allowable plant perturbations for lower controller gains. Fig-

ure 4.13 verifies system is more robust for lower gains as expected.
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Figure 4.10:m= 1, b= 0.1, τ = 0.05,Kp = 400,Kd = 40

0 5 10
0

0.05

0.1

0.15

0.2

Time

P
os

iti
on

 T
ra

ck
in

g 
E

rr
or

ω
n
 = 20, ζ = 0.20

0 5 10
0

0.05

0.1

0.15

0.2

Time

P
os

iti
on

 T
ra

ck
in

g 
E

rr
or

ω
n
 = 100, ζ = 0.60

0 5 10
−4

−2

0

2

4
x 10

4

Time

P
os

iti
on

 T
ra

ck
in

g 
E

rr
or

ω
n
 = 43, ζ = 0.60

0 5 10
0

0.05

0.1

0.15

0.2

Time

P
os

iti
on

 T
ra

ck
in

g 
E

rr
or

ω
n
 = 43, ζ = 0.92

Figure 4.11:m= 1, b= 0.1, τ = 0.05,Kp = 400,Kd = 40
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Figure 4.12:m= 1, b= 0.1, τ = 0.05,Kp = 85,Kd = 15
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Figure 4.13:m= 1, b= 0.1, τ = 0.05,Kp = 85,Kd = 15



Chapter 5

Controller Switching Between Free

and Restricted Motion

According to ideal haptic system definition, position tracking error of the system

should be as small as possible while realistic force feedback is felt at haptic side. In

order to design such a controller, dynamics of the system must carefully be analysed

to understand how haptic and virtual objects are following each other and what users

perceive at haptic side.

mh mv WALLFh

Kw

BwBw

Kp

KdKd

xh xv Pw

Figure 5.1: Mass-Spring-Damper System

Recall that when time delays are ignored, dynamic equationsof linearized system

can be written as follows:

mhẍh(t)+bhẋh =−F1(t)+Fh(t) (5.1)

mvẍv(t)+bvẋv =−F2(t)+Fe(t) (5.2)
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where

F1(t) = Kp1(xh(t)−xv(t))+Kd1(ẋh(t)− ẋv(t)) (5.3)

F2(t) = Kp2(xh(t)−xv(t))+Kd2(ẋh(t)− ẋv(t)) (5.4)

For the moment, let us ignore stability conditions, and concentrate on the per-

ception of force feedback in haptic side (for this analysis time delays can be ignored

without loss of generality). Let’s considerKp1 = Kp2 := Kp andKd1 = Kd2 := Kd as in

Chapter 2.2. Then, according to (5.3) and (5.4), equations (5.1) and (5.2) are analogues

to mass-spring-damper mechanical system in Figure 5.1. A similar approach to haptic

system, considering it as a mass-spring-damper, is also mentioned in [9][6].

The imaginary spring in Figure 5.1 is zero-length. Environmental forceFe(t) is

defined as follows:

Fe(t) = Kw(x2(t)−xwall)+Bwẋ2(t). (5.5)

If stiffness of wallKw is larger thanKp, it leads to a steady state position track-

ing error as in Figure 5.2, sinceFh(t) elongates imaginary spring between haptic and

virtual object as much as it can (see Figure 5.3).
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Figure 5.2: PD Controller Simulation
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User perceives controller outputF1(t) as force feedback so thatKp1 andKd1 should

be updated to obtain realistic force feedback. In free motion case, user should perceive

no counter force, so controller parameters must be as small as possible. In restricted

motion, high gains needed to get realistic render of environmental forces in haptic

side. These parameters can be chosen fromH∞ optimal parameters table. Therefore,

we propose the switched controller scheme defined in equation (5.6).

mv WALL mh Fh

Figure 5.3: Elongation of Imaginary Spring

Klow = {40,10}, Khigh = {400,40}

φ(t) =





φ(tk) if t < tk+T

0 if xv ≥ Pw andt ≥ tk+T

1 if xv < Pw andt ≥ tk+T

t ∈ [tk, tk+1)

{Kp,Kd} = Klowφ(t)+Khigh(1−φ(t)) (5.6)

whereφ(t) is relay function that makes the controller switch between low and high

gains,tk is the time values where switching occurs,T is the time period, where switch-

ing is not allowed. It is called dwell time.

Corresponding simulation results are shown in Figures 5.4-5.8. When there is no

dwell time, system can face problem, namely fast switching (chattering), which can

damage the system. Oscillating behaviour of chattering canbe seen in Figures 5.4

and 5.8. Time-domain simulations in Figures 5.5, 5.6,and 5.7 show that as delay in-

creases required dwell time increases as well.
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Figure 5.4: Switching Control Simulation form= 1,b= 0.1,τ = 0.05
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Figure 5.5: Switching Control Simulation form= 1,b= 0.1,τ = 0.05



CHAPTER 5. SWITCHING CONTROL 31

0 0.5 1 1.5 2 2.5 3 3.5 4
0

2

4

6

8

Time (sec)

P
os

iti
on

 (
m

)

Dwell Time = 0.4 sec

 

 

haptic
virtual

0 0.5 1 1.5 2 2.5 3 3.5 4
−200

0

200

400

600

Time (sec)

F
or

ce
 (

N
)

Figure 5.6: Switching Control Simulation form= 1,b= 0.1,τ = 0.08
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Figure 5.7: Switching Control Simulation form= 1,b= 0.1,τ = 0.08
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Figure 5.8: Switching Control Simulation form= 1,b= 0.1,τ = 0.05



Chapter 6

Experimental Validation

6.1 Experimental Setup

Computer

Data Acquisition

Card
Motor Driver

Circuit

DC Motor
(Actuator)

Encoder (Sensor) User

ControllersC1(s), C2(s)
Virtual InterfaceP2(s)

Virtual EnvironmentFe(t)

F1[n]

x1[n] F1(t)

Fh(t)

F1(t)
x1(t)

F1[n]

x1[n]

Figure 6.1: Haptic System Experimental Setup Scheme

A 1-DOF experimental setup, as in Figure 6.1, is prepared to verify the results

obtained in Chapters 2-5. A computer is used to simulate virtual environment, virtual

object and delays. Also haptic and virtual controllers are implemented on the same

computer. Haptic interface includes a DC motor, a motor driver circuit, an encoder

and a link coupled to DC motor. Computer and haptic interfacecommunicates through

data acquisition card. Realization of system can be seen in Figure 6.4.
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All the controllers, virtual environment runs on a Mathworks Simulink Program.

The Simulink model designed for this purpose is shown below.

Figure 6.2: Experimental Setup Simulink Main Block

Figure 6.3: Controller System Simulink Block

6.2 Experimental Results

First, experiments are conducted for PD controller withoutswitching. Then, switching

control is performed.

In Figure 6.5, free motion case is tested forKp = 85 andKd = 15.
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Figure 6.4: Experimental Setup

Position tracking between haptic and virtual interface is good, system is robustly

stable. Low force-feedback is felt in free motion as desired. In Figure 6.6, restricted

motion is tested with same gains. In all the experiments, wall positionPw is at−11deg.

In restricted motion, system has to have high gains in order to render realistic force

reflections. ForKp = 85, system can not render stiff objects such as walls etc. as

expected. As we increase gains, we obtain better performance in restricted motion.

Experimental results forKp = 400 andKd = 40 are presented in Figure 6.7 and 6.8.

We obtained stiffer response. However, we desire to feel lowforce feedback in free

motion. Our performance in free motion is getting worse as weincrease gains.

In order to increase performance when system is running in both free and restricted

motion, switching control is used. Control system automatically switches from low to

high gains as virtual object hits the wall as in Equation (5.6). As it seen in Figure 6.9,

force feedback is low in free motion and high in restricted motion. Simulations show

system response of switching control is closer to ideal haptic system response com-

pared to non-switching PD controller.
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Figure 6.5: Free Motion Case forKp = 85,Kd = 15
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Figure 6.6: Restricted Motion Case forKp = 85,Kd = 15
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Figure 6.7: Free Motion Case forKp = 400,Kd = 40
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Figure 6.8: Restricted Motion Case forKp = 400,Kd = 40
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Figure 6.9: Switching Control Experiment Results



Chapter 7

Conclusions

The main contribution of this thesis has been a complete stability analysis for a bilateral

haptic system, which is coupled to a virtual environment andaffected by time-delays.

This is summarized in Theorem 1 in Chapter 2, and illustratedin Figure 2.3 for two

different time-delays and specific choices of plant parameters.

Once the stability region is identified, by using two different optimization tech-

niques, optimal controller parameters are calculated. Oneof these optimization tech-

niques usesH∞ based cost function; and the other one uses a stability margin optimiza-

tion. The results are illustrated with typical choices of plant parameters in Tables 3.1

and 3.2.

Robustness of the designed control systems are analysed from three different per-

spectives:

• Robustness to uncertainties in the values of time-delays (maximal allowable

time-delay has been computed, see (4.1)).

• Robustness to uncertainties in the plant parameters (region of allowable plant

parametersm1 andb1 are calculated, see Figures4.6, 4.4, 4.8, and 4.9).

• Robustness to unmodeled dynamics in the plant transfer function (critical fre-

quency regions are identified, see Figures 4.10 and 4.12).
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According to the transparency point of view, using the same PD gains is not suffi-

cient to satisfy performance criterion due to stiffness problems. System can not render

stiff objects when low gains are used. On the other hand, highgains make operator to

encounter undesired viscous friction during free motion. In order to guarantee perfor-

mance in both cases (free motion and restricted motion), a simple switching strategy

is tested, and it is observed that the corresponding resultsare closer to desired ones

with switching strategy. A special attention is needed for this approach because both

controllers must be updated, and since the system is affected by time delays, there is

a moment when the gains will be different at each side, this may lead to unwanted

fast switching (chattering). In order to avoid this, we proposed a dwell time based

switching; simulation results show the effectiveness of this approach. On the other

hand, theoretical stability analysis for this approach would fall into the framework of

switched time delays systems. Finding the minimal dwell time guaranteeing stability

is currently an open problem, see for example [15, 17, 18] andtheir references.

For verification of all of the results mentioned above, a 1-DOF experimental set-up

has been built. Experiments conducted supported our theoretical results.

Possible future work in the lines of this thesis include the following studies:

• Dwell Time Analysis: Finding the optimal dwell time in considerations of ro-

bustness and performance issues is an interesting open problem. This study

would involve simultaneous design of the controller parameters and the dwell

time used in the switching scheme.

• Collisions with Various Objects: In this thesis, we only considered collisions to

hard walls. Simulations and experiments can be conducted for objects with var-

ious stiffness (for example, different kind of human tissues for medical robotic

applications). Such a work requires a new switching algorithm (perhaps, a con-

tinuous mapping from one set of controller parameters to theother set).

• Improving Mathematical Model: In this thesis, we have ignored high order

dynamics, which may be present due to motor characteristicsand possible flex-

ible robot links. A possible future study would consider such high-order plant

models for stability analysis.
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• Extension to MIMO case: In this study, we considered SISO (single input, sin-

gle output) plant and controller models. Extensions to MIMO(multiple input,

multiple output) case wherem, b, Kp, Kd are matrices and time-delay is replaced

by delay matrices would be an interesting/challenging problem. Three dimen-

sional experimental set-up would provide results for more realistic applications.
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Appendix A

Mathematical Derivations

Let’s present derivation of phase and magnitude identitiesof the following delay term:

f ( jω) =
1−e− jωh

jω

=
1−cos(ωh)+ jsin(ωh)

jω

=
sin(ωh)

ω
− j

(1−cos(ωh))
ω

(A.1)

used in Equation (2.23). Phase of equation (A.1) is defined asfollows:

∠ f ( jω) = tan−1
(

cos(ωh)−1
sin(ωh)

)
(A.2)

(A.3)

By using half-angle formulas, equation (A.2) becomes,

∠ f ( jω) = tan−1
(

cos2(ωh/2)−sin2(ωh/2)−1
2sin(ωh/2)cos(ωh/2)

)

(A.4)
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Simplification continues with trigonometric identitycos2(ωh/2)=1−sin2(ωh/2),

∠ f ( jω) = tan−1
(

−2sin2(ωh/2)
2sin(ωh/2)cos(ωh/2)

)

= tan−1
(
−sin(ωh/2)
cos(ωh/2)

)

= tan−1(tan(−ωh/2))

= −
ωh
2
. (A.5)

2

Magnitude of Equation (A.1) is defined as follows:

| f ( jω)| =

√
sin2(hω)+(1−cos2(hω))2

ω2

=

√
sin2(hω)+cos2(hω)−2cos(hω)+1

ω2

=

√
2(1−cos(hω))

ω2 . (A.6)

(A.7)

By using half-angle formulacos(hω) = cos2(hω/2)−sin2(hω/2), Equation (A.6)

becomes:

| f ( jω)| =

√
2(1− (cos2(hω/2)−sin2(hω/2)))

ω2

=

√
sin2(hω)/2

hω/2

=
sin(hω)/2

hω/2
(A.8)

2



Appendix B

Simulink Models

B.1 PD Control

Figures 4.1-4.3,4.5,4.7, and 5.2 are generated by using theSimulink model below.

Figure B.1: PD control Simulink main block
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Figure B.2: Look under mask to Haptic System
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B.2 Unmodeled Dynamics Simulations

Haptic Interface plant in Simulink Program in B.2 is replaced with Atomic-subsystem

below to realize simulations to verify our results in Chapter 4.3. Figures 4.11 and 4.13

are generated by using this Simulink model.

Figure B.3: Perturbed Plant Atomic-Subsystem

B.3 Switching Control

Figures 5.4-5.8 are generated by using the Simulink model below.
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Figure B.4: Switching control Simulink main block
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Figure B.5: Look under mask to Haptic System
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Figure B.6: Look under mask to Haptic Controller

B.3.1 Matlab Embedded Code

%%Embedded Matlab Function code for 'Switching Controller '

function y = fcn(xh,xv,vh,vv,clk)

persistent mode cs; %0 free, 1 restricted sol

if (isempty(mode))

mode = 0;

cs = 0;

end

dwell=0.4;

if (mode == 0 && (clk-cs)>dwell)

if (xv >= 5)

mode = 1;

cs = clk;

[mode,clk]

end

end

if (mode == 1 && (clk-cs)>dwell)

if (xv < 5)

mode = 0;
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cs = clk;

[mode,clk]

end

end

m = 1; b = 0.1;

if (mode == 0)

Kp = 85; Kd = 15;

else

Kp = 400;

Kd = 40;

end

y = -Kp * (xh - xv) - Kd * (vh - vv);



Appendix C

Matlab Codes

C.1 Stability Regions

Figure 2.3 is generated by using following Matlab code.

clear all;

h = 0.005;

m = 1; b= 0.1;

w = logspace(-2,6,1000);

alpha = logspace(-8, 0,2500);

for (k = 1:length(alpha))

for (l = 1:length(w))

gc(l) = pi - 2 * (atan(w(l)) - atan(alpha(k) * w(l))) - h * w(l);

end

[mingc,ind] = min(abs(gc));

wo(k) = w(ind);

L(k) = (2 * (1-alpha(k)))/(wo(k)ˆ2+1);

end

Kp = bˆ2./(m * L);

Kd = alpha. * Kp* m/b;

loglog(Kp,Kd);

54



APPENDIX C. MATLAB CODES 55

C.2 H∞ Based Optimization

Optimal gain parameters in Table 3.1 is obtained by using following Matlab code.

function [T,pointKd,pointKp] = infnorm(Kdbmin, K0max)

m = 1; b = 0.1; rho = 5000;

tao = 0.05; h = tao * b/m;

length(Kdbmin)

for (p = 1:length(Kdbmin))

Kd0 = Kdbmin(p);

Kprange = logspace(log10(Kd0+0.5),log10(0.95 * K0max(p)),100);

p

for (n = 1:length(Kprange))

Kp0 = Kprange(n);

w = logspace(-5,5,2000);

for (k = 1:length(w))

s = i * w(k);

G = (Kp0 + Kd0 * s)/(1 + s);

F = inv(s + G * (1 + exp(-h * s)));

Tc(k) = max(svd(F * [rho * (m/bˆ2) * inv(1+s); ...

s* G / (s+G * (1 - exp(-h * s)))]));

end

[ind,ind] = max(Tc);

wf = linspace(w(ind) * .95,w(ind) * 1.05,100);

for (l = 1:length(wf))

sf = i * wf(l);

Gf = (Kp0 + Kd0 * sf)/(1 + sf);

Ff = inv(sf + Gf * (1 + exp(-h * sf)));

Tf(l) = max(svd(Ff * [rho * (m/bˆ2) * inv(1+sf); ...

sf * Gf / (sf+Gf * (1 - exp(-h * sf)))]));

end

T(p,n) = max(Tf); pointKd(p,n) = Kd0; pointKp(p,n) = Kp0;

end

end

end
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C.3 Stability Margin Optimization

Optimal gain parameters in Table 3.2 is obtained by using following Matlab code.

clear all

h=0.005; b=0.1;

rho1=0.01; rho2= [10:10:100];

w = logspace(-3,4,10000);

alpha = logspace(-4,-0.01,5000);

for qq=1:length(rho2)

for kk=1:length(alpha)

for k=1:length(w)

e(k)=abs(pi-2 * (atan(w(k))-atan(alpha(kk) * w(k)))-h * w(k));

end

[mine,mm]=min(e);

wo(kk)=w(mm);

x=sqrt(1+wo(kk)ˆ2);

K0(kk)=(1+wo(kk)ˆ2)/(2 * (1-alpha(kk)));

cost(kk)=(1/rho1) * (rho2(qq)/x + (bˆ2/rho2(qq)) * x/(2 * (1-alpha(kk))));

end

[mincost,nn]=min(cost);

KPopt(qq)=(bˆ2/rho1) * sqrt((1+wo(nn)ˆ2)/(2 * (1-alpha(nn))));

KDopt(qq)=(1/b) * KPopt(qq) * alpha(nn);

GM1(qq)=(rho1 * sqrt((1+wo(nn)ˆ2)));

end

[KPopt', KDopt']

C.4 Allowable Perturbations of Delay

Maximum tolerable delay values in Table 4.1 are obtained by using following Matlab

code.
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m = 1; b = 0.1;

Kpl = [17.1,85.0,246,305,310,400];

Kdl = [10.2,15.2,43,55,51,40];

for (k = 1:length(Kpl))

Kp = Kpl(k); Kd = Kdl(k);

w0 = sqrt(2/bˆ2 * (m* Kp-b * Kd)-1);

tao = (pi-2 * (atan(w0)-atan(b * Kd/(m * Kp) * w0)))/w0 * 2* m/b/2;

[ 'for Kp = ' , num2str(Kp), ', Kd = ' , num2str(Kd), ...

'; critic tao = ' , num2str(tao), 'percentage = ' , ...

num2str((tao-0.05) * 100/0.05)]

end

C.5 Allowable m1 and b1 Parameters

Figures 4.6, 4.4, 4.8, and 4.9 are generated by using following Matlab code.

clear all

Kp = 246; Kd = 43; tao = 0.115;

m = 1; b = 0.1; cnt = 1;

w = logspace(-3,3,15000);

for (k = 1:length(w))

wk = w(k); jw = j * w(k);

G2 = (Kp+Kd* jw)/(m * jwˆ2+b * jw);

C1 = (Kp+Kd * jw);

A = ((1+G2-G2 * exp(-2 * tao * jw)) * C1)/(jw * (-1-G2));

b1 = real(A); m1 = imag(A)/wk;

USS(k,:) = [m1,b1];

if (m1 >= 0 & b1 >= 0)

US(cnt,:) = [m1,b1];

cnt = cnt + 1;

end

end

m = US(:,1); b = US(:,2);

mass = [0:0.01:4];

friction = spline(m,b,mass);
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area(m,b);

axis([0 1.5 0 1.5]); grid on;

title([ '\tau = ' ,num2str(tao)])

hold on;

plot(1,0.1, '.' , 'MarkerSize' ,18);

C.6 Robustness Against Unmodeled Dynamics

Figures 4.10, and 4.12 are generated by using following Matlab code.

clear all;

m = 1; b = 0.1; h = 0.05;

Kp = 400; Kd = 40;

w = logspace(-1,3,10000);

for (k = 1:length(w))

wk = w(k); jw = j * wk;

P = 1/(jw * (jw * m+b)); C = Kp + Kd * jw;

T = P* C/(1+P * C); G = jw * P* C;

ft = (1-exp(-h * jw))/jw; f2t = (1-exp(-h * 2* jw))/jw;

W(k) = inv(T/(1+T * exp(-h * jw)) * (1+G * f2t)/(1+G * ft));

end

loglog(w,abs(W), 'LineWidth' ,1.0)

title([ 'Magnitude of Allowable Plant Perturbation' ]);

xlabel( '\omega' )

ylabel( '1/|R(j\omega)|' )

grid on;


