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ABSTRACT

MINIMIZING COMMUNICATION THROUGH
COMPUTATIONAL REDUNDANCY IN PARALLEL

ITERATIVE SOLVERS

FAHREDDİN ŞÜKRÜ TORUN

M.S. in Computer Engineering

Supervisor: Prof. Dr. Cevdet Aykanat

September, 2011

Sparse matrix vector multiplication (SpMxV) of the form y = Ax is a ker-

nel operation in iterative linear solvers used in scientific applications. In these

solvers, the SpMxV operation is performed repeatedly with the same sparse ma-

trix through iterations until convergence. Depending on the matrix and its decom-

position, parallel SpMxV operation necessitates communication among processors

in the parallel environment. The communication can be reduced by intelligent

decomposition. However, we can further decrease the communication through

data replication and redundant computation. The communication occurs due to

the transfer of x-vector entries in row-parallel SpMxV computation. The input

vector x of the next iteration is computed from the output vector of the current

iteration through linear vector operations. Hence, a processor may compute a

y-vector entry redundantly, which leads to a x-vector entry in the following it-

eration, instead of receiving that x-vector entry from another processor. Thus,

redundant computation of that y-vector entry may lead to reduction in commu-

nication.

In this thesis, we devise a directed-graph-based model that correctly cap-

tures the computation and communication pattern for above-mentioned iterative

solvers. Moreover, we formulate the communication minimization by utilizing

redundant computation of y-vector entries as a combinatorial problem on this

directed graph model. We propose two heuristics to solve this combinatorial

problem. Experimental results indicate that the communication reducing strat-

egy by redundantly computing is promising.

Keywords: Sparse matrix vector multiplication, sparse matrix, parallel, replica-

tion, iterative solvers.
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ÖZET

PARALEL YİNELEMELİ ÇÖZÜMLEYİCİLERDE
FAZLA HESAPLAMA İLE HABERLEŞME AZALTIMI

FAHREDDİN ŞÜKRÜ TORUN

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Prof. Dr. Cevdet Aykanat

Eylül, 2011

y=Ax biçimindeki seyrek matris-vektör çarpımı (SMxV) bilimsel uygula-

malarda yinelemeli doğrusal denklem çözümleyicilerinde kullanılan bir çekirdek

operasyondur. Bu çözümleyicilerde, yinelemeler vasıtasıyla yakınsayıncaya kadar

aynı seyrek matris ile SMxV operasyonu tekrarlanarak uygulanır. Paralel or-

tamda paralel SMxV operasyonu matrise ve onun ayrışımına göre işlemciler

arasında haberleşmeye ihtiyaç duyar. Bu haberleşme akıllı ayrışımlar ile

azaltılabilinir. Fakat, biz veri replikasyonu ve fazla hesaplama ile bu haberleşmeyi

daha da fazla azaltabiliriz. Satır-paralel SMxV hesaplamada bu haberleşme x-

vektör elemanlarının transferi yüzünden oluşur. Bir sonraki yinelemenin girdi

vektörü x, bazı doğrusal operasyonlar vasıtasıyla yürürlükteki yinelemenin çikti

vektörü y ile hesaplanır. Bundan dolayı, bir işlemci başka bir işlemciden bir x-

vektör elemanı almak yerine fazla bir y vektör elemanını, ki bu y vektör elemanı

bir sonraki yinelemenin x vektör elemanına öncülük eder, hesaplayabilir. Böylece,

fazla y vektör elemanı hesaplamak haberleşmenin azalmasına yol açabilir.

Bu tezde, biz yukarıda bahsedilen yinelemeli denklem çözümlayiciler için

hesaplama ve haberleşme desenini doğru yakalayan yönlü çizge tabanlı model

tasarladık. Bundan başka, biz fazla y-vektör elemanı hesaplaması sebebiyle

haberleşme azalışını yönlü çizge modeli uzerinde bir kombinatoriyal problem

olarak formülledik. Biz bu kombinatoriyal problemi çözmek için iki tane buluşsal

yöntem önerdik. Deneysel sonuçlar göstermektedir ki fazla hesaplama yaparak

haberleşme azaltma stratejisi gelecek vaat etmektedir.

Anahtar sözcükler : Seyrek matris vektör çarpımı, seyrek matris, paralel, rep-

likasyon, haberlesme azaltımı, yinelemeli çözümleyiciler.
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Chapter 1

Introduction

Matrix-vector multiplication is an essential operation in many algorithms used

in scientific applications. Repeated sparse matrix-vector multiplication (SpMxV)

that involves the same sparse, large, square and rectangular matrix is a kernel

operation in iterative solvers. Therefore, SpMxV plays a crucial role in scientific

computing society. In iterative solvers two fundamental operations are repeatedly

performed at each iteration. These operations are linear operations on dense

vectors and the SpMxV operation of the form y ← Ax, where x and y are dense

vectors, and A is an M x N sparse matrix.

In iterative methods, SpMxV is the fundamental operation that is performed

at each iteration to solve linear systems. Google‘s PageRank algorithm [38], image

deblurring [37], and linear system solutions [6] are some examples for application

areas of iterative methods. The performance of the mentioned methods highly

depends on the performance of the SpMxV operation. If the efficiency of SpMxV

is improved, efficiency of these methods will be improved eventually. Due to the

efficiency concerns, SpMxV is performed in a parallel fashion. Depending on the

matrix and its partitioning, parallel SpMxV necessitates communication among

processors in the parallel system.

The SpMxV parallelization problem is clearly defined in [51]. The distribution

of computational load corresponds to the distribution of nonzeros of the matrix

1



CHAPTER 1. INTRODUCTION 2

among the processors under the owner compute rule [31]. The distribution of

nonzeros can be one dimensional(1D) or two dimensional(2D) [11, 19, 20, 27].

In 1D partitioning, each processor is ensured to own either whole rows or whole

columns. In 1D row-wise distribution, rows of the input matrix are distributed

among processors, the processors hold nonzeros in a row. Similarly, in 1D column-

wise distribution, columns of the input matrix are distributed among processors.

However, 2D partitioning techniques do not maintain any row or column integrity.

Nonzeros of the input matrix can be assigned to processors without regard to the

row or column coherency.

Parallel SpMxV dominates the running time of diverse applications in sci-

entific computing. The performance of parallel SpMxV highly depends on the

computational imbalance and communication overheads. The problem of com-

munication overhead in the system stems from the task dependency and data par-

titioning of the input matrix. There are several graph or hyper-graph partitioning

based models for sparse matrix partitioning in order to minimize task interactions

among parts/processors while also aiming load balance on the parts/processors.

In terms of parallel SpMxV the task interaction refers to message volume that

is sent or received by processors. In this work, we further reduce the total mes-

sage volume in parallel SpMxV by performing some redundant work by means of

replication.

In the literature, replication is a widely used technique for various purposes in

computer science, such as improving reliability, fault tolerance, accessibility, re-

ducing processing, and communication cost. Many disciplines in computer science

benefit from replication scheme through the mentioned methods. The detailed

discussion is provided in Chapter 7.

We propose a new model to minimize the communication overhead of SpMxV.

The proposed model employs the replication technique which is used in many ar-

eas of scientific computing. Besides, our replication methodology exploits the

redundant work technique. It is not guaranteed that, replication reduces the

SpMxV execution time even if communication cost is minimized considerably,
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because of the incurred redundant work. Hence, the expense of performed re-

dundant work should be less than the gain from minimizing the communication

overhead of SpMxV for our model to work effectively. For this reason, the repli-

cation algorithms for SpMxV must be selected wisely so as not to increase the

execution time of SpMxV.

In the framework of this work, our approach is a two phase methodology that

minimizes communication cost in SpMxV through utilizing data replication and

the associated redundant work. In the first phase, the objective is to minimize the

total message volume while keeping the computational load balance on processors.

With the framework of 1D row-wise or column-wise matrix partitioning methods,

the objective is achieved by means of partitioning the matrix. The partitioning

acquired from the outcome of the first phase is an input to the second phase so

that it determines upper-bound on the total message volume while maintaining a

given balance on the computational loads of processors. In the second phase, the

objective is to further reduce the total message volume by performing redundant

works. As the sparse matrix partitioning problem constituting the first phase is

a well-studied problem [21, 10, 54], we focus on the second phase. For this rea-

son, our contribution can be thought as as a post processing to the partitioning

methods. For the second phase, we propose a directed graph replication model

on the partitioned directed graph. We extend the Fiduccia-Mattheyses (FM)

heuristic [16] to achieve replication of vertices on the partitioned directed graph

that is obtained from the first phase. We designate this operation as a repli-

cated FM. The proposed method is performed on each part of the predetermined

partitioned matrix individually. We consider replication problem for each part

independently from each other. Thus, the obtained solution for a part does not

affect the other part‘s solution. So, the proposed approach is very amenable to

coarse-grain parallelization.

Our aim in this work is to reduce execution time of parallel SpMxV via mini-

mizing communication volume by doing redundant work. For this reason we de-

velop two replication algorithms to solve the Min-cut Replication Problem. The

proposed replication algorithms demonstrate significant improvements on com-

munication volume; moreover, this volume improvements induce faster parallel
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SpMxV operation. In Chapter 6, it is shown that the conducted test on various

matrices confirms the completion time of replicated parallel SpMxV is less than

the unreplicated parallel SpMxV.

The organization of the thesis is as follows. Chapter 2 gives background

material on the matrix-vector multiplies, parallel SpMxV, partitioning types for

parallel SpMxV and the Min-Cut Replication problem. The proposed directed

graph model for replication and Min-cut replication formulation are discussed in

Chapter 3. Chapter 4 presents two methods for replication for parallel SpMxV

and implementation details of these methods. Application that the experiments

conducted on is explained in Chapter 5. The experimental results are demon-

strated and discussed in Chapter 6. Finally, the related works are investigated in

Chapter 7.



Chapter 2

Background

2.1 Sparse matrix vector multiplication

Sparse matrix vector multiplication (SpMxV) of the form y = Ax is a kernel

operation in iterative solvers used in solving linear system of equations. So, we

concentrate on the SpMxV on square matrices, because our problem in this work

require square matrix to meet the exact necessities of iterative SpMxV.

Given an n × n sparse square matrix A, a dense input vector x of size n, in

the SpMxV of the form y = Ax, the dense output vector y of size n is computed

as

yi =
n∑
j=1

Aij × xj, for 1≤ i≤n (2.1)

where y is the dense output vector of size n. Figure 2.1 shows the basic matrix-

vector multiplication, i.e., y6 = A6,4× x4 +A6,5× x5 +A6,7× x7 +A6,16× x16. In

this section, we discuss the most used data storage formats and give the details

for a baseline parallel implementation of the SpMxV operation.

5
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Figure 2.1: Basic Matrix Vector Multiplication

2.1.1 Data storage formats

The data storage format plays a crucial role in the performance of SpMxV oper-

ation. The standard dense matrix structures consume large amounts of memory

and computation time when applied to sparse matrices. There are two commonly

used storage formats: the compressed sparse row (CSR) and the compressed

sparse column (CSC) format [42, 4].

The CSR and CSC schemes are used to reduce storage complexity of a

sparse matrix by using special data structures. These schemes contain three

one-dimensional arrays in order to store the matrix efficiently. The two of those

arrays are in the size of the number of nonzeros on the matrix, while the other

vector is in the size of one plus either the number of rows or columns in the

matrix. The CSC scheme organizes the nonzeros of the matrix according to the
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A =


4 0 3 0 6
0 0 2 2 0
9 8 5 0 0
5 2 0 0 1
1 0 3 5 0


val =

[
4 3 6 2 2 9 8 5 5 2 1 1 3 5

]
colptr =

[
1 3 5 3 4 1 2 3 1 2 5 1 3 4

]
rowind =

[
1 4 6 9 12 15

]
Figure 2.2: Example of CSR storage format.

columnwise order, whereas the CSR scheme organizes the nonzeros according to

the rowwise ordering.

The CSR format is reported to be the most common data structure used to

store a sparse matrix for the SpMxV operation [42]. So we focus on the parallel

SpMxV operation utilizing the CSR storage format. In this format, a sparse

matrix is represented by three arrays: val, colptr, rowind. Nonzeros in each

row of a sparse matrix are kept contiguously in a dense array val. The colptr

array holds column index of each nonzero. The rowind array stores the starting

point of each row of the sparse matrix in val and colptr. The rowind array is

used to access both val and col-ptr arrays. Algorithm 1 shows basic SpMxV

operation y ← Ax, where A is hold in the CSR format.

Algorithm 1 SpMxV using CSR format

Require: val, colptr, rowind arrays of A, input vector x, output vector y
1: for i← 1 to n do
2: y[i]← 0
3: for j ← rowind[i] to rowind[i+1]−1 do
4: y[i]← y[i] + val[j]× x[colptr[j]]

return y
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2.1.2 Parallel implementation

In the literature there are various matrix partitioning schemes for parallel SpMxV;

namely 1D rowwise [10], 1D columnwise , 2D checkerboard and 2D jagged [11].

In this work, we focus on parallel SpMxV based on 1D rowwise partitioning.

The parallel SpMxV algorithm based on 1D rowwise partitioning is referred to

as the row parallel SpMxV algorithm [53, 52]. The communication requirement

of the row-parallel SpMxV algorithm can be explained by considering the K×K
block structure induced by a K-way rowwise partition of matrix A. A K-way

rowwise partition of a given matrix can be divided as inducing a symmetric

partial permutation on the rows and columns of matrix A to induce a K-way

block structure as follows [53, 52].

All rows assigned to part k are permuted, after the rows assigned to k − 1,

where the permutation of rows in a part are arbitrary. A matrix parti-

tion/permutation is said to be symmetric, if column permutation conform the row

permutation. So, both y[i] and x[i] are assigned to the same part, for 1 ≤ i ≤ n.

The symmetric partition is preferred in order to avoid communication during

linear vector operations, so the input vector x and the output vector y are par-

titioned conformably with the partitions on rows. Figure 2.3 illustrates such a

partition. In the figure, the block Ak` holds the size of nk×n`, where
∑K

k=1 nk = n.

PAP T = ABL =


A11 A12 ... A1K

A21 A22 ... A2K

...
...

. . .
...

AK1 AK2 ... AKK


Figure 2.3: K ×K block structure of A

Let yk and xk respectively denote the output and input vector parts corre-

sponding to the row stripe Ak∗ and A∗k of ABL In the row parallel algorithm,

each processor Pk holds the row stripe Ak∗ of ABL and performs the computation

yk = Ak∗×x. Suppose that A is a row-wise partitioned matrix which is multiplied

by a input vector x of the form y ← Ax. In a rowwise partitioning, the processor
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Pk is responsible for computing the subvector yk of size mk, i.e y = [tT1 , y
T
2 ...y

T
K ]T .

The processor Pk keeps the subvector xk of size nk conforming to the partition

on the input vector x = [xT1 , x
T
2 ...x

T
K ]T . According to these partitions the matrix

A is permuted into the block structure. Then the following steps are executed at

Pk for the row-parallel y ← Ax:

1. For each nonzero off-diagonal block A`k, send sparse vector x̂`k to processor

P`, where x̂`k contains only those entries of xk corresponding to the nonzero

columns in A`k.

2. Compute the diagonal block product ykk = Akk × xk, and set yk = ykk .

3. For each nonzero off-diagonal block Ak`, and receive x̂k` from processor P`,

then compute y`k = Ak` × x̂k` , and update yk = yk + y`k.

In row parallel SpMxV the first step of algorithm called as expand phase.

Before the scalar products at the second step, expand operations are done in

each processors. In the expand phase, all x-vector entries to be sent by a given

processor to another processors are sent in a single message.

Figure 2.4(b) illustrates the sample square matrix A with 4×4 block structure

of the size 16 × 16. The horizontal solid lines separate row partitions of A and

the dashed lines separate column subvectors. In Figure 2.4(b), P1 sends x̂21 =

(x11, x14) to P2 due to the nonzero columns in A21. Those x-vector entries are

needed by P2 to compute y5 and y1. Similarly, P1 sends x̂31 = (x1, x11) to P3

to compute y9, y10 and y4. As a result, P1 sends two messages with the total

communication volume of four.

2.2 Message Passing Systems

Interprocessor communication is done via message-passing procedures in parallel

applications. Since the communication overhead, which arises when the parallel

application operates, stems from the the message passing performance of the
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Figure 2.4: Initial and permuted matrix A

application and it is generally evaluated in units of time. The equation of message

size for interprocessor communication [51], the message transfer time Tcomm, is

given as

Tcomm = tsu + ttr ×m (2.2)

where tsu is the start-up time (latency), ttr is the per word transfer time between

the message transmits from the processor sending a message to another processor

receiving the message, m is the message size in terms of bytes. In the framework

of this thesis, we try to minimize the total message volume in parallel system. In

other words, we try to reduce the package size of transmitting data m.

2.3 Min-cut replication problem

Min-cut replication (MCR) problem is first defined by Hwang and El Gamal [23]

for the formulation of replicating logic with the aim of reducing the pin count and

the wiring density in partitioned logic networks. Here, we redefine the problem

conforming the needs of our formulation of symmetric matrix partitioning with

replication. First of all, we give the K-way replicated partition definition as
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follows.

Definition 1 (K-way replicated partition). Given a directed graph G, Γ(V) =

{Uk ⊆ V : 1 ≤ k ≤ K} defines a K-way replicated partition of G, if the union of

parts Uk is equal to the set V of all vertices, i.e.,
⋃K
k=1 Uk = V.

v7

v4

v8

v6

v9

v1

v5

v1v3

U3

U2

v7

v2
v2

U1

Figure 2.5: 3-way Replicated Partitioned Directed Graph

The basic replicated partitioned directed graph example is illustrated in Figure

2.3. The directed graph is partitioned into 3 parts where parts are not disjoint,

some vertices can be found in multiple parts. In the figure v2, v7, and v1 are

replicated in different parts. The incoming and outgoing edges of the replicated

vertices are also replicated.

Note that any K-way partition of vertices can also be considered as a K-way

replicated partition where the parts are pairwise disjoint. However, in partitioning

with replication the parts do not have to be pairwise disjoint. In an MCR problem

instance, each vertex vi ∈ V is associated with a weight wi. The total weight Wk

of a part Vk is computed as the sum over the weights of the vertices in Vk, i.e.,

Wk =
∑
vi∈Vk

wi, ∀ 1≤k≤K.
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Moreover, let Ŵ denote the upper bound on the total weight that any part can

have. Given these, the MCR problem can formally be defined as follows.

Problem 1 (Min-cut replication (MCR) problem [23]). Given a directed graph

G, a part count K, an upperbound Ŵ , and a vertex partition without replication

Π = {Vk ⊆ V : 1 ≤ k ≤ K}, find a collection of sets of vertices, {Sk ⊆ V−Vk : 1 ≤
k ≤ K} such that the total weight of no part of the resultant replicated partition

Γ exceeds Ŵ while minimizing the cutsize ζ(Γ), where

Γ = {Vk ∪ Sk : 1 ≤ k ≤ K}.

Here, Sk denotes the set of vertices to be replicated in part Uk of Γ(V) such

that Uk = Vk ∪ Sk.

v7

v4

v8

v6

v9

v1

v5

v3

V3

v2

V2

V1

(a) The directed graph G with partition Π

v7

v4

v8

v6

v9

v1

v5

v1v3

U3

U2

v7

v2
v2

U1

(b) The directed graph G with replicated

partition Γ after Min-Cut replication

Figure 2.6: 3-way Replicated Partition

The initial directed graph is shown in Figure 2.6 where the graph is partitioned

into 3 parts. Figure 2.6(b) shows a 3 way replicated partitioned graph after Min-

Cut replication is performed. v2 and v7 are replicated to U1 and v1 is replicated

to U2.



Chapter 3

Min-cut Replication Formulation

in Row Parallel SpMxV

3.1 Replication in row parallel SpMxV

Typically, the rows are partitioned and corresponding columns are placed sym-

metrically among K processors each of which is responsible for computing a dis-

joint subset of y-vector entries and holds corresponding subset of x-vector entries

in row parallel SpMxV. In this thesis, our concern is parallel iterative solvers,

where x-vector entries that a processor holds are computed using corresponding

y-vector entries in the previous iteration. The symmetric replication implies that

rows and columns of a processor are selectively and symmetrically replicated to

other processors. A partitioned matrix with symmetric replication is said to be

a symmetric replicated partitioned matrix. We can permute such a matrix using

a (n+ r)× n replicated partitioning matrix Q, where r reflects to the number of

replicated rows/columns, as follows:

13
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QAP T = ArBL =


Ar11 Ar12 ... Ar1K

Ar21 Ar22 ... Ar2K
...

...
. . .

...

ArK1 ArK2 ... ArKK

 , (3.1)

QAQT = AγBL =


Aγ11 Aγ12 ... Aγ1K

Aγ21 Aγ22 ... Aγ2K
...

...
. . .

...

AγK1 AγK2 ... AγKK

 . (3.2)

Here, ArBL refers to the scenario that only the rows are replicated, whereas AγBL

refers to that both rows and columns are replicated. Let yγk and xγk denote the

output and input subvector corresponding to the row stripe Aγk∗ and the column

stripe Aγ∗k of AγBL, respectively. Note that the input subvector xk still denotes

the subvector corresponding to the column stripe A∗k of ABL as well as to the

column stripe Ar∗k of ArBL. The row parallel SpMxV operation with row replicated

performs as follows.

1. For each nonzero off-diagonal block Ar`k, send sparse vector x̂`k to processor

P`, where x̂`k contains only those entries of xk that are not replicated in xγ`

and corresponding to a nonzero column in Ar`k.

2. Compute the diagonal block product ykk = Aγkk × xγk, and set yγk = ykk .

3. For each nonzero off-diagonal block Ark`, receive x̂k` from processor P`, then

compute y`k = Ark` × x̂k` , and update yγk = yγk + y`k.

Figure 3.1 provides an illustration of symmetric replication scenarios. Figure

3.1(a) shows the illustration of ArBL where only rows row10 and row15 are repli-

cated, whereas 3.1(b) demonstrates the scenario of ArBL where both rows row10

and row15 and columns col10 and col15 are replicated.

The modified multiplication scheme entails a reduction in communication vol-

ume due to transfer of x-vector entries at the expense of a redundant computation
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Figure 3.1: Two Scenarios for Replicated Partitioned Matrix

of some y-vector entries. In particular, if we replicate row ri such that yi ∈ yπ`
to a processor Pk such that k 6= `, we may obtain a reduction in the commu-

nication volume, as P` does not need to send the corresponding x-vector entry

xi ∈ xπ` to processor Pk. Figure 3.1(b) provides an illustrative example to clarify

the reduction in communication volume. In the figure, the replication of x10 and

x15 incur the data replication of row10 and row15 and redundant computations

of y10 and y15. Before replication (Figure 3.1(a)), P1 incurs communication for

three x-vector entries x10, x4, x15 to compute y-vector entries y2, y11, y3, y14.

Although the replication of x10 seems to reduce the communication by one, it

incurs extra communication of x6 due to redundant computation of y10. So, after

the replication of x10, P1 requires three x-vector entries x4, x15, x6 to compute

y-vector entries y2, y11, y3, y14 and x10. Hence, the total communication is not

changed after the replication of only x10. If P1 replicates x15 too, the communi-

cational gain is reduced by one, since the computation of y15 does not incur extra

communication according to the situation after the replication of x10. Henceforth

P1 requires two x-vector entries x4, x6 to compute y-vector entries y2, y11, y3, y14,

y10 and y15.
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The problem that we target in this thesis is to find a replication pattern

of rows/columns such that the communication volume among the processors is

minimized while maintaining that the workload of no processor exceeds a given

workload capacity.

3.2 Min-cut replication formulation

We model a given square matrix A by a directed graph G(A) and formulate the

symmetric replication problem as a combinatorial optimization problem on G(A).

We construct the directed graph G(A) = (V , E) as follows. For each row/column

ri/ci in A, we introduce a vertex vi in V . Similarly, for each nonzero aij, we

introduce a directed edge eij = (vi, vj) in E . In the directed graph, each vertex

vi is associated with a weight wi which represents the workload, i.e., the number

of nonzeros at row ri, that is wi = nnz(ri). Figure 3.2(b) illustrates the directed

graph G(A) of a given A.

We formulate the symmetric replication problem as min-cut replication prob-

lem (see Section 2.3) where the cutsize ζ(Γ) of a K-way replicated partition

Γ = {V1,V2, . . . ,VK} is defined as

ζ(Γ) =
K∑
i=1

|β(Vi)| (3.3)

where β(Vi) refers to the border of Vi as

β(Vi) = {u ∈ V−Vi : Adj(u) ∩ Vi 6= ∅} (3.4)

The following figures demonstrate fundamentally all phases of our approach.

The given matrix A and its directed graph representation G are given in Figures

3.2(a) and 3.2(b), respectively. The partitioned matrix A and the illustration

of G with a partition Π = {V1, V2, V3} are stated in Figures 3.2(c) and 3.2(d),

respectively. The cutsize of partition Π is calculated as follows;

β(V1) = {v4, v10}, β(V2) = {v11, v12}, β(V3) = {v2, v8, v9, v11}
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ζ(Π) =
3∑
i=1

|β(Vi)| = 8 (3.5)

The cutsize value corresponds to total communication volume in row paral-

lel SpMxV operation. In this manner, the communication pattern of matrix A

with a partition Π will be; P1 receives two x-vector entries x4 and x10, similarly

P2 and P3 receives two and four x-vector entries, respectively. Thus, the total

communication volume is eight. In parallel systems, the total received message

volume is equal to the total sent message volume, naturally. Hence, if the total

received message is minimized, the total sent message volume is also minimized.

We discuss the volume improvement in terms of receiving messages volume in

order to refer cutsize exactly.

Finally, the directed graph G with the replicated partition Γ = {U1,U2,U3}
and it’s matrix representation are given in Figures 3.2(d) and 3.2(f). With repli-

cation of three vertices, the cutsize of replicated partition Γ become six. So, the

cutsize of the graph with partition Π is reduced from eight to six via symmet-

ric replication. Similarly, the total communication volume will be eight messages

along with the communication pattern of matrix A with a partition Γ; P1 receives

two messages v4 and v10, similarly P2 and P3 receives one and three messages,

respectively.

β(U1) = {v4, v10}, β(U2) = {v11}, β(U3) = {v1, v9, v11}

ζ(Γ) =
3∑
i=1

|β(Ui)| = 6 (3.6)
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Chapter 4

Min-cut Replication Heuristics

4.1 Solution framework

We solve a given min-cut replication (MCR) problem instance using K indepen-

dent minimum border subset (MBS) problem instances. Prior to the definition

of the MBS problem, we define the border size b(V ′) of a vertex subset V ′ ⊆ V of

a given directed graph G(V , E) as

b(V ′) = |{vi ∈ V−V ′ : Adj(vi) ∩ V ′ 6= ∅}|.

Problem 2 (Minimum Border Subset (MBS) Problem). Given a directed graph

G(V , E), a capacity C, and a fixed vertex subset F ⊆ V, find a vertex subset

S ⊆ V−F such that
∑

vi∈S wi ≤ C, while minimizing the border size b(F ∪ S).

In an MCR problem instance, we are given a directed graph G, an upper-

bound Ŵon part sizes, and a vertex partition Π = {V1,V2, . . . ,VK}. For each

part Vk ∈ Π, we construct an MBS problem instance (G, Ck,Fk) where Ck =

Ŵ −∑vi∈Vk wi and Fk = Vk. After solving K MBS instances separately, we

obtain a solution Sk for the instance corresponding to each part Vk ∈ Π, where

Sk refers to replication set to the kth part. As a result, we construct the replicated

partition Γ as

Γ = {Vk ∪ Sk : 1≤k≤K}.

19
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We develop two replication algorithms to solve the MBS problem. First algo-

rithm SCC-based is more simple than second algorithm FM-Based. FM-based al-

gorithm works more wisely than SCC-based algorithm. The proposed algorithms

demonstrate improvements on communication volume, moreover this volume im-

provements induce faster parallel SpMxV operations.

4.2 SCC-based coarse-grain heuristic

This algorithm utilizes a three phase approach for solving the MBS problem. In

the first phase, we exclude the fixed vertices in F from the given directed graph

G and form the vertex-induced subgraph G[V −F ]. In the second phase, we find

SCC’s of G[V−F ] and construct the component graph whose vertices correspond

to the SCCs of G[V − F ]. Note that the component graph of G[V − F ] is a

directed acyclic graph (DAG) [12]. Thus, we run a topological sort algorithm on

the component graph. Finally, in the third phase, we replicate SCCs according to

the topological sort order in F . Details of the algorithm and the technical terms

are expressed in this section.

4.2.1 Background

A Strongly connected component (SCC) is a maximal subset of mutually reachable

vertices[13]. Figure 4.1(a) shows the SCCs on the directed graph. A topological

ordering of a directed graph is a linear sequence of its vertices such that the

following condition is hold; for every edge (u, v), u comes before v in the ordering

[13]. A topological ordering is available if and only if directed graph has no any

cycle, in other words directed graph should be DAG [12, 47, 5]. It is possible that

there can be multiple solution for the topological ordering of a single DAG.
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(a) SCCs of the directed graph
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(b) Possible Topological Order of the directed graph

Figure 4.1: Construction of SCCs and Topological Ordering of Components
Graph

4.2.2 Algorithm

The MBS Problem is solved for each part of the directed graph partition inde-

pendently, as stated in Chapter 2.

Algorithm 2 shows the steps of the SCC-based algorithm. The first step of

this algorithm is to remove the fixed vertices subset F and all its edges from

the directed graph G. F refers to the part Vk, which vertices to be replicated.

In line 2, strongly connected components (SCC) are constructed in the vertex

induced subgraph G[V−F ]. After the SCCs are constructed, the directed graph is

transformed into components graph GC which is coarser than the initial graph. In

line 3, this components graph GC has the properties of a DAG. The resulted graph

GC is ordered by the topological ordering in order to sequence the components

graph GC . The first two phases is done up to this step.

As a third phase of the algorithm, the replication subset S is chosen according

to the topological order, in line 6. When replicating a component, the component
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Algorithm 2 SCC-Based((G, Ŵ ,F))

1: G ′ ← G[V − F ]
2: GC ←ConstructSCCs(G ′)
3: List←TopologicalSort(GC)
4: W (S)← 0
5: repeat
6: S ← S ∪ Ci, where Ci ∈ List[top]
7: Remove Ci from List
8: W (S)← W (S) +W (Ci)

9: until (W (F) +W (S)) < Ŵ
10: Pk ← Pk ∪ S
11: return S

which has no incoming edge from any components is selected automatically in the

way of the topological order. So, the component with the in-degree value is equals

to zero is replicated at each iteration. In this way the algorithm guarantee that

replicating a component cannot cause increasing of the border, namely does not

incur any additional incoming edge. Moreover, minimization on the border size

is expected eventually. The weight of the replication subset is calculated after a

component is replicated in line 8. The replication procedure is repeated until the

the summation of weight of fixed vertices and replication subset (W (F) +W (S))

are higher than the Ŵ . Finally, we find the replication subset S that possibly

minimize the border of F .

4.2.3 Implementation

We implement a linked list data structure to store topological order of compo-

nents. The weights of each component is equal to the sum of the weight of all

vertices in the component. The experimental results of this algorithm will be

given in Chapter 5.
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4.3 Replicated Fiduccia - Mattheyses Algo-

rithm

In this algorithm, we modify the widely used iterative heuristic Fiduccia -

Mattheyses [16] (FM). The FM heuristics is used generally for graph and hy-

pergraph partitioning. The FM algorithm provides an efficient solution to the

problem of task or network partitioning [21, 44, 10] by minimizing the inter-part

connections of the partition. The FM algorithm runs in linear time in general

with proper choice of data structure, such as bucket list and vertex locking. The

proposed algorithm is expressed in details in the following sections.

4.3.1 Background

Iterative improvement heuristics based algorithms are widely used in graph and

hypergraph partitioning. The quality of a random initial partition is improved

iteratively with using these heuristics. The survey [2] discusses some of these

heuristics in detail. Most of the algorithms exploit Kerninghan-Lin (KL) [28] and

Fiduccia-Mattheyses (FM) [16] heuristics which are used to improve the quality

of a given bipartition. The KL-based algorithms proceed in a series of passes and

swap the vertex pairs in different parts of the bipartition at each pass. However,

FM-based algorithms use single vertex moves from one part to the part. As an

iterative improvement heuristic, FM is widely used due to its better running time

performance. FM heuristics operate with multiple passes over all vertices. Each

pass consists of multiple iteration of vertex moves. All vertices are unlocked at

the beginning. The vertex is locked after moving to the other side and the gain

value of its unlocked neighbours are updated. The improvement in the cutsize

is stored at the end of each iteration. When all vertices are locked or there is

no feasible move, the pass terminates and the bipartition is selected for the next

pass by choosing the iteration with the highest improvement in the cut size. The

passes continue until the improvement attained in a pass drops below a predefined

threshold.
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There are some techniques that improve the quality of FM heuristics further.

The work [30] introduces the look-ahead feature to select vertex for the situation

when the tie-break occurs, in other words if there are more than one vertex with

highest gain value. The quality improvements of different tie-breaking strategies

and data structures are investigated by [18]. The probabilistic gain computation,

which is capable of estimating the future implications of moving a vertex, is

proposed by [15]. The techniques proposed by [1] can make FM heuristic run

faster. Two of these techniques are; using only boundary vertices to move and

stops when no further improvement achieved in a pass.

In our algorithm we adopt the FM heuristics for directed graph. Our aim

is to minimize the border as mentioned in the MBS problem. We also have two

different part but we called them as inside part I, and outside. The gain of each

vertex is calculated according to the improvement in the cutsize to be obtained

if that vertex is replicated to I. Note that I is equals to F at the beginnig and

it grows with the replicated vertices. Outside part holds the initially unlocked

vertices that can be replicated to I. As mentioned earlier, we solve the problem

for each part of matrix separately and independently.

4.3.2 Algorithm

The following data structures are introduced for the proper execution of our

algorithm. There are 2 color of array types of data structures, BLACK and

RED, to define the gain of each vertex in FM procedure.

BLACK value of vertex states that the vertex is in border. In other words,

if BLACK value is greater than zero BLACK[vi] > 0, vertex vi has a outgoing

edge into part I and the vertex vi has a potential to reduce the border size with

replication.

Black set of a vertex v:

BLACK(v) = {(v, w) ∈ E : w ∈ I} (4.1)
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RED value of vertex represents the number of vertices that increase the bor-

der size. In other words, RED value of vi is the number of new vertices that

become the boundary vertex after replication of vertex vi. If RED[vi] > 0 then

the replication of vi can cause increase in the border size and brings extra com-

municational cost.

Red set of a vertex v:

RED(v) = {(w, v) ∈ E : w 6∈ I, BLACK(w) ⊆ {v}} (4.2)

Delta function is needed because even if a vertex vy has more than one edge to

vz where vz ∈ I, the communication gain is not greater than one after replication

of vy. Moreover, only BLACK value of vertices is exposed to delta function, not

Red values.

Delta function for a set S:

δ(S) =

1 S 6= ∅
0 otherwise.

(4.3)

Primary Gain of a vertex v:

g(v) =

δ(BLACK(v))−RED(v) v 6∈ I
RED(v)− δ(BLACK(v)) otherwise

(4.4)

Primary gain of a vertex meets the exact difference in the border size after

replication that vertex. Positive gain value of a vertex means that border size

reduces by the respective replication. When replicating a vertex, primary gain

can get a value in interval [−N, 1] , where N is the number of columns or rows in a

square matrix. Similarly, when unreplicating a vertex, which is already replicated

in one of the previous phases of FM, primary value can get a value in interval

[N,−1].

In our FM algorithm, we implement two priority queues which are keyed with

respect to primary gain values. These queues hold vertices with primary gain

values for two possible moves which are replicating and unreplicating moves.
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Secondary gain value is exploited because of the solution of tie-breaking prob-

lem. For secondary gain we implement a special priority queues which are keyed

with 2 cascaded values, first step is primary gain and the second step is secondary

gain. Suppose that two vertices have the same primary gain in the priority queue,

in that situation the vertex that has a higher secondary gain will be selected for

replication. Thus, the tie breaking problem in the priority queues are minimized,

as increases in the effectiveness of the FM algorithm are anticipated. In equation

4.5, delta function is not applied on the BLACK values of vertices. In this way

the vertices that have more outgoing edges on the border are selected instead of

the vertices that has the same primary gain but less outgoing edges to the other

part.

Secondary Gain of a vertex v:

h(v) =

BLACK(v)−RED(v) v 6∈ I
RED(v)−BLACK(v) otherwise

(4.5)

Algorithm 3 is repeated in the beginning of each passes of the our FM. The

algorithm traverses each vertex only once and initializes the BOUND array with

to NIL. In line 4, every vertex w that has an incoming edge from v is examined. If

the vertex w is in part(I), the BLACK[v] is increased by one. Then, BOUND[v]

is adjusted according to the value of BLACK[v]. At last, in line 12 IncreaseReds

procedure is called for each vertex that is not inside the part. With completion

of Algorithm 3, it is very easy to calculate the gains of vertices via BLACK and

RED data structures as in equations 4.4 and 4.5.

Algorithm 4 consists of two procedures, IncreaseReds and DecreaseReds, which

are the auxiliary procedures that are reused multiple times in the gain calculation

of our FM algorithm. IncreaseReds procedure increases the RED value of each

vertex according to its neighbourhood with the parameter vertex v. When the

BLACK[v] is zero, this means that v has no edge to the other part, if there is

a vertex w that has an incoming edge from v, that vertex may cause increase in

the border size after replication w. Because, replication of w incurs extra vertex

on the border of I due to v.
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Figure 4.2: Black, Red and Gain values of v9 for different situations.
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Algorithm 3 Initializing the Gains

1: procedure InitGains
2: for each v ∈ V do
3: BOUND[v] ← NIL
4: for each (v, w) ∈ E do
5: if w ∈ I then
6: BLACK[v] = BLACK[v] + 1
7: if BLACK[v] = 1 then
8: BOUND[v] ← w
9: else

10: BOUND[v] ← NIL

11: if v 6∈ I then
12: IncreaseReds (v)

The data structure of BOUND is meaningful when BLACK[v] = 1. At that

time v is bounded with a vertex w, w ∈ I, related to the border size reduction.

Unreplication of w may change the gain value of v. Suppose BLACK[v] = 1 and

BOUND[v] = w and w must be in I, w ∈ I, and the gain of v is equals to zero.

In this situation, v is in the set of RED[w], after replication of v, v will be in I,

v ∈ I, and the RED[w] is decreased by one in according to the BOUND[v] = w.

Algorithm 4 Auxiliary Procedures

1: procedure IncreaseReds(v)
2: if BLACK[v] = 0 then
3: for each (v, w) ∈ E do
4: RED[w] = RED[w] +1

5: if BLACK[v] = 1 then
6: RED[ BOUND[v] ] = RED[ BOUND[v] ] + 1

7:

8: procedure DecreaseReds(v)
9: if BLACK[v] = 0 then

10: for each (v, w) ∈ E do
11: RED[w] = RED[w] -1

12: if BLACK[v] = 1 then
13: RED[ BOUND[v] ] = RED[ BOUND[v] ] -1

MoveOut2In refers to replication move of a vertex from outside of the part

to inside of part I, whereas MoveIn2Out refers to unreplication move of the

replicated vertex from inside of the part to the outside. The basic steps of our
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algorithm are given in Algorithm 5. The algorithm continues until the obtained

gain is below some threshold value after a pass. We create two priority queues for

the moves for MoveOut2In and MoveIn2Out, called as unreplicated and replicated,

respectively.

Algorithm 5 Basic Steps of Our Algorithm

1: while there are passes to perform do
2: Initialize gains queues for replicated and non-replicated
3: while there is any valid operation do
4: if MoveOut2In not feasible then
5: MoveIn2Out
6: else if MoveIn2Out and MoveOut2In feasible then
7: if unreplicated.val > replicated.val then
8: MoveOut2In
9: else

10: MoveIn2Out
11: else if MoveIn2Out not feasible then
12: MoveOut2In
13: else
14: break

If we look at Algorithm 6 in detail, the MoveOut2In procedure begins with

the addition of the vertex v into the inside area I. The DecreaseReds procedure

makes proper adjustment on the RED values of the neighbour vertices of v. In

line 4, for each vertex u that has outgoing edges to v is traversed because some

vertices may reside at the border after v is replicated. Figure 4.3.2 illustrates

this condition; before replication of v9 vertex v4 does not reside at the border

however after v9 is replicated, v4 becomes a border vertex. If such a situation

exists, the RED value of v9 is increased due to increasing the border size because

of v4. Since v4 resides at the border, the outgoing edges from v4 does not incur

any increase on the border size, the DecreaseReds performed for v4 in order to

decrease proper red values of its neighbours. In the rest of lines BLACK and

BOUND values are assigned. The BOUND array is necessary because suppose

the BLACK value of a vertex vi is equal to 1 and its Bound value is vj, vj stays at

I, when vj is unreplicated then vi does not stayed at the Border anymore. Thus,

the outgoing edges from the vertex vi causes increases the border size.
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Figure 4.3: After Replication of v9 into inside area I

Algorithm 6

1: procedure MoveOut2In(v)
2: I ← I ∪ {v}
3: DecreaseReds(v)
4: for each (u, v) ∈ E do
5: if u 6∈ I then
6: if BLACK[u] = 0 then
7: RED[v] = RED[v] + 1

8: DecreaseReds(u)

9: if BLACK[u] = 0 then
10: BOUND[u] ← v

11: if BLACK[u] = 1 then
12: BOUND[u] ← NIL

13: BLACK[u] = BLACK[u] +1

The unreplication procedure, called as MoveIn2Out in our algorithm, is de-

scribed in the algorithm 4.3.2. It is a dual procedure of MoveOut2In. First we

exclude the unreplicated vertex v from the inside area I. Red values of neigh-

bours of the unreplicated vertex is updated properly in IncreaseReds procedure.

Then the vertices that has outgoing edge to replicated vertex v is scanned. For

each vertex u that (u, v) ∈ E, the black values of u is decreased. In line 6, if the

vertex u has no outgoing edge to I, which means BLACK[u] = 0, the vertex u

does not hold any boundary vertex in I, BOUND[u] = NIL. If BLACK value

of u decreased to one BLACK[u] = 1, then the vertex u has a critical boundary

vertex. The BOUND[u] is scanned, and assigned in line 9-12. Updating gains



CHAPTER 4. MIN-CUT REPLICATION HEURISTICS 31

Algorithm 7

1: procedure MoveIn2Out(v)
2: I ← I − {v}
3: IncreaseReds(v)
4: for each (u, v) ∈ E do
5: BLACK[u] = BLACK[u] -1
6: if BLACK[u] = 0 then
7: BOUND[u] ← NIL

8: if BLACK[u] = 1 then
9: for each (u,w) ∈ E do

10: if w ∈ I then
11: BOUND[u] ← w
12: break
13: if u 6∈ I then
14: if BLACK[u] = 0 then
15: RED[v] = RED[v] -1

16: IncreaseReds(u)

of the neighbour vertices are completed with the line 13-16. Basic illustration of

directed graph is shown in Figure 4.3.2. The gain of v9 is equal to one before

replication, this means that, after the replication of v9 the border size is reduced

by one. The patterned vertices demonstrate the border of the part I. With the

replication of v9, the border size is reduced from three to two. The updated gain

of v9 is equals to -1, since the unreplication of v9 cause increase in the border size

by one.
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4.3.3 Implementation

We maintain two priority queues which are keyed with respect to the gain values

of the vertices. For efficiency objectives, the priority queues are implemented as

buckets lists . With bucket lists data structure, we can reduce the time complexity

of a single pass of the FM algorithm to linear in the size of the directed graph.

Three different techniques are applied when selecting vertices for the solution

of tie-breaking problem. These techniques are last-In first-out (LIFO), first-in

first-out (FIFO) and random selection. For proper execution bucket based of

priority queue implementation is needed [18]. In LIFO methods, the neighbour

vertices of the moved vertex stay in front of the other vertices in the same bucket.

This method works clustering-like move and replication possibility of the neigh-

bour vertices of the moved vertex is increased. FIFO method is a dual operation

of LIFO. The neighbour vertices of the moved vertex locate at the end of the

queue in the same bucket. In random selection technique, after updating the

gain values of the neighbour vertices of the moved, the location of neighbour

vertices remain unchanged.

In well-known move based FM algorithms, the vertex is locked after moving to

the other part in order to avoid futile moves. In our algorithm we also use locking

mechanism; each vertex can move only once during a pass of the replication

selection algorithm. After a vertex is moved from outside of the part to inside of

the part or from inside of the part to outside of the part, that vertex is locked

until the current pass of FM procedure is completed. (We have tried two or more

move allowing locking methodologies but these experiments did not give us better

results. )

It is clear that the smaller number of replica for the same results is better since

replicas refer to the redundant work to be performed by the respective processor.

Unlikely the typical FM heuristic, our algorithm obtains the iteration with the

maximum gain and also the minimum number of replicated vertices at the end

of phases. We called that technique as Min-Rep. This technique has several

advantages for our problem. First, we try to minimize the redundant works while
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the border size remains identical. The second advantage is, the algorithm can

minimize the border size further by minimizing the total weight of replica subset

S, which means, reducing the weight of S permits doing more replication for the

same capacity threshold.

The algorithms that are developed for the proposed model can not encode the

increase in the number of messages. In some problems the number of message is

an essential problem and may be more costly than the message volume. Thus, we

implement an auxiliary variable which stores that after replication that vertex,

whether the number messages is increased. If replication procedure cause an

increases in the number number of messages, the replication operation of that

vertex is ignored.



Chapter 5

Row Parallel SpMxV with Row

Replication

The problem of maximizing the efficiency of Parallel SpMxV, is one of the problem

that numerous scientists work on to improve the efficiency further. For this

reason, parallel SpMxV libraries in the literature are investigated according to

their compatibility, ease to use, and most importantly effectiveness. We are

inspired from the parallel SpMxV library of [53]. The modifications and additions

to this library are given the following section.

5.1 Data storage modifications

Typically part vector of partitioning tool for 1D row-wise partitioning is a one

dimensional array where the order of array identifies corresponding row and value

in each entry represents which part to hold this row. In our algorithm, we proposes

a new partition vector structure for row replicated SpMxV, called replicated part

vector. This vector can store two dimensional array which stores the default

partition in the first columns. The other columns are used for the part where the

corresponding row is replicated.

34
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Due to redundant works, multiple computation of y vector elements, in order

to reach true result the output vector of SpMxV should be processed. While

the output vector y of unreplicated SpMxV is of size N , the result vector y

of replicated SpMxV is a vector that is greater than unreplicated result vector,

(N + rep) because of the redundant computation of y elements. Similarly, the

input vector x entries are replicated to some processors. The same x vector is

stored in different processors. The distribution of x vector and gathering the y

vector elements are added to the library [53].

5.2 Implementation details

Row replicated row parallel SpMxV is implemented using the library for parallel

SpMxVs [53]. This library implements both row and column-parallel SpMxV al-

gorithms. To cast our model on SpMxV we have modified the library efficiently.

The modified algorithm is capable of computing the same y-vector entry in mul-

tiple processor and capturing the communication minimization exactly in parallel

SpMxV. The necessary modifications for this requirements is briefly expressed in

the following.

1. Providing partitioning indicators on x and y vector. The partitioning indi-

cators are read by the master processor that broadcast them to the other

processors. Each processor gets two arrays, one for input part vector and

another for output part vector of sizes M and N , respectively. In this algo-

rithm the vector that indicates the input partitioning called as inpart vector,

similarly output part vector called as outpart vector. In our modification,

the inpart and outpart vectors are the same for a processor since we just

pertain square matrices with symmetric partitioning. However, there is no

global inpart vector as in the original algorithm because of the replication.

Each processor gets different inpart vector according to the replicated rows

through redundant works. So the master processor configure inpart vector

of each processor according to the replication vector and sends appropriate

inpart vector to corresponding processor.
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2. Providing matrix nonzeros and x vector component. A master processor

reads the matrix file and scatters the matrix rows or columns according to

the inpart vector and partitioning. In our implementation, we adopt 1D

rowwise partitioning as mentioned before, therefore the master processor

sends the x vector entries and rows of matrix to processors according to

the replicated partition. Hence, the same x vector entries and conforming

rows of matrix can be stored in multiple processors because of the data

replication.

3. Determining the communication pattern. The work [53] describes the com-

munication patterns for unreplicated SpMxV. For row replicated SpMxV,

we do not need to modify this procedure, because the inpart of each part of

matrix is filled according to replicated partition vector. After determining

the communication pattern, each processor knows that how much data to

be sent to which processor and how much data that to be received from

which processor. We can see the communication volume minimization by

looking the size of send or receive vector of a processor.

4. Determining local indices, setting local indices for the vector components

to be sent and to be received, and assembling the local sparse matrix proce-

dures [53] are adjusted automatically through the preliminary configuration

at step 1, 2 and 3 for replicated parallel SpMxV. During assembling the lo-

cal sparse matrix, the matrix is split into two parts Aloc and Acpl [50].

Here, Aloc contains the nonzeros in the diagonal area of the global matrix

where holds nonzero aij in which x[j] belong to the associated processor.

Acpl matrix contains the nonzeros aik in which x[k] belongs to another

processor.



Chapter 6

Experimental Results

We have tested the performance of the proposed model through running our row-

replicated row-parallel SpMxV algorithm according to the results of our replica-

tion algorithms.

6.1 Data Set

In experiments, we use sparse matrix collection of Florida University [14]. This

collection is widely used by the linear algebra community. Its matrices cover a

wide spectrum of domains, such as structural engineering, computational fluid

dynamics, model reduction, electromagnetics, semiconductor devices, thermody-

namics, materials, acoustics, computer graphics/vision, robotics/kinematic, etc.

We select appropriate matrices from the dataset to observe rational results when

solving the proposed problem. These matrices are large, sparse, structurally

square.

To illustrate meaningful tables we eliminate some matrices with using follow-

ing rules. Firstly the matrices that have less than 15000 rows are eliminated due

to avoiding inconsistent results. The second rule is we eliminate some matrices

37
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according to the speed-up value of unreplicated matrix vector multiplication re-

sults. If speed-up value of a matrix is less than one, this means that the parallel

execution time of the matrix takes more time than the serial multiplication of the

matrix. Under third rule, we eliminate those matrices with speed-up values which

are significantly higher. This kind of matrices have considerably less total mes-

sage volume than other matrices and therefore they perform parallel multiplica-

tion pretty efficiently. For this reason, the replication algorithms cannot improve

their total message volumes considerably. For eliminating these matrices, the

matrices whose speed-up values are less than 8 in 16 way parallel multiplication

is chosen. The final rule is that one representative matrix is selected randomly

from each group of matrices since the matrices in the same group have similar

sparsity pattern in the dataset [14]. Moreover, their results of both replication

and parallel execution are almost identical for each matrix in the same group.

The test matrices are shown in Table 6.1.

In parallel computing, speed-up refers to how much a parallel algorithm is

faster than a conforming serial algorithm. The speed-up value is calculated by

dividing the serial execution time with parallel execution. Speed-up is formulated

as S = Ts/Tp, where Ts is the sequential execution time, Tp is the parallel execu-

tion time. Speed-up value may take value between 0 < S < K, K is the number

of processor in parallel system.

6.2 Setup

Aforementioned, our approach has two phases. In the first phase we partition

the matrices into predefined number of parts. The matrices are partitioned into

16 parts through one dimensional rowwise decomposition by using PaToH (a

multilevel hypergraph partitioning tool ) [10] with default parameters. The par-

titioned matrix is used as an input partition to the second phase. Then, the

replication vectors are obtained after running the replication algorithms on these

matrices. Finally the matrices are multiplied according to the replication vector

and completion times are acquired.
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Matrix Row NNZ Total Max Recv Max Send Max Send Speed
Name Count Volume Volume Volume Count Up
af23560 23560 460598 6319 496 491 4 4.66
Andrews 60000 760154 27199 3013 2973 15 5.52
appu 14000 1853104 205173 12996 13110 15 1.57
av41092 41092 1683902 51306 5270 10454 15 2.94
bcsstk29 13992 619488 4557 384 342 9 5.30
cage12 130228 2032536 110521 10946 10020 15 3.42
case39 40216 1042160 79726 19965 6380 15 7.61
cit-HepTh 27770 352807 31446 2689 3140 15 2.03
conf6 0-8x8-80 49152 1916928 66828 4440 4338 7 4.15
crplat2 18010 960946 5232 444 432 6 6.66
crystm03 24696 583770 4826 369 368 5 5.59
denormal 89400 1156224 7024 608 614 8 7.89
Dubcova2 65025 1030225 5847 618 497 7 8.00
e40r0100 17281 553562 4698 444 417 6 5.08
EAT SR 23219 325589 75995 5445 6901 15 1.01
ex35 19716 227872 1044 94 94 3 7.67
FEM 3D thermal1 17880 430740 5980 535 541 5 4.28
g7jac080sc 23670 259648 6424 566 535 15 7.25
garon2 13535 373235 3597 299 306 8 4.23
gupta2 62064 4248286 106503 10305 13420 15 4.49
helm3d01 32226 428444 11035 939 985 12 4.78
ibm matrix 2 51448 537038 20914 4487 2256 10 3.74
inlet 11730 328323 1772 136 141 3 3.39
lhr10c 10672 232633 9142 760 839 14 1.96
light in tissue 29282 406084 3108 270 276 7 4.97
mixtank new 29957 1990919 19275 1458 1643 10 7.60
net150 43520 3121200 102506 16819 9782 15 3.26
pkustk02 10800 810000 4644 492 474 10 6.47
pli 22695 1350309 18502 1576 1638 9 5.76
poisson3Da 13514 352762 9894 714 720 12 2.98
Pres Poisson 14822 715804 4344 408 406 6 6.17
qa8fm 66127 1660579 16338 1242 1284 9 7.47
skirt 12598 196520 1316 143 143 4 2.53
ted B 10605 144579 472 60 50 3 2.11
TSOPF RS b39 c7 14098 252446 670 80 210 15 2.30
tube2 21498 897056 3893 420 438 9 6.84
vfem 93476 1434636 18246 1327 1279 9 7.15
viscoplastic2 32769 381326 10884 1215 1279 6 3.31

Table 6.1: Matrix Properties and Communication Characteristics After Parti-
tioning



CHAPTER 6. EXPERIMENTAL RESULTS 40

Table 6.1 shows the characteristics of the partitioned matrices that are used in

the experiments. The test matrices are partitioned into 16 parts using 1D rowwise

decomposition as a first phase of the our approach. Total volume, maximum

receive message volume, maximum send message volume, and the maximum send

message count, in other words the maximum number of send message packages

in the partition, are shown in the table.

The parallel program that we implemented uses LAM/MPI [8] message pass-

ing library in parallel environment. Tests are performed on Beowulf [46] type PC

cluster with 16 nodes. Each node has 3.00 Ghz Pentium 4 processor and 512 MB

memory. The interconnection network is comprised of a 3COM SuperStack II

3900 managed switch connected to Intel Ethernet Pro 100 Fast Ethernet network

interface cars at each node. The system runs the Linus kernel 2.4.14 and the

debian GNU/Linus distribution.

In our algorithms, we define the capacity threshold according to the maximum

loaded part in the partitioned graph at the first phase. Replication ratio is a

number in term of percentage related to the maximum loaded part‘s load. For

instance, if the replication ratio is 10%, it means that all parts can replicate the

vertices until the load of replicated vertices reaches the capacity.

Capacity = Ratio×MaxLoad (6.1)

The imbalance values show the ratio between Maximum loaded part and av-

erage load of all parts. Formally unreplicated imbalance are calulated as follows;

Imbalance = MaxLoad/AverageLoad.

Similarly the replicated imbalance value is calculated as folows;

ImbalanceRep = MaxLoad(Rep)/AverageLoad.

The same averageLoad value is used in two formulas in order to compare increases

on the MaxLoad(Rep).
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6.3 Results

Tables 6.2, 6.3, 6.4, and 6.5 show the normalized values of SCC-based algorithm

results to the unreplicated partitioning state. Imbalance ratio before replication

and after replication, total message volume, maximum receive and send message

volume in the system, and the maximum send message count are illustrated in

these tables. According to the tables the best volume improvement is acquired

when the replication ratio is 0.15. When the replication ratio is increased, the

total volume decreases as expected in some matrices, naturally. However, most

of the matrices can not improve their total volume. The causes for this problem

is that the constructed SCCs are too big to be replicated because of the capacity

constraint.

At the second phase, one of the proposed replication algorithm is run over

test matrices with using following properties;

1. Vertices are locked after one move

2. Min-Rep is applied at each pass

3. LIFO type bucket list data structure is used

4. Pass are continued until it converged (convergence value= (Row

Count)/10000)

In Figure 6.6, we compare different replica selection techniques at priority

queue implementation of FM algorithm. The LIFO scheme give slightly better

improvement over random and FIFO schemes. Thus, the algorithm selects the

vertices according to the LIFO order scheme. Necessary modifications is added

our priority queue data structure, bucket list.

In our application, the parallel execution time is calculated according to fol-

lowing criteria;

1. Each multiplication is repeated 100 times
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Matrix Imbalance Imbalance Total Max Recv Max Send Max Send
Name No-Replica Replication Volume Volume Volume Count
af23560 1.02 1.02 1.00 1.00 1.00 1.00
Andrews 1.07 1.07 1.00 1.00 1.00 1.00
appu 1.02 1.02 1.00 1.00 1.00 1.00
av41092 1.04 1.04 1.00 1.00 1.00 1.00
bcsstk29 1.03 1.03 1.00 1.00 1.00 1.00
cage12 1.07 1.07 1.00 1.00 1.00 1.00
case39 1.05 1.05 1.00 1.00 1.00 1.00
cit-HepTh 1.08 1.08 0.89 0.97 0.97 1.00
conf6 0-8x8-80 1.02 1.02 1.00 1.00 1.00 1.00
crplat2 1.01 1.01 1.00 1.00 1.00 1.00
crystm03 1.04 1.04 1.00 1.00 1.00 1.00
denormal 1.00 1.00 1.00 1.00 1.00 1.00
Dubcova2 1.00 1.00 1.00 1.00 1.00 1.00
e40r0100 1.00 1.00 1.00 1.00 1.00 1.00
EAT SR 1.05 1.05 0.68 0.64 0.54 1.00
ex35 1.01 1.01 1.00 1.00 1.00 1.00
FEM 3D thermal1 1.03 1.03 1.00 1.00 1.00 1.00
g7jac080sc 1.06 1.06 0.94 0.99 0.87 1.00
garon2 1.00 1.00 1.00 1.00 1.00 1.00
gupta2 1.05 1.05 1.00 1.00 1.00 1.00
helm3d01 1.03 1.03 1.00 1.00 1.00 1.00
ibm matrix 2 1.04 1.04 1.00 1.00 1.00 1.00
inlet 1.03 1.03 0.98 0.98 0.94 0.67
lhr10c 1.04 1.04 1.00 1.00 1.00 1.00
light in tissue 1.02 1.02 1.00 1.00 1.00 1.00
mixtank new 1.00 1.00 1.00 1.00 1.00 1.00
net150 1.05 1.05 1.00 1.00 1.00 1.00
pkustk02 1.02 1.02 1.00 1.00 1.00 1.00
pli 1.04 1.04 1.00 1.00 1.00 1.00
poisson3Da 1.00 1.00 1.00 1.00 1.00 1.00
Pres Poisson 1.05 1.05 1.00 1.00 1.00 1.00
qa8fm 1.03 1.03 1.00 1.00 1.00 1.00
skirt 1.06 1.06 1.00 1.00 1.00 1.00
ted B 1.00 1.00 1.00 1.00 1.00 1.00
TSOPF RS b39 c7 1.00 1.00 1.00 1.00 1.00 1.00
tube2 1.02 1.02 1.00 1.00 1.00 1.00
vfem 1.02 1.02 1.00 1.00 1.00 1.00
viscoplastic2 1.05 1.05 1.00 0.99 0.99 1.00
Average 1.03 1.03 0.98 0.99 0.99 0.98

Table 6.2: SCC algorithm with replication ratio 0.00
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Matrix Imbalance Imbalance Total Max Recv Max Send Max Send
Name No-Replica Replication Volume Volume Volume Count
af23560 1.02 1.02 1.00 1.00 1.00 1.00
Andrews 1.07 1.07 1.00 1.00 1.00 1.00
appu 1.02 1.02 1.00 1.00 1.00 1.00
av41092 1.04 1.05 1.00 1.00 1.00 1.00
bcsstk29 1.03 1.06 1.00 1.00 1.00 1.00
cage12 1.07 1.07 1.00 1.00 1.00 1.00
case39 1.05 1.05 1.00 1.00 1.00 1.00
cit-HepTh 1.08 1.13 0.88 0.96 0.95 1.00
conf6 0-8x8-80 1.02 1.02 1.00 1.00 1.00 1.00
crplat2 1.01 1.01 1.00 1.00 1.00 1.00
crystm03 1.04 1.04 1.00 1.00 1.00 1.00
denormal 1.00 1.00 1.00 1.00 1.00 1.00
Dubcova2 1.00 1.00 1.00 1.00 1.00 1.00
e40r0100 1.00 1.05 0.96 1.00 1.00 1.00
EAT SR 1.05 1.05 0.68 0.64 0.54 1.00
ex35 1.01 1.06 1.00 1.00 1.00 1.00
FEM 3D thermal1 1.03 1.03 1.00 1.00 1.00 1.00
g7jac080sc 1.06 1.11 0.92 0.99 0.87 1.00
garon2 1.00 1.00 1.00 1.00 1.00 1.00
gupta2 1.05 1.06 1.00 0.99 1.00 1.00
helm3d01 1.03 1.03 1.00 1.00 1.00 1.00
ibm matrix 2 1.04 1.04 1.00 1.00 1.00 1.00
inlet 1.03 1.04 0.97 0.98 0.94 0.67
lhr10c 1.04 1.08 1.00 1.00 1.00 1.00
light in tissue 1.02 1.02 1.00 1.00 1.00 1.00
mixtank new 1.00 1.00 1.00 1.00 1.00 1.00
net150 1.05 1.05 1.00 1.00 1.00 1.00
pkustk02 1.02 1.02 1.00 1.00 1.00 1.00
pli 1.04 1.04 1.00 1.00 1.00 1.00
poisson3Da 1.00 1.00 1.00 1.00 1.00 1.00
Pres Poisson 1.05 1.05 1.00 1.00 1.00 1.00
qa8fm 1.03 1.03 1.00 1.00 1.00 1.00
skirt 1.06 1.06 1.00 1.00 1.00 1.00
ted B 1.00 1.05 1.00 1.00 1.00 1.00
TSOPF RS b39 c7 1.00 1.05 0.66 0.88 0.23 0.13
tube2 1.02 1.02 1.00 1.00 1.00 1.00
vfem 1.02 1.02 1.00 1.00 1.00 1.00
viscoplastic2 1.05 1.05 1.00 0.99 0.99 1.00
Average 1.03 1.04 0.97 0.98 0.94 0.94

Table 6.3: SCC algorithm with replication ratio 0.05
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Matrix Imbalance Imbalance Total Max Recv Max Send Max Send
Name No-Replica Replication Volume Volume Volume Count
af23560 1.02 1.02 1.00 1.00 1.00 1.00
Andrews 1.07 1.07 1.00 1.00 1.00 1.00
appu 1.02 1.02 1.00 1.00 1.00 1.00
av41092 1.04 1.05 1.00 1.00 1.00 1.00
bcsstk29 1.03 1.06 1.00 1.00 1.00 1.00
cage12 1.07 1.07 1.00 1.00 1.00 1.00
case39 1.05 1.05 1.00 1.00 1.00 1.00
cit-HepTh 1.08 1.18 0.87 0.95 0.94 1.00
conf6 0-8x8-80 1.02 1.02 1.00 1.00 1.00 1.00
crplat2 1.01 1.01 1.00 1.00 1.00 1.00
crystm03 1.04 1.04 1.00 1.00 1.00 1.00
denormal 1.00 1.00 1.00 1.00 1.00 1.00
Dubcova2 1.00 1.00 1.00 1.00 1.00 1.00
e40r0100 1.00 1.09 0.95 1.00 1.00 1.00
EAT SR 1.05 1.05 0.68 0.64 0.54 1.00
ex35 1.01 1.06 1.00 1.00 1.00 1.00
FEM 3D thermal1 1.03 1.03 1.00 1.00 1.00 1.00
g7jac080sc 1.06 1.17 0.91 0.99 0.87 1.00
garon2 1.00 1.00 1.00 1.00 1.00 1.00
gupta2 1.05 1.06 1.00 0.99 1.00 1.00
helm3d01 1.03 1.03 1.00 1.00 1.00 1.00
ibm matrix 2 1.04 1.04 1.00 1.00 1.00 1.00
inlet 1.03 1.04 0.97 0.98 0.94 0.67
lhr10c 1.04 1.08 1.00 1.00 1.00 1.00
light in tissue 1.02 1.02 1.00 1.00 1.00 1.00
mixtank new 1.00 1.00 1.00 1.00 1.00 1.00
net150 1.05 1.05 1.00 1.00 1.00 1.00
pkustk02 1.02 1.02 1.00 1.00 1.00 1.00
pli 1.04 1.04 1.00 1.00 1.00 1.00
poisson3Da 1.00 1.00 1.00 1.00 1.00 1.00
Pres Poisson 1.05 1.05 1.00 1.00 1.00 1.00
qa8fm 1.03 1.03 1.00 1.00 1.00 1.00
skirt 1.06 1.14 0.98 1.00 1.00 1.00
ted B 1.00 1.10 1.00 1.00 1.00 1.00
TSOPF RS b39 c7 1.00 1.10 0.64 0.88 0.23 0.13
tube2 1.02 1.02 1.00 1.00 1.00 1.00
vfem 1.02 1.02 1.00 1.00 1.00 1.00
viscoplastic2 1.05 1.05 1.00 0.99 0.99 1.00
Average 1.03 1.05 0.97 0.98 0.94 0.94

Table 6.4: SCC algorithm with replication ratio 0.10
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Matrix Imbalance Imbalance Total Max Recv Max Send Max Send
Name No-Replica Replication Volume Volume Volume Count
af23560 1.02 1.02 1.00 1.00 1.00 1.00
Andrews 1.07 1.07 1.00 1.00 1.00 1.00
appu 1.02 1.02 1.00 1.00 1.00 1.00
av41092 1.04 1.05 1.00 1.00 1.00 1.00
bcsstk29 1.03 1.06 1.00 1.00 1.00 1.00
cage12 1.07 1.07 1.00 1.00 1.00 1.00
case39 1.05 1.05 1.00 1.00 1.00 1.00
cit-HepTh 1.08 1.24 0.87 0.95 0.94 1.00
conf6 0-8x8-80 1.02 1.02 1.00 1.00 1.00 1.00
crplat2 1.01 1.01 1.00 1.00 1.00 1.00
crystm03 1.04 1.04 1.00 1.00 1.00 1.00
denormal 1.00 1.00 1.00 1.00 1.00 1.00
Dubcova2 1.00 1.00 1.00 1.00 1.00 1.00
e40r0100 1.00 1.09 0.95 1.00 1.00 1.00
EAT SR 1.05 1.05 0.68 0.64 0.54 1.00
ex35 1.01 1.06 1.00 1.00 1.00 1.00
FEM 3D thermal1 1.03 1.03 1.00 1.00 1.00 1.00
g7jac080sc 1.06 1.21 0.91 0.99 0.87 1.00
garon2 1.00 1.00 1.00 1.00 1.00 1.00
gupta2 1.05 1.06 1.00 0.99 1.00 1.00
helm3d01 1.03 1.03 1.00 1.00 1.00 1.00
ibm matrix 2 1.04 1.04 1.00 1.00 1.00 1.00
inlet 1.03 1.04 0.97 0.98 0.94 0.67
lhr10c 1.04 1.08 1.00 1.00 1.00 1.00
light in tissue 1.02 1.02 1.00 1.00 1.00 1.00
mixtank new 1.00 1.00 1.00 1.00 1.00 1.00
net150 1.05 1.05 1.00 1.00 1.00 1.00
pkustk02 1.02 1.02 1.00 1.00 1.00 1.00
pli 1.04 1.04 1.00 1.00 1.00 1.00
poisson3Da 1.00 1.00 1.00 1.00 1.00 1.00
Pres Poisson 1.05 1.05 1.00 1.00 1.00 1.00
qa8fm 1.03 1.03 1.00 1.00 1.00 1.00
skirt 1.06 1.14 0.98 1.00 1.00 1.00
ted B 1.00 1.15 1.00 1.00 1.00 1.00
TSOPF RS b39 c7 1.00 1.15 0.64 0.88 0.23 0.13
tube2 1.02 1.02 1.00 1.00 1.00 1.00
vfem 1.02 1.02 1.00 1.00 1.00 1.00
viscoplastic2 1.05 1.05 1.00 0.99 0.99 1.00
Average 1.03 1.05 0.97 0.98 0.94 0.94

Table 6.5: SCC algorithm with replication ratio 0.15
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2. After each multiplication one of the basic iterative solver Jacobi method

are simulated

3. For completion time, only the execution time of 100 iterations is taken.

The completion time results given in Tables 6.7, 6.8, 6.9, and 6.10 are the

geometric mean of ten different SpMxV operation in which 100 repeated SpMxV

occur. This process is required because of attaining more consistent results, since

in the parallel environment there are several factors that affect the execution

time of the parallel SpMxV. However, in our experiments the results are almost

the same and the average standard deviation of completion times is quite small

0.001684.

Tables 6.7, 6.8, 6.9, and 6.10 show imbalance ratios before and after repli-

cation, total message volume, the maximum receive and send message volume,

the number of maximum send messages per processor , and completion time of

replicated parallel SpMxV. The values on the tables are normalized with respect

to the unreplicated values given in the table 6.1.

If we analyze at the matrices individually, with replication ratio 0.00 in Table

6.7, The highest message volume improvement in the table occurred in EAT SR

. Furthermore, this volume improvement induces 26% time reduction on SpMxV

completion time. However, if we consider at the viscoplastic2 matrix, although

the total volume is improved significantly, the completion time is not improved

that much. This is because, the total message volume is not a single indicator

that affects the completion time of SpMxV. The maximum send message count is

another factor that affects the completion time. In the same table, the maximum

send message count of the matrix inlet is decreased to 67%, this reduction incurs

18% faster parallel SpMxV.

Table 6.11 shows geometrical mean of the completion time of test matrices

with different replication ratios. Even if the more replication ratio improves the

total message volume, along with the increases on the redundant works cause

worse completion times. If we increase the replication ratio further, the system

tends to serial multiplication instead of parallel. Furthermore, when we apply



CHAPTER 6. EXPERIMENTAL RESULTS 47

the full replication on 16-processor system parallel system, we need to perform

16 serial execution of the same matrix concurrently. This is totally meaningless

in the framework of this thesis. So, the replication ratio is selected wisely for the

optimum reduction in completion time. If we look at Table 6.11, the preferable

replication ratios are 0.05 and 0.10 for the test matrices for the fastest parallel

SpMxV on average.

According to the results, our proposed model for row replicated SpMxV, using

FM-like replication algorithm, can reduce the completion time of a matrix by up

to 27% with replication ratio 0.10 and can improve the total message volume

of a matrix by up to 62% with a replication ratio of 0.15. On the average,

the completion time of replicated parallel SpMxV with replication ratio 0.10 is

approximately 4% faster than the unreplicated SpMxV.
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Strategy Imbalance Total Max Recv Max Send Max Send
Replication Volume Volume Volume Count
LIFO 1.14 0.85 0.87 0.85 0.99
Random 1.16 0.86 0.87 0.85 0.99
FIFO 1.16 0.86 0.87 0.86 0.99

Table 6.6: Different Bucket Strategies for Replication Ratio= 0.15

Matrix Imbalance Imbalance Total Max Recv Max Send Max Send Completion
Name No-Replica Replication Volume Volume Volume Count Time
af23560 1.02 1.02 1.00 1.00 1.00 1.00 1.00
Andrews 1.07 1.07 0.97 0.97 0.96 1.00 0.99
appu 1.02 1.02 1.00 1.00 1.00 1.00 1.00
av41092 1.04 1.04 0.99 0.96 0.99 1.00 1.00
bcsstk29 1.03 1.03 1.00 1.00 1.00 1.00 0.99
cage12 1.07 1.07 0.97 0.96 0.98 1.00 0.98
case39 1.05 1.05 1.00 1.00 1.00 1.00 1.00
cit-HepTh 1.08 1.08 0.86 0.96 0.92 1.00 0.95
conf6 0-8x8-80 1.02 1.02 1.00 1.00 1.00 1.00 1.00
crplat2 1.01 1.01 1.00 1.00 1.00 1.00 1.00
crystm03 1.04 1.04 1.00 1.00 1.00 1.00 1.00
denormal 1.00 1.00 1.00 1.00 1.00 1.00 1.01
Dubcova2 1.00 1.00 1.00 1.00 1.00 1.00 1.00
e40r0100 1.00 1.00 1.00 1.00 1.00 1.00 1.00
EAT SR 1.05 1.05 0.67 0.64 0.53 1.00 0.74
ex35 1.01 1.01 1.00 1.00 1.00 1.00 1.00
FEM 3D thermal1 1.03 1.03 1.00 1.00 1.00 1.00 1.00
g7jac080sc 1.06 1.06 0.85 0.87 0.82 1.00 0.98
garon2 1.00 1.00 1.00 1.00 1.00 1.00 1.01
gupta2 1.05 1.05 0.99 1.00 1.00 1.00 1.00
helm3d01 1.03 1.03 0.91 0.94 0.89 1.00 0.97
ibm matrix 2 1.04 1.04 0.98 1.00 1.00 1.00 1.01
inlet 1.03 1.03 0.92 0.97 0.94 0.67 0.82
lhr10c 1.04 1.04 1.00 1.00 1.00 1.00 0.95
light in tissue 1.02 1.02 0.98 0.96 0.96 1.00 1.00
mixtank new 1.00 1.00 0.99 0.99 0.97 1.00 1.01
net150 1.05 1.05 0.97 0.97 0.90 1.00 0.98
pkustk02 1.02 1.02 0.97 0.98 1.00 1.00 1.00
pli 1.04 1.04 1.00 1.00 1.00 1.00 1.01
poisson3Da 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Pres Poisson 1.05 1.05 1.00 1.00 1.00 1.00 0.99
qa8fm 1.03 1.03 1.00 1.00 1.00 1.00 1.01
skirt 1.06 1.06 0.99 1.00 1.00 1.00 0.92
ted B 1.00 1.00 1.00 1.00 1.00 1.00 0.93
TSOPF RS b39 c7 1.00 1.00 0.97 1.00 0.99 1.00 0.95
tube2 1.02 1.02 1.00 1.00 0.99 1.00 0.99
vfem 1.02 1.02 0.92 0.96 0.92 1.00 0.99
viscoplastic2 1.05 1.05 0.77 0.91 0.71 1.00 0.99
Average 1.03 1.03 0.96 0.97 0.95 0.99 0.98

Table 6.7: FM algorithm with replication ratio 0.00



CHAPTER 6. EXPERIMENTAL RESULTS 49

Matrix Imbalance Imbalance Total Max Recv Max Send Max Send Completion
Name No-Replica Replication Volume Volume Volume Count Time
af23560 1.02 1.02 1.00 1.00 1.00 1.00 1.01
Andrews 1.07 1.11 0.96 0.97 0.96 1.00 1.00
appu 1.02 1.07 0.99 1.00 0.99 1.00 1.00
av41092 1.04 1.06 0.98 0.96 0.98 1.00 0.99
bcsstk29 1.03 1.09 0.98 0.95 1.00 1.00 1.00
cage12 1.07 1.12 0.95 0.95 0.97 1.00 0.98
case39 1.05 1.10 1.00 1.00 1.00 1.00 1.01
cit-HepTh 1.08 1.13 0.82 0.91 0.89 1.00 0.92
conf6 0-8x8-80 1.02 1.02 1.00 1.00 1.00 1.00 1.00
crplat2 1.01 1.05 1.00 1.00 1.00 1.00 0.99
crystm03 1.04 1.09 0.99 1.00 1.00 1.00 0.93
denormal 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Dubcova2 1.00 1.05 0.66 0.60 0.75 1.00 0.94
e40r0100 1.00 1.05 0.75 0.83 0.84 1.00 0.97
EAT SR 1.05 1.07 0.67 0.64 0.53 1.00 0.74
ex35 1.01 1.01 1.00 1.00 1.00 1.00 1.00
FEM 3D thermal1 1.03 1.06 0.99 0.98 1.00 1.00 1.01
g7jac080sc 1.06 1.08 0.82 0.83 0.79 1.00 0.98
garon2 1.00 1.05 0.77 0.81 0.79 1.00 1.02
gupta2 1.05 1.10 0.97 0.98 0.99 1.00 0.99
helm3d01 1.03 1.08 0.84 0.84 0.83 1.00 0.94
ibm matrix 2 1.04 1.09 0.96 0.96 1.00 1.00 0.98
inlet 1.03 1.07 0.86 0.85 0.82 0.67 0.82
lhr10c 1.04 1.09 0.99 1.00 1.00 1.00 0.92
light in tissue 1.02 1.07 0.97 0.96 0.95 1.00 1.00
mixtank new 1.00 1.05 0.85 0.88 0.80 1.00 0.97
net150 1.05 1.10 0.93 0.85 0.85 1.00 0.90
pkustk02 1.02 1.07 0.94 0.98 1.00 1.00 1.01
pli 1.04 1.10 0.99 0.99 1.00 1.00 1.03
poisson3Da 1.00 1.05 0.92 0.93 0.87 1.00 0.99
Pres Poisson 1.05 1.09 1.00 1.00 1.00 1.00 1.00
qa8fm 1.03 1.08 0.99 1.00 1.00 1.00 1.03
skirt 1.06 1.11 0.98 0.99 1.00 1.00 0.91
ted B 1.00 1.05 0.52 0.58 0.54 1.00 0.94
TSOPF RS b39 c7 1.00 1.05 0.75 0.88 0.79 0.93 0.87
tube2 1.02 1.07 0.99 1.00 0.97 1.00 0.98
vfem 1.02 1.06 0.81 0.83 0.83 1.00 0.99
viscoplastic2 1.05 1.10 0.58 0.78 0.53 1.00 0.98
Average 1.03 1.07 0.89 0.90 0.89 0.99 0.96

Table 6.8: FM algorithm with replication ratio 0.05
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Matrix Imbalance Imbalance Total Max Recv Max Send Max Send Completion
Name No-Replica Replication Volume Volume Volume Count Time
af23560 1.02 1.02 1.00 1.00 1.00 1.00 1.01
Andrews 1.07 1.16 0.96 0.97 0.96 1.00 0.99
appu 1.02 1.13 0.99 0.99 0.99 1.00 1.00
av41092 1.04 1.06 0.98 0.96 0.98 1.00 0.99
bcsstk29 1.03 1.14 0.97 0.95 1.00 1.00 1.01
cage12 1.07 1.16 0.95 0.95 0.98 1.00 0.99
case39 1.05 1.15 1.00 1.00 1.00 1.00 1.04
cit-HepTh 1.08 1.18 0.78 0.88 0.84 1.00 0.90
conf6 0-8x8-80 1.02 1.02 1.00 1.00 1.00 1.00 1.00
crplat2 1.01 1.05 1.00 1.00 1.00 1.00 1.00
crystm03 1.04 1.12 0.99 1.00 0.96 1.00 0.98
denormal 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Dubcova2 1.00 1.10 0.66 0.59 0.74 1.00 0.96
e40r0100 1.00 1.10 0.59 0.67 0.75 1.00 0.96
EAT SR 1.05 1.10 0.67 0.63 0.53 1.00 0.73
ex35 1.01 1.01 1.00 1.00 1.00 1.00 1.00
FEM 3D thermal1 1.03 1.13 0.99 0.98 0.99 1.00 1.01
g7jac080sc 1.06 1.08 0.82 0.83 0.79 1.00 0.97
garon2 1.00 1.08 0.73 0.69 0.70 1.00 1.01
gupta2 1.05 1.15 0.96 0.95 0.99 1.00 0.99
helm3d01 1.03 1.11 0.83 0.83 0.81 1.00 0.94
ibm matrix 2 1.04 1.14 0.94 0.91 0.98 1.10 0.98
inlet 1.03 1.07 0.85 0.85 0.82 0.67 0.82
lhr10c 1.04 1.14 0.99 1.00 1.00 1.00 0.94
light in tissue 1.02 1.11 0.97 0.96 0.95 1.00 0.95
mixtank new 1.00 1.10 0.76 0.77 0.70 1.00 0.94
net150 1.05 1.15 0.91 0.77 0.82 1.00 0.85
pkustk02 1.02 1.11 0.93 0.98 1.00 1.00 1.01
pli 1.04 1.13 0.99 0.99 0.99 1.00 1.03
poisson3Da 1.00 1.10 0.84 0.86 0.86 1.00 0.96
Pres Poisson 1.05 1.13 0.99 1.00 1.00 1.00 1.00
qa8fm 1.03 1.10 0.99 1.00 1.00 1.00 1.00
skirt 1.06 1.12 0.98 0.97 1.00 1.00 0.93
ted B 1.00 1.08 0.49 0.35 0.48 1.00 0.95
TSOPF RS b39 c7 1.00 1.06 0.73 0.88 0.71 0.80 0.83
tube2 1.02 1.07 0.99 1.00 0.97 1.00 0.98
vfem 1.02 1.06 0.81 0.83 0.83 1.00 0.94
viscoplastic2 1.05 1.16 0.44 0.66 0.48 1.00 0.92
Average 1.03 1.10 0.86 0.87 0.87 0.99 0.96

Table 6.9: FM algorithm with replication ratio 0.10
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Matrix Imbalance Imbalance Total Max Recv Max Send Max Send Completion
Name No-Replica Replication Volume Volume Volume Count Time
af23560 1.02 1.02 1.00 1.00 1.00 1.00 1.01
Andrews 1.07 1.20 0.96 0.97 0.96 1.00 1.06
appu 1.02 1.18 0.99 0.99 0.98 1.00 1.04
av41092 1.04 1.06 0.98 0.96 0.98 1.00 0.99
bcsstk29 1.03 1.18 0.96 0.94 1.00 1.00 1.04
cage12 1.07 1.21 0.95 0.95 0.98 1.00 1.00
case39 1.05 1.20 0.99 0.99 1.00 1.00 1.06
cit-HepTh 1.08 1.24 0.76 0.87 0.81 1.00 0.94
conf6 0-8x8-80 1.02 1.02 1.00 1.00 1.00 1.00 1.00
crplat2 1.01 1.12 0.99 1.00 1.00 1.00 0.97
crystm03 1.04 1.16 0.98 1.00 0.96 1.00 0.99
denormal 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Dubcova2 1.00 1.15 0.66 0.59 0.74 1.00 0.97
e40r0100 1.00 1.14 0.54 0.52 0.58 1.00 1.00
EAT SR 1.05 1.11 0.67 0.63 0.53 1.00 0.78
ex35 1.01 1.01 1.00 1.00 1.00 1.00 1.00
FEM 3D thermal1 1.03 1.17 0.99 0.98 0.99 1.00 1.01
g7jac080sc 1.06 1.12 0.81 0.83 0.79 1.00 0.97
garon2 1.00 1.08 0.73 0.69 0.70 1.00 1.01
gupta2 1.05 1.20 0.95 0.95 0.99 1.00 1.02
helm3d01 1.03 1.12 0.83 0.83 0.81 1.00 0.94
ibm matrix 2 1.04 1.19 0.92 0.87 0.85 1.10 0.98
inlet 1.03 1.07 0.85 0.85 0.82 0.67 0.85
lhr10c 1.04 1.19 0.99 1.00 1.00 1.00 0.99
light in tissue 1.02 1.16 0.97 0.96 0.95 1.00 0.96
mixtank new 1.00 1.15 0.73 0.75 0.68 1.00 0.95
net150 1.05 1.21 0.89 0.76 0.82 1.00 0.91
pkustk02 1.02 1.11 0.93 0.98 1.00 1.00 1.02
pli 1.04 1.20 0.99 0.99 0.99 1.00 1.02
poisson3Da 1.00 1.15 0.77 0.80 0.76 1.00 0.94
Pres Poisson 1.05 1.20 0.99 1.00 1.00 1.00 1.04
qa8fm 1.03 1.10 0.99 1.00 1.00 1.00 1.02
skirt 1.06 1.19 0.97 0.95 1.00 1.00 0.94
ted B 1.00 1.08 0.49 0.35 0.48 1.00 0.97
TSOPF RS b39 c7 1.00 1.06 0.73 0.88 0.71 0.80 0.88
tube2 1.02 1.14 0.99 1.00 0.97 1.00 0.98
vfem 1.02 1.06 0.81 0.83 0.83 1.00 0.93
viscoplastic2 1.05 1.21 0.38 0.54 0.40 1.00 0.99
Average 1.03 1.14 0.85 0.85 0.85 0.99 0.98

Table 6.10: FM algorithm with replication ratio 0.15

Replication Imbalance Total Max Recv Max Send Max Send Completion
Ratio Replication Volume Volume Volume Count Time
0.00 1.03 0.96 0.97 0.95 0.99 0.98
0.05 1.07 0.89 0.90 0.89 0.99 0.96
0.10 1.10 0.86 0.87 0.87 0.99 0.96
0.15 1.14 0.85 0.85 0.85 0.99 0.98

Table 6.11: Average Results for different Replication Ratios



Chapter 7

Related Works

Sparse matrix vector multiplication (SpMxV) of the form y = Ax is a kernel

operation in iterative solvers used in scientific applications. Sparse matrix-vector

multiplication is a fundamental operation in many of the problems requiring

the solution of least squares problems and eigenvalue problems [17, 3, 39], as

well as the image reconstruction in medical imaging [40, 26]. In some iterative

methods for linear solvers, the output vector y of a matrix-vector multiplication is

transformed into a new input vector x. This transformation can be done directly

or with some modification onto y vector. Some example of methods that involve

large number of sparse matrix-vector multiplication in a successive manner in

their algorithm are Jacobi, Gauss-Seidel, SOR [43]. Besides, Jacobi-Davidson

iterative methods is used in computation of low-lying eigenstates of the Hamilton

matrices, [45]. Moreover, sparse matrix-vector multiplication is the most time

consuming procedure in that algorithm.

In the literature, replication is a widely used technique for various purposes in

computer science, such as improving reliability, fault tolerance, accessibility, re-

ducing processing and communication cost. Many discipline in computer science

benefit from replication schemes through the mentioned methods. In parallel

information retrieval systems document partitioning and term partitioning are

the types of index partitioning schemes [48, 25, 9, 33, 35]. Replication is used

to improve query throughput and fault tolerance in parallel information retrieval
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system for these schemes. Tomasic et al.[49] make comparison between different

index distributions in their work and state that replication is necessary to im-

prove query throughput. The work of [7] introduce an overview of the clustering

architecture deployed at Google in which they use replication to improve query

throughput.

We investigate replication in VLSI literature especially. Generally, VLSI com-

munity exploits various replication techniques to minimize the needed commu-

nication in network partitioning. A first discussion about logic replication is

stated by the work [41]. Later, some other heuristics that extend the Fiduccia-

Mattheyses (FM) algorithm to duplicate vertices during partitioning is published

[29, 36]. The min-cut replication problem is defined and the optimal solution

for finding the min-cut replication sets of a K-way partitioned directed graph is

given by Hwang and El Gamal [22, 24, 23]. They present an efficient algorithm

for determining an optimal min-cut replication set for a k-partitioned graph and

implement a tool called TAPIR which is a software tool incorporating min-cut

replication and presents the results of applying min-cut replication. The problem

is modelled as a directed graph and their aim is to minimize cut edges with logic

replication. [55] optimally solves the min-area min-cut replication problem on

digraphs, which is to find min-cut replication set with the minimum sizes. The

work [34] also proposes a network flow based algorithm to determine an opti-

mum replication min-cut partitioning that requires minimum replication. [32]

introduces an FM-based algorithm for optimum partitioning with replication and

without size constraints. The survey [2] is presented about circuit partitioning

and existing logic replication design.



Chapter 8

Conclusion

In this thesis, we proposed a model to reduce the communication of the repeated

row-parallel sparse matrix vector multiplication (SpMxV) operations in iterative

solvers through row replication. In iterative solvers, output vector of the Sp-

MxV operation performed in the current iteration becomes the input vector of

the SpMxV operation of the next iteration. Hence, a processor may compute an

output-vector entry redundantly in the current iteration, which leads to an input-

vector entry in the following iteration, instead of receiving that input-vector entry

from another processor. Thus, redundant computation of selected output-vector

entries through replicating the respective rows were utilized in reducing the total

communication volume in row-parallel SpMxV. We proposed a graph theoreti-

cal formulation, namely the Min-Cut Replication (MCR) problem which can be

tackled as K independent Minimum Border Subset (MBS) problems, for solving

the target row replication problem for row-parallel SpMxV. Two algorithms were

proposed to solve the MBS problem. In most of the test matrices, we achieved

considerably better results than the unreplicated SpMxV in terms of execution

time and communication volume improvement.
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