
A RECURSIVE GRAPH BIPARTITIONING
ALGORITHM BY VERTEX SEPARATORS WITH

FIXED VERTICES FOR PERMUTING SPARSE
MATRICES INTO BLOCK DIAGONAL FORM

WITH OVERLAP

A THESIS

SUBMITTED TO THE DEPARTMENT OF COMPUTER ENGINEERING

AND THE GRADUATE SCHOOL OF ENGINEERING AND SCIENCE

OF BILKENT UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF SCIENCE

By

Seher Acer

September, 2011

I certify that I have read this thesis and that in my opinion it is fully adequate, in

scope and in quality, as a thesis for the degree of Master of Science.

Prof. Dr. Cevdet Aykanat (Advisor)

I certify that I have read this thesis and that in my opinion it is fully adequate, in

scope and in quality, as a thesis for the degree of Master of Science.

Assoc. Prof. Dr. Hakan Ferhatosmanoğlu

I certify that I have read this thesis and that in my opinion it is fully adequate, in

scope and in quality, as a thesis for the degree of Master of Science.

Assoc. Prof. Dr. Oya Ekin Karaşan

Approved for the Graduate School of Engineering and Sci-

ence:

Prof. Dr. Levent Onural
Director of the Graduate School

ii

ABSTRACT

A RECURSIVE GRAPH BIPARTITIONING
ALGORITHM BY VERTEX SEPARATORS WITH

FIXED VERTICES FOR PERMUTING SPARSE
MATRICES INTO BLOCK DIAGONAL FORM WITH

OVERLAP

Seher Acer
M.S. in Computer Engineering

Supervisor: Prof. Dr. Cevdet Aykanat
September, 2011

Solving sparse system of linear equations Ax=b using preconditioners can be effi-
ciently parallelized using graph partitioning tools. In this thesis, we investigate the
problem of permuting a sparse matrix into a block diagonal form with overlap which is
to be used in the parallelization of the multiplicative schwarz preconditioner. A matrix
is said to be in block diagonal form with overlap if the diagonal blocks may overlap. In
order to formulate this permutation problem as a graph-theoretical problem, we intro-
duce a restricted version of the graph partitioning by vertex separator problem (GPVS),
where the objective is to find a vertex partition whose parts are only connected by a
vertex separator. The modified problem, we refer as ordered GPVS problem (oGPVS),
is restricted such that the parts should exhibit an ordered form where the consecutive
parts can only be connected by a separator.

The existing graph partitioning tools are unable to solve the oGPVS problem. Thus,
we present a recursive graph bipartitioning algorithm by vertex separators together
with a novel vertex fixation scheme so that a GPVS tool supporting fixed vertices can
effectively and efficiently be utilized. We also theoretically verified the correctness of
the proposed approach devising a necessary and sufficient condition to the feasibility
of a oGPVS solution. Experimental results on a wide range of matrices confirm the
validity of the proposed approach.

Keywords: graph partitioning by vertex separator, combinatorial scientific computing,
parallel computing, block diagonal form with overlap.

iii

ÖZET

SEYREK MATRİSLERİN ÖRTÜŞEN BLOK KÖŞEGEN
BİÇİME DÜZENLENMESİ İÇİN DÜĞÜM AYIRACI VE

SABİT DÜĞÜMLERİ KULLANAN ÖZYİNELİ BİR
ÇİZGE BÖLÜMLEME ALGORİTMASI

Seher Acer
Bilgisayar Mühendisliği, Yüksek Lisans
Tez Yöneticisi: Prof. Dr. Cevdet Aykanat

Eylül, 2011

Ax=b şeklindeki seyrek doğrusal denklem sistemlerinin ön hazırlık kullanılarak
çözümü çizge bölümleme araçları kullanılarak etkili ve verimli bir biçimde koşut
hesaplamasına uygun hale getirilebilir. Bu tez çalışmasında, çarpımsal schwarz ön
hazırlayıcısının koşut hesaplanmasında kullanılmak üzere bir seyrek matrisin örtüşen
blok köşegen biçimine yeniden düzenlenmesi problemi incelenmektedir. Ardışık
köşegen blokları örtüşen blok köşegen matrislere örtüşen blok köşegen matrisler denir.
Bu yeniden düzenleme probleminin çizge kuramı kullanılarak ifade edilebilmesi için
Düğüm Ayıracı ile Çizge Bölümleme (DAÇB) probleminin kısıtlı bir çeşidi olan sıralı
DAÇB (sDAÇB) problemi tanıtılmaktadır. sDAÇB probleminde amaç iki ardışık
düğüm bölümünün sadece bir düğüm ayıracı ile bağlanabildiği sıralı bir düğüm
bölümlemesi bulmaktır.

Varolan çizge bölümleme araçları sDAÇB problemini çözememektedirler. Bu ne-
denle, bu tez çalışmasında, düğüm ayıraçlarını ve yeni bir düğüm sabitleme düzenini
kullanan özyineli bir çizge bölümleme algoritması önerilmektedir. Bu algoritma
ile sabit düğümleri destekleyen bir DAÇB aracı etkili ve verimli bir şekilde kul-
lanılabilmektedir. Ayrıca, bir sDAÇB çözümünün uygulanabilirliği için yeterli ve
gerekli koşul incelenerek önerilen yaklaşım kuramsal olarak doğrulanmıştır. Çeşitli
matrisler üzerinde yapılan deneylerin sonuçları önerilen yaklaşımın geçerliliğini
doğrulamaktadır.

Anahtar sözcükler: düğüm ayıracı ile çizge bölümleme, kombinatoriyal bilimsel
hesaplama, koşut hesaplama, örtüşen blok köşegen matris.

iv

Acknowledgement

I would like to express my deepest gratitude to my supervisor Prof. Dr. Cevdet

Aykanat for guidance, suggestions, and invaluable encouragement throughout the de-

velopment of this thesis.

I owe special thanks to Enver Kayaaslan, who contributed continuously through

the design and development of the studies we explain in this thesis.

I am grateful to Assoc. Prof. Dr. Hakan Ferhatosmanoğlu and Assoc. Prof. Dr.

Oya Ekin Karaşan for reading and commenting on the thesis.

I am grateful to all of my friends and colleagues for their moral and intellectual sup-

port during my studies, especially to Özlem, Damla, Elif, Merve and my officemates,

Enver, Şükrü, Çağrı, Zeynep, Mustafa, Emre and Bengü.

I would like to thank to my family, especially to my sister, for their persistent

support, encouragement, understanding and love.

Finally, very special thanks goes to Hadi Eloy, who has been my side in every

aspect of life with his endless love.

v

Contents

1 Introduction 1

2 Related Work 6

3 Background 10

3.1 Standard Graph Model for Representing Sparse Matrices 10

3.2 Graph Partitioning by Vertex Separator (GPVS) 11

3.3 Recursive Bipartitioning Paradigm 12

3.4 Graph/Hypergraph Partitioning with Fixed Vertices 13

4 Ordered GPVS Formulation 14

4.1 Ordered GPVS Problem Definition 14

4.2 Formulation . 15

4.3 Parallel Application Requirements 18

5 Recursive Graph Bipartitioning Model with Fixed Vertices 23

5.1 Theoretical Foundations . 23

vi

CONTENTS vii

5.2 Recursive oGPVS Algorithm . 24

5.3 A Discussion on the Correctness of oGPVS Algorithm 30

6 Experiments 34

6.1 Implementation Details . 34

6.2 Experimental Results . 36

7 Conclusion and Future Work 44

List of Figures

1.1 Block diagonal form with overlap 4

2.1 An example level structure rooted at v0 8

2.2 An example initial partition P0 of level structure given in Figure 2.1 . 9

3.1 A matrix and its standard graph representation 10

3.2 An example graph G and an example 3-way separator ΠV S of G . . 11

4.1 General structure of an oVS . 15

4.2 Correspondence between the nonzeros of block Dk and the edges of

Sk−1 ∪ Vk ∪ Sk . 17

4.3 Sample matrix A . 20

4.4 Standard graph representation G(A) of A given in Figure 4.3 21

4.5 A 4-way oVS form of G(A) given in Figure 4.4 21

4.6 BDO form of A permuted by 4-way oVS of G(A) given in Figure 4.5 22

5.1 A three level RB tree for producing an 8-way oVS of an initial graph G 29

5.2 Restrictions for boundary vertices 31

viii

List of Tables

6.1 Performance comparison in terms of load imbalance and separator size

for 4-way A-to-ABDO permutation 37

6.2 Performance comparison in terms of load imbalance and separator size

for 8-way A-to-ABDO permutation 38

6.3 Performance comparison in terms of load imbalance and separator size

for 16-way A-to-ABDO permutation 38

6.4 Performance comparison in terms of load imbalance and separator size

for 32-way A-to-ABDO permutation 39

6.5 Performance comparison in terms of load imbalance and separator size

for 64-way A-to-ABDO permutation 39

6.6 Overall performance comparison in terms of load imbalance and sep-

arator size A-to-ABDO permutation 41

6.7 Performance dependency of the algorithms to the pseudo-peripheral

vertex . 42

6.8 Performance comparison in terms of the coarsening algorithm used in

PaToH . 43

ix

Chapter 1

Introduction

Graph/hypergraph partitioning is commonly used to distribute workload for an effi-

cient parallelization of solving a sparse system of linear equations Ax = b . Roughly

speaking, the vertices represent the data and the computations, and the (hyper)edges

represent dependencies of the computations into the data. For a parallel system, parti-

tioning the vertices into K parts corresponds to partitioning the data and computations

among K processors by assigning the data associated with each part to a unique pro-

cessor. For an efficient parallelism, the workload performed by each processor should

be almost the same and the communication volume among the processors should be

minimized. Equivalently, the objective of the graph partitioning problem is to mini-

mize the number of edges that connect different parts while maintaining balance on

the part weights. Output of the graph partitioning, i.e., partition of vertices, is used to

permute the rows and columns of A such that the permuted matrix exhibits a block

diagonal form where the data and the computations of each block are assigned to a

different processor. A number of state-of-the-art graph/hypergraph partitioning tools

such as Chaco [16], MeTiS [20], PaToH [8], Scotch[24], and Zoltan [4] are publicly

available and widely used in many applications.

One possible approach to achieve an effective parallelism is to permute the matrix

A into a doubly bordered (DB) block diagonal form which is used in many applica-

tions such as domain decomposition-based solvers [13, 23, 26], preconditioned itera-

tive methods [3], and hybrid solvers [21, 28]. The DB block diagonal form is a variant

1

CHAPTER 1. INTRODUCTION 2

of the block diagonal form where off-diagonal nonzeros reside only in the bottommost

row and the leftmost column stripes. Permuting a matrix into the DB block diagonal

form is a well-known problem, and the graph partitioning by vertex separator (GPVS)

problem is utilized in a typical solution of this permutation problem.

The GPVS problem is a well-known variant of the graph partitioning problem

where the parts can only be connected by a set of vertices, called vertex separator.

That is, the removal of the separator vertices decomposes the graph into K subgraphs

such that the vertex set of each subgraph corresponds to a part in the partition. The

objective of the GPVS problem is to minimize the separator size while maintaining

a balance on the part weights. The GPVS problem, which is widely used in nested-

dissection-based low-fill orderings for factorization of symmetric sparse matrices, is

known to be NP-hard [5].

In this thesis, our target problem, which we refer to as A-to-ABDO permutation

problem, is to symmetrically permute rows and columns of an N × N structurally

symmetric sparse matrix A into a K -way block diagonal (BDO) form Aπ with over-

lap:

Aπ = PAP T = ABDO =

A1,1 A1,2

AT1,2 C1,1 A2,1 C1,2

AT2,1 A2,2 A2,3

CT
1,2 AT2,3 C2,2 · · ·

... . . .

CK−1,K−1 AK,K−1

ATK,K−1 AK,K

,

(1.1)

Here, P denotes an N ×N permutation matrix. The BDO form contains K diagonal

blocks D1, D2, . . . , DK , where

Dk =

Ck−1,k−1 Ak,k−1 Ck−1,k

ATk,k−1 Ak,k Ak,k+1

CT
k−1,k ATk,k+1 Ck,k

 for k = 2, 3, . . . , K − 1, (1.2)

CHAPTER 1. INTRODUCTION 3

D1 =

[
A1,1 A1,2

AT1,2 C1,1

]
, DK =

[
CK−1,K−1 AK,K−1

ATK,K−1 AK,K

]
. (1.3)

In (1.2), Ck,k denotes the coupling diagonal block where the successive k th and

(k +1) th diagonal blocks Dk and Dk+1 overlap. The diagonal blocks Dk ’s and

the coupling diagonal blocks Ck,k ’s for k = 1, 2, . . . , K are square submatrices as

well as the matrix A . However, Dk ’s and Ck,k ’s may consist of varying numbers of

rows/columns through k = 1, 2, . . . , K . Note that ABDO is structurally symmetric

since a symmetric permutation is applied on the symmetric matrix A . Figure 1.1 dis-

plays a better visualization of the BDO form of the matrix A . The objective of the

A-to-ABDO permutation is to minimize the sum of the number of rows/columns of the

coupling diagonal blocks, whereas the permutation constraint is to maintain balance

on the nonzero counts of the diagonal blocks.

The A-to-ABDO permutation problem arises in the parallelization of the multi-

plicative schwarz preconditioner given in [18]. In this parallelization, each diagonal

block Dk of the permuted matrix ABDO together with the associated computations are

assigned to a distinct processor k . The permutation objective of minimizing the sum of

the number of rows/columns of the coupling diagonal blocks corresponds to minimiz-

ing the total communication volume of the parallel system [18]. The permutation ob-

jective also corresponds to minimizing the upper bound on the number of iterations of

the solver using multiplicative schwarz preconditioner [19], since it is proven that the

sum of the number of rows/columns of the coupling diagonal blocks is an upper bound

on the number of iterations to convergence. The permutation constraint of maintaining

balance on the nonzero counts of the diagonal blocks relates to maintaining balance on

the computational loads of processors during the iterations.

The contributions of this thesis can be considered as three-fold:

1. Defining the ordered GPVS (oGPVS) problem: We define the oGPVS problem,

which is a variant of the GPVS problem. For this purpose, we also define a

special form of vertex separator, namely ordered Vertex Separator (oVS), which

is to be used in the oGPVS problem definition.

CHAPTER 1. INTRODUCTION 4

Figure 1.1: Block diagonal form with overlap

2. Formulating the A-to-ABDO permutation problem as a K -way oGPVS prob-

lem: We show how the rows/columns of diagonal blocks Dk ’s and coupling

diagonal blocks Ck,k ’s in BDO form can be decoded by the vertices of the parts

and the separator of the oVS structure. We also show the one-to-one correspon-

dence between the objectives of A-to-ABDO permutation problem and oGPVS

problem, as well as the relation between the constraints of these two problems.

3. Proposing a recursive bipartitioning (RB) based algorithm to solve the oGPVS

problem: Since existing graph partitioning tools are unable to solve the oGPVS

problem, we show how the RB paradigm, which is successively and commonly

used for K -way graph/hypergraph partitioning, can be utilized for solving the

CHAPTER 1. INTRODUCTION 5

oGPVS problem. For this purpose, we propose a left-to-right bipartitioning ap-

proach together with a novel vertex fixation scheme so that existing 2-way GPVS

tools that support fixed vertices can effectively and efficiently be utilized in the

RB framework.

The rest of the thesis is organized as follows. Related work and a detailed expla-

nation of a previous work on the same problem is provided in Chapter 2. Chapter 3

provides a background information. The oGPVS problem formulation is presented in

Chapter 4. Chapter 5 presents and discusses the RB-based algorithm proposed for solv-

ing the oGPVS problem. Implementation details and experimental results are given in

Chapter 6. Finally, Chapter 7 concludes the thesis.

Chapter 2

Related Work

Block tridiagonalization and block diagonalization with overlap are closely related

problems where block tridiagonalization can be considered as a special case of block

diagonalization with overlap. Block tridiagonal (BT) form of a matrix A has the same

structure with BDO form except that the off-diagonal submatrices CT
k−1,k and Ck−1,k

of each diagonal block Dk are zero. In A-to-ABT permutation problem, one of the ob-

jectives is to maximize the number of blocks while maintaining a balance on the sizes

of the blocks. A partitioning approach resulting in a block tridiagonal form is proposed

in [14], which uses a one-way dissection and quotient tree algorithms. Another block

tridiagonalization method is proposed in [27], which is to be used in a physical ap-

plication, called coherent charge transport. A-to-ABT and A-to-ABDO permutation

problems may also have a number of common steps during their solutions such as find-

ing a pseudo-peripheral vertex and computing a level structure on the standard graph

representation of A .

To our knowledge, the A-to-ABDO permutation problem has only been addressed

in a recent work by Kahou et al. [17]. In this work, they propose a bottom-up graph

partitioning algorithm on the standard graph representation G of A , which consists

of the steps explained in the rest of this chapter. Since this proposed algorithm finds

a partition in a bottom-up manner and iteratively refines it, decisions of the algorithm

are based on the local information. Hence, a new method which makes decisions based

on the global information is needed for this permutation problem. For this purpose, we

6

CHAPTER 2. RELATED WORK 7

propose a top-down partitioning algorithm which makes use of the global information

and makes decisions accordingly.

Kahou’s graph partitioning algorithm for A-to-ABDO permutation problem has 6

basic steps which can be explained as follows:

1. Finding a pseudo-peripheral vertex of G: A peripheral vertex in a graph of

diameter d is defined as a vertex that has distance d from some other vertex,

that is, a vertex that achieves the diameter. Since finding a peripheral vertex in

a graph is a hard problem, they use a pseudo-peripheral node finder algorithm,

described in [15], to find a pseudo-peripheral vertex v0 .

2. Constructing a level structure T of G rooted at v0 : The level structure T rooted

at v0 , which can be viewed as a tree, is a partition of the vertices of G according

to their distances to v0 . Formally, T = {L0, L1, L2, . . . , L`} where Li = {vi :

δ(vi, v0) = i} for i = 1, 2, . . . , ` . Here, δ(vx, vy) denotes the distance between

vertex vx and vertex vy in the corresponding graph. Breadth-First Search (BFS),

which is a very well known searching algorithm on graphs, is used to construct

this level structure. Note that vertices in Li can only be adjacent to the vertices in

Li−1 and Li+1 for i = 0, 1, . . . , ` . Figure 2.1 displays an example level structure

of length ` = 6 rooted at vertex v0 . If the length of the level set T is smaller

than the number K of the desired parts, then it is not possible to partition G into

K parts.

3. Gathering an initial partition P0 of vertices to K parts from the level struc-

ture T : The obtained level structure T is considered as a chain of tasks where

each level set Li is simply a task and the task weight w(Li) is defined as the

sum of the degrees of the vertices in Li . Thus, partitioning level structure T

into K parts corresponds to finding a sequence of delimiters τ1, τ2, . . . , τK−1
while maintaining load balancing such that the tasks residing between two

consecutive delimiters form a part. They use chains-on-chains partitioning

[25] algorithm on this chain to find the delimiters and so the initial partition

P0 = {V1,V2, . . . ,VK} . In the initial partition P0 , each part Vi contains one or

more consecutive levels so that all inter-part edges are confined to be between

CHAPTER 2. RELATED WORK 8

Figure 2.1: An example level structure rooted at v0

consecutive parts. Figure 2.2 displays an initial partition P0 with K = 3 and

delimiters {(2, 3), (4, 5)} .

4. Adjusting the partition P0 to obtain more balanced parts: If the balance of the

initial partition P0 is found to be unsatisfactory, they utilize the first two steps of

Dulmage-Mendelsohn decomposition algorithm [12] to obtain a more balanced

partition P1 through exchanging vertices between consecutive parts.

5. Finding a vertex separator between each two consecutive parts: For each two

consecutive parts Vi and Vi+1 , a bipartite graph of the boundary vertices and

the separating edges is constructed and the minimum vertex cover of this bi-

partite graph constitute the vertex separator Si . This results in the partition

P2 = {W1,S1,W2,S2,W3, . . . ,SK−1,WK} where the vertices of separators

Si ’s are removed from the parts Vi ’s forming Wi ’s, i.e., Wi = Vi− (Si−1∪Si) .

In P2 , part Wi is only adjacent to its left separator Si−1 and its right separator

Si , whereas separator Si is only adjacent to its left part Wi , its right part Wi+1 ,

its left separator Si−1 and its right separator Si+1 (see Figure 4.5 for an example

of this structure where parts are labeled with Vi instead of Wi). Note that no

two consecutive parts Wi and Wi+1 ’s are adjacent anymore.

6. Refining vertex separators: Finally, an iterative refinement process on P2 is

CHAPTER 2. RELATED WORK 9

Figure 2.2: An example initial partition P0 of level structure given in Figure 2.1

used to decrease the size of the separators by utilizing the node separator re-

finement algorithm of [22]. At each iteration of this algorithm, the first two steps

of Dulmage-Mendelsohn decomposition algorithm is used in order to find the set

of vertices Y ⊂ Si in separator Si whose adjacency set Adj(Y, (Wi ∪ Wi+1))

in its left or right part is smaller than itself, i.e., |Adj(Y, (Wi ∪Wi+1))| < |Y | .
Then Adj(Y, (Wi∪Wi+1)) is removed from the corresponding part and replaced

in separator Si and Y is removed from Si and replaced in the corresponding

part. Through the iterations, separator Si ’s are selected in the order of their de-

creasing size and this replacement can be done unless it results an unsatisfactory

imbalance on part weights.

Chapter 3

Background

3.1 Standard Graph Model for Representing Sparse

Matrices

In the standard graph model, an N ×N square and symmetric matrix A = (aij) is

represented as an undirected graph G(A) = (V , E) with N vertices. Vertex set V
and edge set E respectively represent the rows/columns and off-diagonal nonzeros of

matrix A . V contains one vertex vi for each row/column i . E contains one edge eij
that connects the vertices vi and vj for each symmetric nonzero pair aij and aji in A .

Figure 3.1: A matrix and its standard graph representation

10

CHAPTER 3. BACKGROUND 11

3.2 Graph Partitioning by Vertex Separator (GPVS)

For a given undirected graph G = (V , E) , we use the notation Adj(vi) to denote the

set of vertices that are adjacent to vertex vi in graph G . That is, Adj(vi) = {vj :

(vi, vj) ∈ E} . We extend this operator to include the adjacency set of a vertex subset

V ′⊆V , i.e., Adj(V ′)=
⋃
vi∈V ′ Adj(vi)− V ′ . Two vertex subsets V ′ ⊆ V and V ′′ ⊆ V

are said to be adjacent if there exists a pair of vertices vi ∈ V ′ and vj ∈ V ′′ such

that (vi, vj) ∈ E (i.e., Adj(V ′) ∩ V ′′ 6= ∅ or equivalently Adj(V ′′) ∩ V ′ 6= ∅) and

non-adjacent otherwise.

A vertex subset S is a K -way vertex separator if the subgraph induced by the

vertices in V−S has at least K connected components. ΠV S = {V1,V2, . . . ,VK ;S}
is a K -way vertex partition of G by vertex separator S ⊆V if all parts are nonempty

(i.e., Vk 6= ∅ for k = 1, . . . , K), all parts and the separator are pairwise disjoint (i.e.,

Vi ∩ Vj = ∅ and Vi ∩ S = ∅ for i, j = 1, 2, . . . , K and i 6= j), the union of the

parts and the separator gives V (i.e.,
⋃K
i=1 Vi ∪ S), and the vertex parts are pairwise

nonadjacent (i.e., Adj(Vk) ⊆ S for k = 1, . . . , K). Vk ∩ Adj(S) is said to be the

boundary vertex set of part Vk .

Figure 3.2 shows an example graph and an example vertex separator on the graph.

Figure 3.2: An example graph G and an example 3-way separator ΠV S of G

In the GPVS problem, the partitioning objective is to minimize the separator size,

CHAPTER 3. BACKGROUND 12

which is usually defined as the number of vertices in the separator, i.e.,

Separatorsize(ΠVS) = |S|. (3.1)

The partitioning constraint is to maintain a balance criterion on the part weights, which

is usually defined as

max
1≤k≤K

{W (Vk)} ≤ (1 + ε)Wavg. (3.2)

Here, ε is the maximum imbalance ratio allowed and Wavg =
∑K

k=1W (Vk)/K is the

average part weight, where

W (Vk) =
∑
vi∈Vk

w(vi), (3.3)

and w(vi) is the weight associated with vertex vi .

3.3 Recursive Bipartitioning Paradigm

The RB paradigm has been widely and successively utilized in K -way graph/hypergraph

partitioning. In the RB scheme for K -way GPVS, firstly a 2-way GPVS ΠV S =

{V1,V2;S} of the original graph G = G[V] is obtained and then this 2-way ΠV S

is decoded to construct two subgraphs using the separator-vertex removal scheme to

capture the K -way separator size. The separator-vertex removal scheme discards all

separator vertices of the 2-way ΠV S , since they contribute to the K -way separator

size only once, thus inducing vertex induced subgraphs G[V1] and G[V2] . Then 2-way

GPVS is recursively applied on both G[V1] and G[V2] . This procedure continues un-

til the desired number of parts is reached in lg2K recursion levels, assuming K is a

power of 2.

In the forthcoming discussions, we utilize the concept of an RB tree which is a full

and complete (for K is a power of 2) binary rooted tree. Each node of an RB tree

represents a vertex subset of V as well as the respective induced subgraph on which a

2-way GPVS to be applied. Note that the root node represents both the original vertex

set V and the original graph G .

CHAPTER 3. BACKGROUND 13

3.4 Graph/Hypergraph Partitioning with Fixed Ver-

tices

Graph/hypergraph partitioning with fixed vertices has been initially used for RB-based

VLSI layout design with terminal propagation [1], and recently used for solving the

repartitioning/remapping problem encountered in the parallelization of irregular appli-

cations [2, 6, 7].

In graph/hypergraph partitioning with fixed vertices, there exists an additional con-

straint on the part assignment of some vertices. That is, some vertices, which are

referred to as fixed vertices, are pre-assigned to parts prior to the partitioning opera-

tion, with the constraint that, at the end of the partitioning, fixed vertices will remain

in the part to which they are pre-assigned. We use the notation Fk to denote the subset

of vertices that are fixed to part Vk , for k = 1, 2, . . . , K . The remaining vertices (i.e.,

vertices in V −
⋃K
k=1Fk) are referred to as the free vertices since they can be assigned

to any part. In GPVS with fixed vertices, free vertices can be assigned to the separator

as well as to the parts.

Chapter 4

Ordered GPVS Formulation

In order to formulate the A-to-ABDO transformation problem as a graph theoretical

problem, we define a variant of the K -way GPVS problem which is referred to as the

ordered GPVS (oGPVS) problem .

4.1 Ordered GPVS Problem Definition

In the oGPVS problem, we use a special form of vertex separator which is referred

as the ordered Vertex Separator (oVS). In oVS of a given graph G , there exists an

order on the vertex parts and the overall separator is partitioned into an ordered set

S =<S1,S2, ...,SK−1> of mutually disjoint K−1 subseparators in such a way that:

(i) Each vertex in subseparator Sk connects vertices only in successive parts Vk and

Vk+1 , for k = 1, 2, ..., K−1 .

(ii) Edges between subseparators are restricted to be between only successive

supseperators, i.e., Sk and Sk+1 for k = 1, 2, ..., K−2 .

Here we refer Sk as the right subseparator of Vk and the left subseparator of Vk+1 . We

introduce the following formal definitions for oVS and oGPVS problem:

14

CHAPTER 4. ORDERED GPVS FORMULATION 15

Definition 1 Ordered Vertex Separator ΠoV S : ΠoV S = {<V1,V2, . . . ,VK >;S}
is a K -way ordered vertex partition of G = (V , E) by an ordered vertex seperator

S =< S1,S2, . . . ,SK−1 > if each subseparator Sk are nonempty; all parts and sub-

separators are pairwise disjoint; the union of parts and separators gives V ; parts

are pairwise non-adjacent; only successive subseparators can be pairwise adjacent;

successive parts Vk and Vk+1 are connected by the vertices of the subseparator Sk
between these two parts.

Figure 4.1 displays the general structure of an oVS for parts Vk−1 ,Vk and Vk+1 .

Figure 4.1: General structure of an oVS

Definition 2 oGPVS Problem: Given a graph G = (V , E) , an integer K ,

and a maximum allowable imbalance ratio ε , the oGPVS problem is finding a K -

way ordered vertex separator ΠoV S(G) = {< V1,V2, . . . ,VK >;S} of G by a ver-

tex separator S =< S1,S2, . . . ,SK−1 > that minimizes the overall separator size

|S| =
∑K−1

k=1 |Sk| while satisfying the balance criterion on the weights of K parts

given in (3.2).

4.2 Formulation

The following theorem shows how the A-to-ABDO permutation problem can be for-

mulated as an oGPVS problem.

CHAPTER 4. ORDERED GPVS FORMULATION 16

Theorem 1 Let G(A) = (V , E) be the standard graph representation of a given

sparse matrix A where weight of each vertex vi is set to be equal to the number of

nonzeros in row/column i . A K -way oVS ΠoV S = {<V1,V2, . . . ,VK>;S} of G(A)

can be decoded as a partial permutation of A to a K -way BDO form ABDO , where

the vertices of part Vk and subseparator Sk constitute the rows/columns of the block

Ak,k and Ck,k respectively. Thus,

• minimizing the separator size |S| =
∑K

k=1 |Sk| corresponds to minimizing the

sum of the rows/columns of the coupling diagonal blocks

• maintaining balance on the part weights relates to maintaining balance on the

nonzero counts of the diagonal blocks.

Proof Consider a K -way oVS ΠoV S = {<V1,V2, . . . ,VK>;S} of G(A) . ΠoV S

can be decoded as a partial permutation on the rows and columns of A to induce a per-

muted matrix Aπ as follows: The rows/columns corresponding to the vertices in Vk are

ordered after the rows/columns corresponding to the vertices in Sk−1 and before the

rows/columns corresponding to the vertices in Sk . In a dual manner, the rows/columns

corresponding to the vertices in Sk are ordered after the rows/columns correspond-

ing to the vertices in Vk and before the rows/columns corresponding to the vertices

in Vk+1 . Note that ΠoV S induces a partial permutation, since the rows/columns cor-

responding to the vertices in the same part or in the same separator can be ordered

arbitrarily. Also note that ΠoV S induces a symmetric permutation on the rows and

columns of matrix A since each vertex vi of G(A) represents both row i and col-

umn i of A .

In the permuted matrix Aπ , the vertices of part Vk constitute the rows/columns

of the diagonal subblock Ak,k of Dk and the vertices of subseparator Sk constitutes

the rows/columns of the coupling diagonal block Ck,k between Dk and Dk+1 . Since

we have Adj(Vk) = Sk−1 ∪ Sk and Adj(Vk) ∩ Adj(Vk+1) = Sk by the definition of

oVS, the overlaps between the diagonal blocks Dk ’s are restricted to be only between

the successive Dk ’s, and Ck,k constitute the overlap between Dk and Dk+1 . Thus

permuted matrix Aπ is a BDO form of matrix A .

Since the vertices in Sk constitute the rows/columns of the coupling diagonal block

CHAPTER 4. ORDERED GPVS FORMULATION 17

Ck,k , minimizing the separator size |S| corresponds to minimizing the sum of the

number of the rows/columns in the coupling diagonal blocks.

Figure 4.2: Correspondence between the nonzeros of block Dk and the edges of Sk−1∪
Vk ∪ Sk .

Here we show that balancing on the part weights relates to the balancing of the

nonzero counts in the diagonal blocks. For this purpose, we mention the associa-

tion between the edges of G(A) in oVS form and the nonzeros of Aπ = ABDO

induced by ΠoV S . We introduce Figure 4.2 in order to clarify the forthcoming dis-

cussion. The nonzeros in the diagonal subblocks Ak,k and Ck,k of Bk respectively

correspond to the internal edges of part Vk and subseparator Sk . The nonzeros in the

off-diagonal subblocks Ak,k+1 and ATk,k+1 of Dk correspond to the edges connect-

ing the vertices in Vk and Sk . The nonzeros in the off-diagonal subblocks Ck−1,k
and CT

k−1,k of Dk correspond to the edges connecting the vertices in successive sub-

separators Sk−1 and Sk . Thus, the weight of a part Vk computed according to (3.3)

gives W (Vk) = nnz(Ak,k−1) + nnz(Ak,k) + nnz(Ak,k+1) , where nnz(·) denotes the

number of nonzeros in the respective matrix. Since nnz(ATk,k−1) = nnz(Ak,k−1) and

nnz(ATk,k+1) = nnz(Ak,k+1) , W (Vk) represents the sum of the nonzero counts of

diagonal block Ak,k plus one of the two off-diagonal blocks Ak,k−1 and ATk,k−1 plus

one of the two off-diagonal blocks Ak,k+1 and ATk,k+1 . One possible nonzero-count

coverage of W (Vk) is shown in (4.1) as highlighted submatrices.

Dk =

Ck−1,k−1 Ak,k−1 Ck−1,k

ATk,k−1 Ak,k Ak,k+1

CT
k−1,k ATk,k+1 Ck,k

 (4.1)

CHAPTER 4. ORDERED GPVS FORMULATION 18

Note that W (Sk−1) + W (Vk) + W (Sk) computed in the vertex induced subgraph

G[Sk−1 ∪ Vk ∪ Sk] of G(A) gives nnz(Dk) . Thus, W (Vk) can be considered to

approximate nnz(Dk) when the number of vertices and edges of vertex induced sub-

graph G[Sk−1 ∪ Sk] of G(A) are small, which is partially implied by the partitioning

objective of minimizing the separator size. �

Figure 4.3 and 4.4 respectively show a sample 24×24 matrix A which contains

116 nonzeros and the standard graph representation G of A which contains 24 vertices

and 46 edges. Figure 4.5 shows a 4-way oVS ΠoV S(G) = {V1,V2,V3,V4;S1,S2,S3}
of G , where V1 ,V2 ,V3 and V4 respectively contain 4, 5, 4 and 4 vertices, and S1 ,S2
and S3 respectively contain 2, 3 and 2 vertices. Figure 4.6 shows a BDO form of

the sample matrix A given in Figure 4.3, which is induced by ΠoV S(G) given in Fig-

ure 4.5. As seen in Figure 4.6, the BDO form respectively contains diagonal blocks

D1 , D2 , D3 and D4 of dimensions 6×6, 10×10, 9×9 and 6×6, and overlapping

blocks C1,1 , C2,2 and C3,3 of dimensions 2×2, 3×3, and 2×2 between diagonal

blocks D1 and D2 , D2 and D3 , and D3 and D4 .

4.3 Parallel Application Requirements

Here we will briefly examine the communication and computation requirements of the

parallel implementation of an explicit formulation of the multiplicative schwarz pre-

conditioner given in [18] in order to show the correspondence between its efficient

parallelization and the constraint and objective of the proposed oGPVS formulation.

In this parallel implementation, each processor k stores diagonal block Dk and its LU

factors as well as the k th overlapping subvectors of all column vectors involved in the

iterative solution of Aπxπ = bπ , where xπ = P Tx and bπ = Pb . For the simplic-

ity of the forthcoming discussion, we will omit the ”π ” superscripts which denote the

permuted matrix and vectors. For example, xk denotes the subvector of x that corre-

sponds to the columns of Dk , where xk is partitioned into three subsubvectors x1k , x2k
and x3k that respectively correspond to the columns of Ck−1,k−1 , Ak,k and Ck,k . So

xk overlaps with xk−1 through x3k−1 and x1k , and overlaps with xk+1 through x3k and

x1k+1 . Each iteration involves a residual computation step and a preconditioning step

CHAPTER 4. ORDERED GPVS FORMULATION 19

[18].

The residual computation step involves a local sparse matrix-vector multiply (Sp-

MxV) operation of the form zk = D̂kxk for updating the local residual vector through

the local linear vector operation rk = bk − zk , in each processor k . Here D̂k is the di-

agonal block Dk from which the coupling diagonal subblock Ck,k is zeroed as shown

below:

D̂k =

Ck−1,k−1 Ak,k−1 Ck−1,k

ATk,k−1 Ak,k Ak,k+1

CT
k−1,k ATk,k+1 0

 (4.2)

The preconditioning step involves the solution of a local linear system of the form

Dkyk = rk for the update of the local solution vector through the linear vector op-

eration xk = xk + yk in each processor k . yk is obtained through performing local

forward and backward substitution operations on the LU factors of Dk . The local

LU factorizations of Dk matrices are performed in a parallel pre-processing step [18].

The preconditioning step also involves a SpMxV operation of the form y3k = Ck,ky
3
k ,

where y3k is the subvector of yk that corresponds to the rows of Ck,k . So maintaining

balance on the part weights relates to maintaining balance on the computational loads

of processors during the iterations.

In each residual computation step, processor k sends z1k to processor k−1 , and

sends z3k to processor k + 1 . In each preconditioning step, processor k sends y1k to

processor k− 1 , and sends y3k to processor k+ 1 . Hence, the partitioning objective of

minimizing the overall separator size corresponds to minimizing the total communica-

tion volume. Furthermore, as mentioned in [19], minimizing the overall separator size

corresponds to minimizing the upper bound on the convergence rate of the iterative

method.

CHAPTER 4. ORDERED GPVS FORMULATION 20

Figure 4.3: Sample matrix A

CHAPTER 4. ORDERED GPVS FORMULATION 21

Figure 4.4: Standard graph representation G(A) of A given in Figure 4.3

Figure 4.5: A 4-way oVS form of G(A) given in Figure 4.4

CHAPTER 4. ORDERED GPVS FORMULATION 22

Figure 4.6: BDO form of A permuted by 4-way oVS of G(A) given in Figure 4.5

Chapter 5

Recursive Graph Bipartitioning Model
with Fixed Vertices

In this section, we show how we solve the oGPVS problem by utilizing 2-way GPVS

problem with fixed vertices within the RB paradigm.

5.1 Theoretical Foundations

The following theorem and corollary lays down the basis for our formulation to obtain

a K -way oVS of a given graph G = (V , E) .

Theorem 2 For any disjoint vertex subset pair BL,BR ⊆ V , G has a K -way oVS

ΠoV S = {< V1,V2, . . . ,VK >;S} such that BL ⊆ V1 ∪ S1 and BR ⊆ SK−1 ∪ VK if

and only if the distance between any two vertices vi∈BL and vj∈BR is at least K−2 .

Proof (If) Consider the level structure initiated with BL , i.e., L0 = BL . Since

the distance between any vertices vi ∈BL and vj ∈BR is at least K−2 , vj ∈ L` s.t.

` ≥ K−2 , for any vj ∈ BR . We can construct a K -way oVS ΠoVS such as Sk = Lk−1
for 1 ≤ k < K−1 and SK−1 =

⋃
k≥K−1 Lk−1 . Since BL = S1 , BL ⊆ V1 ∪ S1 . Due to

the construction, BR ⊆ VK ∪ SK−1 since vj ∈ SK−1 for any vj ∈ BR .

23

CHAPTER 5. RECURSIVE GRAPH BIPARTITIONING MODEL WITH FIXED VERTICES24

(Only If) Consider a K -way oVS such that BL ⊆ V1 ∪ S1 and BR ⊆ VK ∪ SK−1 .

Consider any vertex pair vi ∈ BL and vj ∈ BR . It is clear that, the minimum distance

between vi and vj occurs when vi ∈ S1 and vj ∈ SK−1 . Due to the oVS structure, any

path between a vertex of S1 and a vertex of SK−1 contains at least K−2 intermediate

vertices one from each subseparator Sk (for k = 2, 3, . . . , K − 2). So, the minimum

distance between vi and vj is at least K − 1 . �

Corollary 1 A graph G has a K -way oVS if and only if the diameter of G is at

least K − 2 .

Proof G has diameter of size at least K−2 if and only if there exists two vertices

vi and vj such that δ(vi, vj) ≥ K−2 . Having such two vertices implies the existance

of a K -way oVS of G such that vi ∈ V1∪S1 and vj ∈ SK−1∪VK due to Theorem 2.

On the other hand, by definition, if G has a K -way oVS then there exists two vertices

vi ∈ S1 and vj ∈ SK−1 . Then, Theorem 2 implies that δ(vi, vj) ≥ K−2 . �

5.2 Recursive oGPVS Algorithm

Theorem 2 and Corollary 1 give the necessary and sufficient conditions for finding a

K -way oVS of a given graph G = (V , E) . However, a new scheme is needed to be

applied during each RB step to satisfy the feasibility condition for the resulting K-way

GPVS to be a K-way oVS. For this purpose, we propose a left-to-right bipartitioning

approach together with a novel vertex fixation scheme so that a GPVS tool that supports

partitioning with fixed vertices can be effectively and efficiently utilized. Algorithm 1

shows the initial invocation of the recursive oGPVS algorithm, where Algorithm 2

displays the basic steps of the proposed RB-based oGPVS algorithm that utilizes the

proposed vertex fixation scheme.

As seen in Algorithm 1, for the first RB step of recursive oGPVS algorithm, BL
consists of a single pseudo-peripheral vertex vL which is found by using the pseudo-

peripheral node finder algorithm given in [15]. One of the vertices that has a maximum

CHAPTER 5. RECURSIVE GRAPH BIPARTITIONING MODEL WITH FIXED VERTICES25

Algorithm 1 Initialization

Require: Graph G = (V , E) , integer K
1: Find a pseudo-peripheral vertexvL
2: Find a furthest vertex vR to vL using BFS
3: if distance between vL and vR is less than K − 2 then
4: return ”G is not partitionable into K -way oVS”
5: else
6: BL ← {vL}
7: BR ← {vR}
8: ΠoV S ←oGPVS(G,BL,BR, K)
9: return ΠoV S

distance to the selected pseudo-peripheral vertex is taken as the single vertex vR con-

stituting BR . According to Theorem 2, the oGPVS algorithm can be terminated at this

initial stage if the shortest path distance between vL and vR is less than K − 2 .

Algorithm 2 displays the oGPVS function whose inputs are a graph G , left and

right boundary vertex sets BL and BR of G , and an integer K which is the number

of parts that G is to be partitioned into. After the execution of this function, a K -way

oVS of the graph G is returned. Note that G and K are the current inputs of the oG-

PVS function although they also denote the initial graph and integer. As will become

clear later, left and right boundary vertex sets BL and BR are needed to gather the

information of which vertices are to be fixed to the left and right parts while applying

vertex fixation scheme.

As seen in line 1 of Algorithm 2, the oGPVS function first checks whether the cur-

rent bipartitioning is an intermediate or final level bipartitioning in the RB tree. Note

that K > 2 for intermediate level bipartitionings, whereas K = 2 for final level bipar-

titionings. As seen in line 3 of Algorithm 2, at the beginning of each intermediate RB

step, the oGPVS function applies the proposed vertex fixation scheme by invoking the

FIX-INT-LEVEL function on the current graph G with BL and BR to obtain the left

and right fixed-vertex sets FL and FR . Then in line 4, a 2-way GPVS is invoked on

(G, {FL,FR}) to obtain ΠV S(G) = {VL,VR;S} , where VL and VR are used to de-

note the left and right parts. In lines 5 and 6, we construct left and right vertex-induced

subgraphs GL = G[VL] and GR = G[VR] on which further recursive bipartitioning

steps will be applied, since this bipartitioning belongs to an intermediate level of the

CHAPTER 5. RECURSIVE GRAPH BIPARTITIONING MODEL WITH FIXED VERTICES26

Algorithm 2 oGPVS (G,BL,BR, K)

Require: Graph G = (V , E) , boundary vertex sets BL,BR ⊆ V , integer K
1: if K > 2 then
2: K ′ ← K/2
3: (FL,FR)←FIX-INT-LEVEL(G,BL,BR, K ′)
4: ΠV S ←GPVS(G, {FL,FR}, 2) . ΠV S = {VL,VR;S}
5: GL ← G[VL]
6: GR ← G[VR]
7: BLL ← BL
8: BLR ← Adj(S) ∩ VL
9: BRL ← Adj(S) ∩ VR

10: BRR ← BR
11: ΠL

oV S ←oGPVS (GL,BLL,BLR, K ′) . ΠL
oV S = {< VL >:< SL >}

12: ΠR
oV S ←oGPVS (GR,BRL,BRR, K ′) . ΠR

oV S = {< VR >:< SR >}
13: ΠoV S ← {< VL,VR >:< SL,S,SR >}
14: else
15: (G′, {vL}, {vR})←FIX-FINAL-LEVEL(G,BL,BR)
16: ΠV S ←GPVS(G′, {{vL}, {vR}}, 2) . ΠV S = {V ′L,V ′R;S}
17: VL ← V ′L − {vL}
18: VR ← V ′R − {vR}
19: ΠoV S ← {VL,VR;S}
20: return ΠoV S

CHAPTER 5. RECURSIVE GRAPH BIPARTITIONING MODEL WITH FIXED VERTICES27

RB tree. Note that in order to construct GL and GR , we effectively apply the vertex

removal scheme on the vertices of subseparator S . That is, each subseparator vertex

vs ∈ S is removed during forming GL and GR .

In lines 7–10 of Algorithm 2, we determine left and right boundary vertices of both

left and right subgraphs GL and GR . GL and GR respectively inherit their left and

right boundary vertex sets from the left and right boundary vertex sets of the parent

graph G . That is, the left boundary vertex set BL of the current graph G becomes the

left boundary vertex set BLL of GL , whereas the right boundary vertex set BR of G

becomes the right boundary vertex set BRR of GR . The boundary vertex sets BLR and

BRL that are formed by the subseparator S of ΠV S(G) respectively constitute the right

and left boundary vertex sets of GL and GR . That is, Adj(S)∩VL constitutes the right

boundary vertex set BLR of GL , whereas Adj(S) ∩ VR constitutes the left boundary

vertex set BRL of GR . We should note here that S will be the right subseparator of the

rightmost vertex part and left subseparator of the leftmost vertex part obtained from

RB trees rooted at GL and GR , respectively.

In lines 11 and 12 of Algorithm 2, we recursively invoke the oGPVS function on

the left and right subgraphs GL and GR to respectively obtain ΠL
oV S and ΠR

oV S . Here

ΠL
oV S = {<VL>:<SL>} denotes the resulting K/2-way oVS of the left subgraph

GL , where <VL> and <SL> denote the ordered K/2 vertex parts and K/2 − 1

subseparators. Similarly, ΠR
oV S = {<VR>:<SR>} denotes the resulting K/2-way

oVS of the right subgraph GR , where <VR> and <SR> respectively denote the

ordered K/2 vertex parts and K/2 − 1 subseparators. Line 13 forms a K -way oVS

of G by combining ΠL
oV S and ΠR

oV S together with the current level subseparator S as

ΠoV S = {<VL,VR> :<SL,S,SR>} .

For the final level bipartitionings (lines 15–19 in Algorithm 2), the oGPVS func-

tion applies the proposed vertex fixation scheme by invoking the FIX-FINAL-LEVEL

function (in line 15) on the current graph G with BL and BR to obtain augmented

graph G′ . As will become clear later in Algorithm 4, G′ is produced by adding two

vertices vL and vR , which are respectively fixed to the left and right parts, and a num-

ber of associated edges to the current graph G . Then in line 16, a 2-way GPVS is

CHAPTER 5. RECURSIVE GRAPH BIPARTITIONING MODEL WITH FIXED VERTICES28

invoked on (G′, {{vL}, {vR}}) to obtain ΠV S(G′) = {V ′L,V ′R;S} . Lines 17–18 ex-

clude vL and vR from the left and right vertex parts, respectively, to obtain the 2-way

oVS in line 19.

Figure 5.1 displays a diagram of three levels of RB process applied on a graph G

with left and right boundary vertex sets BL and BR . Solid directed edges connecting

graphs to their subgraphs correspond to the edges of the RB tree, whereas the dashed

directed edges correspond to the final level bipartitionings. Note that BL and BR
respectively determine the left and right boundary vertex sets of the leftmost and right-

most graphs at each level of the RB tree rooted at G . That is, BL = BLL = BLLL is the

left boundary vertex set of graphs G , GL and GLL , whereas BR = BRR = BRRR is

the right boundary vertex set of graphs G , GR and GRR . The internal boundary vertex

sets of the RB tree rooted at G are determined by the separators obtained, for example

BLRR = BLR = Adj(S) ∩ VL and BRLL = BRL = Adj(S) ∩ VR . The last level of

Figure 5.1 shows the final 2-way GPVS operations performed on the subgraphs of the

last level of the RB tree to obtain an 8-way oVS of the initial graph G .

Algorithm 3 FIX-INT-LEVEL (G,BL,BR, K ′)
Require: Graph G = (V , E),BL,BR ⊆ V , integer K ′

1: K ′ ← K ′ − 1
2: FL ←FIX-VERTICES(G,BL, K ′) . fixation to the left part
3: FR ←FIX-VERTICES(G,BR, K ′) . fixation to the right part
4: return (FL,FR)

Algorithm 4 FIX-FINAL-LEVEL,(G,BL,BR)

Require: Graph G = (V , E),BL,BR ⊆ V
1: V ′ ← V ∪ {v`} ∪ {vr}
2: E ′ ← E ∪ {(v`, v) : v ∈ BL} ∪ {(v, vr) : v ∈ BR}
3: w(v`)← w(vr)← 0
4: G′ = (V ′, E ′)
5: return (G′, {vL}, {vR})

As seen in Algorithm 2, we apply two different types of fixation schemes

FIX-INT-LEVEL and FIX-FINAL-LEVEL for the intermediate level and final level

bipartitionings, respectively. Here, an intermediate level bipartitioning refers to a 2-

way GPVS to be applied on a graph at an internal node of the RB tree, whereas a final

level bipartitioning refers to a 2-way GPVS to be applied on a graph at a leaf node.

CHAPTER 5. RECURSIVE GRAPH BIPARTITIONING MODEL WITH FIXED VERTICES29

Figure 5.1: A three level RB tree for producing an 8-way oVS of an initial graph G

The FIX-INT-LEVEL function invokes the FIX-VERTICES function twice with

K ′ being equal to K/2−1 , where K is the input of the current oGPVS function. Here,

K ′ denotes the number of vertex levels to be fixed from the left and right boundary

vertex sets–including the boundary vertex sets–of the current graph G . As seen in

Algorithm 5, the FIX-VERTICES function utilizes a BFS-like algorithm to identify

the vertices whose shortest path distances to a given vertex subset B are strictly less

than a given K ′ value. The shortest path distance of a vertex v to a vertex subset

U is defined as δ(v,U) = minu∈U{δ(u, v)} , where δ(u, v) denotes the shortest path

distance between two vertices u and v . In the first invocation of the FIX-VERTICES

function, vertices whose shortest path distances to BL are strictly less than K ′ are fixed

to the left part, whereas in the second invocation vertices whose shortest distances to

BR are strictly less than K ′ are fixed to the right part. That is, FL = {u : δ(u,BL) <

K ′} and FR = {u : δ(u,BR) < K ′} .

For the final level bipartitionings, the FIX-FINAL-LEVEL function augments

CHAPTER 5. RECURSIVE GRAPH BIPARTITIONING MODEL WITH FIXED VERTICES30

Algorithm 5 FIX-VERTICES (G,B, K ′)
Require: Graph G = (V , E),B ⊆ V , integer K ′

1: F ← ∅
2: for each vertex u ∈ B do
3: F ← F ∪ {u}
4: d[u]← 1
5: Q← B
6: while Q 6= ∅ do
7: u← DEQUEUE(Q)
8: for each vertex v ∈ Adj(u) do
9: if v /∈ F then

10: F ← F ∪ {v}
11: d[v]← d[u] + 1
12: if d[v] < K ′ then
13: ENQUEUE(Q, v)
14: return F

graph G with two zero-weight vertices v` having Adj(v`) = BL and vr having

Adj(vr) = BR , and fixes them to the left and right parts, respectively. This vertex

fixation scheme introduces the flexibility of assigning the vertices of BL and BR to the

separator.

5.3 A Discussion on the Correctness of oGPVS Algo-

rithm

The left-to-right bipartitioning approach together with the proposed vertex fixation

scheme adopted in the recursive oGPVS algorithm given in Algorithm 2 induces a

natural ordering on both vertex parts and separators of a graph G in such a way that the

final partition is a K -way oVS of G . We should also note that this scheme also induces

a restricted 2` -way oVS at the `th level of the RB tree, for ` = 0, 1, . . . , lg2K − 1 .

Here the restriction refers to the non-adjacency of the consecutive subseparators. As

will become clear later, 2-way GPVS operations to be invoked on the leaf level graphs

of the RB tree make the consecutive subseparators adjacent in the final K -way oVS.

We provide the following discussion on the correctness of the proposed RB-based

CHAPTER 5. RECURSIVE GRAPH BIPARTITIONING MODEL WITH FIXED VERTICES31

oGPVS algorithm. We include Figure 5.2 for a better understanding of the forthcoming

discussion. Without loss of generality, let G be a graph in an intermediate level of the

RB tree. Consider a 2-way VS ΠV S(G) = {VL,VR;S} of G and let GL and GR be

the vertex-induced subgraphs by VL and VR , respectively. Let BL = Adj(S) ∩ VR
be the left boundary vertex set of GR and BR = Adj(S) ∩ VL be the right boundary

vertex set of GL . For the sake of correctness of the oGPVS algorithm, the following

Figure 5.2: Restrictions for boundary vertices

restrictions should be maintained in any 2-way VS ΠV S(GL) of GL and ΠV S(GR) of

GR :

(a) If GL and GR are intermediate level graphs of the RB tree, the vertices in the left

boundary vertex set BL of GR can only be assigned to the left part of ΠV S(GR) ,

whereas the vertices in the right boundary vertex set BR of GL can only be

assigned to the right part of ΠV S(GL) .

CHAPTER 5. RECURSIVE GRAPH BIPARTITIONING MODEL WITH FIXED VERTICES32

(b) If GL and GR are final level graphs of the RB tree, the vertices in the left bound-

ary vertex set BL of GR can be assigned to the subseparator as well as the left

part of ΠV S(GR) , whereas the vertices in the right boundary vertex set BR of

GL can be assigned to the subseparator as well as the right part of ΠV S(GL) .

We provide the following discussion for the need of restriction (a) on the assign-

ment of the vertices in the left boundary vertex set BL of GR . Consider an edge

(u, v) ∈ E(G) , where u ∈ S and v ∈ BL in ΠV S(G) . There are three cases accord-

ing to the assignment of vertex v in ΠV S(GR) = {VRL,VRR;S}; namely v ∈ VRL ,

v ∈ VRR and v ∈ SR . Case v ∈ VRL does not violate the oVS structure at the cur-

rent level. Case v ∈ SR makes two consecutive subseparators become adjacent in the

current level. Although this situation doesn’t violate the oVS structure in the current

level, it is guaranteed to violate the oVS structure in the subsequent bipartitions of

the left and right subgraphs of GR in the next level since these adjacent subseparators

S and SR will not be consecutive anymore in the following levels. Case v ∈ VRR
immediately violates the oVS structure since edge (u, v) makes separator S connect

two nonconsecutive vertex parts, namely a vertex part in the current level oVS rooted

at GL and the right vertex part of ΠV S(GR) . A dual discussion holds for the need of

restriction (a) on the assignment of the vertices in the right boundary vertex set BR of

GL . In Figure 5.2, allowable and disallowable assignments of vertex v are identified

by labeling the (u, v) edges with ”X” and ”×”.

The restriction (b) is a relaxed version of the restriction (a), where the vertices

in BL and BR can also be assigned to the separators of ΠV S(GR) and ΠV S(GL) ,

respectively. This relaxation is valid, because it has the potential of disturbing the

oVS structure only if the left and right subgraphs of ΠV S(GL) and ΠV S(G) are to

be further bipartitioned, which is not the case since ΠV S(GL) and ΠV S(GR) are final

level bipartitionings of the RB tree.

It is clear that the fixation scheme given in Algorithms 3 and 4 already achieves

fixing the left and right boundary vertex sets in such a way to satisfy the restrictions (a)

and (b), respectively. Furthermore, at an intermediate level of RB tree, Algorithm 3

fixes the vertices whose shortest path distances from the left and right boundary vertex

sets are strictly less than K ′ = K/2− 1 to the left and right parts, respectively, where

CHAPTER 5. RECURSIVE GRAPH BIPARTITIONING MODEL WITH FIXED VERTICES33

K denotes the current K , which is an input of the current call of the oGPVS function.

Note that the shortest path distance between any two vertices in BL and BR is at least

K − 2 due to this additional vertex fixing. So, this additional vertex fixing ensures

that the vertex sets that are fixed to the left and right parts are disjoint and there always

exists a free vertex on any path from a vertex fixed to the left part to a vertex fixed to the

right part. This in turn ensures the existence of a valid vertex separator for partitioning

the current graph.

This additional vertex fixing is also needed to guarantee that a K -way oVS will

be obtained from RB-based partitioning of the left and right subgraphs according to

Theorem 2 because of the following reasons. The above-mentioned fixing to the left

part ensures that the shortest path distance between any two vertices vh ∈ BL and

vi ∈ S is at least K ′ = K/2 − 1 in the following ΠV S = {VL,VR;S} . In other

words, the shortest path distance between any two vertices vh ∈ BLL = BL and

vj ∈ BLR = Adj(S) ∩ VL will be at least K/2 − 2 , where BLL and BLR are the

left and right boundary vertex sets of left subgraph GL , respectively. Then, GL has a

(K/2)-way oVS such that BLL ⊆ V1 ∪ S1 and BLR ⊆ VK/2 ∪ SK/2−1 , by Theorem

2. A similar discussion also holds for fixing to right part, and consequently for the

right subgraph GR . Combining these two (K/2)-way oVS partitions of the left and

right subgraphs GL and GR gives a K -way oVS for the original graph G by placing

the subseparator S (as SK/2) in between the rightmost vertex part of the left oVS and

the leftmost vertex part of the right oVS. Note that having BLR ⊆ VK/2 ∪ SK/2−1
for the left (K/2)-way oVS does not violate the final K -way oVS of G , but makes

consecutive subseparators adjacent via the vertices in BLR∩SK/2−1 . A dual discussion

holds for having BRL ⊆ V1 ∪ S1 for the right (K/2)-way oVS.

Chapter 6

Experiments

6.1 Implementation Details

Currently, existing GPVS tools such as onmetis [20] do not support fixed vertices. In-

stead, we utilize the Hypergraph Partitioning (HP) based GPVS formulation proposed

in the citations [10, 9], since there exists a number of HP-tools such as PaToH [8],

Zoltan [4] and hmetis [20] that support fixed vertices.

A hypergraph H = (V ,N) is defined as a set of vertices V and a set of nets

(hyperedges) N among those vertices. Every net ni ∈ N is a subset of vertices,

i.e., ni ⊆ V . Graph is a special instance of hypergraph such that each net connects

exactly two vertices. Hypergraph partitioning problem is to partition the vertices of

a hypergraph into K equal-size parts, such that the number of the nets connecting

vertices in different parts is minimized. A net ni is called a cut-net when the vertices

that ni connects are assigned to at least two different parts, whereas it is called an

internal net otherwise, i.e., the vertices that ni connects are assigned to the same part.

Since we use RB paradigm in our oGPVS solution, HP is deployed in only the

bipartitioning of the graph G (or G′) in Algorithm 2. We first construct the corre-

sponding hypergraph H = (V ,N) of G with the set of vertices(nodes) V and the set

of nets N , where each vertex vi of G corresponds to a net ni in H and each edge

34

CHAPTER 6. EXPERIMENTS 35

(vi, vj) of G corresponds to a vertex vi,j in H . Each net ni connects the vertices vj,k
in H if and only if edge (vj, vk) is incident to vertex vi in G , i.e i = j or i = k .

The objective of the bipartitioning of H using HP is to minimize the number of cut-

nets while maintaining balance on the number vertices in the left and right part. After

a 2-way HP on H , the resulting cut-nets correspond to the vertices in the separator,

whereas the resulting internal nets correspond to the part vertices.

A vertex vi that is fixed to the left part in G corresponds to the fixing its corre-

sponding net ni in H to the left part which means that ni should be assigned as an

internal net of the left part that is formed by the bipartitioning of H . Note that, the net

ni becomes an internal net of a part if and only if all of the vertices that ni connects

reside in that part, whereas it becomes a cut-net otherwise. We ensure that ni becomes

an internal net of the left part by fixing all of the vertices that is connected by ni to

the left part. A similar discussion can be made for a vertex that is fixed to the right

part. The above mentioned vertex fixation scheme does not restrict the solution space

of graph partitioning as seen in the following example. In G , consider a vertex vi that

is fixed to the left part and a vertex vh ∈ Adj(vi) adjacent to vi . There are two cases:

vh is a vertex that is fixed to the left part, or vh is a free vertex. Note that vh can not be

a vertex that is fixed to the right part since vertices that are assigned to different parts

can not be adjacent by both GPVS and oGPVS definition. We guarantee this not to oc-

cur by the careful selection of the number of the vertex levels to be fixed to the left and

right parts. In case of vh is a vertex that is fixed to the left part, edge (vi, vh) becomes

an internal edge of the left part, where its corresponding vertex vi,h in H is also fixed

to the left part by both ni and nh . So, the fixation of vertex vi,h in H does not affect

the solution since vh is a vertex that is fixed to the left part in the graph model. In case

of vh is a free vertex, vi,h becomes a vertex that is fixed to the left part in H , by net

ni . Fixing vi,h does not necessitate nh to be an internal net in the left part, that is, nh
can be a cut-net in the bipartitioning of H which transforms to that vh is a separator

vertex in the 2-way GPVS applied on the graph. Hence, the free vertices of the graph

are not affected by this fixation scheme and the solution space is not narrowed down.

CHAPTER 6. EXPERIMENTS 36

6.2 Experimental Results

We have tested the performance of the oGPVS algorithm on a wide range of square

sparse matrices of University of Florida (UFL) sparse matrix collection [11]. We

excluded the matrices with less than 1,000 rows/columns in order to make the par-

allelization meaningful. We also excluded the matrices with more than 10,000,000

rows/columns since we used sequential partitioning environment. For the sake of sim-

plicity, we considered only the matrices whose corresponding graphs are connected.

There were 237 matrices in the UFL collection satisfying these properties at the time

of experimentation. We tested with K ∈ {4, 8, 16, 32, 64} . For a specific K value, a

K -way partitioning of a test matrix constitutes a partitioning instance. The partition-

ing instances in which N < 100 × K are discarded, as the parts would become too

small to be meaningful.

We considered the graph partitioning algorithm proposed by Kahou et al, which

is described in 2, as our baseline algorithm since it is the only work for solving A-

to-ABDO permutation problem, to our knowledge. We present the results of our ex-

perimentation in comparison with the results of this baseline algorithm. For both of

these methods, we symmetrized the input matrix A with A + AT whenever A is un-

symmetric. Since the first step of both methods is to find a pseudo-peripheral vertex,

we ran the pseudo-peripheral node finder algorithm only once for the standard graph

representation of each matrix and we used its result in both methods. For a specific K

value, the partitioning process is terminated if the length of the level structure rooted

at the pseudo-peripheral vertex is less than K , since the graph can not be partitioned

into K parts by the baseline algorithm. So, such partitioning instances are discarded

from the results of both of these methods, to make the comparison meaningful. In

addition, neither methods guarantee a feasible partition, which means that there is no

empty parts in the resulting partition, although the length of the level structure is larger

than K . Hence, any partitioning instance, for which at least one method results in an

infeasible partition, is discarded from the results of both of these methods for the sake

of comparison.

We used hyperhgraph partitioning tool PaToH for the bipartitioning of a hyper-

graph, which is described in the previous section. As PaToH involves randomized

CHAPTER 6. EXPERIMENTS 37

Table 6.1: Performance comparison in terms of load imbalance and separator size for
4-way A-to-ABDO permutation

of baseline algorithm oGPVS algorithm oGPVS vs base

problem kind matrices Imb. |S|/N Imb. |S|/N |So|/|Sb|
2D/3D 18 1.76% 2.08% 2.84% 1.70% 0.82
circuit simulation 7 3.34% 3.30% 2.94% 1.17% 0.35
computational fluid dynamics 23 3.76% 5.10% 4.53% 3.44% 0.67
directed graph 15 21.37% 19.45% 19.86% 12.47% 0.64
economic 6 9.64% 10.97% 21.44% 5.98% 0.54
electromagnetics 12 1.86% 2.28% 8.03% 3.15% 1.38
materials 4 6.80% 9.27% 25.10% 12.47% 1.34
model reduction 12 1.78% 2.83% 3.89% 2.30% 0.81
optimization 14 1.29% 1.32% 0.80% 0.99% 0.75
power network 3 5.30% 9.99% 4.99% 0.67% 0.07
semiconductor device 10 8.33% 10.70% 8.70% 6.17% 0.58
structural 35 3.63% 4.42% 8.18% 4.07% 0.92
theoretical/quantum chemistry 3 21.48% 27.60% 37.03% 39.65% 1.44
thermal 4 1.23% 1.38% 3.68% 1.19% 0.86
undirected graph 30 1.13% 1.23% 6.04% 0.39% 0.32

algorithms, we obtained 10 different partitions for each partitioning instance of the

oGPVS method and used the geometric average of the 10 partitionings as the repre-

sentative result for the oGPVS method on that particular partitioning instance. In all

oGPVS partitioning instances, maximum allowable imbalance ratio , see 3.2, is set to

10% . Although the balance constraint is met in most of the partitionings, it was not

feasible in some of the problems since the balancing constraint of the oGPVS problem

does not exactly correspond but only relates to the balance on the nonzero counts of

diagonal block Dk ’s and PaToH does not solve the partitioning problem optimally.

Tables 6.1, 6.2, 6.3, 6.4 and 6.5 respectively display the performance comparison of

the proposed oGPVS algorithm with the baseline algorithm in terms of load imbalance

and separator size for 4-, 8-, 16-, 32- and 64-way A-to-ABDO permutation problem.

As seen in the first column of these tables, results are categorized according to the

kinds of the matrices, where each kind represents a different problem domain. In the

second column, we display the number of matrices that belong to the corresponding

problem kind. We included the results of the problem kinds that contain three or more

CHAPTER 6. EXPERIMENTS 38

Table 6.2: Performance comparison in terms of load imbalance and separator size for
8-way A-to-ABDO permutation

of baseline algorithm oGPVS algorithm oGPVS vs base

problem kind matrices Imb. |S|/N Imb. |S|/N |So|/|Sb|
2D/3D 18 3.84% 4.47% 6.73% 4.12% 0.92
circuit simulation 6 4.19% 4.36% 5.69% 1.53% 0.35
computational fluid dynamics 21 8.72% 10.68% 12.56% 7.43% 0.70
directed graph 11 63.89% 29.89% 63.40% 28.51% 0.95
economic 6 23.01% 24.33% 65.40% 19.18% 0.79
electromagnetics 10 3.97% 5.52% 10.35% 4.57% 0.83
model reduction 12 5.16% 6.20% 9.63% 5.81% 0.94
optimization 11 1.17% 1.16% 1.20% 1.01% 0.87
power network 3 15.65% 20.89% 9.92% 1.77% 0.08
semiconductor device 10 14.21% 23.87% 39.18% 22.20% 0.93
structural 31 7.76% 10.35% 18.80% 9.41% 0.91
thermal 4 2.92% 2.98% 8.05% 2.75% 0.92
undirected graph 29 2.46% 2.31% 11.29% 0.77% 0.33

Table 6.3: Performance comparison in terms of load imbalance and separator size for
16-way A-to-ABDO permutation

of baseline algorithm oGPVS algorithm oGPVS vs base

problem kind matrices Imb. |S|/N Imb. |S|/N |So|/|Sb|
2D/3D 17 7.81% 8.47% 12.12% 7.87% 0.93
circuit simulation 5 4.01% 5.20% 8.26% 2.20% 0.42
computational fluid dynamics 19 15.03% 18.23% 27.94% 15.36% 0.84
directed graph 8 165.99% 35.75% 113.61% 27.91% 0.78
electromagnetics 8 7.63% 10.97% 15.48% 8.79% 0.80
model reduction 11 9.96% 11.91% 19.79% 10.96% 0.92
optimization 11 2.33% 2.43% 2.20% 2.16% 0.89
power network 3 44.91% 41.49% 18.31% 8.22% 0.20
semiconductor device 8 31.53% 41.73% 84.33% 41.38% 0.99
structural 25 12.79% 15.67% 26.39% 14.64% 0.93
thermal 4 6.13% 6.31% 12.72% 5.95% 0.94
undirected graph 29 6.75% 4.20% 17.75% 1.51% 0.36

CHAPTER 6. EXPERIMENTS 39

Table 6.4: Performance comparison in terms of load imbalance and separator size for
32-way A-to-ABDO permutation

of baseline algorithm oGPVS algorithm oGPVS vs base

problem kind matrices Imb. |S|/N Imb. |S|/N |So|/|Sb|
2D/3D 15 11.53% 14.01% 22.37% 15.61% 1.11
circuit simulation 5 8.81% 10.59% 12.75% 4.80% 0.45
computational fluid dynamics 11 18.54% 22.73% 28.35% 26.87% 1.18
directed graph 3 105.69% 36.87% 82.34% 23.33% 0.63
electromagnetics 4 11.84% 10.95% 14.46% 11.87% 1.08
model reduction 8 13.91% 14.50% 28.66% 14.85% 1.02
optimization 10 4.61% 4.29% 5.18% 4.00% 0.93
structural 16 18.79% 22.40% 30.39% 19.98% 0.89
thermal 4 11.97% 12.86% 22.97% 13.08% 1.02
undirected graph 21 4.66% 3.32% 12.31% 1.21% 0.36

Table 6.5: Performance comparison in terms of load imbalance and separator size for
64-way A-to-ABDO permutation

of baseline algorithm oGPVS algorithm oGPVS vs base

problem kind matrices Imb. |S|/N Imb. |S|/N |So|/|Sb|
2D/3D 8 13.34% 14.23% 20.01% 14.91% 1.05
circuit simulation 3 10.57% 11.84% 12.18% 7.07% 0.60
computational fluid dynamics 5 21.16% 22.93% 36.39% 34.45% 1.50
model reduction 5 16.27% 18.67% 53.20% 19.28% 1.03
optimization 9 6.47% 6.34% 9.82% 6.92% 1.09
structural 6 32.63% 34.46% 48.74% 33.75% 0.98
undirected graph 20 9.41% 5.72% 15.29% 2.38% 0.42

CHAPTER 6. EXPERIMENTS 40

matrices. The third and fourth columns display the results of the baseline algorithm,

whereas fifth and sixth columns display the results of the oGPVS algorithm. The ratio

of separator size over the number of vertices, i.e., |S|/N , is given in the third and

fifth columns of the baseline and oGPVS algorithms, respectively. The imbalance

ratio is given in the fourth and sixth columns of the baseline and oGPVS algorithms,

respectively. The seventh column gives the ratio of the separator size of the oGPVS

algorithm over the separator size of the baseline algorithm. The results given in the

third to seventh columns are the averages of the results of the actual instances over

the matrices that belong to the corresponding problem kind. The results in the third to

sixth columns are displayed as percentages.

As seen from Tables 6.1, 6.2, 6.3, 6.4 and 6.5, the oGPVS algorithm performs much

better than the baseline algorithm for all specific K values by finding the separator size

much smaller than the baseline algorithm does for the problem kinds such as circuit

simulation, power network and undirected graph. Especially for the power network

problem, we manage the separator size being equal to 7%, 8% and 20% of the separator

size that the baseline algorithm finds, respectively for K = 4 , K = 8 and K = 16 .

In 4-way partitionings, we perform better than the baseline algorithm in 12 problems,

whereas we perform worse in only 3 problems. In 8- and 16-way partitionings, our

results are better than the results of the baseline algorithm in all of the problem kinds.

In 32-way partitionings, we perform much better than the baseline algorithm for the

problem kinds such as circuit simulation, directed graph and undirected graph, where

as we perform nearly same with the baseline algorithm for the other problems. The

performance results of 64-way partitionings are similar to the performance results of

the 32-way partitionings with respect to problem kind categorization.

We provide Table 6.6 for the average results for each specific K ∈ {4, 8, 16, 32, 64}
value. As seen from the table, the oGPVS algorithm reduces the separator sizes by

35%, 30%, 29%, 23% and 22%, in average, for 4-, 8-, 16-, 32- and 64-way parti-

tionings, respectively. As seen in all of the tables given so far, the baseline algorithm

is better than the oGPVS algorithm in terms of load imbalance ratio in almost all of

the partitioning instances. However, it is preferable to have less communication with

more imbalance than the case of more communication with less imbalance for paral-

lel systems. Hence, load imbalance metric can be considered as sacrificable when the

CHAPTER 6. EXPERIMENTS 41

Table 6.6: Overall performance comparison in terms of load imbalance and separator
size A-to-ABDO permutation

of baseline algorithm oGPVS algorithm oGPVS vs base

K matrices Imb. |S|/N Imb. |S|/N |So|/|Sb|
4 205 2,99% 3,61% 5,74% 2,32% 0.65
8 183 6,00% 6,66% 12,65% 4,65% 0.70

16 155 10,22% 9,74% 18,58% 6,94% 0.71
32 106 10,73% 10,41% 18,73% 8,05% 0.77
64 63 11,25% 9,75% 18,68% 7,59% 0.78

separator size metric apts to improve.

We provide Table 6.7 to show how the pseudo-peripheral vertices affect the per-

formance of the baseline and oGPVS algorithms. Pseudo-peripheral node finder al-

gorithm, which is used as the first step of the both partitioning methods, involves

randomization since it selects the initial node arbitrarily. The quality of the result-

ing partitions of these algorithms, especially for the baseline algorithm, depends on

the proper selection of the pseudo-peripheral vertices. For example, the baseline al-

gorithm constructs a level structure rooted at the pseudo-peripheral vertex and a long

level structure is considered as better than a short one. In the oGPVS algorithm, we fix

the vertices whose shortest path distances to pseudo-peripheral vertices are less than

K/2−1 , where K denotes the current input of the oGPVS function, and we select the

separator vertices from the free vertices. Hence, the oGPVS algorithm also depends

on these pseudo-peripheral vertices in terms of the solution space. For this experimen-

tation, we ran pseudo-peripheral node finder algorithm 8 times for each matrix and

we recorded the length of the level structure rooted at the resulting pseudo-peripheral

vertex at each time. Then, we selected the pseudo-peripheral vertex leading to the

longest level structure among the first some number of the results of 8 runs. As seen

in Table 6.7, we choose this number to be in {1, 3, 5, 8} . For the first section of this

table (# of pseudo-per.s is 1), we directly used the pseudo-peripheral vertex returned

by the first run of pseudo-peripheral node finder algorithm. For the second section of

this table (# of pseudo-per.s is 3), we selected and used the pseudo-peripheral vertex

that gives the longest level structure among the first three runs of pseudo-peripheral

node finder algorithm. For the other sections of this table, the selection process of

CHAPTER 6. EXPERIMENTS 42

Table 6.7: Performance dependency of the algorithms to the pseudo-peripheral vertex

of baseline algorithm oGPVS algorithm oGPVS vs base

pseudo-per.s K Imb. |S|/N Imb. |S|/N |So|/|Sb|
4 2,99% 3,61% 5,74% 2,32% 0,65
8 6,00% 6,66% 12,65% 4,65% 0,70

1 16 10,22% 9,74% 18,58% 6,94% 0,71
32 10,73% 10,41% 18,73% 8,05% 0,77
64 11,25% 9,75% 18,68% 7,59% 0,78

4 2,98% 3,63% 5,85% 2,39% 0,66
8 6,05% 6,60% 12,66% 4,64% 0,70

3 16 10,02% 9,13% 17,02% 6,41% 0,70
32 10,42% 10,03% 18,22% 7,63% 0,76
64 10,75% 9,58% 18,43% 7,41% 0,77

4 2,98% 3,65% 5,83% 2,36% 0,65
8 6,18% 6,74% 13,05% 4,79% 0,71

5 16 10,32% 9,71% 18,73% 6,93% 0,71
32 10,89% 10,42% 19,36% 8,01% 0,77
64 10,53% 9,13% 17,42% 6,91% 0,76

4 3,00% 3,65% 5,89% 2,33% 0,65
8 6,02% 6,61% 12,85% 4,65% 0,70

8 16 10,25% 9,50% 18,47% 6,73% 0,71
32 10,38% 9,86% 17,88% 7,44% 0,75
64 10,58% 9,32% 18,09% 7,22% 0,77

CHAPTER 6. EXPERIMENTS 43

Table 6.8: Performance comparison in terms of the coarsening algorithm used in Pa-
ToH

baseline algorithm oGPVS algorithm oGPVS vs base

coarsening alg. K Imb. |S|/N Imb. |S|/N |So|/|Sb|
4 3.12% 3.76% 5.79% 2.98% 0.79
8 6.01% 6.65% 11.63% 5.56% 0.84

HCM 16 9.38% 8.72% 16.19% 7.29% 0.84
32 11.05% 10.60% 18.97% 9.66% 0.91
64 11.08% 9.68% 18.24% 9.34% 0.96

4 3.06% 3.71% 5.64% 2.85% 0.77
8 6.10% 6.75% 12.53% 5.65% 0.84

ABS 16 9.31% 8.70% 16.48% 7.05% 0.81
32 9.98% 9.57% 17.50% 8.46% 0.88
64 10.91% 9.44% 16.21% 8.34% 0.88

4 2.99% 3.62% 5.80% 2.37% 0.65
8 6.09% 6.62% 12.52% 4.65% 0.70

GCM 16 9.68% 9.18% 18.23% 6.65% 0.72
32 10.33% 10.31% 18.15% 7.78% 0.75
64 12.99% 12.45% 21.60% 10.90% 0.88

4 2,99% 3,61% 5,74% 2,32% 0.65
8 6,00% 6,66% 12,65% 4,65% 0.70

SHCM 16 10,22% 9,74% 18,58% 6,94% 0.71
32 10,73% 10,41% 18,73% 8,05% 0.77
64 11,25% 9,75% 18,68% 7,59% 0.78

pseudo-peripheral vertex is similar to the second section of the table except of that first

five and eight runs are used instead of first three runs. As seen in the table, the number

of the pseudo-peripheral node finder algorithm runs does not have a significant effect

on the average performance. This means that only a single of the pseudo-peripheral

node finder algorithm returns a good-enough pseudo-peripheral vertex for a good par-

titioning.

We used PaToH with default parameters except the coarsening algorithm. In the re-

sults so far, we used Scaled Heavy Connectivity Matching Algorithm as the coarsening

algorithm (see PaToH manual [8]. We provide Table 6.8 for the average results of the

partitioning instances using different coarsening algorithms. We provide the results for

the following coarsening algorithms: Heavy Connectivity Matching (HCM), Absorp-

tion Matching (ABS), Greedy Cut Matching (GCM) and Scaled Heavy Connectivity

Matching (SHCM). As seen in the table, SHCM outperforms the others.

Chapter 7

Conclusion and Future Work

Graph/hypergraph partitiong is an important tool to partition the workload among the

processors for efficient parallel systems. In general, vertices represent the data and

computation and the (hyper)edges represent the communication among the data. Then,

the partition of the vertices, which is the output of the graph partitioning process, is

used to distribute the data and computations associated with each part to a unique

processor. For an efficient parallelism, communication among the processors should be

minimized while maintaining a balance on the workload of each processor. Hence, the

partitioning objective is to minimize the number of (hyper)edges connecting different

parts since such a (hyper)edge corresponds to one unit of communication between the

corresponding processors. The constraint of the partitioning is to maintain a balance

on the part weights since a part weight generally corresponds to the workload of the

corresponding processor.

In this thesis, we have solved A-to-ABDO permutation problem, where ABDO

stands for the block diagonal form (BDO) of A with overlap. In a BDO form of A ,

which is to be used in the parallelization of the multiplicative schwarz preconditioner,

consecutive diagonal blocks may overlap. The permutation objective is to minimize

the number of the rows/columns in the overlaps while maintaining a balance on the

nonzero counts of the diagonal blocks. We introduced the ordered GPVS (oGPVS)

problem, which is a variant of the Graph Partitioning by Vertex Separator (GPVS)

problem, in order to solve the A-to-ABDO permutation problem. The standard GPVS

44

CHAPTER 7. CONCLUSION AND FUTURE WORK 45

problem is to partition the vertices into K vertex parts and one separator such that

the removal of the vertices in the separator from the graph disconnects the graph into

at least K connected subgraphs, where the partitioning objective is to minimize the

number of vertices in the separator while maintaining a balance on the weights of K

parts. However, the oGPVS problem is to partition the vertices into K vertex parts

and K − 1 subseparators such that the removal of the vertices in the separator from

the graph disconnects the graph into at least K connected subgraph, subseparators and

vertex parts exhibit an order and each subseparator connects its left and right vertex

parts as well as its left and right subseparators.

We have proposed a recursive bipartitioning (RB) based algorithm, namely oGPVS

algorithm, to solve oGPVS problem. In order to guarantee that the resulting partition

is a correct solution of K -way oGPVS problem, we adopted a novel vertex fixation

scheme in RB paradigm. The oGPVS algorithm performs better than Kahou’s parti-

tioning algorithm, which is considered as our baseline algorithm, by finding the aver-

age separator size 65%-78% of the average separator size of the baseline algorithm.

This result is valuable because a small separator size corresponds to a small number

of rows/columns in overlaps, which means that the communication overhead of the

parallelization and the number of iterations for convergence of the solver will be both

small.

As the future work, we plan to find a graph partitioning model for the A-to-ABDO
problem with unsymmetric permutation, where A is an unsymmetric matrix. For this

problem, the standard graph model will not be adequate, hence a bipartite graph or

hypergraph model is planned to be used.

Bibliography

[1] C. J. Alpert and A. B. Kahng. Recent directions in netlist partitioning: A survey.

VLSI Journal, 19(1–2):1–81, 1995.

[2] C. Aykanat, B. B. Cambazoglu, F. Findik, and T. Kurc. Adaptive decomposition

and remapping algorithms for object-space-parallel direct volume rendering of

unstructured grids. Journal of Parallel and Distributed Computing, 67:77–99,

2006.

[3] M. Benzi and B. Uar. Block triangular preconditioners for m-matrices and

markov chains. Electronic Transactions on Numerical Analysis, 26:209–227,

2007.

[4] E. Boman, K. Devine, L. A. Fisk, R. Heaphy, B. Hendrickson, U. C. C. Vaughan,

D. Bozdag, W. Mitchell, and J. Teresco. Zoltan 3.0: Parallel partitioning, load-

balancing, and data management services; users guide. Sandia National Labora-

tories, Albuquerque, NM, 2007.

[5] T. N. Bui and C. Jones. Finding good approximate vertex and edge partitions is

np-hard. Information Processing Letters, 42:153–159, 1992.

[6] B. B. Cambazoglu and C. Aykanat. Hypergraph-partitioning-based remapping

models for image-space-parallel direct volume rendering of unstructured grids.

IEEE Transactions on Parallel and Distributed Systems, 18(1):3–16, Jan 2007.

[7] U. V. Catalyurek, E. G. Boman, K. D. Devine, D. Bozdag, R. T. Heaphy, and

L. A. Riesen. A repartitioning hypergraph model for dynamic load balancing.

Journal of Parallel and Distributed Computing, 69(8):711–724, 2009.

46

BIBLIOGRAPHY 47

[8] U. V. Çatalyürek and C. Aykanat. Patoh: A multilevel hypergraph partitioning

tool, version 3.0. Computer Engineering Department, Bilkent University, 1999.

[9] U. V. Çatalyürek and C. Aykanat. Hypergraph-partitioning-based sparse matrix

ordering. In Second International Workshop on Combinatorial Scientific Com-

puting (CSC05), CERFACS, Toulouse, France, June 2005.

[10] U. V. Çatalyürek, C. Aykanat, and E. Kayaaslan. Hypergraph partitioning-based

fill-reducing ordering. SIAM Journal on Scientific Computing, 2001.

[11] T. Davis. University of florida sparse matrix collection. In NA Digest, 1997.

[12] A. L. Dulmage and N. S. Mendelsohn. Two algorithms for bipartite graphs. Jour-

nal of the Society for Industrial and Applied Mathematics, 11:183–194, 1963.

[13] C. Farhat and F.-X. Roux. An unconventional domain decomposition method for

an efficient parallel solution of large-scale finite element systems. SIAM Journal

on Scientific and Statistical Computing, 13:379–396, 1992.

[14] A. George. An automatic one-way dissection algorithm for irregular finite ele-

ment problems. SIAM J. Numer. Anal., 17:740–751, 1980.

[15] A. George and J. W. H. Liu. An implementation of a pseudo-peripheral node

finder. Applied Numerical Mathematics, 57(11–12):1197–1213, 2007.

[16] B. Hendrickson and R. Leland. The chaco users guide, version 2.0. Sandia

National Laboratories, Alburquerque, NM, 87185, 1995.

[17] G. A. A. Kahou, L. Grigori, and M. Sosonkina. A partitioning algorithm for

blockdiagonal matrices with overlap. Parallel Computing, 34:332–344, 2008.

[18] G. A. A. Kahou and E. Kamgnia. Parallel implementation of an explicit formu-

lation of the multiplicative schwarz preconditioner. In CdROM Proceedings of

IMACS05, 2005.

[19] G. A. A. Kahou, E. Kamgnia, and B. Philippe. An explicit formulation of the

multiplicative schwarz preconditioner. ACM Transactions on Mathematical Soft-

ware (TOMS), 5(3):284–295, 1979.

BIBLIOGRAPHY 48

[20] G. Karypis and V. Kumar. Metis: A software package for partitioning un-

structured graphs, partitioning meshes, and computing fill-reducing orderings of

sparse matrices, version 4.0. University of Minnesota, Department of Comp. Sci.

and Eng., Army HPC Research Center, Minneapolis, 1998.

[21] X. S. Li, M. Shao, I. Yamazaki, , and E. G. Ng. Factorization-based sparse solvers

and preconditioners. In Journal of Physics: Conference Series, volume 180, page

012015, 2009.

[22] J. W. H. Liu. A graph partitioning algorithm by node separators. ACM Trans.

Math. Softw, 15:198–219, 1989.

[23] I. Moulitsas and G. Karypis. Partitioning algorithms for simultaneously balancing

iterative and direct methods, tech. rep. 04-014. Department of Computer Science

and Engineering, University of Minnesota, 2004.

[24] F. Pellegrini. Scotch 5.1 users guide. Laboratoire Bordelais de Recherche en

Informatique (LaBRI), 2008.

[25] A. Pinar and C. Aykanat. Fast optimal load balancing algorithms for 1d partition-

ing. Journal of Parallel and Distributed Computing, 64:974–996, 2004.

[26] A. Pinar and B. Hendrickson. Apartitioning for complex objectives. In Pro-

ceedings of the 15th International Parallel & Distributed Processing Symposium,

IPDPS 01, Washington, DC, USA, 2001.

[27] M. Wimmer and K. Richter. Optimal block-tridiagonalization of matrices for

coherent charge transport. Journal of Computational Physics, 228(23):8548–

8565, 2009.

[28] I. Yamazaki, X. S. Li, and E. G. Ng. Partitioning, load balancing, and matrix

ordering in a parallel hybrid solver, presentation at siam conference on parallel

processing for scientific computing (pp10). 2010.

