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Approved for the Graduate School of Engineering and Science:

Prof. Dr. Levent Onural
Director of the Graduate School of Engineering and Science

iii



ABSTRACT

INTELLIGENT SENSING FOR ROBOT MAPPING
AND SIMULTANEOUS HUMAN LOCALIZATION AND

ACTIVITY RECOGNITION

Kerem Altun

Ph.D. in Electrical and Electronics Engineering

Supervisor: Prof. Dr. Billur Barshan

July 2011

We consider three different problems in two different sensing domains, namely

ultrasonic sensing and inertial sensing. Since the applications considered in each

domain are inherently different, this thesis is composed of two main parts. The

approach common to the two parts is that raw data acquired from simple sensors

is processed intelligently to extract useful information about the environment.

In the first part, we employ active snake contours and Kohonen’s self-

organizing feature maps (SOMs) for representing and evaluating discrete point

maps of indoor environments efficiently and compactly. We develop a generic

error criterion for comparing two different sets of points based on the Euclidean

distance measure. The point sets can be chosen as (i) two different sets of map

points acquired with different mapping techniques or different sensing modalities,

(ii) two sets of fitted curve points to maps extracted by different mapping tech-

niques or sensing modalities, or (iii) a set of extracted map points and a set of

fitted curve points. The error criterion makes it possible to compare the accuracy

of maps obtained with different techniques among themselves, as well as with an

absolute reference. We optimize the parameters of active snake contours and

SOMs using uniform sampling of the parameter space and particle swarm opti-

mization. A demonstrative example from ultrasonic mapping is given based on

experimental data and compared with a very accurate laser map, considered an

absolute reference. Both techniques can fill the erroneous gaps in discrete point

maps. Snake curve fitting results in more accurate maps than SOMs because it is

more robust to outliers. The two methods and the error criterion are sufficiently

general that they can also be applied to discrete point maps acquired with other

mapping techniques and other sensing modalities.
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In the second part, we use body-worn inertial/magnetic sensor units for recog-

nition of daily and sports activities, as well as for human localization in GPS-

denied environments. Each sensor unit comprises a tri-axial gyroscope, a tri-axial

accelerometer, and a tri-axial magnetometer. The error characteristics of the sen-

sors are modeled using the Allan variance technique, and the parameters of low-

and high-frequency error components are estimated.

Then, we provide a comparative study on the different techniques of classify-

ing human activities that are performed using body-worn miniature inertial and

magnetic sensors. Human activities are classified using five sensor units worn

on the chest, the arms, and the legs. We compute a large number of features

extracted from the sensor data, and reduce these features using both Principal

Components Analysis (PCA) and sequential forward feature selection (SFFS).

We consider eight different pattern recognition techniques and provide a compar-

ison in terms of the correct classification rates, computational costs, and their

training and storage requirements. Results with sensors mounted on various lo-

cations on the body are also provided. The results indicate that if the system

is trained by the data of an individual person, it is possible to obtain over 99%

correct classification rates with a simple quadratic classifier such as the Bayesian

decision method. However, if the training data of that person are not available

beforehand, one has to resort to more complex classifiers with an expected correct

classification rate of about 85%.

We also consider the human localization problem using body-worn iner-

tial/magnetic sensors. Inertial sensors are characterized by drift error caused

by the integration of their rate output to get position information. Because of

this drift, the position and orientation data obtained from inertial sensor signals

are reliable over only short periods of time. Therefore, position updates from ex-

ternally referenced sensors are essential. However, if the map of the environment

is known, the activity context of the user provides information about position. In

particular, the switches in the activity context correspond to discrete locations

on the map. By performing activity recognition simultaneously with localization,

one can detect the activity context switches and use the corresponding position

information as position updates in the localization filter. The localization filter

also involves a smoother, which combines the two estimates obtained by running

the zero-velocity update (ZUPT) algorithm both forward and backward in time.
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We performed experiments with eight subjects in an indoor and an outdoor en-

vironment involving “walking,” “turning,” and “standing” activities. Using the

error criterion in the first part of the thesis, we show that the position errors can

be decreased by about 85% on the average. We also present the results of a 3-D

experiment performed in a realistic indoor environment and demonstrate that it

is possible to achieve over 90% error reduction in position by performing activity

recognition simultaneously with localization.

Keywords: Intelligent sensing; ultrasonic sensing; inertial sensing; robot mapping;

sensor error modeling; pattern recognition; wearable computing; human localiza-

tion; human activity recognition; simultaneous human localization and activity

recognition.



ÖZET
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EŞZAMANLI KONUM BELİRLEME VE AKTİVİTE

AYIRDETME İÇİN AKILLI ALGILAMA

Kerem Altun
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Tez Yöneticisi: Prof. Dr. Billur Barshan

Temmuz 2011

Algılama alanının iki ayrı kolu olan ultrasonik algılayıcılar ve eylemsizlik

algılayıcıları konularında üç farklı problem ele alınmıştır. Bu iki alandaki

uygulamalar temelde birbirinden farklı olduğundan, bu tez iki ana kısımdan

oluşmaktadır. Her iki alanda da ortak olarak basit algılayıcılardan alınan ham

veriler akıllı yöntemlerle işlenerek dış ortam hakkında anlamlı bilgi edinilmiştir.

İlk kısımda, ayrık noktalardan oluşan iç ortam haritalarını düzenlemek ve

değerlendirmek amacıyla yılan eğrileri ve Kohonen ağları yöntemleri uygu-

lanmıştır. İki farklı nokta kümesini karşılaştırmak amacıyla Öklid uzaklığına

dayanan genel bir hata ölçütü geliştirilmiştir. Bu nokta kümeleri, (i) farklı ha-

ritalama teknikleri veya algılama yöntemleriyle oluşturulmuş iki farklı haritanın,

(ii) farklı haritalama teknikleri ile elde edilmiş haritalara uyarlanan iki eğrinin,

ya da (iii) birisi bir haritanın, diğeri uyarlanmış bir eğrinin üzerindeki noktalar-

dan oluşacak şekilde seçilebilir. Bu hata ölçütünü kullanarak farklı yöntemlerle

elde edilmiş haritaları birbirleriyle ya da bir referans haritasıyla karşılaştırmak

mümkündür. Yılan eğrileri ve Kohonen ağlarının parametreleri, parametre

uzayını eşit parçalara bölme ve parçacık sürü optimizasyonu yöntemleri kul-

lanılarak eniyilenmiştir. Ultrasonik haritalama alanından deneysel verilere dayalı

açıklayıcı bir örnek verilerek mutlak referans olarak kabul edilen bir lazer hari-

tası ile karşılaştırılmıştır. Her iki yöntem de ayrık noktalardan oluşan haritalar-

daki boşlukları doldurabilmektedir. Yılan eğrileri aykırı değerlere daha duyarsız

olduğundan Kohonen ağlarından daha iyi sonuç vermektedir. Tanımlanan hata

ölçütü ve kullanılan iki yöntem, başka haritalama yöntemleri veya algılayıcılar ile

elde edilmiş haritalara da uygulanabilecek kadar geneldir.

İkinci kısımda, vücuda takılan eylemsizlik algılayıcıları ve manyetik
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algılayıcılar yardımıyla günlük aktiviteler ve spor aktivitelerini ayırdetme ve

GPS olmayan ortamlarda konum belirleme çalışmaları yapılmıştır. Kul-

lanılan algılayıcı üniteleri üç-eksenli jiroskop, üç-eksenli ivmeölçer ve üç-eksenli

manyetometrelerden oluşmaktadır. Allan varyans yöntemiyle bu algılayıcıların

hata karakteristikleri modellenmiş, düşük ve yüksek frekanslı hata bileşenlerinin

parametreleri kestirilmiştir.

Daha sonra, vücuda takılan eylemsizlik algılayıcıları ve manyetik algılayıcılar

ile farklı aktivite ayırdetme yöntemleri arasında karşılaştırmalı bir çalışma

yapılmıştır. Aktiviteler, göğüse, kollara ve bacaklara takılan beş adet algılayıcı

ünitesi ile ayırdedilmiştir. Algılayıcı verilerinden çok sayıda öznitelik çıkarılmış,

daha sonra bu öznitelikler asal bileşenler analizi ve ardışık öznitelik seçme

yöntemleri ile sayıca azaltılmıştır. Sekiz farklı örüntü tanıma tekniği ele alınmış,

ve bu teknikler doğru ayırdetme yüzdesi, hesaplama maliyeti, eğitme ve veri

depolama gereksinimi açılarından karşılaştırılmıştır. Vücudun farklı yerlerine

takılan algılayıcılar ile elde edilen sonuçlar sunulmuştur. Sonuçlara göre, belli

bir kişinin verisi eğitme için kullanıldığında, Bayesçi karar verme gibi basit

bir ikinci derece sınıflandırıcı ile %99’un üzerinde doğru ayırdetme oranlarına

ulaşmak mümkündür. Ancak ilgili kişinin verileri eğitme için kullanılmıyorsa

daha karmaşık sınıflandırıcılara başvurulmalıdır. Bu durumda beklenen doğru

ayırdetme oranı %85 civarındadır.

Son olarak vücuda takılan algılayıcılar ile insanlarda konum belirleme prob-

lemi de ele alınmıştır. Eylemsizlik algılayıcılarında karakteristik olarak, konum

belirleme için hız verilerinin tümlevi alınması nedeniyle bir sapma hatası bulun-

maktadır. Bu sapma hatası sebebiyle eylemsizlik algılayıcılarından elde edilen

konum ve yönelim verisi ancak kısa süreler için güvenilir olmaktadır. Dolayısıyla

dış ortamdan referans alan algılayıcılar ile konum güncellemesi yapmak gerek-

lidir. Ancak eğer ortamın haritası biliniyorsa, kullanıcının aktivite verisi, konu-

mu hakkında da bilgi vermektedir. Özellikle aktiviteler arası geçişler haritada

ayrık konumlara karşılık gelmektedir. Konum belirleme ile eşzamanlı olarak ak-

tivite ayırdetme işlemi de yapıldığında, aktiviteler arası geçişleri belirlemek ve

karşılık gelen konum bilgisini konum belirleme süzgecinde güncelleme olarak kul-

lanmak mümkündür. Konum belirleme süzgeci aynı zamanda düzleştirici işlevi

görmekte, sıfır hız güncellemesi yoluyla elde edilmiş ileriye ve geriye yönelik kes-

tirimleri birleştirmektedir. Sekiz denek ile iç ve dış ortamda “yürüme,” “dönme”

ve “ayakta durma” aktivitelerini içeren deneyler yapılmıştır. İlk kısımdaki hata
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ölçütü kullanılarak konum hatalarının %85 oranında azaldığı görülmüştür. Bunun

dışında bir iç ortamda gerçeğe uygun üç-boyutlu bir deneyin sonuçları verilmek-

tedir. Bu ortamda eşzamanlı konum belirleme ve aktivite ayırdetme yöntemiyle

konum hatalarının %90’ın üzerinde düzeltilebildiği gösterilmiştir.

Anahtar sözcükler : Akıllı algılama; ultrasonik algılayıcılar; eylemsizlik

algılayıcıları; robot haritalama; algılayıcı hata modellemesi; örüntü tanıma; giyi-

lebilir bilgisayarlar; insanlarda konum belirleme; insanlarda aktivite ayırdetme;

insanlarda eşzamanlı konum belirleme ve aktivite ayırdetme.
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Chapter 1

Introduction

Sensing and perception are two key research areas in robotics as well as in human-

computer interaction. These two terms are linked through intelligent processing,

where raw sensor data should be processed intelligently to gain information about

the environment. In this context, sensing should be regarded as a low-level pro-

cess, where various physical quantities are measured using an electronic device.

Correct processing and interpretation of the measured quantities by an intelli-

gent agent such as a robot or a computer leads to perception, which stands for a

higher-level understanding of the environment by the agent. The perceived infor-

mation about the environment can then be used by the agent for many purposes;

for example, navigation or mapping if the agent is a mobile robot, or if the agent

is a wearable system worn by a human (who is part of the environment), the

perceived information can be used in human-computer interaction.

The concepts in this thesis are situated at the boundary between sensing and

perception. We use simple low-cost sensors to begin with, and apply intelligent

processing methods to extract meaningful information from sensor data. We

consider three different applications in two different sensing domains, namely

ultrasonic sensing and inertial sensing. Since the applications considered in each

domain are inherently different, this thesis is composed of two main parts. We

motivate these applications in the rest of this chapter, and refer the reader to

the corresponding chapter and our related publications for detailed descriptions

1
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of the applied methods.

Part I includes Chapter 2, where we use active snake contours and Kohonen’s

self-organizing feature maps to represent the ultrasonic map data more compactly

and efficiently. This part is based on the publications [1, 2, 3, 4]. In this chapter,

we fit curves to the processed ultrasonic maps using these two methods, and

eliminate the undesired artifacts on the map caused by problems inherent to

ultrasonic sensors such as multiple and higher-order reflections and cross-talk.

The concepts in this part can be applied to a discrete point map obtained with

other sensing modalities as well, such as infrared or laser, in order to eliminate

undesired outlier points while keeping the structure of the map.

Part II includes Chapters 3, 4, and 5. In this part, we address two problems

involving inertial sensors in wearable systems: human activity recognition and

localization. We also combine these problems in Chapter 5, using activity recog-

nition information to aid in localization. In Chapter 3, we first use the Allan

variance method to model the low- and high-frequency components of the noise

in inertial sensor data. The transients are removed using a curve fitting proce-

dure before the Allan variance method is applied. These error models can be

used in navigation applications where the gyroscope and accelerometer outputs

are integrated in a strap-down navigation system. Chapter 4 is based on the

publications [5, 6]. In this chapter, we use body-worn inertial/magnetic sensor

units and apply pattern recognition techniques to determine the activity context

of the user. For our preliminary studies on activity recognition, the reader is re-

ferred to [7, 8], which is not included in this thesis. In [7, 8], we use two uniaxial

gyroscopes worn on the leg to distinguish between eight leg motions. We report

our classification results by considering various pattern recognition and feature

selection techniques, which forms a basis for our studies on the recognition of

daily and sports activities. Human activity recognition has many applications,

some of them being biomechanics, home-based rehabilitation, remote monitoring

of the elderly people and children, detecting and classifying falls, and motion cap-

ture and animation. With the advancement of mobile technology, inertial sensing

equipment are standardized in new generation mobile phones. Activity recogni-

tion methods implemented in these phones enable the phone to have information
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about the user, which can help in several human-computer interaction scenarios.

Another increasingly popular application in mobile technology is location-based

services [9], where the phone user is provided with different services depending

on his/her location estimated with GPS or other absolute sensing mechanisms in-

tegrated in the mobile phone. Inertial sensors can be used for aiding localization

as well, which is the subject of Chapter 5.

In Chapter 5, we consider the problem of localization using inertial sensors

only. Due to the integration operations involved in estimating position and orien-

tation from inertial sensor data, the drift errors in the position and orientation are

unavoidable. Since these errors are cumulative, the overall error grows without

bound over long periods of time. Therefore, position data from other absolute

sensing modalities are usually utilized in order to correct the position estimates

from inertial sensors. However, in this chapter, we use activity recognition in-

formation simultaneously with the localization algorithm and a given map of the

environment to provide position updates. If the map is known, activity recogni-

tion information and especially switches between the activity context give impor-

tant information about the location. For example, in an indoor setting, switching

from walking to ascending stairs means that the person is at one of the stair areas

of the building, just having started ascending stairs. This usually corresponds

to a few discrete locations on the given map. By simultaneously performing ac-

tivity recognition and localization, position updates provided by activity context

switch detection can be used in the localization process, and accurate localization

can be achieved without resorting to externally referenced sensing methods. Our

method can especially be used in underground mines, where usually no absolute

position sensing infrastructure is present. It can also aid the localization perfor-

mance in outdoor environments to reduce the GPS positioning accuracy (usually

in the order of several meters) or in urban indoor environments to reduce the

GSM positioning accuracy (usually in the order of 100 meters). Simultaneous

activity recognition and localization have not been done before as it is handled

here. We were able to find only two papers in the previous work, one of which

also uses data from externally referenced sensors (GPS) and the other uses activ-

ity recognition cues not for position updates, but to detect human gait phases.
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The references are provided in the chapter text. Therefore, to our knowledge, the

work in this chapter is the first in literature to perform activity recognition and

localization simultaneously, using activity recognition cues for position updates,

with only using body-worn inertial and magnetic sensors.

In Chapter 6, we summarize our results and provide future research directions

for the applications considered in this thesis.
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Ultrasonic Sensing
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Chapter 2

Representing and Evaluating

Ultrasonic Maps Using Active

Snake Contours and Kohonen’s

Self-Organizing Feature Maps

2.1 Introduction and Previous Work

Autonomous robots must be aware of their environment and interact with it

through sensory feedback. The potential of simple and inexpensive sensors should

be fully exploited for this purpose before more expensive alternatives with higher

resolutions and resource requirements are considered. Ultrasonic sensors have

been widely employed because of their accurate range measurements, robustness,

low cost, and simple hardware interface. We explore the limits of these sensors

in mapping through intelligent processing and representation of ultrasonic range

measurements. When coupled with intelligent processing, ultrasonic sensors are

a useful alternative to more complex laser and camera systems. Furthermore, it

may not be possible to use the latter in some environments due to surface char-

acteristics or insufficient ambient light. Despite their advantages, the frequency

6
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range at which air-borne ultrasonic transducers operate is associated with a large

beamwidth that results in low angular resolution and uncertainty at the location

of the echo-producing feature. Furthermore, ultrasonic range maps are char-

acterized by echo returns resulting from multiple and higher-order reflections,

cross-talk between transducers, and noise. These maps are extremely inefficient

and unintuitive representations of even the simplest environmental structures

that generate them. Thus, having an intrinsic uncertainty of the actual angular

direction of the range measurement and being prone to the various phenomena

mentioned above, a considerable amount of processing, interpretation, and mod-

eling of ultrasonic data is necessary.

In this study, we propose two approaches for efficiently representing and eval-

uating discrete point maps of an environment obtained with different ultrasonic

arc map (UAM) processing techniques. The first approach involves fitting active

snake contours [10] to the processed UAMs. Snakes are inherently closed curves

suitable for representing the features of an environment on a given map. The sec-

ond approach involves fitting Kohonen’s self-organizing feature maps (SOMs) [11]

(which can be implemented as either closed or open curves, using the positions

of map points as input features) to an artificial neural network. In ultrasonic

maps, gaps frequently occur where a number of contiguous points are marked as

empty despite the fact that they are occupied. Both approaches generate para-

metric curves that fill the erroneous gaps between map points and allow the map

to be represented and stored more compactly and smoothly, with fewer points

and using a limited number of parameters. These methods also make it possible

to compare the accuracy of maps acquired with different techniques or sensing

modalities among themselves, as well as to an absolute reference.

2.1.1 Ultrasonic Sensor Signal Processing

In earlier work, there have been two basic approaches to representing ultrasonic

data: feature based and grid based. Grid-based approaches do not attempt

to make difficult geometric decisions early in the interpretation process, unlike

feature-based approaches that extract the geometry of the sensor data as the first
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step. As a first attempt to feature-based mapping, several researchers have fitted

line segments to ultrasonic data as features that crudely approximate the room

geometry [12, 13, 14]. This approach proves to be difficult and brittle because

straight lines fitted to time-of-flight (TOF) data do not necessarily match or align

with the world model, and may yield many erroneous line segments. Improving

the algorithms for detecting line segments and including heuristics do not re-

ally solve the problem. A more physically meaningful representation is to use

regions of constant depth (RCDs) as features, which are circular arcs from specu-

larly reflecting surfaces that are natural features of the raw ultrasonic TOF data.

These arcs were first reported in [15] and further elaborated on in [16]. They are

obtained by placing a small mark along the line of sight (LOS) at the range cor-

responding to the measured TOF value. In specularly reflecting environments,

an accumulation of such marks usually produces arc-like features. As a more

general approach that is not limited to specularly reflecting surfaces, the angular

uncertainty in the range measurements has been represented by UAMs [17] that

preserve more information (see Figure 2.3(a) for a sample UAM). Note that the

arcs in the UAM are uncertainty arcs and different than the arcs corresponding to

RCDs. The UAMs are obtained by drawing arcs spanning the beamwidth of the

sensor at the measured range, representing the angular uncertainty of the object

location and indicating that the echo-producing object can lie anywhere on the

arc. The probability of the reflection point being in the middle of the arc is the

largest, symmetrically decreasing towards the sides. In the literature, the proba-

bility of occupancy along the arc has been modeled by Elfes heuristically [18, 19].

Thus, when the same transducer transmits and receives, all that is known is

that the reflection point lies on a circular arc of radius r, with a larger probability

in the middle of the arc. More generally, when one transducer transmits and

another receives, it is known that the reflection point lies on the arc of an ellipse

whose focal points are the transmitting and receiving elements. The arcs are

tangent to the reflecting surface at the actual point(s) of reflection.

Completely specular and completely diffuse (Lambertian) reflection are both

idealizations corresponding to the two extreme cases of the actual spectrum of

real reflection characteristics. These two extrema are unreachable in practice
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and many real environments are, in fact, compositions of both specularly and

diffusely reflecting elements. Compared to RCDs, constructing UAMs is more

generally applicable in that they can be generated for environments comprised of

both specularly and diffusely reflecting surfaces as is the case for many typical

indoor environments. On the other hand, RCDs are structures that occur in

environments where specular reflections are dominant. In earlier work, techniques

based on the Hough transform have been applied to detect line and point features

from arcs for both airborne and underwater ultrasonic data [20, 21].

2.1.2 UAM Processing Methods

Since the UAM is generated by drawing an arc for each received echo, the resulting

map has many redundant points, as well as artifacts caused by cross-talk, and

multiple and higher-order reflections (Figure 2.3(a)). Several techniques exist in

the literature that can be used to process the UAMs. These techniques, listed in

Table 2.1, are described in this section.

Table 2.1: UAM processing techniques used in this study and their indices.

k UAM processing technique
1 point marking (PM) [15]
2 voting and thresholding (VT) [22]
3 directional maximum (DM) [19]
4 morphological processing (MP) [17]
5 Bayesian update (BU) [18]
6 arc-transversal median (ATM-org) [23]
7 modified ATM (ATM-mod) [19]
8 triangulation-based fusion (TBF) [24]

2.1.2.1 Point Marking (PM)

This is the simplest approach, where a mark is placed along the LOS at the mea-

sured range [15]. This method produces reasonable estimates for the locations of

objects if the arc of the cone is small. This can be the case at higher frequencies
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of operation where the corresponding sensor beamwidth is small or at nearby

ranges. Since every arc is reduced to a single point, this technique cannot elimi-

nate any of the outlying TOF readings. The resulting map is usually inaccurate

with large angular errors and artifacts.

2.1.2.2 Voting and Thresholding (VT)

In this technique, each pixel stores the number of arcs crossing that pixel, resulting

in a 2-D array of occupancy counts for the pixels [22]. By simply thresholding this

array and zeroing the pixels lower than the threshold, artifacts can be eliminated

and the map is extracted.

2.1.2.3 Directional Maximum (DM)

This technique is based on the idea that in processing the acquired range data,

there is a direction-of-interest (DOI) associated with each detected echo. Ideally,

the DOI corresponds to the direction of a perpendicular line drawn from the sensor

to the nearest surface from which an echo is detected. However, in practice, due

to the angular uncertainty of the object position, the DOI can be approximated

as the LOS of the sensor when an echo is detected. Since prior information on the

environment is usually unavailable, the DOI needs to be updated while sensory

data are being collected and processed on-line [19].

In the implementation, the number of arcs crossing each pixel of the UAM is

counted and stored, and a suitable threshold value is chosen, exactly the same

way as in the VT method. The novelty of the DM method is the processing done

along the DOI. Once the DOI for a measurement is determined using a suitable

procedure, the UAM is processed along this DOI as follows: The array of pixels

along the DOI is inspected and the pixel(s) exceeding the threshold with the

maximum count is kept, while the remaining pixels along the DOI are zeroed

out. If there exist more than one maxima, the algorithm takes their median (if

the number of maxima is odd, the maxima in the middle is taken; if the number
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is even, one of the two middle maxima is randomly selected). This way, most of

the artifacts of the UAM can be removed.

2.1.2.4 Morphological Processing (MP)

The processing of UAMs using morphological operators was first proposed in [17].

This approach exploits neighboring relationships and provides an easy to imple-

ment yet effective solution to ultrasonic map building. By applying binary mor-

phological operators, one can eliminate the artifacts of the UAM and extract the

surface profile.

2.1.2.5 Bayesian Update Scheme for Occupancy Grids (BU)

Occupancy grids were first introduced by Elfes, and a Bayesian scheme for up-

dating their probabilities of occupancy and emptiness was proposed in [18] and

verified by ultrasonic data. Starting with a blank or completely uncertain occu-

pancy grid, each range measurement updates the probabilities of emptiness and

occupancy in a Bayesian manner. The reader is referred to [18] for a detailed

description of the method and [19] for its implementation in this work.

2.1.2.6 Triangulation-Based Fusion (TBF)

The TBF method is primarily developed for accurately detecting the edge-like

features in the environment based on triangulation [24]. The triangulation equa-

tions involved are not suitable for accurately localizing planar walls.

Unlike the previously introduced grid-based techniques, the TBF method ex-

tracts the features of the environment by using a geometric model suitable for

edge-like features. In addition, TBF considers a sliding window of ultrasonic

scans where the number of rows of the sliding window corresponds to the number

of ultrasonic sensors fired, and the number of columns corresponds to the num-

ber of most recent ultrasonic scans to be processed by the algorithm. TBF is
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focused on detection of edge-like features located at ≤ 5 m. The other methods

consider all of the arcs in the UAM corresponding to all ranges, and are suitable

for detecting all types of features.

2.1.2.7 Arc-Transversal Median (ATM)

The ATM algorithm requires both extensive bookkeeping and considerable

amount of processing [23]. For each arc in the UAM, the positions of the in-

tersection(s) with other arcs, if they exist, are recorded. For arcs without any

intersections, the mid-point of the arc is taken to represent the actual point of

reflection (as in PM). If the arc has a single intersection, the algorithm uses the

intersection point as the location of the reflecting object. For arcs with more in-

tersections, the median of the positions of the intersection points with other arcs

is chosen to represent the actual point of reflection. In [23], the median operation

is applied when an arc has three or more intersection points. If there is an even

number of intersections, the algorithm uses the mean of the two middle values

(except that arcs with two intersections are ignored). It can be considered as a

much improved version of the PM approach.

We have also implemented a modified version of the algorithm (ATM-mod)

where we ignored arcs with no intersections. Furthermore, since we could not see

any reason why arcs with two intersections should not be considered, we took the

mean of the two intersection points.

2.2 Methodology

One of the purposes of this study is to evaluate and compare the performances of

different UAM processing techniques, by fitting active snake contours and SOMs

to the map data. To establish a quantitative measure of the performance, we first

define a generic error criterion between two sets of points, based on the Euclidean

distance.
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2.2.1 The Error Criterion

Let P ⊂ R3 and Q ⊂ R3 be two finite sets of arbitrary points with N1 points in

set P and N2 points in set Q. We do not require the correspondence between the

two sets of points to be known. Each point set could correspond to either (i) a

set of map points acquired by different mapping techniques or different sensing

modalities (e.g., laser, ultrasonic, or infrared map points), (ii) discrete points

corresponding to an absolute reference (the true map), or (iii) some curve (in

2-D) or shape (in 3-D) fit to the map points (e.g., polynomials, snake curves, or

spherical caps). The absolute reference (or ground truth) could be an available

true map or plan of the environment or could be acquired by making range or

time-of-flight measurements through a very accurate sensing system.

The well-known Euclidean distance d(pi,qj) : R3 × R3 → R≥0 of the ith

point in set P with position vector pi = (pxi, pyi, pzi)
T to the jth point qj =

(qxj, qyj, qzj)
T in set Q is given by:

d(pi,qj) =
√

(pxi − qxj)2 + (pyi − qyj)2 + (pzi − qzj)2 (2.1)

where i ∈ {1, . . . , N1} and j ∈ {1, . . . , N2}.

In [25], three different metrics to measure the similarity between two sets of

points are considered and compared, each with certain advantages and disadvan-

tages. In this work, we use the most favorable of them to measure the closeness

or similarity between sets P and Q:

E(P−Q) =
1

2

(
1

N1

N1∑
i=1

min
qj∈Q

{d(pi,qj)}+
1

N2

N2∑
j=1

min
pi∈P

{d(pi,qj)}

)
(2.2)

According to this criterion, we take into account all points in the two sets and

find the distance of every point in set P to the nearest point in set Q and average

them, and vice versa. The two terms in Equation (2.2) are also averaged, so that

the criterion is symmetric with respect to P and Q. If the two sets of points

are completely coincident, the average distance between them will be zero. If

one set is a subset of the other, there will be some error. Had an asymmetric

criterion been employed, say, including only the first (or the second) term in
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Equation (2.2), the error would have been zero when P ⊂ Q (or Q ⊂ P ). Gaps

occurring in the maps and sparsity are penalized by this error criterion, resulting

in larger errors on average.

The error criterion we propose is sufficiently general that it can be used to

compare any two arbitrary sets of points. This makes it possible to compare

the accuracy of discrete point maps acquired with different techniques or sensing

modalities with an absolute reference, as well as among themselves, both in 2-D

and 3-D. When curves or shapes (e.g., lines, polynomials, snakes, spherical or

elliptical caps) are fitted to the map points, the criterion proposed here also

enables us to assess the goodness of fit of the curve or shape to the map points.

In other words, a fitted curve or shape comprised of a finite number of points can

be treated in exactly the same way.

2.2.2 Active Snake Contours

A snake, or an active contour, first introduced by Kass et al. [10], can be de-

scribed as a continuous deformable closed curve. Active snake contours have

been commonly used in image processing for edge detection and segmenta-

tion [10, 26, 27, 28], and have been mostly classified into three categories [29]:

• point-based snakes, where the curve is represented as a collection of discrete

points,

• parametric snakes, where the curve is described using combinations of basis

functions, and

• geometric snakes, where the curve is represented as a level set of a higher-

dimensional surface.

This classification is not universal and many authors categorize snakes merely

into two, namely parametric and geometric, with the first category stated above

considered a special kind of parametric snake. The snake used in this study
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belongs to the first category. The variants of snakes are analyzed in a unified

manner in [30].

We define a snake as a parameterized closed curve v(s) = [px(s), py(s)]
T ,

s ∈ [0, 1], where px(s) and py(s) are functions representing the Cartesian coordi-

nates of the snake in 2-D and s is the normalized arc length parameter of the

snake curve. This parameterization is dimensionless. The deformation of the

snake is controlled by internal and external forces. Internal forces impose elastic-

ity and rigidity constraints on the curve, whereas external forces stretch or shrink

the curve to fit to the image data. The total energy of the snake curve is given

by the functional

Esnake =

∫ 1

0

[Eint(v(s)) + Eext(v(s))] ds (2.3)

The internal energy component is given by

Eint(v(s)) =
1

2

(
α

∥∥∥∥d(v(s))ds

∥∥∥∥2 + β

∥∥∥∥d2(v(s))ds2

∥∥∥∥2
)

(2.4)

where α is the elasticity parameter and β is the rigidity parameter, and ∥·∥
denotes the 2-norm. The first derivative term in Equation (2.4) penalizes long

curves, whereas the second derivative term penalizes sharp curvatures. This

internal energy definition is used in many applications, possibly with varying

α(s) and β(s). The use of other internal energy expressions is not very common.

The external energy component is denoted by Eext(v(s)) = U(v(s)), where U

is a potential function that depends on the image data. In general, the potential

function can be selected in different ways, depending on the application. However,

it must be at minimum on the edges of the image if the snake is to be used for

edge detection, segmentation, or finding the boundaries of an environment as in

our application. Kass et al. suggest using the negative of the image gradient

magnitude as a potential function [10]. However, this is only feasible if the snake

is initialized close to the image boundaries, otherwise the snake curve would be

stuck in local minima or a flat region of the potential function. Filtering the

image with a Gaussian low-pass filter is also suggested in the same paper to

increase the capture range of the snake, but this causes the edges to become
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blurry, thus reducing map accuracy. In black-on-white and gray-level images, the

image intensity can be used as the potential function, either in binary form or

convolved with a Gaussian blur [27]. Obviously, this method also suffers from the

drawbacks stated above. Another solution, proposed in [28], is using a distance

map as a potential function to increase the capture range of the contour, which

is the approach used in this study.

In this work, we chose to use a potential function for the external energy term

based on the Euclidean distance map, as suggested in [28]. Although our problem

is in 2-D, let us first make a more general definition of a distance map in 3-D.

2.2.2.1 Euclidean Distance Map

Let Q ⊂ R3 be a finite set of arbitrary points. For all points p of the mapped

region, we define a distance map DQ(p) : R3 → R≥0 between a point p and set

Q as the minimum of the Euclidean distances of that point to all the points in

the set Q. That is,

DQ(p) = min
qj∈Q

{d(p,qj)} j ∈ {1, . . . , N2} (2.5)

where qj is the position vector of the jth point in the set Q. According to this

definition, the two summands in Equation (2.2) are, in fact, nothing but distance

functions and the error criterion can be rewritten as:

E(P−Q) =
1

2

(
1

N1

N1∑
i=1

DQ(pi) +
1

N2

N2∑
j=1

DP (qj)

)
(2.6)

Computing the Euclidean distance map is costly, and a number of algorithms

and other distance functions have been proposed in the literature to approximate

it [31, 32]. In this study, the Euclidean distance map is implemented in its original

form and the potential function is chosen as:

U(p) = DQ(p) = min
qj∈Q

{d(p,qj)} j ∈ {1, . . . , N2} (2.7)

for all points p of the mapped region and a point set Q.
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Approaches that do not use a potential function as the external energy term

also exist in the literature [33]. Such approaches relax the constraint that the

external forces pulling the snake towards the edges should be conservative, i.e.,

derived from a potential field. For example, Xu et al. define a non-conservative

force field representing the external forces and use force-balance equations rather

than an energy-based approach to solve the problem [33].

2.2.2.2 Snake Curve Evolution

With the above definitions of external and internal energy, calculus of variations

can be used to find the curve that minimizes the energy functional in Equa-

tion (2.3). The minimizing curve should satisfy the following Euler-Lagrange

equation [10]:

α
d2v(s)

ds2
− β

d4v(s)

ds4
−∇U(v(s)) = 0 (2.8)

Although it may be possible to solve this equation analytically for some special

cases, a general analytical solution does not exist. The common practice is to

initialize an arbitrary time-dependent snake curve v(s, t). Equation (2.8) is then

set equal to the time derivative of the snake, where a solution is found when the

time derivative vanishes. That is,

α
∂2v(s, t)

∂s2
− β

∂4v(s, t)

∂s4
−∇U(v(s, t)) = ∂v(s, t)

∂t
(2.9)

These equations are then discretized to find a numerical solution. The snake is

treated as a collection of discrete points joined by straight lines and is initialized

on the image. Approximating the derivatives by finite differences, the evolution

equations of the snake reduce to the following:

px(n+ 1) = (A+ γI)−1

(
γ px(n)− κ

∂U

∂px

∣∣∣∣
[px(n),py(n)]

)
(2.10)

py(n+ 1) = (A+ γ I)−1

(
γ py(n)− κ

∂U

∂py

∣∣∣∣
[px(n),py(n)]

)
(2.11)

Here, n is the current time (or iteration) step, px(n) and py(n) are vectors rep-

resenting the positions of the collection of discrete points on the snake at time n,
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γ is the Euler step size, and κ is a weight factor for the external force. I is the

identity matrix of the appropriate size and A is a penta-diagonal banded matrix

that depends on α and β. The sizes of the matrices A and I are determined

by the number of points on the snake, which may change as the algorithm is

executed.

1 2 i N

pyppx

output layer

input layer

w11
w12

w21 w22
w1i

w1N w2N

w2i

Figure 2.1: Structure of the 1-D SOM.

2.2.3 Kohonen’s Self-Organizing Maps

Another method used in map representation and in evaluating the different tech-

niques is the self-organizing map introduced by Kohonen [11], which is basically

an artificial neural network that uses a form of unsupervised learning, and is suit-

able for applications where the topology of the data is to be learned. Robots that

learn the environment structure using artificial neural networks are reported on

in [34, 35]. SOMs for curve and surface reconstruction have been used in applica-

tions such as computer-aided design (CAD) modeling of objects having irregular

shapes [36, 37]. In this study, we use the SOM for fitting curves to the ultrasonic

map points obtained with the different UAM processing techniques.

An SOM is an artificial neural network with two layers. We use a 1-D SOM,



CHAPTER 2. REPRESENTING ULTRASONIC MAPS 19

whose structure is illustrated in Figure 2.1. The two neurons at the input layer

are used to input the px and py coordinates of a map point. Each neuron at

the output layer represents a point on the curve to be fitted, and the associated

connection weights are the px and py coordinates of this point. The output

neurons are arranged as a chain-like structure, where each neuron, except those

at the two ends, has two neighbors. This neighborhood affects the weight updates

described below. For each input map point, the winning neuron is determined to

be the closest point on the curve to that input. Thus, for the input map point

p = (px, py)
T , output neuron weights wi = (w1i, w2i)

T , and a total of N points

on the curve, the index i∗ of the winning neuron is given by:

i∗ = arg min
i=1,...,N

√
(px − w1i)2 + (py − w2i)2 (2.12)

Through the use of a Gaussian function g0,σ(n)(·), updating the weights is done

such that the weight update of one neuron also affects the neighboring neurons.

Then, for all neurons i = 1, . . . , N , the weight update rule is

wi(n+ 1) = wi(n) + λ(n) g0,σ(n)(|i− i∗|) [p(n)−wi(n)] (2.13)

where n is the iteration step, wi(n) is the 2 × 1 weight vector of neuron i, p(n)

is the position vector of the input map point, λ(n) is the time-dependent learn-

ing rate, and g0,σ(n)(·) is a 1-D Gaussian function with zero mean and standard

deviation σ(n). Note that λ(n) and σ(n) are functions of the iteration number n

and should be decreased at the end of each epoch as the iterations are performed,

with respective decay coefficients kλ and kσ. An epoch is completed when all map

points are given as input to the SOM once.

2.2.4 Parameter Selection and Optimization Methods

Active snake contours and SOMs have a number of parameters that affect the

convergence characteristics and performance of curve fitting. Since each problem

or situation requires a different set of parameter values, universally accepted

values for these parameters do not exist in the literature. For the map points

extracted from an unknown environment, it is difficult to guess or estimate these
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parameter values beforehand. The parameters depend on the shape and the

nature of the environment as well as on the mapping technique used. For example,

a structured environment mostly composed of specularly reflecting surfaces may

require a different set of parameters than an unstructured environment with some

combination of specularly and diffusely reflecting surfaces. Optimization methods

can be applied to select the best parameter values specific to the problem at

hand. Below, we provide guidelines for selecting these parameters and suggest

two alternative approaches that can be employed for this purpose.

For the active contour method, the parameters that must be selected are

α, β (Equation (2.4)), γ, and κ (Equations (2.10) and (2.11)). As stated above, α

penalizes elongation and β penalizes bending or sharpness of the snake curve. For

example, selecting a small β value enforces the second derivative in the energy

term to have smaller weight, thus allowing sharp corners in the snake. The

parameter γ is the Euler step size of the discretization and κ is a weight factor

for the external force. Some authors use κ = 1, as in the original definition,

where it is also stated that the step size γ should be reduced if the external

force becomes large [10]. Including a κ parameter (different than one) provides

more user control of the problem. Determining these parameters depends on the

initialization and the required curve features, such as length and curvature.

For the SOM method, the parameters that affect convergence and the per-

formance of curve fitting are the learning rate λ(n) and the standard deviation

σ(n). These are functions of the iteration number n and should be decreased

as the iterations are performed. In our implementation, we multiply each with

decay coefficients 0 < kλ < 1 and 0 < kσ < 1 at the end of each epoch. Thus, the

parameters to be chosen are λ(0), σ(0), kλ, and kσ. The initial learning rate λ(0)

is usually chosen to be less than one in order not to “overshoot” the map points

in fitting. If the curve is initialized close to the boundaries of the mapped region,

λ(0) and σ(0) should be chosen smaller. The Gaussian function has a value of

one at its peak point, where i = i∗, and decreases symmetrically and gradually.

Using a Gaussian function in Equation (2.13) to update the weights allows all

neurons to be updated at the same time, resulting in a smoother fitting curve

to the input data at each iteration. If we visualize the 1-D SOM as a chain-like
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structure, σ(n) determines the tightness/looseness of the chain. The larger it is,

the tighter the chain, and vice versa. Its initial value depends on the length and

position of the initial curve and the total number of points on that curve.

Since finding the best-fitting parameters depends on many factors, it is not

possible to determine and fix them for every purpose beforehand. In this work,

we followed two different approaches to estimate the best parameter values for a

given set of map points.

In the first approach, we sample the parameter space uniformly and search

for parameter sets that minimize the error. For example, in snake fitting, since

there are four parameters to be estimated, the parameter space is a 4-D hyper-

cube. We divide this hypercube evenly into a sufficient number of smaller-sized

hypercubes and use the parameter values that correspond to the center of each

hypercube. In other words, each parameter is uniformly incremented and all

possible combinations of the selected parameter values are considered.

We used particle swarm optimization (PSO) as the second approach [38]. This

method is inspired by the idea of swarms in nature in order to find the minimum

(or, without loss of generality, maximum) value of an objective function. Here, we

outline the method as implemented in this study. For a more detailed overview

of the original form of the algorithm and its many variants, we refer the reader

to [39].

The swarm is composed of a number of particles, each of which is a candidate

for a minimum. At an arbitrary iteration n of the algorithm, each particle in the

parameter space has a position xn, a velocity ẋn, a “previous best” value pBestn,

and the corresponding previous best position pn. The best value would be the

lowest (highest) value of the objective function achieved by the particle so far,

for a minimum (maximum). We denote the value of the objective function at a

position x by J(x). Furthermore, the minimum (maximum) of pBestn among all

particles is denoted as the global best, gBestn, and the corresponding position

as gn. The velocity and position of each particle is updated according to the
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equations:

ẋn+1 = wnẋn +m1φ1(pn − xn) +m2φ2(gn − xn) (2.14)

xn+1 = xn + ẋn+1 (2.15)

where wn is called the inertia weight, m1 and m2 are constants, and φ1 and φ2

are independent uniform random variables in the interval [0, 1]. In this study,

we take m1 = m2 = 2, as suggested in [38]. The inertia weight wn serves as a

memory coefficient and prevents the particles from taking “sharp turns” during

the iterations, resulting in a smoother movement of the particles.

At each step of the algorithm, the values pBestn and gBestn are checked to

see if they should be updated. In searching for a minimum, if the current value

J(xn) of a particle is less than its pBestn value, pBestn is set to the current value

and pn is set to its current position xn. Similarly, if the current value J(xn) of any

particle is less than the gBestn value, gBestn and gn are updated accordingly.

2.3 Experiments and Results

The experimental data had been acquired before this thesis work started, using

the front three ultrasonic sensors and structured-light system of the Nomad 200

robot. A simple rule-based wall-following algorithm was used for the indoor

environment shown in Figures 2.2 and 2.3(a). The environment is a small room—

approximately 2.75 m square—with four corners and an edge feature. There is a

cater-corner opening in the lower left corner of the room from which no ultrasonic

or structured-light data were received. Referring to Figure 2.3, the environment

is comprised of smooth wooden (top and left) and painted (right) walls, and a

window shade with vertical slats of 15 cm width (bottom). Some of the corners of

the room are not perfect (e.g., where the shade and the right wall make a corner).
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(a)

(b)

Figure 2.2: Views of the environment in Figure 2.3(a): (a) looking towards the
right, showing the top, right, and bottom walls; (b) looking towards the lower
right corner, showing the right and bottom walls in Figure 2.3(a). The cylinder
is an additional feature.
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To demonstrate our methodology, we used the mapping results of the different

UAM processing techniques listed in Table 2.1 and described in detail in [19].

Each of these techniques results in a different set of map points, to which both a

snake curve and an SOM are fitted in 2-D.

Table 2.2: Best parameter values found by (i) uniform sampling of the parameter
space, and (ii) initializing PSO with the best parameters of (i).

snake curve fitting SOM

method α β γ κ λ(0) σ(0) kλ kσ
(i) uniform sampling 4.20 0.60 0.60 1.80 0.03 2.59 0.83 0.76

(ii) PSO (initialized by (i)) 4.58 1.23 0.98 1.72 0.02 2.85 0.90 0.76

The parameters of snake curve and SOM fitting are determined using two

methods described in Section 2.2.4. After uniform sampling of the parameter

space, the parameter values that resulted in the minimum error for both snake

curve and SOM approaches are presented in the first line of Table 2.2. The

objective function to be minimized is selected as the average error between the

fitted curves and the absolute reference for the map, obtained by a very accurate

laser system. For the PSO algorithm, we initialized the parameter values in two

different ways. First, random initialization is considered: For the active contour

method, all four parameters of each of the 20 particles of PSO are initialized ran-

domly in the interval [0, 12]. For the SOM method, λ(0) parameter is initialized

randomly in [0, 0.5], kλ and kσ are initialized randomly in [0, 1], and σ(0) is ini-

tialized randomly in [0, 20]. However, random initialization did not result in the

smallest error values. As another alternative, we used the best parameter values

found by uniform sampling and added white Gaussian noise to them to initialize

each particle of PSO. For the active contour method, all parameters were added

white Gaussian noise with standard deviation 0.2. For SOM, the standard devi-

ations of the Gaussian noise added to the four parameters were 0.01, 0.4, 0.02,

and 0.02, respectively. This approach reduced the errors considerably, as well as

improving the convergence speed of PSO. The parameter values that resulted in

the minimum error for active contours and SOM are presented in the second line

of Table 2.2.
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In the following, let each set of processed UAM data points be denoted as

Mk, where k corresponds to one of the UAM processing techniques indexed in

Table 2.1. For compatibility, let the set of original laser data points be denoted as

M0. Then, for the laser map (k = 0) and for the kth ultrasonic map (k = 1, . . . , 8),

the potential function used in fitting the kth snake is selected as

Uk(p) = DMk
(p) k = 0, 1, . . . , 8 (2.16)

for all points p. Here, DM0(p) denotes an element of the Euclidean distance map

with respect to the original laser data and DMk
(p) denotes an element of the

distance map with respect to the kth processed UAM. Note that the value of

the potential function is zero for those points on the image corresponding to the

extracted map, and increases gradually with increasing distance of the point p

from the map points.

The set of curve points fitted to the map points resulting from the kth UAM

processing technique is referred to as Sk where k = 1, . . . , 8. That is, the kth

curve is represented as a collection of points pik, i = 1, . . . , Nk, where Nk is the

total number of points on curve Sk. The set of points of the curve fitted to the

original laser data will be referred to as S0.

The map of the environment acquired with a structured-light laser system is

shown in Figure 2.3(b). This is the original laser data, which is quite accurate,

and it is used as the absolute reference. The corresponding Euclidean distance

map is shown in Figure 2.3(c), and is drawn by rescaling the values of the potential

function to be between zero and 255. In the distance map, the darkest points of

value zero correspond to a distance of zero and, after normalization, the lightest

points correspond to the value 255. The snake fitted to this laser data is shown

in Figure 2.3(d), superimposed on the data points. Figure 2.3(e) shows the SOM

fitted to the same laser data. These will be used for comparison in Sections 2.3.1

and 2.3.2. Values of some quantities used in the experiments are provided in

Table 2.3.
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Figure 2.3: (a) The raw UAM, (b) original laser map, (c) distance map with
respect to the laser data, (d) snake fitted to the laser data, (e) SOM fitted to the
laser data.
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Table 2.3: Values of some experimental quantities.

map size 525 × 525
initial curve center (30, 55)
initial curve radius 185
no. of snake points 400–500
no. of snake iterations 250
intensity range of distance map 0–255
no. of SOM epochs 20
no. of SOM input neurons 2
no. of SOM output neurons 160
no. of PSO particles 20
no. of PSO iterations 20
no. of samples of parameter space 1,296

2.3.1 Active Snake Contours

The snake is initialized as a circle whose center is at (30, 55) with a radius of 185

units to encompass the room boundary (Figure 2.3). Then, the snake is evolved

for a fixed number of iterations (250). After each iteration, the points on the snake

are checked for uniformity. The distance between any two neighboring points is

maintained between two and four units, determined experimentally. That is, after

each iteration, the points are deleted or created as required by this constraint. We

allow the snake to converge to outlier points caused by cross-talk, multiple, and

higher-order reflections to provide a fair evaluation of the different techniques.

Using the two-sided error criterion defined in Equation (2.2), we define the

error of the fit at iteration n as follows:

E(Sk(n)−Mk)(n) =
1

2

 1

Nk(n)

Nk(n)∑
i=1

DMk
(pik(n)) +

1

Lk

Lk∑
j=1

DSk(n) (qjk)

 (2.17)

for k = 0, . . . , 8. Here, n = 1, . . . , 250 is the iteration step, pik(n) is the position

vector of the ith point on snake k at iteration n, qjk is the position vector of the

jth point of Mk, Nk(n) is the number of points on snake k at step n, and Lk is

the number of points of Mk. Note that if the snake fits perfectly to the extracted

map points at any iteration (in other words, if every snake point corresponds to
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a map point and vice versa), this error becomes zero, since each of the summed

distance values in Equation (2.17) would be zero. We calculate and store this

error for each iteration. Then, the snake curve that results in the minimum error

is determined and selected as the snake that best represents the corresponding

map points.

In [4], we used a fixed number of iterations and selected the snake that results

in the minimum error. Our observations reveal that the error decreases to a

certain value between iterations 100 and 150 and then oscillates around that

value, which does not affect the results significantly. In a practical application,

it is also possible to take the error at the end of a fixed number of iterations or

to set an error threshold to stop the iterations when the error goes below the

threshold [2].

To evaluate map accuracy based on the generic error criterion given in Equa-

tion (2.2), we chose the point sets P and Q in three different ways:

In the first, we compare the snake fitted to processed UAM points with the

originally acquired laser data points so that the two point sets are Sk and M0.

Using the notation at the beginning of this section, the minimum distance of

point i on snake Sk to the set M0 is given by DM0(pik). Then, the error is given

as:

E(Sk−M0) =
1

2

(
1

Nk

Nk∑
i=1

DM0 (pik) +
1

L0

L0∑
j=1

DSk
(qjk)

)
k = 0, . . . , 8 (2.18)

For our example, when k = 0, E(S0−M0) = 1.07, indicating that the average error

of the laser snake fit to the original laser data is about one pixel. The errors for

the other k values are tabulated in Tables 2.4 and 2.5.

In the second criterion, we compare the processed UAM snake Sk with the

snake curve S0 fitted to the original laser data (Figure 2.3(d)). We calculate the

distance of every point on the snake Sk to the nearest point on the snake S0 and
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Table 2.4: Error values (in pixels) for snake curve fitting and SOM using param-
eters found by uniform sampling of the parameter space.

snake curve fitting SOM
k method E(Sk−M0) E(Sk−S0) E(Sk−Mk) E(Sk−M0) E(Sk−S0) E(Sk−Mk)

1 PM 2.71 2.29 3.77 6.06 7.12 4.67
2 VT 2.81 2.51 1.87 2.91 4.13 2.25
3 DM 2.69 2.63 1.98 2.86 3.77 2.54
4 MP 4.82 5.14 2.95 7.09 8.17 2.69
5 BU 5.89 5.35 4.28 9.32 10.38 2.89
6 ATM-org 2.97 2.58 3.07 5.81 6.69 3.73
7 ATM-mod 3.11 3.02 2.70 4.21 5.56 2.79
8 TBF 4.00 4.63 4.62 5.22 6.59 4.60

Table 2.5: Error values (in pixels) for snake curve fitting and SOM using PSO
parameters.

snake curve fitting SOM
k method E(Sk−M0) E(Sk−S0) E(Sk−Mk) E(Sk−M0) E(Sk−S0) E(Sk−Mk)

1 PM 2.58 2.13 4.01 5.46 6.02 4.02
2 VT 2.78 2.45 1.91 2.85 3.65 2.18
3 DM 2.74 2.44 1.57 2.65 3.11 2.24
4 MP 5.02 5.39 2.90 6.88 7.46 2.63
5 BU 5.92 5.38 4.34 9.10 9.50 2.53
6 ATM-org 2.79 2.36 2.97 5.37 6.07 3.23
7 ATM-mod 2.97 2.91 2.39 3.99 4.79 2.54
8 TBF 4.28 4.93 4.68 4.81 5.67 4.21

average these distances, and vice versa:

E(Sk−S0) =
1

2

(
1

Nk

Nk∑
i=1

DS0 (pik) +
1

N0

N0∑
j=1

DSk
(qjk)

)
(2.19)

≈ 1

2

(∫
Sk
DS0(p) ds∫
Sk
ds

+

∫
S0
DSk

(q) ds∫
S0
ds

)
k = 0, . . . , 8 (2.20)

Note that E(S0−S0) = 0 by definition. The summations in Equation (2.19) are, in

fact, discrete approximations of the line integrals of the distance map functions

given in Equation (2.20).

The third way measures how well the kth snake fits to the ultrasonic map
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points of the kth technique, and is not related to the reference laser data. It

corresponds to the minimum error that is obtained during the snake iterations

using Equation (2.17), and is given by:

E(Sk−Mk) =
1

2

(
1

Nk

Nk∑
i=1

DMk
(pik) +

1

Lk

Lk∑
j=1

DSk
(qjk)

)
k = 1, . . . , 8 (2.21)

The errors of snake fitting for the different UAM processing techniques are

tabulated in the third, fourth, and fifth columns of Tables 2.4 and 2.5. The results

in Table 2.4 are obtained by using the best-fitting parameter values obtained by

uniform sampling of the parameter space (first line of Table 2.2). Similarly, the

parameter values found by initializing PSO with the uniform sampling parameters

(second line of Table 2.2) are used to obtain the results in Table 2.5. In both

tables, it can be observed that E(Sk−M0) and E(Sk−S0) values are mostly comparable

with each other since both take the laser data as reference, in original and snake-

fitted forms, respectively. According to the results, PM, DM, and VT techniques

have the smallest errors, and MP and BU perform the worst because these latter

processing techniques result in more spurious points on the extracted map. The

remaining techniques are comparable with each other. It can also be observed

that PM and ATM-org are the only methods for which the E(Sk−Mk) value is larger

than E(Sk−M0) and E(Sk−S0), indicating that the snake curves for these methods fit

better to the laser data than the processed UAMs. This is because unlike most of

the other methods, many outlying points remain after processing the UAM with

these methods; the snake fits poorly to these outliers and this causes the error

E(Sk−Mk) to increase.

Because smaller errors are obtained by uniform sampling of the parameter

space followed by PSO, the best-fitting parameter values found with this approach

are used for the given illustrations. The snake curves fitted to the processed

UAMs and the laser data are illustrated in Figure 2.4. In the different parts of

the figure, the black features correspond to map points obtained with a particular

UAM processing technique. The blue (thick) curves are the snakes fitted to these

map points. The red (thin) curve is the snake fitted to the laser data, which

is the same in each part of the figure and is included as a reference for visual

comparison. This is also the same curve as in Figure 2.3(d).
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Figure 2.4: Results of snake fittings for (a) PM, (b) VT, (c) DM, (d) MP, (e) BU
(continued).
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Figure 2.4: (continued) (f) ATM-org, (g) ATM-mod, and (h) TBF.

Note that in this study, the snake curves are initialized outside the bound-

aries of the room because the curve tends to shrink rather than expand due to

the first derivative term in the energy expression. This fact should be taken

into account in determining the initial location of the snake curve. Initializing

the snake within the boundaries of the environment is also a possibility, as the

spurious points outside the boundaries would not affect the snake curve as much,

allowing it to follow the boundaries of the room more closely. However, inside ini-

tialization would not result in a fair comparison between the techniques in terms

of the amount of spurious points left after UAM processing. In addition, in some

mapping applications one may not be completely free to choose the initial loca-

tion. For example, in a room with many obstacles close to the room boundaries,
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it would be essential to initialize the snake curve outside in order to represent

the boundaries of the room correctly. However, if detecting obstacle boundaries

is more important, one would initialize the snake inside the boundaries. In fact,

some applications may require both. The choice for the initial location should

depend on the configuration of obstacles and the free space.

2.3.2 Kohonen’s Self-Organizing Maps

We initialize an SOM with 160 neurons as a circle outside the boundaries of the

room, with the same center and the same radius as in the snake curve fitting pro-

cedure. The iterations are stopped after 20 epochs. Similar to the case with the

snake curve, the distance between neighboring points on the curve is maintained

between 10 and 16 units. An SOM fitted to the laser data using the parameters of

uniform sampling can be seen in Figure 2.3(e), superimposed on the data points.

The curves fitted to the processed UAMs can be seen in Figure 2.5.

The previously defined error criterion is employed for this method as well,

using the curves fitted by the SOM instead of snakes. The results of the SOM

method are given in the sixth, seventh, and eighth columns of Tables 2.4 and 2.5.

With a few exceptions, SOM errors are larger than snake errors. The DM and

VT methods demonstrate the best performance. In Figure 2.5(f), it can also

be observed that the SOM curve fitted to the map obtained by the ATM-org

technique is highly affected by the outlier points, unlike the snake curve fitted

for that technique (Figure 2.4(f)). Curves generated by fitting an SOM are not

constrained by length or curvature as the snake curves are, thus they are more

likely to fit to the outlier points. This results in larger error values in general.

2.4 Discussion

Looking at the error values in Tables 2.4 and 2.5 and observing Figures 2.4

and 2.5, it can be concluded that DM, VT, and ATM-mod methods eliminate



CHAPTER 2. REPRESENTING ULTRASONIC MAPS 34

−200 −100 0 100 200 300
−200

−100

0

100

200

300

PM     

p
x
 (cm)

p y (
cm

)

−200 −100 0 100 200 300
−200

−100

0

100

200

300

VT     

p
x
 (cm)

p y (
cm

)

−200 −100 0 100 200 300
−200

−100

0

100

200

300

DM     

p
x
 (cm)

p y (
cm

)

−200 −100 0 100 200 300
−200

−100

0

100

200

300

MP     

p
x
 (cm)

p y (
cm

)

−200 −100 0 100 200 300
−200

−100

0

100

200

300

BU     

p
x
 (cm)

p y (
cm

)

(a)

(b) (c)

(d) (e)

Figure 2.5: Results of SOMs for (a) PM, (b) VT, (c) DM, (d) MP, (e) BU
(continued).
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Figure 2.5: (continued) (f) ATM-org, (g) ATM-mod, and (h) TBF.

most of the artifacts in the ultrasonic data resulting from multiple and higher-

order reflections, cross-talk, and erroneous measurements. The PM, MP, BU, and

ATM-org methods cannot eliminate those artifacts as much, resulting in larger

errors. This can be observed more clearly in Figure 2.5.

In general, if a UAM processing technique cannot eliminate artifacts well,

the resulting errors are larger. DM, VT, and ATM-mod are superior to the other

techniques in eliminating artifacts, therefore they result in smaller errors. In fact,

DM can be considered an improved version of VT, where directional processing of

the map points is incorporated in the algorithm [19]. The modified ATM is also

quite accurate and eliminates the artifacts better than the original ATM. In the
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UAM, if there are arcs with no intersections, these are removed with the modified

ATM but not with the original ATM. Generally speaking, the ATM technique

creates accurate yet sparsely filled maps. ATM is found to require a denser UAM

to begin with in order to produce a map with approximately the same number of

points as the other techniques.

The PM technique reduces each arc to a single point mark in the middle of

the arc. ATM-org places a more accurate point mark on arcs with transversal

intersections (except those with two and none), reducing many of the arcs to

single points also. It treats arcs with no intersections in the same way as PM.

For this reason, the number of extracted map points from these two techniques

is quite similar.

The errors with TBF are usually larger than ATM-org and ATM-mod errors.

The TBF obtains the fewest number of map points among all the techniques

compared and results in more gaps in the resulting map. This result is, however,

expected because apart from the fact that fewer arcs are used at a given time to

begin with (due to the sliding window), TBF eliminates arcs with no meaning-

ful and accurate correspondence. In addition, planar wall locations found with

this method are not very accurate. This is also observed in Figures 15 and 16

of [40] as many outlying points extracted by the algorithm. A major advantage

of TBF is that it is very fast and takes about the same time as the simplest PM

method [19] because it does not divide the environment into grids but processes

the information geometrically.

Among the eight approaches considered, DM produces relatively low errors

and the associated computation time is small (Table 2.6). Considering that DM

also has high range accuracy and is superior in eliminating the artifacts and

outliers of the UAM, it can be considered as one of the best methods in terms of

the overall performance.

In [41, 42, 43], VT and MP were investigated in detail based on simulations

and experimental studies for different transducer configurations (linear, circular,

random), different beamwidths (5◦ to 105◦), different surface curvatures, rough-

ness, distance, and different noise levels on time-of-flight measurements. The best
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Table 2.6: Computation times for fitting snake curves and SOM for a given
parameter set.

number of computation time (s)
method map points distance map snake fitting overall SOM
PM 697 5.6 69.0 75 44
VT 2634 20.3 74.6 95 168
DM 863 7.1 78.2 85 55
MP 4692 35.1 110.6 146 299
BU 2994 21.9 105.9 128 191
ATM-org 920 5.8 66.6 72 59
ATM-mod 788 5.0 78.9 84 50
TBF 387 3.5 57.1 61 25

results were obtained with a random configuration of transducers, followed by cir-

cular and linear ones. For both methods, the errors were shown to increase with

increasing beamwidth, increasing surface distance, curvature, and roughness. Al-

though such detailed studies for the other methods have not been performed, we

expect similar results for the remaining techniques because varying these param-

eters primarily affects the quality of the information inherent in the ultrasonic

arc map. This also leads us to expect that for a given choice of these parameters,

the results of comparing the methods will not be altered significantly.

The active contour and SOM methods used for map representation differ in

many aspects. Snake curves minimize an energy function that is the sum of their

internal energy (basically length and curvature) and a potential function that is

at minimum on the map points. As illustrated in our example, snake curves are

more robust to outliers than SOMs (compare Figures 2.4(f) and 2.5(f)). SOMs,

on the other hand, are not constrained by length or curvature and try to adjust

the curve to encompass all data points. For this reason, SOMs are more likely

to fit to outlying map points and may not converge to the actual borders of

the environment, resulting in larger errors in general. This is the case when

larger values of kλ and kσ are used with the effect that the decay is slower.

Experimenting with different kλ and kσ values, we have observed that decreasing

λ(n) and σ(n) more rapidly causes the SOM to be more robust to the outlier
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points of the ultrasonic map. When smaller values of kλ and kσ are used, it

is more likely that the SOM will fit to the topology of the data rather than the

outliers and the resulting errors will be smaller. However, even in this case, active

snake contours are still superior in terms of the resulting errors.

The evolution equations (2.10) and (2.11) are used to update the position of

the snake. The parameters involved in these equations control the final shape

of the snake such as determining its length and curvature. Selecting the best

parameters is less critical for the convergence of snakes than for SOMs. For

snakes, there may be more than one parameter set that fit the given data points

well. However, the convergence of snakes is more sensitive to the initialization

of the curve than are SOMs, whereas the convergence of SOMs is sensitive to

the order in which the map points are input to the neural network. In our

implementation of the SOM, the points were input randomly.

The running times of active contours and SOMs are tabulated in Table 2.6

for each of the UAM processing techniques, together with the number of data

points in the corresponding processed UAM. These running times are obtained

using MATLAB on a computer with a 1.80 GHz dual core processor. It can be

observed that the running times of both methods increase with increasing data

size, however, the running time of the SOM is more dependent on data size. The

computation time of the SOM increases roughly linearly with the number of data

points, with an average processing time of 64 ms per map data point. In the active

snake contour method, the data size mainly affects the time for calculating the

distance map. On average, forming the distance map takes 7.6 ms per map data

point. Once the distance map is formed, the running time of the snake fitting

algorithm is mainly determined by the number of points comprising the snake

curve. For our example, the average running time is about 80 sec. The overall

average running time is about 93 sec. The slight increase in the snake fitting

time for the BU and MP techniques is because the corresponding snake curves

are longer, resulting in more points to process at each iteration (Figure 2.4). Fur-

thermore, the overall running time and accuracy of the snake fitting technique

change depending on the resolution of the image that represents the map. More
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generally, the computation times for both methods depend on the selected pa-

rameters because these parameters control the convergence characteristics of the

curves. Even though a fixed number of iterations is used in this study, parameters

can be tuned for a specific application and the computation times can be reduced

by using an application-specific number of iterations. However, regardless of a

fixed or variable number of iterations, the results given in Table 2.6 can be viewed

as an example of what to expect for processing times in an application in terms

of the map size and the curve-fitting method used.



Part II

Inertial Sensing
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Chapter 3

Characterization and Modeling of

Inertial and Magnetic Sensor

Errors

Inertial sensors are self-contained, nonradiating, nonjammable, dead-reckoning

devices that provide dynamic motion information through direct measurements.

Gyroscopes provide angular rate information around an axis of sensitivity,

whereas accelerometers provide linear or angular velocity rate information.

For several decades, inertial sensors have been used for navigation of air-

craft [44, 45], ships, land vehicles, and robots [46, 47, 48], for state estimation

and dynamic modeling of legged robots [49, 50], for shock and vibration analysis

in the automotive industry, and in telesurgery [51, 52]. Recently, the size, weight,

and cost of commercially available inertial sensors have decreased considerably

with the rapid development of micro electro-mechanical systems (MEMS) [53].

In this section, we analyze the error characteristics of the MEMS inertial and

magnetic sensor units used in our experiments. We use MTx sensors (Figure 3.1)

by Xsens Technologies B. V. [54].
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3.1 Overview and Description of MTx Sensors

These sensors are referred to as miniature inertial three degrees-of-freedom (3-

DOF) orientation tracker by the manufacturer, and their primary purpose is

providing drift-free 3-D orientation data especially for human body segments.

The sensor unit includes a tri-axial accelerometer, a tri-axial gyroscope, and a

tri-axial magnetometer. In order to estimate the orientation, gyroscope outputs

are fused with magnetometer and acceleration measurements in a Kalman fil-

ter. Furthermore, the sensors also provide kinematic data by outputting the 3-D

acceleration, 3-D rate of turn, and 3-D Earth-magnetic field measurements.

Figure 3.1: MTx 3-DOF orientation tracker
(reprinted from http://www.xsens.com/en/general/mtx).

The manufacturer provides standard sensor units as well as customized units.

In the standard unit, the gyroscopes measure angular velocities in the range

±1200◦/s, the accelerometers measure acceleration in the range ±5g, and the

magnetometers measure magnetic field in the range ±75µT. In our studies, in

addition to the standard units, we also use customized units whose accelerometer

ranges are modified as ±18g. Each unit also includes a temperature sensor that

measures the internal temperature of the sensor unit. The A/D resolution is 16

bits for accelerometers, gyroscopes, and magnetometers, and 12 bits for the tem-

perature sensor, both for the standard unit and the customized unit. Therefore,

the acceleration accuracy is better in the standard unit than in the customized

unit. However, accelerations more than ±5g can be encountered in some body

motions, which necessitates the use of a sensor unit that can measure large ac-

celerations.
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Usually, inertial sensors have an error on the output. This error can be char-

acterized as a combination of various error components, the most dominant of

which is a bias that varies according to the internal temperature of the sensor.

To compensate for these errors, the manufacturer provides two output modes for

the kinematic data output. In the uncalibrated mode, the raw data are directly

provided by the internal sensors. In the calibrated mode, the sensor model de-

veloped by the manufacturer is also integrated in the output. In the technical

manual [54], the basic model for the calibrated mode is given as

s = K−1
T (r− b) (3.1)

where s is the sensor output, r is the 16-bit A/D converter reading, b is the

bias vector, and KT is a matrix given by KT = GM + O. Here, G is the

gain matrix and provides the conversion from the A/D output to the physically

measured quantity, M is the misalignment matrix and compensates for possible

misalignments while the sensors are mounted in the housing, and O represents

higher-order models. The manufacturer does not provide information on how the

higher-order models are handled.

In this chapter, we provide our error characterization procedure and results on

one of the standard units (henceforth referred to as MTx-49A53G25) and one of

the customized units (henceforth referred to as MTx-49A83G25). The matrices

and the bias vector as given by the manufacturer are presented in Table 3.1 for

both units. However, in our experiments, we observed that this calibration by the

company is insufficient and further error modeling is necessary. The experiments

that we perform are explained in the next section.

As stated before, the primary application area of MTx sensors is orientation

measurement. These sensors provide drift-free orientation data in three different

user-selectable modes: Euler angles, direction cosine matrix, and quaternions.

The built-in Kalman filter fuses gyroscope, acceleration, and magnetic field data

to estimate the orientation. The orientation output gives the orientation of the

sensor coordinate frame with respect to the local navigation frame, whose x, y,

and z axes coincide with the local North, West, and Up directions, respectively.
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Table 3.1: Alignment matrices, gain matrices, and bias vectors for the (a) MTx-
49A53G25 and (b) MTx-49A83G25 units.

tri-axial gyroscope tri-axial accelerometer tri-axial magnetometer

G =

 1117 0 0
0 1132 0
0 0 1125

 G =

 408.5 0 0
0 412.4 0
0 0 411.4

 G =

 7617 0 0
0 7606 0
0 0 7604



M =

 1.00 −0.01 0.01
0.00 1.00 −0.01
0.00 −0.01 1.00

 M =

 1.00 0.00 0.00
0.00 1.00 0.00
−0.01 0.00 1.00

 M =

 1.00 0.01 −0.05
−0.01 1.00 0.03
−0.06 0.02 1.00



b =

 32670
32597
32835

 b =

 33138
33085
32480

 b =

 33860
32070
31611


(a)

tri-axial gyroscope tri-axial accelerometer tri-axial magnetometer

G =

 1104 0 0
0 1116 0
0 0 1097

 G =

 134.2 0 0
0 135 0
0 0 134

 G =

 7417 0 0
0 7649 0
0 0 7381



M =

 1.00 −0.01 0.00
0.00 1.00 −0.01
0.00 0.00 1.00

 M =

 1.00 0.00 0.00
0.00 1.00 0.00
−0.01 −0.01 1.00

 M =

 1.00 0.00 −0.05
0.01 1.00 0.03
−0.04 0.01 1.00



b =

 32573
33169
33437

 b =

 33100
33452
32632

 b =

 33856
31961
31727


(b)

3.2 Experiments

In our experiments, the sensors are left on a table for 12 hours and the data are

recorded. Ideally, gyroscopes and x- and y-axis accelerometers should give zero

output, z-axis accelerometer should output the gravitational acceleration g, and

the magnetometers should give out a constant value representing the magnetic

field of the Earth in the corresponding direction. However, this is not the case

because of many factors. For example, the table may not be perfectly horizontal,

i.e., not exactly perpendicular to the local gravity direction. Because of this

fact, the effect of gravity is sensed by all three accelerometers. The second most

important cause of noise is the temperature. The bias values of accelerometers

and gyroscopes change according to the temperature. The MTx sensor unit has

a built-in temperature sensor, and temperature data are also recorded for 12
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hours. Quantization, stochastic noise, and round-off errors are other factors that

affect the output. The data are recorded in the “calibrated output mode” of the

MTx unit, for which the manufacturing company reports that errors in alignment

and errors due to temperature change are compensated. The data without any

processing are presented in Figures 3.2 and 3.3 for the standard and customized

units, respectively. Looking at the figures, it can be observed that the built-in

temperature compensation is insufficient for the accelerometers (Figure 3.3(g)).

That is, there is a time-varying bias that depends on the internal temperature.

Although invisible to the naked eye, this is also true for gyroscopes. It can be

observed when the gyroscope signal is passed through a moving average filter. The

gyroscope signal at the output of a 5-min long moving average filter is plotted in

Figure 3.4.

Our experiments reveal that the biases of accelerometers and gyroscopes are

time varying. To obtain orientation and position information, gyroscope signals

have to be integrated once and the accelerometer signals have to be integrated

twice after being transformed to the navigation coordinate frame. Thus, even the

smallest bias in the sensor reading will cause unbounded drift in orientation and

position. It is a well-known fact that a constant bias in accelerometers causes

parabolic error growth in the position. Similarly, a constant bias in the gyroscope

signals causes linear error growth in the orientation, and cubic error growth in

the position due to integration after coordinate transformations [55]. Thus, the

error characteristics of the sensors should be modeled for navigation applications.

3.3 Eliminating Transients

In order to determine the error characteristics, the usual practice is to remove

the trends in the sensor data first [56]. In the literature, it is quite common to

fit an exponential model given by b(t) = c1e
−t/T + c2 to remove the transients

(trends) in inertial sensor data [46]. For accelerometers, other models have been

suggested, such as square root functions (b(t) = c1
√
t+ c2) and logarithmic func-

tions (b(t) = c1 log (c2 + c3t)) [58]. In our studies, we fit the exponential model
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Figure 3.2: Calibrated mode data obtained from the MTx-49A53G25 unit,
recorded for 12 hours. (a) Temperature, (b)-(d): x, y, z gyroscopes, (e)-(g): x, y, z
accelerometers, (h)-(j): x, y, z magnetometers.
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Figure 3.3: Calibrated mode data obtained from MTx-49A83G25 unit, recorded
for 12 hours. (a) Temperature, (b)-(d): x, y, z gyroscopes, (e)-(g): x, y, z ac-
celerometers, (h)-(j): x, y, z magnetometers.
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Figure 3.4: Gyroscope signal after applying the moving average filter.

to the gyroscope data. For the accelerometers, we fit the three models mentioned

above and observed that the exponential function gives better results than the

square root and logarithmic functions. We use the Levenberg-Marquardt algo-

rithm, which is developed for nonlinear curve fitting [59]. Then, the residual

signals are tested with the following whiteness test.

We estimate the autocorrelation function using the following unbiased and

biased estimators:

R̂ss(∆) =
1

Ns − |∆|

Ns−|∆|−1∑
n=0

s[n]s[n+∆] (3.2)

R̃ss(∆) =
1

Ns

Ns−|∆|−1∑
n=0

s[n]s[n+∆] (3.3)

For ideal white noise, these functions should be zero at every point except for

∆ = 0. The method in [60] states that the distribution of these estimates around

the true value can be approximated by a Gaussian distribution with zero mean
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Table 3.2: Fitted parameter values for the MTx-49A53G25 unit.

c1 c2 T
x-gyro –0.001673 –0.00122 7.957
y-gyro –0.001008 –0.00141 0.5752
z-gyro –0.000444 –0.00474 0.3638
x-acc 0.02556 –0.09575 2.637
y-acc 0.003407 –0.0825 6.352
z-acc –0.7081 10.54 3917

and the following standard error:

σ̂R̂ss
(∆) =

√
Ns

Ns − |∆|
R̂ss(0), ∆ ̸= 0 (3.4)

σ̃R̃ss
(∆) =

1√
Ns

R̃ss(0), ∆ ̸= 0 (3.5)

for unbiased and biased estimates, respectively. Therefore, we can calculate the

unbiased and biased estimates and determine whether at least 95.5% of the sam-

ples are inside the ±2σ bounds for both cases.

The exponential model parameters are given in Table 3.2 for the MTx-

49A53G25 unit and in Table 3.3 for the MTx-49A83G25 unit. In the tables,

c1 and c2 are given in rad/s for gyroscopes, and m/s2 for accelerometers. The

time constant T is given in hours.

Table 3.3: Fitted parameter values for the MTx-49A83G25 unit.

c1 c2 T
x-gyro –0.001774 0.00355 2.154
y-gyro –0.000712 0.02039 0.4944
z-gyro 0.001413 –0.00238 1.191
x-acc – – –
y-acc 0.01838 0.06364 0.064
z-acc –0.0224 9.819 7.674

Note that the time constant T for the z-axis accelerometer in Table 3.2 is very

large. This practically means that there is no exponential dependence, and only
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Table 3.4: Percentages of the samples inside ±2σRxx bounds for both MTx units.

MTx-49A53G25 (%) MTx-49A83G25 (%)
x-gyro 97.30 95.19
y-gyro 98.42 97.74
z-gyro 98.35 97.44
x-acc 54.02 5.84
y-acc 92.47 66.90
z-acc 74.68 50.84

the mean is subtracted. Also, the solver could not fit an exponential model to

the x-axis accelerometer in the MTx-49A83G25 unit. This is also confirmed in

Figure 3.3(e), where it can clearly be observed that an exponential model is not

suitable for the data. However, this instability of the bias is observed when the

operating duration is high, which is considered unlikely to occur in our practical

applications. Therefore, we only subtract the mean from this signal in order

to find the residual. The results of the residual whiteness test are presented in

Table 3.4 for both units. As shown in the table, the residuals are white for the

gyroscopes, but correlated noise components exist for the accelerometers.

3.4 Allan Variance Analysis

After the removal of the transients with the exponential model, Allan variances of

the residual signals are calculated to identify the error components in the signals.

Although originally intended for analyzing oscillators [61], this method is widely

used in inertial sensor error modeling [56, 62, 63], in addition to being suggested

as a standard modeling procedure by IEEE [57, 58]. Another option is to use

approaches based on the power spectral density (PSD) [57]. In the literature, au-

toregressive process models [64] and expectation-maximization methods [65] have

also been used to model inertial sensor errors . It is possible to analyze the error

in two separate components, especially for gyroscopes [66]. The first component

is a constant or slowly varying bias that is usually called the bias instability. The

second component is due to high-frequency noise, and is observed as a random
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walk in the integrated gyroscope signals. This component is called the angle

random walk for gyroscopes, and velocity random walk for accelerometers. Most

studies in the literature are focused on estimating the parameters of these two

error components. There are other sources of error such as quantization noise,

random walk, and rate ramp [57], whose corresponding parameters are more dif-

ficult to estimate [56]. In this section, we define the Allan variance, following

a notation similar to [56], and present our results. Basically, in the Allan vari-

ance method, the signal is first partitioned into segments of equal length in time.

This partitioning is done using various segment lengths. Then, each segment is

averaged and the variance is calculated.

Consider the sampled sensor data s = {sk, k = 0, . . . , Ns−1} with a sampling

frequency of τ0. Let tk = kτ0 and define an averaging time τ = mτ0. Then, filter

s with a moving average filter of width m:

s̄k =
1

m

k+m−1∑
i=k

si (3.6)

Then, apply a first-order difference filter of width m to get

Dk =
s̄k+m − s̄k

τ
(3.7)

The Allan variance of s is defined as half the mean square of Dk:

σ2(τ) =
1

2τ 2(Ns − 2m+ 1)

Ns−2m∑
k=0

(s̄k+m − s̄k)
2 (3.8)

Another estimator can be obtained by decimating Dk by m:

σ2(τ) =
1

2τ 2(M − 1)

M−1∑
k=0

(s̄(k+1)m − s̄km)
2 (3.9)

where M = ⌈ Ns

m−1
⌉. The ceiling function ⌈·⌉ maps its argument to the smallest

integer not less than the argument. Both of these estimators are unbiased.

There is a relation between the PSD Ss(f) of a random process and its Allan

variance σ2(τ):

σ2(τ) = 4

∫ ∞

0

Ss(f)
sin4 (πfτ)

(πfτ)2
df (3.10)
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The relation between the PSD and the Allan variance is not one-to-one, and,

in general, not invertible. Thus, the knowledge of the Allan variance of a ran-

dom process does not uniquely identify the spectrum. A necessary and sufficient

condition for two different spectra to have the same Allan variance is given in

[67]. However, as discussed in the same paper, this non-uniqueness of the Allan

variance does not cause a problem for most physical systems.

In the literature, the term “Allan variance” frequently refers to the Allan

standard deviation, σ(τ), which is the square root of the Allan variance defined

above. This is because the Allan variance analysis is usually conducted by plotting

σ(τ) versus τ on a log-log plot. Different sources of error appear with different

slopes in the Allan variance plot, usually in different regions of τ . Thus, various

sources can be easily identified. For example, white noise is dominant for τ values

less than one, whereas random walk is dominant for τ values greater than one.

A sample Allan variance plot is given in Figure 3.5 [57]. The Allan variance and

PSD domain expressions for various contributors to the error are tabulated in

Table 3.5 [57].

Figure 3.5: Sample Allan variance plot (adopted from [57]).

The Allan variance plots for the MTx-49A53G25 unit and MTx-49A83G25



CHAPTER 3. ERROR CHARACTERIZATION 53

Table 3.5: PSD and Allan variance representations of various noise types.

noise type PSD (Ss(f)) Allan variance (σ2(τ))

quantization (2πf)
2
σ2
Q

3σ2
Q

τ

rate random walk
(

σK

2πf

)2
σ2
Kτ
3

bias instability B2

2πf
2B2 ln 2

π

white σ2
N

σ2
N

τ

sinusoidal
Ω2

0

2 δ (f − f0) Ω2
0

(
sin2 πf0τ

πf0τ

)2
correlated qcTc

1+(2πfTc)
2

q2cT
2
c

τ

[
1− Tc

2τ

(
3− 4e−

τ
Tc + e−

2τ
Tc

)]

unit are given in Figure 3.6((a), (c)) and Figure 3.6((b), (d)), respectively. As

observed in the figures, the curves have a slope of −1/2 for small values of τ .

This corresponds to white noise in the gyroscope or accelerometer data and is the

angle random walk (for gyroscopes) and velocity random walk (for accelerometers)

mentioned above. In the PSD domain, this noise is represented by

Ss(f) = σ2
N (3.11)

where σN is the associated random walk coefficient. The corresponding Allan

variance is

σ2(τ) =
σ2
N

τ
(3.12)

which has a slope of −1/2 in the log-log Allan standard deviation plot. The cor-

responding coefficient σN can be found from the plots as the value corresponding

to τ = 1 [57]. The random walk coefficients for the sensors are given in Table 3.6.

The units given in the table are the units usually used by inertial sensor

manufacturers. With proper conversion, this corresponds to the power of the

white noise in the PSD plot. The conversion formulas are:

1 ◦/
√
h =

π

10800
rad/s/

√
Hz = 0.00029 rad/s/

√
Hz

1 m/s/
√
h =

1

60
m/s2/

√
Hz = 0.01667 m/s2/

√
Hz

In the Allan variance plot, white noise in the signal dominates the other errors

for small τ values. As the length τ of the averaging interval increases, the variance



CHAPTER 3. ERROR CHARACTERIZATION 54

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
−1

10
0

10
1

10
2

σ(
τ)

 (
° /h

)

τ (s)

 

 

x−gyro
y−gyro
z−gyro

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
−1

10
0

10
1

10
2

σ(
τ)

 (
° /h

)

τ (s)

 

 

x−gyro
y−gyro
z−gyro

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
−1

10
0

10
1

10
2

σ(
τ)

 (
m

/s
/h

)

τ (s)

 

 

x−acc
y−acc
z−acc

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
−1

10
0

10
1

10
2

σ(
τ)

 (
m

/s
/h

)

τ (s)

 

 

x−acc
y−acc
z−acc

(a) (b)

(c) (d)

Figure 3.6: Allan variance plots for x, y, z gyroscopes of the (a) MTx-49A53G25
unit, (b) MTx-49A83G25 unit, and x, y, z accelerometers of (c) MTx-49A53G25
unit, (b) MTx-49A83G25 unit.

decreases. However, after a certain τ value, the variance begins to increase due

to the random walk in the sensor output. This is referred to as rate random

walk for gyroscopes and acceleration random walk for accelerometers. However,

at larger τ values, other sources of error are also observed, and also the reliability

of the Allan variance estimate decreases because fewer terms are included in the

summations, in Equation (3.8) or (3.9) . Because of these facts, it is difficult to

estimate the noise parameters in the large τ region [56].

The minimum value on the Allan variance plot is defined as bias instability.
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Table 3.6: Velocity/angle random walk coefficients obtained from Allan variance
plots. The units are (◦/

√
h) for gyroscopes and (m/s/

√
h) for accelerometers.

MTx-49A53G25 MTx-49A83G25
x-gyro 5.2770 4.6306
y-gyro 4.6530 5.1360
z-gyro 4.3411 4.5241
x-acc 0.0916 0.1277
y-acc 0.0888 0.1126
z-acc 0.1019 0.1249

This is the best stability that can be achieved with a fully modeled sensor and

active bias estimation [63]. In [68], the bias instability is estimated using the

same way for MTx sensors. The PSD associated with this noise is

Ss(f) =

{
B2

2πf
f ≤ f0

0 f > f0
(3.13)

and the corresponding Allan variance can be approximated as

σ2(τ) =
2B2 ln 2

π
(3.14)

where B is the bias instability coefficient. Table 3.7 gives the values of the bias

instability coefficient B for the sensors considered in this study.

Table 3.7: Bias instability values obtained from Allan variance plots. The units
are (mg) for accelerometers and (◦/h) for gyroscopes.

MTx-49A53G25 MTx-49A83G25
x-gyro 0.8854 (655 s) 0.8173 (327 s)
y-gyro 0.5822 (1311 s) 0.7902 (655 s)
z-gyro 0.6956 (327 s) 0.3935 (1311 s)
x-acc 0.0414 (81 s) 0.2122 (10 s)
y-acc 0.0363 (327 s) 0.0425 (1311 s)
z-acc 0.0402 (163 s) 0.1182 (40 s)

Note that the bias instability of the x-axis accelerometer in the MTx-

49A83G25 unit is significantly larger than the bias instability values of other
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accelerometers. This can also be observed in Figure 3.3(e), where the bias of the

accelerometer changes at about 8 hours. For the gyroscopes, the signals are com-

posed of uncorrelated noise, which means that biases are successfully removed.

Thus, the bias instability values for the gyroscopes in Table 3.7 are quite small.

3.5 Magnetometer Characterization

Unlike gyroscopes and accelerometers, the temperature-dependent bias is not

observed for the magnetometers in our experiments. Therefore, the curve fitting

procedure above is not applied to the magnetometer signals. When placed on

a stationary table, the magnetometer outputs are not expected to be zero; they

are expected to output the Earth magnetic field strength in the corresponding

direction. Thus, we only subtract the mean value in order to obtain the residuals

of magnetometer signals. The Allan variance plots of these residuals are given in

Figure 3.7 for MTx-49A53G25 and MTx-49A83G25 units, respectively.

As observed in Figure 3.7, there is high correlation in the magnetometer resid-

uals and it is not possible to identify distinct regions in the Allan variance plot.

We also present the autocorrelation and corresponding PSD plots in Figure 3.7.

The PSD of the signals is estimated using the Welch method [69], which is used

for signals of long duration.

Observing the figures, it can be concluded that white noise term is dominant

in the high-frequency region. However, low-frequency correlated noise also exists

in the residuals. In addition to these components, it is clear from the figures that

there is a periodic component at 5 Hz and a less dominant component at 10 Hz.

This may be caused by a magnetic disturbance in the laboratory environment,

either with a fundamental frequency of 5 Hz, or with a frequency higher than

the sampling rate that appears as 5 Hz due to aliasing. In any case, the power

related to the noise components in the magnetometer signal is rather low, as

compared to the inertial sensors. Furthermore, the magnetometer signals are not

integrated in the localization process, but used directly. The errors caused by
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Figure 3.7: Allan variance, autocorrelation, and PSD plots of magnetometer resid-
uals for the MTx-49A53G25 (left column), and MTx-49A83G25 (right column)
units.
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the magnetometer noise are expected to be low compared to the inertial sensor

errors that grow with time. Therefore, we do not believe that it is necessary to

go on further in modeling the correlated noise components.



Chapter 4

Human Activity Recognition

Using Body-Worn

Inertial/Magnetic Sensors

4.1 Introduction

In this chapter, we explore the application of inertial sensing to human activity

monitoring, recognition, and classification through body-worn sensors [5, 8, 70,

71, 72, 73]. This has a broad range of potential applications in biomechanics [73,

74], ergonomics [75], remote monitoring of the physically or mentally disabled,

the elderly, and children [76], detecting and classifying falls [77, 78, 79], medical

diagnosis and treatment [80], home-based rehabilitation and physical therapy [81],

sports science [82], ballet and other forms of dance [83], animation and film

making, computer games [84, 85], professional simulators, virtual reality, and

stabilization of equipment through motion compensation.

Early studies in activity recognition employed vision-based systems with single

or multiple video cameras, and this remains to be the most common approach to

date [86, 87, 88, 89]. For example, although the gesture recognition problem has

been well studied in computer vision [90], much less research has been done in

59
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this area with body-worn inertial sensors [91, 92]. The use of camera systems may

be acceptable and practical when activities are confined to a limited area such as

certain parts of a house or office environment and when the environment is well lit.

However, when the activity involves going from place to place, camera systems are

much less convenient. Furthermore, camera systems interfere considerably with

privacy, may supply additional, unneeded information, and cause the subjects to

act unnaturally.

Miniature inertial sensors can be flexibly used inside or behind objects without

occlusion effects. This is a major advantage over visual motion-capture systems

that require a free line of sight. When a single camera is used, the 3-D scene

is projected onto a 2-D one, with significant information loss. Points of interest

are frequently pre-identified by placing special, visible markers such as light-

emitting diodes (LEDs) on the human body. Occlusion or shadowing of points

of interest (by human body parts or objects in the surroundings) is circumvented

by positioning multiple camera systems in the environment and using several

2-D projections to reconstruct the 3-D scene. This requires each camera to be

separately calibrated. Another major disadvantage of using camera systems is

that the cost of processing and storing images and video recordings is much higher

than those of 1-D signals. 1-D signals acquired from multiple axes of inertial

sensors can directly provide the required information in 3-D. Unlike high-end

commercial inertial sensors that are calibrated by the manufacturer, in low-cost

applications that utilize these devices, calibration is still a necessary procedure.

Accelerometer-based systems are more commonly adopted than gyros because

accelerometers are easily calibrated by gravity, whereas gyro calibration requires

an accurate variable-speed turntable and is more complicated.

The use of camera systems and inertial sensors are two inherently different

approaches that are by no means exclusive and can be used in a complementary

fashion in many situations. In a number of studies, video cameras are used only

as a reference for comparison with inertial sensor data [93, 94, 95, 96, 97, 98]. In

other studies, data from these two sensing modalities are integrated or fused [99,

100]. The fusion of visual and inertial data has attracted considerable attention

recently because of its robust performance and potentially wide applications [101,
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102]. Fusing the data of inertial sensors and magnetometers is also reported in

the literature [96, 103, 104].

Previous work on activity recognition based on body-worn inertial sensors is

fragmented, of limited scope, and mostly unsystematic in nature. Due to the

lack of a common ground among different researchers, results published so far are

difficult to compare, synthesize, and build upon in a manner that allows broad

conclusions to be reached. A unified and systematic treatment of the subject

is desirable; theoretical models need to be developed that will enable studies

designed such that the obtained results can be synthesized into a larger whole.

Most previous studies distinguish between sitting, lying, and standing [76,

93, 94, 95, 98, 105, 106, 107, 108], as these postures are relatively easy to de-

tect using the static component of acceleration. Distinguishing between walking,

and ascending and descending stairs has also been accomplished [105, 106, 108],

although not as successfully as detecting postures. The signal processing and

motion detection techniques employed, and the configuration, number, and type

of sensors differ widely among the studies, from using a single accelerome-

ter [76, 109, 110] to as many as 12 [111] on different parts of the body. Although

gyroscopes can provide valuable rotational information in 3-D, in most studies,

accelerometers are preferred to gyroscopes because of their ease of calibration. To

the best of our knowledge, guidance on finding a suitable configuration, number,

and type of sensors does not exist [105]. Usually, some configuration and some

modality of sensors is chosen without strong justification, and empirical results

are presented. Processing the acquired signals is also often done ad hoc and with

relatively unsophisticated techniques.

In this work, we use miniature inertial sensors and magnetometers positioned

on different parts of the body to classify human activities. The motivation be-

hind investigating activity classification is its potential applications in the many

different areas mentioned above. The main contribution of this study is that un-

like previous studies, we use many redundant sensors to begin with and extract

a variety of features from the sensor signals. Then, we use an unsupervised fea-

ture transformation technique that allows considerable feature reduction through
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automatic selection of the most informative features. As another approach, we

perform feature selection among the large number of features using a greedy

search technique. We provide an extensive and systematic comparison between

various classification techniques used for human activity recognition based on

the same data set. We compare the successful differentiation rates, confusion

matrices, and computational requirements of the techniques.

4.2 Classified Activities and Experimental

Methodology

The 19 activities that are classified using body-worn miniature inertial sensor

units are: sitting (A1), standing (A2), lying on back and on right side (A3 and

A4), ascending and descending stairs (A5 and A6), standing in an elevator still

(A7) and moving around (A8), walking in a parking lot (A9), walking on a tread-

mill with a speed of 4 km/h (in flat and 15◦ inclined positions) (A10 and A11),

running on a treadmill with a speed of 8 km/h (A12), exercising on a stepper

(A13), exercising on a cross trainer (A14), cycling on an exercise bike in hori-

zontal and vertical positions (A15 and A16), rowing (A17), jumping (A18), and

playing basketball (A19).

Five MTx 3-DOF orientation trackers (Figure 3.1) are used, manufactured

by Xsens Technologies [54]. We use two standard units (MTx-49A53G25) worn

on the arms (wrists) and three customized units (MTx-49A83G25) worn on the

legs and the chest, as depicted in Figure 4.1. Since leg motions in general may

produce larger accelerations, we use customized units with higher accelerometer

ranges on the legs.

Each activity listed above is performed by eight different subjects (4 female,

4 male, between the ages 20 and 30) for 5 min. The profiles of the subjects are

given in Table 4.1. The subjects are asked to perform the activities in their own

style and were not restricted on how the activities should be performed. For this

reason, there are inter-subject variations in the speeds and amplitudes of some
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Figure 4.1: Positioning of Xsens sensor modules on the body.

Table 4.1: Subjects that performed the experiments and their profiles.

subject no. gender age height (cm) weight (kg)
S1 f 25 170 63
S2 f 20 162 54
S3 m 30 185 78
S4 m 25 182 78
S5 m 26 183 77
S6 f 23 165 50
S7 f 21 167 57
S8 m 24 175 75
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activities. The activities are performed at the Bilkent University Sports Hall, in

the Electrical and Electronics Engineering Building, and in a flat outdoor area on

campus. Sensor units are calibrated to acquire data at 25 Hz sampling frequency.

The 5-min signals are divided into 5-s segments, from which certain features are

extracted. In this way, 480 (= 60 × 8) signal segments are obtained for each

activity.

4.3 Feature Extraction

After acquiring the signals as described above, we obtain a discrete-time sequence

of Ns elements that can be represented as an Ns × 1 vector s = [s1 s2 . . . sNs ]
T .

For the 5-s time windows and the 25-Hz sampling rate, Ns = 125. The initial

set of features we use before feature reduction are the minimum and maximum

values, the mean value, variance, skewness, kurtosis, autocorrelation sequence,

and the peaks of the discrete Fourier transform (DFT) of s with the corresponding

frequencies. These are calculated as follows:

mean(s) = µs = E{s} =
1

Ns

Ns∑
i=1

si

variance(s) = σ2 = E{(s− µs)
2} =

1

Ns

Ns∑
i=1

(si − µs)
2

skewness(s) =
E{(s− µs)

3}
σ3

=
1

Nsσ3

Ns∑
i=1

(si − µs)
3

kurtosis(s) =
E{(s− µs)

4}
σ4

=
1

Nsσ4

Ns∑
i=1

(si − µs)
4

autocorrelation : Rss(∆) =
1

Ns −∆

Ns−∆−1∑
i=0

(si − µs) (si−∆ − µs)

DFT : SDFT(k) =
Ns−1∑
i=0

si e
− j2πki

Ns (4.1)

In these equations, si is the ith element of the discrete-time sequence s, E{·}
denotes the expectation operator, µs and σ are the mean and the standard de-

viation of s, Rss(∆) is the unbiased autocorrelation sequence of s, and SDFT(k)
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is the kth element of the 1-D Ns-point DFT. In calculating the first five features

above, it is assumed that the signal segments are the realizations of an ergodic

process so that ensemble averages are replaced with time averages. Apart from

those listed above, we have also considered using features such as the total energy

of the signal, cross-correlation coefficients of two signals, and the discrete cosine

transform coefficients of the signal.

Since there are five sensor units (MTx), each with three tri-axial devices, a

total of nine signals are recorded from every sensor unit. Different signal repre-

sentations, such as the time-domain signal, its autocorrelation function, and its

DFT for two selected activities are given in Figure 4.2. In parts (a) and (c) of

the figure, the quasi-periodic nature of the walking signal can be observed.

When a feature such as the mean value of a signal is calculated, 45 (=

9 axes× 5 units) different values are available. These values from the five sensor

units are placed in the feature vectors in the order of right arm, left arm, right

leg, torso, and left leg. For each one of these sensor locations, nine values for

each feature are calculated and recorded in the following order: the x, y, z axes’

acceleration, the x, y, z axes’ rate of turn, and the x, y, z axes’ Earth’s magnetic

field. In constructing the feature vectors, the above procedure is followed for

the minimum and maximum values, the mean, skewness, and kurtosis. Thus,

225 (= 45 axes×5 features) elements of the feature vectors are obtained by using

the above procedure.

After taking the DFT of each 5-s signal, the maximum five Fourier peaks are

selected so that a total of 225 (= 9 axes × 5 units × 5 peaks) Fourier peaks are

obtained for each segment. Each group of 45 peaks is placed in the order of right

arm, left arm, right leg, torso, and left leg, as above. The 225 frequency values

that correspond to these Fourier peaks are placed after the Fourier peaks in the

same order.

Eleven autocorrelation samples are placed in the feature vectors for each axis

of each sensor, following the order given above. Since there are 45 distinct sensor

signals, 495 (= 45 axes× 11 samples) autocorrelation samples are placed in each

feature vector. The first sample of the autocorrelation function (the variance)
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Figure 4.2: (a) and (b): Time-domain signals for walking and basketball, respec-
tively; z axis acceleration of the right (solid lines) and left arm (dashed lines) are
given; (c) and (d): autocorrelation functions of the signals in (a) and (b); (e) and
(f): 125-point DFT of the signals in (a) and (b), respectively.
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and every fifth sample up to the fiftieth are placed in the feature vectors for each

signal.

As a result of the above feature extraction process, a total of 1, 170 (= 225 +

225+ 225+ 495) features are obtained for each of the 5-s signal segments so that

the dimensions of the resulting feature vectors are 1, 170 × 1. All features are

normalized to the interval [0, 1] so as to be used for classification.

4.4 Pattern Recognition Methodology

4.4.1 Feature Reduction and Selection

When the number of features used for classification is large, it is often required

to use a reduced feature set. This is because of the well-known “curse of di-

mensionality,” which states that the number of samples required for an accurate

estimation of the probability density function of a class grows exponentially with

the dimension of the feature space [112]. Thus, various methods are developed to

reduce the number of features in the samples. One class of these methods reduces

the features by using combinations of the existing features, and they are referred

to as feature reduction methods. Another class selects individual features from

the existing feature set, and they are referred to as feature selection methods.

Here, we explain Principal Components Analysis (PCA) as a feature reduction

method and sequential feature selection methods.

4.4.1.1 Principal Components Analysis

The PCA method projects the feature space to a lower-dimensional subspace,

by considering the variance of the data. The eigenvalues and eigenvectors of

the covariance matrix of the data are calculated. Since the covariance matrix

is symmetric and positive semi-definite, the eigenvalues are nonnegative and the

eigenvectors are orthogonal. Sorting the eigenvectors in the descending order of
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corresponding eigenvalues, the sorted eigenvectors represent the principal direc-

tions in the feature space in which the variance of the data is the largest. The

eigenvectors with comparably small eigenvalues are discarded, and the data is

projected to the subspace spanned by the first few eigenvectors.

4.4.1.2 Feature Selection

As opposed to most feature reduction methods, feature selection methods usu-

ally make use of physically motivated features rather than using combinations of

features. We consider two greedy search algorithms, namely sequential forward

and backward feature selection methods.

Sequential forward feature selection (SFFS) method starts with the empty

feature set, then adds features one at a time to the current feature set such that

the classification performance is maximized. A more detailed description of the

method can be found in [113].

Sequential backward feature selection (SBFS) method starts with the full

set of features, and removes features one at a time from the current feature set

such that the classification performance is maximized [113].

4.4.2 Pattern Classifiers

In this section, we describe the classification techniques used in this study.

4.4.2.1 Bayesian Decision Making (BDM)

In BDM, class conditional probability density functions (CCPDFs) are estimated

for each class. In this study, the CCPDFs are assumed to have a multi-variate

Gaussian parametric form, and the mean vector and the covariance matrix of the

CCPDF for each class are estimated using maximum likelihood estimators on the

training vectors. It also assumed that the prior probabilities are equal. For a
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given test vector x, the maximum a posteriori (MAP) decision rule is used for

classification [113].

4.4.2.2 Rule-Based Algorithm (RBA)

A rule-based algorithm or a decision tree can be considered as a sequential pro-

cedure that classifies given inputs. An RBA follows predefined rules at each node

of the tree and makes binary decisions based on these rules. Rules correspond

to conditions such as “is feature fi ≤ ηi?,” where η is the threshold value for

a given feature and i = 1, 2, . . . ,M, with M being the total number of features

used [114].

As the information necessary to differentiate between the activities is com-

pletely embodied in the decision rules, the RBA has the advantage of not requiring

the storage of any reference feature vectors. The main difficulty is in designing

the rules and making them independent of absolute quantities so that they will

be more robust and generally applicable.

In this study, we automatically generate a binary decision tree based on the

training data using the CART algorithm [115]. Given a set of training vectors

along with their class labels, a binary tree, and a decision rule for each node of the

tree, each node corresponds to a particular subset of the training vectors where

each element of that subset satisfies the conditions imposed by the ancestors of

that node. Thus, a decision at a node splits the corresponding subset into two:

those that satisfy the condition and those that do not. Naturally, the ideal split is

expected to isolate a class from others at each decision node. Since this is not the

case in practice, a decision rule is found by searching among all possible decisions

that minimize the impurity of that node. We use entropy as a measure of impurity,

and the class frequencies at each node to estimate the entropy [115]. Test vectors

are then used to evaluate the classification performance of the decision tree.
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4.4.2.3 Least Squares Method (LSM)

In LSM, the average training vector for each class is calculated as a representative

for that particular class. Each test vector is compared with the average training

vector (instead of each individual reference vector) as follows:

D2
i =

Nf∑
n=1

(fn − ein)
2 = (f1 − ei1)

2 + . . .+ (fNf
− eiNf

)2 i = 1, . . . , c (4.2)

The test vector is assigned to the same class as the nearest average reference

vector. In this equation, f = [f1 f2 . . . fNf
]T represents a test feature vector,

e = [ei1 ei2 . . . eiNf
]T represents the average of the reference feature vectors for

each distinct class, and D2
i is the square of the distance between these two vectors.

4.4.2.4 k-Nearest Neighbor (k-NN)

In k-NN, the k nearest neighbors of the vector f in the training set are considered

and the vector f is classified into the same class as the majority of its k nearest

neighbors [113]. In this study, the Euclidean distance measure is used. The k-NN

algorithm is sensitive to the local structure of the data. The selection of the

parameter k, the number of neighbors considered, is a very important issue that

can affect the decision made by the k-NN classifier. Unfortunately, a pre-defined

rule for the selection of the value of k does not exist. In this study, the number

of nearest neighbors k is determined experimentally by maximizing the correct

classification rate over different k values.

4.4.2.5 Dynamic Time Warping (DTW)

Dynamic time warping is an algorithm for measuring the similarity between two

sequences that may vary in time or speed. An optimal match between two given

sequences (e.g., a time series) is found under certain restrictions. The sequences

are “warped” nonlinearly in the time dimension to determine a measure of their

similarity independent of certain nonlinear variations in the time dimension. In
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DTW, the aim is to find the least-cost warping path for the tested feature vector

among the stored reference feature vectors [116] where the cost measure is typi-

cally taken as the Euclidean distance between the elements of the feature vectors.

DTW is used mostly in automatic speech recognition to handle different speaking

speeds [116, 117]. Besides speech recognition, DTW has been used in signature

and gait recognition, for ECG signal classification, for fingerprint verification,

for word spotting in handwritten historical documents on electronic media and

machine-printed documents, and for face localization in color images [118, 119].

In this study, DTW is used for classifying feature vectors of different activities

extracted from the signals of miniature inertial sensors.

4.4.2.6 Support Vector Machines (SVM)

The support vector machine classifier is a machine learning technique proposed

early in the 1980s [112, 120, 121]. It has been mostly used in applications such as

object, voice, and handwritten character recognition, and in text classification.

If the feature vectors in the original feature space are not linearly separa-

ble, SVMs pre-process and represent them in a higher-dimensional space where

they can become linearly separable. The dimension of the transformed space

may sometimes be much higher than the original feature space. With a suitable

nonlinear mapping ϕ(.) to a sufficiently high dimension, data from two different

classes can always be made linearly separable, and separated by a hyperplane.

The choice of the nonlinear mapping method depends on the prior information

available to the designer. If information is not available, one might choose to use

polynomials, Gaussians, or other types of basis functions. The dimensionality of

the mapped space can be arbitrarily high, however, in practice, it may be limited

by computational resources. The complexity of SVMs is related to the number of

resulting support vectors rather than the high dimensionality of the transformed

space.

In this study, the SVM method is applied to differentiate feature vectors that

belong to more than two classes (19 classes). Following the one-versus-the-rest
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method, c different binary classifiers are trained, where each classifier recognizes

one of c activity types. A nonlinear classifier with a radial basis function kernel

K(f , fi) = e−ζ|f−fi|2 is used with ζ = 4. A library for SVMs (LIBSVM toolbox) is

used in the MATLAB environment [122].

4.4.2.7 Artificial Neural Networks (ANN)

Multi-layer ANNs consist of an input layer, one or more hidden layers to extract

progressively more meaningful features, and a single output layer, each composed

of a number of units called neurons. The model of each neuron includes a smooth

nonlinearity, called the activation function. Due to the presence of distributed

nonlinearity and a high degree of connectivity, theoretical analysis of ANNs is

difficult. These networks are trained to compute the boundaries of decision re-

gions in the form of connection weights and biases by using training algorithms.

The performance of ANNs is affected by the choice of parameters related to the

network structure, training algorithm, and input signals, as well as by parameter

initialization [123, 124].

In this work, a three-layer ANN is used for classifying human activities. The

input layer has N neurons, equal to the dimension of the feature vectors (30).

The hidden layer has 12 neurons, and the output layer has c neurons, equal to the

number of classes. The number of hidden neurons is determined experimentally.

In the input and hidden layers each, there is an additional neuron with a bias

value of 1. For an input feature vector x ∈ RN , the target output is 1 for the

class that the vector belongs to, and 0 for all other output neurons. The sigmoid

function used as the activation function in the hidden and output layers is given

by g(x) = (1 + e−x)−1.

The output neurons can take continuous values between 0 and 1. Fully con-

nected ANNs are trained with the back-propagation algorithm [123] by presenting

a set of training patterns to the network. The aim is to minimize the average of
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the sum of squared errors over all training vectors:

Eav(w) =
1

2I

I∑
i=1

c∑
k=1

[tik − oik(w)]2 (4.3)

Here, w is the weight vector, tik and oik are the desired and actual output val-

ues for the ith training pattern and the kth output neuron, and I is the total

number of training patterns. When the entire training set is covered, an epoch

is completed. The error between the desired and actual outputs is computed

at the end of each iteration and these errors are averaged at the end of each

epoch (Equation (4.3)). The training process is terminated when a certain preci-

sion goal on the average error is reached or if the specified maximum number of

epochs (5,000) is exceeded, whichever occurs earlier. The latter case occurs very

rarely. The acceptable average error level is set to a value of 0.03. The weights

are initialized randomly with a uniform distribution in the interval [0, 0.2], and

the learning rate is chosen as 0.2.

In the test phase, the test feature vectors are fed forward to the network, the

outputs are compared with the desired outputs, and the error between them is

calculated. The test vector is said to be correctly classified if this error is below

a threshold value of 0.25, determined experimentally.

4.4.3 Statistical Cross-Validation Methods

In many applications of pattern recognition, it is needed to evaluate the perfor-

mances of the designed classifiers. Usual practice is forming separate training

and test sets. The training set is used to design the classifiers, i.e., to estimate

the classifier parameters. Then the test set is used to evaluate the classification

performance.

One approach to this problem is acquiring training and test data separately.

In our case of human activity recognition, this would correspond to acquiring two

sets of data from all subjects, unavoidably under slightly different conditions, in

order to be used in separate training and test sets.
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The approach followed in this study is using cross-validation methods. In this

approach, all available data are partitioned into training and test sets, and each

sample is expected to be used both for training and for testing. Below, we explain

the cross-validation methods used in this study.

4.4.3.1 Repeated Random Sub-Sampling (RRSS)

In this method, the data are randomly divided into two sets, one to be used for

training and one to be used for testing. Then, the classifiers are trained with

the training set and validated with the test set. Usually this division is repeated

multiple times and the classification results are averaged. Due to the randomness

of the division, some samples may not at all be used for validation in this method.

4.4.3.2 P -fold Cross Validation

In P -fold cross validation, the data are randomly divided into P disjoint sets.

One of these sets is retained for validation, while the remaining P −1 are used to

train the classifiers. This process is repeated P times (the folds), each time using

a different set for validation. The results are then averaged. In this method,

each sample is used exactly once for validation. As a rule of thumb, P is chosen

around 10.

4.4.3.3 Leave-one-out (L1O) Cross Validation

In most pattern recognition applications, L1O cross validation is the same as P -

fold cross validation, with P being equal to the number of samples in the whole

data set. Thus, at each fold, only one sample is used for validation and the

remaining samples are used for training.

In this study, our experiments are conducted with multiple subjects. Thus,

we modify this method as subject-based L1O cross validation. At each fold, the

data obtained from a single subject are retained for validation, and the data from
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remaining subjects are used for training. Therefore, a particular subject’s data

are exactly used once for validation. This method can also be considered as a

variant of P -fold cross validation, with P being equal to the number of subjects,

and the partitioning is not performed randomly but according to the subject from

which the data are acquired.

4.5 Experimental Results

4.5.1 Feature Selection and Reduction

Because the initial set of features is quite large (1,170) and not all features are

equally useful in discriminating between the activities, we investigate different

feature selection and reduction methods [125]. As the first approach, we reduce

the number of features from 1,170 to 30 through PCA. The reduced dimension of

the feature vectors is determined by observing the eigenvalues of the covariance

matrix of the 1, 170×1 feature vectors, sorted in Figure 4.3(a) in descending order.

The 30 eigenvectors corresponding to the largest 30 eigenvalues (Figure 4.3(b))

are used to form the transformation matrix, resulting in 30 × 1 feature vectors.

Although the initial set of 1,170 features do have physical meaning, because of

the matrix transformation involved, the transformed feature vectors cannot be

assigned any physical meaning. Scatter plots of the first five transformed features

are given in Figure 4.4 pairwise. As expected, in the first two plots or so (parts

(a) and (b) of the figure), the features for different classes are better clustered

and more distinct.

4.5.2 Selection of Validation Sets

The classification techniques described in Section 4.4.2 are employed to clas-

sify the 19 different activities using the 30 features selected by PCA. A total

of 9, 120 (= 60 feature vectors × 19 activities × 8 subjects) feature vectors are

available, each containing the 30 reduced features of the 5-s signal segments. In
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Figure 4.3: (a) All eigenvalues (1,170) and (b) the first 50 eigenvalues of the
covariance matrix sorted in descending order.

the training and testing phases of the classification methods, we use the RRSS,

P -fold, and L1O cross-validation techniques. In RRSS, we divide the 480 fea-

ture vectors from each activity type randomly into two sets so that the first set

contains 320 feature vectors (40 from each subject) and the second set contains

160 (20 from each subject). Therefore, two-thirds (6,080) of the 9,120 feature

vectors are used for training and one third (3,040) for testing. This is repeated

10 times and the resulting correct differentiation percentages are averaged. The

disadvantage of this method is that some observations may never be selected in

the testing or the validation phase, whereas others may be selected more than

once. In other words, validation subsets may overlap.

In P -fold cross validation, the 9,120 feature vectors are divided into P = 10

partitions, where the 912 feature vectors in each partition are selected completely

randomly, regardless of the subject or the class they belong to. One of the P

partitions is retained as the validation set for testing, and the remaining P − 1

partitions are used for training. The cross-validation process is then repeated P

times (the folds), where each of the P partitions is used exactly once for validation.

The P results from the folds are then averaged to produce a single estimate. The

random partitioning is repeated 10 times and the average correct differentiation

percentage is reported. The advantage of this validation method over RRSS is

that all feature vectors are used for both training and testing, and each feature
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Figure 4.4: Scatter plots of the first five features selected by PCA.

vector is used for testing exactly once in each of the 10 runs.

Finally, we also used subject-based L1O cross validation, where the 7, 980 (=

60 vectors × 19 activities × 7 subjects) feature vectors of seven of the subjects

are used for training and the 1,140 feature vectors of the remaining subject are

used in turn for validation. This is repeated eight times such that the feature

vector set of each subject is used once as the validation data. The eight correct

classification rates are averaged to produce a single estimate. This is similar to

P -fold cross validation with P being equal to the number of subjects (P = 8),

and where all the feature vectors in the same partition are associated with the

same subject.



CHAPTER 4. HUMAN ACTIVITY RECOGNITION 78

4.5.3 Results

Among the classification techniques we considered and implemented, when RRSS

and P -fold cross validation are used, BDM gives the highest classification rate,

followed by SVM and k-NN. RBA and DTW1 perform the worst in general. In

subject-based L1O cross validation, SVM is the best, followed by k-NN. The

correct classification rates reported for L1O cross validation can be interpreted

as the expected correct classification rates when data from a new subject are

acquired and given as input to the classifiers. The most significant difference in

the performances of the different validation methods is observed for the BDM

method (Table 4.2). The RRSS and P -fold cross validation result in 99% correct

classification rate, suggesting that the data are well represented by a multi-variate

Gaussian distribution. However, the 76% correct classification rate of L1O cross

validation implies that the parameters of the Gaussian, when calculated by ex-

cluding one of the subjects, cannot represent the data of the excluded subject

sufficiently well. Thus, if one is to classify the activities of a new test subject

whose training data are not available to the classifiers, SVM, k-NN, or LSM

methods could be used.

Table 4.2: Correct differentiation rates for all classification methods and three
cross-validation techniques. The results of the RRSS and P -fold cross-validation
techniques are calculated over 10 runs, whereas those of L1O are over a single
run.

correct differentiation rate (%)
± one standard deviation

method RRSS P -fold L1O

BDM 99.1 ±0.12 99.2 ±0.02 75.8
RBA 81.0 ±1.52 84.5 ±0.44 53.6
LSM 89.4 ±0.75 89.6 ±0.10 85.3
k-NN (k = 7) 98.2 ±0.12 98.7 ±0.07 86.9
DTW1 82.6 ±1.36 83.2 ±0.26 80.4
DTW2 98.5 ±0.18 98.5 ±0.08 85.2
SVM 98.6 ±0.12 98.8 ±0.03 87.6
ANN 86.9 ±3.31 96.2 ±0.19 74.3
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We chose to employ the P -fold cross-validation technique in reporting the

results presented in Tables 4.3–4.9. Looking at the confusion matrices of the

different techniques, it can be observed that A7 and A8 are the activities most

confused with each other. This is because both of these activities are performed in

the elevator and the signals recorded from these activities have similar segments.

Therefore, confusion at the classification stage becomes inevitable. A2 and A7,

A13 and A14, as well as A9, A10, A11, are also confused from time to time for

similar reasons. Two activities that are almost never confused are A12 and A17.

The confusion matrices for BDM and RBA are provided in Tables 4.3 and 4.4.

With these methods, correct differentiation rates of 99.2% and 84.5% are, respec-

tively, achieved. The features used in the RBA correspond to the 30 features

selected by PCA and the rules change at every training cycle.

In the LSM approach, test vectors are compared with the average of the

reference vectors calculated for each of the 19 activities. The confusion matrix

for this method is provided in Table 4.5. The overall successful differentiation

rate of LSM is 89.6%.

Performance of the k-NN method changes for different values of k. A value of

k = 7 gives the best results, therefore the confusion matrix of the k-NN algorithm

is provided for k = 7 in Table 4.6, and a successful differentiation rate of 98.7%

is achieved.

We have implemented the DTW algorithm in two different ways: In the first

(DTW1), the average reference feature vector of each activity is used for distance

comparison. The confusion matrix for DTW1 is presented in Table 4.7, and a

correct differentiation rate of 83.2% is achieved. As a second approach (DTW2),

DTW distances are calculated between the test vector and each of the 8, 208 (=

9, 120−912) reference vectors from other classes. The class of the nearest reference

vector is assigned as the class of the test vector. The success rate of DTW2 is

98.5% and the corresponding confusion matrix is given in Table 4.8.

In SVM, following the one-versus-the-rest method, each type of activity is

assumed as the first class and the remaining 18 activity types are grouped into the
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second class. With P -fold cross validation, 19 different SVM models are created

for classifying the vectors in each partition, resulting in a total of 190 SVM

models. The number of correctly and incorrectly classified feature vectors for

each activity type is tabulated in Table 4.9(a). The overall correct classification

rate of the SVM method is calculated as 98.8%.

For ANN, since the network classifies some samples as belonging to none of

the classes and output neurons take continuous values between 0 and 1, it is not

possible to form a confusion matrix. The number of correctly and incorrectly

classified feature vectors with P -fold cross validation is given in Table 4.9(b).

The overall correct classification rate of this method is 96.2%. On average, the

network converges in about 400 epochs when P -fold cross validation is used.
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Table 4.9: (a) Number of correctly and incorrectly classified motions out of 480 for
SVMs (P -fold cross validation, 98.8%); (b) same for ANN (P -fold cross validation,
96.2%).

c l a s s i f i e d c l a s s i f i e d
correct incorrect correct incorrect

A1 480 0 A1 471 9
A2 479 1 A2 454 26
A3 478 2 A3 475 5
A4 477 3 A4 478 2
A5 480 0 A5 473 7
A6 478 2 A6 463 17
A7 445 35 A7 421 59

t A8 430 50 t A8 388 92
r A9 476 4 r A9 457 23
u A10 479 1 u A10 471 9
e A11 479 1 e A11 464 16

A12 480 0 A12 479 1
A13 477 3 A13 467 13
A14 480 0 A14 470 10
A15 480 0 A15 475 5
A16 479 1 A16 472 8
A17 480 0 A17 479 1
A18 480 0 A18 478 2
A19 473 7 A19 461 19

(a) (b)

As an alternative to PCA, we considered using SFFS and SBFS algo-

rithms [113] that use the extracted features themselves instead of linear com-

binations of features. Since SFFS performed better than SBFS in general, here

we report the results of SFFS that adds features one at a time to the selected

feature set such that the classification performance is maximized. This method

is a greedy algorithm for finding the most discriminative features, and is compu-

tationally costly. For this reason, we employ this method only for BDM, LSM,

and k-NN classifiers. The selected features and the corresponding correct classi-

fication rates are presented in order in Table 4.10. The algorithm is run several

times and the run with the most frequently selected features is shown in the ta-

ble. As an example, the scatter plots of the first three selected features are shown
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pairwise in Figure 4.5 for the BDM method.

Table 4.10: First five features selected by SFFS using BDM, LSM, and k-NN (T:
torso, RA: right arm, LA: left arm, RL: right leg, LL: left leg).

BDM
feature loc. sensor %
mean LL x-acc 33.1
DFT pk 5 RL y-mag 57.5
max LL y-mag 74.8
max T x-acc 86.0
mean RL y-acc 92.0

LSM
feature loc. sensor %
min RL x-acc 40.0
DFT pk 3 T x-gyro 59.0
min RA x-acc 70.4
max RL x-acc 76.0
max LL z-acc 79.6

k-NN
feature loc. sensor %
max LL x-mag 47.2
mean RL z-mag 84.9
mean RL y-mag 92.4
max T x-mag 94.7
min RL x-mag 96.0

Based on Table 4.10, it can be concluded that features of magnetometer and

accelerometer signals recorded on the legs are more discriminative in general. Fur-

thermore, time-domain features are selected more often than frequency-domain

features, as also confirmed in a previous study [125]. For the first five features, the

classification rates of the k-NN method are higher than BDM and LSM. However,

when about 10 features are selected, both the BDM and k-NN methods achieve

above 95% correct classification rate. In fact, in most runs, the correct classi-

fication rate is around 99%. We note that since feature selection is performed
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Table 4.11: Correct classification percentages using the first five features obtained
by PCA using BDM, LSM, and k-NN.

no. of features BDM LSM k-NN
1 38.4 36.2 34.9
2 52.7 47.1 56.8
3 75.8 67.0 84.3
4 84.1 73.9 90.5
5 90.0 78.0 94.9
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Figure 4.5: Scatter plots of the first three features selected using BDM and SFFS.

sequentially in SFFS, these features may not be the optimal subsets of all fea-

tures considered together. One should consider all subsets of the total number

of features to determine the optimal subsets with a certain number of features.

Obviously, this is a very time-consuming process.

Table 4.11 gives the results of BDM, LSM, and k-NN classifiers when up to

first five features selected by PCA are used. Comparing with Table 4.10, it can

be observed that SFFS gives better results, especially for the first few selected

features. While the SFFS algorithm tries to maximize the correct classification

rate, PCA captures the features with largest variances in the data by making
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a transformation into principal directions. The difference in performance of the

two feature reduction techniques becomes smaller as more features are added to

the set.

4.5.3.1 Receiver Operating Characteristics

To determine which activities can be distinguished easily, we employ the receiver

operating characteristic (ROC) curves of some of the classifiers [113]. For a spe-

cific activity, we consider the instances belonging to that activity as positive

instances, and all other instances as negative instances. Then, by setting a deci-

sion threshold or criterion for a classifier, the true positive rate (TPR) (the ratio

of the true positives to the total positives) and the false positive rate (FPR) (the

ratio of the false positives to the total negatives) can be calculated. Varying the

decision threshold over an interval, a set of TPRs and the corresponding FPRs

are obtained and plotted as a ROC curve.

Figure 4.6 depicts the ROC curves for BDM, LSM, k-NN, and ANN classifiers

as examples. In BDM and k-NN, the decision threshold is chosen as the posterior

probability. For BDM, the posterior probability is calculated using the Bayes’

rule. For k-NN, it is estimated by the ratio ki+1
k+c

, where k = 7 for our case, c = 19

is the total number of classes, and ki is the number of training vectors that

belong to class i, out of the k nearest neighbors. This gives smoother estimates

than using binary probabilities. In LSM, the decision threshold is chosen as the

distance between a test vector and the average reference vector of each class;

and in ANN, the norm of the difference between the desired and actual outputs.

Since there are 19 activities, the number of positive instances of each class is

much less than the number of negative instances. Consequently, the FPRs are

expected to be low and therefore, we plot the FPR in the logarithmic scale for

better visualization. It can be observed in Figure 4.6 that the sensitivity of BDM

classifier is the highest. A test vector from classes A2, A7, or A8 is less likely

to be correctly classified than a test vector belonging to one of the other classes.

It is also confirmed by the confusion matrices that these are the most confused

activities. For the LSM classifier, the same can be said for A13 and A14, as
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Figure 4.6: ROC curves for (a) BDM, (b) LSM, (c) k-NN, and (d) ANN using
RRSS cross validation. In parts (a) and (c), activities other than A7 and A8 are
all represented by dotted horizontal lines at the top where the TPR equals one.

well as for A9, A10, and A11 where the FPRs for a given TPR are rather high.

Despite this, for a tolerable FPR such as, say, 0.1, the TPR for LSM and ANN

still remains above 0.75.

4.5.3.2 Processing Times

We also compared the classification techniques given above based on their compu-

tational costs. Pre-processing and classification times are calculated with MAT-

LAB version 7.0.4, on a desktop computer with AMD Athlon 64 X2 dual core
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processor at 2.2 GHz and 2.00 GB of RAM, running Microsoft Windows XP Pro-

fessional operating system. Pre-processing/training, storage requirements, and

processing times of the different techniques are tabulated in Table 4.12. The

pre-processing time of BDM is used for estimating the mean vector, covariance

matrix, and the CCPDFs that need to be stored for the test stage. In RBA,

the pre-processing phase involves extracting the rules based on the training data.

Once the rules are available, the vectors need not be stored and any test vector

can be classified using the RBA. In LSM and DTW1, the averages of the training

vectors for each class need to be stored for the test phase. Note that the pre-

processing times of these two methods are exactly equal. For k-NN and DTW2,

all training vectors need to be stored. For SVM, the SVM models constructed in

the training phase need to be stored for the test phase. For ANN, the structure

of the trained network and the connection weights need to be saved for testing.

ANN and SVM require the longest training time and SVM also has considerable

storage requirements. These are followed by RBA, BDM, and LSM (same as

DTW1). The k-NN and DTW2 methods do not require any pre-processing.

The processing times for classifying a single feature vector are given in the

same table. The classification time for ANN is the smallest, followed by LSM,

RBA, BDM, SVM, DTW1, and DTW2 or k-NN methods. The latter two take

the longest amount of classification time because of the nature of the classifiers

and also because a comparison should be made with every training vector.
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4.5.3.3 Sensor Combinations

The performances of the classifiers do not change considerably if one or more of

the sensors fail because of power cut or any other malfunction. In Table 4.13,

we present classification results with a reduced number of sensors. For exam-

ple, using only the sensor on the torso, correct classification rate of 96.6% can

be achieved with BDM. It can also be observed that the sensors on the legs are

more discriminative than the sensors on the arms, with the left leg being more

discriminative for most of the classification methods. Most of the activities per-

formed in this study involve quasi-symmetric movement of the body with respect

to the sagittal plane. That is, left and right sides of the body follow basically the

same movement patterns that are either stationary (sitting, standing), in phase

(jumping, rowing), or out of phase (walking, running, cycling). Exceptions are

basketball and lying on the right side activities. The cycling activities involve

symmetric out-of-phase movement of the legs, but not the arms. The sensor lo-

cations are symmetric as well, thus one can expect redundancy in the information

acquired by the sensors. However, this redundancy can be exploited in case of

the failure of one or more sensors. This can also be observed in Table 4.13. The

correct classification rates using the left and right side sensors are close to each

other, which means that if a sensor on either side fails, its symmetric counterpart

on the other side will compensate for that sensor. The torso sensor does not

have a symmetric counterpart; however, its failure would result in only a slight

decrease in the correct classification rate as can be seen in the table.
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4.5.3.4 Subject Combinations

Among the classification techniques we considered and implemented, when RRSS

and P -fold cross-validation techniques are used, BDM gives the highest classifica-

tion rate, followed by SVM and k-NN. SVM and k-NN methods give the highest

classification rates also with subject-based L1O cross validation, but the perfor-

mance of BDM is not as good. To further compare these three methods, we

calculated the correct classification rates using data from subsets of the subjects.

All possible subject combinations are considered exhaustively, and those that re-

sult in the highest correct classification rates are reported in Tables 4.14 and 4.15,

using P -fold and subject-based L1O cross validation, respectively. Note that for

L1O cross validation (Table 4.15), the results of a single subject cannot be pro-

vided. This is because partitioning in this method is subject-based and requires

the availability of data from at least two subjects.

Table 4.14: Best combinations of the subjects and correct classification rates
using P -fold cross validation.

BDM k-NN SVM
subject no. % subject no. % subject no. %
5 99.0 1 98.9 5 98.5
2,5 99.6 1,2 99.4 1,2 99.4
2,5,6 99.5 1,2,5 99.3 1,2,5 99.4
1,2,4,6 99.5 1,2,5,6 99.1 1,2,5,6 99.3
2,4,5,6,7 99.4 1,2,3,5,6 99.0 1,2,5,6,7 99.1
1,2,3,5,6,7 99.4 1,2,3,4,5,6 98.9 1,2,3,4,5,6 99.0
1,2,3,4,5,6,7 99.2 1,2,3,4,5,6,8 98.8 1,2,3,4,5,6,7 98.9

When P -fold cross validation is used, the performances of all three methods

are comparable (Table 4.14). Using data from more than two subjects causes a

slight decrease in performance which is expected. When L1O cross validation is

used (Table 4.15), the classification rates are lower than those in Table 4.14 and

it can be also observed that k-NN and SVM are superior to BDM, regardless

of the number of subjects used. This means that although data from multiple
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Table 4.15: Best combinations of the subjects and correct classification rates
using subject-based L1O.

BDM k-NN SVM
subject no. % subject no. % subject no. %
1,7 64.5 2,6 87.0 2,6 65.7
1,2,7 73.2 2,4,6 90.2 2,6,7 76.6
1,2,6,7 75.9 2,4,6,7 89.8 1,2,6,7 80.0
1,2,3,6,7 75.6 1,2,4,6,7 89.3 1,2,5,6,7 82.0
1,2,3,5,6,7 76.4 1,2,4,6,7,8 88.6 1,2,4,5,6,7 85.0
2,3,4,5,6,7,8 76.8 1,2,4,5,6,7,8 88.1 1,2,4,5,6,7,8 86.9

subjects can be well-approximated by a multi-variate Gaussian distribution, the

parameters of the distribution, when calculated by excluding one of the subjects,

cannot represent the data of the excluded subject sufficiently well. The perfor-

mance of BDM and SVM tend to increase with increasing number of subjects

(Table 4.15), indicating that these classifiers generalize better as data from more

subjects are included. In the case of BDM, the data may be slowly converging to

a multi-variate Gaussian distribution as the number of subjects is increased. In

k-NN, there is a slight decrease in performance after the addition of the fourth

subject.

4.6 Discussion

Given its very high correct classification rate and relatively small pre-processing

and classification times and storage requirements, it can be concluded that BDM

is superior to the other classification techniques we considered for the given clas-

sification problem. This result supports the idea that the distribution of the

activities in the feature space can be well approximated by multi-variate Gaus-

sian distributions. The low processing and storage requirements of the BDM

method make it a strong candidate for similar classification problems.
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SVM, although very accurate, requires a considerable amount of training time

to construct the SVM models. Its storage requirements and processing time fall

in the middle. The k-NN method is also very accurate, with zero pre-processing

time but its processing time is one of the two largest. For real-time applications,

LSM could also be a suitable choice because it is faster than BDM at the expense

of a 10% lower correct classification rate. The ANN requires considerable training

time but once it is trained and the connection weights are stored, classification

is done very rapidly.

This work can serve as a guideline in designing context-aware wearable systems

that involve recognition of daily activities of an individual. Many context-aware

wearable systems are designed to be used by a single person. This work shows

that for such applications, a simple quadratic classifier such as BDM is sufficient

with almost perfect performance. If such a system is to be used by more than one

person, providing training data from all the users is expected to result in above

95% performance. The values in the P -fold column in Table 4.2 can be interpreted

as the expected correct classification rates of the classifiers for this case. However,

it is evident that if, for some reason, training data from an individual are not

available, the correct classification rates are expected to drop to the values given

in the L1O column in Table 4.2. In this case, one must resort to more complex

classifiers such as k-NN and SVM that require more computational resources.



Chapter 5

Self-Contained Pedestrian Dead

Reckoning Using Body-Worn

Inertial/Magnetic Sensors

5.1 Introduction

Dead reckoning is the process of estimating the current position of a moving entity

using the position estimate (or fix) calculated at previous time instants and the

velocity (or speed) estimate at the current time instant. It can also be used to

predict the future position by projecting the current known position and speed

to a future instant [126]. Since the past position estimates are projected through

time to obtain new estimates in dead reckoning, position errors accumulate over

time. Because of this cumulative error propagation, dead-reckoning estimates

are unreliable if calculated over long periods of time. Hence, dead reckoning is

seldom used alone in practice, and is often combined with other types of position

sensing to improve position accuracy.

Historically, dead reckoning has been used in ship navigation for centuries.

Reference [126] explains its use in ship navigation in detail. It has been used

in air navigation since the beginning of 1900s; a thorough survey appears in

99
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[127] and [128]. A survey on the positioning and navigation methods for vehicles

appears in [129]. Dead reckoning is employed in mobile robotics through the use

of odometry [130] and/or inertial navigation systems.

Inertial navigation systems (INS) [53] can be used for both indoor and out-

door positioning and navigation. Fundamentally, gyroscopes provide angular rate

information, and accelerometers provide velocity rate information. Although the

rate information is reliable over long periods of time, it must be integrated to

provide position, orientation, and velocity estimates. Thus, even very small er-

rors in the rate information provided by inertial sensors cause an unbounded

growth in the error of the integrated measurements. As a consequence, an INS

by itself is characterized by position errors that grow with time and distance,

usually referred to as the “drift error.” One way of overcoming this problem is

to periodically reset inertial sensors with external absolute sensing mechanisms

and to eliminate this accumulated error. Thus, in most cases, data from an INS

must be integrated with absolute location-sensing mechanisms to provide useful

information about position.

An inertial measurement unit (IMU) consists of orthogonally-mounted ac-

celerometers and gyroscopes in three spatial directions. If the IMU is directly

mounted on the moving object, the system is called a strap-down INS [53]. The

IMU gives three acceleration and three angular velocity (or angular rate) out-

puts in the object coordinate frame. A basic block diagram of a strap-down INS

is given in Figure 5.1. In order to estimate the orientation (or attitude) of the

moving object, the gyroscope outputs should be integrated. Then, using the es-

timated orientation, accelerometer outputs should be transformed to the Earth

coordinate frame. The acceleration values in the Earth coordinate frame are in-

tegrated twice to get the position. Because of the integration operations involved

in the position calculation, any error in the sensor outputs accumulates in the

position output, causing a rapid drift in both the gyroscope and accelerometer

outputs. Thus, the reliability of position estimates decreases with time. For ex-

ample, a constant bias in the gyroscope will cause an error in the position that

grows proportional to the cube of time, and a constant bias in the accelerometer

will cause an error that grows proportional to the square of time [55]. For this
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reason, inertial sensors are usually used in conjunction with other sensing systems

that provide absolute external reference information.

Figure 5.1: Strap-down INS integration.

One application of INS is in pedestrian dead reckoning (PDR). PDR sys-

tems are generally used in GPS-denied environments such as inside buildings,

tunnels, underground, or dense forests and around tall buildings in urban areas

where GPS data are not accurate or available. References [131] and [132] provide

brief surveys on PDR systems. Such systems are usually developed for security

personnel and emergency responders [133]. Unlike land vehicles and robots, a

method called “zero velocity update” (ZUPT) enables the stand-alone usage of

INSs on pedestrians, without any external reference sensor. The ZUPT method

exploits the fact that during walking, the velocity of the foot is zero at some

time interval during the stance phase (see Section 5.3.1). If this time interval is

correctly detected, the drift in the velocities calculated in strap-down integration

can be reset to zero and the drift in one step will not be carried over to the

next step. As an alternative, instead of directly resetting the velocities to zero,

this information can be used as a measurement in a Kalman filter [134, 135]. In

[133], the ZUPT method is used to estimate the distance traveled and a high-

grade gyroscope is employed to estimate the orientation. Alternative methods

for orientation estimation also exist in the literature. In [136], a Kalman filter

is used to estimate the orientation. Accelerometers and magnetometers can also

be used interchangeably with gyroscopes depending on whether the body is in

motion or not [137]. Another approach is to use the orientation output of a com-

mercially available sensor module that integrates accelerometer, gyroscope, and



CHAPTER 5. HUMAN LOCALIZATION 102

magnetometer measurements [104]. An extensive survey on orientation estima-

tion methods using body-worn sensors appears in [138]. Heuristic methods that

exploit the usual walking patterns of people can also be applied for drift reduction

[66] and elimination [139] in gyroscopes.

In order to apply the ZUPT method, correct detection of gait events such

as the stepping instants and correct estimation of gait parameters such as stride

length are crucial for many PDR systems. This detection can be performed using

only inertial sensors as in [140]. Zero-velocity detection algorithms using inertial

sensors are compared in [141, 142]. In [143], an external pressure sensor is used

to detect the steps. It is also possible to perform activity recognition with inertial

sensors to detect the stepping instants and estimate the stride length [144, 145].

Integrating external reference sensors with PDR systems is also common in

the literature. In [136, 146], a shoe-mounted inertial/magnetic system is used

together with a quaternion-based Extended Kalman filter (EKF) to estimate

the 3-D path traveled by a walking person. Magnetic sensors are used in the

initialization of the EKF. Reference [147] combines dead reckoning with GPS in

outdoor environments. For indoor environments, WiFi fingerprinting method is

used for localization. Reference [148] uses the GPS data for error correction.

The pedestrian trajectory is estimated using a PDR system and a wireless sensor

network in [131].

Another alternative for integrating external references is map matching. If

a map of the environment is available, this information can be used to provide

drift error correction. In [149], this idea is applied in an outdoor environment,

combined with a heuristic drift elimination procedure described in [139]. In indoor

environments, activity-based map matching can be used [145]. This idea exploits

the fact that the activity context of the pedestrian gives information about the

location. For example, if the pedestrian is ascending stairs, most locations on an

indoor map can be ruled out, improving the position estimate. Here, we follow a

similar approach.

In this study, we perform pedestrian localization using five inertial and mag-

netic sensor units worn on the body. Localization is performed simultaneously
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with activity recognition, where activity recognition cues are used as position

updates in order to correct the drift errors of inertial sensors. Apart from be-

ing inherent in inertial sensors, drift errors and offsets in body-worn systems can

also arise from initial misplacement, occasional slips from the initial position and

orientation during operation, or loose mounting on the body. Even though the

initial errors are expected to be small, they are accumulated and result in larger

errors over long periods of time.

To our knowledge, these issues have not been addressed before in the litera-

ture. We demonstrate that using activity recognition cues and a given map of the

environment, these errors can be reduced considerably and accurate localization

can be achieved without using any external reference sensor. In practice, the pro-

posed method can be used in applications where a map is available and GPS data

is not reliable or not available at all (e.g., underground mines, indoor areas, and

urban outdoor areas with tall buildings). We would like to note that although

here we use activity recognition information to improve localization performance,

the converse is also possible, i.e., localization information and a map can improve

the activity recognition performance. However, in our previous studies, we ob-

served that activity recognition with high accuracy can already be achieved using

proper signal processing and pattern recognition techniques [5].

We consider three different activities in our experiments; namely walking,

standing, and turning. We also consider ascending/descending stairs activity

in a 3-D localization example. We assume that a map of the environment is

available, such that the switches between these activities usually correspond to

multiple locations on the map. For example, in an indoor environment, switch-

ing from walking to turning activity might correspond to the end of a corridor

or to the front of a room, whereas switching from walking to standing activity

might correspond to a location in front of an elevator. Therefore, the switches

between activities correspond to several discrete locations in the environment. If

one can detect the switches between activities correctly, it is possible to use the

corresponding position information in order to correct the drift in the position.
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5.2 Experiments

A total of 11 experiments are performed in this study, in two different environ-

ments. The first set of experiments is performed outdoors on a straight line of

66 m length. The line is divided into four segments of equal length, and the end-

points of each segment are marked with a + or a × sign. The path is illustrated

in Figure 5.2.

Figure 5.2: The path followed in first four experiments (all dimensions in m).

A coordinate system is assigned in this environment such that the line coin-

cides with the x-axis. The origin of the coordinate system is at the leftmost point

of the line. The × marks indicate possible locations to perform the “walking-

to-standing” (WS) activity switch, and the + marks indicate the locations to

perform the “walking-to-turning” (WT) activity switch. Note that the point

(66,0) is marked with both symbols, which means that it is possible to perform

both WS and WT activity switches at this location. In this outdoor environment,

four experiments are performed:

1. start from point (0,0), stop at (16.5,0), stop at (49.5,0), stop at (66,0),

2. start from point (0,0), stop at (16.5,0), turn back at (33,0), stop at (16.5,0),

stop at (0,0),

3. start from point (0,0), stop at (16.5,0), stop at (49.5,0), turn back at (66,0),

stop at (49.5,0), stop at (16.5,0), stop at (0,0),

4. start from point (0,0), stop at (49.5,0), turn back at (66,0), stop at (16.5,0),

stop at (0,0).
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Note that it is not required to stop at every × mark, or turn back at every +

mark, but these marks indicate that there is some nonzero probability that these

events will occur at that location.

The second environment is set up at the sports hall of Bilkent University.

The subjects are required to walk on lines drawn on the floor. The map of this

indoor environment is shown in Figure 5.3. Similar to the first setup, the × marks

indicate possible locations to perform the standing activity. Each corner in the

figure indicates a possible location to perform the turning activity.

Figure 5.3: The path followed in the second set of experiments (all dimensions
in m).

The seven experiments performed in this environment are as follows:

5. walk for three laps on a rectangle of size 24 m × 13 m,
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6. walk for three laps on a rectangle of size 24 m × 13 m, stopping at the

midpoint of the longer side,

7. walk for three laps on a rectangle of size 9 m × 6 m,

8. walk for three laps on a rectangle of size 9 m × 6 m, stopping at the

midpoint of the longer side,

9. walk for three laps on a circle of diameter 3.6 m, stopping each time at the

endpoints of the diameter,

10. walk for one lap on a rectilinear polygon,

11. walk for one lap on a rectilinear polygon, stopping at three different points.

The total path lengths of these experiments are tabulated in Table 5.1.

Table 5.1: Total path lengths of the experiments.

experiment no. path length (m)
1 66
2 66
3 132
4 132
5 222
6 222
7 90
8 90
9 33.9
10 96.2
11 96.2

These 11 experiments are performed by four male and four female subjects,

whose ages, heights, and weights are presented in Table 5.2. The subjects wear

five MTx 3-DOF orientation trackers (Figure 3.1), manufactured by Xsens Tech-

nologies [54].

In addition to the kinematic outputs described in detail in Chapter 3, each

sensor unit also has a built-in Kalman filter that outputs the orientation of the
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Table 5.2: Profiles of the eight subjects.

subject no. gender age height (cm) weight (kg)
S1 f 32 158 45
S2 f 34 161 51
S3 m 25 180 79
S4 f 22 166 47
S5 f 24 178 60
S6 m 33 175 95
S7 m 22 187 75
S8 m 25 182 75

sensor with respect to the global coordinate frame. In the default configuration,

the global coordinate frame has its z-axis pointing upward along the vertical (−g
direction) and x-axis pointing towards the magnetic north. The y-axis completes

the right-handed coordinate system (Figure 5.4). Three orientation output modes

can be used for the output: direction cosine matrix, quaternion, and Euler angles.

In this study, we use the quaternion output mode.

The sensors are placed on five different positions on the subject’s body. Two

of the customized (±18g accelerometer range) sensor units are placed on the

feet, the remaining customized unit is placed on the subject’s chest, and the two

standard (±5g accelerometer range) units are placed on the sides of the knees

(right side of the right knee and left side of the left knee). The customized units

are used on the feet in order to avoid any saturation in the sensor outputs, because

feet accelerations are expected to be larger than knee accelerations (up to ±9g

in our experiments).

Before starting the experiments, an “alignment reset” is performed on the

sensors in order to reset the coordinate frames such that the initial orientation

transformation is the unit operator (that is, the initial orientation output is I3×3

in the direction cosine matrix mode, q = 1 in the quaternion output mode, or zero

Euler angles in the Euler angle output mode). In this case, all orientation outputs

during the experiments are obtained with respect to the initial orientation of the

sensor. The top views of the global and the sensor-fixed coordinate frames before
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Figure 5.4: Top views of global and the sensor-fixed coordinate frames, before
and after the alignment reset operation is performed.

and after the alignment reset are shown in Figure 5.4. Note that before the reset,

the global frame is in the default configuration. After the reset, the global and

the sensor-fixed coordinate frames coincide, and the z-axes are perpendicular to

the horizontal plane.

5.3 Methodology

The MTx units provide raw acceleration, angular velocity, and magnetic field

data, in addition to the orientation data that are calculated by the built-in

Kalman filter. In this section, the steps used for processing these data are ex-

plained. The processing is done in two separate tracks, one of which is for activity

recognition and the other is for localization. The processing for localization is

done in two main steps. In the first step, the trajectories are found using well-

known methods such as ZUPT, mentioned in Section 5.1. In the second step, a

Kalman-filter-like state estimation procedure is employed in order to utilize the

activity recognition cues and improve the results.
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Figure 5.5: Block diagram for the first processing step.

5.3.1 Localization

In this step, we perform the regular strap-down integration procedure, using the

orientation data output from the MTx sensor and zero-velocity updates. A block

diagram that summarizes this step is depicted in Figure 5.5.

As shown in the diagram, calculations for the distance traveled and the head-

ing are performed separately. To find the heading, it is possible to use the orien-

tation output of the MTx unit either on the chest or on the feet. We use the chest

sensor output directly. This unit is selected because during walking, the chest is

a relatively stable reference to measure the person’s heading as opposed to the

feet. That is, the signals on the chest are less oscillatory than the signals acquired

from other locations. The orientation output mode is set as the quaternion out-

put mode to avoid the occurrence of any singularities possible in the Euler angle

mode, even though this is unlikely for the chest. The chest sensor coordinate

frame is reset to another coordinate frame at the beginning of the experiments.

This reset operation is a facility of the sensor software, and after the reset, the

z-axis points upwards, the x-axis points to the initial walking direction and the y
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axis is assigned such that the coordinate frame is right-handed. In other words,

the reset ensures that the yaw angle is initially set to zero, and is measured with

respect to the vertical axis during the motion. Then the orientation data are con-

verted to Euler angles (see Appendices A.1 and A.2). In the Euler angle domain,

the yaw angle (ψ) represents the instantaneous heading. Here, it is assumed that

the left and right turns performed by the subject are along the vertical axis.

In order to determine the distance traveled, the sensor signals on either foot

can be used. First, using the orientation output of the sensor unit, the acceler-

ations are transformed from the sensor coordinate frame to the local navigation

coordinate frame. The local navigation coordinate frame is a translated version

of the global frame, and therefore has its z-axis pointing upwards along the ver-

tical, x-axis pointing in the magnetic north direction, and y-axis pointing along

the west direction in order to end up in a right-handed coordinate frame. The

transformation can simply be performed as (see Appendix A.1):

aG = qGS aS q
∗
GS = qGS aG qSG (5.1)

where aG is the acceleration vector in the local navigation frame, aS is the acceler-

ation vector in the sensor coordinate frame, and qGS is the quaternion representing

the orientation of the sensor coordinate frame with respect to the local navigation

frame.

To determine the position from the acceleration signal, the acceleration must

be integrated twice. However, because of this integration procedure, the errors

in the sensor readings are accumulated, causing unbounded drift in the position.

We use the ZUPT method [133] to reduce the drift in position. When a human

is walking, the motion of the leg is quasiperiodic. The collection of these motions

within one period is called the gait cycle. The human gait cycle is roughly divided

into two phases called the stance phase and the swing phase. The stance phase is

defined as the time interval during which the foot is in contact with the ground,

and the swing phase is the time interval during which the foot does not touch

the ground. Stance phase takes approximately 60% of the gait cycle, as shown

in Figure 5.6. During a sub-interval ∆T of the stance phase, the foot velocity

and acceleration are expected to be zero. Thus, the true values of the velocity
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and acceleration are known. If one can successfully detect this sub-interval, the

sensor signals can be reset to zero and the error in one step will not be carried

over the next step.

Figure 5.6: The human gait cycle (figure from
http://www.sms.mavt.ethz.ch/research/projects/prostheses/GaitCycle).

The problem is now converted to successfully detecting the ∆T interval where

the foot velocity is exactly zero. There are a number of detectors used in the

literature for this purpose: acceleration moving variance detector, acceleration

magnitude detector, and angular rate magnitude detector [141]. In most of the

studies, the angular rate magnitude detector outperforms the others. In a recent

study, another detector was proposed that gives slightly better results than the

angular rate magnitude detector [141]. We use the angular velocity magnitude

detector in this study because of its performance and simplicity of implementa-

tion. Using the magnitude of the angular velocity, the following binary signal is

constructed:

Istep(k) =

{
1, |ω(k)| ≤ ΩT

0, |ω(k)| > ΩT

(5.2)

where |ω(k)| =
√
ωx(k)2 + ωy(k)2 + ωz(k)2 and ΩT is a pre-set threshold value.

This signal is constructed separately for the left foot and the right foot sensors.

When this signal is 1, the foot is assumed to be in the stance phase, otherwise it

is assumed to be in the swing phase. To eliminate possible instantaneous 0-1-0

or 1-0-1 switches in this signal, a median filter is applied to the signal. Then,

the velocities and accelerations are set to zero when this signal is 1, and the
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integrations in the block diagram in Figure 5.5 are performed. The resulting

signal represents the distance traveled, and is denoted as d(k).
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Figure 5.7: (a) Original heading signal (dashed blue line) and swing-stance
phase indicator variable (solid red line) superimposed; (b) original heading signal
(dashed blue line) and corrected heading signal (solid red line).

Because of the slight movement of the chest during walking, the heading signal

contains ripples, as shown in blue (dashed line) in Figure 5.7(a). This signal can

be smoothed using the gait phase data obtained using the aforementioned method.

The Istep signal of the right foot is superimposed on this plot in red (solid line) in

Figure 5.7(a). These data are obtained in an experiment where the subject stands

for 5 s, then starts walking along a straight line, then turns 90◦ to the right at

about t = 25 s and continues walking. As it can be observed in the figure, when

a right step is taken (Istep = 0), the chest angle swings slightly to the left, and

vice versa. To remove the ripples, the mean of the heading data between rising

edges of the Istep signal can be calculated and replaced as a corrected heading

signal. This is shown in Figure 5.7(b). In this figure, the original heading data are

shown in blue (dashed line) and the corrected heading is shown in red (solid line).

Obviously, this correction should be made separately for either feet depending on

which foot’s data are used in evaluating d(k), using the Istep indicator for that

foot. In this case, the correction is made using the right foot data. The initial

ripple is not corrected (Figure 5.7(b)) because in this experiment, the subject
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started walking with his/her left foot. The corrected heading data are denoted

as ψ(k) in the rest of this text.

After determining d(k) and ψ(k), the path can be reconstructed using the

simple state model given below:

x(k) = x(k − 1) + ∆d(k − 1) cos (ψ(k − 1)) (5.3)

y(k) = y(k − 1) + ∆d(k − 1) sin (ψ(k − 1))

with initial conditions x(0) and y(0). Here, ∆d(k−1) = d(k)−d(k−1) represents

the distance traveled during the kth time step.

By defining a state vector ξ(k) = [x(k) y(k)]T and an input vector u(k) =

[∆d(k) cosψ(k) ∆d(k) sinψ(k)]T , the equation becomes

ξ(k) = ξ(k − 1) + u(k − 1) (5.4)

with initial condition ξ(0) = [x(0) y(0)]T .

The performance of the above model depends on the performances of distance

and heading determination methods. In our experiments, we observed that both

have errors, which causes the reconstructed path to drift over time. This drift is

naturally amplified as the walking path gets longer. The most dominant cause

of error is the dislocation of the mounted sensors during the experiments, espe-

cially the heading sensor. For example, a slight dislocation of the chest sensor

causes a slight measurement error in the heading, which causes the path to drift

drastically over long periods of walking. This could be caused by attaching the

sensors to loose rather than tight clothing. Magnetic disturbance caused by the

ferromagnetic materials in the environment is another source of error for the mag-

netometers, which directly affects the heading. Accelerometer data can be used

to estimate the inclination angle, but the only external reference available for

determining the heading is the magnetic field data. Furthermore, the thresholds

that we use are constants, i.e., they are not selected specifically according to the

subject in question. Considering the age, height, and weight variations among

the subjects (Table 5.2), such errors are unavoidable. Therefore, we use cues

obtained from activity recognition and perform position updates when such cues

are available, in order to improve the results.
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5.3.2 Activity Recognition

In our earlier work [5], we demonstrated that it is possible to distinguish between

various activities using body-worn inertial and magnetic sensors and provided an

extensive comparison between various classifiers. Simple Bayes classifiers with

Gaussian probability density functions are sufficient to obtain over 95% correct

classification rates if training data from that specific person are available. How-

ever, if such training data are not available to the classifiers, more complex clas-

sifiers such as support vector machines (SVM) can be utilized that have expected

correct classification rates of about 85%. The reader is referred to [5, 71, 73, 150]

for surveys of literature on activity recognition using body-worn sensors.

In this work, we consider a reduced activity set, composed of only walking,

standing, and turning activities. Since these three activities are quite different

from each other, using complex classifiers is not necessary. We use a rule-based

classifier for these three activities, in which the following rules are applied in this

particular order:

1. if the filtered heading value is above a certain threshold, the activity is

classified as turning,

2. if both feet are stationary, then the activity is classified as standing,

3. if the above conditions do not hold, then the activity is classified as walking.

For the first rule, the heading signal is passed through a first-order difference

filter of length 1 s and thresholded. The second rule is realized by performing

an AND operation to the Istep indicator variables (Equation (5.2)) for the left

and the right feet. Then, the time values corresponding to activity switches are

determined and used for position updates, as explained in the next section.
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5.3.3 Simultaneous Localization and Activity Recognition

In this section, we combine the localization results with position updates simul-

taneously obtained from activity recognition cues. We assume that a map of the

environment is available, and some of the switches between recognized activities

correspond to, in general, multiple locations on the map. That is, knowledge of

an activity switch gives information about the possible positions on the map.

We consider two switches of activity (walking-to-standing (WS) and walking-

to-turning (WT)). WS switch corresponds to locations marked with × on the

maps given in Figures 5.2 and 5.3. WT switch corresponds to locations marked

with + in Figure 5.2 and to all the corners in Figure 5.3. However, these locations

are not deterministic; for example, subjects are not expected to turn at the exact

corner location. Hence, locations are represented by Gaussian random vectors

with means µws,i and µwt,j and covariances Pws,i and Pwt,j, corresponding to WS

and WT locations, respectively. Here, i = 1, . . . , NWS and j = 1, . . . , NWT are

the indices of WS and WT switch locations.

In the previous section, we use the state Equation (5.4) in order to predict the

position. To model the uncertainty in the position, consider the state equation

ξ(k) = ξ(k − 1) + u(k − 1) +Rψ(k)w(k) (5.5)

with initial condition ξ(0) modeled as a Gaussian random vector with mean µξ(0)

and covariance matrix Pξ(0). Note that here ξ(k) is a random process and is

different from the deterministic state equation in Equation (5.4). However, we use

the same notation for simplicity. The input u(k) is the same as in Equation (5.4).

In Equation (5.5), Rθ represents rotation on the plane by an arbitrary angle θ:

Rθ =

(
cos θ − sin θ

sin θ cos θ

)
, (5.6)

and w(k) is the process noise modeled as a white Gaussian noise with a diagonal

covariance matrix Q. In Equation (5.5), the noise vector is rotated by ψ(k)

at each time step k. This way, the noise introduced to the system is modeled

such that it is uncorrelated (and independent, since it is Gaussian) in the current
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heading direction and in the perpendicular direction to the heading. If there were

no rotation, the noise would be uncorrelated in the global x and y directions, as

long as the covariance matrix Q is diagonal. We believe that introducing this

rotation matrix is a more realistic assumption for our model than considering

noise in the x and y directions as being uncorrelated.

Suppose that a position update is performed at time k = k1. Until the next

position update, Equation (5.5) can be used to model the position. The prediction

equations using this forward model are given as:

ξ̂f (k|k1) = ξ̂f (k − 1|k1) + u(k − 1) (5.7)

Σf (k|k1) = R∆ψ(k)Σf (k − 1|k1)RT
∆ψ(k) +Rψ(k)QRT

ψ(k) (5.8)

for k > k1, where the subscript f stands for the forward model and ∆ψ(k) =

ψ(k) − ψ(k − 1). The initial conditions for these prediction equations depend

on whether the activity switch at k = k1 was a WS or a WT switch. They are

given as ξ̂f (k1|k1) = µws,i and Σf (k1|k1) = Pws,i if it was a WS switch at the ith

location, or ξ̂f (k1|k1) = µwt,j and Σf (k1|k1) = Pwt,j if it was a WT switch at the

jth location. If no position update was performed up to time k, then k1 = 0 and

ξ̂f (0|0) = µξ(0) and Σf (0|0) = Pξ(0).

When an activity switch is detected at k = k2, we run the same system

backwards in time, up to the previous activity switch and position update at

k = k1. The backward filter equations are:

ξ̂b(k − 1|k2) = ξ̂b(k|k2)− u(k − 1) (5.9)

Σb(k − 1|k2) = R∆ψ(k−1)Σb(k|k2)RT
∆ψ(k−1) +Rψ(k−1)QRT

ψ(k−1) (5.10)

for k1 < k ≤ k2, where the subscript b stands for the backward model and

∆ψ(k−1) = ψ(k−1)−ψ(k). The initial conditions for these prediction equations

again depend on whether the current activity switch at k = k2 is a WS or a WT

switch. The initial conditions are ξ̂b(k2|k2) = µws,i∗ and Σb(k2|k2) = Pws,i∗ if it

is a WS switch or ξ̂b(k2|k2) = µwt,j∗ and Σb(k2|k2) = Pwt,j∗ if it is a WT switch.

The subscripts i∗ and j∗ indicate the closest predefined WS or WT location to

the forward state estimate just before the position update. More precisely,

i∗ = argmin
i

||ξ̂f (k2|k1)− µws,i|| (5.11)
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for a WS switch, and

j∗ = argmin
j

||ξ̂f (k2|k1)− µwt,j|| (5.12)

for a WT switch.

At this point, for each k = k1 +1, . . . , k2 − 1, we have two estimates available

for the position. It can be proved that (see Appendix B) the linear combination

of these two estimates with the minimum covariance is

ξ̂(k|k1, k2) = Σ(k|k1, k2)
[
Σf (k|k1)−1ξ̂f (k|k1) +Σb(k|k2)−1ξ̂b(k|k2)

]
(5.13)

where

Σ(k|k1, k2) =
[
Σf (k|k1)−1 +Σb(k|k2)−1

]−1
(5.14)

is the covariance of the combined estimate.

In practice, we run the forward filter in a causal manner until an activity

switch is detected. When an activity switch is detected at k = k2, the backward

filter is run all the way back to the previous position update at k = k1, and the

position estimates for k = k1+1, . . . , k2−1 are calculated. If there is no previous

position update, then k1 = 0. After the update, the new k1 value is assigned as

k2.

This is illustrated in Figure 5.8, which corresponds to part of experiment 3. In

the experiment, the subject starts from point (0,0) and walks in the +x direction,

which is shown by red (thin, solid) line and represents the ground truth. The

ground truth data are obtained by measuring the distances with a standard tape

measure. The green (dash-dot) line shows the reconstructed path until an activity

switch is detected, which is a WS switch at point (16.5,0). The reconstructed

path is in error, as shown in the figure. The average heading error is about

18◦. Such high heading errors are not frequently observed in our experiments,

however, this experiment is chosen in order to demonstrate the performance of

combining activity recognition cues. After the WS activity switch, the backward

filter should be run all the way back to the previous activity switch. Since there

is no previous activity switch, the backward filter is run to the beginning, k = 0.

This path is shown in magenta (dashed) line. Then, these estimates are combined
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Figure 5.8: Optimal combination (solid blue line) of the forward (dash-dot green
line) and backward (dashed magenta line) estimates. The thin solid red line
shows the true path.

to find the improved estimate, which is shown by the blue (solid) line in the figure.

The reconstruction almost coincides with the ground truth after the update, as

confirmed by the figure.

The procedure stated above is applied to 11 experiments performed by eight

subjects. The results are presented in the next section.

5.4 Results

In this section, we present and compare the results of the reconstruction with and

without using any activity recognition cues. We calculate the error between the

reconstructed path and the true path by discretizing the true path with equally

spaced points on the path, and consider either path as a finite set of points. We

use the symmetric error criterion between two point sets P and Q, proposed in

[25] and used in Chapter 2 of this thesis (Equation (2.2)).

The parameters selected for the experiments are tabulated in Table 5.3. Each
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Table 5.3: Parameter values used in the experiments.

parameter value
ΩT 1 rad/s

Pξ(0) 0.01I2×2

Q

(
0.01 0
0 0.1

)
Pws,i 0.01I2×2, ∀i
Pwt,j 0.04I2×2, ∀j

of the first set of experiments (1–4) is performed on the map given in Figure

5.2. For the second set of experiments (5–11), we first consider each experiment

separately. That is, the possible activity switch locations are not defined for the

whole map, but only for the activity switch points on the walked path. Examples

of reconstructed paths are presented in Figure 5.9. In this figure, reconstructed

paths without (with) activity recognition cues are shown in green and dashed

(blue and solid) line. In other words, the green and dashed line shows the re-

sult of using ZUPT only. It can be observed that the reconstruction improves

considerably when activity recognition cues are utilized.

Table 5.4: Error values without activity recognition updates (in cm/m).

experiment no. S1 S2 S3 S4 S5 S6 S7 S8 average
1 1.21 0.31 4.33 0.71 2.56 5.30 1.02 2.71 2.27
2 3.76 4.32 1.04 1.93 1.32 0.69 0.74 0.59 1.80
3 3.70 6.26 1.17 4.32 0.67 0.46 0.21 0.54 2.17
4 1.77 1.76 1.39 3.14 0.92 0.81 1.08 0.72 1.45
5 0.45 0.87 0.21 0.67 1.31 1.00 0.77 0.53 0.73
6 0.94 1.20 0.50 0.68 0.74 0.33 1.13 0.52 0.76
7 0.56 1.92 1.00 0.64 0.30 0.30 0.75 1.16 0.83
8 0.73 0.51 0.24 1.47 0.53 0.60 1.30 0.42 0.73
9 0.84 1.04 0.83 0.65 0.95 0.49 1.29 1.12 0.90
10 1.47 1.76 1.18 1.64 1.77 0.64 0.78 1.74 1.37
11 1.35 1.31 1.17 2.09 2.40 1.26 0.77 0.78 1.39

overall average: 1.31

The errors between the true path and the reconstructed path without and
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Figure 5.9: Sample reconstructed paths for experiments (a) 1, (b) 3, (c) 5, (d) 8,
(e) 9, (f) 11, with (solid blue line) and without (dashed green line) activity
recognition cues. The true path is indicated with the thin red line.
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Table 5.5: Error values with activity recognition updates (in cm/m).

experiment no. S1 S2 S3 S4 S5 S6 S7 S8 average
1 0.10 0.11 0.11 0.12 0.11 0.18 0.10 0.14 0.12
2 0.16 0.50 0.08 0.34 0.23 0.18 0.11 0.08 0.21
3 0.08 0.16 0.04 0.13 0.09 0.06 0.08 0.05 0.09
4 0.17 0.09 0.14 0.23 0.19 0.09 0.12 0.13 0.15
5 0.10 0.15 0.09 0.12 0.07 0.11 0.09 0.09 0.10
6 0.09 0.13 0.04 0.10 0.11 0.08 0.09 0.04 0.08
7 0.06 0.20 0.08 0.11 0.12 0.14 0.15 0.09 0.12
8 0.10 0.18 0.09 0.15 0.08 0.14 0.08 0.06 0.11
9 0.21 0.29 0.62 0.15 0.22 0.55 0.55 0.19 0.35
10 0.16 0.30 0.20 0.45 0.22 0.23 0.44 0.48 0.31
11 0.64 0.13 0.12 0.30 0.14 0.13 1.02 0.10 0.32

overall average: 0.18
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Figure 5.10: Average error values for all experiments with and without applying
activity recognition position updates.
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with activity recognition updates are presented in Tables 5.4 and 5.5, respec-

tively. In the tables, the calculated errors using Equation (2.2) are divided to

the path length for each experiment (Table 5.1) and then multiplied by 100 in

order to convert to centimeters. Therefore, the values are in terms of (cm/m),

interpreted as centimeter error per unit meter of path length. The last columns

in both tables are the averages of the other columns, which represent the re-

sulting average errors in a given experiment. The reduction in the average error

values by introducing activity recognition position updates is illustrated in Fig-

ure 5.10, in which the percentage decrease in the errors can be visualized. For

experiments 1–4 performed outdoors along a straight line, the average error with-

out the updates is 1.92 cm/m. With the updates, this error is reduced to 0.14

cm/m, for which the percentage decrease in the average error can be calculated as
1.92−0.14

1.92
× 100 = 92.7%. For indoor experiments 5–11, the average error without

the updates is 0.96 cm/m, which is reduced to 0.20 cm/m after the updates. Simi-

larly, the average percentage decrease can be calculated as 0.96−0.20
0.96

×100 = 79.1%.

On the average, the error is reduced by 86%. We also calculate the error values

at the activity switch locations. That is, when a position update is performed,

the corresponding error is calculated. Then, these errors are averaged, yielding

the values presented in Table 5.6. However, in a few cases, the positions are not

updated to the correct location, as explained below.

Table 5.6: Averaged position errors at the position update locations (in cm/m).

experiment no. S1 S2 S3 S4 S5 S6 S7 S8 average
1 1.48 0.48 3.00 4.21 3.29 4.34 2.65 3.36 2.85
2 2.76 5.63 2.04 4.62 1.86 1.51 2.59 2.06 2.88
3 1.61 4.62 1.25 3.29 0.91 0.98 0.65 1.22 1.82
4 2.04 2.32 1.22 6.29 1.21 1.38 2.93 2.19 2.45
5 1.41 0.99 0.41 1.78 0.73 1.63 1.14 1.02 1.14
6 2.50 0.94 0.51 1.04 0.69 0.64 0.57 0.79 0.96
7 0.45 5.53 0.74 1.42 0.63 1.22 0.81 0.96 1.47
8 0.59 0.87 0.95 1.40 0.69 0.92 0.83 0.70 0.87
9 1.39 1.05 4.55 1.33 1.27 3.27 2.40 1.19 2.06
10 1.19 1.43 1.01 1.90 1.00 0.75 1.44 1.54 1.28
11 1.79 1.29 0.73 2.04 1.03 0.80 5.32 0.89 1.73

overall average: 1.77
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Figure 5.11: Incorrectly reconstructed paths caused by (a) incorrect activity
recognition, and (b) offsets in sensor data.

The activity recognition performance is perfect for the WS switches, i.e., all

WS switches are correctly recognized for all subjects in all experiments. Some

instantaneous false alarms (type I errors1) are observed but they have been elim-

inated by applying a simple median filter to the activity “signal.” For the WT

switches, no false alarms are observed. However, some of the WT activity switches

are not correctly recognized (type II errors2), since the thresholds are not set in-

dividually for each subject. These type II errors in WT switches sometimes cause

the subsequent updates to be made in incorrect locations, such as the exam-

ple shown in Figure 5.11(a). Here, the two WT switches while walking on the

lower-right corner in the figure are not correctly detected. Over the 8× 11 = 88

experiments performed in this study, this problem occurs only once. Even if there

is no incorrect detection of activity, the same problem can still occur, as shown

in Figure 5.11(b). Here, the offset in the angle measurement causes the forward

filter to diverge from the actual path, and when a WT switch is detected, the

calculated closest WT switch point (see Equation (5.12)) is not the actual turning

point. This phenomenon is observed five times in all 88 experiments.

1In the context of this work, a type I error means that an activity switch has not actually
occurred, but the recognition algorithm falsely detects that it has occurred.

2Conversely, a type II error means that an activity switch has actually occurred, but the
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Figure 5.12: Sample reconstructed paths for experiments (a) 5, (b) 8, (c) 9, (d) 11,
with (solid blue line) and without (dashed green line) activity recognition cues
on the whole map. The true path is indicated with thin red line.

For experiments 5–11, we also reconstruct the paths using the whole of the

map in Figure 5.3. That is, we define all corners on the map as WT switch

points, and the points marked with × as WS switch points. The error values

without activity recognition updates are the same as in Table 5.4. The results

with activity recognition updates are given in Table 5.7, and the changes in the

average error are given as a bar chart in Figure 5.13. The average errors for

most of the experiments are reduced for this case as well, with the exception of

recognition algorithm fails to detect the activity switch. These terms are borrowed from the
statistics terminology.
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the experiment involving walking on a circle (experiment 9). In Table 5.7, it

can be observed that the errors have increased for only three of the subjects. In

these cases, the paths are not correctly reconstructed. This is caused by the fact

that the circle experiment involves continuous turning activity, although not as

sharp as turning at the corners. In fact, the thresholds for detecting the turning

activity should be chosen such that the slow turning motion on the circular path is

not detected as an activity switch, but the sharp turning motion at the corners is

detected. This will, of course, depend on the radius of curvature of the circle, and

the smaller it is, the larger will be the error. Looking at the experimental results,

we observe that it is not possible to choose a single threshold that performs

perfectly for all subjects, because every subject performs the walking motion

uniquely in their own style. This problem can easily be solved by introducing

uniformly spaced WT switch points on the circle. By defining 36 additional WT

switch points on the circle that are 10◦ apart, we reduced the average error to

0.32 cm/m. However, since the radius of curvature of the circle in this experiment

is too small and such sharp turns would very rarely be encountered on locations

other than corners in a realistic situation, such a procedure would not be necessary

in most cases. Sample reconstructions for this method are shown in Figure 5.12.

Table 5.7: Error values with activity recognition updates using the whole map
(in cm/m).

experiment no. S1 S2 S3 S4 S5 S6 S7 S8 average
5 0.13 0.15 0.09 0.12 0.65 0.44 0.09 0.09 0.22
6 0.39 0.20 0.04 0.25 0.20 0.08 0.17 0.04 0.17
7 0.07 0.80 0.16 0.16 0.18 0.21 0.17 0.13 0.23
8 0.21 0.28 0.18 0.20 0.13 0.25 0.08 0.09 0.18
9 0.77 0.29 16.21 0.15 7.99 2.32 0.71 0.20 3.58
10 0.16 0.29 0.18 0.45 0.20 0.23 0.44 0.49 0.31
11 0.79 0.13 0.13 0.31 0.14 0.12 2.55 0.10 0.53

overall average: 0.75

After introducing these additional WT switch positions, the errors between

the true and reconstructed paths are given in Table 5.8, and the average position

errors at the update locations are given in Table 5.9. In this case, the average error

without the updates is again 0.96 cm/m, which is reduced to 0.28 cm/m using
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Figure 5.13: Average error values for the experiments 5–11 with and without
activity recognition position updates when the whole map is used.

the activity updates and defining new WT switch points on the circle as stated in

the previous section. In this case, the percentage reduction in the average error

is 0.96−0.28
0.96

× 100 = 70.8%.

Note that the errors of experiments 10 and 11 increased slightly after the

addition of more WT switch locations. This is illustrated in the reconstruction in

Figure 5.12(d), which belongs to the same experiment as in Figure 5.9(f). Here,

it can be observed that the performance of the latter is better. The degradation

in the performance of the former is because of the addition of more WT switch

points on the circle in order to improve the incorrect reconstructions of the circular

path. This causes the closest WT switch point in Equation (5.12) to differ from

the actual turning point in Figure 5.12(d). This means that, the addition of

more switch points may cause degradations in the performances of other path

reconstructions, and may affect the overall error negatively. Therefore, using

more activity switch points on a map does not necessarily improve the overall

performance.
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Table 5.8: Error values with activity recognition updates using the whole map,
after defining more WT switch locations (in cm/m).

experiment no. S1 S2 S3 S4 S5 S6 S7 S8 average
5 0.13 0.15 0.09 0.12 0.65 0.44 0.09 0.09 0.22
6 0.39 0.20 0.04 0.25 0.20 0.08 0.17 0.04 0.17
7 0.07 0.79 0.16 0.16 0.18 0.21 0.17 0.13 0.23
8 0.21 0.28 0.18 0.20 0.13 0.25 0.08 0.09 0.18
9 0.22 0.29 0.34 0.15 0.19 0.46 0.71 0.20 0.32
10 0.16 0.37 0.18 0.45 0.20 0.23 0.44 0.49 0.32
11 0.88 0.21 0.13 0.31 0.14 0.12 2.54 0.10 0.55

overall average: 0.28

Table 5.9: Averaged position errors at the position update locations (in cm/m).

experiment no. S1 S2 S3 S4 S5 S6 S7 S8 average
5 1.41 0.99 0.41 1.78 2.19 1.63 1.14 1.02 1.32
6 2.34 0.89 0.51 1.04 0.67 0.64 0.65 0.79 0.94
7 0.45 4.00 0.70 1.37 0.63 1.14 0.79 0.89 1.25
8 0.50 0.76 0.89 1.30 0.70 0.88 0.83 0.62 0.81
9 1.15 1.05 2.12 1.33 0.92 2.19 1.78 1.19 1.47
10 1.19 1.43 0.92 1.90 1.02 0.75 1.44 1.54 1.27
11 1.88 1.40 0.73 2.02 1.03 0.81 4.04 0.89 1.60

overall average: 1.24
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5.4.1 A Demonstrative 3-D Path Example

To demonstrate the applicability of our method in a realistic setting, we per-

formed experiments in two floors of an indoor environment. The experiments are

conducted in the Electrical and Electronics Engineering building in Bilkent Uni-

versity campus. Since this experiment is in 3-D, z-axis motion is also involved.

Similar to the model above, the state equations now become

x(k) = x(k − 1) + ∆d(k − 1) cos (ψ(k − 1)) (5.15)

y(k) = y(k − 1) + ∆d(k − 1) sin (ψ(k − 1))

z(k) = z(k − 1) + ∆dz(k − 1)

where dz(k) is the distance traveled in the z direction, and ∆dz(k − 1) =

dz(k) − dz(k − 1) is the first-order difference. The z-direction distance dz(k)

is calculated using ZUPT, in exactly the same manner as d(k), after subtract-

ing the gravitational acceleration g. We estimate g by taking the mean of the

z-axis acceleration signal, while the subject stands still in the beginning of the

experiment, after resetting the coordinate frames.

Additionally, we introduce the “stairs” activity to the activity set, which

represents the activity state of the subject while ascending or descending stairs.

We denote the walking-to-stairs and stairs-to-walking activity switches as a WZ

switch (because we already used WS for a walking-to-standing switch), which

emphasizes that the stairs activity involves motion in the z direction. Note that

walking-to-stairs and stairs-to-walking switches are denoted by a single label,

because at each walking-to-stairs switch location, a stairs-to-walking switch can

also occur, and vice versa. In other words, walking-to-stairs and stairs-to-walking

activity switch locations can not be separated from each other in any given map.

Distinguishing between walking and stairs activities is not straightforward,

and a simple rule-based method like the one applied above can not be used for

this case. Therefore, we use the k-nearest neighbor (k-NN) classifier described

in the preceding chapter of this thesis. We use the data acquired in that work

as training data for the classifier. From the previous chapter, we combine the

activities walking in a parking lot (A9) and walking on a treadmill (A10) data
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for the “walking” activity, and ascending stairs (A5) and descending stairs (A6)

data for the “stairs” activity. To perform activity recognition between these

two activities, we use the sensors on the right leg and the left leg, since they

are mounted at the same position as in the previous chapter, and no coordinate

frame reset is performed on the leg sensors. Therefore, the data are expected to

be similar. We calculate the running mean and running variance values from the

test data as features, using a sliding window of length 5 s. This length was chosen

since the same length was also used in the training data for feature extraction. We

do not use magnetometer data, since the accuracy of magnetometers are known

to degrade in indoor environments [138]. The activities standing and turning are

recognized using the same rule-based method as in the previous section.

In [5], we demonstrated that including training data from an individual im-

proves the classification performance considerably. This is also confirmed in this

study. The subject S8 in this study was also one of our test subjects in the activ-

ity recognition section, and the best classification performance in this experiment

is achieved with subject S8. The results of the reconstruction before and after

activity recognition updates are presented in Figure 5.14 using the data from

subject S8. In the figure, the red (thin) line represents the true path, the green

(light gray) line represents the reconstructed path without activity recognition

updates, and the blue line (dark gray) represents the reconstructed path after

applying the activity recognition updates.

We set the initial position of the subject as the origin, and the initial walking

direction as the x-direction. In this setting, the only WS switch point is (0,0,0).

We did not introduce any artificial WS switch locations in addition, since this

experiment is performed in a realistic environment. The WT and WZ switch

points are presented in Table 5.10 in matrix form for compactness, whose rows

correspond to the coordinates of activity switch locations. These locations were

determined considering the walked path and the construction plans of the build-

ing. We also used a tape measure to determine the coordinates of some of the

waypoints on the path.
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Figure 5.14: Sample reconstructed path for the 3-D experiment.

Table 5.10: Walking-to-turning (WT) and walking-to-stairs (WZ) activity switch
locations.

walking-to-turning (WT) walking-to-stairs (WZ)

0 0 0
32.78 0 −2.08
32.78 1.30 −2.08
0.90 0 −4.16
0.90 −3.00 −4.16
−1.20 −4.50 −4.16
−0.90 −9.10 −2.08
1.50 −9.10 −2.08
1.50 −4.20 0
0 −2.40 0




29.40 0 0
29.40 1.30 −4.16
−1.20 −4.50 −4.16
1.50 −4.20 0
−0.90 −9.10 −2.08
1.50 −9.10 −2.08
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Several heuristics are used in the simultaneous localization and activity recog-

nition process. We observed that there are some instantaneous WZ switches while

the subject is ascending or descending stairs. That is, occasionally the activity

classifier instantaneously decides that the subject is walking even when he is ac-

tually not. Very rarely, the converse also occurs, i.e., the classifier detects the

“stairs” activity while the subject is walking on the level floor. To avoid an in-

correct position update at these instants, we introduce a condition on the WZ

switches such that the switched activity (in this case, walking) must go on for at

least three seconds for a position update to be applied. Another heuristic is that

if the current activity is detected as walking, we do not modify the position in the

z-direction in the prediction equation. This a fair heuristic because on the given

map, walking activities only take place on the horizontal plane. If a map was

given with possible uphill or downhill walking platforms (which is very unlikely

in an indoor building environment), this heuristic would lead to incorrect results

and should not be used.

As shown in Figure 5.14, the path reconstruction is almost perfect after

introducing the updates. Using the error measure (2.2), the error between

the true path and the reconstructed path using ZUPT only is calculated as

4.44 cm/m. With the activity recognition updates, this error is reduced to

0.35 cm/m, which corresponds to a percentage decrease in the average error by
4.44−0.35

4.44
× 100 = 92.1%. We also performed this experiment with the remaining

subjects, whose data are not included in training the k-NN classifier. Since these

subjects’ data are not used in training, the activity recognition performance is

not as good for some of the subjects. This is because each person has a differ-

ent style of walking on the stairs as well as on a straight path. Distinguishing

between these two motions is not possible with high accuracy if the classifiers

are trained with the data of other subjects. Therefore, in a practical application,

the classifier must be trained with the data of the user, which is an operation

to be performed only once. Then, our method of simultaneous localization and

activity recognition can be used, which improves the localization performance by

reducing positioning errors about 90%.
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5.4.2 Experiments on Spiral Stairs

To test the performance of the 3-D algorithm with continuous turning activity,

we also performed experiments on spiral stairs. The subject ascends stairs on a

fire escape for eight stories. We detect the turning activity using the rule-based

algorithm in our 2-D experiments. Even though there is constant turning activity,

the threshold defined in the rule-based algorithm is exceeded only occasionally,

which results in a stairs-to-turning (ST) activity switch. Therefore, 80 equally-

spaced ST activity switch locations are defined on the spiral stairs. The results

are presented in Figure 5.15. Similarly, the green and blue lines represent the

reconstructed path without and with activity recognition updates, respectively.

The thin red line represents the actual path. For this experiment, the error is

decreased from 2.08 cm/m to 0.24 cm/m with the activity recognition updates,

resulting in 88% reduction.

5.5 Discussion

Our results demonstrate that path reconstruction improves significantly when ac-

tivity recognition is performed simultaneously with localization, i.e., the activity

switch cues are used for position updates. Considering the whole of the maps

for both sets of 2-D experiments, the average percentage decrease in the error is

79%. The errors at the final point of the experiments are zero for all experiments,

because the subjects stop at the end of the experiment on a WS switch point,

and a final position update is performed.

The above errors are calculated using Equation (2.2), which represents the

average distance between the true path curve and the reconstructed path curves.

This is a spatial error measure between two sets of points that construct the

curves. If the true position of the subject as a function of time was available,

a more reliable error criterion would be to calculate the error between the true

position and the estimated position at all time values, and then to take the time

average. However, in our experiments, the true position of the subjects is not
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Figure 5.15: Sample reconstructed path for the spiral stairs.

available. Obtaining accurate true position data as a function of time is a difficult

task outdoors because low-cost handheld GPS equipment have accuracies in the

order of several meters. In indoor environments, accurate WiFi- or RFID-based

positioning system setups might be necessary.

In the 2-D experiments, the WS and WT activity switch points on the map

are assigned manually; all corners are defined as WT switch points, and WS

switch points are assigned arbitrarily. In a practical setting, more activities may

be added to the activity set and the map can be enhanced. For example, in an

indoor office flat setting, we added the walking-to-stairs activity. In addition,
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opening-door and closing-door activities might be added that correspond to lo-

cations in front of office doors. Determination of such activity switch locations

can be automated as well; e.g., if cameras watching the corridors of a building

are available, the activity switches can be determined by analyzing the activity

patterns of individuals. Similar approaches can be used in urban outdoor set-

tings, by observing locations such as street crossings or pedestrian traffic lights.

However, this study shows that increasing the activity switch locations does not

necessarily lead to more accurate position estimates. The drifts in inertial sensor

data may lead to incorrect position updates as shown in Figure 5.11(b), which

might not have occurred if there were fewer activity switch points. Even though

the number of correct position updates increases with increasing number of activ-

ity switch locations, the number of such incorrect updates is expected to increase

as well. Automatic or manual determination of activity switch locations in order

to minimize the number of incorrect position updates on a given map remains an

issue to be solved.



Chapter 6

Summary and Conclusion

In this thesis, we considered three different problems in the intelligent sensing

area, specifically in ultrasonic sensing and inertial sensing. Here, we summarize

the results and provide the reader with future research directions.

In Chapter 2, we have presented two approaches to compactly and efficiently

represent the maps obtained by processing ultrasonic arc maps (UAMs) with

different techniques. Representing the map points with snake curves or Kohonen’s

self-organizing maps (SOMs) makes it possible to compare maps obtained with

different techniques among themselves, as well as with an absolute reference. For

this purpose, we have defined and employed an error criterion that can be used to

compare two different sets of points based on the Euclidean distance measure. The

two sets of points can be chosen as (i) two different sets of map points acquired

with different mapping techniques or different sensing modalities (e.g., ultrasonic

data and laser data), (ii) two sets of curve points (e.g., two snake curves) fitted to

maps extracted by different mapping techniques or different sensing modalities, or

(iii) a set of extracted map points and a set of curve points fitted to those points.

Our purpose here was to represent ultrasonic maps efficiently and to evaluate the

performance of UAM processing techniques through the use of a demonstrative

example. Among the eight UAM processing techniques considered, the directional

maximum method can be considered as one of the best in terms of the overall

performance.
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Although both active contours and SOMs can be employed to fill the erroneous

gaps in discrete point maps, active contours are superior in eliminating outliers

in the data, resulting in smaller errors. Active contours are more capable of

fitting accurately to environmental features with high curvature, such as edges

and corners, as well as smoother features, such as planar walls, in typical indoor

environments.

A physical interpretation of the parameters and guidelines on parameter selec-

tion are provided. The best-fitting parameter values are found by uniform sam-

pling of the parameter space and by particle swarm optimization (PSO). For snake

curve fitting, the error values are comparable for the two approaches, whereas for

SOM, PSO consistently results in smaller errors. Another alternative is to use

non-parametric snakes that utilize a kernel density estimation approach [151].

However, this formulation does not completely eliminate the parameter optimiza-

tion procedure, as a number of parameters must be determined for both fixed-

and variable-bandwidth kernels, especially for noisy images. Furthermore, an ad-

ditional heuristic procedure needs to be used to assure convergence to concavities

in the map.

The two methods are sufficiently general that they can also be applied to

map data points acquired with other mapping techniques and sensing modalities.

The results can be extended to 3-D data by fitting 3-D shapes. Another possible

extension of this work would be the automatic determination of the appropriate

number of curves or shapes to be fitted to a given set of extracted map points

using clustering techniques. Determining whether the curves should be open

or closed, or the shapes convex or concave, and initializing the multiple curve

parameters are other challenging issues.

In Chapter 3, we applied the well-known Allan variance procedure in order to

model the error characteristics in the inertial/magnetic sensor units used. The

analysis was performed using data acquired when the sensors are stationary on

a table for 12 hours. For the gyroscopes, eliminating the transients by a curve

fitting procedure resulted in white noise. However, correlated noise components

exist for accelerometers and magnetometers. Further research on this area can
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be conducted using data when the sensors are in motion, e.g., on a rotary table,

in order to analyze the dynamic error characteristics of the sensors.

In Chapter 4, we have presented the results of a comparative study where

features extracted from miniature inertial and magnetometer signals are used

for classifying human activities. We compared a number of classification tech-

niques based on the same data set in terms of their correct differentiation rates,

confusion matrices, computational costs, and training and storage requirements.

Bayesian decision making (BDM) achieves higher correct classification rates in

general compared to the other classification techniques, and has relatively small

computational time and storage requirements. This parametric method can be

employed in similar classification problems, where it is appropriate to model the

feature space with multi-variate Gaussian distributions. The support vector ma-

chine (SVM) and k-nearest neighbor (k-NN) methods are the second-best choices

in terms of classification accuracy but SVM requires a considerable amount of

training time. For real-time applications, least squares method (LSM) could also

be considered a suitable choice because it is faster than BDM at the expense of

a lower correct classification rate.

We implemented and compared a number of different cross-validation tech-

niques in this chapter. The correct classification rates obtained by subject-based

leave-one-out cross validation (L1O) are usually lower. This is because in L1O,

the data of a particular subject are not used for training the classifiers; it is

only used for testing. However, in P -fold cross-validation and repeated random

sub-sampling (RRSS) methods, data from a particular subject are used for both

training and testing. We observed that BDM gives the best results in P -fold and

RRSS methods, but not in L1O. In L1O, k-NN and SVM methods overperform

the BDM method. This means that, in a practical application, if training data

of an individual are available, a simple Gaussian classifier like BDM can be used

with confidence. However, if the training data are not available for some reason,

one should resort to more complex classifiers such as k-NN and SVM for better

performance, in exchange for additional computational cost.

There are several possible future research directions that can be explored in
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this area:

An aspect of activity recognition and classification that has not been much in-

vestigated is the normalization between the way different individuals perform the

same activity. Each person does a particular activity differently due to differences

in body size, style, and timing. Although some approaches may be more prone

to highlighting personal differences, new techniques need to be developed that

involve time-warping and projections of signals and comparing their differentials.

To the best of our knowledge, optimizing the positioning, number, and type

of sensors has not been much studied. Typically, some configuration, number,

and modality of sensors is chosen and used without strong justification.

Detecting and classifying falls using inertial sensors is another important prob-

lem that has not been sufficiently well investigated [79], due to the difficulty of

designing and performing fair and realistic experiments in this area [71]. There-

fore, standard definitions of falls and systematic techniques for detecting and

classifying falls still do not exist. In our ever-aging population, it seems impera-

tive to develop such definitions and techniques as soon as possible [77, 78].

Fusing information from inertial sensors and cameras can be further explored

to provide robust solutions in human activity monitoring, recognition, and clas-

sification. Joint use of these two sensing modalities increases the capabilities of

intelligent systems and enlarges the application potential of inertial and vision

systems.

In Chapter 5, we presented the results of introducing activity recognition cues

in order to perform position updates in a pedestrian dead-reckoning system, thus

performing localization and activity recognition simultaneously. We use the well-

known zero velocity update (ZUPT) method to estimate the distance traveled,

and an orientation sensor mounted on the chest to estimate the heading. Position

errors occur because of drifts and offsets in these inertial sensors caused by ini-

tial misplacement, slips on the body during operation because of loose mounting,

in addition to the characteristic drift present in the inertial sensing equipment.
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These errors are corrected using a map of the environment with predefined ac-

tivity switch locations at which position updates are performed. When a current

position update is performed using the activity recognition information, optimal

estimation techniques are also applied to the past estimates and they are also

corrected. It is concluded that activity recognition cues considerably improve the

performance of the pedestrian dead reckoning (PDR) system, reducing the posi-

tion errors drastically. However, distinguishing between similar activities such as

ascending/descending stairs and walking is not an easy task that can be accom-

plished by using a simple rule-based classifier. In this case, using more complex

classifiers would be necessary. To improve the performance, training data of

the test subject should be available to the classifiers, otherwise similar activities

can be confused. If such training data are available, it is possible to reduce the

localization error by about 10-fold when activity recognition cues are utilized si-

multaneously in localization. Even though in this chapter we demonstrate that

it is possible to perform pedestrian localization without any external aid other

than a map, there are several unresolved issues related to this approach. We list

possible future research directions in this track below:

We demonstrate that increasing the possible activity switch locations does not

necessarily improve the localization results. Therefore, methods of automated

or manual determination of activity switch locations and the number of such

locations can be developed. Such procedures should take into account possible

misclassifications of activity for a given map, as well as drift characteristics of the

sensors used.

More activities can be defined, depending on the setting involved. For exam-

ple, underground mines are one of the most suitable settings to which the methods

developed in this study can be applied, because no external positioning method is

available. By defining activities specific to that setting and implementing specific

activity recognition methods, accurate positioning can be obtained.

Similar to how activity recognition cues aid localization in our method, loca-

tion cues can be utilized in order to perform accurate activity recognition. Even

though activity recognition is quite accurate when training and test data from
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the same user are available, the accuracy degrades when training data from the

same user are not available. However, for a given position on a map, the possible

set of activities that can be performed is limited. By utilizing the location infor-

mation in the activity recognition algorithm, this problem can be eliminated. In

this case, activity recognition and localization can be viewed as a loop, very much

like simultaneous localization and mapping (SLAM) methods in mobile robotics,

where activity recognition aids localization and vice versa.



Appendix A

Quaternions and Rotations in

3-D Space

A.1 Quaternion Algebra

Here, we give basic definitions and properties related to quaternions. Most of the

nomenclature and properties are adopted from [152].

A quaternion can be viewed as a four dimensional vector given by

q = q0 + q = q0 + q1i+ q2j+ q3k (A.1)

Here, q0 is the scalar part, and q = q1i + q2j + q3k is the vector part of the

quaternion q. i, j, and k are defined such that the following property is satisfied:

i2 = j2 = k2 = ijk = −1 (A.2)

From Equations (A.2), the following can be deduced:

ij = k = −ji

jk = i = −kj

ki = j = −ik (A.3)

141



APPENDIX A. QUATERNIONS AND ROTATIONS IN 3-D SPACE 142

Using these properties, two quaternions p and q given by

p = p0 + p = p0 + p1i+ p2j+ p3k

q = q0 + q = q0 + q1i+ q2j+ q3k (A.4)

can be multiplied to give the resulting quaternion as

pq = p0q0 − p · q+ p0q+ q0p+ p× q (A.5)

The complex conjugate of a quaternion is defined as

q∗ = q0 − q = q0 − q1i− q2j− q3k (A.6)

and the norm of a quaternion is defined as ||q|| =
√
q∗q.

Unit quaternions (||q|| = 1) can be used to represent rotations in 3-D space.

A unit quaternion can be written as

q = cos(θ) + u sin(θ) (A.7)

where u is a unit vector. For a vector v ∈ R3 and the unit quaternion q given in

Equation (A.7), the operation

Lq(v) = qvq∗ (A.8)

corresponds to the rotation of the vector v by 2θ about the axis defined by u.

Note that here v should be regarded as a quaternion with zero scalar part.

A.2 Euler Angles

Another method of representing rotations in 3-D space is using Euler angles.

Euler angles represent the rotation required to transform a coordinate system

XY Z to another coordinate system xyz in terms of three different angles. Twelve

different rotation sequences are possible for this representation, however, here only

the ZY X sequence (also known as the aerospace sequence) will be described.
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Figure A.1: Euler angles ZYX sequence (reprinted from [154]).
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In Figure A.1, three different angles that represent the rotation between XY Z

and xyz are shown [154]. Suppose that initially these two coordinate systems

coincide. In order to obtain xyz from XY Z, the following rotations should be

performed in this particular order:

1. rotate about Z-axis by ψ (obtain x′y′z′ coordinate system),

2. rotate about y′-axis by θ (obtain x′′y′′z′′ coordinate system),

3. rotate about x′′-axis by ϕ (obtain xyz coordinate system)

This convention is mostly used in aerospace applications. In aerospace termi-

nology, ϕ is known as roll angle, θ is known as pitch angle, and ψ is known as the

yaw angle. The Euler angles for this sequence satisfy the following inequalities:

0 < ϕ < 2π

−π/2 < θ < π/2

0 < ψ < 2π (A.9)

In this sequence, if the pitch angle is exactly ±π
2
, the configuration becomes

singular and it becomes impossible to distinguish between the roll and the yaw

angles. Thus, this sequence should be used in applications where the pitch angle

does not take values close to ±π
2
. In fact, it has been shown that any three-

parameter representation of 3-D rotations must involve singularities [153].

It is possible to convert a unit quaternion to Euler angles (ZY X sequence)

using the following formulas:

ϕ = tan−1

(
2q2q3 + 2q0q1

q20 − q21 − q22 + q23

)
θ = sin−1(2q0q2 − 2q1q3)

ψ = tan−1

(
2q1q2 + 2q0q3

q20 + q21 − q22 − q23

)
(A.10)

where the inverse tangent function should be evaluated by taking all four quad-

rants into account.



Appendix B

Combining Unbiased Estimators

Suppose x̂1 and x̂2 are two estimators of a random vector X, with error covari-

ances Σ1 = E[(x̂1 −X)(x̂1 −X)T ] and Σ2 = E[(x̂2 −X)(x̂2 −X)T ], respectively.

We assume that the estimators are unbiased, i.e.,

E(x̂1 −X) = E(x̂2 −X) = 0 (B.1)

and the estimation errors are uncorrelated, i.e.,

E[(x̂1 −X)(x̂2 −X)T ] = 0 (B.2)

A linear combination of these two estimators is given as

x̂ = W1x̂1 +W2x̂2 (B.3)

where W1 and W2 are weighting matrices.

We would like to find the optimal weighting matrices such that the covariance

matrix of the combined estimate given by

Σ = E[(x̂−X)(x̂−X)T ] (B.4)

is “minimum,” which should be interpreted in the sense of the following definition

[155].
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Definition. Let Σ1 and Σ2 be symmetric non-negative definite matrices such

that the difference Σ2 − Σ1 is non-zero and non-negative definite. Then, Σ1 is

said to be less than Σ2.

If the combined estimate is to be unbiased, the following condition should

hold:

E(x̂) = W1E(x̂1) +W2E(x̂2) = E(X) (B.5)

Since E(x̂1) = E(x̂2) = E(X), the condition reduces to W1 + W2 = I,

where I is the identity matrix of appropriate size. The combined estimate can be

expressed as

x̂ = W1x̂1 + (I−W1)x̂2 (B.6)

and the optimization criterion is given as

W∗
1 = argmin

W1

Σ

= argmin
W1

W1(Σ1 +Σ2)W
T
1 −W1Σ2 −Σ2W

T
1 +Σ2 (B.7)

In this case, the minimizing W1 can be found as [155]

W∗
1 = Σ2(Σ1 +Σ2)

−1 =
(
Σ−1

1 +Σ−1
2

)−1
Σ−1

1 (B.8)

and W∗
2 is given as

W∗
2 = I−W∗

1 =
(
Σ−1

1 +Σ−1
2

)−1
Σ−1

2 (B.9)

Therefore, the optimal combination of estimators x̂1 and x̂2 is

x̂ =
(
Σ−1

1 +Σ−1
2

)−1 (
Σ−1

1 x̂1 +Σ−1
2 x̂2

)
(B.10)

and the error covariance can be calculated as

Σ =
(
Σ−1

1 +Σ−1
2

)−1
(B.11)

Note that in Equation (B.10), individual estimates are weighted by inverses

of the corresponding covariance matrices. This result also agrees with physical

intuition. For example, if one estimate is more reliable than the other (i.e., its

covariance matrix is less than the other), its weight will be larger compared to

the other weight, and vice versa.
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parison of low-complexity fall detection algorithms for body attached ac-

celerometers,” Gait & Posture, 28(2):285–291, 2008.

[80] W. H. Wu, A. A. T. Bui, M. A. Batalin, D. Liu, and W. J. Kaiser, “In-

cremental diagnosis method for intelligent wearable sensor system,” IEEE

Transactions on Information Technology in Biomedicine, 11(5):553–562,

2007.

[81] E. Jovanov, A. Milenkovic, C. Otto, and P. C de Groen, “A wireless body

area network of intelligent motion sensors for computer assisted physical

rehabilitation,” Journal of NeuroEngineering and Rehabilitation, vol. 2, ar-

ticle no. 6, 2005.
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