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ABSTRACT

RESAMPLING-BASED MARKOVIAN MODELING
FOR AUTOMATED CANCER DIAGNOSIS

Erdem Özdemir

M.S. in Computer Engineering

Supervisor: Assist. Prof. Dr. Çiğdem Gündüz Demir

August, 2011

Correct diagnosis and grading of cancer is very crucial for planning an effective

treatment. However, cancer diagnosis on biopsy images involves visual interpreta-

tion of a pathologist, which is highly subjective. This subjectivity may, however,

lead to selecting suboptimal treatment plans. In order to circumvent this prob-

lem, it has been proposed to use automatic diagnosis and grading systems that

help decrease the subjectivity levels by providing quantitative measures. How-

ever, one major challenge for designing these systems is the existence of high

variance observed in the biopsy images due to the nature of biopsies. Thus, for

successful classifications of unseen images, these systems should be trained with

a large number of labeled images. However, most of the training sets in this

domain have limited size of labeled data since it is quite difficult to collect and

label histopathological images. In this thesis, we successfully address this issue

by presenting a new resampling framework. This framework relies on increasing

the generalization capacity of a classifier by augmenting the size and variation

in the training set. To this end, we generate multiple sequences from an image,

each of which corresponds to a perturbed sample of the image. Each perturbed

sample characterizes different parts of the image, and hence, they are slightly

different from each other. The use of these perturbed samples for representing

the image increases the size and variability of the training set. These samples are

modeled with Markov processes which are used to classify unseen image. Work-

ing with histopathological tissue images, our experiments demonstrate that the

proposed framework is more effective for both larger and smaller training sets

compared against other approaches. Additionally, they show that the use of per-

turbed samples is effective in a voting scheme which boosts the performance of

the classifier.
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ÖZET

OTOMATİK KANSER TANISI İÇİN TEKRAR
ÖRNEKLEME BAZLI MARKOV MODELLEME

Erdem Özdemir

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Yar. Doç. Dr. Çiğdem Gündüz Demir

August, 2011

Doğru kanser tanısı ve derecelendirilmesi, etkili bir tedavi planı için önemlidir.

Ancak, biyopsi görüntüleri üzerinde yapılan kanser tanısı, patologların görsel

olarak yorumlamasına dayanır, bu ise öznellik taşır. Bu öznellik, etkili ol-

mayan tedavi planlarının uygulanmasına yol açabilir. Tanıdaki öznelliği azaltmak

amacıyla, ölçülebilir değerler üzerinden otomatik kanser tanısı ve derecelendirmesi

yapan sistemler önerilmiştir. Biyopsi görüntülerinde varolan değişim bu tür sis-

temlerin tasarlanmasında en büyük sorunlardan birini oluşturur. Bu tür sis-

temlerin biyopsi görüntülerini doğru sınıflandırabilmesi için fazla sayıda öğrenme

örneği ile eğitilmesi gerekir. Ancak, histopatolojik görüntü alanındaki öğrenme

kümeleri, görüntü toplama ve bu görüntüleri etiketlemedeki zorluklardan ötürü

genelde az sayıda örnek içerir. Biz bu çalışmamızda bu probleme karşı, öğrenme

kümesindeki örnek sayısını ve varyansını artırarak sınıflandırıcının genelleme ka-

pasitesini artıran, yeni bir tekrar örnekleme yöntemi sunmaktayız. Bunu ya-

pabilmek için, görüntü üzerinden her biri, görüntünün değiştirilmiş örneğine

denk gelen diziler oluşturulur. Bu değiştirilmiş örneklerin her biri, görüntü

üzerinde değişik alt bölgeleri nitelendirdirir ve dolayısıyla birbirinden farklıdır.

Bu örneklerin öğrenmede kullanılması ise öğrenme kümesinin büyüklüğünü ve

varyansını artırır. Markov modeller ile bu örnekler modellenir ve etiketlenmemiş

örneklerin sınıflandırılmasında kullanılır. Histopatolojik görüntüler üzerinde

yapılan testlerde, sunulan bu yöntemin hem büyük hem de küçük boyutlu

öğrenme kümelerinde diğer yöntemlere göre daha başarılı olduğu görülmektedir.

Ayrıca değiştirilmiş örneklerin oylama yönteminde kullanılması sınıflandırıcının

performansını artırmaktadır.

Anahtar sözcükler : Histopatolojik görüntü analizi, kanser tanı ve derece-

lendirilmesi, tekrar örnekleme, Markov modelleri, kanser.
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for their friendship, support and for amusing times in the office. I am also grateful

to Salim for his help in drawing some figures. Last, but by no means least, I would

like to thank everyone in the Gunduz group: Can, Barış, Burak, Salim, Çağrı and
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Chapter 1

Introduction

Cancer is one of the most common yet most curable cancer types in western

countries. Its survival rates increase with early diagnosis and selection of a cor-

rect treatment plan, for which correct grading is critical [35]. Although there are

many screening techniques such as colonoscopy, sigmoidoscopy, and stool test, its

final diagnosis and grading are based on histopathological assessment of biopsy

tissue samples. In this assessment, pathologists decide the presence of cancer

based on the existence of abnormal formations in a tissue and determine cancer

grade based on the degree of the abnormalities. As this assessment mainly relies

on visual interpretation, it may contain subjectivity, which leads to interandintra

observer variability especially in grading [3, 43]. This variability may result in

suboptimal treatment of the disease [13]. Thus, it has been proposed to use com-

putational methods. These methods would help pathologists make more objective

assessment by providing quantitative measures.

1.1 Motivation

The previous methods provide automated classification systems that use a set

of features to model the difference between the normal tissue appearance and

1



CHAPTER 1. INTRODUCTION 2

the corresponding abnormalities. These features are usually defined by the mo-

tivation of mimicking a pathologist, who uses morphological changes in cells and

organizational changes in the distribution of tissue components to detect abnor-

malities. Morphological methods aim to model the first kind of these changes

by extracting features that quantify the size and shape characteristics of cells.

These features can be used to characterize an individual cell [57, 65] as well as

an entire tissue by aggregating the features of its cells [60, 10]. Extraction of

morphological features requires determining the exact locations of cells before-

hand, which is, however, very challenging for histopathological tissue images due

to their complex nature [28].

Structural methods are designed to characterize topological changes in tissue

components by representing the tissue as a graph and extracting features from

this graph. In literature, almost all methods construct their graphs considering

nuclear components as nodes and generating edges between these nodes to encode

spatial information of the nuclear components. These studies use different graph

generation methods including Delaunay triangulations (and their dual Voronoi di-

agrams) [5, 68, 58], minimum spanning trees [10, 17], probabilistic graphs [14, 30],

and weighted graphs [15]. To model topological tissue changes better, Dogan et

al. have recently proposed to consider different tissue components as nodes and

construct a color graph on these nodes, in which edges are colored according to

the tissue type of their end points [2]. The main challenge of defining struc-

tural features is the difficulty of locating the tissue components. The incorrect

localization may affect the success of the structural methods.

Textural methods avoid difficulties relating to correct localization of cells (and

other components) defining their textures on pixels, without directly using the tis-

sue components. They assume that abnormalities from the normal tissue appear-

ance can be modeled by texture changes observed in tissues. There are many ways

to define textures for tissues; they include using intensity/color histograms [59],

co-occurrence matrices [21, 18], run-length matrices [67], multiwavelet coeffi-

cients [56], local binary patterns [54, 51], and fractal geometry [59, 32]. Tex-

tural methods generally make pixel level analysis, hence, they may negatively

be affected by the noise in the intensity levels of the pixels. Moreover, textural
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Figure 1.1: Cytological components in normal and cancerous colon tissues. Dif-
ferent components are illustrated with different colors: green for luminal regions,
red for stromal regions, purple for epithelial cell nuclei, and blue for epithelial
cell cytoplasms. Colon glands are confined with black boundaries.

features typically characterize small regions in tissue images well but they may

have difficulties to find a constant texture characterizing the entire tissue. To

alleviate this difficulty, it is proposed to divide the image into grids, compute

textural features on the grids, and aggregate the features for characterizing the

tissue [21]. Although, grid-based approaches usually improve accuracies, they

may still have difficulties arising from the existence of irrelevant regions in tis-

sues. For example, for diagnosis and grading of colon adenocarcinoma, which

accounts for 90-95 percent of all colorectal cancers, pathologists examine glandu-

lar tissue regions since this cancer type originates from glandular epithelial cells

and causes deformations in glands (Figure. 1.1). Non-glandular regions, which do

not include epithelial cells, are irrelevant within the context of colon adenocar-

cinoma diagnosis. Moreover, such non-glandular regions can be of different sizes

(Figure 1.2). Thus, directly including these regions into texture computation

may give unstable classifications, resulting in lower accuracies [26]. Aggregation

methods that consider the existence of such irrelevant regions have potential to

give better accuracies.

Additionally, all classification algorithms face a common difficulty regardless

of their feature types: limited training data to be generalized to unseen cases.

This problem exists in various domains such as classification of data streams [42],
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(a) (b)

(c) (d)

Figure 1.2: Histopathological images of colon tissues: (a)-(b) normal and (c)-(d)
cancerous. Non-glandular regions in images are shaded with gray.

remote sensing [33, 27], speech recognition [38], information theory [71], and

biomedical engineering [46, 9, 62, 4]. In our domain, due to the nature of the

system, there exists large variance even among tissues, even the tissues of the

same class. This is mainly due to irregularity of tumor growth [32]. The variance

becomes even larger due to nonideal steps followed in tissue preparation as well

as differences in tissue preparation and image acquisition steps. This problem has

been stated in [62] as need of large datasets for robust applications in computer

aided diagnosis systems. Thus, in order for a classification system to make suc-

cessful generalizations, it usually needs a large number of images from different

patients in its training. On the other hand, this number is usually very limited

since acquiring a large number of labeled tissue images from a large number of

patients is quite difficult in this domain. When such limited data are used for

training, the learned systems may be vulnerable to perturbations in tissue im-

ages, also leading to unstable classifications. There have been studies in active

learning to address the issue of labeling cost; the studies have proposed to reduce

the number of the required samples that are to be labeled [70, 40]. However,
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active learning is a selection approach of the samples to be labeled in a large

dataset and does not help learn when there are only limited data available. Sim-

ple resampling techniques have been used to resolve unbalanced data problem by

increasing the number of samples in classes that include relatively less number of

samples [49]. However, simple resampling techniques do not increase the variety

since it dublicates the samples in the original dataset without introducing any

modifications.

1.2 Contribution

In this thesis, we propose a new framework for the effective and robust classi-

fication of tissue images even when only limited data are available. In the pro-

posed framework, the main contributions are the introduction of a new resampling

method to simulate the perturbations in tissue images for learning better gen-

eralizations and the use of this method for obtaining more stable classifications.

The resampling method relies on generating multiple sequences from an image,

each of which corresponds to a perturbed sample of the image, and modeling

the sequences using a first order discrete Markov process. Working with colon

tissue images, our experiments show that such a resampling method is effective

in increasing the generalization capacity of a learner by increasing the size and

variation of the training set as well as boosting the classifier performance for an

unseen image by combining the decisions of the learner on multiple sequences of

that image.

This study differs from the previous tissue classification methods in two main

aspects. First, it proposes a new framework in an attempt to alleviate an issue of

having limited labeled training data. For that, it introduces the idea of generating

“perturbed images” from the training data and modeling them by a Markov

process. Although the issue of having limited training data is acknowledged

by many researchers working in this domain, it has rarely been considered in the

design of tissue classification systems. Second, it proposes to classify a new image

using its perturbed samples. The use of different perturbations of the same image
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is more effective to reduce the negative outcomes of large variance observed in

tissue images, as opposed to the use of the entire images at once. Moreover,

modeling the perturbations with Markov processes provides an effective method

in modeling the irrelevant regions.

1.3 Outline of the Thesis

This thesis is structured as follows. In Chapter 2, we give background information

about the problem domain and summarize the existing approaches from litera-

ture. In Chapter 3, we present the details of our method including how perturbed

samples from an image are generated and how these perturbed samples are used

in learning and classification by modeling them with Markov chains. In Chapter

4, we explain the dataset, the test environment, and comparison methods. Then,

in the same chapter, we report the test results and give a discussion of the results.

Finally, we finalize the thesis with a conclusion and its future aspects, in Chapter

5.



Chapter 2

Background

In this chapter, we first present domain description in which we explain a specific

cancer type colon adenocarcinoma and how colon tissues undergo deformation

as a consequence of adenocarcinoma. Then we explain the classes that a tissue

image can be classified to and how they are different from each other. Next,

we present a summary of textural, morphological, and structural approaches in

the literature for automated cancer diagnosis. Finally, we discuss the problem

of having limited training dataset and discuss active learning, semi-supervised

learning and resampling techniques.

2.1 Domain Description

In this thesis, we focus on colon adenocarcinoma, which is estimated to be respon-

sible of 90-95 percent of all types of colorectal cancer. Colorectal cancer is the

third most common cancer type among men and women in the USA [35]. Colon

adenocarcinoma affects glandular tissue in the inner wall of the colon, which is re-

sponsible for secreting materials to lubricate waste products and absorbing water

and some minerals from waste products before excretory. Colon adenocarcinoma

starts at inner wall of the colon then spreads to the entire colon, potentially to

the lymphatic system and the other organs as well. If it spreads, it may be fatal.

7



CHAPTER 2. BACKGROUND 8

However, colon adenocarcinoma is one of the most curable cancer types if it is

early detected. Screening tests such as colonoscopy and flexible sigmoidoscopy

help early detection of colon adenocarcinoma without need of the surgery and ac-

cording to [35] there is an observed decrease of colon adenocarcinoma due to the

increased prevalence of these tests. Although these screening tests are important

at early detection of colon adenocarcinoma. The final diagnosis together with its

grade, can be made after examining biopsy sample by a pathologist under a mi-

croscope. For that, a small amount of the tissue of the concerned area is removed

from the human body, and then this removed tissue is cut into thin slices. These

thin slices are named as sections and the process is known as sectioning. Sub-

sequently, for better visualization of these sections under a microscope, they are

stained with a chemical process, which is named as staining. Staining gives con-

trast to the tissue, highlighting its special components for better visualization.

The routinely used staining technique is hematoxylin and eosin. Hematoxylin

stains nucleic acids deep blue and eosin stains cytoplasm pink as a result of a

chemical reaction [24]. An illustrative example of an histopathological image

from a colon tissue is given in Figure 2.1.

In Figure 2.1, cytological components of a colon tissue are also illustrated.

The most important components for colon adenocarcinoma are glands. Glands

involve relatively large luminal areas and epithelial cells surrounding these lu-

mens. Lumens are white large regions in Figure 2.1 and they are responsible

for absorption of water and minerals and secretion of mucus to waste products.

Epithelial cell nuclei are stained dark purple and forms the border of the glands.

Stroma is the region that connects glands and keeps them together. In stroma,

there exist non-epithelial cells, which are also stained dark blue. Colon adeno-

carcinoma originates from epithelial cells and changes glands’ structure, shape,

and size. From a low grade gland to a high grade gland, the change becomes

considerable. In this thesis, we focus on three classes (tissue types) in the con-

text of diagnosis of colon adenocarcinoma. These tissue types are normal, low

grade cancerous and high grade cancerous. These tissue types are exampled in

Figure 2.2. As seen in Figure 2.2(a)-(b), a normal tissue does not include any

cancer or there is no deformation on the structure of glands. With the beginning
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Figure 2.1: An example of a colon tissue stained with hematoxylin-and-eosin.

of the cancer, glands undergo changes in their structure; however, glands are still

well to moderately differentiated in tissue images as seen Figure 2.2(c)-(d). When

the cancer advances, a tissue turns into a high grade cancerous tissue. In a high

grade cancerous tissue, since the deformation on the glands are too much, gland

structures are only poorly differentiated, as seen in Figure 2.2(e)-(f)
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(a) (b)

(c) (d)

(e) (f)

Figure 2.2: An illustration of example tissue images from different cancer types:

(a) - (b) are examples of normal tissue, (c) - (d) are examples of low grade

cancerous tissue, and (e) - (f) are examples of high grade cancerous tissue.
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2.2 Automatic Cancer Diagnosis

In this section, we briefly summarize the existing computational methods pro-

posed for automated cancer diagnosis. We group these methods into three main

categories: morphological, textural, and structural.

2.2.1 Morphological Methods

Cancer causes deformation in the shapes of cells and nuclei components in a tis-

sue. Morphological methods attempt to recognize cancer in the tissue by modeling

these changes with numerical features that characterize the shape and size of these

components. These features can also be aggregated to model the entire tissue by

computing their average and standard deviation [60, 10]. In literature, there are

various morphological features defined for quantifying cells/nuclei. Commonly

used features include radius, perimeter, area, compactness, smoothness, concav-

ity, symmetry, circularity, and eccentricity [57, 50]. Nucleocytoplasmic ratio, hy-

perchromasia, aninonucleosis, and nuclear deformity measures are other features

for cell/nucleus quantification [60]. There are also some studies that combine

the morphological features with other types of features to obtain a larger set of

features. For example, in [65], the morphological features are used along with

textural features for characterizing a tissue.

Extraction of morphological features requires determining the exact locations

of cells beforehand, which is, however, very challenging for histopathological tissue

images due to their complex nature [28]. This problem becomes a bottleneck for

the morphological methods and inexact localization of the nuclei components may

affect the success of these methods in negative manner.

2.2.2 Textural Methods

The existence of cancer changes texture and color of a tissue. Textural meth-

ods aim to capture these changes by extracting textural features from the tissue
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image. One advantage of using textural features over using morphological and

structural features is that it does not require segmentation of tissue components

beforehand. There are various texture extraction methods employed for charac-

terizing a tissue. For example, intensity and color histograms are used to model

the color changes; Haralick features extracted from co-occurrence matrices utilize

second order statistics of gray level intensity distribution; fractal geometry fea-

tures allow quantitative representation of complex and irregular shapes; wavelet

features contain information of an image at different scales. In the next subsec-

tions, we briefly mention these textural features.

2.2.2.1 Intensity and Color Histogram Features

In hematoxylin-and-eosin staining, there exist color changes when a tissue is can-

cerous. This can be attributed to the spread of nuclei, which are stained blue or

purple, to stroma and lumina. Since, nuclei cover larger areas in cancerous tis-

sues compared to normal ones, such tissues include large areas with low intensity

values. Color histograms are used to model these changes [59]. To this end, the

intensity value of each pixel in red, green, and blue channels can be discretized

into N bins and the frequency of each bin is stored in a histogram.

Likewise, intensity features model the distribution of gray level intensities

of pixels in tissue images. These features are extracted from gray level inten-

sity histograms and they include mean, standard deviation, skewness, kurtosis,

and entropy of the gray level distribution [69]. In order to extract these fea-

tures, the histogram probability density function h(gi) is first computed such

that
∑

i h(gi) = 1. The intensity features are then computed on this density

function. The definitions of the most commonly used intensity features are given

in Table 2.1.
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Table 2.1: The Definitions of the most commonly used intensity features extracted
on an intensity histogram.

Mean m =
∑
i

h(gi) · gi
Standard deviation σ =

∑
i

(gi −m)2 · h(gi)

Skewness s =
∑
i

(gi −m)3 · h(gi)

Kurtosis k ==
∑
i

(gi −m)4 · h(gi)

Entropy e = −
∑
i

h(gi) · log2 h(gi)

2.2.2.2 Co-occurrence Matrix Features

Co-occurrence matrix features are defined to characterize the spatial distribution

of gray level intensity values in an image [31]. The co-occurrence matrix P is

defined as a matrix that keeps the frequency of two gray levels being co-occurred

in a particular spatial relationship defined by a distance d and an angle θ. Second

order statistics are computed on the matrix P to obtain co-occurrence matrix

features. The most commonly used co-occurrence features are listed in Table 2.2.

In the table, Pij stands for frequency of gray levels i and j being co-occurred,

µx and µy are the means of column, row sums, and σx and σy are their standard

deviations. In histopathology tissue domain, co-occurrence features are often

used to characterize the texture of an entire tissue image [69, 19, 18, 36].

Table 2.2: The definitions of the most commonly used textural features extracted
on a normalized co-occurrence matrix P

Energy
∑
i,j

P 2
ij

Entropy −
∑
i,j

Pij logPij

Contrast
∑
i,j

Pij (i− j)2

Homogenity
∑
i,j

Pij
1+|i−j|

Dissimilarity
∑
i,j

Pij |i− j|

Correlation
∑
i,j

Pij (i−µy) (j−µx)
σx·σy

Max Probability maxi,j Pij
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2.2.2.3 Gray Level Run Length Features

In statistical texture analysis, the number of combination of intensity levels de-

termines the order of the statistics used for feature extraction. Features extracted

from intensity and color histograms are examples of the first-order statistics, while

co-occurrence features are examples of the second-order statistics. Gray level run

length features are examples of higher order statistical texture features [1]. A

gray level run is a set of consecutive pixels with the same gray level intensity in

a given direction. The run length is defined as the number of pixels in a run and

the run length value is the frequency of this run in an overall image. A gray level

run length matrix P includes Pij|θ that gives the total number of runs of a length

j and a gray level intensity i at direction θ. Galloway introduces five features to

be extracted from a gray level run length matrix [25] and Chu later extends them

by defining two new features [11]. These features are summarized in Table 2.3,

where n is the total number of pixels in the image. Let K be the total number

of runs in the image such as K =
∑
i

∑
j

Pij|θ.

Table 2.3: The definitions of gray level run length features on matrix Pij|θ

Short Runs Emphasis
∑
i

∑
j

Pij|θ
j2

/ K

Long Run Emphasis
∑
i

∑
j

j2 Pij|θ / K

Gray Level Non-uniformity
∑
i

(
∑
j

Pij|θ)
2 / K

Run Length Non-uniformity
∑
j

(
∑
i

Pij|θ)
2 / K

Run Percentage 1
n
K

Low Gray Level Runs Emphasis
∑
i

∑
j

Pij|θ
i2

/ K

High Gray Level Runs Emphasis
∑
i

∑
j

i2 Pij|θ / K

In the diagnosis of cancer, gray level run length features are generally used

together with other features. For instance, Bibbo et al. use gray level run length

features along with co-occurrence and intensity features to distinguish normal and

tumor nuclei. [6]. Weyn et al. use gray level run length features and co-occurrence

features to statistically characterize nuclei of an image [66].
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2.2.2.4 Fractal Geometry Features

Fractal geometry features are used at characterizing complex and irregular shaped

objects in images [37]. A fractal is an object made of subobjects that are similar

to the whole object in some way. Fractal dimension D gives the complexity of

a fractal. Self similarity can be used to estimate the fractal dimension D. For

example, let S be a self similar object which is union of Nr distinct copies of

S scaled down by ratio r. We can estimate fractal dimension D of S by the

expression Nr · rD = 1 or D can be calculated by the following equation.

D = − logNr

log r

However, most of the natural objects do not show deterministic self similarity

so fractal dimension D should be estimated. There exist different methods to

estimate fractal dimension, one of the most commonly used technique is differ-

ential box-counting approach. Most of the time together with other types of

features, fractal features are used to characterize texture of the histopathological

images [32, 59].

2.2.2.5 Multiwavelet Features

In wavelet transform, the data is first divided into different frequency components

and they are analyzed at resolution matching to their scale [29]. Multiwavelet

transform uses more than one scaling function. Multiwavelet transform can pre-

serve features such as short support, orthogonality, symmetry, and vanishing mo-

ments [56]. Zadeh et al. use multiwavelet features in histopathology images for

automated Gleason grading of prostate tissues. To do so, using wavelet transform,

they compose each tissue image into subbands. Finally, from wavelet coefficients

of the subbands, they extract features such as entropy and energy to characterize

the tissue image [56]. It is also possible to select distinctive subbands and use

them for feature extraction [51].
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2.2.2.6 Local Binary Pattern Features

Local binary patterns are a set of textural features that are used to model the

texture of an image in micro-level. In this technique, a binary number is generated

for each pixel in the image and these numbers are combined using a histogram.

This histogram is used as a feature vector to characterize the texture of the image.

To generate a binary number for a pixel, a 3× 3 operator is used to compare its

intensity with its neighbors’ intensities; it assigns zero if a neighbor’s intensity is

lower than the pixel’s intensity, otherwise it assigns one. These binary values for

each neighbor are appended in clock-wise manner to obtain a binary number for

the pixel [48]. Qureshi et al. extend local binary patterns by choosing neighbors

of a particular pixel from those that lie on a circle which is centered on that

particular pixel and has a radius of r [51]. Sertel et al. use local binary pattern

features and co-occurrence matrix features together for detection of cancer in

histopathological images [54].

2.2.3 Structural Approaches

Structural approaches aim to recognize cancer from the topological changes of

tissue components in cancerous tissues. Structural methods usually represent

the tissue with a graph to model spatial distribution and neighborhood informa-

tion of tissue components. Features extracted from these graphs are used in the

automated cancer diagnosis and grading. In generation of such graphs, nuclear

components are usually considered as graph nodes and edges are generated to re-

tain spatial information among these nodes. There are various graph generation

methods; these graphs include Delaunay triangulations, Voronoi diagrams, mini-

mum spanning trees, probabilistic graphs, and weighted graphs. Recently, color

graphs are used for tissue characterization. In addition to nuclear components,

this approach also considers other cytological components in its graph generation.

In the next subsection, we briefly mention some of these methods.
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2.2.3.1 Voronoi Diagram Features

A Voronoi diagram is the partitioning of a plane into complex polygons C =

{Ci}Ni=1 with given points O = {oi}Ni=1 such that there exists exactly one gener-

ating point oi for the complex polygon ci and each point residing in the polygon

ci is closer to its generating point oi than other generating points O \ {oi} [68].

Figure 2.3(a) shows an example of a Voronoi diagram generated on ten random

points. Voronoi diagrams are also commonly used in the structural representation

of histopathological images [5, 68, 58, 19]. To this end, the set of nuclear cen-

troids on a tissue image is used as generating point set O and a Voronoi diagram

is constructed on this point set. Commonly extracted features from a Voronoi

diagram include the mean, standard deviation, min-max ratio, and disorder of

polygon areas, the polygon perimeter lengths, and the polygon chord lengths [5].

2.2.3.2 Delaunay Triangulation Features

The Delaunay triangulation can be derived from a Voronoi diagram as they are

dual of each other. The Delaunay triangulation D of a given point set O = {oi}Ni=1

can be constructed easily after its Voronoi diagram V is generated. For that, an

edge is assigned between any two unique points, oi and oj, where i 6= j, if their

corresponding polygons, ci and cj, in the V share a side. Figure 2.3(b) illustrates

the Delaunay triangulation generated on ten random points. In histopathologi-

cal image domain, many studies use Voronoi diagrams together with Delaunay

triangulation to characterize the structural information of a tissue image [5, 19].

Likewise, these studies use nuclear centroids to generate Delaunay triangulation.

Common features extracted from the Delaunay triangulation consist of the mean,

standard deviation, min/max ratio, and disorder of the triangle edge lengths and

the triangle areas.
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(a)

(b)

Figure 2.3: An example of (a) a Voronoi Diagram and (b) a Delaunay Triangu-

lation generated for ten random points.
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2.2.3.3 Minimum Spanning Tree Features

A spanning tree of a connected and undirected graph G is a subgraph that con-

nects all of the graph nodes without having any cycles. There may exist differ-

ent spanning trees of the same graph. For the weighted graphs, the minimum

spanning tree (MST) is defined as the one that minimizes the total spanning

tree edge weights. In automatic cancer diagnosis, features extracted from min-

imum spanning trees are used to characterize a tissue. These features include

the mean, standard deviation, min/max ratio, and disorder of the MST edge

lengths [10, 17, 19, 68, 5].

2.2.3.4 Color Graphs Features

As opposed to other structural methods, which model only the spatial distribution

of cell nuclei using a graph, the color graph approach is proposed to model also the

distribution of other tissue components [2]. In this approach, a graph is generated

considering nuclear, stromal, and luminal tissue components as graph nodes and

assigning graph edges using Delaunay triangulation. In this graph representation,

each edge is labeled according to the type of their end nodes. After constructing a

graph, colored version of the features such as the colored average degree, colored

average clustering coefficient, and colored diameter are extracted.

2.3 Limited Training Data

In supervised classification, a model is first learned from a training set and then

used to classify unlabeled samples. Here the aim is to construct a good model,

which is a close approximation to the true model. The difference between the con-

structed and true models may yield an error, which is also known as an estimation

error. In order to construct a good model, and hence to reduce the estimation er-

ror, it is known that the model should be learned on sufficient, and usually large,

amount of labeled training samples, which reflect the real data distribution [20].
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On the other hand, obtaining large amount of labeled data is quite difficult, and

costly, in many problem domains. Automated cancer diagnosis on histopathologi-

cal images is one of such domains. To alleviate this problem, different approaches

have been proposed. Active learning, which intelligently selects the samples to

be labeled, is one them [40, 70] it is also possible to use semi-supervised learning,

which combines labeled and unlabeled data in the construction of a classifier [39].

Another approach is to use data resampling, which is especially used to make

unbalanced dataset balanced [12, 49].

2.3.1 Active Learning

Active learning methods assume that collecting unlabeled data is easy but labeling

them is costly and difficult [55]. Therefore, in active learning systems, a classifier

selects the samples to be labeled (and to be used in its training set) interactively.

Here the aim is to obtain the highest accuracies by selecting the minimum number

of samples. For that, it is possible to start with random selection of samples

as an initial training set and enhance the classifier iteratively by selecting and

labeling unlabeled samples. To select an unlabeled sample, Liu et al. calculate

the distance of unlabeled samples to the SVM’s hyperplane and select the sample

with the highest distance. They apply this approach to gene expression data for

cancer classification [40]. Yu et al. use a classifier to estimate the confidence score

of an unlabeled sample, and decide whether or not to label the sample according

to its score level. The classifier labels the sample if its confidence level is higher

than a predefined threshold, the classifier leaves the sample to be labeled by an

expert otherwise [70].

2.3.2 Semi-supervised Learning

Similar to active learning, semi-supervised learning assumes that a large number

of unlabeled data exists in the dataset, however labeling them is difficult. This

approach utilizes unlabeled samples to increase the performance of the classifier
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especially where there is a limited number of labeled training samples. As op-

posed to active learning, semi-supervised learning does not query the label of the

unlabeled samples to an expert, this is the difference between semi-supervised

learning and active learning. In [39], they use ensemble of N classifiers. To refine

a particular classifier, they use other classifiers to label an unlabeled sample, and

they use the labeled sample in the particular classifier’s training set.

2.3.3 Resampling

In resampling, samples are drawn from a sample set to obtain a new set [45].

Resampling has been used with different purposes including validation of cluster

results [45] and performance evaluation of classifiers [63, 53]. Additionally, it is

commonly used to alleviate negative effects of the issue of unbalanced training

datasets problems [47, 22, 12, 49]. In unbalanced datasets which the number of

samples is significantly different from each other among classes, classifiers tend

to favor prevalent classes. To circumvent this problem, one may balance the

dataset by resampling from classes with less number of samples. There are three

techniques:

• Bootstrapping: In bootstrapping, each bootstrap sample is obtained by

random selection from the original dataset with replacement. In this re-

sampling technique, some samples in the original set may be selected more

than once or may not be selected at all. In subsampling, random subsets

{Yi}Ni=1 are resampled from the set X such that Yi ⊂ X [45].

• Jittering : If one measures the same event multiple times, these measure-

ments may be different from each other due to the measurement error. In

jittering, the main motivation is to simulate the existence of such measure-

ment errors in selecting samples. Hence, jittering selects random samples

from the original dataset and adds random noise to these selected sam-

ples [45].

• Perturbation: In bootstrapping, resampled samples are the replicates of

the original samples. Likewise, in jittering, resampled samples are only
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slightly different from the original ones. These resampling techniques do

not simulate the differences between samples due to the intra-population

variability. On the other hand, perturbation attempts to reflect estimates

of intra-population variability to the original samples. In this technique,

random variables are generated from a distribution that models distribu-

tion of original samples and these random variables are added to original

samples to obtain perturbed samples [45]. For example, one may calculate

the mean and standard deviation of the original samples, calculate random

values from a normal distribution with the computed mean and standard

deviation, and add these values to original samples [45].

Although these techniques increase the size of a dataset, however, for images

that contain irrelevant information and a considerable amount of noise, one may

want to develop techniques that do not use the entire image but some of its sub-

regions. In this thesis, we present a novel resampling technique. This technique

generates sequences that model partial regions in the tissue image and uses each

of these sequences as a sample in learning and classification.
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Methodology

The proposed resampling-based Markovian model (RMM) relies on generating

perturbed samples from each tissue image and using these perturbed samples in

learning and classification. The main motivation behind the use of perturbed

samples is to model variances in tissue images better even when only limited

labeled data are available. The RMM includes two components: perturbed sam-

ple generation and Markov modeling. We explain these two components in the

following sections.

3.1 Perturbed Sample Generation

Let I be a tissue image that is to be either classified in testing or used in training.

The RMM represents this image by N of its perturbed samples, I = {S(n)}Nn=1,

each of which is represented by a sequence of T observation symbols, S(n) =

O
(n)
1 O

(n)
2 . . . O

(n)
T . (For better readability, we will drop n from the terms unless its

use is necessary. Thus, each perturbed sample is represented by S = O1O2 . . . OT .)

These perturbed samples model partial regions of the tissue image I. There are

three main steps: The first step is the selection of data points and extracting

features representing them, the second step is to discretize extracted features

into a set of observation symbols, and the final step is to order the observation

23
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symbols. These steps are explained in Sections 3.1.1, 3.1.2, and 3.1.3, respectively.

Figure 3.1 illustrates the general outline of the perturbed sample generation.

Figure 3.1: A schematic overview of the perturbed sample generation.

3.1.1 Random Point Selection and Feature Extraction

The first step of generating a sequence S from the image I is to select T data

points from the image I and to characterize them by extracting features. The

RMM uses random point selection to select T random points. After selection

of T data points, each point is characterized by using its neighborhood pixels.

To this end, we locate a window centered on each of these selected points and

extract features to characterize the local image around this point. The RMM

uses four features that quantify color distribution and texture of the pixels falling

within this window. These four features are defined on the quantized pixels.

The quantization of the pixels is mapping pixel colors to some dominant colors.

In our case, tissues are stained with hematoxylin and eosin, which yields three

dominant colors (white, pink and purple). However, the intensity levels of these

three dominant colors show differences among tissue images due to the variability

of the staining process. In quantization of pixels we map pixel colors into white,

pink and purple. For that reason, the k-means algorithm is used to cluster pixel

colors of the image I into three and each of these clusters are labeled as white,
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pink or purple according to closeness of the center of the cluster to these three

dominant colors. The first three features that the RMM uses correspond to ratios

of quantized pixel colors in the window. The last feature is a texture descriptor

(J-value) that quantifies how uniform the quantized pixels are distributed in

space [16]. Let Z be the set of the pixels that reside in the window and Zi be

the set of the pixels that belongs to color i; in our case, since we quantize pixel

colors, i might be either white, pink or purple. Let z = (x, y) ∈ Z be a pixel. We

first calculate the overall mean m of the pixels in Z, and class mean mi for the

pixels in Zi.

m =

∑
z∈Z

z

|Z|
(3.1)

mi =

∑
z∈Zi

z

|Zi|
(3.2)

Then, we calculate overall variation St and total variation of pixels belonging the

same class Sw.

St =
∑
z∈Z

||z −m|| (3.3)

Sw =
∑

i∈{white,pink,purple}

∑
z∈Zi

||z −mi|| (3.4)

The J-value is calculated from St and Sw.

J =
Sw − St
St

(3.5)

Note that, the RMM uses a generic feature framework and does not impose

any specific feature type. One may define his/her own features and use them in

the RMM. In this study, we select features that are effective and easy to compute.

Besides, selected features do not introduce any external model parameters.

In this step, for the selection of data points, we use random selection by

default, yet there would be other methods for the selection of these T data points.

For example, one may want to identify SIFT (Scale Invariant Feature Transform)

points from the image I, which are commonly used in object detection in the

literature [41]. We discuss the effects of selecting of the data points randomly or

via SIFT in Section 4.5.2.1.
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3.1.2 Discretizing Features into Observation Symbols

After selecting data points and extracting their features, we discretize the features

for the data points into K observation symbols, {vk}Kk=1, since we use discrete

Markov processes for modeling different types of tissue formations. There are two

main steps for the discretization. The first step is the unsupervised learning of

the observation symbols; this step is done once and learned observation symbols

are used throughout the learning and classification stages. The second step is

to discretize each of the features to an observation symbol. The details of these

steps are explained in the following subsections.

3.1.2.1 Learning Observation Symbols

We use k-means clustering to learn K clusters on the extracted features of the

data points selected from the training images. K-means is an unsupervised clus-

tering that partitions the data points such that the squared error between the

mean of a cluster and the points in that cluster is minimized [34]. It is an it-

erative algorithm that minimizes the squared error in each iteration. We learn

clusters by selecting 100 random data points from each training image and initial-

ize k-means with random initial cluster centers. Although the number of selected

points does not have too much effect for larger training sets, its smaller values

lead to decreased performance when smaller training sets are used. In general,

this number should be selected large enough so that different “good” clusters can

be learned. However, it may be selected smaller to decrease the computational

time of training. In addition, note that unsupervised learning of the observation

symbols provides the RMM the flexibility of automatic observation symbol learn-

ing. Hence, the RMM can easily be extended to other domains or to other feature

types. One can change the feature extraction process and apply the RMM in the

areas outside of histopathological image classification.
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3.1.2.2 Discretizing Features

After we find {vk}Kk=1 observation symbols, we map extracted features of a selected

point to one of the {vk}Kk=1 observation symbols. Let {mk}Kk=1 be the set of the

cluster centers that each observation symbol corresponds. For each selected point

P , we have a set of four features which can be denoted by X. We discretize P to

the observation symbol v∗ that is the label of the closest cluster center.

v∗ = argmin
i

dist(X,mi) (3.6)

Here, we use the Euclidean distance to compute the distance between the X and

each cluster center. At the end of this step, a perturbed sample is represented

with a set of observation symbols, S = {Oi | Oi = vk where 1 ≤ k ≤ K for all i},
but not as a sequence of them.

3.1.3 Ordering the Points

The next step is to order the data points and construct a sequence from their

observation symbols. The data points are ordered as to minimize the sum of

distance between the adjacent points. Formally, this ordering problem can be

represented as finding S = O1O2 . . . OT such that

T∑
t=2

dist(Pt−1, Pt) (3.7)

is minimized. Here dist(u, v) represents the Euclidean distance between the points

u and v and Ot is the observation symbol defined for the point Pt. This formulated

problem indeed corresponds to finding the shortest Hamiltonian path among the

given points, which is known as NP-complete. Thus, the proposed method uses a

greedy solution for ordering. This greedy solution selects the point closest to the

top-left corner as the first data point P1 and then at every iteration t, it selects

the data point Pt that minimizes dist(Pt−1, Pt). In Figure 3.2, we illustrate a

quantized image and a perturbed sample generated from this quantized image.

Note that for simplicity, we select length of the sequence as 40 and number of the

distinct states as 10. We repeat this process to obtain N sequences.
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Figure 3.2: A quantized image and a sample sequence.

At the end of this step, we obtain N sequences, each representing a perturbed

image. These sequences are expected to model variances in tissue images bet-

ter. To illustrate the reason behind this, let us consider the tissue images in

Figures 1.2(c) and 1.2(d). Although they show variances at the pixel level due

to their irrelevant regions, these images are indeed very similar to each other in

terms of their biological context. Figures 3.3(a) and 3.3(b) show some sequences

generated from these images; here a data point is represented with its window,

in which its features are extracted. As observed in these figures, it is possible to

obtain similar sequences for these two images; the first three sequences of Fig-

ure 3.3(a) are visually similar to those of Figure 3.3(b). In our proposed RMM,

we anticipate to have some of such similar sequences provided that a large number

of sequences are generated.

Generating perturbed samples increases number of samples in the dataset.

Besides, it also increases the diversity. For instance, if we extract features using

an entire image, we would obtain one feature vector representing the entire image.

However with perturbed sample generation, we model different parts of the image
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(a)

(b)

Figure 3.3: Sequences generated for the tissue images given in Figures 1.2(c)
and 1.2(d). Similar sequences could be obtained for these two images even though
they show variances at the pixel level due to their irrelevant regions.

and use the information from these different parts for learning and classification.

Moreover, although each of these sequences is generated from the same image,

they are different from each other. For instance in Figure 3.3(a) or 3.3(b),

the perturbed samples are generated from the same image and they are directly

related to the same image, however as you observe, they are different from each

other and some of these sequences even do not resemble to each other. Hence, by

using perturbed samples, we increase the diversity in the training set.

3.2 Markov Modeling

A Markov process models the state of a system with a random variable X which

changes with time. For instance, X1 gives the state of the system at time one. A
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Markov model is a stochastic process, where the value of the Xt depends on its

previous s states. For example, in the first-order Markov model, s becomes one;

i.e., the future behavior of the system (state of system) depends on its previous

state. A discrete Markov model is a Markov process whose state space is a finite

set. There are two common types of Markov models: observable and hidden

Markov models. In an observable Markov model, the states are equivalent to the

observations; that is with the knowledge of observation, we can precisely infer the

state. In a hidden Markov model, the observations are related to underlying state,

but the knowledge of observation is insufficient to precisely infer the underlying

state.

In the proposed RMM, we model the perturbed samples each of which is

a sequence of observation symbols S = O1O2 . . . OT with Markov models. In

addition, we assume one-to-one correspondence with observation symbols and

states, and a finite set of the observation symbols. These assumptions allow us to

use a m’th order observable discrete Markov model. In this study, we use m = 1,

so observation symbol Ot is only dependent to its previous observation symbol

Ot−1.

P (Ot = vi | Ot−1 = vj, Ot−2 = vk, . . .) =

P (Ot = vi | Ot−1 = vj) (3.8)

In this study, we use Markov modeling since it is one of the simplest and most

effective ways of modeling sequences. There are also other possible methods for

sequence modeling such as hidden Markov models and recurrent neural networks.

We believe that these methods can work well in the proposed method, provided

that their parameters are correctly estimated on the training data. However, since

Markov modeling provides a fairly accurate tool for our purpose and because of

its simplicity, we prefer using it.



CHAPTER 3. METHODOLOGY 31

3.2.1 Learning the Parameters of a First Order Observ-

able Discrete Markov Model

For each class Cm, we train a different Markov model. Each Markov model

has three parameters: the number of states (observation symbols) Km, initial

state probabilities Πm = {π(vi | Cm)}, and state transition probabilities Am =

{a(vi, vj | Cm)} where

π(vi | Cm) = P (O1 = vi | S ∈ Cm) (3.9)

a(vi, vj | Cm) = P (Ot+1 = vj | Ot = vi and S ∈ Cm) (3.10)

The number of states Km is the same for every Markov model and equal to

the number of observation symbols. For learning the probabilities Πm and Am,

a new training set, Dm = {S(u) | S(u) ∈ Cm}, is formed generating N perturbed

samples from each training image that belongs to the class Cm. Using this new

training set, the probabilities are learned by maximum likelihood estimation. The

process is illustrated in Figure 3.4.

π(vi | Cm) =
#{S(u) such that O

(u)
1 = vi}

#{S(u)}
(3.11)

a(vi, vj | Cm) =

T−1∑
t=1

#{S(u) such that O
(u)
t = vi, O

(u)
t+1 = vj}

T−1∑
t=1

#{S(u) such that O
(u)
t = vi}

(3.12)

In Equations 3.11 and 3.12, #{.} denotes ”‘number of”’ function. In these

equations, if there is no occurrence of a particular event in the training data,

then the formulas yield zero probability for those events. For example, if there

is no subsequent observation of vi and vj in any sequence in the training set, the

state transition probability a(vi, vj) will be zero. This case may not be desired

especially when there is limited data for training, since many probabilities will be

zero, although the occurrence of these events would be plausible. Zero probability
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is indeed very ambitious, as not having an observed occurrence of an event does

not really mean it will not happen. In order to handle this problem, in this

study, we use additive smoothing [8] with α = 1. Additive smoothing assumes an

occurrence of each event from the outset. The α parameter gives initial frequency

to each possible event. Therefore, the initial and transition probabilities can be

computed as

π(vi | Cm) =
#{S(u) such that O

(u)
1 = vi}+ α

#{S(u)}+ α ·K
(3.13)

a(vi, vj | Cm) =

T−1∑
t=1

#{S(u) such that O
(u)
t = vi, O

(u)
t+1 = vj}+ α

T−1∑
t=1

#{S(u) such that O
(u)
t = vi}+ α ·K

(3.14)

Figure 3.4: A schematic overview of the proposed resampling-based Markovian
model (RMM) for learning the model parameters.

3.2.2 Classification

The classification of a given image I is done using its perturbed samples. For each

perturbed sample S ∈ {Si}Ni=1 of I, the posterior probability of each class Cm is
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computed and the class that maximizes these posterior probabilities is selected.

Posterior probability P (Cm | Si) is the probability of the perturbed sample Si

belonging to class Cm. Subsequently, the class C∗ of the image I is found using

a majority voting scheme that combines the selected classes of the perturbed

samples of I.

δki =

{
1 if k = argmaxm P (Cm | Si)
0 otherwise

(3.15)

C∗ = argmax
j

N∑
i=1

δji (3.16)

The posteriors P (Cm | S) are calculated by the Bayes rule:

P (Cm | S) =
P (S | Cm) · P (Cm)

P (S)
(3.17)

where

P (S) =
∑
m

P (S|Cm) · P (Cm) (3.18)

In the Bayes rule, there are two unknowns, the first one is class probabili-

ties P (Cm). In this study, we assume that each class is equally likely that is

P (C1) = P (C2) = ... = P (Ci) = ... = P (Cm). The other unknown is the class

likelihood P (S | Cm). Once Πm and Am are learned on the training sequences,

class likelihood P (S | Cm) can be written as

P (S | Cm) = π(O1 | Cm)
T−1∏
t=1

a(Ot, Ot+1 | Cm). (3.19)

Since we assume the equal class prior probabilities, the class m that maximizes

class likelihood P (S | Cm) will also maximize posterior probability P (Cm | S).

The steps of the RMM to classify an unseen image are given in Figure 3.5.
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Figure 3.5: A schematic overview of the proposed resampling-based Markovian
model (RMM) for classifying a given image.



Chapter 4

Experiment Results

In this chapter, we first give the details of the dataset and explain the methods

that we compare with the proposed RMM. Then we describe the cross-validation

technique that is used in parameter selection of the RMM and other methods.

Next, we present the results of our experiments conducted with different training

data sizes to understand how accurate and stable the RMM is against other al-

gorithms. Finally, we discuss the results and give the detailed parameter analysis

of the RMM.

4.1 Dataset

The dataset used in the experiments contains 3236 microscopic images of colon

tissues of 258 randomly selected patients from the Pathology Department archives

in Hacettepe University School of Medicine. The tissues are stained with hema-

toxylin and eosin and their images are taken with a Nikon Coolscope Digital

Microscope using 20× microscope objective lens at 480 × 640 image resolution.

This magnification level is high enough to ensure that different regions in a tissue

image are in the same class in the context of cancer diagnosis. In addition, it is

low enough to demonstrate many instances of glands in the same image.

35
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We randomly divide the patients into two such that the training set contains

1644 images of the first half of the patients and the test set contains 1592 images

of the remaining. We label each image with one of the three classes: normal,

low-grade cancerous, or high-grade cancerous1. The training set contains 510

normal, 859 low-grade cancerous, and 275 high-grade cancerous tissues. The test

set contains 491 normal, 844 low-grade cancerous, and 257 high-grade cancerous

tissues. As you may notice, the dataset we use is unbalanced and may favor low-

grade cancerous class. In order to obtain unbiased results, we resample normal

and high-grade cancerous tissue images randomly until we have balanced number

of samples for all class types.

4.2 Comparisons

To investigate the effectiveness of the proposed method, we compare its results

with those of the two sets of algorithms. The first set includes algorithms that

define their features similar to the RMM but take different algorithmic steps

for classification. We particularly implement these algorithms to understand

the effectiveness of the perturbed sample generation and Markov modeling steps

proposed by the RMM. The second set includes algorithms that use different

textural and structural features proposed by existing methods. We use them

to compare the performance of the RMM and previous approaches. In these

algorithms, we use SVM with a linear kernel for classification.

4.2.1 Algorithms with Similar Features

4.2.1.1 GridBasedApproach

First, we implement a grid-based counterpart of our method. In this approach,

an image is divided into grids, the same RMM features are extracted for the grids,

1The images are labeled by Prof. C. Sokmensuer, MD, who is specialized in colorectal
carcinomas.
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and the grid features are averaged all over the tissue image. The details of the

extracted features are given in Section 3.1.1. Then, a support vector machine

(SVM) with a linear kernel is used for learning and classification tasks. This

method directly uses grid features, as opposed to the RMM where grids are first

discretized and then used for classification. Besides, it does not use resampling-

based voting, which votes the decisions of a classifier obtained for the samples of

the same image.

4.2.1.2 VotingApproach

In this approach, we modify the previous grid-based approach so that it includes

resampling-based voting. This approach generates N samples from a test image

similar to the RMM, classifies them using the learned SVM, and combines the

decisions by majority voting. This method selects T random grids to generate a

sample and defines the features of the sample by averaging those of the selected

grids on the tissue image.

4.2.1.3 BagOfWordsApproach

The previous two approaches directly use the extracted grid features, without

discretizing the grids. The BagOfWordsApproach discretizes the grids into K

observation symbols in the same way of the RMM, forming the visual words of

a vocabulary. Then, it divides a test image into grids, assigns each grid to its

closest visual word, and uses the frequency of these visual words to characterize

the image. This classifier treats an image as a collection of regions and ignores

spatial information of these regions.
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4.2.2 Algorithms with Different Features

4.2.2.1 IntensityHistogramFeatures

We calculate first-order histogram features over a tissue image. The IntensityHis-

togramFeatures include mean, standard deviation, kurtosis, and skewness values

calculated on the intensity histogram of a gray-level tissue image [69]. To reduce

the effects of noise or small intensity differences, pixel intensities are quantized

into N bins.

4.2.2.2 IntensityHistogramFeaturesGrid

These features are the same with the previously defined intensity histogram fea-

tures. The difference is that instead of extracting a single histogram for an entire

image, the image is divided into grids and first-order histogram features are com-

puted for every grid. Then average of these features is used to characterize the

entire tissue.

4.2.2.3 CooccurrenceMatrixFeatures

We compute the CooccurrenceMatrixFeatures that are second-order statistics of

gray level intensities in the tissue image. These features are energy, entropy,

contrast, homogeneity, correlation, dissimilarity, inverse difference moment, and

maximum probability derived from a gray-level co-occurrence matrix of an en-

tire image [21, 31]. In our experiments, we define co-occurrence matrices for

eight different directions and take their average to obtain rotational invariant co-

occurrence matrix Mavg, and calculate the features on Mavg. Likewise, gray-level

pixel intensities are quantized into N bins to lessen the effects of noise and small

intensity differences.
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4.2.2.4 CooccurrenceMatrixGrid

Likewise, we calculate the CooccurrenceMatrixFeaturesGrid features that are the

grid based version of the CooccurrenceMatrixFeatures. In CooccurrenceMatrixFea-

turesGrid, we divide the image into grids and the aforementioned co-occurrence

matrix features are calculated for each grid. The average of these features is taken

to represent an entire image.

4.2.2.5 ColorGraphFeatures

They are structural features extracted on color graphs [2]. In a color graph, nodes

correspond to tissue components (nuclear, stromal, and luminal components) that

are approximately located by an iterative circle-fit algorithm [61] and edges are

defined by a Delaunay triangulation constructed on these nodes. After coloring

the edges according to their end nodes, colored versions of the average degree,

average clustering coefficient, and diameter are defined as the structural features.

Note that the circle-fit algorithm uses two parameters for locating the nodes.

4.2.2.6 DelaunayTriangulationFeatures

Another type of structural features we calculate is the Delaunay triangulation

features. This set of features is extracted on a standard (colorless) Delaunay

triangulation that is constructed on nuclear components located using the circle-

fit algorithm. The DelaunayTriangulationFeatures include the average degree,

average clustering coefficient, and diameter of the entire Delaunay triangulation

as well as the average, standard deviation, minimum-to-maximum ratio, and

disorder of edge lengths and triangle areas [17].
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4.3 Parameter Selection

The proposed resampling-based Markovian model (RMM) has four external pa-

rameters:

• WinSize is the size of the window in which the features of a sampled point

are defined,

• StateNo is the number of states in a Markov model,

• SeqLen is the length of an observation sequence,

• SeqNo is the number of sequences (perturbed samples) generated for each

image.

Note that the number of states and observation symbols is the same in observable

Markov models. We tune these parameters with three fold cross-validation on

the training set. To do that, we first determine a set of plausible values for each

parameter. Then, we create a list that consists of all possible combinations of the

aforementioned values for each parameter. Afterwards, we measure the success

of each parameter combination in the list with three fold cross-validation on the

training set and select the parameter combination that has the highest accuracy.

In three fold cross-validation, to measure the success of given parameters, we first

divide the training set into three equal size subsets, and each time we train the

classifier with two of the subsets and given parameters, then test the classifier

with the other subset. Since, we use three fold cross-validation, we repeat this

process three times; for each time we test a different subset. Then we get three

accuracy values and take the average of these values to obtain the overall success

of the given parameters.

In our experiments, we consider all possible combinations of the follow-

ing parameter sets: winSize = {10, 20, 40, 80}, stateNo = {4, 8, 16, 32, 64},
seqLen = {10, 25, 50, 100, 150}, and seqNo = {10, 25, 50, 100, 150}. Using three

fold cross-validation on training images, we select the parameters as winSize =

40, stateNo = 64, seqLen = 100, and seqNo = 100. The other algorithms
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Table 4.1: The parameters of the algorithms together with their values considered
in cross validation.

GridBasedApproach Grid size = {10, 20,40, 80}
C = 70

VotingApproach Grid size = {10, 20,40, 80}
Number of grids = {10, 25, 50,100}
Trial number = {10, 25, 50, 100}
C = 350

BagOfWordsApproach Number of words = {4, 8, 16, 32,64}
Grid size = {10, 20, 40, 80}
C = 1

IntensityHistograms Bin number = {4, 8,16, 32}
C = 200

IntensityHistogramGrids Bin number = {4,8, 16, 32}
Grid size = {10, 20, 40, 80}
C = 550

CooccurrenceMatrices Bin number = {4,8, 16, 32}
Distance = {5, 10, 20, 40}
C = 900

CooccurrenceMatrixGrids Bin number = {4,8, 16, 32}
Distance = {5,10, 20, 40}
Grid size = {10, 20,40, 80}
C = 30

ColorGraphs Structuring element size = {3, 5, 7, 9}
Circle area threshold = {5,10, . . . , 50}
C = 3

DelaunayTriangulations Structuring element size = {3, 5, 7, 9}
Circle area threshold = {5,10, . . . , 50}
C = 900

have also parameters, which are listed in Table 4.1. In addition to these, they

have the SVM parameter C as they use SVM classifiers with linear kernels [7].

Similarly, we use three fold cross-validation on training images to select the pa-

rameters of each algorithm. The candidate values of each parameter are given in

Table 4.1. For all algorithms, the same set is considered for the SVM parameter:

C = {1, 2, . . . , 9, 10, 20, . . . , 90, 100, 150, . . . , 950, 1000}. The selected parameters

for these algorithms are highlighted in bold in Table 4.1.
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4.4 Test Results

As tissue images typically contain a considerable amount of variance, tissue classi-

fication systems usually require large amount of data to learn this variance better.

However, acquiring large datasets from a large number of patients is quite difficult

in this domain. Note that, for the first sight, our dataset seems to be a counter

example. However, it is worth noting that the preparation of this dataset, which

includes case selection, archive search, slide examination, image acquisition, and

labeling steps, takes more than three years. Thus, this dataset is actually a good

example that indicates the difficulty of acquiring large datasets in this domain.

In order to measure the success of the RMM in limited training data, we conduct

our experiments using all available training data as well as using less training

data. For that purpose, we randomly divide the training dataset into smaller

subsets such that each subset includes P percent of the data in the original set.

For all algorithms, we repeat the experiments when P is selected as 2.5, 5, 10,

25, and 50 percents. Since there are more than one subset for a selected P value

(e.g., there are 20 different subsets when P = 5 percent), we consider all these

subsets and report the average results. Besides, point selection in the RMM in-

volves randomness. Thus, for the RMM, we repeat the experiments for 40 times

with the selected parameters and also consider these different runs in average

computation.

In Tables 4.2, 4.3, and 4.4, we report the average test set accuracies obtained

by the algorithms when we use all available training samples (P = 100 percent)

and a partial set of available training samples (P = 10 and P = 5 percent)

respectively. The results show that the RMM improves the accuracy of the other

algorithms; the McNemar’s test gives that the overall accuracy improvement is

statistically significant with α = 0.05 for all 40 runs. It is also observed that

the algorithms that use grid-based aggregation to model a tissue image usually

performs better than those that use the image in its entirety. This is attributed

to the issue of finding a constant texture for an image that contains irrelevant

regions in the context of classification (see Figure 1.2). The RMM, which can

also be considered as an aggregation method, further improves these grid-based
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algorithms.

Table 4.2: Classification accuracies on the test set and their standard deviations.
The results are obtained when all training data are used (when P = 100 percent).

Normal Low High Overall

S
im

il
a
r

F
e
a
tu

re
s RMM

95.64 87.77 88.56 90.32
(±0.18) (±0.32) (±0.39) (±0.18)

GridBasedApproach 91.65 85.31 85.60 87.31

VotingApproach 90.02 85.43 85.99 86.93

BagOfWordsApproach 94.91 87.32 76.65 87.94

D
iff

e
re

n
t

F
e
a
tu

re
s

IntensityHistograms 80.65 69.55 70.04 73.05

IntensityHistogramGrids 78.82 74.17 78.60 76.32

CooccurrenceMatrices 83.10 81.64 77.82 81.47

CooccurrenceMatrixGrids 87.58 84.12 85.60 85.43

ColorGraphs 92.67 82.46 86.38 86.24

DelaunayTriangulations 89.61 71.56 87.55 79.71

The RMM yields better accuracies than the GridBasedApproach and the

VotingApproach, which do not make use of the discretized grids in their classifica-

tion. This indicates the usefulness of state definition of the RMM. In addition, the

GridBasedApproach and the VotingApproach aggregate heteregenous regions by

averaging the features extracted from grids. However, the RMM does not aggre-

gate them, but uses them separately in a sequence. This would be another advan-

tage of the RMM over the GridBasedApproach and the VotingApproach. Besides,

comparing the RMM against the VotingApproach, the results show that generat-

ing perturbed sample sequences is more effective in resampling-based voting. The

BagOfWordsApproach uses state definition but does not employ resampling-based

voting in its classification. The RMM improves the performance of the BagOf-

WordsApproach. This shows the effectiveness of using resampling-based voting
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Table 4.3: Classification accuracies on the test set and their standard deviations.
The results are obtained when limited training data are used (when P = 10
percent).

Normal Low High Overall

S
im

il
a
r

F
e
a
tu

re
s RMM

95.22 89.45 86.46 90.75
(±0.58) (±1.99) (±2.94) (±0.66)

GridBasedApproach
90.31 84.30 82.96 85.94

(±3.00) (±3.28) (±3.13) (±0.77)

VotingApproach
89.47 84.67 81.75 85.68

(±3.03) (±3.10) (±3.62) (±0.88)

BagOfWordsApproach
93.73 90.20 61.40 86.64

(±1.88) (±2.04) (±9.18) (±1.42)

D
iff

e
re

n
t

F
e
a
tu

re
s

IntensityHistograms
79.04 69.64 63.23 71.51

(±3.58) (±5.97) (±8.84) (±3.00)

IntensityHistogramGrids
77.70 73.35 75.25 75.00

(±3.33) (±5.61) (±3.80) (±2.73)

CooccurrenceMatrices
78.88 81.15 70.23 78.69

(±4.09) (±4.02) (±8.32) (±1.61)

CooccurrenceMatrixGrids
83.77 83.95 81.87 83.56

(±3.08) (±3.05) (±4.89) (±1.84)

ColorGraphs
88.37 84.23 75.64 84.12

(±3.35) (±2.55) (±5.37) (±1.68)

DelaunayTriangulations
86.80 72.75 74.94 77.44

(±1.91) (±7.63) (±8.62) (±3.12)

and utilizing neighbourhood information of regions, since the BagOfWordsAp-

proach does not apply resampling-based voting and does not retain neighborhood

information of the regions. This improvement is especially observed for correct

classification of high-grade cancerous tissues; as a future research aspect of this

work, one could work on incorporating the proposed framework into a bag-of-

words approach. Additionally, as opposed to the RMM, none of the algorithms

represent an image using perturbed image sequences. Hence, these results also

indicate the importance of the sequence representation in the RMM.

Other algorithms that use different textural and structural features perform

worser than the RMM. The CooccurrenceMatrixGrids and ColorGraphs are the

most successful ones among them. However, as the results show, their accuracy is

less that of the RMM. This indicates the success of the RMM over other methods.
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Table 4.4: Classification accuracies on the test set and their standard deviations.
The results are obtained when limited training data are used (P = 5 percent).

Normal Low High Overall
S
im

il
a
r

F
e
a
tu

re
s RMM

94.69 90.76 82.32 90.61
(±1.37) (±2.84) (±5.27) (±0.88)

GridBasedApproach
87.25 85.12 77.20 84.50

(±5.39) (±4.97) (±8.15) (±2.56)

VotingApproach
86.75 85.67 75.91 84.43

(±5.60) (±4.90) (±8.19) (±2.46)

BagOfWordsApproach
92.31 90.59 58.48 85.94

(±2.84) (±4.05) (±9.25) (±2.05)

D
iff

e
re

n
t

F
e
a
tu

re
s

IntensityHistograms
77.08 69.54 57.43 69.91

(±4.84) (±9.44) (±10.19) (±4.68)

IntensityHistogramGrids
75.67 73.35 70.56 73.61

(±6.21) (±7.65) (±6.43) (±4.10)

CooccurrenceMatrices
75.17 79.26 65.04 75.70

(±6.75) (±6.37) (±11.12) (±3.75)

CooccurrenceMatrixGrids
81.45 82.64 77.02 81.37

(±5.01) (±5.39) (±9.44) (±2.96)

ColorGraphs
85.22 85.79 62.70 81.89

(±4.38) (±5.26) (±8.62) (±3.23)

DelaunayTriangulations
82.03 75.31 61.93 75.22

(±6.20) (±8.68) (±9.13) (±4.43)

If we compare the co-occurrence matrix and intensiy features, we observe that

the use of the co-occurrence matrix features are more effective than the inten-

sity features. This can be attributed to potential of texture features capturing

more information than the intensity features. The ColorGraphs features repre-

sent topological structure of tissue components. It requires correct localization

of tissue components to model the topological structure, however this is a hard

task in histopathological image analysis domain.
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Figure 4.1: Performance of the algorithms as a function of the training set size:

(a) the test set accuracies of the algorithms that use features similar to those

of the RMM and (b) the test set accuracies of the algorithms that use features

different than those of the RMM.



CHAPTER 4. EXPERIMENT RESULTS 47

0 20 40 60 80 100
−1

0

1

2

3

4

5

6

Training set size percentage P

D
ec

re
as

e 
P

er
ce

nt
ag

e

 

 

RMM
GridBasedApproach
VotingApproach
BagOfWordsApproach

(a)

0 20 40 60 80 100
−2

0

2

4

6

8

10

12

Training set size percentage P

D
ec

re
as

e 
P

er
ce

nt
ag

e

 

 

RMM
IntensityHistograms
IntensityHistogramGrids
CooccurenceMatrices
CooccurenceMatrixGrids
ColorGraphs
DelaunayTriangulations

(b)

Figure 4.2: Performance decrease of the algorithms as a function of the training

set size: (a) the test set accuracies of the algorithms that use features similar

to those of the RMM and (b) the test set accuracies of the algorithms that use

features different than those of the RMM.
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Figure 4.1 plots the test set accuracies and Figure 4.2 plots percentage of

performance decrease for the classifiers when the partial training set is used for

learning (i.e., when P = {2.5, 5, 10, 25, 50} percents). These results are also

explicitly given in Tables 4.2, 4.3, and 4.4 for P = 100, P = 10, and P = 5

percent of the entire training set is used. These results show that the test set

accuracies decrease with the decrease in the number of training samples. For the

other methods, this decrease becomes noticeable when P ≤ 25 percent (i.e., when

≤ 411 samples are used for training). However, the proposed RMM is able to

keep the test accuracy high even when 5 percent of the training data are used.

Note that, in these plots, there is a slight increase in the accuracy of the RMM

when P decreases. This is due to the unbalanced class distribution in the test set.

As P decreases, the accuracy of the low grade class increases at the expense of

decreasing the high grade class accuracy. As the number of low grade cancerous

tissue images is relatively higher, this slightly increases the overall accuracy.

The high performance of the RMM is attributed to the following property of

the algorithms. The other algorithms used in the experiments do not attempt

to vary training images for better generalizations. They just use the available

training images (their features) in their current form for learning. However, the

proposed RMM has the flexibility to increase the variety of training images by

resampling. It can adapt itself to the cases where there are less training images

by increasing the number of sequences (samples) it generates from an individual

training image. In the experiments, we make use of this property of the RMM,

adjusting the number of generated sequences according to the value of P (e.g.,

if N sequences are generated when the entire dataset is used, 20 × N sequences

are generated when P = 5 percent). This property becomes especially important

when the number of training images becomes smaller and smaller. This may be

one of the major reasons behind obtaining stable accuracy results until P = 5

percent. When it becomes 2.5 percent, a decrease is observed also for the RMM.

This is due to a relatively higher accuracy decrease in high grade cancerous tissues.

The number of high grade cancerous tissue images is relatively smaller in the

training set (6.9 images on the average when P = 2.5 percent) and resampling is

not able to sufficiently vary the data with such a small size of these images.
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4.4.1 Unbalanced Data Issue

In unbalanced datasets, where samples of one or more classes outnumbers mem-

bers of the other classes, a classifier would obtain a high accuracy by classifying

every sample as one of the prevalent classes. In our case, classifiers tend to ignore

high-grade cancerous tissues since there are less number of high-graded cancerous

tissue with respect to other classes. A good classifier should perform efficiently

in all tissue types. ROC curves are useful for domains with unbalanced datasets

and unequal classification errors. We also give ROC curves for the RMM in Fig-

ure 4.4.1. ROC curves are calculated on two class domains. For that, we consider

three two-class classifications problems, each of which distinguishes the images

of one class from those of the others, and obtain a ROC curve for each of these

problems. For example, we consider normal-vs-not classification, in which normal

tissue images belong to the normal class and the other tissue images (low-grade

cancerous and high-grade cancerous tissue images) belong to the not class. For

this classification, we obtain a ROC curve as follows: First, for each image, we

compute the ratio of its sequences that are labeled as normal. Then, if this ratio

is greater than a threshold, we label the image as normal; otherwise, we label it

as not. Using different thresholds from 0.0 to 1.0, we obtain a ROC curve for

normal-vs-not classification. Similarly, we obtain ROC curves for lowGrade-vs-

not and highGrade-vs-not classifications. We present these ROC curves in the

same figure below. Please note that these ROC curves are obtained by averaging

the results of all of our 40 runs and when all training data are used (i.e., P =

100 percent). The area under curve (AUC) indicates performance of the classi-

fier [23]. Therefore, we may say these curves show that the RMM is successful in

classification of all tissue types.
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Figure 4.3: Three ROC curves of RMM which are for normal, low level cancerous

and high level cancerous classes.

4.5 Analysis

The RMM uses several explicit parameters and implicit choices. In this section,

we analyze the effect of these parameters to the success of the algorithm. As

mentioned before, explicit parameters are selected with three fold cross-validation.

These parameters are the window size, the number of states, the sequence length,

and the number of sequences. In addition to these explicit parameters, the RMM

includes other implicit choices. Implicit choices are taken intuitively, as a system

design choice. These implicit choices are:

• Point Selection Algorithm: It is the choice of the algorithm that selects

points on image. We use random selection by default.

• Selected Features : It is the choice of the features that will characterize the

texture of the pixels in the window that are located around selected points.
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• Ordering Algorithm: It is the choice of the algorithm that orders randomly

selected points to generate sequences.

• Order of a Markov Model : It is the order of a discrete Markov model.

4.5.1 Explicit Parameters

The RMM has four external parameters: the window size, the number of states,

the sequence length, and the number of sequences. The effects of each parameter

on test accuracies are investigated. For that, three of the four parameters are

fixed and the accuracy is observed as a function of the other parameter. Using

the entire training data for learning, we give the parameter analysis performed

on the test set in Figure 4.4 for the window size and the number of states and in

Figure 4.5 for the sequence length and the number of sequences.

The window size controls the size of a region in which the features of a single

data point are defined. Smaller regions do not cover enough pixels to characterize

the data points satisfactorily, resulting in lower accuracies. On the other hand,

larger regions cover pixels of different characteristics, and hence, give too generic

features for the data points. This slightly decreases the classification accuracy.

The number of states determines the number of observation symbols in an

observable Markov model. In the RMM, observation symbols represent tissue

subregions with different characteristics. Thus, larger values of this parameter

allow increasing the variety of subregions. This is effective in increasing the ac-

curacy. On the other hand, larger numbers also increase the number of transition

probabilities to be estimated. If this estimation is not good enough, larger num-

bers may decrease the accuracy. Although this effect is not seen in Figure 4.4(b),

we observe it when we use less data (smaller P ) for estimation. In such cases,

better accuracies could be obtained by using smaller values of this parameter.

The sequence length affects the size of a region a perturbed sample covers. If it

is selected too small, the sample does not cover large enough area to characterize

the image. Increasing the length increases the accuracy. The number of sequences
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controls the number of perturbed samples generated to represent a tissue image. If

it is selected too small, there is a risk of not obtaining representative samples from

the image (this is closely related to our interpretation illustrated in Figure 4.5).

Additionally, the number should be more than one to employ the voting scheme in

classification. Although, it is not seen from the experiments, we also observe that

sequence length and the number of sequences are compensating each other. This

is reasonable since one long sequence will yield almost the same effect of many

short sequences in learning. This is the reason of stability seen in Figure 4.5(a)

and (b) with respect to changing values of these parameters.

4.5.2 Implicit Choices

Implicit choices of the RMM are the point selection algorithm, selected features

to represent texture of the grids, ordering algorithm to order states, and the

order of Markov models. In the analysis of these implicit choices, we examine

each implicit choice separately by observing the change in the performance of the

RMM with respect to different choices.

4.5.2.1 Selection of Points

By default, the RMM selects random points and defines states over these points.

Instead of the random selection, one may want to select more distinctive points

from images. SIFT (scale invariant feature transform) is an algorithm that iden-

tifies keypoint locations on an image that are invariant with respect to image

translation, scaling, and rotation. This keypoint localization is done by find-

ing minima and maxima of the difference of Gaussian functions applied in scale

space. Then some of these points are eliminated if they are on an edge or they

have low contrast features [41]. In order to understand the effect of using the

SIFT points in the RMM, we first compute the SIFT points for tissue images

using the default parameters described in Lowe’s paper [64]. In the perturbed

sample generation step of the RMM, we select the data points randomly from

the image pixels. To make use of the SIFT points in the RMM, we select these
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Figure 4.4: The test accuracies as a function of the model parameters: (a) window
size, (b) number of states
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Figure 4.5: The test accuracies as a function of the model parameters: (a) se-
quence length, (b) number of sequences.
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data points randomly from the generated SIFT points for the image. The results

when the RMM uses random points and the SIFT points are listed in Table 4.5.

The Mc-Nemar test shows that there is not significant difference between these

accuracies for α = 0.05. The results show that the SIFT points do not carry

additional information, compared to the random points in our application. How-

ever, it would be interesting to define a set of salient points by implementing a

new algorithm that considers the domain specific knowledge (instead of using the

SIFT algorithm, which does not make use of any domain specific knowledge) and

select our points among the newly defined salient point set. We consider this as

a future research aspect of the proposed method.

Table 4.5: Classification accuracies obtained by the RMM that uses random
points and the RMM that uses SIFT points.

Normal Low High Overall
RMM with random points 95.64 ± 0.18 87.77 ± 0.32 88.56 ± 0.39 90.32 ± 0.18
RMM with SIFT points 96.04 ± 0.17 88.22 ± 0.27 88.96 ± 0.44 90.75 ± 0.14

4.5.2.2 Selected Feature Types

The RMM uses four features to characterize randomly selected points. Since the

RMM does not require any specific feature type, one may use different types of

features. To understand the success of the RMM with different features, we also

repeat our experiments using the intensity (first-order statistics) features. The

explicit parameters associated with this feature set are selected as the same with

the IntensityHistogramGrids features (see Section 4.2.2.2).

The test results of the RMM with the intensity features are given in Table 4.6.

The RMM increases the overall accuracy of the IntensityHistogramGrids, which

uses the same set of features, significantly. This supports the flexibility of RMM

to be used with other feature types. The Mc-Nemar test indicates the difference

between the RMM and IntensityHistogramGrids is statistically significant for

α = 0.05. Note that the accuracy of the RMM is lower than the one that uses the

selected features. This indicates that with better features, the RMM gives higher
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accuracies. On the other hand, the results given in Table 4.6 shows that when

the same features are used, the RMM has a potential to increase the classification

accuracy.

Table 4.6: Classification accuracies obtained by RMM, RMM with intensity and
RMM with cooccurrence

Normal Low High Overall
RMM with Intensity Features 90.23 ± 0.45 85.42 ± 0.32 82.39 ± 0.69 86.41 ±0.20
IntensityHistogramGrids 78.82 74.17 78.60 76.32

4.5.2.3 Ordering Algorithm

After the RMM selectsN points on an image, it orders them using a greedy heuris-

tic that is an approximation of the Hamilton path (see Section 3.1). Figure 4.6(a)

illustrates an example ordering for 100 random points using this heuristic. There

are also different alternatives for ordering these points. For instance, the current

approach orders these N points by selecting the most top-left point as an initial

point. One alternative would be to use the same algorithm that starts ordering

from a random point among these N points. Figure 4.6(b) plots an example or-

dering for 100 random points using this alternative. Another alternative would be

to use Z-order to order these N points. Z-order is a space filling curve that maps

multidimensional points into one dimensional data while preserving their locality.

The Z value of points are calculated by interleaving the binary representation of

their coordinates. Then the points are sorted according to their corresponding

Z values to obtain their Z-order [44]. In Figure 4.6(c), we see an example of

z-ordering on 100 given random points.. Another alternative would be employ

Fiedler ordering. In order to calculate Fiedler ordering, one may construct a

complete graph G = (V, U) where V is the set of nodes, U(X, Y ) is a similarity

function that gives the weight of the edge between X ∈ V and Y ∈ V .

U(X, Y ) =
1

||X − Y ||
(4.1)
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Then, the Laplacian matrix L(X, Y ) of G = (V, U) is calculated. The Laplacian

matrix is equal to the difference of degree matrix and the adjacency matrix.

L(X, Y ) =

{
−U(X, Y ) if X 6= Y∑

Z∈V U(X,Z) if X = Y
(4.2)

Eigen value decomposition of the Laplacian matrix gives eigen values and corre-

sponding eigen vectors. If we order these eigen values as 0 ≤ λ1 ≤ λ2 ≤ ... ≤ λN ,

the eigen vector corresponding to second smallest eigen value λ1 is named as

the Fiedler vector. The ordering of the points, according to the order of corre-

sponding sorted values in the Fiedler vector, gives Fiedler ordering [52]. Fiedler

ordering is an approximation of the Hamilton path. Figure 4.6(d) illustrates the

Fiedler ordering of given points.

Classification accuracies obtained by the RMM when these orderings are used

reported in Table 4.7. The RMM with a greedy ordering approach is barely

higher than the other three approaches. On the other hand, the Mc-Nemar test

indicates that there is no significant statistical difference between these accuracies

at α = 0.05 level. This shows that the ordering of selected points with different

approximations of the Hamilton path does not affect the performance of the

RMM. However, one may work on developing ordering algorithms specifically

designed for histopathological images. This may improve the classification results.

Table 4.7: Classification accuracies obtained by the RMM with a greedy heuristic
with top-left start point, the RMM with a greedy heuristic with random start
point, the RMM with Z ordering and the RMM with Fiedler Ordering

Normal Low High Overall
RMM with Top-Left Start 95.64 ± 0.18 87.77 ± 0.32 88.56 ± 0.39 90.32 ±0.18
RMM with Random Start 95.69 ± 0.18 87.70 ± 0.24 88.43 ± 0.44 90.28 ±0.17
RMM with Z Order 95.54 ± 0.18 87.25 ± 0.27 88.49 ± 0.35 90.01 ±0.14
RMM with Fiedler Order 95.26 ± 0.31 86.93 ± 0.44 89.73 ± 0.61 89.95 ±0.23
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(a) (b)

(c) (d)

Figure 4.6: Different types of ordering algorithms for 100 random points: (a)

greedy heuristic, (b) greedy random start, (c) Z-order, and (d) Fiedler order

4.5.2.4 Order of Markov models

A Markov model with an order of M assumes that the next state is dependent to

M previous states. For example, in a second order Markov model, the next state

is dependent to its two previous states. RMM uses first order Markov models.

To understand the effect of this choice, we repeat our experiments holding other

parameters fixed and using zero and second order Markov models instead of using

first order Markov model. The results are listed in Table 4.8. The Mc-Nemar

test indicates that the overall accuracy improvement of the first order Markov

model over zero order Markov model is statistically significant for α = 0.05.

Between the second order Markov model and the first order Markov model, the
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difference is not also statistically significant with α = 0.05. Here, it is possible

to use higher-order Markov models. Nevertheless, the use of higher order models

requires learning more number of parameters (transition probabilities). This,

however, may decrease the accuracy if there are not sufficient occurrences of

successive states in training data. This may especially become a problem when

the number of the training data is limited.

Table 4.8: Classification accuracies obtained by zero-order, first-order and second-
order markov model

Normal Low High Overall
Zero-order MM 94.65 ± 0.38 82.71 ± 0.30 89.82 ± 0.59 87.54 ± 0.16
First-order MM 95.64 ± 0.18 87.77 ± 0.32 88.56 ± 0.39 90.32 ±0.18
Second-order MM 96.24 ± 0.24 89.74 ± 0.21 87.61 ± 0.46 91.40 ± 0.16
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Conclusion

This thesis successfully addresses the issue of having limited labeled training

data in the domain of histopathological tissue image classification. To this end,

it presents a new resampling framework that generates multiple perturbed sample

sequences from an image and models the samples using first order discrete Markov

processes.

The proposed resampling-based Markovian model (RMM) is tested on 3236

colon tissue images. The experiments demonstrate that the proposed RMM is

more effective to keep the accuracy high when less training data are used for

learning. This is attributed to the ability of the RMM to increase the general-

ization capacity of a learner by increasing the size and variation of the training

data. Additionally, the experiments show that the voting scheme, which com-

bines the decisions of its perturbed samples to classify an image, is also effective

in increasing the classification accuracy.

As noted earlier, the proposed model does not impose any particular feature

type to characterize selected data points. One future research direction is to

focus on feature extraction and incorporate different features in the proposed

framework. For instance, one can use textural features for a selected data point

by centering a window at this point and defining the texture of pixels located

in this window. As another alternative, one can extract structural features by

60
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defining a graph on the tissue and calculating local features for the graph nodes.

In this case, data point selection should be restricted so that only the node

centroids are selected and the local features are used to characterize the selected

points. The proposed model uses Markov processes for classification. It is also

possible to use different classifiers (e.g., SVMs). In that case, instead of using

sequences, a feature vector should be defined for an image using the features of

its selected points. This would be another future research direction of this work.
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