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Volkan Dağhan YAYLIOĞLU
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ABSTRACT

MACKEY GROUP CATEGORIES AND THEIR SIMPLE
FUNCTORS

Volkan Dağhan YAYLIOĞLU

M.S. in Mathematics

Supervisor: Assoc. Prof. Laurence J. Barker

September, 2012

Constructing the Mackey group categoryM using axioms which are reminiscent

of fusion systems, the simple RM-functors (the simple functors from the R-linear

extension of M to R-modules, where R is a commutative ring) can be classified

via pairs consisting of the objects of the Mackey group category (which are finite

groups) and simple modules of specific group algebras. The key ingredient to this

classification is a bijection between some RM-functors (not necessarily simple)

and some morphisms of EndRM(G). It is also possible to define the Mackey group

category by using Brauer pairs, or even pointed groups as objects so that this

classification will still be valid.

Keywords: Mackey group category, Puig category, Brauer category.
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ÖZET

MACKEY GRUP KATEGORİLERİ VE BASİT
İZLEÇLERİ

Volkan Dağhan YAYLIOĞLU

Matematik, Yüksek Lisans

Tez Yöneticisi: Assoc. Prof. Laurence J. Barker

Eylül, 2012

Mackey grup kategorisi M, füzyon sistemlerini andıran aksiyomlarla inşa

edildiğinde, basit RM-izleçleri (değişmeli bir halka olan R için; M’in R-lineer

genişlemesinden R-modüllere basit izleçler), Mackey grup kategorisinin nesneleri

(bunlar sonlu gruplardr) ve belirli grup cebirlerinin basit modüllerinden oluşan

ikililer tarafından sınıflandırılabilir. Bu sınıflandırmanın anahtar noktası, bazı

RM-izleçleri (basit olmak zorunda değiller) ile EndRM(G)’nin bazı morfizmaları

arasndaki birebir örten eşleşmedir. Mackey grup kategorisi tanımlanırken, Brauer

ikilileri ve hatta noktalı gruplar nesne kabul edilse dahi bu sınıflandırma geçerli

olacaktır.

Anahtar sözcükler : Mackey grup kategorisi, Puig kategorisi, Brauer kategorisi.
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Introduction

It is known that one can define representations of categories, just like groups, so

that if the category consists of a single group, then these two notions coincide.

(cf. [1]) Indeed, if C is a category, then one can extend this category linearly over

a commutative unital ring R, and get a category RC. Then a representation of

the category C is defined to be a functor F : RC → RMod.

In this thesis, I will define a general category, with several examples of it,

so that we can classify its “irreducible” representations, i.e. simple functors

RC → RMod which we call RC-functors. Our categories will have objects either

• p-subgroups (for “fusion systems”)

• p-subgroups indexed by some blocks (for “Brauer category”)

• p-subgroups indexed by some simple modules (for “Puig category”)

respectively, and morphisms built using maps between them.

Throughout the thesis, k will always stand for an algebraically closed field of

prime characteristic p, and every group will be finite. We will be mostly dealing

with an arbitrary fixed group G and its subgroups. Also kG will denote the p-

modular group algebra as usual. Various categories constructed throughout the

thesis will have certain group homomorphisms as their morphisms and in those

cases composition rule will always be usual composition of group homomorphisms.
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In Chapter 1, our only aim is to build the necessary tools for later chap-

ters, while providing some examples which aim to show the reader how simple is

the theory despite its complicated -yet expressive- language. At the end of the

chapter, we shall have defined two categories to build Mackey group categories

on.

In Chapter 2, our aim will be to classify the simple RM-functors of a rather

general Mackey group category. We will first define bisets which will be used to

define the morphisms of Mackey group categories, and then define the category.

Then, we will follow Bouc’s work in order to classify the simples in our slightly

different setting, showing his work is still valid out of the categories which he sees

“admissable”.

Chapter 3 aims to show that how the Brauer and some Puig categories can

be used to build Mackey group categories, hence combined with the classification

in Chapter 2, it shows how one can classify simple functors for these categories.
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Chapter 1

Modular Group Algebras

This chapter serves as an introduction to the subject while establishing the no-

tation which will be used throughout the thesis.

1.1 Introduction

Theorem 1.1. Let A be a k-algebra. Then there is a bijective correspondence

between:

• Conjugacy classes α of primitive idempotents of A

• Isomorphism classes of simple A-modules satisfying e.Vα 6= {0} for some

(or equivalently for all) e ∈ α where Vα is any representative of such a class.

Definition. A conjugacy class α of primitive idempotents of a k-algebra A is

called a point of A, and we denote by P(A) the set of points of A.

Remark. Note that Theorem 1.1 also implies a bijective correspondence between

points and irreducible Brauer characters.

Definition. The subalgebra kGH , where H ≤ G, is defined as the set

kGH :=
{
a ∈ kG | ∀h ∈ H ha = a

}
3



which is spanned by the H-conjugacy class sums in kG.

Definition. We define the relative trace map trHK : kGK → kGH on an

element a ∈ kGK as

trHK(a) =
∑

hK∈H/K

ha

where h runs over coset representatives.

When I is an ideal of kGK , then trHK(I) is an ideal of kGH , since for i ∈ I ⊆
kGK and a ∈ kGH ⊆ kGK we have

trHK(a.i) =
∑

hK∈H/K

h(ai) =
∑

hK∈H/K
(ha)(hi) =

∑
hK∈H/K

a(hi) = a.trHK(i)

because a ∈ kG and similarly trHK(i.a) = trHK(i).a. Hence kGH
K = trHK(kGK) is

an ideal of kGH , making kGH
<H =

∑
K<H kGH

K also an ideal of kGH .

Lemma 1.2. Let L ≤ K ≤ H ≤ G be subgroups. Then

1. If a ∈ kGH , then trHK(a) = |H : K| .a.

2. trHK ◦ trKL = trHL

Definition. The algebra homomorphism

brH : kGH → kGH/kGH
<H

is called Brauer morphism.

Notation. If C is an H-conjugacy class of a group G ≥ H, then we will denote

by C+ the class sum
∑
c∈C c in kG.

Theorem 1.3. The elements C+ where C ranges over the set of H-conjugacy

classes of G containing an element g such that p - |CH(g) : CK(g)| form a basis

of AHK.

Proof. Let D be a K-conjugacy class of G (i.e. D+ is a basis element for kGK).

Then for any g ∈ D,

D+ =
∑
d∈D

d =
∑

k.CK(g)∈K/CK(g)

kg = trKCK(g)(g)

4



and hence

trHK(D+) = trHK ◦ trKCK(g)(g)

= trHCK(g)(g)

= trHCH(g) ◦ tr
CH(g)
CK(g)(g)

= trHCH(g) (|CH(g) : CK(g)| .g)

= |CH(g) : CK(g)| trHCH(g)(g)

= |CH(g) : CK(g)| .C+

where C+ denotes the H-conjugacy class of G containing g. In particular,

trHK(D+) = {0} whenever p divides the index |CH(g) : CK(g)| for every g ∈ D.

Corollary 1.4. If P is a p-subgroup of G, then kGP = kCG(P )⊕ kGP
<P .

Proof. Continuing from the previous proof, for any g ∈ G, p divides the index

|CP (g) : CQ(g)| unless CP (g) = CQ(g), since they are both p-groups by hypothe-

sis. If g ∈ CG(P ), then CP (g) = P  CQ(g) for every Q<P and so any such Q

yields zero trace.

Consider the pairs (H,α) consisting of subgroups H ≤ G and points α of

subalgebras kGH . Since kG1 = kG, the pairs (1, α) simply correspond to the

points of kG whereas the equality kGG = Z(kG) provides us with the pairs (G, b)

corresponding to central primitive idempotents (or simply, blocks) b of kG.

Definition. Let H ≤ G be a subgroup, and α ∈ P(kGH). Then the pair (H,α)

is called a pointed group. Instead of writing (H,α), a pointed group is usually

denoted by Hα.

Definition. If Hα and Kβ are two pointed groups of a group algebra kG and

K ≤ H, then we say Kβ is a pointed subgroup of Hα, and write Kβ ≤ Hα

if for some (equivalently, for all) a ∈ α, there exist some b ∈ β satisfying the

following equivalent conditions:

• b appears in a primitive decomposition of a in A,

5



• ab = ba = b,

• aba = b.

Remark. It should be clear that this relation ≤ between pointed groups is tran-

sitive.

Definition. A point α ∈ P(kGH) is said to be local if brH(α) 6= {0}. In this

case, we also say that Hα is local.

Theorem 1.5. If Pδ is a local pointed group, then P is a p-group.

Proof. If Q<P satisfies p - |P : Q|, then the equality

kGP ⊇ kGP
Q = trPQ(kGQ) ⊇ trPQ(kGP ) = |P : Q| kGP = kGP

gives us kGP = kGP
Q and hence brP (kGP ) = {0}. This forces P to be a p-group

since we are asking for brP (δ) 6= {0}.

Theorem 1.6. For a p-subgroup P ≤ G, the Brauer map

brP : kGP → kCG(P )

induces a bijection between the local points of kGP and the points of kCG(P ).

To prove this, we will use the fact that a point α ∈ P(kGP ) is local if and

only if ker(brP ) ⊆ mα, where mα is the unique maximal ideal corresponding to

the point α such that α ∩mα = ∅. We will abuse this notation writing ma = mα

for any a ∈ α.

Proof. Let e be a primitive idempotent in kGP . Then the projection brP (me) is

maximal in kCG(P ). Hence there is a unique maximal ideal m̃e = brP (me) and

as a result, a unique point.

Conversely, let i be a primitive idempotent in kCG(P ), and moreover let mα

and mβ be two maximal ideals of kGP , corresponding to points α and β such

that mi ⊆ mα, mi ⊆ mβ, ker(brP ) ⊆ mα and ker(brP ) ⊆ mβ. Now by the first

part, mi ⊆ brp(mα) and mi ⊆ brP (mβ) are maximal ideals. So, brP (mα) = mi =

brP (mβ). Since α ⊆ mβ and β ⊆ mα when α∩ β = ∅, we must either have α = β

or else we will be forced to have either brP (α) = ∅ (w.l.o.g.) or mi = kCG(P ).
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1.2 An Example

In this section, we will inspect the pointed subgroups of kS3 over a field k of

characteristic 3.

Note that a block b of a group algebra kG can be decomposed orthogonally

into a sum of primitive idempotents, and any conjugate of such an idempotent

also decomposes b ∈ Z(kG). Moreover, such a point α can not appear in the

decomposition of another block b′ of kG, since each a ∈ α satisfies b.a = a. Thus,

blocks seperates points into disjoint sets. Knowing the bijective correspondence

between the points and irreducible Brauer characters, we will seperate characters

into corresponding disjoint sets, and call them blocks, too. We will write χ ∈
IBr(b) when the point corresponding to the Brauer character χ decomposes the

block b.

Recall from modular character theory that the character table of S3 is:

S3 1 2.1 3

ζ1 1 1 1

ζ2 1 −1 1

ζ3 2 − −1

φ1 1 1 −
φ2 1 −1 −
ψ1 1 − 1

ψ2 2 − −1

where φ1 & φ2 are two 3-characters both belonging to the same unique 3-block

of S3, and ψ1 & ψ2 are two 2-characters belonging to two 2-blocks of S3.

S3 in characteristic 3

Remark. A p-group, having a unique p′-conjugacy class, has only one irreducible

character and in turn, only one point.

3-subgroups of S3 are C3 and 1, with centralizers C3, S3 respectively. The

7



subalgebra kCG(C3) = kC3; since C3 is a 3-group, has a unique point which

corresponds to the unique local point of kSC3
3 .

Remark. Let G be an abelian group such that kG has a unique point α. Then,

commutativity ensures that α = {a} for some primitive idempotent a. Knowing

that 1 − a is also an idempotent (not necessarily primitive) which is orthogonal

to a, let us write 1 − a = a1 + a2 + . . . + an as a sum of mutually orthogonal

primitive idempotents. But, α = {a} was assumed to be the unique point, forcing

ai = a ∀i, which is possible only when a = 1, since 1− a and a were orthogonal.

Because of these arguments, the unique point of kC3 should be {1}. Thus the

corresponding local primitive idempotent of kSC3
3 should be of the form 1 + a,

where a ∈ ker(brC3) = k(S3)
C3
<C3

. Hence a is a trace from the unique subgroup 1 of

C3. So, let a = k.(1+r+r2)s where k ∈ k, and S3 = 〈r, s | s2 = r3 = 1, srs = r〉.
But

a2 = k2(1 + r + r2)2s2 = 0

in characteristic 3, so 1 + a = (1 + a)2 = 1 + 2a implies a = 0.

Remark. If H{1} is a pointed group of a p-modular group algebra kG, then any

pointed group Kβ where K ≤ H satisfies b.1 = 1.b = b for all b ∈ β, and hence

satisfies Kβ ≤ H{1}.

Hence every (local) pointed group of k(S3)
1 = kS3 is a pointed subgroup of

(C3){1}. The character table of S3 tells us also that kCS3(1) = kS3 has two points,

corresponding to two local points of k(S3)
1 = kS3. To sum up, kS3 has three local

pointed groups 1α1 , 1α2 ≤ (C3){1}, where the local points α1 and α2 correspond

to two irreducible Brauer characters of kCS3(1) = kS3 and the local point {1}
corresponds to the trivial Brauer character of kCS3(C3) = kC3.

Remark. Since kCG(1) = G = kG1, any pointed group of 1 on kG is local.

Remark. A pointed group need not have a unique pointed subgroup, as in the

example.

8



S3 in characteristic 2

We will momentarily deviate from the main subject in order to build the neces-

sary tools for our next example. The example we will be able to give after this

deviation worths the effort by partially answering an important question. Our

aim in this part is to render the Theorem 1.8 accessible. First, we will prove an

analogous theorem to [2, Theorem 4.4].

Lemma 1.7. Let e be a block of kG. Then there is a maximal local pointed group

Pγ ≤ Ge if and only if P ∈ Sylp(CG(x)) is maximal among all Sylow p-subgroups

of CG(x)’s where these x appear in e.

Proof. Suppose Pα ≤ Ge be a local pointed subgroup of Ge. Then for some a ∈ α
we have brP (a) 6= 0. Since

brP (e).brP (i) = brP (ei) = brP (i) 6= 0

we have brP (e) 6= 0. Writing brP (kGP ) = kCG(P ) for the p-subgroup P , since

kGG ⊆ kGP , there must be some x ∈ G (appearing in e) such that x ∈ CG(P ),

implying P ≤ CG(x). Now consider a Sylow p-subgroup P ≤ D ∈ Sylp(CG(x)).

Then D ≤ CG(x) gives x ∈ CG(D) where x was assumed to appear in e, and so

brD(e) 6= 0. decomposing e into primitives of kGD, we can obtain a local point

γ ∈ P(kGD) which also satisfy Pα ≤ Dγ.

Conversely for any P ∈ Sylp(CG(x)) where x appears in e, we have P ≤ CG(x),

and so x ∈ CG(P ) implying brP (e) 6= 0. So any primitive idempotent â of kCG(P )

satisfying brP (e)â = â corresponds to a primitive idempotent a with its point α

in kGP . Fixing one such point, we get Pα ≤ Ge.

Theorem 1.8. If Pα is a maximal local pointed group of a p-modular algebra kG,

and Pα ≤ Gb then the order of P is the value d in

pa−d = min {χ(1)p | χ ∈ IBr(b)}

where b is the corresponding block of kG, χ(1)p stands for the p-part of the value

χ(1) of the modular character χ, and |G|p = pa.

9



Proof. In view of the previous Lemma and [2, Theorem 4.4], the proof is given

by [2, Corollary 3.17].

Using the same notation as the previous example, the two characters ψ1 and

ψ2 were previously noted to lie in two Brauer 2-blocks, say b1 and b2 respectively.

By Theorem 1.8, we see that the block b1 hosts a maximal local pointed group

of order 2, and b2 hosts one with order 1. Thus all unique local pointed groups

(Cn
2 )αn lie in the block b1, leaving 1ψ2 alone.

Note. Jacquez Thèvenaz, right after stating the Theorem 1.6 [3, Corollary 37.6,

pp. 22-323] comments on the pointed subgroup relations that “... it is not clear

whether it is possible to define this partial order relation directly in terms of

irreducible representations”. We can now see that such a relation can not be

given simply by taking restriction and induction in a straightforward fashion. An

immediate counterexample is given by S3 that we just had a brief inspection. We

have CS3(C2) = C2, CS3(1) = S3, and the induced character

S3 1 2.1 3

ζ1 1 1 1

ζ2 1 −1 1

ζ3 2 − −1

ψ1 1 − 1

ψ2 2 − −1

indS3
C2

(1) 3 − 0

is a sum of other two. In other words, the kCS3(1) = kS3-module induced from the

simple (actually, trivial) kCS3(C2) = kC2-module which corresponds to the local

pointed group (C2)α affords both simple kCS3(1) = kS3-modules, corresponding

to local pointed groups 1ψ1 and 1ψ2 , but the local pointed group 1ψ2 is not a

pointed subgroup of (C2)α. The counterexample for restriction is even simpler,

since both kCS3(1) = kS3-module would restrict to (a multiple of) the trivial

kCS3(C2) = kC2-module.
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1.3 Brauer Pairs and the Brauer Category

Definition. A Brauer pair (P, e) of kG consists of a p-subgroup P ≤ G, and a

block e of kCG(P ).

Let e be a block of kCG(P ), and consider a primitive decomposition

e = e1 + e2 + . . .+ eP

in kCG(P ). Then by Theorem 1.6, there are local points δi of kGP such that

ei ∈ brP (δi). In this case, we say that these pointed groups Pδi are associated

with the Brauer pair (P, e).

Given two Brauer pairs (P, e) and (Q, f), if
{
Pδj
}
j

and {Qαi
}i are two sets

consisting of all pointed groups (of kG) which are associated with the Brauer pairs

(P, e) and (Q, f), respectively, then we assign a partial order relation between

(P, e) and (Q, f) via these sets as:

(Q, f) ≤ (P, e) if ∃i, j Qαi
≤ Pδj .

Note that the transitivity of this relation follows from the transitivity of pointed

groups.

Brauer subpairs are defined uniquely as in the following lemma:

Lemma 1.9. [3, Corollary 40.9] If Q ≤ P and (P, e) is a Brauer pair, then there

exists a unique pair (Q, f) such that (Q, f) ≤ (P, e).

Notation. Because of the previous lemma, using its notation, we will simply

write f = eQ.

Note that each block b of kCG(1) = kG defines a unique Brauer pair (1, b),

and vice versa. By Lemma 1.9, any Brauer pair (P, e) has a unique subpair

(1, e1) ≤ (P, e) so that e1 is the unique block of kG corresponding to e. We say

in this case (P, e) is associated with e1. Also for any subpair (Q, f) ≤ (P, e),

we have f1 = e1 by transitivity and uniqueness in the sense of Lemma 1.9.

11



Example 1.1. Let Ci
2, i = 1, 2, 3 be 2-subgroups of S3. Each of them, being

p-groups, leads to only one block in each kCS3(C
i
2) = kCi

2. Let us write bC
i
2

for these blocks. As in the previous example, in its notation, (Ci
2)αi

, i = 1, 2, 3

are all pointed subgroups of (S3)b1 . Thus, (1, b1) ≤ (Ci
2, b

Ci
2) for all i = 1, 2, 3,

establishing our example. Moreover, (1, b2) is not a Brauer subpair for any pair,

simply reflecting the case for pointed groups.

If (P, e) is a Brauer pair of G, and g ∈ G, then ge is a block of gCG(P ) =

CG(gP ). So we define the action of G on Brauer pairs via g(P, e) = (gP, ge).

Definition (Brauer Category). The Brauer category Bb on a block b of kG is a

category consisting of:

• objects: Brauer pairs associated with b

• morphisms (Q, f) → (P, e): all group homomorphisms φ : Q → P such

that

∃g ∈ G g(Q, f) ≤ (P, e) & ∀u ∈ Q φ(u) = gu.

Remark. The stabilizer

NG(P, e) = {g ∈ G | g(P, e) = (P, e)} = {g ∈ NG(P ) | ge = e}

of (P, e) satisfies PCG(P ) ≤ NG(P, e).

We previously noted that Brauer pairs are nice in the sense that subpairs are

unique (cf. Theorem 1.9), but they still have some peculiarities that which we

should note. If b is an arbitrary block of kG, then a Brauer pair (Q, g) may

satisfy (Q, g) ≤ (P, e) and (Q, g) ≤ (P, f) simultaneously for some pairs (P, e)

and (P, f).

On the other hand, if the block b is the principal block (i.e. the block con-

taining trivial representation), then this is not a concern anymore:

Theorem 1.10. [3, Theorem 40.14] Let b be the principal block of kG and let Q

be any p-subgroup of G.

12



1. The idempotent brQ(b) is primitive in Z(kCG(Q)) and is equal to the prin-

cipal block of kCG(Q).

2. If e is a block of kCG(Q), then the Brauer pair (Q, e) is associated with b

if and only if e is the principal block of kCG(Q).

3. The map (Q, e) 7→ Q is an isomorphism between the poset of Brauer pairs

associated with b and the poset of all p-subgroups of G.

Definition (Frobenious category.). We define the Frobenious category F(G)

of G to be the category with

• objects; all p-subgroups of G,

• morphisms Q → P ; all group monomorphisms induced by conjugation by

some element g ∈ G (which must therefore satisfy gQ ≤ P ).

Corollary 1.11. Frobenious categories are equivalent to Brauer categories on

principal blocks.

13



Chapter 2

Mackey Group Categories

In this chapter we will first build a framework and set up our notation regarding

bisets without going much into details. Then we will introduce Mackey group

categories, and show how the classification of simple functors works on these

subcategories of biset categories.

2.1 Bisets

Let us have a quick glance at bisets. A detailed take on the subject can be found

in [4].

An (H,K)-biset X is defined to be a left H, right K-set such that these

actions are compatible in the sense that

h(xk) = (hx)k

for h ∈ H, x ∈ X, k ∈ K.

Definition. Given an (H,K)-biset X and a (K,L)-biset Y , their tensor prod-

uct X ×K Y is defined to be the set of K-orbits of the action given by

∀(h, l) ∈ H × L ∀k ∈ K k.(h, l) = (hk, k–1l).
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If L ≤ G×H and M ≤ H ×K are two subgroups, we define the star product

L ∗M as

L ∗M = {(g, k) ∈ G×K | ∃h ∈ H (g, h) ∈ L & (h, k) ∈M}

Lemma 2.1 (Mackey formula for bisets). Let H,K,L ≤ G be groups. If Y ≤
L×K and if X ≤ K ×H, then there is an isomorphism of (L,H)-bisets(

L×K
Y

)
×K

(
K ×H
X

)
∼=

∐
k∈[p2(Y )\K/p1(X)]

(
L×H

Y ∗ (k,1)X

)

where [p2(Y )\K/p1(X)] is a set of representatives of double cosets.

Definition. The biset category C associated with a finite set K of finite groups

is defined as follows:

• The objects of C are the elements of K.

• If H and K are finite groups, then HomC(H,K), is the Grothendieck group

of the category of finite (K,H)-bisets.

• IfG, H, andK are finite groups, then the composition v◦u of the morphisms

u ∈ HomC(G,H) and v ∈ HomC(H,K) is equal to v ×H u. Here, if v =

(G×H)/L and u = (H ×K)/M , then we define [v]×H [u] = [v ×H u].

• For any finite group G, the identity morphism of G in C is equal to [1G].

Thus, HomC(H,K) is the Z-module generated by the isomorphism classes

[(H ×K)/M ] of bisets having the form (H ×K)/M .

Remark. Two basis elements [P ×Q/L] and [P ×Q/M ] are equal if and only if

L and M are conjugate under P ×Q.

2.2 Mackey Group Category

Definition. A category D is said to be preadditive provided, for all X, Y, Z ∈
obj(D), each HomD(X, Y ) is a Z-module, and the composition

HomD(X, Y )× HomD(Y, Z)→ HomD(X,Z)
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is bilinear over Z.

Definition. A group category D on a set of finite groups K which is closed

under subgroups is defined to be a preadditive subcategory of a biset category C
on K.

In other words, HomD(G,H) is a Z-submodule of HomC(G,H) and the com-

position

HomC(G,H)× HomC(H,K)→ HomC(G,K)

restricts to

HomD(G,H)× HomD(H,K)→ HomD(G,K),

which is bilinear.

Notation. From now on V will denote a category satisfying the axioms

A1 objects of V are finite groups, closed under subgroups

A2 All the morphisms in V are group monomorphisms.

A3 If h ∈ H, and W ≤ H, then hW ∈ obj(M) and the conjugation map

conh : W → hW is in HomV(W, hW ).

A4 Given a morphism φ ∈ HomV(V, U) and subgroups U ′ ≤ U , and V ′ ≤ V

then the restriction φ |V ′→U ′∈ HomV(V ′, U ′).

Example 2.1. An example for such a category would be a fusion system F on

a set of finite groups K closed under subgroups and conjugations. This category

is defined to be a category with

• objects; all groups in K

• morphisms; group monomorphisms

such that a hom-set HomF(P,Q) is closed under restrictions, i.e.

φ ∈ HomF(P,Q) =⇒ ∃ψ ∈ HomF(P, φ(P )) ∀p ∈ P φ(p) = ψ(p)

and HomF(P,Q) contains all conjugation morphisms P con
u
Q where u ∈ P .
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Remark. Note that the Frobenious category defined in the last section is a fusion

system. Hence a Brauer category on a principal block also satisfies the conditions

for V . In fact, as we will see in the next section, a Brauer category on any block

satisfies said conditions.

We are interested mainly in bisets which are of the form (H ×K)/∆ where

the subgroup

∆ = ∆(U, φ, V ) = {(φ(v), v) | v ∈ V } ≤ H ×K

is determined by a group isomorphism φ : V → U from a subgroup V ≤ K to a

subgroup U ≤ H.

Note that by the way our bisets are constructed, if

∆ = ∆(U, φ, V ) ≤ H ×K

is a subgroup as above, the subgroups

p1(∆) := {h ∈ H | ∃k ∈ K (h, k) ∈ ∆} , and

p2(∆) := {k ∈ K | ∃h ∈ H (h, k) ∈ ∆} ,

satisfy p1(∆) = U ∼= V = p2(∆).

Definition. Given such a category V , we define a Mackey group category

MV to be the group category with

• objects; all groups in V

• morphisms; Z-linear combinations of the isomorphism classes[
P ×Q

∆(U, φ, V )

]
∈ HomM(Q,P )

of bisets, where ∆(U, φ, V ) = {(φ(v), v) | v ∈ V } for some U, V satisfying

P ≥ U ∼= V ≤ Q, and an isomorphism φ ∈ HomV(V, U).

• compositions; tensor products of bisets.
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In order to see that MV is really a category, we must make sure that mor-

phisms are closed under composition. We will make use of the Mackey formula

for bisets. Let L = ∆(U, φ, V ) ≤ G × H, and M = ∆(W,ψ,X) ≤ H × K, and

h ∈ H. Then

(h,1)M = (h,1) {(ψ(k), k) | k ∈ X}

=
{

(hψ(k), k) | k ∈ X
}

= ∆(hW, conh ◦ ψ,X)

where the last equality needs the axiom A3. As for the star product, we have

L ∗M = {(g, k) ∈ G×K | ∃h ∈ H (g, h) ∈ ∆(U, φ, V ) & (h, k) ∈ ∆(W,ψ,X)}

= {((φ ◦ ψ)(k), k) ∈ G×K | k ∈ X, ψ(k) ∈ V }

= ∆(U ′, ζ,X ′)

where X ′ = ψ–1(V ∩W ), U ′ = φ(V ∩W ), and ζ(x) = (φ ◦ ψ)(x) for all x ∈ X ′.
Note the axiom A4, together with the axiom A3 ensures that these objects and

morphisms are in the category V .

2.3 RM-functors

Let M be any Mackey group category, and R be a ring with identity. We define

the category RM as the category with

• objects: objects of M,

• morphisms: HomRM(G,H) = R⊗Z HomM(H,G),

• composition: R-linear extension of the composition in D.

An RM-functor is a preadditive functor M : RM→ RMod. We write FRM for

the category of RM-functors, with natural transformations as morphisms.

For any object G ∈ obj(M), define the functor

ResRMG : FRM → EndRM(G)Mod
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via ResRMG (M) = M(G). The R-module M(G) becomes an EndRM(G)-module

via the action of φ ∈ EndRM(G) over m ∈ M(G) defined as φ.m = M(φ)(m).

Define another functor

IndRMG : EndRM(G)Mod→ FRM

via IndRMG (V ) = LG,V which is defined for H ∈ obj(M) and φ ∈ HomRM(H,K)

as

LG,V (H) = HomRM(G,H)⊗EndRM(G) V, and

LG,V (φ)(α⊗ v) = (φα)⊗ v

for any H ∈ obj(M) and any α ∈ HomRM(G,H).

Theorem 2.2. The functors ResRMG and IndRMG gives rise to a bijection

HomFRM(LG,V ,M) ∼= HomEndRM(G)(V,M(G)) (2.1)

for any G ∈ obj(M), M ∈ obj(FRM), and any simple EndRM(G)-module V .

Proof. If τ : LG,V → M is a morphism in FRM (i.e. a natural transforma-

tion), then it provides us with an R-module homomorphism τG : LG,V (G) →
M(G), which can be made into an EndRM(G)-module homomorphism as ex-

plained above. Throughout the proof, we will identify the isomorphic modules

LG,V (G) ∼= V .

Conversely, let τG : V → M(G) be an EndRM(G)-module homomorphism,

which also gives an R-module homomorphism. We will construct τH for an

arbitrary H ∈ obj(M) making the following diagram commutative for any

K ∈ obj(M) and any α ∈ HomRM(K,H), thus giving a natural transforma-

tion τ ∈ HomFRM(LG,V ,M):

K

α

��

LG,V (K)
τK //

LG,V (α)

��

M(K)

M(α)

��
H LG,V (H)

τH //M(H)

First, take K = G, and note that for any H ∈ obj(M) and any α ∈
HomRM(G,H) we have LG,V (α) (1⊗ v) = α⊗ v where v ∈ V and 1 = 1EndRM(G).
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Define τH on an element
∑
i φi ⊗ vi ∈ LG,V (H) as

τH

(∑
i

φi ⊗ vi
)

=
∑
i

M(φi)(τG(1⊗ vi)).

Let now

l1 =
∑
i

φ1
i ⊗ v1i & l2 =

∑
i

φ2
i ⊗ v2i

be two elements of LG,V (H). Since V is simple, we can rewrite a basis element

as

φji ⊗ v
j
i = φjiρ

j
i ⊗ v

for some fixed v ∈ V and appropriate ρji ∈ EndRM(G) satisfying the equation. If

l1 = l2, then we have (∑
i

φ1
i ρ

1
i

)
⊗ v =

(∑
i

φ2
i ρ

2
i

)
⊗ v

and hence
∑
i φ

1
i ρ

1
i is only a multiple of

∑
i φ

2
i ρ

2
i by some ξ ∈ EndRM(G) satisfying

ξv = v. This gives

τH(l1) =
∑
i

M(φ1
i )(τG(1⊗ v1i ))

=
∑
i

M(φ1
i ρ

1
i )(τG(1⊗ v)) since M is a functor

= M

(∑
i

φ1
i ρ

1
i

)
(τG(1⊗ v)) since M is R-linear

= M

(∑
i

φ2
i ρ

2
i ξ

)
(τG(1⊗ v)) since l1 = l2

= M

(∑
i

φ2
i ρ

2
i

)
M(ξ)(τG(1⊗ v))

= M

(∑
i

φ2
i ρ

2
i

)
τH(ξ ⊗ v))

= M

(∑
i

φ2
i ρ

2
i

)
τH(1⊗ v))

= τH(l2)

making τH well-defined. In particular, τH(l1) + τH(l2) = τH(l1 + l2) since M is

preadditive.
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It is now left to check τH is an R-map. Consider

r.τH

(∑
i

φi ⊗ vi
)

= r.
∑
i

M(φi)(τG(1⊗ vi))

=
∑
i

r.M(φi)(τG(1⊗ vi))

=
∑
i

M(φi)(r.τG(1⊗ vi)) M(φi) are R-morphisms

=
∑
i

M(φi)(τG(r.1⊗ vi)) τG is an R-morphism

=
∑
i

τH(r.φi ⊗ vi)

= τH

(
r.
∑
i

φi ⊗ vi
)
.

Thus τH is an R-map.

Now consider this bigger diagram in which the upper and outer squares com-

mute:

G

β

��

LG,V (G)
τG //

LG,V (β)

��

M(G)

M(β)

��
K

α

��

LG,V (K)
τK //

LG,V (α)

��

M(K)

M(α)

��
H LG,V (H)

τH //M(H)

Seeing that lower digram commutes needs nothing but following the following

equalities:

M(α) ◦ τK(β ⊗ v) = M(α) ◦ τK ◦ LG,V (β)(1⊗ v) by definition

= M(α) ◦M(β) ◦ τG(1⊗ v) upper square is commutative

= M(αβ) ◦ τG(1⊗ v) M is a functor

= τH ◦ LG,V (αβ)(1⊗ v) outer square is commutative

= τH ◦ LG,V (α) ◦ LG,V (β)(1⊗ v) LG,V is a functor

= τH ◦ LG,V (α)(β ⊗ v) by definition

It is obvious that for each natural transformation τ : LG,V → M , we have

exactly one corresponding EndRM(G)-module homomorphism τG : V → M(G).
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To show the converse is true, assume τH , τ
′
H : LG,V (H) → M(H) be two homo-

morphisms. For any element, say l =
∑
i αi ⊗ vi ∈ LG,V (H), we have

τH(αi ⊗ vi) = τH ◦ LG,V (αi)(1⊗ v)

= M(αi) ◦ τG(1⊗ v)

= τ ′H ◦ LG,V (αi)(1⊗ v)

= τ ′H(αi ⊗ v)

which implies τH(l) = τ ′H(l), completing the proof.

As a result, whenever we have an object M of FRM so that V = M(G) =

ResRMG (M), then the map φ : V → ResRMG (M) corresponds to some other map

φ̄ : LG,V → M by Theorem 2.1. Again by Theorem 2.1, since φ is non-zero, φ̄ is

also not. If moreover M is simple, then φ̄ is surjective.

Theorem 2.3. Let R be a commutative ring with identity element, andM be a

Mackey group category. If F is a simple object of FRM, and G is an object ofM
such that F (G) 6= {0}, then F (G) is a simple EndRM(G)-module.

Proof. If S is a simple EndRM(G)-submodule of F (G), then the inclusion mor-

phism S ↪→ F (G) yields a non-zero morphism τ : LG,S → F under the bijection

proven above. The image of τ is a non-zero subfunctor of F , which is simple as

our hypothesis, and hence it is equal to F . This makes τG : LG,S(G) → F (G)

surjective. But LG,S ∼= S, so τG is isomorphic to the inclusion map, which is now

forced to be surjective, providing S = F (G).

Definition. Let F be an RM-functor. Then we say S is a subfunctor of F if

S(H) ≤ F (H) for all H ∈ obj(M), and S(φ) is the restriction of F (φ) to S(H)

for all φ ∈ HomRM(H,K) and for all K ∈ obj(M).

Theorem 2.4. Let R be a commutative ring with identity element, andM be a

Mackey group category. If G is an object of M, and V is a simple EndRM(G)-

module, then the functor LG,V has a unique proper maximal subfunctor JG,V and

the quotient SG,V = LG,V /JG,V is a simple object of FRM, such that SG,V (G) ∼= V .

22



Proof. Let M be a subfunctor of LG,V . That is, for all H ∈ obj(M), M(H) is an

EndRM(H)-submodule of

LG,V (H) = HomRM(G,H)⊗EndRM(G) V,

and M(φ) is the restriction of LG,V (φ) to M(H) for all φ ∈ HomRM(H,K) for

any K ∈ obj(M).

Then M(G) is an EndRM(G)-submodule of LG,V (G) ∼= V . Thus by simplicity

of V , either M(G) ∼= V or M(G) = {0}.

In the former case, if H ∈ obj(M), φ ∈ HomRM(G,H), and v ∈ V , then

LG,V (φ)(id⊗ v) = φ⊗ v ∈ LG,V (H).

So since id ⊗ v ∈ M(G), and since M(φ) is the restriction of LG,V (φ) to M(G),

we have

M(H) 3M(φ)(id⊗ v) = φ⊗ v

for all φ ∈ HomRD(G,H). Hence LG,V (H) = M(H) for any object H ∈ obj(M),

which implies M = LG,V by very definition of a subfunctor.

Thus if M is a proper subfunctor of LG,V then M(G) = {0}. Then if
∑
i φi ⊗

vi ∈M(H), and ψ ∈ HomRM(H,G), then

M(ψ)

(∑
i

φi ⊗ vi
)

= ψ

(∑
i

φi ⊗ vi
)

by definition, since M ≤ LG,V

=
∑
i

ψφi ⊗ vi ∈M(G) = {0} since ψφ ∈ EndRM(G)

that is, M(H) ⊆ ker(M(ψ)) ⊆ ker(LG,V (ψ)) for all ψ ∈ HomRM(H,G) where

the latter inclusion comes from the hypothesis M ≤ LG,V . Hence if we define

J(H) =
⋂

ψ∈HomRM(H,G)

ker(LG,V (ψ))

for all H ∈ obj(M), then M(H) ⊆ J(H) ⊆ LG,V (H).

In order to construct J as a subfunctor J ≤ LG,V , it is enough to show that

LG,V (φ)(J(H)) ⊆ J(K) for any φ ∈ HomRM(H,K), and K ∈ obj(M). Indeed,
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if K ∈ obj(M), φ ∈ HomRM(H,K), and
∑
i φi ⊗ vi ∈ J(H), then

LG,V (φ)

(∑
i

φi ⊗ vi
)

=
∑
i

φφi ⊗ vi,

so for all ψ ∈ HomRM(K,G),

LG,V (ψ)

(∑
i

φφi ⊗ v
)

=
∑
i

ψφφi ⊗ vi =
∑
i

(ψφ)φi ⊗ vi = 0

since
∑
i φi ⊗ vi ∈ J(H), and ψφ ∈ HomRM(H,G). Thus

∑
i φφi ⊗ vi ∈ J(K).

Since M ≤ LG,V , J ≤ LG,V and M(H) ≤ J(H) for all H ∈ obj(M), we

have M ≤ J for any proper subfunctor M of LG,V . J itself is also proper since

J(G) = {0}, so J is the unique proper maximal subfunctor of LG,V . In particular,

the quotient functor SG,V := LG,V /J is a simple object of FRM, and SG,V (G) ∼= V ,

since J(G) = {0}.

Notation. We denote by IG the free R-submodule of EndRM(G) generated by

all endomorphisms of G which can be factored through some object H ofM with

|H|< |G|. Note that IG is a two-sided ideal of EndRM(G).

If S is a non-zero object of FRM, then there must be some G ∈ obj(M)

satisfying S(G) 6= {0}. Hence a minimal group G for S is defined to be a group

G ∈ obj(M) satisfying S(G) 6= {0}, but S(H) = {0} for all H ∈ obj(M) where

|H|< |G|.

Let S be a simple RM-functor. Thus S is non-zero, and there exists a minimal

group G for S, and S(G) is a simple EndRM(G)-module by Theorem 2.3. If

f ∈ EndRM(G) factors through an object H ∈ obj(M) with |H|< |G|, then

S(f) = 0, since then S(f) factors through S(H) = {0}. It follows that IG

acts as 0 on S(G), i.e. that S(G) is a simple module for the quotient algebra

QG = EndRM(G)/IG.

Conversely, suppose that G is an object ofM and V is a simple RQG-module.

Then V becomes a simple EndRM(G)-module via the algebra homomorphism
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EndRM(G) → QG. Then by Theorem 2.4, LG,V has a unique simple quotient

SG,V satisfying SG,V (G) ∼= V .

Definition. Let R be a commutative ring with unity. The pairs (G, V ) of groups

G ∈ obj(M) and simple RQG-modules V , are called seeds of RM.

Note that the argument above points out a way of associating seeds of RM
with simple RM-functors.

Definition. If (G, V ) is a seed of RM, the associated simple functor is the unique

simple quotient SG,V described in Theorem 2.4.

2.4 Structure of EndRM(G)

Lemma 2.5. Let f, g be automorphisms of H ∈ obj(V). Then f –1 ◦ g is an

inner automorphism of H if and only if the subgroups ∆ = ∆(H, f,H) and ∆′ =

∆(H, g,H) of H ×H are conjugate in H ×H.

Proof. Assume (q,r)∆ = ∆′ for some (q, r) ∈ H ×H. Then

∆′ = (q,r)∆

= (q,r) {(f(p), p) | p ∈ H}

=
{

(qf(p)q–1, rpr–1) | p ∈ H
}

=
{

(qf(r–1p′r)q–1, p′) | p′ ∈ H
}

writing rpr–1 = p′ ∈ H

=
{

(qf(r–1)f(p′)f(r)q–1, p′) | p′ ∈ H
}

implies g(p) = qf(r–1)f(p) for all p ∈ H. Since q, r ∈ H, they are conjugate in H.

Conversely if g ◦ conq = f for some q ∈ H, then

∆ = {(f(p), p) | p ∈ H}

=
{
g(qpq–1), p) | p ∈ H

}
=
{

(g(q)g(p)g(q–1), p) | p ∈ H
}

= (g(q),1) {(g(p), p) | p ∈ H}

= (g(q),1)∆′
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showing the conjugacy by (g(q), 1) ∈ H ×H.

Now denote by AG the free R-submodule of EndRM(G) generated by all en-

domorphisms of the form [G×G/∆] for ∆ ∈ Σ(G) where

Σ(G) = {∆(G, φ,G) | φ ∈ AutV(G)} .

Since [
G×G

∆(G, φ,G)

]
×G

[
G×G

∆(G, φ′, G)

]
=

[
G×G

∆(G, φφ′, G)

]
for all automorphisms φ, φ′ of G, it follows that AG is an R-subalgebra of

EndRM(G). Moreover, there is an R-algebra isomorphism ρ : AG → ROutV(G)

given by

ρ

(
G×G

∆(G, φ,G)

)
= πG(φ),

where πG : AutV(G)→ OutV(G) is the projection map. Indeed by Lemma 2.5,[
G×G

∆(G, φ,G)

]
=

[
G×G

∆(G, φ′, G)

]
⇐⇒ πG(φ) = πG(φ′).

Write JG for the R-submodule of EndRM(G) generated by all endomorphisms

[G×G/∆] of G with |q(∆)|< |G|. Then we should also note the decomposition

EndRM(G) = AG ⊕ JG. Indeed, any representative G×G/∆ in AG must have

q(∆) ∼= G, and conversely q(∆) ∼= G implies ∆ = ∆(G, φ,G).

Lemma 2.6. Let R be a commutative ring with identity, and letM be a Mackey

group category. If G ∈ obj(M), then the following two free R-submodules of

EndRM(G) are equal:

• The R-module IG generated by all endomorphisms of G which can be fac-

tored through some object H ofM with |H|< |G|

• The R-module JG generated by all endomorphisms [(G×G)/L] of G with

|p1(L)| = |p2(L)|< |G|.

Proof. Let B = (G×G)/∆(U, φ, V ) so that [B] ∈ EndRM(G), and write

∆(U, φ, V ) = L. Then since obj(M) is closed under subgroups, p1(L) ≤ G must
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be in obj(M), and so B factors through p1(L). So if B ∈ JG, i.e. |p1(L)|< |G|,
then B ∈ IG. Thus, JG ⊆ IG.

Conversely any element α of IG, is generated by morphisms of the form ψφ

where

ψ =
[
G×H
M

]
and φ =

[
H ×G
L

]
where H ∈ obj(M) satisfy |H|< |G|. And so by Mackey formula, α is a linear

combination of morphisms of the form
[
G×G
M∗L′

]
where L′ is some conjugate of L in

H × G. Now the group p1(M ∗ L′) is isomorphic in V to a subgroup of H, and

hence |p1(M ∗ L′)|< |G|, thus IG ⊆ JG.

Let us summarize what we have shown up to this point:

Corollary 2.7. Let R be a commutative ring with identity, and let M be a

Mackey group category. For G ∈ obj(M), IG is a two-sided ideal of EndRM(G),

and there is a decomposition

EndRM(G) = AG ⊕ IG

where AG is an R-subalgebra which is isomorphic to the group algebra ROutV(G).

2.5 Classification of Simple RM-functors

Definition. Two seeds (G, V ) and (G′, V ′) are said to be equivalent if there is a

group isomorphism φ ∈ HomRM(G,G′) and an R-module isomorphism ψ : V →
V ′ such that

∀v ∈ V, ∀a ∈ QG, ψ(a.v) = (φaφ–1).ψ(v).

In this case, we write (G, V ) ∼ (G′, V ′).

Lemma 2.8. Let R be a commutative ring with identity element, and letM be a

Mackey group category. Let SG,V denote the simple functor associated to the seed

(G, V ) of RM. If H ∈ obj(M) such that SG,V (H) 6= {0}, then G is isomorphic

to a subgroup of H.
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Proof. Let H ∈ obj(M) such that SG,V (H) 6= {0}. Note SG,V (H) 6= {0} implies

LG,V 6= JG,V . Then by definition of JG,V there must be some
∑
i φi ⊗ vi ∈ LG,V

and some ψ ∈ HomRM(H,G) such that
∑
i ψφi ⊗ vi 6= 0. So we can pick a

φ ∈ HomRM(G,H) satisfying (ψφ).vi 6= 0, and so (ψφ)V 6= {0}. In particular,

ψφ /∈ IG since otherwise non-zero ψφ would factor through a group strictly smaller

than G, which would contradict with G being minimal for SG,V .

It follows that there exists groups

∆ := ∆(U, ρ, V ) ≤ H ×G & ∆′ := ∆(U ′, ρ′, V ′) ≤ G×H

appearing in some summands of φ and ψ respectively, such that the product

G×H
∆′

×H
H ×G

∆
=
∑
h

G×G
∆′ ∗ (h,1)∆

is not in IG. This implies, choosing without loss of generality h = 1 that p1(∆
′ ∗

∆) = G = p2(∆
′ ∗∆). So p1(∆

′ ∗∆) ≤ p1(∆
′) ≤ G implies p1(∆

′) = G, and since

G = p1(∆
′) ∼= p2(∆

′) ≤ H, then ρ′ : p2(∆
′) → G is an isomorphism between G

and the subgroup p2(∆
′) = V ′ of H.

Theorem 2.9. Let R be a commutative ring with unity, and letM be a Mackey

group category. Then there is a one-to-one correspondence between

• the set f of simple objects of FRM

• the set s of equivalence classes of seeds of RM

sending the isomorphism class of a simple functor S ∈ f to the equivalence class

of a seed (G,S(G)) ∈ s, where G is any minimal group for S. The inverse

correspondence maps the class of the seed (G, V ) to the class of the functor SG,V .

Proof. Let S be a simple RM-functor. Since S is non-zero, it has a minimal

group G ∈ obj(M) with respect to the property S(G) 6= {0}. Now set S(G) := V .

Then (G, V ) is a seed of S. Since S(G) = V , we can form a non-zero morphism

LG,V → S and this morphism is surjective since S is simple. But, LG,V has a

unique simple quotient SG,V and thus S ∼= SG,V . If G′ is another such minimal
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group, and we write S(G′) = V ′, then again S ∼= SG′,V ′ . Since SG,V (G′) 6= {0},
it follows from the previous lemma that G is isomorphic to a subgroup of G′.

Similarly G′ is isomorphic to a subgroup of G and hence there exists a group

isomorphism φ ∈ HomV(G′, G).

Now let φV ′ be the ROutV(G)-module equal to V ′ as an R-module, with

OutV(G) action defined for any ρ ∈ OutV(G) by ρ.v := (φ–1ρφ).v for all v ∈ V ′.
Also since the functors SG,V and SG′,V ′ are isomorphic, there exists an isomor-

phism ψ : φV ′ → V of R-modules. Then the pair (φ, ψ) is an isomorphism from

the seed (G′, V ′) to the seed (G, V ). Indeed, φ : G′ → G is a group isomorphism

and ψ : φV ′ → V play also the role of an R-module isomorphism ψ : V ′ → V

such that

∀v ∈ V ′, ∀ρ ∈ OutV(G), ψ(ρ.v) = (φρφ–1).ψ(v).

Thus we have a well-defined map ν : f→ s.

Also to each seed (G, V ) of RM we can associate a simple RM-functor SG,V =

LG,V /JG,V . Noting that an isomorphism (φ, ψ) : (G, V ) → (G′, V ′) for another

seed (G′, V ′) ∈ s provides us with an isomorphism of RM-functors, it becomes

clear that we also have an inverse map µ : s → f. Indeed, G′ ∼= G are minimal

groups for SG′,V ′ and SG,V with

SG′,V ′(G′) = V ′ ∼= V = SG,V (G)

making SG,V ∼= SG′,V ′ .

Now it should be clear by construction that µ ◦ ν = idf and that ν ◦ µ = ids.

Thus, µ and ν are two mutual inverse bijections between f and s.
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Chapter 3

Mackey Group Categories for

Brauer and Puig Categories

In this chapter we will first apply our treatise on Mackey group categories to the

Brauer category, building a category which we will call Mackey-Brauer category.

Then we will introduce the Puig category, which has pointed groups of a modular

group algebra as its objects, and speculate on a Mackey-Puig category.

3.1 Mackey-Brauer Category

Let Bb be a Brauer category on a block b of a modular p-algebra kG. As we have

noted before, although a Brauer pair (P, e) has a unique Brauer subpair (Q, eQ)

for any subgroup Q ≤ P , it need not have a unique Brauer superpair. That

is, there may be two pairs (R, f) and (R, g) satisfying both (P, e) ≤ (R, f) and

(P, e) ≤ (R, g) although f 6= g. We can circumvent this problem by simply taking

the maximal Brauer pairs in a block, and exploit the uniqueness of subpairs.

Notation. Let kG be a p-modular group algebra, and b be a block of kG. If

(D, e) is a maximal Brauer pair in Bb, then we write B(D,e) for the full subcategory

of Bb where objects are subpairs of (and including) (D, e).
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Hence we can define the Mackey-Brauer category MB(D,e)
, since B(D,e)

satisfies the axioms A1-A4. Although the axiom A1 is not satisfied directly, it is

enough to note that the category B(D,e) is equivalent to a category with subgroups

of D as its objects.

Notation. Throughout this chapter, M will denote a Mackey-Brauer category.

All of the previous results work for M, since it is a Mackey group category,

but in this case we have more to say on the structure of QG = EndRM(G)/IG,

hence the modules in seeds.

Lemma 3.1. Conjugacy classes of the subgroups ∆g = ∆(P, cong, P ) ≤ P × P
are in one-to-one correspondence with NG(P, e)/PCG(P ).

Proof. Let g = hk for some k ∈ PCG(P ). Then we have

∆g = {(gp, p) | p ∈ P} =
{(

hkp, p
)
| p ∈ P

}
=
{(

h
(
kpk–1

)
, p
)
| p ∈ P

}
=
{(

h
(
k1k2pk

–1
2 k

–1
1

)
, p
)
| p ∈ P

}
k = k1.k2 for k1 ∈ P&k2 ∈ CG(P )

=
{(

h
(
k1pk

–1
1

)
, p
)
| p ∈ P

}
= (hk1,1)

{
(hp, p) | p ∈ P

}
= (hk1,1)∆h

Since h ∈ NG(P, e) ≤ NG(P ) and k1 ∈ P , we have hk1 ∈ P , and so ∆g and ∆h

are conjugate in P × P .

This time assume ∆g = (q,r)∆h for some (q, r) ∈ P × P . That is to say,

{(gp, p) | p ∈ P} = ∆g = (q,r)∆h

=
{(

qhp, rp
)
| p ∈ P

}
=
{(

qhr–1p, p
)
| p ∈ P

}
since r ∈ P

or in other words, gp = qhr–1p ∀p ∈ P . So p = qhr–1g–1p ∀p ∈ P . If we write

qhr–1g–1 = qr′hg–1 where hr–1h–1 = r′ ∈ P , then we get qr′hg–1 ∈ CG(P ) and

qr′ ∈ P . Thus hg–1 ∈ PCG(P ).
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Thus by Theorem 2.9, we can parametrize the simple objects of FRM via

pairs ((P, e), V ) where (P, e) ∈ obj(M) is any Brauer pair on b and V is a simple

RNG(P, e)/PCG(P )-module.

Example 3.1. Let us consider the group A4 in characteristic 2, and the principal

block b. So, Brauer pairs are in one-to-one correspondence with p-subgroups

of A4 as we have noted in the first chapter. These subgroups are 1, C2’s and

V4 with centralizers A4, V4, V4 and normalizers A4, V4, A4, respectively. So, the

simple kMBb-functors are characterized by the pairs having one kA4/(1.A4) = k1-

module, one kV4/(C2.V4) = k1-module, and three kA4/(V4.V4) = kC3-modules.

Since all three seeds corresponding to C2’s are equivalent, we deduce that A4 has

five kMBb-functors.

3.2 Mackey-Puig Category

Definition. The Puig category Lp(G) of a p-modular group algebra kG is

defined to be the category with

• objects; local pointed groups on kG,

• morphisms Qβ → Pα; group homomorphisms φg : Q→ P such that φg(q) =
gq for all q ∈ Q, where g satisfies g(Qβ) ≤ Pα.

Also, if we restrict the objects to local pointed groups in a block b of kG, then

we will write Lb(G) for the resulting category.

When we are working with the Puig category the trick we used in the previous

section is no longer valid, since a local pointed subgroup need not be unique as

we have seen while observing the local pointed subgroup relations for kS3 when

char(k) = 3. But we can define a category based on the Puig category, which

satisfies our axioms.

Definition. Given a modular group algebra kG and a block b of kG, we define

a category V as follows:
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• objects are pairs (Q,Pα) where Pα is a local pointed group in b, and Q ≤ P

is a subgroup,

• morphisms in HomV((Q,Pα), (Q′, P ′α′)) are group monomorphisms φ ∈
HomLb(G)(Pα, P

′
α′) such that φ(Q) ≤ Q′.

A Mackey group category M constructed using such a category V would

definitely satisfy the axioms, and hence we can classify the simple RM-functors

as we have shown.
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