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ABSTRACT

ELASTIC IMPACT OF A PENDULUM
ON A FRICTIONAL SURFACE

Seyit Can BİRLİK

M.S. in Mechanical Engineering

Supervisor: Prof. Dr. Adnan AKAY

September, 2012

Constrained impacts with friction frequently exist in mechanical systems such

as robotic arms, hard disk drives and other mechanisms. Such discontinuous

contacts, if not designed and analysed properly, can lead to malfunctions. In

particular, for the analysis of problems that involve eccentric collisions and re-

versal of friction force, use of stereomechanical impact theory with coefficient of

restitution can produce paradoxical energy increase. Alternatively, continuum

models, which provide more detailed analysis for such problems, can be used,

however they are computationally tedious. Instead, here, contact is described by

compliant elements with friction and applied to a physical pendulum.

In this thesis, impact-momentum relations for general three-dimensional free

collisions are modified for a pendulum which exemplifies an impact with friction

and constraint. Inclusion of tangential compliance to model enables the model

to demonstrate tangential force reversals and their transition between stick and

slip, which is demonstrated using a sphere and a slender rod obliquely colliding

with a rough massive plane.

Use of compliant elements to describe impact by a planar pendulum produces

differences in the behavior of a constrained system compared with free impacts.

For instance, in free collisions an impact that starts with an initial sticking,

is always followed by sliding. However, in a pendulum if the contact begins

by sticking, it continues to stick throughout the duration of impact. Another

difference appears when contact starts with an initial sliding. In free impact,

sliding is followed by sticking and sliding, then the body rebounds unless the

collision is inelastic. However, in the constrained case wedging of the pendulum

is observed if initial angle of collision is below a critical value for a specified

friction coefficient.

Keywords: impact, collision, constrained impact, impact with friction, pendulum.
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ÖZET

SARKACIN SÜRTÜNMELİ BİR YÜZEY İLE
ÇARPIŞMASI

Seyit Can BİRLİK

Makine Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Prof. Dr. Adnan AKAY

Eylül, 2012

Hareket yeteneği kısıtlanmış sürtünmeli çarpışmalar, robotik kolları gibi mekanik

sistemlerde sıklıkla gözlemlenmektedir. Bunlar gibi devamsızlık gösteren temaslar

uygun olarak tasarlanmazsa işlev bozukluklarına yol açabilmektedir. Merkezleri

kaçık çarpışma ve sürtünme kuvvetinin yön değiştirdiği bu tarz problemlerin anal-

izlerinde steromekanik çarpışma teorisinin geri getirme katsayısı ile kullanılması

paradoksal enerji artışı ile sonuçlanabilir. Alternatif olarak kullanılabilecek, bu

çeşit çarpışmalarda daha fazla detay veren sürekli ortam modelleri ise hesaplama

açısından zor ve uğraştırıcıdırlar. Bunların yerine, temasın sürtünme ve kom-

pliyant elemanlarla tanımlandığı bir model oluşturulup fiziksel sarkaç üzerinde

uygulanmıştır.

Bu tezde, üç boyutlu serbest çarpışmalar için impals-momentum ilişkileri

kurulmuş ve bu ilişkiler kısıtlı ve sürtünmenin dahil edildiği bir çarpışmayı

örneklendirebilecek sarkaç için düzenlenmiştir. Temasa teğetsel kompliyans ek-

lenmesi, modelin teğetsel kuvvet yön değiştirmelerine ve yapışma-kayma arasında

geçiş yapabilmesine olanak sağlamıştır. Çarpışmanın bahsedilen özellikleri

ise bir küre ve bir çubuğun eğik olarak sürtünmeli bir yüzeye çarpışmasıyla

örneklendirilmiştir.

Kompliyans elementlerin düzelemsel sarkacın çarpışması için kullanılması,

serbest çarpışmalara göre farklar yaratmaktadır. Örneğin, yapışmayla başlayan

bir serbest çarpışma, her zaman kaymayla sonuçlanmaktadır. Ancak, sarkaçta

eğer çarpışma yapışmayla başlıyorsa, çarpışma boyunca bu şekilde devam etmek-

tedir. Bir başka fark da kaymayla başlayan çarpışmalarda görülmektedir. Serbest

çarpışmalarda kaymayla başlayan çarpışmayı yapışma ve tekrar kayma fazları

takip etmektedir ve eğer çarpışma inelastik değilse çarpan cisim zıplamaktadır.

Ancak, kısıtlanmış harekette, eğer belli bir sürtünme katsayısı için çarpma açısı

belli bir değerin altındaysa sarkacın sıkışması gözlemlenmektedir.

Anahtar sözcükler : çarpışma, kısıtlı çarpışma, sürtünmeli çarpışma, sarkaç.
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3.5 Impact of a sphere with µ = 0.5, ẋ(0)/ż(0) = 1, k3/k1 = 1.21 . . . 34
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ŝ : sliding direction

u1 : displacement of the tangential compliant element

u̇1 : rate of change of the displacement of the tangential compliant element

u3 : displacement of the normal compliant element

u̇3 : rate of change of the displacement of the normal compliant element

x : distance in n1 direction

y : distance in n2 direction

z : distance in n3 direction
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Chapter 1

Introduction

In the analysis of impact problems, one is typically interested in reaction forces

and impulses and/or dynamic response of the system to the collision. One may

focus only on the impact forces for example, for the purposes of determining

whether the colliding bodies deform plastically or to make sure that the colliding

components are running under safe conditions. Alternatively, one may focus only

on the dynamics of the system to determine how the bodies move following impact

to completely understand the coupled nature of impacting system.

Impacting bodies are frequently encountered in engineering applications hence

the subject continues to draw attention. Analysis of impact or collision is required

for examples such as punch-press appliaction as a manufacturing process, design

of vehicles to be able to make sure that the vehicle is safe enough after a car

crash, in robotic applications where an arm is moving and colliding in a frictional

environment, modeling of intermittent contact of a hard-disk drive, or investiga-

tion of the dynamics of a one legged jumping robot. All of these systems and

many others, involve discontinuous contacts. In particular, for systems that are

constrained, if the impact is frictional, the inherent discontinuity in the system

may lead to behavior such as wedging, jamming and swerve that can result in

mulfunctioning of the system.
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Selection of the solution method for constrained frictional collisions is impor-

tant because of the mathematical or physical complications in the problems. For

example, using coefficient of restitution in classical theory of impact as a ratio

of final and initial velocities, causes paradoxical energy increase if the impact

is eccentric and frictional [1]. To overcome such problems deformable elements

approach is recommended [2]. The latter approach basically consists of placing a

deformable massless element at the contact point and using the deformations on

that element in calculating forces followed by the dynamic response of the system

to these forces. In addition to solving paradoxical phenomena, use of deformable

elements method allows inclusion of material properties in the solution unlike the

coefficient of restitution and is computationally much faster than when using the

continuum models.

Method of deformable elements is extended to oblique impacts using normal

and tangential compliant elements at the contact point, by considering the con-

tact condition as sliding and sticking [3]. This compliant element model is able to

demonstrate the stick-slip cases and force reversals with relative computational

ease compared with the continuum models (e.g. [4]). Application of the compli-

ant elements model to frictional constrained collisions can be best demonstrated

by a pendulum, which is a very simple prototypical model and represents the

aforementioned engineering systems very well.

In this thesis, an analytical model is constructed for constrained frictional

collisions, using tangential and normal compliance elements at the contact point

and using a planar pendulum impacting on a massive plane with friction.

Studies related to the problems encountered in constrained collisions with

friction will be summarized in the Background and State of the Art in Chapter 2.

Then, the thesis starts with a description of free impact of two elastic bodies and

presents the derivation of the equations describing their motion during impact and

the expression for the relative velocity during contact. In Chapter 3, a detailed

review and after a brief summary on frictional impacts, the model of compliant

elements at contact is introduced followed by two examples: (i) oblique impact of

a free sphere on a massive surface with friction, and (ii) oblique impact of a slender

2



rod on a massive surface with friction, are presented with compliant elements

at the contact interface. Equations derived for free collisions are modified for

constrained bodies; where one is assumed to be infinitely large and stationary

and the other is a pendulum having one and two degrees of freedom. For a 3D

pendulum, change of sliding direction during collision, swerve [3], is analysed.

Finally, the model with two compliant elements at the contact interface is applied

to a 2D physical pendulum, which represents constrained impact with friction.

Both, initially sliding and initially sticking cases and dissipation mechanisms

during collision are discussed in detail and wedging phenomenon is analyzsed

comparing it with the rigid-body assumption.
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Chapter 2

Background and State of the Art

In investigating the impact of a pendulum on a massive plate, consideration of

impact mechanisms together with friction between the impacting bodies further

complicate the problem. Oblique problem that the pendulum undergoes has been

investigated for uncostrained impacts in much detail, using various approaches,

described below.

Confining the problem addressed here to low-speed impacts, modeling efforts

can be classified as; particle impact, rigid-body impact, transverse impact on

flexible bodies and axial impact on flexible bodies [5], or considering continuity

of the solution; impulse-momentum (discrete) and continuous [6]. An alternative

generalized classification is provided by Ivanov that covers and integrates them

all [7] such that:

• Stereomechanical (classical) theory: Deformation of the bodies are ne-

glected and impact is assumed to be instantaneous. Impulse momentum

relations are used and (almost always) linear, algebraic equations are ob-

tained [8], which require reasonable computation time. To equalise number

of unknowns to number of equations, coefficient of restitution (COR) should

be included in the calculations. However, coefficient of restitution, which

relates one of the system parameters (velocity, impulse or energy) at two
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stages (initial to final or end of compression to end of restitution) of im-

pact, is independent of the physical properties of the colliding bodies [7] and

mostly empirically defined. Also, in oblique impacts, inclusion of tangential

impulse is problematic, since either Coulomb’s law of friction is used -which

is discontinuous for some cases- or coefficients like tangential coefficient of

restitution is used whose definition is again an uncertain parameter [6]. One

other disadvantage of using classical theory in impact is the fact that it is

hard to apply this method to the systems with multiple bodies with several

contact points [6].

Classical theory is used successfully if detailed time-dependent analysis of

contact is not required [8–13]. Many different problems are solved using

stereomechanical model, for instance problem of “rolling friction moment”

in a constrained rigid body impact [14], problem of frictional impact by

dividing the impact into compression and restitution phases and applying

stored momenta (in normal and tangential directions) during compression

to the restitution phase by considering losses [15] etc.

• Wave impact theory: In this approach, stress waves created by the impact

are taken into account. This method is preferred, if the energy transmitted

by the waves constitute a significant fraction of the impact energy. Equa-

tions derived for general impacts [16] can be used for more general impacts

or there are more specific solutions for some cases such as axial impact on

slender deformable bodies [5, 17].

One of the main differences of wave impact theory from other approaches

is the energetic losses from elastic impacts due to elastic stress waves [18].

Theoretical and experimental studies try to explain this. For instance,

Reed [19] researches the elastic wave propagation with energy dissipation for

a impact of an elastic sphere on an elastic massive substrate using Hunter’s

approximation to the Hertz contact theory, Seifried et al. [20] compare

their FEM model with experimental data validating their calculations with

impact of a steel sphere to an aluminum rod and compare experimental and

numerical results in plastically deformed impacts [21].

• Deformable elements method: In contrast to the above theories, colliding
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bodies are neither completely rigid nor the impact affects the whole body.

Effect of the collision is limited to a small region. This method has several

advantages. Unlike the classical theory, time-dependent forces and displace-

ments can be obtained and computation time is not as high as wave impact

theory [2]. On the other hand, if losses due to waves are not negligible or a

quick, rough estimation of after collision properties are needed, deformable

elements method is not preferable.

Basis of the approach starts with Hertz’ contact theory [22] despite the fact that

its derivation has static elastic nature [17]. Then, again without considering

impacts, tangential compliance is introduced [23, 24] . Afterwards, tangential

compliance of materials is used in the oblique impact of spheres [4] and then

findings of the study (sticking-sliding distinction during contact, reversal of the

tangential force etc.) are validated with experiments [25, 26]. Although afore-

mentioned studies revealed the effect of tangential compliance, the methods were

complex and computation time was high, hence studies on simplifications in the

calculations were carried on. For instance, Jaeger [27] defined stress as a sum

of Catteneo-Mindlin functions instead of discrete set of points which avoided the

large set of equations yet obtaining the same results given by Maw et. al. [4].

Several experimental studies have also assesed the effect of tangential compliance.

For instance, Garland and Rogers [28] obtained impact waveforms for an oblique

impact and compared their results with those of Hertz and other tangential com-

pliance methods. Osakue and Rogers [29] conducted experiments that indicate

the stick-slip behavior.

To simplify the calculations made using compliant impact further, placing two

compliant elements (normal and tangential) at the contact point was proposed

and it was demonstrated that the results were similar to the continuum model

proposed by Maw et al. Examples of a collinear impact [3] and an eccentric

impact [30] demonstrated the ease and effectiveness of the model. Basically, the

model consists of two compliant elements in normal and tangential directions and

connects the contact point and rigid body. Angle of incidence of the velocity of

the body determines the stick and slip conditions and transition between these

conditions.
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For the inclusion of friction in impacts by linearly relating frictional impact to

the normal impact via coefficient of friction [31], several authors focused on the

inconsistency in eccentric frictional impacts showing that Newton’s [32] (which

is defined as the the ratio of final and initial velocities) and Poisson’s (ratio of

normal impulses at the end of the impact and at the end of the compression

phase) coefficient of restitutions caused violation of energy conservation [33, 34].

Hence, Stronge defined coefficient of restitution as the ratio of the work done dur-

ing rebound to that during the compression phase (named energetic coefficient of

restitution, which is defined in detail in [6,33,35,36]) proving that problems with

frictional impacts are overcome. Inconsistencies of Newton’s and Poisson’s coeffi-

cient of restitution in impact with friction and reversal of the tangential force have

been investigated in detail. For example, Stronge [1] compares the approaches

from an energy dissipation view, Batlle [37] defines conditions for Newton’s and

Poisson’s coefficient of restitution to be energetically consistent, Ivanov [38] shows

that Newton’s approach can validate the conservation of energy, and Poisson’s

approach gives higher energy dissipation than the experimental values, and claims

that energetic coefficient of restitution is more realistic. Lubarda [36] defines the

boundaries of approaches using impact of a rigid pendulum. Brach extended the

COR concept beyond the normal motion of the impacting bodies, defining tan-

gential COR that acts like coefficient of friction [10] and defined COR for moment

in [12].

Inclusion of coefficient of friction as defined by Coulomb is commonly used in

conventional approaches, wave impact theory, and deformable elements method.

For instance, Keller [39] uses normal impulse to parametrize the impact with

the help of Poisson’s coefficient of restitution and Coulomb’s friction. Brach

[11] calculates the differences in tangential velocity using tangential impulse and

relates this to normal impulse with coefficient of friction. In deformable elements

method, Amontons-Coulomb type friction force is again included if the bodies

are sliding (e.g. in [3, 4, 30, 40]). For a good review of the methods other than

Amontons-Coulomb law that are used in contact problems are given in [41].

Another common dissipation mechanism is damping. Simplest model that

includes damping in collision is a linear spring dashpot model in normal direction
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[17]. As an other example, Hess and Soom [42] model contact under harmonic

loads using a non-linear spring and viscous damper. Lankarani and Nikravesh [43]

uses a hysteresis damping function for the losses among with the Hertzian contact.

Another important phenomenon in the pendulum problem is the obliquity

of the impact. It adds significant complexity to the problem by introducing a

tangential component to the velocity. Because of the tangential component of

the velocity, pendulum is exposed to tangential impulse, giving rise to sliding-

sticking, direction of sliding and reversal of tangential force during contact.

Studies related to oblique impact start with the analysis of normal impact,

which begins with Hertz theory. Detailed analysis of Hertz’ work and following

advances in this topic is reported by Johnson [44]. In a more detailed analysis

of normal impact based on theory of Hertz, Zener uses impact forces to calculate

transverse displacements and then relates this to COR [45]. Hunter shows that,

this approach can be used for impact of a sphere on a thick plate [18]. Villaggio

[46] uses an elastic solution for the normal impact of a sphere considering elastic

waves and finds slightly higher duration of impact then Hertz. Chang and Ling

[47] use an elastic-plastic model for normal impacts which is dependent on surface

and material properties in addition to initial velocity and compare their results

with other works.

As mentioned, oblique impacts involve challenging phenomena due to com-

plexity of friction and tangential compliance in the contacting bodies. The solu-

tion for tangential compliance was introduced by Mindlin in [23] reporting that

tangential displacements are dependent on the previous load history. Mindlin also

considered micro-slip regions and showed that even when the tangential force is

less then the friction force there are stuck regions as well as sliding regions in the

contact area. Stick-slip transition during contact was extended for oblique im-

pacts by Maw et al. [4] who showed that the contact area is divided into concentric

annuli to find sticking and sliding regions. The results show that rigid-body ap-

proach is not appropriate except for low and high angles of incidence. Their study

aslo showed the importance of compliance in oblique impacts. Maw et al. [25,26]

validated their findings with experiments. Garland and Rogers [48] argue that
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one can obtain similar results with Maw et al. using shear stress distribution to

calculate tangential force with decreased computation time. Jaeger [27] obtains

analytical solutions for normal and tangential impact and torsional moment.

In order to simplify the aforementioned complex solutions for oblique impact,

some authors solve the problem with normal and tangential compliant elements

attached between contact point and the body [2,3,7,30,49]. In this approach set

of differential equations in normal and tangential directions at the contact point

are solved as a function of displacement and its derivatives. From displacements,

forces and impulses can be calculated as a function of time. Lim and Stronge [50]

use the same model in elastic-plastic impact and compare the results with the

results of a FEM model and shows that the results are in very good agreement.

Among the experimental investigations of normal and oblique impact studies,

Goldsmith [17] presents many experimental results for normal impacts which

shows COR, contact duration, contact diameter for different impact cases. Gugan

[51] reports on experiments with similar results as the theoretical work of Hertz

in spite of the plastic deformations encountered during the tests. Gorham and

Kharaz [52] reported test with aluminium spheres colliding with a thick platel and

find similar results with numerical work of Maw et al. Osakue and Rogers [29]

conducted tests of oblique impact using a pendulum and shows the stick-slip and

gross-slip phenomena really exists during oblique impacts. Seireg and Waiter

[53] use a pendulum to find the friction coefficient and kinetic coefficient during

impact. Shi and Polycarpou [54] runs experiments to find contact stiffness and

material damping values using realistic rough surface and compares these with the

findings of Hertz. Hutchings et al. [54] report experiments with oblique impact

of hard sphere to ductile surface and presents results with analytical solutions.

Almost all of the aforementioned studies consider planar impacts, however

there are also several publications related to three-dimensional impacts of bodies.

For example, Jia [55] extends Stronge’s works in [3,30] to 3D impact using three

orthogonal springs and by considering stick-slip transitions derives solution. Non-

planar changes in velocity during 3D impact are analysed in detail by several

authors. Stronge investigates the concept of swerve [40] that develops during
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frictional impact and defines critical angles for it. Bhatt and Koechling [56–58]

refers to swerve, the change of direction of velocity, as flow and find invariant

directions, flow change directions and show possible flow patterns, sticking and

sliding conditions using rigid body dynamics. In these studies the central aim is

to predict the qualitative behavior of the impacting bodies and applying these

patterns to numerical calculations. Battle [59] uses a similar approach to find

the dependence of the flow to friction coefficient and other parameters. Zhen

and Liu [60] find solutions for 3D impacts using normal impulse as a differential

variable and solving the differential equations with a numerical method and solves

examples with this method.

Nearly all of the studies highlighted above deal with impacts of free bodies

or derivation of equations for general collisions. Their application to constrained

motions, such as that by a pendulum, brings additional challanges. Some of these

are described in several studies. For instance, Lubarda [36] discusses the bounds

for different types of coefficients of restitution, Marghitu and Stoenescu [14] dis-

cuss the effects of moment rolling friction, Pfieffer and Glocker [15] discusses the

frictional impact, Zhen and Liu [60] solve 3D impact problem using pendulum

with rigid body assumptions. Constrained impact has specific conditions like

wedging (also referred as cut-off, stick), which is physically a locking of the sys-

tem. Ivanov [7] addresses this issue and offers solutions for cut-off type collisions

for a pendulum with springs at the contact point and at its hinge. Stronge [5]

uses a similar example to show a collision with multiple contact points neglecting

friction. Brach [11] derives equations for a pendulum to make an example of 3D

impact however he uses the classical approach.

In the next chapter, a detailed review of the derivation of equations of motion

for a free 3D collision is presented. After a brief discussion of frictional impacts,

unconstrained collisions in 3D are analysed by reviewing the contact model with

compliant elements between the body and the contact body.
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Chapter 3

Unconstrained Collisions

In this chapter impact of two free bodies will be discussed and related equations

will be derived. Then, after discussing the effect of friction on impacts, free

body impact relations will be used in two-dimensional collision models where the

second body is a static massive plane.

3.1 Unconstrained Collisions in 3D

According to Newton’s second law, a body with mass, m, accelerates with resul-

tant forces, F, on it
d(mV)

dt
= F (3.1)

similarly, for rotational motion, resultant moments, M, on the body with inertia

matrix, J, causes changes in angular acceleration

d(Jθ̇)

dt
= M (3.2)

Equations (3.1) and (3.2) change the linear and angular velocities of the body and

constitute the basis of the impulse-momentum relations. Defining linear momen-

tum as mV and angular momentum as Jθ̇, by integrating the above equations

(assuming inertia properties, m and J of the body remain constant) the following
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relations are obtained:

m∆V =

∫
Fdt (3.3)

J∆θ̇ =

∫
Mdt (3.4)

Defining linear, P and angular impulses, H ,respectively, as

P =

∫
Fdt (3.5)

H =

∫
Mdt (3.6)

impulse-momentum relations can be written

P = m∆V (3.7)

H = J∆θ̇ (3.8)

The linear momenta about the center of mass G, can be used to find the corre-

sponding angular momentum such that

H = ρ×mV

H = ρ×P (3.9)

where ρ represents position vector from center of mass G to the contact point

C. The relations (3.7) and (3.8) simply mean that if impulse, P, is applied on a

body with mass, m, initial velocity of the body is changed by ∆V, with a similar

relationship between angular impulse and velocity.

Invoking Newton’s third law and denoting the second body with a prime,

F′ = −F (3.10)

M′ = −M (3.11)

which leads to the relations of the linear and angular impulses acting on the

bodies. Applying this to Equations (3.7) and (3.8) for collision of two bodies

m∆V = P

m′∆V′ = −P′ (3.12)
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J∆θ̇ = ρ×P (3.13)

J′∆θ̇′ = −ρ×P (3.14)

Linear velocities of the bodies at the contact point, C, are:

VC = V + θ̇ × ρ (3.15)

VC
′ = V′ + θ̇′ × ρ′ (3.16)

relative velocity at the contact point can then be found as

VR = VC −V′C =
(
V + θ̇ × ρ

)
−
(
V′ + θ̇′ × ρ′

)
(3.17)

To calculate the change in relative velocity under impulses, consider use of the

change of the velocities for each body at the contact point, C,

∆VR =
(
∆V + ∆θ̇ × ρ

)
−
(
∆V′ + ∆θ̇′ × ρ′

)
(3.18)

Rearranging terms

∆VR = (∆V −∆V′) +
(
∆θ̇ × ρ−∆θ̇′ × ρ′

)
(3.19)

using Equations (3.7, 3.12-3.14) produces relative velocity in terms of applied

impulses

∆VR =

(
P

m
− P′

m′

)
+
(
J−1(ρ×P)× ρ− J′

−1
(ρ′ ×P′)× ρ′

)
(3.20)

In the following sections, terms related to second body will be dropped for sim-

plicity, assuming, the second body is a massive static body (e.g. impact of a

free sphere on a massive surface, terms related to second body cancel due to zero

velocity). As a result, relative velocity at the contact point becomes

∆VR = m−1P + J−1(ρ×P)× ρ (3.21)

where the inertia matrix is

J =


J11 J12 J13

J21 J22 J23

J31 J32 J33

 (3.22)
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and the elements of the inverse of J matrix are

J−1 =


J−1

11 J−1
12 J−1

13

J−1
21 J−1

22 J−1
23

J−1
31 J−1

32 J−1
33

 (3.23)

Aligning Cartesian coordinates n1 and n2 with the tangential contact plane and

n3 as the normal to that plane, vectorial position from point of rotation to contact

point in directions n1, n2 and n3 are denoted by x, y and z, respectively. Then,

the position vector, ρ, becomes

ρ =


x

y

z

 (3.24)

and components of impulse vector are

P =


P1

P2

P3

 (3.25)

Substituting Equations (3.22-3.25) gives direct relation between ∆VR and P

presenting a more compact form. From Equation (3.21)

∆VR = m−1


P1

P2

P3

+ J−1



x

y

z

×

P1

P2

P3


×


x

y

z

 (3.26)

∆VR = m−1


P1

P2

P3

+ J−1


yP3 − zP2

zP1 − xP3

xP2 − yP1


︸ ︷︷ ︸

A

×


x

y

z

 (3.27)

A =


J−1

11 J−1
12 J−1

13

J−1
21 J−1

22 J−1
23

J−1
31 J−1

32 J−1
33



yP3 − zP2

zP1 − xP3

xP2 − yP1


︸ ︷︷ ︸

a1

a2

a3



(3.28)
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A =


J−1

11 a1 + J−1
12 a2 + J−1

13 a3

J−1
21 a1 + J−1

22 a2 + J−1
23 a3

J−1
31 a1 + J−1

32 a2 + J−1
33 a3

 (3.29)

∆VR = m−1


P1

P2

P3

+ A×


x

y

z

 (3.30)

∆VR = m−1


P1

P2

P3

+


(
J−1

21 a1 + J−1
22 a2 + J−1

23 a3

)
z −

(
J−1

31 a1 + J−1
32 a2 + J−1

33 a3

)
y(

J−1
31 a1 + J−1

32 a2 + J−1
33 a3

)
x−

(
J−1

11 a1 + J−1
12 a2 + J−1

13 a3

)
z(

J−1
11 a1 + J−1

12 a2 + J−1
13 a3

)
y −

(
J−1

21 a1 + J−1
22 a2 + J−1

23 a3

)
x


(3.31)

∆VR = m−1


P1

P2

P3

+


(
J−1

21 z − J−1
31 y
)
a1 +

(
J−1

22 z − J−1
32 y
)
a2 +

(
J−1

23 z − J−1
33 y
)
a3(

J−1
31 x− J−1

11 z
)
a1 +

(
J−1

32 x− J−1
12 z
)
a2 +

(
J−1

33 x− J−1
13 z
)
a3(

J−1
11 y − J−1

21 x
)
a1 +

(
J−1

12 y − J−1
22 x

)
a2 +

(
J−1

13 y − J−1
23 x

)
a3


(3.32)

∆VR = m−1


P1

P2

P3

+


(
J−1

21 z − J−1
31 y
)

(yP3 − zP2) +
(
J−1

22 z − J−1
32 y
)

(zP1 − xP3) +
(
J−1

23 z − J−1
33 y
)

(xP2 − yP1)(
J−1

31 x− J−1
11 z
)

(yP3 − zP2) +
(
J−1

32 x− J−1
12 z
)

(zP1 − xP3) +
(
J−1

33 x− J−1
13 z
)

(xP2 − yP1)(
J−1

11 y − J−1
21 x

)
(yP3 − zP2) +

(
J−1

12 y − J−1
22 x

)
(zP1 − xP3) +

(
J−1

13 y − J−1
23 x

)
(xP2 − yP1)



∆VR = m−1


P1

P2

P3

+


A1 + A2 + A3

A4 + A5 + A6

A7 + A8 + A9

 (3.33)

15



where:

A1 =
(
J−1

21 zyP3 − J−1
21 z

2P2 − J−1
31 y

2P3 + J−1
31 yzP2

)
A2 =

(
J−1

22 z
2P1 − J−1

22 zxP3 − J−1
32 yzP1 + J−1

32 yxP3

)
A3 =

(
J−1

23 zxP2 − J−1
23 zyP1 − J−1

33 yxP2 + J−1
33 y

2P1

)
A4 =

(
J−1

31 xyP3 − J−1
31 xzP2 − J−1

11 zyP3 + I−1
11 z

2P2

)
A5 =

(
J−1

32 xzP1 − J−1
32 x

2P3 − J−1
12 z

2P1 + J−1
12 zxP3

)
A6 =

(
J−1

33 x
2P2 − J−1

33 xyP1 − J−1
13 zxP2 + J−1

13 zyP1

)
A7 =

(
J−1

11 y
2P3 − J−1

11 yzP2 − J−1
21 xyP3 + J−1

21 xzP2

)
A8 =

(
J−1

12 yzP1 − J−1
12 yxP3 − J−1

22 xzP1 + J−1
22 x

2P3

)
A9 =

(
J−1

13 yxP2 − J−1
13 y

2P1 − J−1
23 x

2P2 + J−1
23 xyP1

)
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3.2 Impact with Friction

Friction is a resistive force due to relative motion or intended relative motion of

objects. In this thesis friction refers to dry friction, which is often classified as

static and kinetic friction. These two types of friction are assumed to be equal for

simplicity (for example see [7,30] ) and this assumption will be used in throughout

the thesis.

According to Amontons-Coulomb friction law, during relative motion of bod-

ies, normal force and friction forces are linearly dependent via a coefficient of

friction, µ. This can be expressed as

|Ft| = µFn ↔
√
V 2

1 + V 2
2 > 0 (3.39)

Equation (3.39) is valid if sliding (relative motion) exist (note that
√
V 2

1 + V 2
2

represents the magnitude of the velocity on the tangential contact plane which

is the sliding velocity). Remembering the assumption about equality of static

and kinetic frictions, if tangential force can not exceed the friction force, relative

motion can not develop at the contact point which can be summarized as:

|Ft| < µFn ↔
√
V 2

1 + V 2
2 = 0 (3.40)

These relations can be extended to impact with friction and the normal and

tangential impulses can be related through Amontons-Coulomb law (see for ex-

ample [15, 17]). The resulting relations will be used to explain the stick-slip

phenomena during oblique impact in the following sections of the thesis.

Frictional impact requires more detailed and careful analysis due to its comlex

nature such as dependence on sliding direction, possibility of violation of energy

conservation and locking of the system especially in constrained collision etc. In

the impact of a pendulum, these topics will be discussed in detail.
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3.3 Unconstrained Collisions in 2D

3.3.1 Collision Models

In the Chapter 2, collision models are classified and discussed in detail, describ-

ing their advantages and disadvantages. In this thesis, a type of “deformable

elements method” is used where two compliant elements are placed between the

contact point and the body because of its aforementioned advantages over other

methods. Following sections describe the model in detail and present two ex-

amples of collisions of unconstrained bodies using this approach. Then, in the

final chapter this model is extended for a constrained impact applying it to a

pendulum.

3.3.1.1 Compliant Elements at the Contact

Although many approaches in impact problem neglect tangential compliance,

its existence during contact has been validated by experiments and analytical

methods [4, 23, 25, 52]. Johnson [16] derived equations showing the compliance

of materials and relates tangential compliance to the normal via Poisson’s ratio.

These studies have shown that the contacting bodies act like springs (in the elastic

region, of course) not only in normal direction [44] but also in tangential direction

[23]. Maw et al. [4] showed the effects of tangential compliance on oblique impact

through a time-dependent solution of contact and illustrate the reversal in slip

direction for small angles of incidence and demonstrated it with experiments

[25, 26]. They showed that, for a range of initial impact velocities, slip reversal

may occur due to tangential compliance. Since classical impact theory neglects

tangential compliance, reversal can develop under those conditions. Effects of

tangential compliance have been validated experimentally by others for example

see [29, 52,61].

Stronge simplified the approach of Maw et al. using compliant elements [3,30],

which will be explained in detail with two examples that Stronge presented in

19



[3, 30] before applying the method to the problem of impact of a pendulum with

friction.

To be able to represent slip reversal, work of Maw et al. [4] is simplified by

using normal and tangential compliant elements between the contact point and

the body. Stick and slip conditions are derived as a function of the ratio of normal

and tangential components of initial impact velocity. Microslip regions used by

Mindlin [23] and Maw et al. [4] are neglected, hence the contact point is assumed

to either stick or slip. Using equations of motion and Amontons-Coulomb law,

dynamics of the impact according to phase of contact (stick or slip) are obtained

as a function of time. It was noted that [3] the results are in very good agreement

with Maw et al. and capture the basis of slip reversal.

The concept of compliant element model is applied to impact of a sphere (ex-

ample of collinear impact) [3] and oblique impact of an inclined rod [30] (example

of eccentric impact) to demonstrate the results of the model and the model will

be explained in detail to consitute the foundation of the approach before applying

it to the pendulum problem. First, general 2D equations will be derived and they

will be used in the aforementioned examples.

3.3.1.1.1 Dynamics of Collision Considering both linear and angular mo-

tion of the body, equations of motion can be written in matrix form as in Equation

(3.37) using the B matrix:{
d2x/dt2

d2z/dt2

}
=

[
a11 a13

a31 a33

]{
F1

F3

}
(3.41)

If the impact is eccentric, force-acceleration relation is coupled, i.e. a13, a21 6= 0.

In explicit form
d2x

dt2
= (a11F1 + a13F3) (3.42)

d2z

dt2
= (a31F1 + a33F3) (3.43)

In the following sections, impact will be assumed as perfectly elastic.
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3.3.1.1.2 Force Displacement Relation In the compliant elements model

normal and tangential springs are assumed to be attached between the contact

point C and the body. The compression or elongation of these springs in normal

and tangential directions are represented with u3 and u1, respectively. The change

in length of the springs corresponds to the forces applied at point C, and can be

related linearly such that;

F1 = −k1u1 (3.44)

F3 = −k3u3 (3.45)

where k1 and k3 are spring coefficients in tangential and normal directions re-

spectively.

3.3.1.1.3 Sticking or Sliding during Impact Studies of Maw et al. [4]

showed that, in an oblique impact, body initially sticks or slides depending on

the incidence angle. In [4], sliding refers to the contact region having non-zero

relative velocity. In this case, normal and tangential forces can be modelled using

Amontons-Coulomb law, i.e. |F1| = µF3. On the other hand, during sticking

some of the contacting points have zero relative velocity although the outer zone

encircling them may be sliding, describing microslip. This type of compliance

effect is neglected during rigid-body calculations.

3.3.1.1.4 Sticking If the tangential force exerted on the body does not ex-

ceed sliding friction force, µF3, the massless particle sticks (i.e attaches) to the

surface of the stationary body;

|F1| < µF3 (3.46)

During sticking, the tangential velocity, ẋ, of the body and the rate of change

of displacement, u̇1, of the spring are equal. Hence forces in the equation of

motion can be related to displacements using d2x/dt2 = d2u1/dt
2. Combining

Equations (3.42), (3.43) with (3.44) and (3.45) produces

d2u1

dt2
= [a11 (−k1u1) + a13 (−k3u3)]
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d2u3

dt2
= [a13 (−k1u1) + a33 (−k3u3)]

Rewriting in matrix form{
d2x/dt2

d2z/dt2

}
=

{
d2u1/dt

2

d2u3/dt
2

}
=

[
−a11k1 −a13k3

−a31k1 −a33k3

]{
u1

u3

}
(3.47)

3.3.1.1.5 Sliding If the tangential force exerted on the body overcomes µF3,

contact point of the body slides on the surface of the stationary body. During

sliding, Amontons-Coulomb law can be used, hence tangential force can be related

to normal force via

F1 = −µŝF3 (3.48)

where ŝ = sign(ẋ − u̇1) and shows the direction of sliding and µ is the friction

coefficient.

Regardless of the horizontal condition of the body (stick or slip), the rate of

change of the normal spring’s displacement is equal to relative normal velocity of

the body, u̇3 = ż.

Subtituting Equation (3.48) in Equation (3.43)

d2z

dt2
= (−a31µŝF3 + a33F3)

from Equation (3.45)
d2z

dt2
= (a31µŝ− a33) k3u3

since u̇3 = ż, equation becomes

d2u3

dt2
= m−1 (a31µŝ− a33) k3u3 (3.49)

Solution of the differential equation (3.49) with proper initial conditions gives

normal displacement of the spring and normal velocity of the body. u1 and u̇1

can be found by making use of the Amontons-Coulomb law and Equations (3.44)

and (3.45).

−k1u1 = µŝk3u3

22



u1 = −k3

k1

µŝu3 (3.50)

differentiating Equation (3.50) once yields

u̇1 = −k3

k1

µŝu̇3 (3.51)

3.3.1.1.6 Initially Sticking or Sliding During impact, the body may un-

dergo a sliding or sticking phase. These may follow each other or one phase may

dominate the whole impact, depending primarily on the friction coefficient and

velocity of the body. As mentioned, critical condition for the phase of the impact

is whether tangential force is less than µF3, since this condition determines if the

body initially sticks or slips.

For the contact point to stick at the beginning of the impact, tangential force

must be smaller than the limiting frictional force, that occurs during the slip,

such that

F1(0) < µF3(0) (3.52)

At the very begining of the impact, t = ε, where ε � ω−1
o π/2, displacement-

velocity relation can be expressed as

u1(ε) = ẋ(0)ε

u3(ε) = ż(0)ε

and the forces are

F1(ε) = −k1ẋ(0)ε

F3(ε) = −k3ẋ(0)ε

from Equation (3.52) We can have the limit to incidence angle for initial stick∣∣∣∣ ẋ(0)

ż(0)

∣∣∣∣ < µ
k3

k1

(3.53)
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3.3.1.1.7 Initially Sticking Case If Equation (3.53) is satisfied, the contact

point sticks to the surface, hence Equation (3.47) can be solved to yield u1, u3,

u̇1 and u̇3, from which the motion of the body (and forces) can be found while

sticking.

Depending on the modal frequencies that are found from the eigenvalues of the

system, sliding may follow sticking, which may then be followed by a reversal. An

example of an initially sticking impact is observed with free impact of a sphere.

A representative plot is given in Figure 3.4 and more detail about the impact of

a sphere will be presented in the following section.

Cases when the sticking phase dominates the whole impact, referred here as

gross sticking, is encountered in a planar pendulum, which will be analysed in

detail in the following chapter.

3.3.1.1.8 Initially Sliding Case If Equation (3.53) is not satisfied, the mass-

less contact particle slides on the surface, and Equation (3.49) is used. Analytical

solution of the differential equation (3.49) can be obtained in terms of u3 and u̇3

such that:

u3 =
ż(0)

(a33 − a31µŝ)
1/2 ωo

sin
[
(a33 − a31µŝ)

1/2 ωot
]

(3.54)

where ωo =
√
k3/m. Differentiating (3.54) once gives

u̇3 = ż(0) cos
[
(a33 − a31µŝ)

1/2 ωot
]

(3.55)

u1 and u̇1 were related to u3 and u̇3 respectively, through (3.50) and (3.51) and

using Equation (3.48), such that:

u1 = −k3

k1

µŝ
ż(0)

(a33 − a31µŝ)
1/2 ωo

sin
[
(a33 − a31µŝ)

1/2 ωot
]

(3.56)

u̇1 = −k3

k1

µŝv3(0) cos
[
(a33 − a31µŝ)

1/2 ωot
]

(3.57)

Transition from sliding to sticking is found from sliding velocity, s = ẋ −
u̇1, hence ẋ must be calculated. There are two approaches to calculate normal

and tangential velocities of the pendulum: (i) Forces can be used to calculate
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accelerations, and then accelerations can be integrated to get the velocities, or

(ii) forces are used to calculate the impulses by integration and these are used to

calculate the velocities, such that

ẍ =
d2x

dt2
= (a11F1 + a13F3) (3.58)

z̈ =
d2z

dt2
= (a31F1 + a33F3) (3.59)

or

ẋ = (a11P1 + a13P3) (3.60)

ż = (a31P1 + a33P3) (3.61)

where

Pi =

∫
Fidt i = 1, 3 (3.62)

Same results are obtained with both methods and the results are presented in

Figure 3.1 for µ = 0.5 and θ = 50o. In Figure 3.1 solid line represents the result

obtained via integration of Equations (3.58) and (3.59)and the circles show the

result obtained with Equations (3.60)-(3.62).

Figure 3.1: Comparison of the different methods used to calculate velocity

In order to obtain an analytical solution for ẋ to calculate s, Equation (3.42)

is used
d2x

dt2
= (a11F1 + a13F3)

and using Equation (3.48)

d2x

dt2
= (−a11µŝF3 + a13F3)
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integrating both sides of the above equation gives

ẋ = (−a11µŝ+ a13)

∫ tlt

0

F3dt+ C1 (3.63)

Since at t = 0, P3(0) = 0, C1 = ẋ(0) and using Equation (3.54)

F3 = −k3u3 = −k3
ż(0)

(a33 − a31µŝ)
1/2 ωo

sin
[
(a33 − a31µŝ)

1/2 ωot
]

integration of F3 gives

P3 =

∫
F3dt = k3

ż(0)

(a33 − a31µŝ)ω2
o

cos
[
(a33 − a31µŝ)

1/2 ωot
]

+ C2 (3.64)

with P3(0) = 0

C2 = −k3
ż(0)

(a33 − a31µŝ)ω2
o

(3.65)

As described earlier, sliding may stop at time tlt, if s = 0 condition is met

and equation for sliding velocity can be written explicitly

s(t) = ẋ(0) +

m−1 (−a11µŝ+ a13)

{
k3

ż(0)

(a33 − a31µŝ)ω2
o

cos
[
(a33 − a31µŝ)

1/2 ωot
]
− k3

ż(0)

(a33 − a31µŝ)ω2
o

}
+µŝ

k3

k1

ż(0) cos
[
(a33 − a31µŝ)

1/2 ωot
]

s(t) = ẋ(0) +
(a13 − a11µŝ)

(a33 − a31µŝ)
ż(0)

{
cos
[
(a33 − a31µŝ)

1/2 ωot
]
− 1
}

+ µŝ
k3

k1

ż(0) cos
[
(a33 − a31µŝ)

1/2 ωot
]

(3.66)

and with s(tlt) = 0, tlt can be calculated

tlt =
1

(a33 − a31µŝ)
1/2 ωo

cos−1

{
ẋ(0)/ż(0) + (a11µŝ− a13) / (a33 − a31µŝ)

µŝk3
k1

+ (a11ŝµ− a13)/(a33 − a13ŝµ)

}
(3.67)

If tlt is larger than the duration of contact, tf , it means there is gross slip, i.e.

body slides during the entire duration of impact, or if tlt < tf sticking begins at

tlt and Equation (3.47) should be solved with the initial conditions u1(tlt), u3(tlt),
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u̇1(tlt) and u̇3(tlt). Initially sliding impact followed by sticking, usually causes

reversal in tangential force. Then at ttl sliding may initiate again if Equation

(3.48) is satisfied. After t = ttl, Equation (3.49) is solved again with proper

initial conditions. Figure 4.6 presents an example of this type of impact for a

pendulum.

Possible collision conditions for an frictional oblique impact are summarized

in Figure 3.2.

Figure 3.2: Summary of conditions in an oblique impact

3.3.1.2 Examples of Impact with Compliant Elements Model

Concept of compliant elements was explained in general in the previous section.

Now, two examples using the method will be given: (i) impact of a free sphere

on a frictional massive plane, (ii) impact of an oblique slender rod on a frictional

massive plane, to illustrate the behavior of the colliding bodies with simple cases.
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Figure 3.3: Schematic representation of impact of a sphere with compliant ele-
ments

3.3.1.2.1 Impact of a Sphere on a Frictional Massive Plane Stronge’s

work on impact of a sphere on a massive surface [3] is reviewed here as it demon-

strates the results developed by Maw et al. [4].

In a collinear impact of a sphere, normal and tangential components of the

system are decoupled. Hence sets of differential equations given in the previous

section can be solved analytically. Elements of inertia tensor can be found using

matrix B in Equation (3.36) and then can be used in Equation (3.41) given in

[3]. The inertia tensor for a sphere:

J =


2
5
mR2 0 0

0 2
5
mR2 0

0 0 2
5
mR2

 (3.68)

with the inverse of the matrix:

J−1 =


5

2mR2 0 0

0 5
2mR2 0

0 0 5
2mR2

 (3.69)

where elements of the position vector used in B matrix are: x = 0, y = 0 and
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z = −R. Replacing these in the matrix given in Equation (3.36) yields:

B =


m−1 7

2
0 0

0 m−1 7
2

0

0 0 m−1

 (3.70)

Reducing the above matrix for 3D, to a planar motion on the plane of n1 and n3

gives:

B =

[
a11 a13

a31 a33

]
=

[
m−1 7

2
0

0 m−1

]
(3.71)

Modal frequencies, ω, Ω, can be found from the eigenvalues of the system, see

Equation (3.47) such that

Ω, ω =
1

2
k1a11 +

1

2
k3a33 ±

1

2m

[(
(k1a11 − k3a33)2 + 4k3a

2
31k1

)1/2
]

(3.72)

Since the compliant elements are assumed to be decoupled during stick, both

elements undergo independent simple harmonic motion with the modal frequen-

cies, ω and Ω. Schematic representation of the compliance elements are presented

in Figure 3.3.

Normal Components of Velocity and Force

Using Equation (3.47) we can obtain displacement, u3, relative velocity, v3,

force, F3, and impulse, P3, in the normal direction, such that:

u3(t) =
ż(0)

Ω
sin Ωt (3.73)

ż(t) = ż(0) cos Ωt (3.74)

F3(t) = −a−1
33 Ωż(0) sin Ωt (3.75)

P3(t) = −a−1
33 ż(0) (1− cos Ωt) (3.76)

Tangential Velocity and Force

Sliding or sticking may occur during collision, depending on the impact config-

uration, ratio of the normal and tangential stiffnesses, and coefficient of friction.
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There are three possibilities for a planar impact [3]; (i) if the angle of incidence

is small and friction coefficient is high enough, the body initially sticks and then

sliding begins, if this condition is not met, then the body slides initially and then

there are two possibilities; (ii) sliding continues throughout the impact or (iii)

sliding is followed by stick and then sliding starts near the end of the collision

period.

As discussed, during stick tangential component of the displacement, force

and velocity undergo a simple harmonic motion. If the body sticks at t = τ, from

Equation (3.47) one can obtain

u1(t) = u1(τ) cosω(t− τ) + ω−1ẋ(τ) sinω(t− τ) (3.77)

ẋ(t) = −ωu1(τ) sinω(t− τ) + ẋ(τ) cosω(t− τ) (3.78)

F1(t) = −k1u1(τ) cosω(t− τ)− k1ω
−1ẋ(τ) sinω(t− τ) (3.79)

Initially Sticking Case

If condition in Equation (3.53) is satisfied, it means the body sticks at the

beginning of the impact and from Equations (3.77)-(3.79), tangential components

during sticking (from 0 < t < tσ) can be described as

u1(t) = ω−1ẋ(0) sinω(t) t < tσ (3.80)

u̇1(t) = ẋ(t) = ẋ(0) cosω(t) t < tσ (3.81)

F1(t) = −k1ω
−1ẋ(0) sinω(t) t < tσ (3.82)

Impulse between t = 0 to tσ can be calculated using tangential force, such that

P1(t) =

∫
F1dt

P1(t) = k1ẋ(0)[cosωt− 1] t < tσ (3.83)

Sliding starts at t = tσ. During sliding, F1 = −µŝF3, using Equations (3.50)

and (3.73)

u1(t) = −µŝ ż(0)

Ω
sin Ωt

k3

k1

t ≥ tσ (3.84)
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F1 = −µŝF3 = µŝa−1
33 Ωż(0) sin Ωt t ≥ tσ (3.85)

between tσ and tf

P1 =

∫
F1dt =

∫
µŝa−1

33 Ωż(0) sin Ωt dt (3.86)

P1(t) = −a−1
33 ŝµż(0) cos Ωt+ C (3.87)

P1(tσ) = −a−1
33 ŝµż(0) cos Ωt1 + C → C = a−1

33 ŝµż(0) cos Ωt1 + P1(tσ) (3.88)

P1(t) = −a−1
33 ŝµż(0) cos Ωt+ µa−1

33 ŝż(0) cos Ωtσ + P1(tσ) tσ < t < tf (3.89)

For the tangential velocity

dẋ = a11dP1 (3.90)

dẋ = a11(−µŝP3) (3.91)

integrating Equation (3.91) for any time, tx, between tσ and tf produces∫ tx

t1

dẋ = −
∫ tx

tσ

a11µŝP3 (3.92)

and with ŝ = +1, the tangential velocity becomes

ẋ(tx) = ẋ(tσ)− µ

a11

[P3(tx)− P3(tσ)] tσ < t < tf (3.93)

An example of such an impact is presented in Figure 3.4. The plot on the left-

hand side shows the normalized tangential velocity (solid line) and the normalized

normal force envelope (dashed line) and on the right-hand side velocity plots are

presented. As seen from sliding velocity, s, plot, initally relative velocity is zero

at the contact point, indicating sticking. The body compresses the tangential

spring element transferring its energy and at the time where u̇1 is zero, maximum

compression on the tangential compliant element is reached. Then, the compres-

sion in the spring decreases at the time where F1 is zero, and elongation of the

element begins. After this point tangential force reversal occurs and sliding starts

when the tangential force is equal to µF3.

Initially Sliding Case

If the inequality in Equation (3.53) is not met, the body initially slides. In

this case, there are two possibilities: (i) sliding may continue throughout the
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Figure 3.4: Impact of a sphere with µ = 0.5, ẋ(0)/ż(0) = 0.2, k3/k1 = 1.21

collision or (ii) it terminates at t = tlt and sticking begins. If sticking occurs after

initial sliding, generally sliding follows it at some time close to end of the impact.

Sliding to sticking condition can be found using (3.52).

During the collision, normal components remain the same due to the fact

that the system is uncoupled, and Equations (3.73-3.76) can be used. For the

tangential component, the equalities can be calculated using Equation (3.48) with

Equation (3.75)

F1 = µŝa−1
33 Ωż(0) sin Ωt (3.94)

again with Equation (3.48) and Equations (3.44,3.45)

u1 = −µŝk3

k1

ż(0)Ω−1 sin Ωt (3.95)

differentiating once

u̇1 = −µŝk3

k1

ż(0) cos Ωt (3.96)

impulse bewteen t = 0 and tlt

P1 =

∫ tlt

0

F1dt =

∫ tlt

0

µŝa−1
33 Ωż(0) sin Ωt dt

P1 − µŝa−1
33 ż(0) cos Ωt+ C

P1(0) = 0→ C = µŝa−1
33 ż(0)

P1 = −µŝa−1
33 ż(0) cos Ωt+ µŝa−1

33 ż(0) 0 < t < tlt (3.97)
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for the tangential velocity of the body at time t = tx between 0 and tlt

dẋ = a11dP1

ẋ(tx) = ẋ(0) + a11P1(tx) (3.98)

At t = tlt sticking may begin. During sticking, again Equations (3.77) to

(3.79) can be used to calculate u1, v1 and F1. Differentiating Equation (3.77)

gives u̇1 and integrating Equation (3.79) gives P1 between tlt and ttl, where ttl

is the time when sliding initiates again and can be found from the time where

|F1| = µF3.

For the final sliding phase, Equations (3.94-3.96) are used. For the tangential

impulse at t = tx, where tx is any time between t = tlt and t = ttl, again

integration is needed such that

P1 =

∫ tx

tlt

F1dt

P1 =

∫ tx

tlt

µŝa−1
33 Ωż(0) sin Ωt dt

P1 = −µŝa−1
33 ż(0) cos Ωt+ C3

at t = ttl, knowing that P (ttl) was calculated by the calculations of sticking phase

P1(ttl) = −µŝa−1
33 ż(0) cos Ωt+ C3 → C3 = µŝa−1

33 ż(0) cos Ωttl + P1(ttl)

P1(t) = −µŝa−1
33 ż(0) cos Ωt+ µŝa−1

33 ż(0) cos Ωttl + P1(ttl) (3.99)

and tangetial velocity at ttl < tx < tf

ẋ(tx) = a11 [P1(tx)− P1(ttl)] + ẋ(ttl) (3.100)

Figure 3.5 represents impact of a sphere that is initially in sliding phase.

Sliding continues until t = tlt where sliding velocity, s, is zero. During sticking

tangential force reverses its direction and the spring element starts to elongate.

33



At t = ttl sliding starts again in the positive direction (note that the direction of

motion can be observed in s/ż(0) plot where ż(0) < 0) and continues until the

end of the impact.

Figure 3.5: Impact of a sphere with µ = 0.5, ẋ(0)/ż(0) = 1, k3/k1 = 1.21

To show the effect of tangential compliance compared with the classical the-

ory, normalized final tangential velocities of an impacting sphere with respect to

normalized initial tangential velocity are presented. At small angles of incidence,

signs of initial and final tangential velocities are the same. However, at inter-

mediate angles of incidence, reversal of direction can be seen clearly, which is

the main difference between negligible tangential compliance assumption and the

model with tangential compliance. Stronge [3] compares his results with those of

Maw et al. [4] and points out that compliant elements method gives very similar

result to Maw et al. and without need for excessive computational time, thus

supporting the use of compliant elements in constrained impact problem treated

in this thesis.

3.3.1.2.2 Impact of an Oblique Slender Rod on a Frictional Surface

In this section study of Stronge et. al. [30] is reviewed to illustrate an eccentric

free impact with compliant elements at the contact.

As a second example using compliant elements in impact, a slender rod with

a uniformly distributed mass, m, with an inclination to vertical plane, θ, (see

Figure 3.7) colliding on a massive plate is presented to illustrate an eccentric free
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Figure 3.6: Final tangential velocities for changing initial tangential velocities for
oblique impact of a sphere

Figure 3.7: Schematic representation of an impacting slender rod with lumped
parameter model
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impact. The equations describing its behavior during impact are [30]:

a11 = m−1
(
1 + 3 cos2 θ

)
(3.101)

a13 = a31 = m−1 (3 sin θ cos θ) (3.102)

a33 = m−1
(
1 + 3 sin2 θ

)
(3.103)

Since normal and tangential components of the system are coupled, related dif-

ferential equations can not be solved analytically. For numerical solutions, the

equations to be solved are selected according to whether the contact point is in

initially sticking or initially sliding phase, using Equation (3.53).

Initially Sticking Case

If the inequality in Equation (3.53) is satisfied, contact point initially sticks,

i.e. u̇1 = ẋ and Equation (3.47) is solved numerically for sticking condition.

Solution of the set of differential equations in Equation (3.47), with the initial

conditions u1 = u3 = 0, u̇1 = ẋ(0) and u̇3 = ż(0), gives displacements and veloc-

ities of the spring elements in tangential and normal directions. When Equation

(3.48) is satisfied, i.e. when tangential force overcomes friction force, sliding starts

at tσ. Then the equations that are valid for sliding (Equation (3.49) for u3 and

u̇3 with initial conditions u3(tσ) and u̇3(tσ) and Equations (3.50) and (3.51) for

u1 and u̇1) can be used. An example of such a collision is presented in Figure 3.8.

On the left-hand side of Figure 3.8, as before, the solid line shows the normalized

tangential force and dashed lines show the normalized normal force envelope and

on the right-hand side, rates of displacements of spring elements, sliding velocity

and tangential velocity of the body are presented, respectively. From Figure 3.8 it

can be seen that up to time tσ tangential force is less than the normalized normal

force, i.e. friction force, and hence sticking is observed. For this example, initial

tangential velocity is in positive direction and as a result, the tangential force is

in opposite (negative) direction. Until the normalized time, ωot is about 0.7, the

energy of the system is transferred to the springs by compressing them. When

the compression (i.e. the tangential force) becomes maximum, all the energy

is already transferred to the compliant elements and hence tangential velocity

of the spring element vanishes (see u̇1 plot). After u̇1 vanishes, compression in
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the tangential spring element decreases and the energy in the spring elements is

transferred back to the body. After u1 vanishes reversal of the tangential force

occurs. After reversal, the contact point is still attached to the surface and the

spring element in the tangential direction is elongated. At tσ tangential force is

equal to the µF3 and sliding starts.

Figure 3.8: Oblique impact of a rod with θ = 45o, µ = 0.6, k3/k1 = 1.21,
ẋ(0)/ż(0) = −0.6

Initially Sliding Case

If the inequality in Equation (3.53) is not satisfied, impact initiates with slid-

ing. Solving Equation (3.49) with u3(0) and u̇3(0) numerically, gives the normal

component of spring element’s motion. Then, using Equations (3.50) and (3.51)

u1 and u̇1 can be found. At t = tlt sliding terminates and sticking starts and this

can be found by using Equation (3.67). Note that Equation (3.67) can be used

to find the time when sliding velocity, s, is zero. Then sticking begins and solv-

ing Equation (3.47) with the initial conditions u1(tlt), u3(tlt), u̇1(tlt) and u̇3(tlt)

numerically, gives the kinematic variables of the system. Using tangential and

normal displacements, corresponding force components are calculated (Equations

(3.44) and (3.45)) and when tangential force becomes equal to the friction force

(µF3), sliding starts again at ttl. Again, Equations (3.49), (3.50), (3.51) are used

to find related displacements. Note that there is a possibility that during entire

impact, sliding takes place (gross slip) depending on the angle of incidence. This

can be caught mathematically if tlt > tf , where tf is the time when the impact

ends.
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In Figure 3.9, an example for an initially sliding rod is presented. Up to

t = tlt, contact point slides with a decreasing sliding velocity by compressing

the tangential spring element, when t = tlt sliding velocity becomes zero and

sticking begins. After this point compression in the tangential spring decreases

and becomes zero after some time, this can be seen in the left-hand side plot

where tangential force becomes zero. However sticking still continues and the

spring element is elongated. At t = ttl tangential force reaches µF3, and sliding

starts and continues until the end of the impact period.

Figure 3.9: Oblique impact of a rod with θ = 45o, µ = 0.6, k3/k1 = 1.21,
ẋ(0)/ż(0) = −0.8
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Chapter 4

Constrained Collisions

This chapter treats collision of objects that are constrained. General equations

derived for free impacts are modified and equations for constrained impact are

obtained. These relations are used to model contact with compliant elements.

In multi-body systems, the motion of the bodies can be hindered by physical

connections decreasing the degree of freedom of the system. The motion of such

hindered systems are called constrained motions and form the basis of mecha-

nisms. Dynamics of these systems differ from the dynamics of the free bodies in

the sense that constraints are imposed on the related equations to solve for the

response of the system.

Impact of a constrained body is analysed in a similar manner with the collision

of free bodies. However, frictional impacts, non-rigid connections, eccentricity of

the impact, locking of the system etc. require further analysis compared to free

impact of bodies.

A pendulum represents a very basic example of a constrained motion, which

consists of a mass connected with a link to a point about which it can pivot.

Only rotational motion is allowed and degrees of freedom of the system (the axes

about which the mass can rotate) depend on the nature of the joint. In the next

section, of the thesis basic equations for a simple pendulum having two degrees of
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Figure 4.1: Impact of a pendulum with two degrees of freedom

freedom and a physical pendulum having one degree of freedom (planar motion)

will be derived with detailed explanations of the system.

4.1 Impact of a 3D Pendulum

As described in Figure 4.1 pendulum is pivoted about point O. The pendulum

is able to rotate about n2 and n3 axes but rotation about n1 is hindered. In

addition, linear motion of the pendulum in all three axes is hindered. Mass of the

sphere at the tip of the pendulum will be denoted by m and the length between

points O and C will be shown by L.

General form of the equation for the velocity at the contact point of two free

bodies is given in Equation (3.19) as:

∆VR = (∆V −∆V′) +
(
∆θ̇ × ρ−∆θ̇′ × ρ′

)
Since pendulum is constrained at point O and only rotation is allowed, ∆V =

∆V ′ = 0. In addition, the second body is considered here as a stationary rough
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half-space, so that the general equation reduces to:

∆VR = ∆θ̇ × ρo (4.1)

where ρo represents the vector from point O (hinge) to the contact point

C.Angular velocity change, ∆θ̇, of the pendulum due to impact can be obtained

from using Equation (3.13):

Jo∆θ̇ = ρo × P (3.13)

Multiplying both sides of the above equation with inverse of the inertia tensor,

Jo
−1, gives the angular velocities, which can be used to find the components of

relative velocity at the contact point.

Elements of the inertia tensor about point O are calculated using the parallel

axis theoem:

Jo = Jcm +md2

For the derivation of 3D impulse-momentum relations, a simple pendulum with a

point mass, m, rotating about point O, is considered. For a point mass, moment

of inertia about the center of mass is zero, i.e. Jii = 0 and Jij = 0.

J11 = 0 +m
(
y2
o + z2

o

)
J22 = 0 +m

(
x2
o + z2

o

)
J33 = 0 +m

(
x2
o + y2

o

)
J12 = 0−mxoyo = J21

J13 = 0−mxozo = J31

J23 = 0−myozo = J32

where xo, yo and zo represent the positions from point O to C in directions n1, n2

and n3, respectively. Placing the coordinate system such that n1 and n3 plane

passes through points O, C and the O’ (which is the projection of point O to the

impact plane in the plane’s normal direction), xo, yo and zo can be expressed as:

xo = L sin θ
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yo = 0

zo = −L cos θ

which are also the elements of ρo. As a result, the inertia tensor becomes:

Jo =


mL2 cos2 θ 0 −mL2 sin θ cos θ

0 mL2 0

−mL2 sin θ cos θ 0 mL2 sin2 θ


In order to solve Jo ∆θ̇ = ρo × P for ∆θ̇, inverse of the Jo matrix, Jo

−1, is

needed. However, since Jo is singular, inverse of the inertia matrix is undefined.

Hence, additional constraints are required to relate angular velocity to impulse.

As a result, constraints, θ̇1 = 0 and θ̈1 = 0, are imposed on the equations, such

that:

Jo ∆θ̇ = ρo ×P
J11 0 J13

0 J22 0

J31 0 J33




0

∆θ̇2

∆θ̇3

 =


xo

yo

zo

×

P1

P2

P3



J11 0 J13

0 J22 0

J31 0 J33




0

∆θ̇2

∆θ̇3

 =


yo P3 − zo P2

zo P1 − xo P3

xo P2 − yo P1


J13 ∆θ̇3 = yo P3 − zo P2 → ∆θ̇3 =

1

J13

(yo P3 − zo P2) (4.2)

J22 ∆θ̇2 = zo P1 − xo P3 → ∆θ̇2 =
1

J22

(zo P1 − xo P3) (4.3)

J33 ∆θ̇3 = xo P2 − yo P1 → ∆θ̇3 =
1

J33

(xo P2 − yo P1) (4.4)

From the differential form of Equation (4.1) ∆VR = ∆θ̇ × ρ, we have:
∆V1

∆V2

∆V3

 =


∆θ̇1

∆θ̇2

∆θ̇3

×

xo

yo

zo


with ∆θ̇1 = 0 and yo = 0: 

∆V1

∆V2

∆V3

 =


∆θ̇2 zo

∆θ̇3 xo

−∆θ̇2 xo
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using Equations (4.3) and (4.4) for ∆θ̇2 and ∆θ̇3
∆V1

∆V2

∆V3

 =


[

1
J22

(zo P1 − xo P3)
]
zo[

1
J33

(xo P2 − yo P1)
]
xo

−
[

1
J22

(zo P1 − xo P3)
]
xo


replacing elements of J and ρo

∆V1

∆V2

∆V3

 =
1

m


cos2 θ 0 sin θ cos θ

0 1 0

sin θ cos θ 0 sin2 θ



P1

P2

P3

 (4.5)

which is in the form that is given in Equation (3.37)

∆VR = B P

and B is, knowing Equation (3.38)

B =


a11 a12 a13

a21 a22 a23

a31 a32 a33

 =
1

m


cos2 θ 0 sin θ cos θ

0 1 0

sin θ cos θ 0 sin θ

 (4.6)

writing Equation (4.5) in open form:

m∆V1 = cos2 θP1 + cos θ sin θP3 (4.7)

m∆V2 = P2 (4.8)

m∆V3 = sin θ cos θP1 + sin2 θP3 (4.9)

4.1.1 Change of Sliding Directions in 3D Impacts

This section presents a summary review of the phenomena of change of sliding

directions observed in 3D impacts that analysed in detail in e.g. [40,56–59].

In 3D impacts with friction there is a possibility of the impact to converge a

constant direction line. This behavior can be estimated before solving the non-

linear set of differential equations. Starting with the effective mass matrix,B, is
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described previously in Chapter 3,:

B =


a11 a12 a13

a21 a22 a23

a31 a32 a33


Changes in relative velocity are expressed as a function of differential impulse

rather than time since it is known that impulse increases monotonically and

remains finite like the time. Then, the equations of motion for changes in relative

velocity can be written as:

dV1 = a11 dP1 + a12 dP2 + a13 dP3 (4.10)

dV2 = a21 dP1 + a22 dP2 + a23 dP3 (4.11)

dV3 = a31 dP1 + a32 dP2 + a33 dP3 (4.12)

where the subscripts 1, 2 and 3 represent directions in the coordinate system n3

being normal to the tangent plane on which the two bodies contact and n2 and

n1 show the unit vectors in the tangent plane.

Friction between colliding bodies can be represented by Amontons-Coulomb

law of sliding friction such that;√
(dP1)2 + (dP2)2 < µdP3 if V 2

1 + V 2
2 = 0 (4.13)

dP1 = − µV1√
V 2

1 + V 2
2

dP3, dP2 = − µV2√
V 2

1 + V 2
2

dP3 if V 2
1 + V 2

2 > 0 (4.14)

defining sliding speed as

s ≡
√
V 12 + V 2

2 (4.15)

if there is sliding (s > 0), the incremental impulsive force due to friction acts in

a direction opposite sliding. Using Amontons-Coulomb relations,

dV1/dP3 = −µa11cosφ− µa12sinφ+ a13 (4.16)

dV2/dP3 = −µa21cosφ− µa22sinφ+ a23 (4.17)

dV3/dP3 = −µa31cosφ− µa32sinφ+ a33 (4.18)
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where φ(P3) is the impulse dependent angle between tangential velocities, i.e.

tanφ(P3) = V2/V1.

If the inertia terms in Equations (4.16) and (4.17) are not proportional to each

other, the angle, φ, between the tangential velocities vary during sliding. The

behavior of this angle is important because it determines the stick-slip behavior.

Knowing the behavior of the tangential velocity is important because the

above differential equations must be solved numerically and when the tangential

velocity is zero the equations become ill-conditioned (see the
√
V 2

1 + V 2
2 term

in the denominator in cosine and sine terms in the equations). As a result,

knowing what happens (stick or slip) after s = 0 can be determined by analyzing

the material (µ, e) and geometrical properties (effective mass matrix, B) of the

impacting bodies as described below.

In 3D contact, change of sliding direction are referred as swerve [40] or flow

[59]. The flow of the tangential velocity is towards constant direction lines which

are classified into two:

1. Isoclinics are constant direction lines that the flow is asymptotically ap-

proached if the impact configuration is out of that specific angle

2. Seperatrix is again the constant direction line but it separates two regions

where the flows are towards different isoclinic lines below and above this specific

angle.

General trend to determine flow characteristics involves expressing the ve-

locities in polar coordinates as a function of normal impulse. Then dφ/dp = 0

gives the constant direction lines (seperatrix or isoclinics) and ds/dp = 0 gives

the change in flow directions. In addition, by analyzing the fixed points of the

differential equations, the behavior between constant direction lines can be found.

The radial component, s, of the sliding speed can be expressed as:

s2 = V 2
1 + V 2

2
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differentiating both sides with respect to normal impulse, P3,

2 s
ds

dP3

= 2V1
dV1

dP3

+ 2V2
dV2

dP3

(4.19)

Equations (4.16) and (4.17) are ill-defined when V1 = V2 = 0 (see sine and cosine

terms with the denominator
√
V 2

1 + V 2
2 ). To avoid this Bhatt and Koechling [58]

use “stretching” such that dτ = (µ/
√
V 2

1 + V 2
2 ) dP3 and Equations (4.16) and

(4.17) become;

dV1

dτ
=

√
V 2

1 + V 2
2

µ

(
−µa11

V1√
V 2

1 + V 2
2

− µa12
V2√

V 2
1 + V 2

2

+ a13

)

dV1

dτ
= −a11V1 − a12V2 +

a13

µ

√
V 2

1 + V 2
2 (4.20)

similarly
dV2

dτ
= −a21V1 − a22V2 +

a23

µ

√
V 2

1 + V 2
2 (4.21)

Using Equation (4.19)

s
ds

dP3

= V1
dV1

dP3︸︷︷︸
Equation(4.16)

+V2
dV2

dP3︸︷︷︸
Equation(4.17)

Subtituting

s
ds

dP3

= V1 (−µa11 cosφ− µa12 sinφ+ a13) + V2 (−µa21 cosφ− µa22 sinφ+ a23)

and using stretching again

ds

dτ
= s

[
−a11 cos2 φ− (a12 + a21) sinφ cosφ− a22 sin2 φ+

a13

µ
cosφ+

a23

µ
sinφ

]
(4.22)

To obtain the change of the angle, dφ, between the two tangential components of

velocity can be obtained similarly;

φ = tan−1(V2/V1) (4.23)

using
d (tan−1 u)

dx
=

1

1 + u2

du

dx
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and from quotient rule for derivatives(
f

g

)′

=
f

′
g − g′

f

g2

dφ

dP3

=
d (tan−1 (V2/V1))

dP3

=
1

1 + (V2/V1)2

d (V2/V1)

dP3

(4.24)

dφ

dP3

=
6 V 2

1

V 2
1 + V 2

2

[
(dV2/dP3)V1 − (dV1/dP3)V2

6 V 2
1

]
(4.25)

From Equations (4.16) and (4.17) dV2/dP3 and dV1dP3, can be replaced, then

dφ

dP3

=

[
(−µa21 cosφ− µa22 sinφ+ a23)V1 − V2 (−µa11 cosφ− µa12 sinφ+ a13)

V 2
1 + V 2

2

]
(4.26)

using stretching dτ =
(
µ/
√
V 2

1 + V 2
2

)
dP3

dφ

dτ
=

√
V 2

1 + V 2
2

µ (V 2
1 + V 2

2 )
[(−µa21 cosφ− µa22 sinφ+ a23)V1 − V2 (−µa11 cosφ− µa12 sinφ+ a13)]

(4.27)
dφ

dτ
= −a21 cos2 φ+a12 sin2 φ+(a11 − a22) sinφ cosφ+

a23

µ
cosφ− a13

µ
sinφ (4.28)

Equations (4.22) and (4.28) form a set of nonlinear differential equations and their

analytical solution is not available, and can only be solved numerically. However,

qualitative understanding of the equations can be obtained by an analysis of the

equations [58]. Equilibrium solutions (a.k.a critical points) give constant solutions

of an autonomous system which are

dx1

dt
= f1 (x1, x2, ..., xn) = 0

dx2

dt
= f2 (x1, x2, ..., xn) = 0

:

.

dxn
dt

= fn (x1, x2, ..., xn) = 0

After finding constant solution points, nonlinear differential equations can be

linearized at those points and the behavior of the equations can be understood by
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examining their the geometries. Reducing the system to two differential equations

for simplicity and assuming that they have critical points at x∗ and y∗, yields

dx

dt
= f(x∗, y∗) = 0

dy

dt
= g(x∗, y∗) = 0

Using tangent plane approximation of f(x, y) at point (x∗, y∗)

dx

dt
= f(x, y) ≈ f(x∗, y∗)︸ ︷︷ ︸

0

+
∂f

∂x
(x∗, y∗) (x− x∗) +

∂f

∂y
(x∗, y∗) (y − y∗)

and defining new coordinates u and v

u = x− x∗ and v = y − y∗

Since x∗and y∗ are constants

du

dt
=
dx

dt
and

dv

dt
=
dy

dt

writing linear approximations in terms of u and v gives us:

du

dt
=
∂f

∂x
|x∗,y∗ u+

∂f

∂y
|x∗,y∗ v

dv

dt
=
∂g

∂x
|x∗,y∗ u+

∂g

∂y
|x∗,y∗ v

by defining u =

[
u

v

]
, the above equations can be written in matrix form

du

dt
= Ju

where J is called Jacobian matrix and it is

J =

[
∂f
∂x
|x∗,y∗ ∂f

∂y
|x∗,y∗

∂g
∂x
|x∗,y∗ ∂g

∂y
|x∗,y∗

]

Linearization at the critical points gives qualitatively the same behavior as

the nonlinear system if the real parts of the eigenvalues are nonzero. Hence, the
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Eigenvalues Type of critical point

r1 > r2 > 0 Node
r1 < r2 < 0 Node
r1 < 0 < r2 Saddle point

Table 4.1: Stability properties of linear systems

above approach helps explain the “flow” of the impacting bodies. If the imagi-

nary parts of the eigenvalues, r1 and r2, are zero, and r1 6= r2, the critical point

is either a node sink or a saddle point. Node sink is the critical point to which all

solutions that start close enough converge as t→∞ and the saddle point is the

critical point where all the solutions depart as t→∞. Table 4.1 summarizes the

stability conditions according to the sign of the eigenvalues, r1 and r2. In sum-

mary, knowing the Jacobian matrix of the nonlinear set of differential equations

at the critical points, provides information on whether the system is stable or

not at those points (and additional work gives idea about what happens between

these points.)

Focusing back on the flow of the impact, the critical points should be found,

which satisfies the following conditions:

ds

dτ
= 0 and

dφ

dτ
= 0 (4.29)

From Equation (4.29) it can be seen that, the critical points, s̄ and φ̄ are

s̄ = 0 (4.30)

−a21 cos2 φ̄+ a12 sin2 φ̄+ (a11 − a22) sin φ̄ cos φ̄+
a23

µ
cos φ̄− a13

µ
sin φ̄ = 0 (4.31)

As mentioned, signs of the eigenvalues of the system’s Jacobian matrix at (s̄, φ̄)

will tell the behavior of the system, (see Table 4.1).

The flow characteristics have notable points that can provide information

about the behavior of the system. One such point is found by setting (Equation

4.28) dφ/dτ = 0, which gives the invariant directions [58] the conditions where

φ remains the same (constant) during impact. These lines are called isoclinics

and depend on the elements of the mass matrix (i.e. geometry of the impact)
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and the friction coefficient. The other is the change in flow directions, which is

found from setting ds/dτ = 0 (Equation (4.22)). Using these properties Bhatt

and Koechling has tabulated all the posible flow patterns [56–58]

4.1.1.1 Swerve of a 3D Pendulum

Effective matrix for a 3D impact of a pendulum having 2 degrees of freedom was

obtained in Equation (4.6) as;

B =


a11 a12 a13

a21 a22 a23

a31 a32 a33

 =
1

m


cos2 θ 0 sin θ cos θ

0 1 0

sin θ cos θ 0 sin θ

 (4.32)

writing Equation (4.32) explicitly;

MdV1 = cos2 θdP1 + cos θ sin θdP3 (4.33)

MdV2 = dP2 (4.34)

MdV3 = sin θ cos θdP1 + sin2 θdP3 (4.35)

From Equations (4.22) and (4.28) radial and angular components of the tan-

gential velocity for the pendulum can be obtained as:

ds

dτ
= s

(
sin θ cos θ

µ
cosφ− cos2 φ− cos2 θ cos2 φ− sin2 φ

)
≡ f (4.36)

dφ

dτ
=
(
cos2 θ − 1

)
sinφ cosφ− 1

µ
sin θ cos θ sinφ ≡ g (4.37)

critical points, s̄, φ̄, are found using Equations (4.36) and (4.37)

s̄ = 0

φ̄ =
(
cos2 θ − 1

)
sinφ cosφ− 1

µ
sin θ cos θ sinφ = 0

linearizing Equations (4.36) and (4.37) at critical points

ds

dτ
= f(s, φ) and

dφ

dτ
= g(s, φ)

50



and using tangent plane approximation yields

ds

dτ
= f(s, φ) ≈ f(s̄, φ̄) +

∂f

∂s
|s̄,φ̄ (s− s̄) +

∂f

∂φ
|s̄,φ̄ (φ− φ̄)

dφ

dτ
= g(s, φ) ≈ g(s̄, φ̄) +

∂g

∂s
|s̄,φ̄ (s− s̄) +

∂g

∂φ
|s̄,φ̄ (φ− φ̄)

Defining u = s− s̄ and v = φ− φ̄ and noting that s̄ and φ̄ are constants leads to

du

dτ
=
ds

dτ
,
dv

dτ
=
dφ

dτ

du

dτ
=
∂f

∂s
|s̄,φ̄ u+

∂f

∂φ
|s̄,φ̄ v

dv

dτ
=
∂g

∂s
|s̄,φ̄ u+

∂g

∂φ
|s̄,φ̄ v

and in matrix form [
du/dτ

dv/dτ

]
= J

[
u

v

]
(4.38)

J =

[
∂f
∂s
|s̄,φ̄ ∂f

∂φ,
|s̄,φ̄

∂g
∂s
|s̄,φ̄ ∂g

∂φ
|s̄,φ̄

]
(4.39)

where the elements of Equation (4.39) can be written as

∂f

∂s
|s̄,φ̄ =

1

µ
sin θ cos θ cos φ̄− cos2 θ cos2 φ̄− sin2 φ̄ (4.40)

∂f

∂φ
|s̄,φ̄ = 0 (4.41)

∂g

∂s
|s̄,φ̄ = 0 (4.42)

∂g

∂φ
|s̄,φ̄ =

(
cos2 θ − 1

) (
cos2 φ̄− sin2 φ̄

)
− 1

µ
sin θ cos θ cos φ̄ (4.43)

If the eigenvalues of the given Jacobian are known, stability condition of the

critical point can be estimated from Table 4.1 from the signs of eigenvalues.

Consider an impact of a pendulum that makes θ = 60o angle with vertical,

with a unit mass is unity and a friction coefficient, µ = 1.

Starting with finding the critical points with g = 0 and f = 0. Since for s̄ = 0

for each critical point these also represents invariant directions from g = 0. The

roots are as follows:
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s̄, φ̄ r1 r2 Stability condition

0,0 -1.18 0.18 Saddle
0,2.18 -1 0.5 Saddle

0,π -0.68 -0.32 Node
0,4.09 -1 0.5 Saddle

Table 4.2: Eigenvalues for θ = 60o and µ = 1

φ̄1 = 0, φ̄2 = 2.1862, φ̄3 = π, φ̄4 = 4.0967

Then from Equation (4.36), with f = 0, find flow change of flow directions

are found as:

φ̂1 = 0.4474, φ̂2 = 5.8357

For each critical point, corresponding eigenvalues are tabulated in Table 4.2

In [57] the flow behavior is classified based on the numbers of invariant direc-

tions, flow change directions, saddle points and node sinks. The flow field for the

examples of the pendulum is obtained with MATLAB and the result is presented

in Figure 4.2. In Figure 4.2 solid lines show the invariant directions and dashed

lines show the flow change directions. Seperatrix and isoclinic lines where the

flow is diverged and converged, respectively can be observed and this information

can be used to estimate the motion of the 3D pendulum.

Figure 4.2: Flow field of a 3D pendulum with µ = 1 and θ = 60o
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4.2 Impact of a 2D Pendulum

If rotations of the pendulum about n3 and n1 are constrained, the motion be-

comes planar and has a two-dimensional motion. Planar impact of a pendulum is

analysed by many authors because of its simplicity to explain complex phenom-

ena related to constrained impacts. For instance, Lubarda [36] uses a rigid planar

pendulum to show the bounds of different definitions of coefficient of restitution,

Glocker and Pfeiffer [15] explain frictional impact and introduces the subject with

a rigid pendulum. Ivanov [7] solves an example using a pendulum, which has de-

formable elements both at the contact point and at the hinge. Since in this thesis

equations related to dynamics of a physical pendulum will be used, related equa-

tions will be derived in detail below using the basic dynamical relations. In the

following derivations, a physical pendulum described by a solid sphere connected

to point O with massless connection, will be used.

Figure 4.3: Schematic representation of a planar pendulum

As presented in Figure 4.3, n1 represents the tangential direction and n3

shows the normal direction. The pendulum pivots about n2 and the contact is

assumed to occur at point C.

From Figure 4.3, moments about point O is:

J22θ̈ = F3L sin θ + F1L cos θ (4.44)
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where J22 is the moment of inertia about point O. For the physical pendulum

used as the impacting body,

J22 =
2

5
mR2 +mL2 (4.45)

Substituting J22 in Equation (4.44) becomes(
2

5
mR2 +mL2

)
θ̈ = F3L sin θ + F1L cos θ (4.46)

The angular velocity of the pendulum, θ̇, can be calculated using this components

of linear velocity, V :

V =
√
ẋ2 + ż2 = θ̇L (4.47)

where

ẋ = L cos θ θ̇ (4.48)

ż = L sin θ θ̇ (4.49)

with the corresponding accelerations:

ẍ = −L sin θ θ̇2 + L cos θ θ̈ (4.50)

z̈ = L cos θ θ̇2 + L sin θ θ̈ (4.51)

The equation of motion in tangential direction, n1, becomes:

θ̈ =
ẋ+ L sin θ θ̇2

L cos θ
(4.52)

Using Equation (4.52) in Equation (4.46)(
2

5
mR2 +mL2

){
ẍ+ L sin θ θ̇2

L cos θ

}
= F3L sin θ + F1L cos θ (4.53)

ẍ+ L sin θ θ̇2 =
5

m (2R2 + 5L2)
L2 cos2 θ F1 +

5

m (2R2 + 5L2)
L2 sin θ cos θ F3

(4.54)

For the equation of motion in normal direction, from Equaiton (4.51)

θ̈ =
z̈ − L cos θ θ̇2

L sin θ
(4.55)
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using this in Equation (4.46)(
2

5
mR2 +mL2

){
z̈ − L cos θ θ̇2

L sin θ

}
= F3L sin θ + F1L cos θ (4.56)

z̈−L cos θ θ̇2 =
5

m (2R2 + 5L2)
L2 sin θ cos θF1+

5

m (2R2 + 5L2)
L2 sin2 θF3 (4.57)

and in matrix form the equation that define motion of the pendulum become{
d2x/dt2

d2z/dt2

}
=

[
5

m(2R2+5L2)
L2 cos2 θ 5

m(2R2+5L2)
L2 sin θ cos θ

5
m(2R2+5L2)

L2 sin θ cos θ 5
m(2R2+5L2)

L2 sin2 θ

]{
F1

F3

}
(4.58)

4.2.1 2D Pendulum with Compliant Elements at the Con-

tact

Figure 4.4: Schematic representation of the physical pendulum and compliant
elements

Behavior of a pendulum colliding with a massive plate is similar to a free

oblique impact of a sphere, except that the pendulum is constrained at a hinge.

Constrained motion of the pendulum complicates the problem, since after the im-

pact, has a constrained direction. Furthermore, its restitution phase is influenced

by friction during contact.
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On developing and using the equations of motion for the pendulum, the as-

sumptions related to the system and collision are as follows:

• A physical pendulum defined as a solid sphere connected to a pivot point

O, with a massless link, collides on a massive surface for the following analysis.

• Two compliant elements in normal and tangential directions are used be-

tween the contact point and the body.

• The stiffness of the joint at the pivot O is infinite and any energy dissipa-

tion at this connection is neglected. Also, the impact is assumed to be perfecty

elastic. Hence, the only dissipation mechanism is friction at the impact region.

Other means of dissipation, such as wave propagation and structural damping

are neglected.

• Coefficient of friction is constant and independent of transitions between

sticking and sliding phases.

• Effect of change in the impact angle during collision is so small that effective

mass matrix, B is assumed to remain constant throughout impact.

• Effect of the weight of the pendulum on the dynamics of the system is

neglected, since the gravitational forces are small compared to impact forces.

4.2.1.1 Dynamics of the System

4.2.1.1.1 Derivation of Inertia Matrix Inertia matrix, B, in the impulse-

momentum relation, ∆VR = BP, for planar configuration is presented in Sec-

tion 4.2 for a physical pendulum of length L with a solid sphere of radius, R, at

its. The equations of motion, expressed in tangential and normal directions are

given in Equation (4.58) such that{
d2x/dt2

d2z/dt2

}
= B

{
F1

F3

}
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where

B =

[
a11 a13

a31 a33

]
=

[
5

m(2R2+5L2)
L2 cos2 θ 5

m(2R2+5L2)
L2 sin θ cos θ

5
m(2R2+5L2)

L2 sin θ cos θ 5
m(2R2+5L2)

L2 sin2 θ

]
(4.59)

4.2.1.1.2 Force-Displacement Relations As discussed in Section 3.3.1.1.2,

linear springs are used to represent the compliance of the body. Behavior of the

system is affected by the ratios of the stiffnesses, η = k3/k1 of the elements and

this ratio varies between 1.17 to 1.5 as the Poisson’s ratio varies from 0.25 to 0.5

[16]. Throughout the thesis generally η = 1.21 will be employed, however, other

values for this ratio will also be used in the following sections to investigate when

the tangential compliance is negligible (rigid-body assumption). Relations given

in Equations (3.44, 3.45) will be used for force-displacement relations.

F1 = −k1u1 (3.44)

F3 = −k3u3 (3.45)

As defined previously, during impact two types of contact develop: sticking

and sliding. Different equations describe the pendulum motion for the two cases

as shown below.

4.2.1.1.3 Equations for Stick Since the contact point is attached to the

surface during stick, tangential velocity of the body becomes equal to the rate of

change of the of the tangential spring’s length, i.e. dx/dt = du1/dt. As a result,

Equations (3.44) and (3.45) are used in Equation (3.41).{
d2x/dt2

d2z/dt2

}
=

{
d2u1/dt

2

d2u3/dt
2

}
=

[
−a11k1 −a13k3

−a31k1 −a33k3

]{
u1

u3

}
(3.47)

Equation (3.47) with related initial conditions of u1, u3, u̇1 and u̇3, describes

the motion of the pendulum during sticking.

57



4.2.1.1.4 Equations for Sliding During sliding, displacements u1 and u3

are related to each other through Amontons-Coulomb law F1 = −µŝF3. Hence,

the differential equation (3.43), which is a function of u3 can be solved making

use of the linear relations of displacement and force in Equation (3.45) . Note

that the normal velocity of the body is the same as the rate of displacement of

the normal spring during the impact period, leading to:

d2u3

dt2
= m−1 (a31µŝ− a33) k3u3 (3.49)

Solving Equation (3.49) with initial conditions for u3 and u̇3, gives the normal

motion of the body. With u3, u̇3 and Equation (3.48), tangential components can

be found and are given in Equations (3.50) and (3.51) as

u1 = −k3

k1

µŝu3 (3.50)

u̇1 = −k3

k1

µŝu̇3 (3.51)

Whether the impact is initially sticking or sliding is determined from a com-

bination of the ratio of the initial normal and tangential velocities, friction coef-

ficient and stiffness ratio. The limiting condition for initially sliding or sticking

behavior is given in Section 3.3.1.1.6 by Equation (3.53) as∣∣∣∣ ẋ(0)

ż(0)

∣∣∣∣ < µ
k3

k1

(3.53)

For the pendulum problem, the inequality in Equation (3.53)corresponds to

cot θ < µ
k3

k1

(4.60)

where θ is the angle between the pendulum and normal.

4.2.1.1.5 Initially Sticking Case In the pendulum impact problem it is

important to delineate the terms “stick” and “wedge”, which describe different

conditions. Stick refers to the condition of the contact point where the con-

tact point is attached to the surface even when the body continues its motion.

Wedging refers to the condition when the colliding body can not rebound at the
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end of the collision and system is locked. Wedging for rigid body assumption

was discussed in detail in the previous chapter and will be discussed below when

compliance is considered in the model.

If the inequality in Equation (4.60) is satisfied, contact point initially sticks

and the differential equations (3.47) for sticking are solved with u1(0) = 0, u3(0) =

0, u̇1(0) and u̇3(0). In this case, u̇1(0) and u̇3(0) are equal to the components

of the initial velocity of the body, respectively. If the pendulum is stuck, it

means that tangential force created by the impact can not overcome friction and

the tangential compliance in the material allows the body to continue moving,

unlike with the rigid body assumption. When using rigid-body assumption, if

the external forces on the body are less than the friction force, the body can not

move. However if compliance is considered, the body acts as if it is colliding with

springs in both normal and tangential directions. Unlike the free impact of a solid

sphere or oblique impact of a rod, sticking does not follow sliding. Hence, impact

of a simple pendulum does not include reversal of the tangential force (if initial

stick occurs). Sticking during the impact is not encountered in free collisions and

will be named “gross stick” in this thesis.

Results from an example of such an impact are presented in Figure 4.5. On

left-hand side of the Figure 4.5, dashed lines describe the normalized normal force

envelope, solid line the normalized tangential force, and the thin line shows the

tangential velocity, ẋ, respectively. On right-hand side, normalized normal veloc-

ity of the body, u̇3/ż(0) = ż/ż(0), normalized velocity of the tangential element,

u̇1/ż(0), normalized sliding velocity, s/ż(0) = (ẋ− u̇1)/ż(0), and normalized ve-

locity of the body, ẋ/ẋ(0) are shown.

As seen from the figure, normal and tangential forces act on the body with

the same frequency making the sliding transition and reversal impossible. Since

during sticking, friction force does not do any work there is no energy dissipation.

The fact that the system does not lose any energy can also be seen from the

normalized velocity plots of Figure 4.5. From ż/ż(0) and u̇3/ẋ(0) plots, it can be

seen that final and initial velocities are equal. In addition, when there is no sliding,

friction force does not do any work since displacement in tangential direction is
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zero. Sliding velocity plot of Figure 4.5 indicates that during sticking s = 0,

meaning sliding does not occurs during impact. Also, since point c is attached to

the surface, tangential displacements of the body, x and the displacement of the

compliant element, u1 are equal.

In the the left-hand side plot of Figure 4.5, tangential force is normalized

by dividing it with µ, such that if F1 = µF3 values coincide. However, during

sticking portion of impact, this equality is not satisfied. Tangential force is always

less than the limiting friction force, µF3 to slide. This behavior is classified as

“gross stick” in Figure 3.2. Displacements of spring elements, u1 and u3 are also

presented in Figure 4.5 to illustrate their variation with velocity. It can be seen

that at the beginning of impact, spring elements start to compress. Pendulum

moves inward, θ decreaes, as the velocity of the pendulum is decreases. When

all the initial energy of the pendulum is transferred to the compliant elements,

u1 and u3 reach their maximum values and ẋ and ż vanish. After this point,

restitution starts and the energy stored in the springs are transferred back to

the body, and the velocity of the pendulum increases until the conclusion of the

impact.

4.2.1.1.6 Initially Sliding Case If the tangential force overcomes friction

force, sliding is initiated and the inequality in (3.53) can be related to geom-

etry via cot θ > µk3/k1. Geometrically this corresponds to smaller pendulum

angles. The behavior of the pendulum can be better understood by examining

the forces and the velocities and are presented in Figure 4.6. Solution of Equation

(3.49) with u3(0) = 0 and u̇3(0) = ż(0) gives time-dependent values of normal

components of displacement and velocity, from which the tangential components

and forces can be calculated as explained previously. For the time, tlt, of tran-

sition from sliding to sticking, the time when the sliding speed, s, vanishes is

found, i.e. s = 0 corresponds to initiation of sticking. Then, the sticking equa-

tions given in Equation (3.47) are solved numerically using u1(tlt), u3(tlt), u̇1(tlt)

and u̇3(tlt) as initial conditions. Solution of the differential equation (3.47) gives

time-dependent normal and tangential components of velocity and displacements.

Sticking continues until t = ttl where tangential force overcomes friction force,
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Figure 4.5: Initial sticking of a pendulum with µ = 0.5, θ = 70o, V1(0)/V3(0) =
2.75, and k3/k1 = 1.21,R = 5× 10−3m,L = 0.1m
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µF3, and sliding initiates at t = ttl. During sliding, again, solution of Equation

(3.49) with u3(ttl) and u̇3(ttl), displacements and velocities are calculated.

In Figure 4.6, left-hand side plot shows the normalized tangential and normal

forces. Normalized spring displacements, u1 and u3, are also presented in Figure

4.6. The results show as before, at the beginning of the impact the compliant

elements start to compress and the velocity of the body decreases. Similar to

the gross stick case, pendulum stops when displacements of the spring elements

reach their maximum values. Until the end of the compression of the compliant

elements, pendulum continues to move inward, with θ decreasing. When the

pendulum stops, stick starts and pendulum starts to reverse its direction, which

is indicated in Figure 4.6 with the change of sign of the velocity. Just after the

velocity reversal, point C becomes attached to the surface and the body releases

the compressed tangential spring element. In other words, compressed spring

starts to push the pendulum after sticking starts. In this phase, velocity of the

pendulum increases. After some time, length of spring element returns to its

initial length (u1 = 0 where the tangential displacement reaches zero) and the

pendulum starts to elongate the spring while point C is still attached to the

surface. At t = ttl, the spring is stretched enough to overcome the friction force

and sliding starts again. During sliding, friction force performs work against the

motion of the pendulum causing energy loss. The energy loss can be observed in

velocity plots, noting that u̇3(tf )/ż(0) and ẋ(tf )/ẋ(0) are less than their initial

values. In the u̇1/ż(0) plot of Figure 4.6, the jump in the velocity at the transition

from sticking to sliding can also be seen. Also, zero sliding velocity during sticking

and motion direction of the pendulum can be seen in the s/ż(0) plot.

4.2.1.2 Effects of Change of Variables

After discussing the general trends in impact of a pendulum with compliant ele-

ments model, the effects of variables of the system are discussed. Figure 4.7 shows

normalized forces and tangential velocities for different µ while other parameters

are held constant. Normalized normal and tangential force plots on the left-hand

side of Figure 4.7 show that as friction coefficient decreases duration of impact
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Figure 4.6: Initial sliding of a physical pendulum with µ = 0.5, θ = 30o,
V1(0)/V3(0) = 1.73, k3/k1 = 1.21, and R = 5× 10−3m, L = 0.1m
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increases. The final tangential velocities at the left-hand side plot of Figure 4.7,

show that friction coefficient and final velocity are not linearly related for the

same impact angle, θ, and same impact velocity, . From the first impression, it

can be said that, losses are directly related to coefficient of friction, hence increase

in µ should increase the losses. However, losses during an elastic impact are not

only related to friction force but also related to amount of displacement and this

will be discussed in the following section in detail.

Figure 4.7: Effect of change of µ with µ = 0.1, 0.3 0.5, 0.8 and 1.0, θ = 30o,
V1(0)/V3(0) = 1.73, k3/k1 = 1.21, R = 5× 10−3m, and L = 0.1m

Another important variable of the system is the angle, θ, that the pendu-

lum makes with the normal. Effects of angle of impact on the system will be

shown while other parameters held constant in Figure 4.8. On the left-hand side,

normalized forces are shown and it can be seen that, as θ is increased, initially

sticking impact is initiated instead of initially sliding impact. Considering the ge-

ometry of the pendulum, for smaller impact angles, friction coefficient necessary

for wedging is also smaller because of the increasing dissipation in the system.

Increasing dissipation with decreasing θ can be seen from tangential velocity plot

presented on the right hand side. In addition, duration of the impact is higher

with smaller collision angles, later it will be shown that when θ is less than a crit-

ical value, the duration of the impact goes to infinity implying that the contact

is permanent, which was defined as wedging in the previous sections.
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Figure 4.8: Effect of change of θ with θ = 20, 30, 50, 60 and 80o µ = 0.5 , and
k3/k1 = 1.21

4.2.1.3 Dissipation of Energy

The collision of the pendulum is assumed to be perfectly elastic, i.e. the system

does not lose any energy because of yielding, damping etc. On the other hand,

friction force produces dissipation and this forms the only energy dissipation

mechanism in the system.

To distinguish between the work of the tangential force and the friction force

consider, sticking phase of the pendulum during which, displacement of the con-

tact point is zero, hence friction force does not perform work. On the other

hand, the pendulum continues to move, but because of the perfect elasticity in

the system, all the initial energy is recovered at the end of the impact. Figure

4.9 displays work by tangential component of the work, denoted by subscript ‘1’,

and normal component of the work, denoted by subscript ‘3’. Partial work done

during compression and restitution phases can be calculated from the area under

FiVi curves such that:

Wic =

∫ tc

0

FiVidt i = 1, 3 (4.61)

Wir =

∫ tf

tc

FiVidt i = 1, 3 (4.62)

where tc denotes the time at the end of the compression phase. In Figure 4.9
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Figure 4.9: Work done during initially sticking case of the pendulum

negative work represents that during compression, and during restitution the

same energy is gained with positive work, i.e. W1c + W1r = 0 and W3c + W3r =

0. Velocity plots presented in Figure 4.5, where initial and final normal and

tangential velocities are equal, are consistent with this result.

Initial sliding condition is somewhat different than sticking, since friction does

negative work that is not recovered. Until the initiation of sticking, t = tlt, both

friction and tangential forces do negative work. During sticking, tlt < t < ttl,

friction does not do any work, since s = 0, but tangential force does positive

work recovering some of the energy transferred to the compliant elements. At the

time where u1 = 0, tangential force starts negative work again since tangential

compliant element is elongating and absorbing energy. At t = ttl, friction force

starts negative work while work of tangential force is still negative. In Figure

4.10 tangential and normal work done during collsion are presented. Again, work

done by the normal force during compression is equal to that by the normal force

during restitution because of the perfectly elastic assumption. A comparison of

elactic and dissipated energies are presented in Figure 4.10, calculated as:

W11 =

∫ tlt

0

F1ẋdt (4.63)

W13 =

∫ ttl

tlt

F1ẋdt (4.64)

W12 =

∫ tf

ttl

F1ẋdt (4.65)
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Figure 4.10: Work done during initially sliding case of the pendulum

W1f =

∫ tlt

0

F1sdt (4.66)

W2f =

∫ tf

ttl

F1sdt (4.67)

To sum up, in the initially sliding case of impact of a pendulum, friction

force always does negative work dissipating energy whereas tangential force does

both positive (if velocity of the body and the tangential force acting in the same

direction) and negative work. The total dissipated energy can be calculated as:

To − Tf =
1

2
mV (0)2 − 1

2
mV (tf )

2 = W1f +W2f = W11 +W13 +W12 (4.68)

where To and Tf represents the initial and final kinetic energy of the pendulum

respectively and V (t) denotes the resultant velocity, i.e. V (t) =
√
ẋ(t)2 + ż(t)2.

Another issue mentioned during discussion on the effect of µ was the fact that a

decrease in final velocity is not linearly related to an increase in friction coefficient

at a specific impact angle, θ. This can be explained from the friction force and

sliding velocity relationship. Because of the nonlinear dynamics of the problem,

maximum dissipation occurs somewhere between maximum and minimum friction

coefficients when the stiffness ratios, k3/k1 have values close to physically realistic

values. Figure 4.11 displays change of normalized dissipation and final velocity as

a function of µ for as stiffness ratio of k3/k1 = 1.21. As expected, minimum final

velocity is seen at the friction coefficient value where maximum energy dissipation

67



due to friction is observed. Figure 4.12 shows normalized energy dissipation and

final velocity changes with µ for lower k3/k1. However, for this case trend is

nearly linear; dissipation increases and final velocities decrease with increasing

friction coefficient. The differences observed for low and high stiffness ratios also

appear in the development of wedging and this will be discussed in the following

section.

4.2.1.4 Comparison of Compliant Elements Model with Classical Im-

pact Theory

Knowing the initial velocity of the colliding pendulum, its final velocity can be

calculated with the classical impact theory via energetic coefficient of restitution

with the following equation

θ̇(tf ) = −e∗ θ̇(0)
x2 − µxz
x2 + µxz

(4.69)

where e∗ is energetic coefficient of restitution (COR), which is the “ratio of square

root of internal energy of deformation released at contact point during restitution

to the corresponding energy gained during compression” [1], and will be taken

as 1 without any irreversible deformation assumption. “Rigid body assumption”

refers to negligible compliance, hence there is no stick phase during impact and

contact point slides throughout the collision and reversal of the direction occurs

just after the angular velocity vanishes. The comparison for different values of

k3/k1 and θ with changing µ is presented in Figure 4.13 using resultant linear

velocities, V =
√
ẋ2 + ż2 or V = θ̇L for both methods. From Figure 4.13 it can

be seen that, final velocities calculated with COR is always less than the results

obtained with compliant elements method. For very low stiffness ratios the results

for final velocity converge to values above the rigid-body case, but apporach it

near wedging conditions at lower angles of incidence see θ = 10o case in Figure

4.13. However, the difference decreases close to the critical coefficient of friction

which is the limiting value for wedging at a specified angle, θ.

Tangential compliance in the system raises the possibility of sticking dur-

ing impact. As mentioned previously, according to compliant elements model,
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Figure 4.11: Frictional dissipation and final velocities during initially sliding im-
pact of pendulum for different angles of impact, θ = 30, 45, 60o top to bottom
for k3/k1 = 1.21
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Figure 4.12: Frictional dissipation and final velocities during initially sliding im-
pact of pendulum for different angles of impact, θ = 30 and 45,o top to bottom
for k3/k1 = 0.01
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during sticking friction force does not do any work since there is no sliding of

contact point. During sticking, the only work done is as strain in the compliant

elements and this energy is re-gained towards the end of the collision because

of the perfectly elastic impact assumption. Hence, sticking phase is an energy

preserving phase unlike sliding. On the other hand, according to rigid body ap-

proach, throughout the impact only sliding takes place. This means, the energy

preserving behavior of sticking phase can not be included in the system of rigid

body approach. The plot in Figure 4.13 for θ = 60o shows for compliant cases

final velocity to be the same as initial velocity for higher values of µ where gross

sticking occurs.

Figure 4.13: Comparison of compliant elements method to classical theory θ =
10, 30 and 60o respectively

For the pendulum problem an additional possibility is observed during initially
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sliding impact. In this case after ttl, velocity of the pendulum goes to zero and

the pendulum can not rebound. This condition will be analysed in more detail in

the following section. Possibilities in an oblique impact is summarized in Figure

3.2.

4.2.1.5 Wedging

4.2.1.5.1 Wedging in Rigid Body Assumption Wedging (also referred

to as cut-off or stick) is a term used for the condition where colliding bodies are

not able to rebound at the end of an impact [1, 15, 36]. This is usually seen in

constrained frictional eccentric impacts depending on the geometry of the system

and friction between impacting bodies and has many implications on industrial

applications such as locking of the system due to wedging especially in robotics.

Rigid pendulum model with negligible tangential compliance is frequently used

in collision analysis resulting with µ > tan θ for wedging [1,15,36]. For example,

Lubarda [36] reports that, if the friction coefficient is high enough and the angle

of the pendulum at the start of the impact is low enough, pendulum wedges and

does not rebound; referring to this angle as the critical angle with rigid body

assumption, θcr,r) . Other authors [1, 15, 36] find the limiting condition for this

phenomenon using rigid body assumption. Writing the equation of motion about

pivot point one can obtain impulse angular velocity relation [36]

θ̇ = θ̇− +
xo + µzo

Jo
P 0 ≤ t ≤ tc

θ̇ =
xo − µzo

Jo
(P − Pc) tc ≤ t ≤ tf (4.70)

where subscript (c) denotes the time at the end of the compression phase and

superscript (-) denotes initial value. In order that θ̇ > 0, in the interval tc ≤
t ≤ tf , xo − µzo > 0 condition must be met which is the general result that is

obtained in [1, 15, 36]. θ̇ > 0 means pendulum has energy to rebound at the end

of the impact, in other words θ̇ < 0 means pendulum wedges (can not rebound),

considering geometry this can be expressed as:

µ > tan θ (4.71)
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4.2.1.5.2 Wedging with Compliant Elements at Contact For a given

coefficient of friction, there is a limiting angle, θcr, where solution of the dif-

ferential equation (3.49), used for the solution of sliding phase, diverges. The

results are interpreted as the wedging conditions, since they demonstrate that

both normal and tangential forces remain non-zero for an infinitely long time.

The limiting condition for wedging using compliant elements model is a function

of impact velocity, friction coefficient, ratio of normal and tangential stiffnesses,

and θ.

For realistic values of k3/k1 (see Section 4.2.1.1.2), critical value of the impact

angle, θcr is different than the critical angle calculated from rigid-body assump-

tion. However as the ratio is decreased, i.e. tangential stiffness is increased,

making the compliance smaller, θcr approaches to θcr,r, where θcr,r is the critical

angle calculated by rigid body approach given by Equation 4.71 as

θcr,r = tan−1(µ)

From Equation 4.71, impacting angles less than θcr,r causes wedging.

In Table 4.3 critical angles for increasing values of k1 are presented for a phys-

ical pendulum. For µ = 1, θcr,r is 45o and it can be seen that as the compliance

is decreased the system shows a rigid-like behavior.

k3 k1 θcr

1.5e7 k3/1.21 11.69o

1.5e7 10 k3 36.07o

1.5e7 100 k3 43.90o

1.5e7 1000 k3 44.89o

Table 4.3: Limiting wedging angles with changing tangential stiffness for µ = 1

For different friction coefficients, low tangential compliance shows similar re-

sults with the rigid body calculations and these values are presented in Table

4.4. Approach of θcr to θcr,r with decreasing compliance can be better seen From

Figure 4.14 where critical angles with different friction coefficients for different

stiffness ratios are presented.

Critical angle is calculated by a MATLAB code prepared for the physical
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µ k3 k1 θcr,r θcr

0.1 1.5e7 1000 k3 5.71 5.71
0.25 1.5e7 1000 k3 14.04 14.03
0.50 1.5e7 1000 k3 26.56 26.57
0.75 1.5e7 1000 k3 36.87 36.82
1.00 1.5e7 1000 k3 45.00 44.89

Table 4.4: Limiting wedging angles with changing coefficient of friction stiffness
with

Figure 4.14: Critical angles for changing µ for different stiffness ratios

pendulum. As the collision angle θ, is decreased final velocities, ẋ(tf ) and ż(tf ),

start to decrease. At a critical value of θ final velocities vanish. In collisions with

smaller collision angles than the critical angle,θcr, both normal and tangential

forces go to infinity. As an example, normalized forces for just above and below

the critical impact angle are presented in Figure 4.15. The plot on the left-

hand side shows a collision that rebounds. The plot on the right-hand side is an

example of a wedged collision since contact forces persist for an infinite duration.

For wedging there is also a critical friction coefficient where wedging occurs

for a specific value of k3/k1 and θ. In rigid body assumption, increasing the value

of µ above the critical friction coefficient always causes wedging. However, with

compliant elements model, this is not always the case. As an example, at θ = 13o

and k3/k1 = 1.21, for 0 < µ < 0.4 pendulum rebounds, values above 0.4 up

to 0.7 causes wedging however above 0.7 pendulum can rebound again. This is
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Figure 4.15: Forces above (left) and below θcr with µ = 1, k3/k1 = 0.1, θ = 36.08o

and 36.07o

illustrated in Figure 4.16. The plot on the left shows forces for µ = 0.1, 0.5 and

1.0 and the result for µ = 0.5 indicates wedging due to non-vanishing forces. This

can also be seen from the velocity plot of Figure 4.16. If ẋ/ẋ(0) of µ = 0.5 is

examined, it can be seen that initial and final directions of the tangential velocities

are the same. For the pendulum, rebounding requires change of direction of the

velocities because of the constrain. On the other hand, for µ = 0.8, despite the

increase in friction coefficient, signs of final and initial tangential velocities are

different indicating rebound.

Figure 4.16: Wedging range for different µ, k3/k1 = 1.21 θ = 13o

On the other hand, this behavior is not encountered, for instance when

k3/k1 = 0.01. As an example, θ = 26o is taken since it is around the critical

value. The calculations show that, up to µ = 0.4 pendulum rebounds, but the
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pendulum wedges any friction coefficient above this critical value unlike the previ-

ous case. Normalized forces and tangential velocities indicating this phenomenon

are presented in Figure 4.17.

The variation of wedging limits with different stiffness ratios can be also seen

in Figure 4.14. At high k3/k1 values θcr vs. µ curves show an increasing-decreasing

trend whereas for low values of stiffness ratios θcr always increases with increas-

ing µ and this can be explained by dissipation mechanism mentioned in Section

4.2.1.3. When Figure 4.11 and 4.12 compared it can be seen that for high values

of k3/k1 maximum dissipation is at a intermediate µ value, where as for at low

stiffness ratios dissipation increases with increasing µ.

Figure 4.17: Wedging range for different µ, k3/k1 = 0.01 θ = 26o
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Chapter 5

Conclusions

Constrained impact with friction is investigated using a pendulum colliding with

a massive surface, by placing normal and tangential compliance elements between

the contact point and the pendulum. To model contact, “deformable elements

method” is preferred over the classical theory and continuum models since classi-

cal theory of impact may cause paradoxical energy increase in eccentric frictional

impacts and a lack of information of forces, while continuum models are rather

complicated and computationally expensive. Use of compliant models are gen-

erally accepted based on analytical derivations and experimental validations. As

a result, effects of tangential compliance such as sticking or sliding state of the

contact point, energy restoring phase of sticking can be seen with the model.

Compliant element model used here was constructed based on the impulse-

momentum relations for 3D free impacts and an “effective” mass matrix, which

relates impulse vector to the change of velocity vector. These relations are mod-

ified for a constrained collision example using a pendulum. By imposing the

system constraints to the equations of motion, a relationship between velocity

and impulse is obtained. To further investigate constrained impact with friction,

a brief summary of impact with friction is presented. The wedging phenomenon

that develops with the inclusion of friction in a constrained impact with rigid

body assumption is also discussed.

77



Using the aforementioned topics as a basis for using compliant elements model,

detailed description of the model is given with the mathematical relations. Equa-

tions obtained for dynamics of the collision is modified for sticking and sliding.

During sticking, sliding velocity vanishes and hence tangential velocity of the pen-

dulum and the rate of change of displacement of tangential compliant element

become equal. This equality is used to obtain equations of motions for sticking.

Similarly, during sliding, Amontons-Coulomb Law is used to obtain equations of

motion describing sliding conditions. After obtaining the initiation conditions for

either initially sliding or sticking case, options of transitions between these two

modes of contact are discussed. The cases observed with using compliant element

model, (i) initial sticking followed by sliding, (ii) gross sticking, (iii) initial sliding

followed by sticking and sliding and (iv) gross sliding are discussed briefly.

The modes of impact and equations derived for a general planar impact are

then modified for two examples: (i) oblique impact of a free sphere on a frictional

massive surface, (ii) impact of a oblique slender rod on a frictional massive surface.

The analysis of these two examples are discussed with force and velocity plots

and explained considering their physical meaning.

Phenomena explained and equations derived thus far are used for a physical

pendulum. After a brief review of the equations of motion, two phases of im-

pact of the pendulum are explained in detail. Initially sliding collision of the

pendulum showed dissimilar behavior compared free collision of sphere and rod

examples. Unlike the examples of sphere and rod, sticking takes place through-

out the entire impact period. Also, due to perfect elasticity assumption, final and

initial velocities are equal preserving the initial energy of the system. Initially

sliding pendulum behaves differently from the sphere and rod examples under

some circumstances; the constraint in the system and friction causes locking of

the system (wedging).

For a better understanding of the model with compliant elements at contact,

effects of friction coefficient, µ, and impact angle, θ, are analysed. Different

values of µ showed non-linear change in final velocities which showed increase of

decrease with increasing µ, which lead to the investigation of energy dissipation
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mechanisms in the system.

According to assumptions made, the only energy dissipation is from the pres-

ence of friction at contact. Calculations showed that, for high stiffness ratios,

total energy loss of the system has a local minimum which means increasing µ

does not always lead to increase in dissipation. On the other hand, at lower

stiffness ratios dissipation increases with increase in µ.

To show the effect of tangential compliance, final velocities of the pendulum

are compared with the ones that are calculated by classical impact theory using

energetic coefficient of restitution. As the stiffness ratio decreases, the curves

of final velocity vs. µ converge to a limiting curve, however, this curve shows

significantly higher final velocities compared to the classical theory results. The

reason for this difference is thought to be the missing sticking phase in the rigid

contact model and consequently there is no energy dissipation, between initial

and final sliding phases.

Finally, wedging of the pendulum is discussed in detail. The critical angle for

wedging is compared with the critical angle calculated by rigid body assumption.

It is seen that as the stiffness ratio is decreased, making the tangential compliance

became more stiff, the values of critical angles reach a limiting value. These results

are consistent with the results obtained by using rigid body model.

In summary, this thesis describes use of compliant elements to describe impact

of a pendulum and analyzes its response considering, sliding and sticking phases

of contact, dissipation mechanism, effect of several variables, and wedging. Al-

though, there are several reports that present experimental results for free oblique

impacts underlining significance of tangential compliance, experimental studies

on constrained oblique collisions are scarce. Further studies to experimentally

validate the present results would be helpful. Furthermore, deformable elements

method can be extended by including material properties, developing more real-

istic contact models such as that by Hertz. Perfectly elastic collision assumption

used in this thesis can be extended further by damping effects. Material damping

could make a great example for such a dissipation model where time and collision

dependent dissipation is included in the system.
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