
 

 

 

 

ELECTRIC FIELD DEPENDENT 

OPTOELECTRONIC NATURE OF 

InGaN/GaN QUANTUM STRUCTURES AND 

DEVICES 

 

 

A THESIS 

SUBMITTED TO THE DEPARTMENT OF ELECTRICAL AND 

ELECTRONICS ENGINEERING  

AND THE GRADUATE SCHOOL OF ENGINEERING AND SCIENCE 

OF BILKENT UNIVERSITY 

IN PARTIAL FULLFILMENT OF THE REQUIREMENTS 

FOR THE DEGREE OF 

DOCTOR OF PHILIOSOPHY 

 

 

 

 

By 

Emre Sarı 

December 2012 

 



 

ii 

 

 

 

I certify that I have read this thesis and that in my opinion it is fully adequate, in 

scope and in quality, as a thesis for the degree of Doctor of Philosophy. 

 

 

                                             

Assoc. Prof. Hilmi Volkan Demir (Supervisor) 

 

 

 

 

I certify that I have read this thesis and that in my opinion it is fully adequate, in 

scope and in quality, as a thesis for the degree of Doctor of Philosophy. 

 

 

                                             

Prof. Ömer Morgül 

 

 

 

I certify that I have read this thesis and that in my opinion it is fully adequate, in 

scope and in quality, as a thesis for the degree of Doctor of Philosophy. 

 

 

                                             

 Assist. Prof. Ali Kemal Okyay 

 

 

 



 

iii 

I certify that I have read this thesis and that in my opinion it is fully adequate, in 

scope and in quality, as a thesis for the degree of Doctor of Philosophy. 

 

 

                                             

 Assoc. Prof. Dönüş Tuncel 

 

 

 

I certify that I have read this thesis and that in my opinion it is fully adequate, in 

scope and in quality, as a thesis for the degree of Doctor of Philosophy. 

 

 

                                             

 Assoc. Prof. Hamza Kurt 

 

 

 

Approved for the Graduate School of Engineering and Science: 

 

 

 

Prof. Levent Onural 

Director of Graduate School of Engineering and Science 

 



 

iv 

ABSTRACT 

ELECTRIC FIELD DEPENDENT OPTOELECTRONIC 

NATURE OF InGaN/GaN QUANTUM STRUCTURES 

AND DEVICES 

 

Emre Sarı 

Ph.D. in Electrical and Electronics Engineering 

Supervisor: Assoc. Prof. Hilmi Volkan Demir  

December 2012 

 

 

In the past two decades we have been witnessing the emergence and rapid 

development of III-Nitride based optoelectronic devices including InGaN/GaN 

light-emitting diodes (LEDs) and laser diodes with operation wavelengths 

ranging from green-blue to near-UV. These InGaN/GaN devices are now being 

widely used in applications important for lighting, displays, and data storage, 

collectively exceeding a total market size of 10 billion USD. Although 

InGaN/GaN has been studied and exploited very extensively to date, its field 

dependent nature is mostly unknown and is surprisingly prone to quite 

unexpected behavior due to its intrinsic polarization property. In this thesis, we 

report our systematic study on the electric field dependent characteristics of 

InGaN/GaN quantum structures and devices including modulators and LEDs. 

Here we present our comparative study of electroabsorption in polar c-plane 

InGaN/GaN multiple quantum wells (MQWs) with different built-in polarization 

induced electrostatic fields. Analyzing modulator structures with varying 

structural MQW parameters, we find that electroabsorption grows stronger with 

decreasing built-in electrostatic field strength inside the well layer, as predicted 

by our theoretical model and verified by our experimental results. To further 

explore the field dependent optoelectronic nature of c-plane grown InGaN/GaN 

quantum structures, we investigate radiative carrier dynamics, which is of 

critical importance for LEDs. Our time and spectrum resolved 
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photoluminescence measurements and numerical analyses indicate that the 

carrier lifetimes, the radiative recombination lifetimes, and the quantum 

efficiencies all decrease with increasing field.  We also study the physics of 

electroabsorption and carrier dynamics in InGaN/GaN quantum heterostructures 

grown intentionally on nonpolar a-plane of the wurtzite crystal structure, which 

are free of the polarization-induced electrostatic fields. We compare these 

results with the conventional c-plane grown polar structures. In the polar case, 

we observe blue-shifting absorption profile and decreasing carrier lifetimes with 

increasing electric field. In the nonpolar case, however, we observe completely 

the opposite: a red-shifting absorption profile and increasing carrier lifetimes. 

We explain these observations in the context of basic physical principles 

including Fermi‟s golden rule and quantum-confined Stark effect. Also, we 

present electroabsorption behavior of InGaN/GaN quantum structures grown 

using epitaxial lateral overgrowth (ELOG) in correlation with their dislocation 

density levels and in comparison to steady state and time-resolved 

photoluminescence measurements. The results reveal that ELOG structures with 

decreasing mask stripe widths exhibit stronger electroabsorption performance. 

While keeping the ELOG window widths constant, compared to 

photoluminescence behavior, however, electroabsorption surprisingly exhibits 

the largest performance variation, making the electroabsorption the most 

sensitive to the mask stripe widths. This thesis work provides significant insight 

and important information for the optoelectronics of InGaN/GaN quantum 

structures and devices to better understand their field dependent nature. 
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Geride bıraktığımız 20 yılda, çalışma dalgaboyları yeşilden yakın morötesine 

değişen InGaN/GaN tabanlı ışık yayan diyotlar (LED'ler) ve lazer diyotlar gibi 

III-Nitrür tabanlı optelektronik aygıtların ortaya çıkışına ve hızlı bir şekilde 

gelişimine şahit olduk. Bu InGaN/GaN tabanlı aygıtlar artık görüntü, veri 

saklama ve aydınlatma gibi birçok alan için önem arz ediyor ve toplamda 10 

milyar Amerikan dolarının üzerinde bir pazar büyüklüğü oluşturuyor. Bu 

InGaN/GaN yapıları şimdiye kadar yoğun olarak araştırılmış ve incelenmiş olsa 

da elektrik alana bağlı doğası çoğunlukla bilinmemektedir; kendinden kutuplu 

olma özelliği sebebiyle beklenmeyen davranışlar göstermeye eğilimlidir. Bu tez 

çalışmasında InGaN/GaN kuvantum yapılarının ve bunları içeren kipleyici ve 

LED gibi aygıtların elektrik alana bağlı özelliklerini incelediğimiz sistematik 

çalışmalarımızı sunmaktayız. Farklı yapısal özelliklere sahip çoklu kuvantum 

kuyusu (MQW) içeren kipleyici yapılarını inceleyerek, teorik modelimizle ve 

deneysel sonuçlarımızla uyumlu şekide, kendinden polarizasyon sebepli elektrik 

alan şiddeti azaldıkça elektrosoğrulmanın güçlendiğini bulduk. c-düzlemine 

büyütülmüş InGaN/GaN kuvantum yapılarının elektrik alana bağlı 

optoelektronik doğasını daha derinlemesine incelemek için LED'ler için kritik 

önem arz eden ışınımsal taşıyıcı dinamiğini inceledik. Zaman ve tayf çözünümlü 

fotoışıma ölçümlerimiz ve sayısal analizlerimiz taşıyıcı ömürlerinin, ışınımsal 
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taşıyıcı ömürlerinin ve kuvantum verimliliklerinin hepsinin artan elektrik alan 

ile azaldığını gösterdi. Ayrıca wurtzite kristal yapısının polarizasyon sebepli 

elektrik alan içermeyen, polar olmayan, a-düzlemine büyütülen InGaN/GaN 

kuvantum yapılarının elektrosoğrulma ve taşıyıcı dinamiği ile ilgili fiziğini 

çalıştık. Buradan elde ettiğimiz sonuçları geleneksel olarak kullanılan c-

düzlemine büyütülen polar yapılarla karşılaştırdık. Polar durumda artan elektrik 

alan ile maviye kayan soğrulma profili ve azalan taşıyıcı ömrü gözlemledik. 

Polar olmayan durumda, öte yandan, tamamen tersi olduğunu gösterdik: 

kırmızıya kayan soğrulma profili ve artan taşıyıcı ömürlerini bulduk. Bu 

gözlemlerimizi Fermi'nin altın kuralı ve kuvantum-kısıtlamalı Stark etkisi gibi 

temel fiziksel prensiplerle açıkladık. Ayrıca epitaksiyel yatay üst-büyütme 

(ELOG) tekniği kullanılarak dislokasyon yoğunluğu ile bağıntılı olarak 

InGaN/GaN kuvantum yapılarının elektrosoğrulma davranışını inceledik ve 

sabit hal ve zaman çözünürlüklü fotoışıma ölçümleriyle karşlaştırdık. 

Sonuçlarımız ELOG maske çizgi genişliğinin azalmasıyla elektrosoğrulmanın 

güçlendiğini gösterdi. ELOG pencere genişliğini sabit tutarken elektrosoğrulma 

performansı, ilginç bir biçimde, fotoışıma performansına göre daha çok değişim 

gösterip, elektrosoğrulmayı maske çizgi genişliğine daha hassas hale getirdi. Bu 

tez, InGaN/GaN kuvantum yapılarının ve aygıtlarının optoelekroniğinin, elektrik 

alana bağlı doğasını daha iyi anlaşılması için önemli içgörü ve önemli bilgi 

içermektedir.   
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Chapter 1  

 

 

Introduction 
 

Electronic devices based on silicon microelectronics technology have 

revolutionized the world we live in. Personal computers, and later mobile 

communication devices, including tablet computers and smart phones have made 

a significant impact on our lives. These tools are now much more capable 

compared to the past, thanks to ever-improving complementary metal-oxide-

semiconductor (CMOS) microchip technology based on silicon. As a natural 

result, the size of electronics market and that of related areas such as 

telecommunication and information technology have constantly evolved and 

expanded. Related products and services have become more accessible especially 

in the last decade since the beginning of the 21
st
 century.  

In a similar way, we have been witnessing the emergence, increased interest of 

research and development, as well as the commercialization and wide usage of 

optoelectronic devices based on GaN in the same time interval [1]. Among those 

optoelectronic devices, light-emitting diodes (LEDs) with emission wavelengths 

varying from blue/green to ultraviolet (UV), and laser diodes (LDs) operating in 

blue and near-UV have achieved the biggest success. Today, we widely use LEDs 
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for liquid crystal display backlighting as well as traffic signs and white light 

sources. With the Blu-ray disc technology which utilizes GaN based blue LDs, 

we can now store more than 100 GB of information into a 12 cm diameter disc.  

Among GaN based optoelectronic devices demonstrated thus far, LEDs have 

achieved the widest usage so far, and are expected to have the most impact, 

among III-Nitride devices, especially through high efficiency solid state lighting. 

Currently, lighting consumes more than 20% of electricity produced in the world. 

US Department of Energy estimates that about US$ 100 Billion saving in energy 

can be realized by 2020, using 200 lm/W solid-state light sources (which are 20-

50 times more efficient than incandescent light sources and 3-4 times more 

efficient than compact fluorescent lamps) for general lighting [2]. More 

importantly, a vast amount of reduction in carbon emission, many hundreds of 

million tons per year, can be achieved. Today, in the market, there are products 

with 165 lm/W luminous efficacies, and R&D records have exceeded 250 lm/W 

[3]. Companies and research institutions are continuing to push the limits of the 

device performances while reducing the costs associated with the technology. 

  

Figure 1. 1 Packaged LED revenues for different applications: Years 2008-2020. Note that 

the general lighting application is expected to dominate the market. After [4]. 
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Not surprisingly, the economic opportunities are enormous. The overall packaged 

LED market today is US$ 12 Billion, projected to be US$ 17 Billion by 2018 as 

shown in Figure 2.1. Although today the market is driven by the demand from the 

LCD display and general lighting segments equally (comprising more than 50% 

of the revenues), the general lighting segment is expected to dominate the LED 

market with its US$ 10 Billion projected share by the year 2018 [4]. 

Our group has been active in this device platform and contributed to hybrid LED 

research for high quality lighting in the last 6 years [5]–[9]. 

This thesis work is on InGaN/GaN quantum structures and devices that house 

them. In this thesis work, we present our studies on understanding the 

underpinning physics and improving the performances of electroabsorption 

modulators and LEDs. We study electroabsorption and electric field dependent 

carrier dynamics in epitaxial lateral overgrown (ELOG) and conventional polar 

c-plane structures and nonpolar structures. Furthermore, we present our results 

on the reduction of droop (the decrease of LED efficiency at high currents) in 

LEDs through multiple quantum well (MQW) to electron blocking layer (EBL) 

distance optimization.  

In Chapter 2, we present a background on III-Nitride material platform its 

physical properties, history, and plausible future. We provide information on the 

crystal structures of III-Nitrides and explicate the polarization effects in their 

quantum structures, which cause built-in electrostatic fields in quantum well and 

barrier layers in opposite directions. We continue the background on III-Nitrides 

by explaining semi polar and nonpolar growth planes which have reduced or 

zero polarization fields in their quantum heterostructures. Then we explain the 

widely used growth method for III-Nitrides, metal organic chemical vapor 

deposition (MOCVD). We also build a background on optoelectronic device 

physics and through InGaN/GaN based optoelectronic devices demonstrated in 

the past; we exploit this exciting material and device platform through 

addressing the issues and gaps in this platform.  



 

4 

In Chapter 3, we present our eptaxial lateral overgrown InGaN/GaN quantum 

structures and our results on dislocation density dependent electroabsorption. In 

this work, we study three ELOG samples with different ELOG patterns and a 

reference sample with no ELOG pattern. Our results deduced from independent 

experiments (time and spectrum resolved photoluminescence, dislocation 

density measurements through etch pit formation and electroabsorption) are 

consistent with each other. Especially, EA performance was superior in the 

structure with the lowest dislocation density. Also, EA performance was found 

to be much more sensitive to changes in dislocation densities compared to 

steady-state PL performance.  

In Chapter 4, we present electroabsorption modulators comprising InGaN/GaN 

quantum structures with different quantum well and barrier thicknesses and 

materials to study the effect of polarization-induced built-in electrostatic field 

intensity in the well layers (Ewell) on the electroabsorption performance. We 

study three modulator devices with different MQW parameters and thus three 

different Ewell values. Our results show that the best performing device has the 

lowest built-in electrostatic field intensity inside the well layers (Ewell). In 

Chapter 4, we also present the opposite electroabsorption behavior of polar and 

nonpolar InGaN/GaN quantum structures, with and without polarization induced 

electrostatic fields in their quantum structures along their growth directions, 

respectively. We show that c-plane grown polar structures exhibit a blue shifting 

profile whereas the a-plane grown nonpolar structures exhibit a red shifting 

absorption profile, quantum-confined Stark effect in the conventional way as in 

other III-V quantum structures which are free from polarization effects. 

We start Chapter 5 by presenting radiative decay kinetics of polar InGaN/GaN 

quantum structures obtained by spectrum and time resolved PL measurements. 

We show that quantum efficiency, carrier lifetime and radiative recombination 

lifetime decrease with increasing external electric field. Furthermore, we present 

carrier dynamics in polar and nonpolar structures which also behave oppositely. 
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Our results in this chapter are explained in consistency with Fermi‟s golden rule 

and quantum-confined Stark effect. 

Finally in Chapter 6, we present our electron blocking layer (EBL) design and 

its distance optimization to multiple quantum well (MQW) layers for reduced 

droop. We examine electron and hole concentrations at different parts of the 

structure to optimize the MQW-to-EBL distance and show that droop reduction 

is possible through this optimization.  
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Chapter 2  

 

Background 
 

In this chapter, we provide a background for the rest of the thesis. We start with a 

short history of III-Nitride materials platform; we provide an outlook for the 

future of it. We continue with the physical properties with an emphasis on those 

which are related with the scope of this thesis. These include the crystal structure, 

polarization effects, non-conventional growth planes and their growth using 

metal-organic chemical vapor deposition (MOCVD). We continue with basic 

semiconductor device physics to provide a background on optoelectronic devices. 

We explain optical processes in semiconductrors, introduce some important 

definitions, such as carrier lifetimes and quantum efficiency, for our 

understanding of device performance and operations. We further explain some of 

the important mechanisms, such as Franz Keldysh effect and quantum-confined 

Stark effect. We introduce absorption coefficient, again for our understanding of 

device performance and operation. Also, we briefly introduce APSYS 

computational tool that we used for our LED simulations. In the next part of this 

chapter, we review some of the research that has been pursued in III-Nitride 

optoelectronic device platform. We address the studies that are important for the 

scope of this thesis, specifically on electroabsorption modulators and LEDs. We 

explain some of the challenges faced in this platform.  We complete this 

background chapter by conclusions. 
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2.1 III-Nitrides Background 
 

In this part we give a background on III-Nitrides in a materials perspective: we 

briefly present their history, address some fundamental physical properties, 

explain their growth using MOCVD, and their applications with an emphasis on 

optoelectronic devices.  

2.1.1 Short history of III-Nitrides  

Since the first successful demonstration of blue light-emitting diode by Nakamura 

in 1993 [10], there has  been a strong and increasing scientific and technological 

interest in III-Nitride material platform. The research towards achieving III-

Nitride based LEDs was pursued at a very small number of institutions at that 

time mainly due to difficulties to grow these materials [1]. The two obstacles that 

previously hindered researchers to demonstrate blue LEDs were: the growth of 

high quality GaN films and their p-doping [1]. In 1986, Asaki and coworkers 

showed that it is possible to grow high crystalline quality GaN on sapphire 

substrates using MOCVD by performing the buffer layer growths at different 

temperatures [11]. By first growing a thin layer of AlN buffer layer at relatively 

lower temperatures and eventually increasing to higher temperatures, they were 

able to achieve high crystal quality GaN films on sapphire, despite the relatively 

high lattice constant mismatch between GaN and sapphire (~15%). According to 

their description of the buffer layer approach depicted in Figure 2.2, which is still 

found to be valid, nanoislands of GaN (or AlN) first nucleate on the sapphire 

substrate (called nucleation layer), and then the nuclei grow in three dimensions 

until they are sufficiently dense (faulted zone). After the 3D growth, the growth 

mode is switched to 2D and the material grown on each nucleus coalesce (semi-

sound zone). While this coalescence eliminates further vertical propagation of the 

defects by terminating them laterally, still some of those defects propagate 

vertically (sound zone). The optimization of the whole buffer layer growth 

process is very important for device purposes. Typical thickness of the total 
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buffer layer is about 1 µm. For some applications, however, the thickness of the 

buffer layer can be further increased in order to decrease defect densities.  

 

Figure 2. 1 Cartoon showing the cross-section of the high quality buffer layer developed by 

Akasaki. After [1], [11]. 

 

A further improvement in GaN crystal quality as well as the growth rate was 

achieved through the novel reactor design by Nakamura, the so-called the two 

flow (TF) MOCVD [12]. It was found out that the flow of the reactants toward 

the substrate was not satisfactory at high growth temperatures (around 1000º C). 

To circumvent this problem, Nakamura found a relatively simple solution to this 

problem and introduced a second gas inlet of a nitrogen (N2) and hydrogen (H2) 

mixture perpendicular to the substrate, in order to push the reactants towards it 

[12]. Together with the buffer layer approach, TF-MOCVD enabled researchers 

to achieve GaN films on sapphire with high crystalline quality.  

The second obstacle, p-doping of GaN, is faced primarily due to the fact that GaN 

is intrinsically n-type due to the nitrogen vacancies [13]. This problem was also 

understood in a better way and ultimately eliminated. This was achieved through 

choosing the right dopant (Mg), its introduction during the growth (via a 

precursor gas) and activation afterwards, by annealing at elevated temperatures 

(700-800º C) [1]. It is worth mentioning that Nakamura developed most of the 

innovations in the area while working at a chemical company called Nichia. 

Nichia used the advantage of being the first in the industry and dominated the 

blue and green LED as well as the blue laser diode markets in the early years [1]. 



 

9 

Thanks to the advancements in the field (both by industry and academia), today 

achievable crystal quality and doping level of p-type layers are at satisfactory 

levels. Lower forward operation voltages (Vf) and higher operation currents (I0) 

are achievable in LEDs and LDs. Moreover, with the developments in growth 

technology, large-scale and automated growth and fabrication equipment and 

tools have further improved the throughput and yield, reducing the cost/chip as 

well as cost/lumen/W (in LEDs) dramatically. Today, there are close coupled 

showerhead and planetary MOCVD reactors (e.g., produced by Aixtron AG) 

specifically designed for GaN, which can perform the growths with 55 x 2” and 

56 x 2” wafers simultaneously, each one uniformly and almost identically. Figure 

2.3 shows a picture of a large scale state-of-the-art MOCVD reactor. 

 

Figure 2. 2 CRIUS-II close coupled showerhead MOCVD reactor. A state of the art tool for 

high throughput GaN growth. After [14]. 

Despite all the impressive developments and advancements in the area, there are 

still challenges that need to be addressed both in the device performances and the 
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costs for improved devices, different device applications and more market 

penetration [4].   

2.1.2 Physical Properties of III-Nitrides  

Here we discuss some of the fundamental physical properties of III-Nitride 

semiconductor materials system. We emphasize the properties that manifest 

themselves in operation and performance of optoelectronic devices. 

Crystal Structure of III-Nitrides 

Although zincblende and rocksalt crystal structures are possible in the Group III-

Nitride materials system, they predominantly have a wurtzite crystal structure, 

which is depicted in Figure 2.4. The wurtzite crystal is characterized by two 

lattice parameters a and c, and comprises alternating close-packed planes of Ga 

(In or Al) and N atoms in (0001) c-planes, forming an ABAB stacking squence. 

As a result, the surfaces of the crystals are either of Group III element (Ga-face) 

or N (N-face) [15]. This polarity brings up very interesting quantum effects that 

will be discussed later in this thesis.  

 

Figure 2. 3 Wurtzite crystal structure of GaN. Open circles indicate Ga atoms, closed 

circles show N for Ga-face material. After [16]. 

III-Nitrides are direct bandgap semiconductors, alloys of which (InxAlyGa1-x-yN, 

0≤ x, y, x+y ≤ 1) can be tuned to have bandgap energies spanning a very wide 

range of optical spectrum, making them suitable for optoelectronic device 
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applications ranging from mid-infrared to deep ultraviolet. As we will explain 

further in the thesis, forming an interface of two semiconductor materials with 

different bandgap energies, yields a semiconductor heterostructure. Using two or 

more of such semiconductor heterostructures and placing them very close to each 

other (by a distance smaller or comparable to the exciton Bohr radius), we can 

form a quantum well structure and confine electrons and holes in a very close 

vicinity [17]. Through an increase in electron-hole pair recombination and 

generation rate, such structures usually help improve the performance of devices 

that utilize light generation and absorption. Quantum structures based on III-

Nitride semiconductors are also very useful for these purposes. In fact, LEDs and 

LDs that we widely use today comprise such quantum heterostructures, that form 

the active layers of these devices.  

Polarization effects in III-Nitrides 

III-Nitride quantum structures have a property that makes them further 

interesting, which is related with their wurtzite crystal structure. Due to the low 

degree of symmetry and the aforementioned polarity in their wurtzite crystal 

structure, there exists a polarization field with two components: spontaneous 

polarization (Psp) and piezoelectric polarization (Ppz) [18]. 

Spontaneous component of the polarization field, Psp, exists in wurtzite and other 

low crystal symmetry structures and stems from molecular dipoles created by 

deviations from lattice parameters. Its direction is defined from the metal atom to 

the nitrogen atom, and thus exists only in c-direction. The spontaneous 

polarization field intensity is known (theoretically) for GaN, InN and AlN, and 

therefore can be calculated by simple interpolation for their alloys [18].  

Piezoelectric polarization, Ppz, on the other hand, is due to the strain field in the 

material. With large differences in lattice parameters, III-Nitrides give rise to 

strong piezoelectric polarization fields in multilayered structures such as multiple 

quantum wells (MQW). In fact, the strain in these layers mostly builds up 

elastically during reactor‟s cooling down, after the growth, due to the differences 

in thermal expansion coefficients of different layers and the substrate.  
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The direction of Ppz depends on the material being Ga-face or N-face (as Psp) and 

the material being under tensile or compressive strain [18]. So, the direction of 

Ppz depends on the material below and above, as well. Mathematically, it can be 

calculated by multiplying the piezoelectric constant tensor of the material 

(elements calculated by linear interpolation) and the net strain field on the 

material. As a general rule, AlGaN on relaxed (or thick) GaN is under tensile 

strain and Psp and Ppz have the same direction, whereas InGaN on relaxed GaN is 

under compressive strain and Psp and Ppz have the opposite direction. 

The discontinuity of the net polarization field (P = Psp + Ppz) throughout a 

quantum heterostructure causes a sheet charge formation, sign of which depends 

on the vector difference of the net polarization fields in the two consecutive 

layers [18]. In multilayer structures including multiple quantum well (MQW) 

structures, the polarization effect manifests itself as a net built-in electrostatic 

field, Ewell or Ebarrier, with an alternating direction in well and barrier layers. For a 

periodic multiple quantum well structure, the strength of Ewell or Ebarrier, are 

described by Equations (2.1) and (2.2) below [18]:  
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Using relevant materials parameters, we can calculate the energy band diagram of 

such a quantum zig-zag structure as in Figure 2.5. 
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Figure 2. 4 Representative band diagram calculated for an In0.15Ga0.85N/GaN quantum 

structure, here the quantum well and barrier thicknesses are 4 nm. 

In Equations (2.1) and (2.2), it is assumed that the potential build-up in the MQW 

structure due to polarization effect is zero [18]. Obviously, that would not be the 

case when some external electric field is applied to the structure. The external 

electric field would then be vectorially added to the built-in field in the well and 

barrier layers. For a typical blue LED with typical quantum well and barrier 

thicknesses, the built-in electrostatic field inside the quantum well is estimated to 

be about 300 V/µm, which is a very large, making this effect significant, reducing 

the probability of electron-hole recombination for light generation [19]. 

Moreover, for applications requiring larger InN molar ratios in the quantum well 

layers (to reduce the bandgap of quantum well material) the polarization induced 

electrostatic field strength in the quantum well layers increases (reducing the 

electron-hole overlap), since the polarization field is more discontinuous in the 

interfaces of the quantum wells. This means that polarization effect is more 

pronounced in green LEDs compared to blue or near UV LEDs. This is one of the 

main reasons for the lower efficiency of longer wavelength device structures in 

the III-Nitride optoelectronics.  

As mentioned earlier and seen in the Equations (2.1) and (2.2) above, the 

direction of Ewell or Ebarrier
 
are different. Such electrostatic fields in well and 
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barrier layers with alternating signs, cause MQW structures to have a zig-zag 

potential profile [19] rather than a square-like one, which is the case for other III-

V MQW structures, such as those based on GaAs or InP. This property is one of 

the main differences between III-Nitrides and other III-V‟s as far as the scope of 

this thesis is concerned.  

Nonpolar and Semipolar III-Nitrides 

It is very much desirable to achieve polarization-free III-Nitride films, since the 

electrons and holes would not be separated with the built-in electrostatic fields, 

and thus excitons would not be ionized in the quantum structures of such films. 

This is especially important in devices for longer wavelength operation (e.g., 

green and red) since the polarization induced built-in electrostatic fields are 

stronger. The growth of such films and structures is possible by changing the 

growth plane to so-called non-polar planes of wurtzite structure that are 

perpendicular to the polar c-plane. As indicated in the Figure 2.6 below, a- 0211  

and m- 0011  planes are possible options for non-polar growth of III-Nitrides 

[20].  

The first attempts to grow GaN on its non-polar planes were not successful and it 

was impossible to achieve a working device performance due to their low crystal 

quality [21]. Several substrate materials were studied to achieve high crystal 

quality non-polar GaN material. In one of the first successful attempts, Craven et. 

al. reported device-quality a-plane GaN on r-plane sapphire [22] and a-plane SiC 

[23]. However, the threading dislocation densities were still high (~10
10

 cm
-2

). 

Among the proposed methods to further reduce the dislocation densities and 

improving materials quality were growing a thick (~100μm) buffer layer [24], 

epitaxial lateral overgrowth [22], [25] and using a high temperature nucleation 

layer [26].  
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Figure 2. 5 (a) Polar, (b) and (c) nonpolar and (d) and (e) semipolar planes of wurtzite GaN 

crystal structure. Ga atoms are represented by yellow atoms and nitrogen atoms are 

represented by blue balls. After [20]. 

It is also possible to grow GaN on other planes that are in between the polar and 

non-polar planes, which are called semipolar planes. Two of the most popular 

semipolar planes are 0111  and 2211 . In these cases, the built-in electrostatic 

fields are reduced but they are not zero. Some of these planes are given in Figure 

2.6.  

Although there are additional difficulties on the growth of such materials in their 

semipolar planes [20], LEDs [27]–[29] and LDs [30] based on semi-polar GaN 

have been successfully demonstrated. Due to the reduced or eliminated 

polarization effect in their quantum heterostructures, optoelectronic devices 

grown on non- and semi-polar planes are of special interest to scientific 

community and the industry. 

2.1.3 Growth of III-Nitrides 

Although there are several other methods available for III-Nitride materials 

growth, such as molecular beam epitaxy (MBE), hydride vapor phase epitaxy 

(HVPE) and their derivations (e.g., plasma-assisted MBE), metal organic 

chemical vapor deposition (MOCVD) or metal organic vapor phase epitaxy 

(MOVPE) is the most popular growth method both in the industry and research, 

mainly due to its high throughput and good control of growth rates [1]. 

Regardless the method, c-plane growth is found to be more convenient and thus 

more studied and better understood compared to nonpolar and semipolar plane 

growth. Moreover, although there are studies on methods for obtaining free-

standing GaN substrates from melt, they have not been as popular as anticipated 
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due to difficulties (requiring pressures up to 10 atm and temperatures up to 

1500ºC) as well as small maximum achievable area and cost [31].  As a result, 

heteroepitaxy (growth on a non-native substrate) has almost become a must. 

Among the substrates available in the market are sapphire (Al2O3) popular for III-

Nitride based optoelectronic devices (e.g., LEDs and LDs), and silicon carbide 

(SiC) for electronic devices (high electron mobility transistors) [14]. Using 

silicon as a substrate material brings a lot of advantages, especially in the cost 

side, and companies are working towards using silicon instead of Al2O3 and SiC. 

In all of our studies, we used sapphire substrates and performed the growth using 

MOCVD.  

MOCVD growth of III-Nitride epitaxy 

Chemical vapor deposition (CVD) is a general term used to describe a growth 

process which involves reaction of molecules in gas form (called precursors) and 

their decomposition into solid form, usually onto a substrate [32]. It does not 

imply resultant layer being crystalline, amorphous or polycrystalline. The term 

metalorganic (or organometallic) refers to the class of compounds used as the 

precursor material. Each molecule contains a metal atom and organic ligands 

(e.g., methyl [CH3] or ethyl [C2H6]) attached to it. For III-Nitride MOCVD, the 

metalorganic compounds act as the Group III source, whereas ammonia (NH3) 

acts as the nitrogen source. The metalorganic compounds used for AlN, InN and 

GaN and their alloys (AlxInyGa1-x-yN) are trimethylaluminum (TMAl), 

trimethylindium (TMIn) and trimethylgallium (TMGa). For the layers that require 

controlled and low growth rate (especially InGaN/GaN multiple quantum well 

layers), usually triethylgallium (TEGa) is used instead of TMGa. The basic 

chemical equation describing the GaN deposition process is as follows: 

)(3)()()()( 4333 vCHsGaNvNHvCHGa  (2.3) 

Although the above chemical reaction seems very simple, the MOCVD growth 

process is highly complex and hard to understand completely. Toward 

understanding the MOCVD growth process better, improving it and ultimately 
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achieving superior performing devices, researchers performed empirical studies 

of important parameters such as growth temperature, pressure, V/III ratio and 

mass flow rates [32], [33]. As a result of these studies, three different growth 

regimes were identified. These are, mass transport limited regime, desorption 

limited regime and surface kinetically limited regime. MOCVD growth of GaN is 

usually performed in the mass transport limited regime in which growth is limited 

by the mass transport of the Group III precursor to the growth interface. This 

regime occurs at a very wide temperature range (600ºC - 1000ºC) and the growth 

rate usually increases with temperature due to increasing diffusion rate, providing 

growth rate tunability as well as the ability to grow different alloys that require 

different growth temperatures [34].  

Special care has to be taken for InGaN/GaN layers, in order to obtain 

optoelectronic devices with good electrical and optical characteristics. This is 

mainly because high efficiency optoelectronic devices usually require, among 

other things, high quality quantum well layers with uniform thickness and abrupt 

interfaces. Moreover, dislocations (which form non-radiative recombination 

centers and reduce the quantum efficiency) in these layers should be avoided. 

Another reason for this necessity is because the growth of InGaN layers is 

difficult compared to GaN. The growth temperature of InGaN layers should be 

low (<850ºC), due to the low dissociation temperature of InN. Several reports on 

the observation of In droplets are available in the literature. On the other hand, 

decomposition of ammonia (NH3) is much less efficient at such low temperatures, 

because of the high kinetic barrier for breaking N-H bonds [34]. This tradeoff 

brings up difficulties for finding a suitable growth window; however, with good 

growth optimization, it is possible to grow high quality device layers with good 

reproducibility. 

The crystalline quality of the device layers (p- and n-layers and MQWs) also 

highly depends on the crystalline quality of the layers underneath, especially the 

buffer layer. Therefore, crystal quality of the buffer layer directly affects the 

device layers on top of it. The crystalline quality of bulk layers is usually 
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inspected by X-ray diffraction measurements. Generally speaking, the ω-scans of 

the (002) and (102) reflection rocking curves are narrower for high crystalline 

quality samples. It was identified that (002) relates to the screw dislocations 

whereas (102) relates to the edge type dislocations [35], [36].  

2.2 Optoelectronic Devices Background 
 

In this chapter, we describe the physics and operation principles of some of the 

optoelectronic devices with a particular concentration in electroabsorption 

modulators and light emitting diodes (LEDs). We start from semiconductor 

device physics, describe some fundamental physical concepts and effects that are 

especially related with operation and performance of the devices of interest. 

Building on the semiconductor physics concepts introduced in the earlier parts, 

we study the optoelectronic devices in more detail. We provide information on 

the simulation software package that we use for LEDs called APSYS.  

2.2.1 Optical processes in semiconductors 

In this part, we summarize processes concepts of optical absorption and 

spontaneous emission, which are related with the operation principles of LEDs, 

LDs and electroabsorption modulators.  

In semiconductors, optical absorption refers to the process of generation of an 

exciton, bound charge carrier (electron+hole) pair in response to an incident 

photon. In the case of most semiconductors and devices, electron-hole pair 

generation occurs by raising an electron from a valence band state to a conduction 

band state, both of which essentially have the same momentum [37]. The process 

can be described by Figure 2.7:  
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Figure 2. 6 Interband (band-to-band) absorption (carrier generation) in a semiconductor. 

An electron in the valence band is raised to another state in the conduction band by a 

photon. After [37]. 

 

This type of “vertical” transition with momentum conservation describes a direct 

transition, which is the case for direct bandgap semiconductors like GaAs, GaN, 

as well as their alloys with other direct semiconductor materials. Moreover, the 

transition between the conduction and valence bands (rather than within either of 

the bands) describes an interband (or band-to-band) transition. Here in this thesis, 

we concentrate on interband transitions in InGaN/GaN quantum structures since 

the devices we will introduce rely on them. Also, as mentioned earlier, since III-

Nitrides are direct bandgap semiconductors, the processes we describe in this 

thesis work involve direct transitions.  

Such transitions might require electron-hole pair generation or recombination. 

Carrier generation is the process of an electron moving from valence band to the 

conduction band, with the energy obtained from the absorption of an incoming 

photon. Electron-hole pair recombination is the opposite of the generation 

process, and an injected electron is moved from conduction band to valence band 

and the excess energy is released either as a photon or a phonon emitted from the 

semiconductor if the process is radiative and as phonon if it is non-radiative. The 

energy of the emitted photon is determined by the energy difference of initial and 

final electron states, and either of these states can be an impurity-related 

luminescent center. InGaN/GaN based LEDs rely on band-to-band transitions; 

however, impurity-related luminescent center emissions also exist. If the excess 

energy is transferred to a phonon nonradiatively, it is dissipated as lattice 
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vibrations and converted to heat. Figure 2.8 summarizes some of the most 

important optical processes in semiconductors that we described above. 

 

Figure 2. 7 Interband (band-to-band) recombination mechanisms. Reproduced after [1]. 

 

Band-to-band radiative recombination or stimulated emission is given in process 

1 and it is the main mechanism for LEDs. Although radiative recombination 

through luminescent centers (process 2) is possible in semiconductors, the 

photons produced by this mechanism do not contribute to useful light for 

InGaN/GaN LEDs. As mentioned before, nonradiative transitions should be 

avoided as far as light emitting devices are concerned [1].  

There are a few definitions that are helpful for our understanding of optical 

processes in semiconductors and devices that rely on them. One definition is the 

internal quantum efficiency, ηint. The internal quantum efficiency is the ratio of 

the number of photons emitted inside the semiconductor to the number of carriers 

that undergo recombination. In other words, it is the probability that a given 

recombination is radiative [38].  

The rates of radiative and nonradiative recombination can be described by inverse 

of the corresponding lifetimes, τr
-1

 and τnr
-1

. Through Fermi‟s golden rule, the rate 

of radiative recombination is proportional to the probability of finding an electron 

and a hole in the same vicinity, which mathematically and quantum mechanically 

is the squared overlap integral of electron and hole wavefunctions [39]. The total 
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recombination rate τ
-1

 would be the summation of the two rates. Then internal 

quantum efficiency, ηint, can be calculated as the ratio of τr
-1 

and
 
τ

-1
.  

rnr

nr

r

r

1

1

int  
(2.4) 

 

Obviously, the efficiency of an LED depends on the internal quantum efficiency 

of the active material used [38]. Therefore, understanding the radiative and 

nonradiative recombination lifetimes (τr and τnr) is of special importance for our 

understanding of optoelectronic devices, especially LEDs.  

2.2.2 Electroabsorption in semiconductors 

When external electric field is applied to semiconductors, their optical absorption 

spectra change, this is known as electroabsorption. There are two main 

mechanisms of electroabsorption: the first one is Franz-Keldysh effect, which is 

seen in bulk semiconductors, and the other is quantum-confined Stark effect 

(QCSE), which is seen in quantum structures.  

Franz-Keldysh Effect 

Franz-Keldysh effect (FKE) [40], [41] appears in bulk semiconductors in which 

the optical absorption occurs at photon energies equal to or larger than the 

bandgap of the semiconductor material. When an external electric field is applied 

across a bulk semiconductor material, the conduction and valence band potential 

profile become tilted in the energy band diagram. Assisted by an absorbed 

photon, an excess electron in the valence band can tunnel into the conduction 

band. In the absence of the external electric field, such transition would not be 

possible. Another explanation of the same phenomenon is through an eigenstate 

approach, which is mathematically simpler. Consider an electron in a bulk 

semiconductor, in the presence of an external electric field in z-direction. The 

Schrödinger equation then becomes the following:  
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The solutions to this equation are the Airy functions, which take the form of 

oscillatory functions for positions of z where the energy eigenvalue Ec>Ve-eEz 

and decaying functions otherwise (within the bandgap) as depicted in Figure 2.9 

below.  

 

Figure 2. 8 Schematic representation of Franz Keldysh effect. Courtesy of Prof. David 

Miller. 

 

The same procedure can be followed for the holes and again eigenfunctions of 

decaying behavior can be found. It can be predicted through this observation that, 

application of an external electric field can induce absorption below its bandgap 

energy, making it absorbing where it is initially transparent. In other words, 

absorption edge, the wavelength in which the absorption starts, shifts to longer 

wavelengths (lower photon energies) with the external electric field application. 

This is especially useful for modulators, by which we can control the absorption 

level of light. Such devices based on other III-V semiconductors have been 

thoroughly studied and used in relevant applications [42]–[45].  
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Quantum-confined Stark effect 

Similar to Franz-Keldysh effect, quantum-confined Stark effect (QCSE) describes 

electroabsorption, but this time in quantum structures. In optoelectronics, there 

are many important and useful outcomes of using quantum structures (e.g., 

quantum wells, wires or dots) instead of bulk material. Since the carriers are 

confined in one or more directions, strong excitonic effects can be exhibited. 

QCSE is one of such strong effects.  

In quantum-confined Stark effect, similar to FKE, absorption edge redshifts with 

the external electric field perpendicular to the quantum well layers [42]. The 

mechanism is depicted in Figure 2.10 for an infinite quantum well structure.  

 

Figure 2. 9 Electron and hole states in an infinite quantum well with zero external electric 

field and non-zero electric field. Courtesy of Prof. David Miller. 

 

There are a couple of remarks to consider in this visual description of QCSE: 

First, electron and hole are pulled in different directions by the electric field and 

electron and hole wavefunctions overlap less compared to the zero external 

electric field case. This is an important observation, since the rate of a transition 

between such states is known to be directly proportional to the squared overlap 
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integral of electron and hole wavefunctions 
2

he  through Fermi‟s golden rule 

[39]. Moreover, previously forbidden transitions are allowed for the non-zero 

external electric field case, since the states are not orthogonal anymore. We will 

discuss the implications of this observation further in Chapter 5. 

As a second remark, the transition energy between electron and hole states is 

smaller in non-zero external electric field case, indicating a redshift of absorption 

edge, as in the case of FKE. Representative experimental absorption spectra of an 

AlGaAs/GaAs multiple quantum well structure at different external electric field 

levels (perpendicular to the MQW) are given in Figure 2.11.  

 

Figure 2. 10 Optical absorption spectra for AlGaAs/GaAs quantum well structure for 

various electric fields applied perpendicular across quantum well layers measured at room 

temperature. The spectra are shifted vertically to dashed levels for clarity. Courtesy of 

Prof. David Miller. 

 

It is seen clearly that exciton peaks are shifted to lower energies and become 

weaker with increasing external electric field. The explanation for that comes 

from the fact that the electron and hole are separated form each other. As a result, 

the probability of finding an electron and hole in the same vicinity decreases; and 

consequently, excitonic absorption decreases.  

QCSE has been widely studied and exploited in relevant applications, mostly in 

GaAs and InP platform [43]–[45] and recently successful demonstrations were 
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made in SiGe platform [46]. All these applications were in the infrared region of 

the optical spectrum. As we will describe in the next parts, we have demonstrated 

InGaN/GaN based quantum electroabsorption modulators and studied their 

underlying physics for better understanding. 

Absorption coefficient  

Absorption coefficient (denoted as α) is another important physical quantity for 

our understanding of optical properties of materials, especially semiconductors. 

In most of the materials, optical absorption can be formally explained as an 

exponential attenuation of photon flux that passes through the material, 

characterized by a characteristic absorption coefficient (with units in cm
-1

). For a 

device in which photons are absorbed and converted to electron-hole pairs, and 

electron-hole pairs are collected in the external circuit, such as photodetectors and 

electroabsorption modulators, the absorption coefficient can simply be related to 

measurable quantities with the following equation: 

RP

i

d

p

1

24.1
1ln

1

0

 (2.6) 

Here in this equation d is the thickness of the absorbing medium, ip is the 

photocurrent, P0 is the optical power in Watts, λ is the wavelength in µm, ζ is the 

ratio of electron-hole pairs that successfully contribute to photocurrent and R is 

the Fresnel power reflectance. By using absorption coefficient, performance and 

underlying physics of electroabsorption modulators can be studied easily.  

2.2.3 LED Model Used  

For our LED studies, we used a finite element analysis based simulation package 

called APSYS (Advanced Physical Models of Semiconductor Devices). APSYS 

is capable of modeling current-voltage characteristics, and many important 

parameters such as optical power and spectrum, carrier distributions and band 

diagrams at various current injection levels. The results deduced from APSYS 

simulations are very helpful for our understanding of LED operation and possible 

ways to improve its performance.  
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2.3 III-Nitride Optoelectronic Devices  
 

In this part, we review some of the research work performed in III-Nitride 

optoelectronic devices field. We start with early work on InGaN/GaN based 

LEDs and address important achievements, and continue with InGaN/GaN based 

electroabsorption modulators.  

2.3.1 InGaN/GaN based visible LEDs  

As mentioned earlier, the first demonstrations of III-Nitride based optoelectronic 

devices were InGaN/GaN based LEDs, which were demonstrated in early 1990s 

by Shuji Nakamura of then Nichia Corporation. In the early demonstrations of 

InGaN/GaN based blue LEDs [1], the forward voltage, Vf, (defined as the voltage 

at a driving current of 20 mA) was as high as 10 V and the optical output power 

level was as low as about 0.125 mW (again, at I=20 mA). A few years after the 

first demonstrations, the improvements in the device performance were 

impressive; Vf was reduced down to 3.6 V and the achieved output power levels 

were as high as 4 mW [10], [47], [48]. These developments were mainly due to 

the improvements in the p-doping levels, crystal quality and control on InGaN 

deposition. Moreover, the latter enabled researchers to extend the operation 

wavelength range of the LEDs to longer wavelengths, to about 525 nm, which 

corresponds to green.  

Electron blocking layers in LEDs 

In the early days of InGaN/GaN based blue LEDs and LDs, a critical 

improvement in their performance was made through inserting an electron 

blocking layer (EBL) on top of the multiple quantum well structure, preventing 

the electron overflow from the active region. The electron overflow in these 

devices was identified as a major problem because of large electron leakage due 

to larger diffusion constant of electrons compared to holes, and poor hole 

injection into the active region due to low hole mobility in III-Nitrides.  
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The EBL is usually composed of p-AlGaN with a typical AlN ratio of 20% and a 

thickness of 10-20 nm. A representative band diagram (neglecting polarization 

induced electrostatic fields in MQW) of an InGaN LED with an EBL is shown in 

Figure 2.12 below. 

 

Figure 2. 11 Band diagrams of two LEDs incorporating (a) an undoped AlGaN EBL and 

(b) a p-doped AlGaN EBL. After [38]. 

 

The Figure 2.12(a) illustrates that the undoped AlGaN EBL acts as a barrier to 

current flow in both conduction band and valence band. In Figure 2.12(b), 

valence band edge is smoothed out by the p-doping of the EBL. However, as 

shown in the inset of the same figure, where the valence band is shown in more 

detail, there exists a potential spike and notch at the EBL and p-layer interface.  It 

is necessary for holes to tunnel through the potential spike for their injection into 

the active region and ultimately radiative recombination with electrons. This is an 

unwanted effect for the incorporation of holes into the active layer. Despite that, 

today, EBLs are widely used in LEDs and LDs. 
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Efficiency droop in LEDs 

For most applications that LEDs are used such as general lighting, it is necessary 

to obtain high optical power output levels. In order to achieve high optical power 

levels, it is necessary to operate LEDs at high current injection levels, another 

solution would be to increase the number of chips used and/or increase the area of 

each chip, but those would increase the cost per chip and cost per lumen. For 

typical sized devices (e.g., 300 μm × 300 μm), the driving currents of more than 

350 mA  are usually necessary. However, the efficiency of LEDs is the highest at 

much lower current levels (<50 mA). For larger current levels, the efficiency 

monotonically decreases. This decrease is called efficiency droop [49]. In Figures 

2.13( a) and 2.13(b), we present LED efficiency vs. current and light output vs. 

current (inset) curves of a typical LED with droop and an LED with no droop. 

For the typical LED, the LED power deviates from the ideal linear increase with 

increasing current.  

 

Figure 2. 12 LED efficiency vs. current and LED power vs. current (inset) curves of a 

typical LED with droop and ideal LED with no droop. After [49]. 

This problem is known to be stronger in LEDs that operate at longer wavelengths 

(e.g., green LEDs) and is not related with thermal rollover effect. For that reason 

it is sometimes referred to as non-thermal rollover. Despite the physical 
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mechanisms that lead to the efficiency droop are still under discussion [49]–[51], 

several methods to reduce this effect (such as using polarization-matched MQW 

or p-doped barriers) have been proposed [52]–[54]. Recent research has shown 

that AlGaN electron blocking layers with typical thickness and alloy ratios are 

not satisfactory for solving the efficiency droop problem, mainly due to being 

unable to completely prevent electron leakage from the active region, and 

prohibiting hole injection into the active region, simultaneously. Several novel 

EBL designs have been proposed in order to relieve this effect and droop levels; 

here we will refer to such one study by Zhang, et. al. [55]. In this work, the droop 

level of a blue LED with an AlGaN/GaN superlattice EBL with a gradual Al 

mole fraction was analyzed. The results were compared with a traditional EBL 

with 20% AlN mole fraction, and another superlattice with constant AlN mole 

fraction as depicted in Figure 2.14 below. 

 

 

Figure 2. 13 The Schematics illustrating three structures studied in Ref. [56]: (a) the 

conventional structure with constant AlN molar ratio of 20% (structure A) , (b) the normal 

superlattice structure with constant AlN molar ratio of 20% (structure B) and (c) the 

gradual superlattice structure with triangular AlN molar ratio (0-20-0%) (structure C). 

After [56]. 

The structures were analyzed using APSYS; band diagrams of the structures 

indicating quasi-Fermi levels (a) to (c) and electron and hole concentrations (d) to 

(f) are given in Figure 2.15 below.  
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Figure 2. 14 Band diagrams and carrier concentrations of structures A, B and C at the 

current density of 200 A/cm
2
. After [56]. 

 

As seen in Figure 2.15, the effective potential height for holes in structure A is 

the highest and the same for electrons is the lowest among the three. As a result, 

the electron leakage is the highest and hole incorporation in quantum well regions 

is the lowest for structure A. In structure C, however, the electron leakage is 

slightly lower than that of structure B, and electron and hole concentrations in the 

quantum well regions are much more balanced. In the internal quantum efficiency 

vs. current density curves given in Figure 2.16, we can clearly see this effect. 

According to the simulation results, structure C shows the highest maximum IQE 

and lowest droop level (12% with 400 A/cm
2
), whereas structure B with constant 

Al mole fraction superlattice EBL and structure A traditional EBL exhibit droop 

levels of 16% and 69%, respectively.   
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Figure 2. 15 Dependence of internal quantum efficiency (or LED efficiency) on the current 

density showing droop levels for the structures. After [56]. 

Further reduction of efficiency droop is necessary for high current operation and 

ultimately larger market penetration of InGaN/GaN LEDs. Novel EBL designs 

are expected to pave the way towards these goals. In this thesis work, we will 

address the droop problem in LEDs and try to further improve device 

performances in this respect, through device and bandgap engineering.  

2.3.2 InGaN/GaN based electroabsorption modulators 

As mentioned throughout this chapter, optoelectronic devices based on 

InGaN/GaN quantum structures have found several important applications in 

critical areas such as lighting and data storage. They are expected to replace their 

older counterparts due to several advantages they offer. However, what III-

Nitride material platform can offer is not limited to these applications. Aiming at 

expanding such applications, we previously demonstrated InGaN/GaN based 

electroabsorption modulators (EAMs) operating at the visible part of optical 

spectrum [57]. EAMs that operate in the blue wavelength range (λ~440 nm) were 

proposed as a chip scale solution for direct optical clock injection into Si CMOS 

microchips using Si based photodetectors [58] fabricated with the same 

technology.  

From physics point of view, EAMs based on III-Nitride quantum structures 

render a very interesting property due to polarization-induced electrostatic fields, 

in the context of quantum-confined Stark effect. As a result of our transfer matrix 
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method based simulation results, which are shown in the Figure 2.17 below, 

when the external electric field is applied in opposite direction to the built-in 

polarization-induced electrostatic field inside the quantum well layers, the 

transition energy of electron and hole increases and, as a result, the absorption 

edge shifts to higher photon energies and, thus, to shorter wavelengths (i.e., 

blueshifts). Moreover, the overlap of electron and hole wavefunctions increases 

with the external electric field.  

 

Figure 2. 16 Energy band diagrams of an InGaN/GaN quantum structure for zero external 

electric field case and non-zero external electric field case. After [57]. 

We designed our electroabsorption modulators comprising of InGaN/GaN 

quantum structures with a target operation wavelength of 425 nm and performed 

MOCVD growth and fabrication steps accordingly. As a result of our 

experiments, we also observed blueshifting absorption edge with the external 

electric field, in agreement with our simulation results and demonstrated reversed 

quantum-confined Stark effect (r-QCSE) as in Figure 2.18 below.  
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Figure 2. 17 Absorption spectra of our EAM at 0-6 V levels. The absorption edge shows a 

clear blueshift with increasing external electric field. Reproduced after [57]. 

Moreover, we achieve absorption coefficient change values as large as 6000 cm
-1

 

with a voltage swing of 0 to 6 V, as seen in Figure 2.19, where we present the 

absorption coefficient changes with respect to the 0 V absorption curve.   

 

Figure 2. 18 Absorption coefficient change with respect to 0 V absorption curve. After [57]. 

Electroabsorption modulators based on InGaN/GaN quantum heterostructures are 

promising candidates for the generation of optical clocking signals in the blue 

wavelength range, where Si based photodetectors can be operated at high speeds 

with high responsivity. Understanding the underlying physics of these devices is 
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essential to improving device performances and pursuing other possible 

applications in related areas of communication and sensor technologies. In this 

thesis work, building upon our earlier work presented above, we further study 

InGaN/GaN quantum structures for the electric field dependence of their 

optoelectronic properties. 

2.4 Summary  

In summary, we provided background information for III-Nitride materials, 

optoelectronic devices, specifically LEDs and EAMs based on InGaN/GaN 

quantum structures. We introduced polarization-induced electrostatic fields in III-

Nitride quantum structures and addressed several consequences of this effect. 

Moreover, we explained MOCVD growth of III-Nitrides and mentioned several 

research activities in this aspect.  
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Chapter 3  
 

 

Epitaxial Lateral Overgrown 

InGaN/GaN Quantum Structures 
 

This chapter is based on the submitted publication “Dislocation density 

dependent electroabsorption in epitaxial lateral overgrown InGaN/GaN quantum 

structures” Emre Sari, Lee Woon Jang, Jong Hyeob Baek, In Hwan Lee, Xiao 

Wei Sun, and Hilmi Volkan Demir. 

 

In this chapter, we describe our study on InGaN/GaN quantum structures grown 

using epitaxial lateral overgrowth (ELOG). We performed electroabsorption (EA) 

measurements together with steady state photoluminescence (PL) and time-

resolved PL (TRPL) and found the results to be in correlation with their 

dislocation density levels. Our results show that ELOG structures with low 

dislocation densities exhibit stronger EA performance, with a maximum EA 

enhancement factor of 4.8 compared to the reference without ELOG. Also, while 

keeping the growth window widths constant, compared to the PL intensity levels, 

EA exhibits larger sensitivity to the dislocation density, which decreases with 

decreasing ELOG mask stripe widths leading to larger EA. Our analyses further 

reveal that the EA performance as well as the essential parameters of PL spectra 
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(peak position, width and intensity) together with photoluminescence lifetimes 

follows similar trends with the dislocation densities.  

3.1 Introduction  

Epitaxial lateral overgrowth, which is based on the selective area growth, is one 

of the most powerful techniques for the reduction of threading dislocation 

densities, thus enabling substantial improvement in the crystal quality of GaN 

material system [59]. Under proper conditions, ELOG results in smooth surfaces 

with low defect densities by blocking propagation of the defects underneath the 

hard mask, usually defined by Si3N4 or SiO2 on a GaN template. This involves 

lateral growth over the mask, hence preventing the defects from propagating to 

the surface and leading to a surface with significantly fewer defects for the 

growth of subsequent layers [60]. ELOG can also be applied for multiple times 

for further improvement in crystal quality. A schematic representation of the 

ELOG process is given in Figure 3.1 below. 

 

Figure 3. 1 Schematic of one-step ELOG process. After [60]. 

 

As investigated by several groups to date, ELOG has proven to be a successful 

method to improve GaN material quality as well as the performance of resulting 

optoelectronic devices including LEDs [61] and LDs [62] when grown on polar 

[63], semipolar [64] and nonpolar [65] directions of their crystals. ELOG-LEDs 

with embedded micro-mirror arrays have also been demonstrated to further 

improve the light extraction efficiency [66].  
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In terms of understanding the underpinning physical mechanisms, 

electroabsorption offers a unique means to explore and understand physics of 

semiconductor structures. This is especially the case for quantum-confined 

structures, which exhibit electroabsorption exceptionally stronger than their bulk 

counterparts through quantum-confined Stark effect (QCSE) [42]. 

Electroabsorption modulators that utilize QCSE have found applications in 

telecommunications in the last few decades, e.g., in data coding [45] and optical 

switching [67]. Most of these studies involved InP/GaAs material system, and the 

operation wavelength of these devices has therefore been typically in the mid-

infrared part of the electromagnetic spectrum. On the other hand, 

electroabsorption modulators based on III-Nitride quantum structures, which 

operate in the blue [57] and ultraviolet [68] region of the electromagnetic 

spectrum, were also demonstrated. These find applications in optical clock 

injection directly into silicon chips [58] and none-of-sight communications [69]. 

However, electroabsorption in InGaN/GaN quantum structures grown on ELOG-

GaN has not been studied.  

Here in this part of the thesis, we report electroabsorption performance of 

epitaxial lateral overgrown InGaN/GaN quantum structures, combined with their 

steady-state and time-resolved photoluminescence properties, and correlate our 

results with the dislocation density levels. In this study, we employ a set of four 

epi-structures, three of which are designed to contain systematically varying 

ELOG mask stripe widths while the last one is used as a reference sample without 

ELOG.  

3.2 Experiments, results and discussion  
Our epitaxial structures were grown using metal-organic chemical vapor 

deposition (MOCVD). After the growth of 5 µm thick u-GaN templates on single 

side polished sapphire substrates, we deposited and defined SiO2 stripe patterns 

all in 0011  direction. The width of the SiO2 stripe masks was 4, 7 and 10 µm, 

whereas that of the unmasked window regions was kept constant at 4 µm for the 

three samples containing ELOG stripe patterns. No patterning was used for the 
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fourth sample, which serves as the reference. We followed a standard single-step 

ELOG procedure [59]. The lateral growth time was sufficiently long for each of 

our samples to completely coalesce in the middle-top part of the mask regions.  

After the coalescence, we changed the growth mode to vertical growth to obtain 2 

µm thick Si doped n-type GaN layer (NSi ≈ 4 × 10
18

 cm
-3

) and InGaN/GaN 

multiple quantum well (MQW) structure with 5 pairs of well and barriers having 

thicknesses of 2.5 and 7.5 nm, respectively. After the growth of the MQW, we 

continued with Mg-doped 150 nm thick p-GaN layer (NMg ≈ 6 × 10
17

 cm
-3

) and 

completed the epi-samples. In Figure 3.2 we present a cartoon showing the cross-

section of an exemplary ELOG sample.  

 

Figure 3. 2 Cartoon showing the cross-section of an ELOG sample before device 

fabrication. The lines on top of the SiO2 ELOG stripes represent coalescence walls. 

Device Fabrication 

We fabricated devices using these ELOG and reference epi-samples utilizing 

standard photolithography, mesa etching and metallization procedures. The 

fabrication and subsequent characterization of the devices were performed under 

the same conditions, all with identical settings and parameters. The mesa size of 

the resulting devices is 300 µm × 300 µm. These devices allowed us to apply 

external bias and extract photocurrent for electroabsorption study (in the case of 

reverse biasing). 

We start the fabrication of our devices by cleaning our samples through soaking 

them in acetone and isopropanol in an ultrasonic bath. After drying them using a 
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nitrogen gun, we spin-cast the photoresist (AZ 5214 at 4000 rpm for 50 s) and 

then softbake at 110°C for 55 s on a hotplate. Using a mask aligner and 

photomask, we follow a positive photolithography procedure and expose our 

samples by UV light (Hg arc lamp) at ~150 mJ exposure energy per cm
2
 as 

depicted in Figure 3.3. Then we develop our samples using AZ 400K (1:4) for 1 

min and rinse them in de-ionized water. As seen in Figure 3.4, the parts of 

photoresist that are exposed to UV light get dissolved in the developer solution, 

while the parts that are not exposed to UV remain. When necessary, we follow a 

postbake procedure (typically 2 min at 110°C on a hotplate) to harden the 

photoresist.  

 

Figure 3. 3 Photolithography procedure: mask is placed on the sample which was 

previously coated with photoresist, and UV light is then applied. 

  

 

Figure 3. 4 Sample after photolithography and subsequent development. 
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After this step, our samples are ready for etching. We perform a chlorine based 

(for our case, dichlorodifluoromethane, CCl2F2) reactive ion etching (RIE) 

procedure for this fabrication step. We immediately clean the photoresist that 

stays on the sample using acetone and isopropanol after the etching and form the 

mesa as in Figure 3.5.  

 

Figure 3. 5 Sample after mesa etching procedure (using RIE) and cleaning of the 

photoresist. The sample is etched down to n-GaN layer. 

 

Different than the metallization step, we perform the lithography of p- and n-

contacts in an image reversal fashion. For image reversal photolithography, we 

first expose our samples to UV light of ~60 mJ exposure energy per cm
2
, with the 

mask features aligned properly using alignment marks near the corners of each 

sample. Subsequently, we do the reversal bake of 110°C for 2 min on a hotplate. 

After the reversal bake, we perform the flood exposure with the same exposure 

energy (~150 mJ) and the development with the same duration (1 min). 

Following the negative photolithography process, we perform metallization and 

lift-off procedures, respectively. As in Figure 3.6, we first deposit n-contacts 

using thermal or e-beam evaporation and use Ti/Al/Ti/Au with 10 nm / 100 nm / 

10 nm / 100 nm thicknesses. Since the total thickness of the metals (~220 nm) is 

much thinner than the thickness of the photoresist (1.4 µm), the acetone attacks 

and dissolves the photoresist and lifts the metal coating where we do not want the 

metal to be deposited. For ohmic contact formation, we anneal the sample 

typically around 550 °C for 5 min in a N2 environment using rapid thermal 
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annealing (RTA). We follow the same procedure for p-contacts and p-pads as 

illustrated in Figure 3.7. For p-contact, we sputter indium-tin oxide (ITO) with 

100 to 150 nm of thickness and anneal it at 250°C for 15 min. For p-pads, seen in 

Figure 3.8, we use Ti/Au with 10 nm / 100 nm of thicknesses and perform no 

annealing.  

 

Figure 3. 6 Sample after n-contact deposition and annealing. 

   

 

Figure 3. 7 Sample p-contact deposition and annealing. 
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Figure 3. 8 Sample after p-pad deposition. Sample is ready for test. 

 

In Figure 3.9, we present a micrograph of a fabricated device. This particular 

structure has 4 μm mask and window widths. Here, the reverse C-shaped metal is 

n-contact and the C-shaped metal is p-pad and the dark square is ITO p-contact.  

 

Figure 3. 9 Micrograph of a fabricated device comprising 4 μm mask and window widths  

Materials Characterization 

Following the MOCVD ELOG growth of our samples, we measured the 

dislocation densities through forming etch pits using wet etching and 

investigating scanning electron microscopy (SEM) images presented in Figures 

3.10(a)–(d). Our analyses show that the etch pit density for the reference sample 
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was the highest and that of the ELOG sample with 4 µm wide stripes was the 

lowest, with the respective values of 3.25 × 10
8
 and 0.88 × 10

8
 cm

-2
. The etch pit 

densities of the other ELOG structures with 7 and 10 µm wide stripes were 1.84 × 

10
8
 and 1.58 × 10

8
 cm

-2
, respectively [70].  

  

(a) (b) 

  

(c) (d) 

Figure 3. 10 Representative parts of the analyzed SEM images of the top surface of our epi-

structures after etch pit formation: (a) reference sample, and ELOG samples with (b) 4 

µm, (c) 7 µm, and (d) 10 µm wide stripes. After [70]. 

In addition, we performed PL measurements using our setup containing a He-Cd 

laser at 325 nm, an optical microscope with a high magnifying power (100×) 

objective lens and a motorized stage, a monochromator, and a broadband 

photodetector. We carefully set the position and spot size (~2 μm) of the 

incoming laser beam properly such that all photons that contribute to the PL 

signal come from the low dislocation density region of the epitaxy. PL spectra 
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corresponding to the reference sample and the ELOG samples are given in 

Figures 3.11(a)–(d). 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 

Figure 3. 11 PL spectra of (a) reference sample, and ELOG samples with (b) 4 µm, (c) 7 

µm and (d) 10 µm wide stripes. After [70]. 

As a result of our PL measurements, we found that the PL peak emission 

wavelengths (λPL) were in the range of 466 ± 7 nm. This confirms that the levels 

of InN incorporated in the well regions of the MQW layers were similar to each 

other. Specifically, the structure with 4 µm wide stripes emit at the shortest 

wavelength, λPL, with the highest peak intensity, IPL. Moreover, the FWHM of the 

PL spectra, ΔλPL, was the lowest for the reference sample (18.47 nm), and very 

close to the sample with 4 µm stripes (18.53 nm). These results indicate that the 

reference sample exhibits the weakest photoluminescence. (All important 

parameters of these PL spectra, which will later be discussed again and compared 

with other characterization results, are further summarized in Figures 3.15(a), 

3.15(c) and 3.15(e) [70].  
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Moreover, we performed TRPL measurements for studying the carrier generation 

rate in the quantum structures. We used PicoQuant TRPL setup comprising an 

InGaN-based laser diode operated at 375 nm in pulsed mode, with the 

monochromator center wavelength set at 466 nm in the photon collection side, for 

all of the samples. The details on the TRPL measurements and the setup will 

further be provided in Chapter 5, where we will discuss electric field dependent 

carrier lifetimes in InGaN/GaN quantum structures. 

We fit the decay curves with three exponentials to obtain the minimum deviation 

from the actual data and considered the carrier recombination rates, Ri, as the 

reciprocal of the intensity averaged lifetimes, τi
-1

. We present the experimental 

TRPL decay curves of the four structures along with their numerical fits in Figure 

3.12. 

 

Figure 3. 12 Time-resolved photoluminescence decay profiles of our epitaxial lateral 

overgrowth structures and the reference sample along with their corresponding fits. The 

fastest decay profile corresponds to the reference sample due to its higher dislocation 

density, and thus higher nonradiative recombination rate. After [70]. 

The extracted recombination rates correlate well with the dislocation density 

levels in our epi-structures, considering the fact that the dislocations form 

nonradiative recombination centers, increasing the nonradiative recombination 

rate and, thus, the overall recombination rate. As a result, the recombination rates, 

measured using TRPL, should exhibit a similar trend with the dislocation 
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densities, at least when the dislocation densities are significantly different, which 

is the case for the reference sample and the ELOG sample with 4 µm wide 

stripes, as shown in Figures 3.13(a) and 3.13(b). These results are also consistent 

with the previous theoretical [71] and experimental [72] studies. 

 

Figure 3. 13 Comparison of (a) dislocation densities measured by SEM analysis and (b) 

recombination rates of our structures measured by TRPL analysis. After [70]. 

Device Characterization 

We further performed photocurrent measurements at different levels of reverse 

bias applied across our devices. Our photocurrent setup consists of a Xenon lamp, 

monochromator, optical chopper, DC power supply and a lock-in amplifier. 

Using an optical beam spot size of ~200 μm illuminating the device under test, 

we control the measurement parameters (e.g., wavelength of the incoming light 

and the bias voltage applied) and read the photocurrent data through a GPIB 

interface.  
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Figure 3. 14 Schematics and flow chart of our photocurrent measurement setup. 

 

Due to the partial compensation of the polarization-induced electrostatic fields 

inside the well layers by the external electric field, we observed a blue shift of the 

absorption edge and thus, a decrease in the absorption level around the band edge, 

with increasing external bias. Such an electroabsorption behavior, called reversed 

quantum-confined Stark effect, has been observed previously [57], [73]. In this 

study, we consider the photocurrent change at 4 V with respect to 0 V absorption 

levels, Δiph(λ). In the wavelength interval where the blue shift is observed, this 

gives a figure of merit for comparative electroabsorption performance of these 

devices. Here, we define the maximum photocurrent change, i.e., max[-Δiph(λ)], 

over the operating wavelength range, which is related to the electroabsorption 

performance. Also, the wavelength at which this maximum occurs can be 

considered as the electroabsorption modulator optimal operating wavelength of 

the corresponding sample, λEA. This wavelength where the absorption changes the 

most via the externally applied electric field is expected to follow the same trend 

as λPL for all samples. The related FWHM (ΔλEA) can also be defined as the 
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operation wavelength range, over which the quantum electroabsorption behavior 

is observed. This quantum effect should correlate correspondingly with the 

broadening of the PL emission of our quantum structures, since they both are 

related to the bound states near the bandgap.  

In Figures 3.15(a) and 3.15(b), we show the PL peak wavelength (λPL) and the 

maximum absorption change wavelength (λEA) for our epitaxial lateral 

overgrowth samples, which are consistent with each other. As seen in Figure 

3.15(c) and 3.15(d), ΔλEA also follows the FWHM of PL emission (ΔλPL). 

Moreover, the level of maximum photocurrent change with the voltage swing 

from 4 to 0 V, max[-Δiph(λ)], and the PL peak intensity levels, IPL, follow a 

similar trend, except for a small variation in PL intensities of the samples with 7 

and 10 µm stripe widths. Also, all these trends correlate well with the carrier 

lifetimes and the dislocation densities mentioned earlier [70].  
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Figure 3. 15 Comparison of similar trends in (a) PL peak wavelengths and (b) maximum 

photocurrent change (electroabsorption) wavelengths; (c) PL peak FWHMs and (d) 

electroabsorption FWHMs; and (d) PL peak intensities and (e) maximum photocurrent 

change among our structures. After [70]. 

 

In our experimental measurements, we consistently observe that the lower 

dislocation density leads to stronger electroabsorption, although this dependence 

of electroabsorption on dislocation density may not be obvious for those who are 

more familiar with photoluminescence (e.g., LEDs). As an important remark, our 

results suggest that the electroabsorption performance of the best performing 

ELOG structure (4 µm stripe width) is about 3-fold better than its nearest 

competitor (7 µm stripe width). This performance difference of EA is 

significantly larger than the ratio of their corresponding PL intensities. 

Furthermore, this strong electroabsorption is 4.8-fold larger than the Reference 

sample without ELOG. We attribute the observed strong dependence of 

electroabsorption performance on dislocation density to higher quality quantum 

well layers with more uniform thickness and more abrupt interfaces in lower 

dislocation density samples. Also, considering the fact that strain-induced 

piezoelectric polarization fields (and thus the total polarization-induced 

electrostatic fields) inside the well layers bend the conduction and valence bands 

of the low dislocation density samples more compared to others, they have a 

narrower effective bandgap, which causes a red shift in the emission and 

absorption of the c-plane grown polar InGaN/GaN quantum structures. As a 

result, the 4 µm ELOG sample‟s shortest emission wavelength can be explained 
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by its lower amount of the residual strain [74], [75], which is released at the 

coalescence sidewalls more compared to other samples. Since this sample has 

more stripes, there are more coalescence sidewalls available per unit area [70]. 

3.3 Summary 

In summary, the electroabsorption performance is found superior for the ELOG 

InGaN/GaN quantum structures (with 4 µm ELOG mask stripes) because of its 

higher crystal quality and a lower level of residual strain compared to the 

reference without ELOG. Electroabsorption performance of this sample is much 

significantly stronger than those of the others, as compared to the difference 

measured in their PL intensities. The electroabsorption operation wavelengths are 

observed to follow closely their PL peak wavelengths; the same is also true for 

the case of their spectral widths. Here the results deduced from different and 

independent experiments are found in good agreement. The experimental results 

also indicate that the electroabsorption performance and simultaneous emission 

rates follow similar trends with the crystalline quality and the level of strain 

released in the coalescence sidewalls. ELOG, with reduced levels of dislocation 

density, offers an effective approach for achieving strong electroabsorption in 

InGaN/GaN quantum structures. 
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Chapter 4  

 

Electroabsorption of InGaN/GaN 

Quantum Structures 
 

In this chapter, we present our work on external electric field dependent optical 

absorption in InGaN/GaN quantum structures. We start with our comparative 

study of electroabsorption modulators comprising InGaN/GaN quantum 

structures with different well and barrier thicknesses and InN molar ratios in the 

quantum wells. Our results indicate that electroabsorption performances improve 

with decreasing built-in electrostatic field in the quantum well layers. In the 

second part of the chapter, we present our work on electroabsorption in polar and 

nonpolar InGaN/GaN quantum structures. Due to polarization induced 

electrostatic fields in polar GaN, we observe a blue shift of the absorption edge 

with increasing external electric field, whereas for nonpolar GaN, we observe a 

red shift of the absorption edge.  

4.1 Comparative study of electroabsorption in 

InGaN/GaN quantum structures 
 

This section is based on the publication “Comparative study of electroabsorption 

in InGaN/GaN quantum zigzag heterostructures with polarization-induced 
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electric fields” by E. Sari, T. Ozel, A. Koc, J.-W. Ju, H.-K. Ahn, I.-H. Lee, J.-H. 

Baek, and H. V. Demir, Applied Physics Letters 92, 201105 (2008). Reproduced 

with permission from American Institute of Physics. 

 

Here, we present a comparative study of InGaN /GaN quantum zigzag structures 

embedded in p-i-n diode architecture that exhibit blue-shifting electroabsorption 

in the blue when an electric field is externally applied to compensate for the 

polarization-induced electric field across the wells. With the polarization 

breaking their symmetry, the same InGaN/GaN quantum structures redshift their 

absorption edge when the external field is applied in the same direction as the 

well polarization. Both computationally and experimentally, we investigate the 

effects of polarization on electroabsorption by varying compositional content and 

structural parameters and demonstrate that electroabsorption grows stronger with 

weaker polarization in these multiple quantum well (MQW) modulators.  

An important, distinctive property of III-Nitride quantum heterostructures is the 

formation of strong polarization when they are grown on the c-plane of their 

wurtzite crystal structure. Due to the discontinuity of polarization with abrupt 

compositional changes at the heterointerfaces of such III-Nitride MQWs, large 

electrostatic fields in alternating directions are induced across the well / barrier 

pairs. As a result, the band structure of these MQWs yields zigzag potential 

profiles in conduction and valence bands instead of conventional square potential 

profiles [18]. This substantially alters electric field dependence of optical 

absorption in III-Nitride MQW structures [57].  

Electroabsorption measurements are also essentially informative to understand 

the underlying physics behind such polar III-Nitride structures. We previously 

demonstrated a quantum electroabsorption modulator based on InGaN/GaN 

quantum zigzag structures operating in the blue [57] and in the near-ultraviolet 

[68]. In the previous work of our group and others, however, the effect of 

polarization on electroabsorption in polar InGaN / GaN has not been 

comparatively studied or systematically investigated. 
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In this study, we present the design, growth, fabrication, experimental 

characterization, and theoretical analysis of InGaN/GaN quantum zigzag 

structures with different levels of polarization-induced electrostatic fields that are 

set by controlling the alloy content and well-to-barrier width ratio. We 

comparatively study the effects of polarization-induced electrostatic field on the 

performance of our quantum electroabsorption modulators and develop a better 

understanding to design devices for stronger electroabsorption. 

For our comparative study, we designed three sets of InGaN/GaN quantum 

structures incorporated in a p-i-n diode architecture. Among these sets, the 

structural parameters of their active regions were carefully selected for 

comparison purposes. These structural parameters include InN concentrations in 

the quantum well regions and well-to-barrier width ratios. We used a generic p-i-

n epitaxial design for these three sets of samples (samples A, B, and C). In our 

design, we included five quantum well/barrier pairs for all of the structures. 

Sample A was designed to have an active MQW layer of 2.5 nm/7.5 nm 

In0.15Ga0.85N/GaN quantum well/ barrier structures. Sample B has the same 

structure with 3nm/4nm In0.15Ga0.85N/GaN and Sample C with 3nm/4nm 

In0.12Ga0.88N/GaN. These epistructures were designed to study only the 

polarization effect varied through these two parameters. Using the design and 

material parameters of GaN and InN, we calculate built-in electrostatic fields 

inside the well and barrier layers of samples A, B, and C. Using the equation that 

relates material and design parameters to polarization-induced electric field 

across the wells, we set Ewell to be -383 V/µm for sample A, -300 V/µm for 

sample B, and -238 V/µm for sample C, while those across the barriers were set 

to be 127 V/µm for sample A, 220 V/µm for sample B, and 179 V/µm for sample 

C.  

We grew these epitaxial structures using an MOCVD system on c-plane sapphire 

substrates. We used exactly the same conditions for the epitaxial growth of all 

samples except for their active layers. We tuned InN incorporation into the MQW 

layers by changing the growth temperature and their layer thickness by changing 
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the growth time of each layer. Detailed growth conditions can be found 

elsewhere. Following the epitaxial growth, we fabricated diode mesas with 

electrodes using reactive ion etching, p and n-contact metallization, and annealing 

steps. 

The three samples in this work were all fabricated using our standard 

semiconductor processes and then characterized under the same conditions. We 

performed photoluminescence (PL) and double crystal X-ray diffraction 

(DCXRD) measurements to verify the growth of the desired quantum structures 

with the intended alloy content and high crystal quality. PL spectra for these 

samples were obtained using a He–Cd laser at an excitation wavelength of 325 

nm. PL peaks at 450, 450, and 425 nm for samples A, B, and C, respectively, 

verifing the growth of the InGaN quantum wells within 1.5% of the desired InN 

ratio. 

Together with the experimental verification of the structural parameters and the 

calculated built-in electrostatic fields, we obtained full band diagram of the 

grown InGaN/GaN quantum zigzag structures, with a potential profile tilting in 

one direction in the wells and in the other direction in the barriers. We developed 

a transfer matrix method for the numerical analysis of these quantum structures. 

Using our computational tool, we computed ground state electron and heavy hole 

eigenstates and energy eigenvalues along with the squared overlap integral of 

11 he proportional to the absorption strength under different levels of external 

electric field. Traditional quantum-confined Stark effect yields only red shift, 

independent of the direction of the applied electric field.  

For all of our samples (samples A, B, and C) with the increasing external electric 

field, when it is applied in the opposite direction of the polarization-induced 

electric field across the wells, we computationally prove that the absorption edge 

blueshifts. In this case, the external field compensates for the internal field in the 

wells. However, when the external field is applied in the same direction as the 

polarization in the wells, the same InGaN/GaN quantum structures redshift their 

absorption edge. The co-observation of these blue and red shifts in the 
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electroabsorption of the same quantum structures is impossible in nonpolar 

quantum heterostructures, which are completely indifferent to the direction of the 

applied field. In the case of such polar III-N quantum heterostructures, the 

polarization breaks their symmetry and thus, the direction of the applied field 

matters. Our theoretical results predict absorption coefficient changes with the 

ratios of 0.4 around λ=450 nm for sample A, 0.53 around λ=440 nm for sample 

B, and 1.0 around λ=420 nm for sample C with a field swing of 40 V/μm. 

Therefore, sample C, which features the weakest polarization, is theoretically 

predicted to exhibit the strongest electroabsorption. 

In electroabsorption measurements, by chopping the incident optical beam and 

monitoring the photocurrent with a lock-in amplifier at the chopping frequency, 

we observe a blue shift of the absorption edge with the application of reverse 

bias, which generates an electric field opposite to the polarization induced 

electrostatic fields in the wells. Figures 4.1–4.3 show optical absorption spectra 

around the corresponding operating wavelengths for each of the sample (samples 

A, B, and C, respectively). Additionally, in insets (a) of Figures 4.1–4.3, we 

present the absorption coefficient change with respect to the 0 V absorption curve 

for each sample. 

Our analysis of absorption coefficient change reveals that we obtain a maximum 

absorption coefficient change of 288 cm
-1

 at λ=440 nm for sample A, 462 cm
-1

 at 

λ=434 nm for sample B, and 555 cm
-1

 at λ=422 nm for sample C, which are all 

obtained by a 0–4 V swing (for a field change of 40 V/μm). These correspond to 

the relative ratios of 0.52 at 440 nm for sample A, 0.83 at 434 nm for sample B, 

and 1.0 at 422 nm for sample C.  
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Figure 4. 1 Electroabsorption spectra of sample A under different bias voltages. The inset 

(a) shows the absorption coefficient change for sample A with respect to the 0 V absorption 

curve and the inset (b) depicts the absorption spectra of sample A for 0, −1, and +1 V bias 

voltages. After [19]. 

 

Figure 4. 2 Electroabsorption spectra of sample B under different bias voltages. The inset 

(a) shows the absorption coefficient change for sample B with respect to the 0 V absorption 

curve and the inset (b) depicts the absorption spectra of sample B for 0, −1, and +1 V bias 

voltages. After [19] 
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Figure 4. 3 Electroabsorption spectra of sample C under different bias voltages. The inset 

(a) shows the absorption coefficient change for sample C with respect to the 0 V absorption 

curve and the inset (b) depicts the absorption spectra of sample C for 0, −1, and +1 V bias 

voltages. After [19]. 

 

These experimental results are in good agreement with our computational results. 

Experimentally, sample C, which has the weakest polarization, exhibits the 

largest absorption change, which is in agreement with the theoretical prediction. 

The electroabsorption improves with decreasing built-in electrostatic field inside 

the wells. Additionally, insets (b) of the respective electroabsorption figures of 

samples A–C (Figures 4.1–4.3) also present the absorption curves under 0 V, -1 

V (in reverse bias), and 1 V (in forward bias). While the current levels in the 

forward bias at 1 V and in the reverse bias at -1 V are similar, the electric field 

generated at 1 V and -1 V is completely opposite in direction. This change in the 

electric field direction then reverses the shift of the absorption edge from blue 

shift to red shift. This behavior is unique to polar quantum heterostructures, 

which is both predicted by our theoretical computations and verified by our 

experimental characterization. 
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4.2 Opposite electroabsorption behavior in polar 

vs. nonpolar InGaN/GaN quantum structures 
 

This section is based on the publication “Opposite carrier dynamics and optical 

absorption characteristics under external electric field in nonpolar vs. polar 

InGaN/GaN based quantum heterostructures," by E. Sari, S. Nizamoğlu, J.-H. 

Choi, S.-J. Lee, K.-H. Baik, I.-H. Lee, J.-H. Baek, S.-M. Hwang, and H. V. 

Demir, Optics Express 19, 5442 (2011). Reproduced with permission from 

Optical Society of America. 

 

As mentioned in earlier chapters, III-Nitride quantum heterostructure epitaxy 

(e.g., quantum wells/barriers) exhibits high polarization-induced electrostatic 

fields, due to the discontinuity of their net polarization fields (i.e., the vector sum 

of their spontaneous and piezoelectric components) when grown in the so-called 

“polar” direction on c-plane. In such polar heterostructures, the polarization-

induced electric field inside the well region pulls the bound electron and hole in 

opposite directions. This reduces their wavefunction overlap and in turn reduces 

their oscillator strength and thus their radiative recombination rate. This makes 

the polar III-Nitrides less favorable for light generation in device applications 

including light-emitting diodes and laser diodes. Therefore, it is highly desired to 

obtain GaN epitaxy on other planes of its unit cell, where there is no polarization 

discontinuity in quantum well structures. This is, however, technically 

challenging.  

Such polarization-free (nonpolar) planes are m- and a-planes of the GaN‟s 

wurtzite crystal [27].  To date, many techniques have previously been proposed 

for obtaining high-quality nonpolar GaN crystals [22]. Also, LEDs [24], [27] and 

LDs [76]–[78] have been demonstrated using these techniques. Very few of these 

prior works involved a feasible and efficient process. In a very recent work, 

Hwang et al. [26] made it possible to grow a-plane GaN on r-plane sapphire by 

reducing defect densities through a high temperature nucleation layer process and 

demonstrated working light-emitting diodes incorporating these nonpolar 



 

59 

InGaN/GaN quantum structures. Metal-organic chemical vapor deposition 

(MOCVD) technique was used, while avoiding the need for growing on a very 

thick (>10 μm) GaN template, different than some of the previous studies [24].  

The quantum heterostructures studied in this work were epitaxially grown on r-

plane and c-plane sapphire substrates, both using MOCVD as described 

elsewhere, previously [1], [26]. They were incorporated in a p-i-n diode 

architecture, and their n-type layer was on the bottom while their p-type layer was 

on the top. These epi-structures included two 7 nm thick In0.20Ga0.80N quantum 

wells separated by a 12 nm GaN barrier in the nonpolar case and five 2.5 nm 

thick In0.18Ga0.82N quantum wells separated by 7.5 nm GaN barriers in the polar 

case. Although these multi-quantum well structures are slightly different, they are 

essentially the same type of uncoupled quantum structures, with their peak 

photoluminescence emission wavelengths close to each other, both exhibiting 

strong emission around λ~500 nm. Moreover, for both structures, the electron 

concentrations throughout the active (multiple quantum well) region were 

approximately 4x10
17

 cm
-3

. Subsequent to their epitaxial growth, the devices 

were fabricated in a clean room environment using the same standard 

lithography, reactive ion etching and metal evaporation/sputtering steps. The 

devices were then diced and wire-bonded to metal can packages for compact and 

reproducible device characterization.  

The photoluminescence spectra of our quantum structure samples were measured 

using a He-Cd laser to pump at an excitation wavelength of 325 nm and a 

spectrometer to collect the emission signal. From these PL spectra, using 

Gaussian fitting procedure, a peak emission wavelength at 514 nm with a full 

width at half maximum (FWHM) of 43.1 nm for the nonpolar heterostructure on 

a-plane and a peak wavelength of 491 nm with a FWHM of 37.5 nm for the polar 

heterostructure on c-plane were obtained. Their measured photoluminescence and 

electroluminescence spectra are shown in Figure 4.4 and 4.5, respectively. 
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Figure 4. 4 Normalized photoluminescence spectra of our InGaN/GaN based polar and 

nonpolar quantum heterostructures at room temperature. After [79]. 

 

Figure 4. 5 Normalized electroluminescence spectra of our devices based on polar and 

nonpolar InGaN/GaN quantum heterostructures, both measured at a constant driving 

current of 20 mA at room temperature. After [79]. 

 

We also comparatively investigated the external field dependent optical 

absorption in our polar and nonpolar InGaN/GaN based devices through 

photocurrent measurements. We measured the photocurrent both in our polar and 

nonpolar devices around the wavelength of their absorption edges at different 

reverse bias levels at room temperature. Here shown in a semilog plot of the 

photocurrent spectra in Figure 4.6, the polar device exhibits a blue-shifting 



 

61 

absorption edge with the applied field due to reversed quantum-confined Stark 

effect. 

 

Figure 4. 6 Photocurrent spectra of our device based on polar InGaN/GaN quantum 

heterostructures. The arrow indicates the blue shift of the absorption edge with the 

increasing reverse bias. After [79]. 

 

In the opposite manner, for the nonpolar structure, we observe a red-shifting trend 

of the absorption edge, as a result of quantum-confined Stark effect [42] that 

manifests itself as in other III-V systems such as InP/GaAs [42]–[45] as in Figure 

4.7.  

 

Figure 4. 7 Photocurrent spectra of our device based on nonpolar InGaN/GaN quantum 

heterostructures. The arrow indicates the red shift of the absorption edge with the 

increasing reverse bias. After [79]. 
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Due to the narrower bandgap of the quantum well material, here for the nonpolar 

quantum structures the absorption edge is at longer wavelengths, around λ~500 

nm. 

In summary, we presented the opposite external electric field dependence of 

optical absorption characteristics in c-plane grown polar vs. a-plane grown 

nonpolar InGaN/GaN quantum heterostructures. We showed the blue shift of the 

absorption edge in polar quantum heterostructures and the red shift of the 

absorption edge in nonpolar heterostructures. We explained this opposite 

behavior of electroabsorption in the context of quantum-confined Stark effect. 

4.3 Summary  

In summary, we presented our works on electroabsorption in InGaN/GaN 

quantum structures throughout this chapter. We started with our comparative 

study on electroabsorption in InGaN/GaN quantum structures with three different 

structural parameters, to set Ewell values ranging from -383 V/µm to -238 V/µm. 

Within the range of these field strengths, we studied its effect on the 

electroabsorption performance. Our TMM based computational analyses and 

experimental results were found to be in agreement and show that the 

electroabsorption performance is superior in the structure with the lowest set Ewell 

strength.  

In the second part of this chapter, we examined the opposite electroabsorption 

behavior of polar and nonpolar InGaN/GaN quantum structures. We showed that 

absorption edge of polar structures blue shift, whereas that of the nonpolar 

structures red shift. Quantum-confined Stark effect manifests itself in opposite 

ways in polar and nonpolar InGaN/GaN quantum structures.  
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Chapter 5  

 

 

Electric field dependent carrier 

dynamics in InGaN/GaN quantum 

structures 

 

In this chapter, we present our results on carrier dynamics in InGaN/GaN 

quantum heterostructures in response to the externally applied electric fields. We 

first investigate the external electric field dependence of radiative recombination 

lifetimes. We continue with our work on carrier dynamics in polar vs. nonpolar 

InGaN/GaN quantum structures and show that they behave in an opposite manner 

in response to the external electric field in a way consistent with Fermi‟s golden 

rule.   

5.1 Electric field dependent radiative carrier 

dynamics in InGaN/GaN quantum structures 
 

This section is based on the publication “Electric field dependent radiative decay 

kinetics of polar InGaN/GaN quantum heterostructures at low fields,” E. Sari, S. 
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Nizamoğlu, I-H. Lee, J-H. Baek and H. V. Demir, Applied Physics Letters 94, 

211107 (2009). Reproduced with permission from American Institute of Physics. 

Here, in this part of the thesis, we present our systematic investigation on 

determining relative changes in radiative recombination lifetimes of polar 

InGaN/GaN quantum heterostructures in response to the applied electric field. In 

our study, the external electric field levels that we applied across the quantum 

structures is in opposite direction to and one order of magnitude less than the 

calculated polarization-induced built-in electric field inside the quantum well 

layers (Ewell = 190 V/µm). The maximum applied electric field is limited by the 

photoluminescence (PL) optical output power levels that are detectable in our 

experimental setup. On the other hand, the applied field is in the same direction 

and of the same order of magnitude as the polarization field in the barrier layers 

(Ebarrier = 70 V/µm). At these external field levels, our experimental results reveal 

a decrease in internal quantum efficiencies (QEs), carrier lifetimes, and radiative 

recombination lifetimes with increasing field, as verified consistently with steady 

state and transient PL measurements of these polar quantum structures.  

For our investigation, we grew an InGaN/GaN quantum heterostructure 

embedded in a p-i-n diode architecture on c-plane sapphire substrate by using 

metal-organic chemical vapor deposition. The epitaxial design was developed for 

a light-emitting diode operating at 448 nm. Its active layers included five periods 

of 2.5 nm thick In0.15Ga0.85N quantum well and 7.5 nm thick GaN barrier layers 

grown in the intrinsic region of the epitaxy. Surrounding the intrinsic layer are the 

n-type (Si:GaN) and p-type (Mg:GaN) layers grown with their targeted doping 

concentrations of 5×10
18

 and 8×10
17

 cm
-3

 and thicknesses of 2 and 0.2 µm, 

respectively. This design allows for partially compensating for the polarization-

induced electrostatic field inside the well layers in reverse bias operation. For the 

application of external electric field, standard mesa and electrode fabrication 

cycles were implemented. Reactive ion etching and metallization steps were 

followed by dicing and transistor outline (TO) packaging of 300×300 µm
2
 

devices. For Ohmic contact formation to n-type (bottom) layer 10/200 nm Ti/Al 
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was used, whereas for p-type (top) layer, a 100 nm thick indium tin oxide (ITO) 

was used to obtain optically semitransparent windows. These ITO based 

semitransparent contacts enabled a uniform application of the electric field across 

the active layers while maintaining a low optical loss for the incident light due to 

its low background absorption. On top of ITO, a 10/100 nm Ti/Au layers were 

further used to make strong Au wire bonds to the TO can.  

We performed time resolved PL measurements (using PicoQuant PicoHarp 300) 

at room temperature to determine the electric field dependence of decay kinetics. 

The optical apparatus consists of a commercially available InGaN/GaN based 

near-ultraviolet (375 nm) laser diode used in pulsed mode operation, a 

monochromator, a photomultiplier tube, a high speed photodetector, and 

controller electronics as depicted in Figure 5.1 below. 

 

Figure 5. 1 FluoTime 200 TRPL setup at our Lab. 

 

In Figure 5.2 we show the TRPL spectra of our polar InGaN/GaN quantum 

structure under different levels of externally applied electric field. Here we are 

interested in the photoluminescence decay of photons whose energies correspond 

to the transition energy between the electron and hole ground states. This photon 
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energy is 2.76 eV, corresponding to 448 nm, the peak electroluminescence 

wavelength.  

These experimental photoluminescence decays are numerically further analyzed 

by deconvolving the input pulse (instrumental response function) and using three 

best fitting exponential decays in the fluorescence decay analysis software of 

Pico-Quant (FLUOFIT). This numerical curve fitting procedure leads to the 

retrieval of intensity-averaged lifetime for our detailed understanding of carrier 

lifetime (τ) behavior, with a chi-square (χ
2
) error 1.0±0.05 for each PL decay at a 

particular field level. In these analyses, the levels of χ
2
 error were sufficiently 

close to unity to achieve accurate enough representation using triple-exponential 

decays, each with a single lifetime. In the inset of Fig. 4.4, we present the change 

of carrier lifetime under 0–1.25 V reverse bias voltages, corresponding to 0–12.5 

V/μm electric field swings. The strong electric field dependent decrease of carrier 

lifetime is in agreement with the previous work of Jho et al. [80] on carrier 

dynamics. The rate of change of carrier lifetime monotonically decreases with 

increasing field from 0.91 ns/V/µm (for 0–2.5 V/µm field swings) to 0.23 ns/V 

/µm (for 10–12.5 V/µm field swings).  

 

Figure 5. 2 TRPL decay curves of our polar InGaN/GaN quantum heterostructure under 

different electric field levels. The inset shows the carrier lifetime vs. applied electric field as 

a result of the TRPL analysis. After [73]. 
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We believe such strong dependence of carrier lifetime on the external electric 

field originates from its nonradiative component for the most part, due to 

relatively low QE ( < 10%). 

The radiative component (τr) of the overall PL decay is related to the QE as given 

in Eq. (5.1). In addition to the carrier lifetime measurements, to determine the 

electric field dependence of τr, we performed steady state PL measurements. This 

PL characterization was carried out on the same device, under the same external 

electric field levels, using a continuous-wave He–Cd laser as the excitation 

source operating at a wavelength of 325 nm and collected via a UV-visible 

photodetector placed after a high resolution monochromator. Here, since we 

consider only relative QEs, it is important to make sure that the experimental 

conditions are identical for different external electric field levels. Also, as 

apparent from the constant fringe periods in the PL spectra, the refractive index 

change due to electro-optic effect is insignificant at the applied electric field 

levels, making it possible to ignore the effect of extraction efficiency on relative 

QEs in our analyses. Also, since the external electric field builds up across the 

intrinsic (i) region of our epitaxial structure, it is only the i-region where optical 

processes are affected by the applied electric field in our experiments. Hence, 

optical absorption taking place in other layers is assumed to be unaffected from 

the external field change in our analyses.  

 

 

(4.1) 

The electric field dependent steady state PL measurement results are given in 

Figure 5.3. The PL spectra exhibit narrowed linewidths particularly over the 

longer wavelength part of the spectra shifting with the applied field due to partial 

compensation of polarization-induced built-in electric field inside the well layers. 

The normalized PL spectra depicted in Figure 5.4 clearly show this blueshift at 

the longer wavelengths as a result of the reversed quantum-confined Stark effect. 
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This is an apparent sign that electric field dependence of transition energy 

between the ground state electron and hole wavefunctions 11 hHe  is stronger 

than those between higher order states. From the definition of QE given in Eq. 

(5.1), we understand that the QE decreases with decreasing number of emitted 

photons (Ne) in response to increasing external electric field, assuming that the 

application of electric field does not change the number of absorbed photons (Na). 

This condition is valid at such short excitation wavelengths in the ultraviolet for 

the low external electric field levels that we use in our characterization. The inset 

of Figure 5.3 shows the electric field dependence of PL intensity integrated over 

440–470 nm corresponding to 2.73±0.09 eV. This energy range we considered in 

this partial integration spans the transition energy of ground state electron and 

hole for all electric field values. This shows the relative QE behavior as a 

function of applied field.  

 

Figure 5. 3 Steady-state PL spectra of our polar InGaN/GaN quantum heterostructure 

under different electric field levels. The integrated PL intensity for the corresponding 

electric field level is presented in the inset. After [73]. 
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Figure 5. 4 Normalized PL spectra of our polar InGaN/GaN quantum heterostructure 

under electric field. We observe a narrowing of the spectra along with a blueshift in the 

longer wavelength region, with a zoom-in presented in the inset for clarity. After [73]. 

 

From the relative QE and carrier lifetime measurements, we can deduce relative 

radiative recombination lifetimes. As shown in Fig. 5.4, τr tends to decrease with 

increasing external electric field. The decrease of radiative recombination lifetime 

is explained with the overlap integral of electron and hole ground states 

(calculated using transfer matrix method) that increases with increasing external 

electric field as given for two of our cases in the inset of Fig. 5.5. This is a result 

of the reversed quantum-confined Stark effect and Fermi‟s golden rule [39]. Also 

in Fig. 5.5, we compare the normalized reciprocal of squared overlap integral of 

calculated electron and hole ground state wavefunctions with our experimental 

relative τr results, both of which show the same trend of change in response to the 

applied field.  
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Figure 5. 5 Relative radiative recombination lifetime extracted from TRPL and PL 

measurements. The inset shows energy band diagrams corresponding electron and hole 

ground state wavefunctions for the case of 0 V/μm and 12.5 V/μm externally applied 

electric field. After [73]. 

 

In summary, we presented radiative decay kinetics of polar InGaN/GaN quantum 

heterostructures and its electric field dependence at low applied fields. Our 

experimental measurements and numerical analyses show that the carrier 

lifetimes and radiative recombination lifetimes both decrease with increasing 

external electric field. However, the radiative component demonstrates 

comparatively a weaker dependence on the electric field, while the overall PL 

kinetics exhibits stronger electric field dependence. As a result of our study, we 

qualitatively demonstrate and verify a fundamental physics concept, Fermi‟s 

golden rule, to be dependent on external electric field in a polar InGaN/GaN 

quantum heterostructure. 

5.2 Opposite carrier dynamics behavior in polar 

vs. nonpolar InGaN/GaN 
 

This section is based on the publication “Opposite carrier dynamics and optical 

absorption characteristics under external electric field in nonpolar vs. polar 
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InGaN/GaN based quantum heterostructures," by E. Sari, S. Nizamoğlu, J.-H. 

Choi, S.-J. Lee, K.-H. Baik, I.-H. Lee, J.-H. Baek, S.-M. Hwang, and H. V. 

Demir, Optics Express 19, 5442 (2011). Reproduced with permission from 

Optical Society of America. 

 

In the past, several physically important phenomena were investigated in polar 

and nonpolar epitaxial materials, e.g., through time-resolved photoluminescence 

[81], cathodoluminescence [82] and differential transmission and reflection 

measurements [83]. Especially related with our current investigation, electric 

field dependent optical absorption and time- and spectrum-resolved 

photoluminescence studies were performed in polar structures by our group [73] 

and others [80]. However, these analyses, which are fundamentally important for 

the understanding of operation and performance of various devices, have not been 

studied in such nonpolar GaN–based quantum heterostructures.  Also, a 

comparative study on their characteristics between nonpolar and polar 

InGaN/GaN quantum heterostructure epitaxy has not been reported. 

In our previous study, we investigated carrier lifetimes in polar InGaN/GaN 

quantum structures under different levels of external electric field [73]. The 

carrier lifetimes were then shown to decrease strongly with increasing reverse 

bias in these polar structures [73], also consistent with the previous studies [80]. 

There are at least two reasons behind this observation: One of them is that the 

reverse bias generates electric field in the opposite direction to polarization-

induced field inside the well layer, given that the growth technique is MOCVD 

and the device architecture is p-i-n, with the p-side on the top. This increasing 

reverse bias directly shortens radiative component of the carrier lifetime through 

the increased squared-overlap-integral of electron and hole wavefunctions by 

Fermi‟s golden rule. The other reason is the dissociation of excitons through 

carrier drift, leading to shortened nonradiative component of the carrier lifetime. 

In an earlier study, we also showed that absorption spectra shift with increasing 

external electric field in such polar InGaN/GaN quantum heterostructures and 

demonstrated reversed quantum-confined Stark effect [57]. The physical 
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explanation for this phenomenon is that the energy difference between the 

electron and hole ground states at which the vertical transition takes place 

increases with the external electric field that is in the opposite direction to the 

built-in polarization-induced electrostatic fields inside the well layers. An in-

house developed quantum mechanics modeling tool based on transfer matrix 

method was further used for the physical understanding and simulation of these 

findings.  

In the present work, different than prior works of our group and others, we 

present a study on the field dependent carrier dynamics of InGaN/GaN quantum 

heterostructures in nonpolar crystal orientation on a-plane to compare against 

those in polar orientation on c-plane. In both cases, the quantum structures are 

housed in the intrinsic region of a p-i-n diode, with the p-region on the top. Using 

these comparative sets of nonpolar vs. polar quantum heterostructures, we 

observe surprisingly a completely opposite behavior in the external electric field 

dependence of their carrier lifetimes in their respective reverse and forward biases 

in time-resolved photoluminescence measurements and respective numerical 

analyses. Our results for the polar, c-plane grown devices are in agreement with 

the previously reported results, in which decreased carrier lifetime [80] was 

observed with increasing reverse bias voltages.  

The quantum heterostructures studied in this part were the same samples as in 

Section 4.3, where we explained the opposite electroabsorption behavior in polar 

vs. nonpolar InGaN / GaN quantum structures. The carrier lifetimes (τ) of these 

quantum structures were measured at room temperature using a commercially 

available time-resolved photoluminescence setup (from PicoQuant GmbH) that 

contains an InGaN/AlGaN based pump diode laser, emitting at 375 nm and 

operated in pulsed mode. The experimental conditions were kept the same for 

both devices. Average and peak intensities of laser excitation were kept at low 

values, at around 3 and 6 W/cm
2
, respectively, to avoid band filling effect and 

thus evolution of higher energy states. Moreover, at such laser excitation intensity 

levels, with the given carrier densities in the active region, the effect of Auger 
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recombination on the carrier lifetimes is insignificant. The measurement setup 

also consists of a monochromator, a photomultiplier tube and controller 

electronics. We set the passband center wavelength of the monochromator to 500 

nm for both sets of measurements. This wavelength corresponds to a strong 

emission wavelength for both structures. 

In Fig. 5.6, we present the photoluminescence decay time traces of the polar 

heteroepitaxy on c-plane under different levels of external bias. As a general 

trend, the photoluminescence first starts to decay faster with stronger electric 

field as the reverse bias is increased, but then the reverse bias voltages greater 

than 1.00 V show a diminishing effect. Such a photoluminescence decay behavior 

modified with the external field application is in conformity with the observations 

in the previous works of our group [73] and Jho et al. [80] (for the reasons 

discussed previously).  In forward bias, however, the polar epi-structure‟s decay 

profile slows down as the voltage is increased to 0.25 V, and then the subsequent 

decay profiles exhibit an inflection point at a time delay of around 50 ns, seen as 

an increased time constant of the fast component but as a decrease of the overall 

transient behavior. The increase of fast (nonradiative) component time constant 

can be explained by the decreased density of the available trap states near the 

quantum well region, whereas the decrease of the slow (radiative) component 

time constant, and thus the overall lifetime, can be attributed to the increased 

density of electrons and holes in the same region through formation of quasi-

Fermi levels. For forward and reverse bias voltages of 1.00-2.00 V, we observe 

no significant change in their decay profiles. 
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Figure 5. 6 Room temperature time-resolved photoluminescence traces and numerical fits 

of our device with polar InGaN/GaN quantum heterostructures under different bias levels. 

After [79]. 

 

Similarly, Figure 5.7 shows the photoluminescence decay time traces of nonpolar 

epitaxy on a-plane with respect to different levels of external electric field. For 

this set of epi-structure, the electric field dependence is observed to be in the 

opposite way, where the photoluminescence decays become slower as the 

external electric field is increased in reverse bias. This results from the reduced 

overlap integral of electron and hole wavefunctions in the initially nearly square 

potential well in response to an externally applied electric field. Nevertheless, 

with increasing reverse bias voltages, the overall time constant of nonradiative 

component does not decrease as much at low levels of the external electric fields. 

The nonpolar structure‟s time-resolved photoluminescence profiles also exhibit 

faster decays, again opposite to the polar case, as the forward bias voltage is 

increased (where the lifetimes were measured down to the measurement limit of 

our optical experimental setup). Again, at such low voltage levels of forward 

bias, the decreased lifetimes can be explained through compensation of built-in 

voltage with the external electric field and at some field level, forming an almost 

perfectly square potential well, which would yield the shortest lifetime. 
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Figure 5. 7 Room temperature time-resolved photoluminescence (RT-TRPL) traces and 

numerical fits of our device with nonpolar InGaN/GaN quantum heterostructures under 

different bias levels. After [79]. 

 

In our time-resolved analyses, we perform deconvolution of impulse response 

function (IRF) from the signal and apply a biexponential numerical fitting 

procedure with low error (χ2 close to unity) for all decay profiles. We then extract 

carrier lifetimes (τ) by averaging the time constants, τ1 and τ2, with their 

respective total intensities, i.e., their weights. Thus, the time constants we obtain 

in this procedure contain information on both slow and fast components of the 

overall decay profile. The corresponding numerical fits were provided in the 

decays. From these numerical analyses, we extract the carrier lifetimes as a 

function of external electric field for both structures as depicted in Fig. 5.8. These 

analysis results also reveal the opposite behavior in nonpolar vs. polar quantum 

heterostructures in terms of carrier lifetimes under electric field. Here, we present 

the lifetimes as a function of externally applied electric fields, rather than 

voltages, in order to make a meaningful comparison between the two sets of data. 

Hence, for both structures, we assume that the total voltage drop across the 

devices is in the depletion regions. We further assume that the depletion widths 
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are 50 nm, and that they do not change by such low voltage application. With 

these approximations, we do not lose any generality for our points discussed in 

here. This opposite behavior could be qualitatively explained by quantum-

confined Stark effect and Fermi‟s golden rule considering the increased vs. 

decreased squared-overlap integrals of electron and hole wavefunctions (under 

the assumption that the nonradiative components of the decays would not change 

with the external electric field within the range of interest) [42], [57], [73]. 

 

 

Figure 5. 8 Carrier lifetime (τ) vs. external electric field (E) for the polar and nonpolar 

devices. Note that here E is taken to be positive for the forward bias and negative for the 

reverse bias. After [79]. 

 

In summary, we presented the opposite external electric field dependence of 

carrier lifetimes in c-plane grown polar vs. a-plane grown nonpolar InGaN/GaN 

quantum heterostructures. We showed using time-resolved photoluminescence 

measurements that carrier lifetimes decrease with increasing external electric 

fields in polar quantum epi-structures, whereas the opposite occurs in nonpolar 

quantum epi-structures. We explained these opposite behaviors in the context of 

Fermi‟s golden rule. 
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5.3 Summary 
 

In this chapter, we presented radiative decay kinetics of InGaN/GaN quantum 

structures grown on their polar c-planes. Through steady state and time-resolved 

PL measurements, we identified the external electric field dependence of 

radiative recombination lifetime, τr. We found out that, in our polar structure, 

radiative recombination lifetime, as well as carrier lifetime and quantum 

efficiency decrease with increasing electric field.  

We further investigated the external electric field dependence of carrier lifetimes 

in polar vs. nonpolar quantum structures with a similar InGaN/GaN quantum 

structure profile. Through time-resolved PL measurements and subsequent 

analyses, we showed that carrier lifetimes, τ, decrease in the polar structure and 

increase in the nonpolar structure.  

Our results in this chapter were explained in the context of a fundamental physics 

phenomenon, Fermi‟s golden rule.  

 



 

78 

 

 

 

Chapter 6 

 

Electron Blocking Layers for InGaN / 

GaN based LEDs with Low Droop 
 

In this chapter, we present our electron blocking layer designs for low efficiency 

droop. First, we present our superlattice EBL design with a superlinear increase 

of AlN molar ratio. We further reduce the droop level by optimizing the MQW to 

EBL distance.  

6.1 Introduction 

As mentioned earlier, efficiency droop (a.k.a. non-thermal rollover) can be 

defined as the decrease of LED efficiency with increasing current. For the 

application areas that require high driving currents (> 350 mA for typical sized 

LEDs), such as general lighting, this effect is especially critical and need to be 

reduced through bandgap engineering in order to be applied at current LED fabs 

in the shortest term.  

Several proposals have been made in the last few years towards the reduction of 

droop effect. Some of these proposals include: using polarization-matched MQW 

structures [52], p-doped barriers [54], and different well thicknesses [84]. 

However, most of the efforts towards reducing the droop have concentrated on 

redesigning the electron blocking layer (EBL), since electron overflow from the 

active regions and hole concentration in quantum well regions are controlled 
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mostly by the EBL and conventional EBLs (with a constant AlN mole ratio) fail 

to achieve both at the same time. Until now, some of the proposed EBLs are: 

ternary InAlN [85], linear graded structure with increasing AlN mole ratio [86], 

linear graded structure with decreasing AlN mole ratio [87], and superlattice and 

graded superlattice structures [56]. Even not using an EBL at all, was proposed 

for droop reduction [88]. In all of these works, the EBL was placed right above 

the MQW structure. Here in this thesis work, we propose distance optimized 

EBLs for the reduction of efficiency droop. Our APSYS simulation results show 

that LEDs perform better when the EBL‟s distance from the MQW is optimized 

compared to the case of directly placing it on top of MQW.  

6.2 Designs, Simulations, Results and Discussions 

To illustrate our distance optimization idea, we simulated a standard LED 

comprising an EBL with a different design that was not proposed before. In our 

design, the EBL is in a superlattice form with a superlinear profile, increasing 

AlN molar ratio more than a linearly increasing AlN molar ratio, as in Figure 6.1 

below. The total thickness of the EBL is 18 nm, and GaN and AlGaN layer 

thicknesses are 1 nm. 

 

Figure 6. 1 Schematics showing the AlN molar ratio profile of our superlinear superlattice 

EBL design. 
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We also performed simulations of the LED structure by changing the distance 

between MQW and EBL layers with a GaN spacer layer with a thickness of d1 

(nm) placed in between. Moreover, we placed another GaN spacer layer with a 

thickness of d2 (nm) between EBL and p-GaN layers in order to keep the total 

thickness constant. We also performed the simulation of the structures without 

second spacer layer. For comparison, we simulated the case of no EBL as well. 

Our resulting LED efficiency vs. current curves are given in Figure 6.2 where the 

legends show the simulated combinations of d1 and d2. 

 

Figure 6. 2 LED efficiency vs. current curves of the simulated structures. Our superlinear 

superlattice EBL design outperforms the structures with no EBL. 

As seen in Figure 6.2, all of the simulated LED structures outperform the 

structure with no EBL in terms of the droop. Their performances are also very 

close to each other. In order to determine the best performing structure 

quantitatively we calculated droop levels by subtracting the maximum LED 

efficiency from the same at 400 A/cm
2
. The droop levels of our LED structures 

are given in Figure 6.3 below.  
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Figure 6. 3 Droop levels of the structures simulated. 10-0 is the best performing structure. 

As seen in Figure 6.3, there is an optimal MQW to EBL thickness of about 10 

nm. For the 0-0 case, which is conventionally applied in novel EBL studies, the 

droop level is about 2% indicating that distance optimization helps further reduce 

droop level. To understand the physics of these samples‟ performance, we 

examined electron and hole concentrations at 400 A/cm
2
 throughout some of the 

structures: 25-0, 10-0 (best performing) and 0-0 (conventional), which are given 

in Figure 6.4 and 6.5, respectively. 

 

Figure 6. 4 Electron concentrations throughout the active regions for a selected 

combination of d1-d2. 
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Figure 6. 5 Hole concentrations throughout the active regions for a selected combination of 

d1-d2. 

To explain the outperformance of the optimal structure, we looked at the electron 

leakage, hole incorporation and electron incorporation levels for these structures 

given in Figures 6.6, 6.7 and 6.8, respectively.  

 

Figure 6. 6 Electron leakage levels of the samples for the indicated of d1-d2 combinations. 
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Figure 6. 7 Hole concentration in the last quantum well layer for the given of d1-d2 

combinations. 

 

Figure 6. 8 Electron concentration in the last quantum well layer for the given of d1-d2 

combinations. 

 

Our results indicate that the sample with no spacer has the lowest level of hole 

incorporation in the last quantum well layer and the samples with 10 and 25 nm 

spacers have a very close amount of hole incorporation. On the other hand, the 

situation is the opposite for electron incorporation. Moreover, in terms of electron 
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leakage, the sample with 10 nm spacer has the lowest level of electron leakage 

compared to the sample with 25 nm spacer, explaining its superior performance.  

6.3 Summary  

In this work, we showed that droop reduction is possible by the distance 

optimization of EBL to MQW. By designing a special electron blocking layer, we 

demonstrated that there exists an optimal MQW-to-EBL distance. By comparing 

the optimal structure‟s performance and physical properties (electron leakage and 

hole incorporation) with a conventional structure (0 nm distance) and a test 

structure (25 nm distance), we explained superior performance of the optimal 

distance structure. 
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Chapter 7  

 

 

Conclusions  
 

In this thesis work, we presented our research work on the optoelectronics of 

InGaN/GaN quantum structures. We started with background information on the 

properties of III-Nitrides, optoelectronic device physics, and InGaN/GaN based 

optoelectronic device demonstrations from the literature, including our previous 

work on the electroabsorption modulators.  

We continued with dislocation density dependent electroabsorption in the 

epitaxial lateral overgrown (ELOG) InGaN/GaN quantum structures. Our 

experimental results deduced from PL, time-resolved PL, and electroabsorption 

characterization follow a similar trend with the dislocation density (by etch pit 

formation). More interestingly, we found out that electroabsorption performance 

is much more sensitive to the dislocation densities and the amount of residual 

strain released in ELOG coalescence walls, compared to the PL performance.  

We then moved on to our studies on comparative study of three 

electroabsorption modulators based on c-plane grown polar structures, tuned by 

MQW structural parameters. The EA performance of our modulator with the 

lowest built-in electrostatic field inside the well layers was superior compared to 

the other two.  



 

86 

We presented our results on the electroabsorption of polar vs. nonpolar 

InGaN/GaN quantum structures through electroabsorption measurements. With 

the blue- and red-shifting absorption profiles of polar and nonpolar structures, 

respectively, in response to increasing electric field, the two structures showed 

an opposite behavior.  

We studied external electric field dependent radiative lifetimes in polar 

InGaN/GaN quantum structures. Our results and analyses showed that carrier 

lifetimes and quantum efficiencies decrease with increasing electric field. 

Through the definition of quantum efficiency, we obtained the electric field 

dependence of radiative recombination lifetimes, which also decrease with 

increasing electric field. This is in consistency with Fermi‟s golden rule, which 

relates radiative recombination lifetimes to electron and hole wavefunction 

overlaps (oscillator strength).  

In the next part, we presented our work on the external electric field dependent 

carrier dynamics of polar and nonpolar InGaN/GaN quantum structures. 

Through time-resolved photoluminescence measurements and subsequent 

analyses, we observed that carrier lifetimes decrease with increasing electric 

field in polar structures and they increase with increasing electric field in 

nonpolar structures. This opposite behavior stems from the polarization-induced 

electrostatic fields and related physical phenomenon, including Fermi‟s golden 

rule.   

In the last part, we presented our design work on the electron blocking layers of 

blue LEDs where we showed that MQW-to-EBL distance can be optimized to 

reduce droop effect. We examined the electron and hole concentrations 

throughout our structures to improve electron and hole incorporation in the 

active layers, and decrease electron leakage out of the active layer for the 

improved device performance and reduced droop.  

We believe that the scientific contributions of this thesis to III-Nitride device 

platform will help improve the optoelectronic device performance and open up 

possibilities to be utilized in new and unprecedented applications.  
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