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September, 2012



I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Asist. Prof. Dr. Selim Aksoy (Advisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Asist. Prof. Dr. Pınar Duygulu Şahin
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ABSTRACT

IMAGE INFORMATION MINING USING SPATIAL
RELATIONSHIP CONSTRAINTS

Fatih Karakuş

M.S. in Computer Engineering

Supervisor: Asist. Prof. Dr. Selim Aksoy

September, 2012

There is a huge amount of data which is collected from the Earth observation

satellites and they are continuously sending data to Earth receiving stations day

by day. Therefore, mining of those data becomes more important for effective

processing of collected multi-spectral images. The most popular approaches for

this problem use the meta-data of the images such as geographical coordinates

etc. However, these approaches do not offer a good solution for determining

what those images contain. Some researches make a big step from the meta-data

based approaches in this area by moving the focus of the study to content based

approaches such as utilizing the region information of the sensed images.

In this thesis, we propose a novel, generic and extendable image information

mining system that uses spatial relationship constraints. In this system, we use

not only the region content, but also relationships of those regions. First, we ex-

tract the region information of the images and then extract pairwise relationship

information of those regions such as left, right, above, below, near, far and dis-

tance etc. This feature extraction process is defined as a generic process which is

independent from how the region segmentation is obtained. In addition to these,

since new features and new approaches are continuously being developed by the

image information mining researchers, extendability feature of the our system

plays a big role while we are designing our system.

In this thesis, we also propose a novel feature vector structure in which a fea-

ture vector consists of several sub-feature vectors. In the proposed feature vec-

tor structure, each sub-feature vector can be exclusively selected to be used for

search process and they can have different distance metrics to be used in compar-

isons between the same sub-feature vector of the other feature vector structures.

Therefore, the system gives ability to users to choose which information about
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the region and its pairwise relationship with other regions to be used when they

perform a search on the system. The proposed system is illustrated by using

region based retrieval scenarios on very high spatial resolution satellite images.

Keywords: Image information mining, Spatial relationships, Content based im-

age retrieval, Image databases, Image retrieval, Information retrieval, Remote

sensing.



ÖZET

UZAMSAL İLİŞKİLER KULLANILARAK GÖRÜNTÜ
BİLGİ MADENCİLİĞİ

Fatih Karakuş

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Asist. Prof. Dr. Selim Aksoy

Eylül, 2012

Yer gözlem uyduları tarafından dünyaya gönderilen büyük miktarda veri bu-

lunmaktadır ve bu uydular günden güne dünyadaki alıcı istasyonlara yeni veriler

göndermektedir. Bu nedenle, bu verilerin madenciliği toplanan multispektral

görüntülerin etkin işlenmesi için daha önemli hale gelmektedir. Bu sorun için en

popüler yaklaşımlar, bu görüntülerin coğrafi koordinatları gibi bazı üst verileri

kullanmaktadır. Ancak bu yaklaşımlar, bu görüntülerin ne içerdiğıni tespit et-

mek konusunda iyi bir çözüm sunamamaktadır. Bazı araştırmalar, bu alandaki

çalışmaların odağını, üst veri tabanlı yaklaşımlardan toplanan görüntülerin içerik

bilgisini kullanan yaklaşımlara çevirerek, bu alanda büyük bir adım teşkil etmek-

tedir. Bu araştırmalar, genellikle görüntülerdeki bölge bilgisini kullanmaktadır.

Bu tezde, bölge bilgisi ile bölgelerin birbirleri ile olan uzamsal ilişkilerini

kullanan kapsamlı ve genişletilebilir yeni bir görüntü madenciliği sistemi

önerilmektedir. Bu sistemde, sadece bölge içeriği değil, bu bölgelerin birbiri

arasındaki ilişkileri de kullanılmaktadır. Bunun için ilk olarak, görüntülerdeki

bölge bilgileri çıkartılır ve sonra bu bölgelerin sol, sağ, yukarı, aşağı, yakın, uzak

ve uzaklık gibi ikili ilişkileri çıkartılır. Bu öznitelik çıkarma işlemi, görüntünün

bölütlenmesinden bağımsız genel bir süreç olarak tanımlanmıştır. Bunlara ek

olarak, görüntü madenciliği araştırmacıları tarafından sürekli yeni öznitelikler ve

yeni yaklaşımlar geliştirilmekte olduğu için, sistemin genişletilebilir özellikte ol-

ması, sistem tasarımında büyük rol oynamıştır.

Ayrıca bu tezde, yeni bir öznitelik vektörü yapısı önerilmektedir. Bu yapıda,

herhangi bir öznitelik vektörü, alt-öznitelik vektörlerinden oluşabilmektedir.

Önerilen bu öznitelik vektörü yapısında, her alt-öznitelik vektörü arama işleminde
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kullanılmak üzere seçilebilir ve diğer öznitelik vektörü yapılarının aynı alt-

öznitelik vektörleri arasındaki karşılaştırmalarda kullanılan farklı uzaklık ölçütüne

sahip olabilir. Böylelikle, bu sistem, kullanıcılara, bölgelerin çeşitli öznitelikleri ve

bölgelerin birbirleri ile olan çeşitli ilişkilerinin özniteliklerinden hangilerini arama

yapmak için kullanacaklarını seçme olanağı sağlamaktadır. Önerilen sistem, çok

yüksek çözünürlüklü uydu görüntüleri üzerinde, bölge tabanlı erişim senaryoları

kullanılarak gösterilmiştir.

Anahtar sözcükler : Görüntü madenciliği, Uzamsal ilişkiler, İçerik tabanlı görüntü

erişimi, Görüntü veritabanları, Görüntü erişimi, Bilgi erişimi.
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Chapter 1

Introduction

1.1 Overview and Motivation

The amount of data that Earth observation satellites send to the Earth stations

has been dramatically increasing each day. Those images come with problems

such as how those images are stored, how those images are used for information

extraction etc.

Many researches are done on textual information of those images such as ge-

ographical coordinates, acquisition time, sensor type, etc. [1]. However, these

information are not enough for understanding what those images contain. To

understand the image, there is a need to process those images and extract con-

tent information of the images. Some region based approaches which are detailed

in Section 1.2 are developed by the researchers. Most of them are tile based ap-

proaches in which images are divided into fixed sized tiles and each tile considered

as a region. The rest of them uses segmentation of the image to extract region

information of the image. In addition to the region information, there is also a

meaningful information about regions such as spatial relationships of regions. To

extract this information, region pairs are constructed then spatial relationship

of those pair is extracted. In literature, we see very little work which uses this

information for mining of the images.
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Our motivation on this study is to develop a novel image mining system that

uses both region information and their pairwise spatial relationships with other

regions. Our aim is to design the system as flexible as possible which makes the

system very open to future extensions. In this study we mainly focused on the

search part of the image mining topic, we do not work on the other parts such as

classification etc.

1.2 Related Work

When we look at the image information mining literature, we can see that works

are mainly concentrated on two approaches. First one is the oldest one, text

based approach. In this approach, textual information of the image such as user

tags, gps coordinates, address information etc. are collected mainly by people and

indexed. Users perform searches on those images by using keywords. Examples

of this approach can be seen in [2, 3, 4]. This approach is not suitable for the

mining of the remotely sensed imagery because remotely sensed images do not

have enough descriptive textual information and it is impossible to tag those huge

quantities of images by human power.

The second one is the content based approach. In this approach, instead

of textual information, searches are performed on visual features such as color,

texture, shape etc. that are collected from pixels, regions, objects etc. of im-

ages. Many systems have been developed by using this approach such as QBIC

(Query By Image Content) [5], MARS (Multimedia Analysis and Retrieval Sys-

tem) [6, 7], V irage [8], FIDS (Flexible Image Database System) [9], KIM

(Knowledge Driven Information Mining) [1], SIMPLIcity (Semantics-Sensitive

Integrated Matching for Picture LIbraries) [10], V isualSEEK [11] and GeoIRIS

(Geospatial Information Retrieval and Indexing System) [12].

MARS, FIDS and V irage systems perform searches by considering color,

texture and shape features of the whole image. KIM system is a tile based

2



approach in which tiles are indexed based on their color, texture and shape in-

formation. Then they are fed to the unsupervised clustering algorithm and using

user based training, labels of those clusters are determined. According to the se-

lected query tile’s label, tiles that are in same cluster with the query tile are taken

as search results. Users can give positive and negative feedback to the system

and the system continues training itself accordingly. QBIC system retrieves im-

ages by considering color, texture and shape measures of the whole image and its

tiles. SIMPLIcity system performs searches using the semantic classification of

the regions such as textured-nontextured, graph-photograph. We do not analyze

these systems in detail because they do not consider spatial relations between

regions.

In literature, there is not much content based image mining system that uses

both regions and their spatial relations with another regions. One of them is

V isualSEEK system which performs searches using color set and location infor-

mation of region pairs. Smith and Chang [11] develop this system using segmented

images. They use a relational database to store region feature vectors. In this

system, a region feature includes color set, centroid, area, width and height of

the bounding box of the region. Color set information is extracted by converting

RGB image to HSV color mapped image and quantization of HSV values using

the method explained in [13] which generates 18 hues, 3 saturations, 3 values

and 4 grays. To perform search, users can select query regions from predefined

symbols or they can sketch the shape of them. Snapshot of the search window of

V isualSEEK can be seen in Figure 1.1.

3



Figure 1.1: Snapshot of the Search Window of the V isualSEEK System (Image

taken from [14])

Since their search algorithm is based on color, shape and location informa-

tion, user can enter those information using shown shapes and start the search

operation. After starting the search operation, the system firstly retrieves region

features from database and finds set of similar regions for each query region.

Then candidate regions are grouped and based on their location on the image

and comparison is made with the location information of the given query region
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group. Sample search results can be seen in Figure 1.2. For instance, in the first

image, user wants images that have red rectangular region on top of the image

and in the third image, user wants images that have three yellow circular region

and their relative positions are similar to the given query region group.

Figure 1.2: Sample Search Results of the V isualSEEK System (Image taken

from [14])

Another image mining system that uses both regions and their spatial relations

is GeoIRIS. Shyu et. al [12] developed this system by using both fix sized tiles

and segmented images. In tile based approach, they divide each image into 256m

x 256m tiles then they extract features of them such as spectral, texture, linear

and DMP (Derivative of Morphological Profile) features. Spectral features consist

of set of histograms of panchromatic, grayscale, RGB and near infrared data.

Texture features include uniformity of energy, entropy, homogeneity, contrast,

correlation and cluster tendency. Linear features include ratio of width and height

of a region in a tile and the angle histogram of a region in a tile. DMP feature

is a histogram of the number of objects in a tile for different structuring element

sizes.

In the object based approach, they firstly perform image segmentation using

the method DMP that is explained in [15]. Then they resize each segment mask

to 32 x 32 bits sized bitmap and store it in their database as a shape feature

of the object. In addition to shape feature, they calculate average value in each

bands of the original image with in the object mask to store spectral information

5



of the object. In addition to the object features, they have spatial relationship

features which include histogram of forces of object pairs. While calculating the

histogram of forces, they use the method that is explained in [16].

After the feature extraction process finishes, they index all features using k-

D trees to decrease search time. They generate indexes for each feature type

because they use different features in different search scenarios which include

Query By Example, Hybrid Query, Query Sketcher, Semantic Query and Object

Query. Those scenarios can be seen in the snapshot of the system in Figure 1.3.

Figure 1.3: Snapshot of the Search Window of the GeoIRIS System (Image taken

from [12])

First scenario that is seen in search window tabs is Query By Example. In this

scenario, users can select a query image from the image dataset and search for

similar images to the query image. In the Hybrid Query scenario, different than

the previous case, user can define the search center and give the radius of the

6



search area. For instance, user can search for similar images to the query image

with in 2000 meters of the Columbia College. Query Sketcher scenario is the

scenario that users can sketch shape of the regions by using the predefined symbol

library. This scenario is very similar to the search scenario of the VisualSEEK

system that we mentioned above. Another scenario in this system is Semantic

Query scenario. For this scenario, feature indexes are mined using data mining

tools and association rules are generated. Then searches are performed on those

association rules. Last scenario that GeoIRIS system has is the Object Query

scenario in which region based search is performed. For instance, users can select

an airplane from existing regions library and search for other airplane regions in

the database.

1.3 Summary of Contributions

Novelty of our system comes from several features of the system. Firstly, it

uses regions not tiles. Most of the systems in literature are said to be a region

based system but they use fixed size tiles as regions. However, our system uses

segmented images and it uses segments on segmentation masks as regions. In

addition, the system uses both region features and their spatial relationships

between other regions while performing searches.

Another novelty of our system is a novel feature vector structure. As detailed

in Section 2.4, a feature vector can consist of several sub-feature vectors. Each

sub-feature vector can be included for search or excluded from search. For in-

stance, in systems in the literature you can execute a query like “find regions

that are similar to given query region”, however, in our system you can execute a

query like “find regions whose only area feature is similar to given query region”.

More complex queries can also be defined in our system by using a region group

query mechanism. An example for a region group query can be seen in Figure 1.4.

Explanations of labeled features on the figure are given in Sections 2.2 and 2.3.
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Figure 1.4: Illustration of the Query Region Group of the Proposed System (Cir-

cles : Selected Regions, Arcs: Pairwise Relationships Between Corresponding

Regions, Boxes: Selected Sub-feature Vectors of the Corresponding Item)

In this figure, blue colored circles represent selected regions and arcs between

those circles represent pairwise relationships between selected regions. Since pair-

wise relationship features are defined in our system as one way, way of the relation

is shown as the direction of the arc. For instance, in the figure, there is a pairwise

relationship which is defined from R1 region to R2 region. Information boxes on

circles and arcs represent selected sub-feature vectors of the corresponding item

to be used during similarity calculation. Information boxes with red background

represent selected sub-feature vectors of corresponding pairwise relationships, in-

formation boxes with green background represent selected sub-feature vectors of

corresponding regions. When this query is executed, the system finds region

groups of four regions such that :
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1. One region (i.e R1’) in the region group will be similar to the R1 region

based on the Area feature.

2. One region (i.e R2’) in the region group will be similar to the R2 region

based on Mean RGB and Orientation features.

3. One region (i.e R3’) in the region group will be similar to the R3 region

based on the Bounding Box feature.

4. One region (i.e R4’) in the region group will be similar to the R4 region

based on Mean R and Centroid features.

5. R1’ and R2’ region pair has a pairwise relationship which is similar to the

pairwise relationship of the R1 and R2 region pair based on Right Of and

Below features.

6. R1’ and R3’ region pair has a pairwise relationship which is similar to

the pairwise relationship of the R1 and R3 region pair based on the Angle

feature.

7. R4’ and R1’ region pair has a pairwise relationship which is similar to the

pairwise relationship of the R4 and R1 region pair based on the Left Of

feature.

8. R2’ and R3’ region pair has a pairwise relationship which is similar to the

pairwise relationship of the R2 and R3 region pair based on Above and Near

features.

Another contribution of the study is that each sub-feature vector can have a

different distance metric. For instance, orientation feature of region features has a

“Angle” distance metric and centroid feature of region features has a “Euclidean”

distance metric. By this capability, each sub-feature group is compared with a

suitable distance metric for the domain of the sub-feature vector. In traditional

feature vector approach, there is a feature vector that consists of values in different

domains and one distance metric for all values does not give effective results.
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1.4 Organization of the Thesis

The rest of the thesis is organized as follows. In Chapter 2, we explain our feature

extraction method in detail. Firstly, we mention our image segmentation tech-

nique and give its algorithm. Then we explain our region features and extraction

mechanism of them. Finally, we give our pairwise relationship features and their

extraction method.

We start the Chapter 3 by giving general description of our image mining

system. Then we present the system by giving its sub-blocks such as dataset

generator, database populator and image mining program. Then we explain sub-

blocks of our system in detail. Firstly, dataset generator is examined and its sub-

blocks such as image segmentor, region feature extractor and pairwise relationship

feature extractor are explained. Then database populator is explained including

the Entity - Relationship diagram of our database. Finally, image mining program

is detailed with its class diagram and user interface.

In Chapter 4, we show some search results that are performed for different

scenarios on our system. We also show the steps such as selecting regions, se-

lecting features of selected regions, selecting region pairs and selecting features of

selected region pairs that are followed to generate these results.

Finally, we conclude our thesis and give some future works of our study in

Chapter 5.
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Chapter 2

Feature Extraction

There are two types of feature levels in our system. One is region features and

the other one is regions’ pairwise relationship features. For a remotely sensed

image, a region can be a building or a group of buildings, or a group of trees, or

a road, or a lake etc. To extract the region information of the image, we need to

perform image segmentation.

2.1 Image Segmentation

Since our system is based on the regions and their pairwise relations with the

other regions on the same image, we need to have multi-spectral image and its

segmentation results to extract region features and their pairwise relationship

features. There can be many ways of segmenting multi-spectral image like the

ones in [17, 18, 19, 15]. Any of those approaches can be chosen as an image

segmentor but as an example segmentation procedure we decided to use one of

them which gives reasonable segmentation results on very high resolution images.

Some basic information about it is given in this section then it is detailed in

Section 3.2.

We know from [20], visibility of a structure can be improved by considering
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scale information. Thus, we decided to use the approach that gives reasonable re-

sults on very high spatial resolution remote sensing images covering urban scenes.

This approach is used by Pesaresi and Benediktsson [15] which is based on the

derivative of the morphological profile (DMP).

In this approach, opening by reconstruction and closing by reconstruction op-

erations are used to find segments. To perform opening by reconstruction, firstly

image is eroded with a structuring element then morphological reconstruction is

performed with 4-connected neighborhood. To perform closing by reconstruction,

firstly image is dilated with a structuring element then morphological reconstruc-

tion of complement of image with complement of dilated image and 4-connected

neighborhood is performed. Finally complement of the reconstruction result is

calculated to get the final result.

Just like the basic morphological operators that are defined by Matheron and

Serra [21] such as erosion, dilation, opening and closing, finding a good struc-

turing element for opening by reconstruction and closing by reconstruction is an

important problem. According to our experiments, one fits all strategy does not

work for different types of regions. For instance, disc typed structuring element

of radius 2 gives better segmentation on buildings; on the other hand, disc typed

structuring element of radius 13 gives better segmentation on roads. To get bet-

ter segmentation result we decided to perform multiple segmentations on image

with the suitable parameters for building, road, vegetation etc. During experi-

ments, we realized that our segmentation method generates lots of small noisy

segments that affects execution time of our system dramatically so we decided

to have thresholding mechanism on the segment size such that if segment size

is less than a threshold t (like 10), we discard it at the beginning of the feature

extraction process.

Figure 2.1 shows one example of the images in our dataset. Our dataset

is generated from 8-band multi-spectral WorldView-2 images of Ankara, Turkey

with 2 m spatial resolution by splitting those images into images of 800 x 800

pixels size. Bands of the images are ordered as Coastal (400 - 450 nm), Blue (450

- 510 nm), Green (510 - 580 nm), Yellow (585 - 625 nm), Red (630 - 690 nm),
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Red Edge (705 - 745 nm), Near IR 1 (770 - 895 nm) and Near IR 2(860 - 1040

nm) bands. In Figure 2.1, only RGB bands such as 5th, 3rd and 2nd bands are

displayed. This image has different types of regions such as group of buildings,

single buildings, roads, vegetation areas etc. Therefore, this is a good candidate

for testing our segmentation logic.

Figure 2.1: Example Image for Segmentation

This RGB image is converted to the HSV image at the beginning of the

segmentation. Road segmentation routine produces the results in Figure 2.2. It

uses the morphological profile of the first band of the HSV image generated by
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the opening by reconstruction technique with disc typed structuring element of

radius 6. Figure 2.2a shows the binary mask for the roads on the example image

and Figure 2.2b shows the colored labeling results of the segments on the road

mask.

(a) Road Mask (b) Road Labels

Figure 2.2: Road Segmentation Results of the Example Image

Building segmentation routine produces the results in Figure 2.3. It uses the

derivative of morphological profile of the first band of the HSV image generated

by the closing by reconstruction technique with disc typed structuring element of

radius 2. Figure 2.3a shows the binary mask for the buildings on the image and

Figure 2.3b shows the colored labeling results of the segments on the building

mask.
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(a) Building Mask (b) Building Labels

Figure 2.3: Building Segmentation Results of the Example Image

Different than the previous segmentation routines, we use the technique Nor-

malized Difference Vegetation Index (NDVI) [22] for the vegetation segmentation

routine. NDVI performs well on vegetation segmentation and it is calculated as

NDV I =
NIR−RED
NIR +RED

(2.1)

where NIR is near infrared band of the multi-spectral image and RED is visi-

ble red band of the multi-spectral image. Our vegetation segmentation routine

produces the results in Figure 2.4 by thresholding the NDVI values of the pixels

with a parameter 0.6. Figure 2.4a shows the binary mask for the vegetations on

the image and Figure 2.4b shows the colored labeling results of the segments on

the vegetation mask.
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(a) Vegetation Mask (b) Vegetation Labels

Figure 2.4: Vegetation Segmentation Results of the Example Image

Now we have separate segmentation images and for each segmentation result,

for i = {1, 2, . . . , N} where N is the number of different segmentation routines

we have set Si which is defined as

Si = {(x, y) |Mi(x, y) = 1}

where Mi is a binary mask of the ith segmentation routine. In addition to Si’s

we also have Li matrices which contain connected component labeling results

of the Mi masks. We need to combine separate segmentation images into one

segmentation image before extraction the region information. While combining

segmentation images, we do combination on only labeled images not mask images.

Using mask images results erroneous conditions on the pixels that belong to

different segmentation masks at the same time.

Before running the combination routine, we modify label numbers of each

segmentation result as described in Algorithm 2.1 to have unique labels in all

labeled images of an image. It divides [1, R] interval into non-intersecting intervals

such that labels of each segmentation results are in the interval [minRi, maxRi]

where minRi = maxRi−1 + 1, maxRi = minRi + numOfRegionsi − 1, R is the

total number of regions in all segmentation results of an image and maxR0 = 0.
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Algorithm 2.1 Modify Labels Function of the Image Segmentation Routine

Input: L′is and S
′
is of segmentation results

Output: Updated L′is

maxLabel⇐ 0

for all Li do

for all (x, y) ∈ Si do
Li(x, y)⇐ Li(x, y) +maxLabel

end for

maxLabel⇐ max(Li)

end for

Then we run our combination routine. Pseudo-code of our algorithm to com-

bine different segmentation results and generate single segmentation label image,

can be seen in Algorithm 2.2. Starting from the empty label image, our algorithm

traverses all pixels and for each pixel, it looks all segmentation results whether

that pixel belongs to a region on only one segmentation result or not. If so,

assigns label of that pixel to the label of the pixel on that segmentation result.

Otherwise assigns label of that pixel as 0.
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Algorithm 2.2 Calculate Final Segmentation Function of the Image Segmenta-

tion Routine

Input: height (height of image : scalar),

width (width of image : scalar)

Output: segm (final segmentation result : matrix)

for x = 1→ width do

for y = 1→ height do

if f(x, y) = 1 then

segm(x, y)⇐ h(x, y)

else

segm(x, y)⇐ 0

end if

end for

end for

return segm

This algorithm uses two external functions: f defined in equation 2.2 and h

defined in Algorithm 2.3. f function is defined as

f(x, y) =


1 if (x, y) ∈

⋃
i

Si\{
⋃
i 6=j

Sj}

0 otherwise

(2.2)

This function decides whether given pixel at (x, y) location is included in only

one segmentation result or not. If so, it returns 1, otherwise returns 0. By using

this function, our combination routine assigns labels of the pixels that belong to

more than one segmentation routine as zero which means that those pixels will

not be considered as a part of any region.

Pseudo-code of the h function can be seen in Algorithm 2.3. This function

returns the label of the region that includes given pixel at location (x, y).
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Algorithm 2.3 h Function of the Image Segmentation Routine

Input: L′is and S
′
is of segmentation results,

x (x coordinate of pixel : scalar),

y (y coordinate of pixel : scalar)

Output: Final label of pixel at (x, y) : scalar

for all Si do

if (x, y) ∈ Si then
return Li(x, y)

end if

end for

return 0

Figure 2.5 shows final segmentation of the image in Figure 2.1 that is generated

by the function that is explained in Algorithm 2.2. Since we do not have the final

mask image, only the final label image is shown in Figure 2.5.
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Figure 2.5: Final Segmentation Result of the Example Image

2.2 Region Features

After performing image segmentation, we start a generic process which extracts

region features using the labeled segmentation result and the original image. Our

region features include center of mass of the region, area of the region, bounding

box of the region (i.e. smallest rectangle containing the region), orientation of

the region (i.e. angle between the x-axis and the major axis of the ellipse that
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has the same second moments as the region), and means of the each bands of the

area on the original multi-spectral image corresponding the region. In addition

to the means of original each band values, region features also contains means of

normalized values of RGB bands and mean of the intensity values of the region.

2.3 Pairwise Relationship Features

There are several different ways of finding pairwise relationship between regions

such as spread histogram [23], force histogram (F-Histogram) [16, 24] and R-

Histogram [25]. We decided to use the technique that is defined by Kwasnicka

and Paradowsk [23] to calculate some fields of our pairwise relationship feature

vector such as leftOf , rightOf , above, below.

To use this technique we need to have an angle histogram between region pairs

and it is calculated as described in Algorithm 2.4. It takes label image, labels of

the regions and the number of bins of desired angle histogram then it calculates

angle between each point of the first region and each point of the second region.

Then according to the calculated angle value of the point pair, it increments

histogram’s corresponding bin value by 1. Our histogram is defined in [−π, π)

interval and calculated angle values are in interval [-π,π). Angles are positive

counterclockwise starting from the positive x-axis in Cartesian coordinates.
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Algorithm 2.4 Calculate Histogram of Angle Between Region i and j

Input: L (final segmentation label matrix of image : matrix),

i (label of first region : scalar),

j (label of second region : scalar),

numOfBins (number of bins of histogram : scalar)

Output: Hij (histogram of angle between regions i and j : vector)

Hij ⇐ {0}
binWidth⇐ 2π

numOfBins

Ri ⇐ findAllPointsOfRegion(L, i)

Rj ⇐ findAllPointsOfRegion(L, j)

for all (xi, yi) ∈ Ri do

for all (xj, yj) ∈ Rj do

val⇐ arctan (
yi−yj
xi−xj )

index⇐ b val
binWidth

c
Hij(index)⇐ Hij(index) + 1

end for

end for

return Hij

We store histogram of angles that are generated by this function in the pair-

wise relationship feature vector. We define a function A(i, j, α) which gives the

histogram of angle value between regions i and j at angle α. Its pseudo-code is

given in Algorithm 2.5.

Algorithm 2.5 Give Histogram of Angle Value at Angle α

Input: i (label of first region : scalar),

j (label of second region : scalar),

α (angle value : scalar)

Output: val (histogram of angle value at angle α : scalar)

index⇐ α
binWidth

val⇐ Hij(index)

return val
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Kwasnicka and Paradowsk [23] define functions on a histogram of angle which

is defined in [0, 2π) interval however as stated above our histogram of angle defined

in [−π, π) interval. Therefore, we modify the boundaries of the functions to work

correctly with our histogram of angle. Using the histogram of angle between

regions, Left, Right, Below and Above functions are defined as

Left(i, j) =

∑
α∈[−π/2,π/2)

A(i, j, α)∑
α∈[−π,π)

A(i, j, α)
(2.3)

Right(i, j) =

∑
α∈[−π,−π/2)∪(π/2,π]

A(j, j, α)∑
α∈[−π,π)

A(i, j, α)
(2.4)

Below(i, j) =

∑
α∈[0,π)

A(i, j, α)∑
α∈[−π,π)

A(i, j, α)
(2.5)

Above(i, j) =

∑
α∈[−π,0)

A(i, j, α)∑
α∈[−π,π)

A(i, j, α)
(2.6)

In addition to these angle based features, we have one more angle based feature

which is angle between centroids and it is calculated by finding angle between

x-axis and the vector
−−→
CiCj where Ci and Cj are the centroids of the regions i and

j. Pseudo-code of this procedure can be seen in Algorithm 2.6.
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Algorithm 2.6 Calculate Angle Between Centroids of Regions i and j

Input: L (final segmentation label matrix of image : matrix),

i (label of first region : scalar),

j (label of second region : scalar)

Output: val (angle between x− axis and the vector
−−→
CiCj : scalar)

Ci ⇐ findCentroid(L, i)

Cj ⇐ findCentroid(L, j)

yi ⇐ Ciy

yj ⇐ Cjy

xi ⇐ Cix

xj ⇐ Cjx

val⇐ arctan (
yi−yj
xi−xj )

return val

We have another type of features in our pairwise relationship feature vector

such as distance based features. These features include centroid distance, single

linkage distance, complete linkage distance, average linkage distance, near and

far.

Let us define a function d(p1, p2) which calculates Euclidean distance between

two points p1 and p2 as

d(p1, p2) =
√

(p1x − p2x)2 + (p1y − p2y)2 (2.7)

Centroid distance is calculated by calculating Euclidean distance between cen-

troids of the two regions as explained in Algorithm 2.7.
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Algorithm 2.7 Calculate Distance Between Centroids of Regions i and j

Input: L (final segmentation label matrix of image : matrix),

i (label of first region : scalar),

j (label of second region : scalar)

Output: val (distance between centroids of regions i and j : scalar)

Ci ⇐ findCentroid(L, i)

Cj ⇐ findCentroid(L, j)

val⇐ d(Ci, Cj)

return val

Single linkage distance [26] is calculated as

SingleLinkageDistance(X, Y ) = min
x∈X,y∈Y

d(x, y) (2.8)

This function calculates the minimum distance between any point in X region

and any point in Y region.

Complete linkage distance [27] is calculated as

CompleteLinkageDistance(X, Y ) = max
x∈X,y∈Y

d(x, y) (2.9)

This function calculates the maximum distance between any point in X region

and any point in Y region.

Average linkage distance [28] is calculated as

AverageLinkageDistance(X, Y ) =
1

|X||Y |
∑
x∈X

∑
y∈Y

d(x, y) (2.10)

This function calculates the average distance between any point in X region

and any point in Y region.

Near feature is calculated as

25



Near(X, Y ) =
1

SingleLinkageDistance(X, Y ) + 1
(2.11)

This function gives 1 if regions are touching each other; otherwise it gives a

value between 0 and 1 inverse proportional to the distance between regions.

Far feature is calculated as

Far(X, Y ) =
SingleLinkageDistance(X, Y )√

WidthOfImage2 +HeightOfImage2
(2.12)

This function gives 1 if regions are at the corners of the image (i.e. a situation

that maximum distance can be achieved), otherwise it gives a value between 0

and 1 proportional to the distance between regions.

2.4 Distance Metrics

Since our system is a feature based system, we need to define distance metrics to

measure similarity between feature vectors. There are several ways of calculating

distance between two feature vectors using different distance metrics such as

Euclidean distance, Manhattan distance, Chebyshev distance, discrete distance,

angle distance etc. [29]

We can consider a feature vector as a point in Cartesian coordinates of n-

dimensional space so distance of two feature vectors can be calculated as distance

of two points in n-dimensional space.

Assuming that there are two points in Cartesian coordinates X =

(x1, x2, . . . , xn) and Y = (y1, y2, . . . , yn), Euclidean distance of two points X and

Y gives the length of the line segment |XY | and it is calculated as

Euclidean(X, Y ) =

√√√√ n∑
i=1

(|xi − yi|)2 (2.13)
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Manhattan distance also know as city block distance is the sum of absolute

differences of coordinate values of two points and it is calculated as

Manhattan(X, Y ) =
n∑
i=1

(|xi − yi|) (2.14)

Chebyshev distance is the maximum absolute difference of coordinate values

of two points and it is calculated as

Chebyshev(X, Y ) = max
i

(|xi − yi|) (2.15)

Discrete distance has only two values 1 and 0 according to equivalence of two

points and it is calculated as

Discrete(X, Y ) =

{
1 if X 6= Y

0 otherwise
(2.16)

Angle distance is a distance between two angle based values (i.e α and β) and

it is calculated as

AngleDistance(α, β) = atan2(sin(α− β), cos(α− β)) (2.17)

In our system we have implemented and used all of the distance metrics which

are mentioned above because we have quite different feature vectors from the

traditional approach on feature vectors. Instead of having 1-level n-dimensional

feature vectors, we have hierarchical feature vectors such that a feature vector

consists of group of sub-feature vectors. In a traditional approach, a feature

vector looks like

f =

1-level feature︷ ︸︸ ︷
{f1, f2, . . . , fn}

but in our approach, a feature vector can look like
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f = {
1-level feature︷ ︸︸ ︷
{f1, f2, . . . , fk},

multi-level feature︷ ︸︸ ︷
{{fk+1, . . . , fl}︸ ︷︷ ︸

1-level feature

, fl+1︸︷︷︸
single feature

, . . . , fm},
single feature︷︸︸︷
fm+1 , . . . , fn}

so we can say that a feature vector is a feature group consists of several sub-feature

groups. Sub-feature groups can also includes sub-feature groups in it. In our

system, each sub-feature group can have a different distance metric which is used

to calculate the similarity between the same sub-feature group of other feature

groups. Therefore, it is possible that all of the distance calculation methods

which are formulated in Equations 2.13, 2.14, 2.15, 2.16 can be used for similarity

calculation of a feature group.

This feature vector structure comes with a problem that, distances of the sev-

eral sub-feature vectors are needed to be combined to have a single distance value

between to feature vectors. To solve this problem, we have a normalization mech-

anism on distances of each sub-feature vector that after calculating the distance

between the same sub-feature vectors of the two feature vectors, we normalize

the distance value with a value that takes all distance values of corresponding

sub-feature vector in the interval [0,1]. For instance, we normalize the centroid

distance with a length of the diagonal of the image.
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Chapter 3

Image Mining System

3.1 General Description

Before designing the system we listed the desired capabilities and restrictions that

our system will have.

Desired capabilities are:

1. Region and Pairwise Relationship feature vector should satisfy following

conditions:

(a) A feature vector should consist of sub-feature groups.

(b) Each sub-feature group can have different distance metric.

(c) Each sub-feature group can be selected or deselected for similarity

calculation.

(d) Items of a sub-feature group can be selected or deselected for similarity

calculation.

(e) Items of a sub-feature group can have different similarity metric if they

have selected separately not as a group.

(f) Distance metric of a sub-feature group can be changed without need

for re-compilation of the image mining program.
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2. Pairwise relations can be asymmetric. (i.e. Feature vector of the (r1,r2)

pair can be different than the feature vector of (r2, r1) pair)

3. Number of bands can be different from one dataset to another therefore size

of band means can be different from one image to another.

4. System should support future dataset insertions to the database without

changing the any meta-data because of number of bands of that dataset

images.

5. System should have one distance calculator which handles all metrics.

Design restrictions are:

1. Images in same dataset must have same number of bands.

2. An image must belong to only one dataset.

3. Searches can be performed only in intra-dataset.

According to that list we design our system. Block diagram of the image

mining system can be seen in Figure 3.1.
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Figure 3.1: Block Diagram of the Image Mining System

In our system, there are three main blocks which are dataset generator,

database populator and image mining program. Dataset generator takes a multi-

spectral image and generates regions and extracts feature vectors of the regions

and their pairwise relationships. Database populator gets feature vectors and

generates SQL queries to be inserted to the MySQL database. Image mining pro-

gram uses both MySQL database from the database populator and segmented

images from the dataset generator to make search on the images.

3.2 Dataset Generator

The first block of our system is the dataset generator. As seen in Figure 3.2,

dataset generator has three sub-blocks: image segmentor, region feature extractor

and pairwise relationship feature extractor.

31



Figure 3.2: Block Diagram of the Dataset Generator

3.2.1 Image Segmentor

Image segmentor performs image segmentation using the logic that is explained

as an example procedure in Section 2.1. Its pseudo-code can be seen in Algo-

rithm 3.1.

Firstly it loads a multi-spectral image from the file system then it takes the

RGB bands (i.e. 5th, 3rd and 2nd bands for our dataset) of the image then it

converts the RGB color-mapped image to HSV color-mapped image. After that,

it runs the function that finds the derivative of the morphological profile (DMP)

with the first band of the HSV image. That function finds the DMP of given

image using disk typed structuring element of radius 2 and 6.

According to our experiments, DMP which is calculated by using the closing

by reconstruction technique with disk typed structuring element of radius 2 gives

reasonable results for building segmentation. On the other hand, morphological

profile (MP) by using the opening by reconstruction technique with disk typed

structuring element of radius 6 gives reasonable results for road segmentation.

For vegetation segmentation as mentioned in Section 2.1 we use NDVI technique.

Knowing that near infrared and visible red bands of our multi-spectral images are

8th and 5th bands respectively (see Section 2.1), we apply threshold to normalized

differences of 8th and 5th bands of our multi-spectral images to calculate vegetation
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mask.

When all the sub-segmentations are finished, we run the function which is

defined in Algorithm 2.2 to generate the final segmentation result (i.e. labeled

image) and write it to the file system.

Algorithm 3.1 Pseudo-code of the Image Segmentor

Input: I ′is(Multi− spectral images)
Output: −
for all Image Ii do

image⇐ load(Ii)

imRGB ⇐ image(:, :, [5, 3, 2])

imHSV ⇐ convertToHSV (imRGB)

//opMP is MP calculated by opening by reconstruction

//opDMP is DMP calculated by opening by reconstruction

//clMP is MP calculated by closing by reconstruction

//clDMP is DMP calculated by closing by reconstruction

[opMP, opDMP, clMP, clDMP ]⇐ findDMP (imHSV (:, :, 1), 2)

//threshold function applies threshold on given matrix with a given value

buildingMask ⇐ threshold(clDMP, 0)

buildingLabel⇐ connectedComponentLabeling(buildingMask)

[opMP, opDMP, clMP, clDMP ]⇐ findDMP (imHSV (:, :, 1), 6)

roadMask ⇐ threshold(opMP, 0.6)

roadLabel⇐ connectedComponentLabeling(roadMask)

ndvi⇐ (image(:, :, 8)− image(:, :, 5))/(image(:, :, 8) + image(:, :, 5))

vegetationMask ⇐ threshold(ndvi, 0.6)

vegetationLabel⇐ connectedComponentLabeling(vegetationMask)

[finalSegmentation]⇐
calculateF inalSegmentation(roadLabel, vegetationLabel, buildingLabel)

save(finalSegmentation)

end for

Since this module is an abstract module for our system, we mentioned this

algorithm for the sake of completeness of the example approach that is given
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in Section 2.1. Additionally, functions that are used in Algorithm 3.1 such as

convertToHSV, threshold and connectedComponentLabeling are self-explanatory

functions so details of them are not given in this thesis.

3.2.2 Region Feature Extractor

Region feature extraction is generic given the result of segmentation. Pseudo-code

of this routine can be seen in Algorithm 3.2.

Firstly it loads the segmentation result that is generated by image segmentor

in Section 3.2.1. Then for each region in the image, it finds centroid, bounding-

Box, area, orientation, bandMeans, meanRGB and meanIntensity features and

generates feature vector. Finally it writes that feature vector to the file system.

We have additional field named class in feature vector which represents the class

of the region such as building, vegetation, road, car, plane, car park etc. Since we

have only segmentation of the image and do not have classification of segments,

currently it is constant and valued as 1 in our system, it is planned to be included

in the future.
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Algorithm 3.2 Pseudo-code of the Region Feature Extractor

Input: I ′is(Multi−spectral images),
segmI ′is(Segmentation label images of images)

Output: −
for all Image Ii do

image⇐ load(Ii)

segmImage⇐ load(segmIi)

for all Region r in segmImage do

centroid⇐ findCentroid(r)

boundingBox⇐ findBoundingBox(r)

area⇐ findArea(r)

orientation⇐ findOrientation(r)

bandMeans⇐ findBandMeans(r, image)

class⇐ 1

meanRGB ⇐ findRGBMeans(r, image)

meanIntensity ⇐ findMeanIntensity(r, image)

featureV ector.insert(centroid)

featureV ector.insert(boundingBox)

featureV ector.insert(area)

featureV ector.insert(orientation)

featureV ector.insert(bandMeans)

featureV ector.insert(class)

featureV ector.insert(meanRGB)

featureV ector.insert(meanIntensity)

save(featureV ector)

end for

end for

3.2.3 Pairwise Relationship Feature Extractor

Pairwise relationship feature extractor runs the functions that are defined in Sec-

tion 2.3 and generates pairwise relationship feature vector for each pair region
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in each image. Feature vector includes leftOf, rightOf, above, below, near, far,

distanceCentroid, singleLinkage, completeLinkage, averageLinkage, centroidAn-

gle and angleHistogram features. Pseudo-code of this routine can be seen in

Algorithm 3.3.

Algorithm 3.3 Pseudo-code of the Pairwise Relationship Feature Extractor

Input: I ′is(Multi− spectral images),
segmI ′is(Segmentation label images of images)

Output: −
binNumber ⇐ 72

for all Image Ii do

segmImage⇐ load(segmIi)

for all Region ri ∈ segmImage do

for all Region rj ∈ segmImage do

if i 6= j then

distance⇐ calculateBoundingBoxDistance(segmImage, ri, rj)

if distance < T then

featureV ector ⇐
ConstructPairwiseRelFeatureV ector(segmImage, ri, rj)

save(featureV ector)

end if

end if

end for

end for

end for

In this algorithm we use a self explanatory function named calculateBound-

ingBoxDistance which calculates the differences between bounding boxes of the

two regions ri and rj. Then this distance is compared with a value T to make

a decision about constructing pairwise relationship feature vector. T value is

selected as 400 in our system so that pairwise relationship feature vector of two

regions whose bounding boxes are not closer than 400 pixels, is not calculated and
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stored in our database. This algorithm also uses a function named Construct-

PairwiseRelFeatureVector which extracts pairwise relationship features between

regions i and j then returns it. Its pseudo-code can be seen in Algorithm 3.4.
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Algorithm 3.4 Pseudo-code of the ConstructPairwiseRelFeatureVector function

Input: segmImage (Segmentation label image),

ri (First region),

rj (Second Region)

Output: featureV ector (Pairwise relationship feature vector of regions i and j)

hoa⇐ HistogramOfAngle(segmImage, i, j, binNumber)

leftOf ⇐ Left(i, j)

rightOf ⇐ Right(i, j)

above⇐ Above(i, j)

below ⇐ Below(i, j)

angle⇐ Angle(segmImage, i, j)

near ⇐ Near(ri, rj)

far ⇐ Far(ri, rj)

distanceCentroid⇐ DistanceCentroid(segmImage, i, j)

singleLinkage⇐ SingleLinkageDistance(ri, rj)

averageLinkage⇐ AverageLinkageDistance(ri, rj)

completeLinkage⇐ CompleteLinkageDistance(ri, rj)

featureV ector.insert(leftOf)

featureV ector.insert(rightOf)

featureV ector.insert(above)

featureV ector.insert(below)

featureV ector.insert(angle)

featureV ector.insert(near)

featureV ector.insert(far)

featureV ector.insert(distanceCentroid)

featureV ector.insert(singleLinkage)

featureV ector.insert(averageLinkage)

featureV ector.insert(completeLinkage)

featureV ector.insert(hoa)

return featureV ector
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3.3 Database Populator

The second sub-block of our image mining system is the database populator

which is responsible for generating and executing SQL queries for images, region

features, pairwise relationship features etc. It is the only part of our image mining

system who has a write access to our database. Its block diagram can be seen in

Figure 3.3.

Figure 3.3: Block Diagram of the Database Populator

There are three sub-blocks of database populator such as database, table

creator and data inserter.

3.3.1 Database

We have MySQL database to store features and other required information for

image mining. Entity - Relationship (ER) diagram of our database is shown in

Figure 3.4 and 3.5. ER diagram is divided into two parts to increase readability.
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Figure 3.4: First Part of the ER Diagram of the Image Mining System Database

40



Figure 3.5: Second Part of the ER Diagram of the Image Mining System Database

As can be seen in Figure 3.4 and 3.5, we have ImageTypes, DataSets,

Images, Regions, PairwiseRels, RegionFeatureGroups, DistanceMetrics, Pair-

wiseRelFeatureGroupDistanceMethods, PairwiseRelsFeatureGroups and Region-

FeatureGroupDistanceMethods tables in our database. We have designed our

database considering the capabilities and restrictions that are mentioned in Sec-

tion 3.1.

Our database satisfies the desired capability items 1a (i.e. Feature vector

should consist of sub-feature groups) and 1c (i.e. Each sub-feature group can

be selected/deselected for similarity calculation) by giving the ability to group

columns of Regions and PairwiseRels tables with RegionFeatureGroups and Pair-

wiseRelFeatureGroups tables. It also satisfies the desired capability item 1b (i.e.

Each sub-feature group can have different distance metric) by giving the ability to
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assign different distance metric id to different group with RegionFeatureGroupDis-

tanceMethods and PairwiseRelFeatureGroupDistanceMethods tables. It does not

restrict to have one column in a different groups (i.e. single column can be in a

different group) therefore it satisfies the desired capability items 1d (i.e. Items

of sub-feature group can be selected/deselected for similarity calculation) and 1e

(i.e. Items of sub-feature group can have different similarity metric if they have

selected separately not as a group). By storing distance metrics of the feature

groups in the database, it satisfies the desired capability item 1f (i.e. Distance

metric of sub-feature group can be changed without need for re-compilation of

the image mining program). Direction column of PairwiseRels table is exists to

satisfy the desired capability item 2 (i.e. Pairwise relations can be asymmetric).

Type of the BandMeans column of the Regions table is set to BLOB to satisfy

the desired capability item 3 (i.e. Number of bands can be different from one

dataset to another therefore size of band means can be different from one image

to another) and 4 (i.e. System should support future dataset insertions to the

database without changing the any meta-data because of number of bands of that

dataset images). Database has only one table to have distance metric definition

which DistanceMetrics table and this satisfies the desired capability item 5 (i.e.

System should have one distance calculator which handles all metrics).

In addition to desired capability items, our database also satisfies the de-

sign restriction items. DataSets table has non-primary key column named Im-

ageTypeId which determines the number of bands of the image therefore it sat-

isfies the design restriction item 1 (i.e. Images in same dataset must have same

number of bands). It also satisfies the design restriction item 2 (i.e. Image must

belong to only one dataset) because Images table has non-primary key column

named DataSetId which determines the data set of the image. Database does

not have any restriction to satisfy the design restriction item 3 (i.e. Search can

be performed only in intra-dataset), this restriction will be satisfied by the image

mining program.

It can be seen from the table definitions, for the variable length features we

use the data type BLOB which is abbreviation of Binary Large OBject that can

store a variable amount of data. We have two columns that have this type which
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are BandMeans column of the Regions table and AngleHistogram column of the

PairwiseRels table. Both BandMeans and AngleHistogram data consist of set of

doubles therefore we convert each item of them to the IEEE 754 64bit double

precision binary floating point format [30], and store those data as a byte array

in the database.

3.3.2 Table Creator

Table creator is a routine that exists in the database populator. It creates tables of

the database which is explained in Section 3.3.1. While creating tables it considers

the dependencies between tables. Its pseudo-code can be seen in Algorithm 3.5.

Algorithm 3.5 Pseudo-code of the Table Creator

Input: −
Output: −
connection⇐ EstablishConnectionToDatabase()

CreateImageTypesTable()

CreateDataSetsTable()

CreateImageTable()

CreateRegionsTable()

CreatePairwiseRelsTable()

CreateDistanceMetricsTable()

CreateRegionFeatureGroupsTable()

CreateRegionFeatureGroupsDistanceMethodsTable()

CreatePairwiseRelFeatureGroupsTable()

CreatePairwiseRelFeatureGroupDistanceMethodsTable()

close(connection)

3.3.3 Data Inserter

Data inserter routine is responsible for populating database whose tables are

created with the routine that is explained in Section 3.3.2. Firstly, it inserts
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configuration data which is stored in tables PairwiseRelFeatureGroups, Region-

FeatureGroups, DistanceMetrics, RegionFeatureGroupDistanceMethods, Pairwis-

eRelFeatureGroupDistanceMethods and ImageTypes. Then it inserts region fea-

tures and pairwise relationship features to the database. Its pseudo-code can be

seen in Algorithm 3.6.

Algorithm 3.6 Pseudo-code of the Data Inserter

Input: −
Output: −
connection⇐ EstablishConnectionToDatabase()

PopulateConfigurationTables()

for all Dataset Da do

InsertToDatasetsTable(Da)

for all Image Ib ∈ Da do

InsertToImagesTable(Ib)

segmImage⇐ load(segmIb)

for all Region ri ∈ segmImage do

regionFeature⇐ load(regionFeaturei)

InsertToRegionsTable(regionFeature)

for all Region rj ∈ segmImage do

if i 6= j then

pairwiseRelationFeature⇐ load(pairwiseRelFeatureij)

InsertToPairwiseRelsTable(pairwiseRelationFeature)

end if

end for

end for

end for

end for

close(connection)

Configuration data in our database consist of distance metric definitions, fea-

ture groups of region features and pairwise relationship features; and distance

metrics of those feature groups. Defined distance metrics in our system can be
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seen in Table 3.1. Each distance metric has a unique id and a name. Formulations

of the mentioned distance metrics can be seen in Section 2.4.

Distance Metric Id Metric Name

1 Euclidean

2 Manhattan

3 Chebyshev

4 Discrete

5 Angle

Table 3.1: Definition of the Distance Metrics in the Image Mining System

Region feature groups are defined in our database and each group has its

own distance metric for similarity calculation. Region feature groups and their

distance metrics can be seen in Table 3.2. In this table, column index refers to

the Regions table of our database, distance metric id refers to distance metric id

column of the Table 3.1.
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Group Name Group Id Column

Index

Distance

Metric Id

Centroid
1 4 1

1 5

Centroid-X 2 4 2

Centroid-Y 3 5 2

Bounding Box

4 6 3

4 7

4 8

4 9

Bounding Box UL-X 5 6 2

Bounding Box UL-Y 6 7 2

Bounding Box BR-X 7 8 2

Bounding Box BR-Y 8 9 2

Area 9 10 2

Orientation 10 11 5

Class 11 12 4

Band Means 12 3 1

Mean RGB

13 13 1

13 14

13 15

Mean R 14 13 2

Mean G 15 14 2

Mean B 16 15 2

Mean Intensity 17 16 2

Table 3.2: Groups and Distance Metrics of the Region Features

In our database, pairwise relationship feature groups are also defined and each

group has its own distance metric for similarity calculation. Pairwise relationship

feature groups and their distance metrics can be seen in Table 3.3. In this table,

column index refers to the PairwiseRels table of our database, distance metric id

refers to distance metric id column of the Table 3.1.
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Group Name Group Id Column

Index

Distance

Metric Id

Left 1 6 2

Right 2 7 2

Above 3 8 2

Below 4 9 2

Near 5 10 2

Far 6 11 2

Distance Centroid 8 13 2

Single Linkage 9 14 2

Complete Linkage 10 15 2

Average Linkage 11 16 2

Angle 12 17 5

Angle Histogram 13 18 1

Table 3.3: Groups and Distance Metrics of the Pairwise Relationship Features

3.4 Image Mining Program

The last sub-block of our image mining system is the image mining program which

is responsible for communicating with the database according to the user activities

and performing search with given parameters. It is a GUI based application

developed with the Qt framework. Its block diagram can be seen in Figure 3.6.
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Figure 3.6: Block Diagram of the Image Mining Program

We have grouped all classes of the program into two packages which are Log-

icPackage and UserInterfacePackage. LogicPackage package consists of classes

that implement the logic of our system and communicate with the database which

is explained in Section 3.3. UserInterfacePackage package contains classes that

are responsible for creating GUI and interacting with user according to user’s

activities. They use classes of the LogicPackage package when needed.

3.4.1 Logic Package

First part of the class diagram of the image mining program which shows the

classes of the LogicPackage package can be seen in Figure 3.7.
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Figure 3.7: First Part of the Class Diagram of the Image Mining Program

As can be seen from Figure 3.7, LogicPackage package has BaseFeature, Fea-

ture, RegionFeature, RegionGroup, Image, PairwiseRelationsFeature, Database-

Manager, DatabaseFactory and Query classes.

BaseFeature class is an abstract class that contains a function that computes

distance between another BaseFeature typed object and stores the type id of the

type that is fed to template Feature while declaration of the Feature typed object.

Feature is a template that extends BaseFeature class and has extra fields such as

data field and distance metric field. Data field is used to store values and distance

metric field is used for distance metric differentiation of the feature sub-groups.

It has a function that computes distance between another Feature typed object

according to its distance metric field. RegionFeature class is a class that uses
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Feature class and it contains fields that correspond to the fields of the Region-

Feature table that is explained in Section 3.3. In addition to those fields, it has

usedFeatures field that stores selected feature sub-group during query generation

by the user. It has also a function named calculateDistance that calculates dis-

tance between two RegionFeature typed object using usedFeatures field of them.

Another class that uses Feature class is PairwiseRelationsFeature class. It has

fields that correspond to the fields of the PairwiseRels table that is explained

in Section 3.3. It has a usedFeatures field that is used for the same reason with

the usedFeatures field of the RegionFeature class and calculateDistance function

to calculate distance between the another PairwiseRelationsFeature typed object

based on the usedFeatures field.

RegionGroup class is designed to represent region groups that are used for

query region group and resultant region groups from search. It is also used for

calculating distance between two region groups with its calculateDistance func-

tion. If we think a region group as a graph, then regions will be vertices of this

graph and pairwise relations will be edges of this graph. Therefore, RegionGroup

class has two fields such as vertices and edges. vertices field is a vector typed

object which stores the references of the RegionFeature typed objects and edges

fields is also a vector typed object but it stores the references of the Pairwis-

eRelationsFeature typed objects. Image class stores the data of the Images table

that is explained in Section 3.3. DatabaseManager class is the only class that

communicates with our database. All other classes that need information from

the database use this class to get information from the database. We need to use

DatabaseManager class in most of the classes we have, therefore we implement

Singleton and Factory patterns which is explained in [31] for this class. Database-

Factory class implements those patterns. It is a static class and it has a private

static reference to a DatabaseManager typed object. Other classes that need to

a DatabaseManager typed object calls the getDatabaseManager function of the

DatabaseFactory class. This function’s pseudo-code can be seen in Algorithm 3.7.
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Algorithm 3.7 getDatabaseManager Function of the DatabaseFactory class

Input: −
Output: dbManager (reference to a DatabaseManager typed object)

if dbManager = null then

dbManager ⇐ new DatabaseManager()

end if

return dbManager

Query class is responsible for performing search on the database with a given

query region group. It has a function named searchRegionGroups that takes a

region group and performs search then returns the list of region groups that are

sorted according to their distances to given query region. This function uses three

private functions such as findSimilarRegions, formRegionGroups and sortRegion-

Groups. findSimilarRegions function gets a region and finds the most n similar

regions to the given region according to selected features of the given region.

formRegionGroups function gets similar regions of the regions of the query region

group and generates region groups according to the pairwise relations between

regions of the query region group. sortRegionGroups function takes generated re-

gion groups by the formRegionGroups function and sorts them according to their

distance to the query region group. Finally, sorted region groups are returned by

the searchRegionGroups function. n value in the findSimilarRegions function is

set to 20 during experiments.

3.4.2 User Interface Package

Second part of the class diagram of our image mining program which shows the

classes of the UserInterfacePackage package can be seen in Figure 3.8.
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Figure 3.8: Second Part of the Class Diagram of the Image Mining Program

As can be seen from Figure 3.8, UserInterfacePackage package has Image-

Label, MainPage, SearchResultPage, AngleHistogram, PairwiseRelationFeature-

Handle and RegionFeatureHandle classes.

MainPage class is responsible for creating the main page of the image mining

program and handles events that are performed by the user on this page. Sample

screen-shot from the main page of the image mining program can be seen in

Figure 3.9.
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Figure 3.9: Sample Screen-shot from the Main Page of the Image Mining Program

MainPage class firstly retrieves the image list from the database using an

object typed DatabaseManager. Then it populates Image List list which is located

on the left part of the main page. Users can see the list of the images in the

database and select one of them to perform search. Some part of the image list

can be seen in Figure 3.10.
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Figure 3.10: Sample Screen-shot of the Image List of the Main Page

When the user selects different image from the image list, program shows the

bigger version of the image in the middle part of the main page whose title is

Image. This area is handled by the ImageLabel typed object. When the user left

clicks a region on the image area, this object finds the id of the region and shows

clicked region by darkening other regions. Result of this process can be seen in

Figure 3.11.

54



Figure 3.11: Sample Screen-shot of the Clicking a Region Process on the Main

Page

This object also handles the right clicks on the region. If the user right clicks

on a region, it will create a context menu like in the Figure 3.12.
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Figure 3.12: Sample Screen-shot of the Right Clicking a Region Process on the

Main Page

Then the user can choose one of the options such as Select as search region

or View Region Features. If user chooses View Region Features option, a Region-

FeatureHandle typed object will be created and its showRegionFeature function

will be called. This function creates a dialog that user can see the values of the

features of the selected region. This dialog can be seen in Figure 3.13.
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Figure 3.13: Sample Screen-shot of the View Region Features Dialog on the Main

Page

If the user chooses Select as search region option on the context menu, a Re-

gionFeatureHandle typed object will be created and its selectUsedItems function

will be called. This function creates a dialog that user can choose which features

will be used for searching similar regions to the selected region. This dialog can

be seen in Figure 3.14.
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Figure 3.14: Sample Screen-shot of the Select Region Features Dialog on the

Main Page

If the user chooses at least one of the features on the dialog and clicks Save

and Close button, the region will be selected into the query regions list and it is

displayed on the list whose title is Region List which is located on the right part

of the main page. This list can be seen in Figure 3.15.
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Figure 3.15: Sample Screen-shot of the Selected Regions List of the Main Page

If the user double clicks on any region on the list, selectUsedItems function

of the RegionFeatureHandle class will be called with the reference of the Region-

Feature typed object. This function creates a dialog that displays the selected

features of the region for similarity calculation. This dialog can be seen in Fig-

ure 3.16. User can select new features or clear selected features and when s/he

presses Save and Close button, his/her new choices are saved.
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Figure 3.16: Sample Screen-shot of the Change Selected Features Process on the

Region Feature Dialog on the Main Page

If the user right clicks on any region on the list, context menu will be displayed

like in the Figure 3.17. If View Region Features option is clicked, same action

will be performed and same dialog will be shown with Figure 3.13. If Remove

From List option is clicked, selected region will be removed from the Region List

and it will be no more included in the search process until it is reselected like in

Figure 3.14.
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Figure 3.17: Sample Screen-shot of the Context Menu of the Selected Regions

List

When the Region List contains at least two regions, the user can define region

pairs by selecting those regions by pressing ctrl button on the keyboard. Then

a PairwiseRelationFeatureHandle typed object is created and its showPairwis-

eRelationFeature function is called. This function creates a dialog like in the

Figure 3.18
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Figure 3.18: Sample Screen-shot of the Show Pairwise Relationship Feature Dia-

log on the Main Page

Region 1 and region 2 are determined by the order of the selection of two

regions. Namely, region 1 is the region that the user selects first. Features other

than the angle histogram feature are displayed as scalar value but angle histogram

feature is decided to display as a histogram plot. If the user selects at least one

feature to be used in the similarity calculation and presses Save and Close button,
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their pairwise relationship will be added to the list whose title is Region Pairs

List. This list is located on the right part of the main page. This list can be seen

in Figure 3.19.

Figure 3.19: Sample Screen-shot of the Region Pairs List of the Main Page

If the user double clicks on any region pair on the list, selectUsedItems function

of the PairwiseRelationFeatureHandle function will be called with a reference of

the PairwiseRelationsFeature typed object. This function creates a dialog that

displays the selected features of the pairwise relationship feature for the similarity

calculation. This dialog can be seen in Figure 3.20. The user can select new

features or clear selected features and when s/he presses Save and Close button,

his/her new choices will be saved.
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Figure 3.20: Sample Screen-shot of the Change Selected Features Process on the

Pairwise Relationship Feature dialog on the Main Page

If user right clicks on any region pair on the list, context menu will be displayed

like in the Figure 3.21. If Remove From List option is clicked, selected region

will be removed from the Region Pairs List and it will be no more included in

the search process until it is reselected like in the Figure 3.18.
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Figure 3.21: Sample Screen-shot of the Context Menu of the Selected Region

Pairs List

If Show Regions option is clicked on the context menu, pixels that belong to

region 1 will be colored as red and pixels that belong to region 2 will be colored

as blue on the image that is displayed at the middle of the main page. Result of

this action can be seen in Figure 3.22.
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Figure 3.22: Sample Screen-shot of the Show Regions Process on the Main Page

When the user finishes to prepare a query by following above steps, s/he is

needed to press Start Search button which is located on bottom right of the main

page to start a search. It is shown in Figure 3.23.
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Figure 3.23: Sample Screen-shot of the Start Search Button of the Main Page

When this button is pressed, a RegionGroup typed object is created with

the selected regions and selected region pairs, and their selected features. Then

searchRegionGroups function of the Query class is called with this object and

search results are taken as a return value of this function. Finally an object of

SearchResultPage is created with resultant region groups to display search results

to the user. Sample search result page can be seen in Figure 3.24.
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Figure 3.24: Sample Screen-shot of the Sample Search Result Page of the Image

Mining Program

This page is very similar to the main page but this page is a read only page

in which users can only see the resultant region groups and they do not make

any modifications on them. Users can double click the items in Region List and

Region Pairs List and see the features of the regions like in Figure 3.13 and

features of the pairwise relationships like in Figure 3.25.
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Figure 3.25: Sample Screen-shot of the Show Pairwise Relationship Feature Dia-

log on the Search Result Page
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Chapter 4

Experiments and Results

4.1 Experiment Setup

In our system, we use 8-band multi-spectral WorldView-2 images of Ankara,

Turkey. We split those images into sub-images with 800 x 800 pixels so we have

24 images of 800 x 800 pixels size. Regions table has 53700 entries in total so

on average, we have 2237 regions in an image. PairwiseRels table has 59,742,514

entries which means that each region has 1112 pairwise relationship with other

regions on average. When we look at the average region count of the image, we

need to have 2236 pairwise relationships of a region on average but we have half of

them. This shows us that our elimination logic that is described in Section 3.2.3

works and it decreases the storage size by half and we have 30.1 GB MySQL

database.

Experiments are done on a PC with an Intel I5 Quad Core 2.67 GHz CPU,

12 GB RAM, and running 64-bit Windows 7 operating system.
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4.2 Experiments

In this section we give some search queries and their search results in several

scenarios. In the first scenario, we perform only region based search. To do

this we select two regions from one image and we do not define any pairwise

relationship between selected regions. We use one of the image in our dataset

whose id is 1. Selected image can be seen in Figure 4.1.

Figure 4.1: Selected Image for the Search Scenario 1

We select two regions from this image. The first region and its features can
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be seen in Figure 4.2.

Figure 4.2: Selected First Region for the Search Scenario 1

This region is a vegetation area whose id is 6. The second region and its

features can be seen in Figure 4.3.
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Figure 4.3: Selected Second Region for the Search Scenario 1

This region is a part of a road and its id is 1503. When we press the start

search button, our image mining system returns 8 results and top 3 search results

can be seen in Figure 4.4, 4.5 and 4.6 respectively.
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Figure 4.4: First Result in the Search Results of the Search Scenario 1 (Image

Id:1, Region 1 Id: 7, Region 2 Id: 1503)

In the first search result, same image with the image that query region group

belongs to is returned. In this result, one region is a vegetation area which is

colored as cyan and the second region is a road area which is colored as dark

cyan.
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Figure 4.5: Second Result in the Search Results of the Search Scenario 1 (Image

Id:10, Region 1 Id: 3, Region 2 Id: 1404)

In the second search result, a region group in the image with id 10 is returned.

The first region is a vegetation area which is colored as cyan and the second region

is a road area which is colored as dark cyan.
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Figure 4.6: Third Result in the Search Results of the Search Scenario 1 (Image

Id: 24, Region 1 Id: 336, Region 2 Id: 1877)

In the third search result, a region group in the image with id 24 is returned.

The first region is a vegetation area which is colored as cyan and the second

region is a road area which is colored as dark cyan.

In the second scenario, we perform search with two regions and one pairwise

relationship from one region to other region. To do this we select two regions

from one image and we define a pairwise relationship between selected regions.

We use one of the image in our dataset whose id is 11. Selected image can be

seen in Figure 4.7.
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Figure 4.7: Selected Image for the Search Scenario 2

We select two regions from this image. The first region and its features can

be seen in Figure 4.8.
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Figure 4.8: Selected First Region for the Search Scenario 2

This region is a land area whose id is 2228. The second region and its features

can be seen in Figure 4.9.
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Figure 4.9: Selected Second Region for the Search Scenario 2

This region is a part of a road and its id is 2229. Pairwise relationship for

this query is directed from the region with id 2229 to the region with id 2228. Its

features can be seen in Figure 4.10.
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Figure 4.10: Defined Pairwise Relationship for the Search Scenario 2

When we press the start search button, our image mining system returns

6 results and top 3 search results can be seen in Figure 4.11, 4.12 and 4.13

respectively.
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Figure 4.11: First Result in the Search Results of the Search Scenario 2 (Image

Id:19, Region 1 Id: 1014, Region 2 Id: 1490)

In the first search result, a region group in the image with id 19 is returned.

The first region is a land area which is colored as cyan and the second region is

a road area which is colored as dark cyan.
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Figure 4.12: Second Result in the Search Results of the Search Scenario 2 (Image

Id:19, Region 1 Id: 1174, Region 2 Id: 1490)

In the second search result, a region group in the image with id 19 is returned.

The first region is a land area which is colored as cyan and the second region is

a road area which is colored as dark cyan.
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Figure 4.13: Third Result in the Search Results of the Search Scenario 2 (Image

Id:23, Region 1 Id: 1683, Region 2 Id: 1688)

In the third search result, a region group in the image with id 23 is returned.

The first region is a land area which is colored as cyan and the second region is

a road area which is colored as dark cyan.

In the third scenario, we perform search with three regions and three pairwise

relationships. To do this we select three regions from one image and we define

some pairwise relationships between selected regions. We use one of the image in

our dataset whose id is 20. Selected image can be seen in Figure 4.14.
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Figure 4.14: Selected Image for the Search Scenario 3

We select three regions from this image. The first region and its features can

be seen in Figure 4.15.
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Figure 4.15: Selected First Region for the Search Scenario 3

This region is a part of a road whose id is 1542. The second region and its

features can be seen in Figure 4.16.
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Figure 4.16: Selected Second Region for the Search Scenario 3

This region is a vegetation area whose id is 140. The third region and its

features can be seen in Figure 4.17.
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Figure 4.17: Selected Third Region for the Search Scenario 3

This region is a land area and its id is 1485. The first pairwise relationship

for this query is directed from the region with id 1542 to the region with id 140.

Its features can be seen in Figure 4.18.
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Figure 4.18: Defined First Pairwise Relationship for the Search Scenario 3

The second pairwise relationship for this query is directed from the region

with id 140 to the region with id 1485. Its features can be seen in Figure 4.19.
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Figure 4.19: Defined Second Pairwise Relationship for the Search Scenario 3

The third pairwise relationship for this query is directed from the region with

id 1542 to the region with id 1485. Its features can be seen in Figure 4.20.
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Figure 4.20: Defined Third Pairwise Relationship for the Search Scenario 3

When we press the start search button, our image mining system returns

6 results and top 3 search results can be seen in Figure 4.21, 4.22 and 4.23

respectively.
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Figure 4.21: First Result in the Search Results of the Search Scenario 3 (Image

Id:10, Region 1 Id: 105, Region 2 Id: 1398, Region 3 Id: 1404)

In the first search result, a region group in the image with id 10 is returned.

The first region is a vegetation area which is colored as cyan, the second region

is a land area which is colored as dark cyan and the third regions is a road area

which is colored as white.
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Figure 4.22: Second Result in the Search Results of the Search Scenario 3 (Image

Id:10, Region 1 Id: 105, Region 2 Id: 1384, Region 3 Id: 1404)

In the second search result, a region group in the image with id 10 is returned.

The first region is a vegetation area which is colored as cyan, the second region

is a land area which is colored as dark cyan and the third regions is a road area

which is colored as white.
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Figure 4.23: Third Result in the Search Results of the Search Scenario 3 (Image

Id:11, Region 1 Id: 356, Region 2 Id: 1671, Region 3 Id: 2147)

In the third search result, a region group in the image with id 11 is returned.

The first region is a vegetation area which is colored as cyan, the second region

is a land area which is colored as dark cyan and the third regions is a road area

which is colored as white.

Execution times of the system in some search scenarios can be seen in Ta-

ble 4.1.
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Scenario

Id

# of Query

Regions

# of Pairwise

Relationships

# of Returned

Results

Execution

Time (sec)

a 1 0 19 0.651

b 2 0 8 1.268

c 2 1 14 1.332

d 2 2 14 1.341

e 3 0 13 1.904

f 3 1 4 1.914

g 3 2 4 1.922

h 3 3 2 1.953

i 4 0 40 2.882

j 4 1 15 2.889

k 4 2 7 2.964

l 4 3 3 2.981

m 4 4 3 3.022

n 4 5 3 3.123

o 4 6 3 3.142

Table 4.1: Execution Times of the System in Some Search Scenarios

In this table, the first column represents the id of the scenario that is per-

formed, the second column represents the number of regions that are selected

as query regions, the third column represents the number of pairwise relation-

ships that are defined between selected regions, the fourth column represents the

number of region groups that are returned from the system as a result of the

search, and the fifth column represents how much time that search process takes

in seconds.

If we look at the results, we can easily say that the system finishes the search

process and returns the search results in a short amount of time. By considering

the scenarios a,b,e, and i we can say that the number of query regions has a

major impact on the execution time. Scenarios i, j, k, l, m, n and o show that the
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number of pairwise relationships also has effect on the execution time but not as

much as the number of query regions. These relationships can be seen clearly in

Figure 4.24.

Figure 4.24: Execution Time vs # of Query Regions and # of Pairwise Relation-

ships Plot

Blue curve shows the relationship between execution time and the number of

query regions when the number of pairwise relationships is fixed. Red curve shows

the relationship between execution time and the number pairwise relationships

when the number of query regions is fixed. This plot graphically says that, the

number of query regions has much more impact on the execution time.

We have some parameters in our system which have a direct impact on the

execution time of the search such as the parameter that defines how many similar

regions will be found for each selected query region. As stated in Section 3.4.1,

this parameter is set to 20. We determine this value with the help of some

experiments. If you decrease this value too much (like 5), the system will not

return any search results most of the time. On the other hand, if you increase this

value too much (like 50), execution time of the search will increase dramatically.
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This variable also has effect on the effectiveness of the system. For instance,

let us change the scenario 2 little bit such as instead of selecting angle feature of

the pairwise relationship, let us select below feature of the pairwise relationship

which should give results such that retrieved road areas will be below retrieved

land areas. When the value of the variable is set to 20, system returns 6 results

that are shown in Figure 4.25.

Figure 4.25: Search Results 1-6 When 20 Similar Regions of the Query Regions

are Retrieved During Search

When the value of the variable is set to 50, system returns 46 results and top

12 of them are shown in Figure 4.26.

96



Figure 4.26: Search Results 1-12 When 50 Similar Regions of the Query Regions

are Retrieved During Search
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In those images, red colored areas represent the land areas and blue colored

areas represent the road areas. For the first case, in 1 of 6 results, the road

area is above the land area which is the undesired case. The proportion of the

undesired cases to the total number of results for this case is 1/6 = 16.6%. Since

it is located at the last, we can say that system works well on sorting the results.

For the second case, we have no undesired region groups in top 12 but we have

9 undesired region group at end of the search results list. The proportion of the

undesired cases to the total number of results for this case is 9/46 = 19.5%. We

can infer that, increasing this value may increase the proportion of the undesired

cases but since it increases the number of search results, the probability of getting

undesired case in the top results gets lower.
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Chapter 5

Conclusion and Future Work

In this thesis, we presented a novel, generic and extendable image mining system

that performs content based image retrieval (CBIR). In this system, WorldView-2

8 band multi-spectral images are used for mining. We have divided our system

into three parts such as feature extraction, database population and retrieval.

Firstly, images of our dataset are segmented using the approach that is de-

veloped by Pesaresi and Benediktsson [15]. Then features of the regions of the

images are extracted. We also extract pairwise relationship features of the regions

between each other.

Secondly, we populate those data to our MySQL database for efficient retrieval

of those features. In our database we also store some configuration data such as

definitions of the sub-feature groups and distance metrics of them. By these

definitions, our system has a novel feature vector structure such that a feature

vector can consist of several sub-feature vectors and each sub-feature vector can

have different distance metrics to be used in comparisons. In a feature vector,

there can be values which belong to the different domains. For instance, in our

region feature, we have centroid information which is in Cartesian coordinates

and orientation feature which has angle based values. Presented feature vector

structure gives ability to system that the centroid information can be compared
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using the Euclidean distance metric and the orientation information can be com-

pared using an angle based distance metric. Therefore, this structure yields us

to use feature vectors effectively in our system. In addition to this, this feature

vector structure gives us ability to exclude easily some values of the feature vector

to increase retrieval efficiency. For instance, if a user wants to retrieve regions

which are similar to a selected region based on color or area or both of them,

s/he can easily select those sub-features respectively to retrieve desired regions.

In the system, search queries can include multiple regions with different se-

lected sub-features and multiple pairwise relationships of regions between each

other with different selected sub-features. In other words, our search query is a

directed graph whose vertices are selected regions and edges are pairwise rela-

tionships of selected regions.

Our experiments show that the approach in this thesis gives promising search

results. Better segmentation results will make the system more effective. As a

future work, although we have indexing on the primary keys of feature vectors,

we will also index each sub-feature vector to improve search time of our system.

In our system, we check the distance of the bounding boxes of the regions be-

fore constructing pairwise relationship feature vector of those regions. If this

distance is above a predefined threshold, we do not extract and store pairwise

relationships of corresponding regions. This logic, decreases our preprocessing

time and storage for pairwise relationship features dramatically but as a future

work, we will change this pairwise relationship calculation and storage logic such

that we will calculate pairwise relationship of each region with two virtual points,

and pairwise relationship of any two real region will be constructed using those

relationship data of two regions with virtual regions. Therefore, our storage com-

plexity of pairwise relationships will decrease from O(N2) to O(N). One drawback

of this work is that it will increase our search time of a given query but indexing

mechanism will probably compensate it.

Another future work that we will do is to add functionality to our query

processing and handling mechanism that a group of regions can be compared

with a single object. For instance, for a query region group which consists of
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buildings, roads, vegetation areas, the system will be able to return a region that

represents a campus area.
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