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ABSTRACT

IMAGE INFORMATION MINING USING SPATTAL
RELATIONSHIP CONSTRAINTS

Fatih Karakus
M.S. in Computer Engineering
Supervisor: Asist. Prof. Dr. Selim Aksoy
September, 2012

There is a huge amount of data which is collected from the Earth observation
satellites and they are continuously sending data to Earth receiving stations day
by day. Therefore, mining of those data becomes more important for effective
processing of collected multi-spectral images. The most popular approaches for
this problem use the meta-data of the images such as geographical coordinates
etc. However, these approaches do not offer a good solution for determining
what those images contain. Some researches make a big step from the meta-data
based approaches in this area by moving the focus of the study to content based

approaches such as utilizing the region information of the sensed images.

In this thesis, we propose a novel, generic and extendable image information
mining system that uses spatial relationship constraints. In this system, we use
not only the region content, but also relationships of those regions. First, we ex-
tract the region information of the images and then extract pairwise relationship
information of those regions such as left, right, above, below, near, far and dis-
tance etc. This feature extraction process is defined as a generic process which is
independent from how the region segmentation is obtained. In addition to these,
since new features and new approaches are continuously being developed by the
image information mining researchers, extendability feature of the our system
plays a big role while we are designing our system.

In this thesis, we also propose a novel feature vector structure in which a fea-
ture vector consists of several sub-feature vectors. In the proposed feature vec-
tor structure, each sub-feature vector can be exclusively selected to be used for
search process and they can have different distance metrics to be used in compar-
isons between the same sub-feature vector of the other feature vector structures.
Therefore, the system gives ability to users to choose which information about

il
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the region and its pairwise relationship with other regions to be used when they
perform a search on the system. The proposed system is illustrated by using
region based retrieval scenarios on very high spatial resolution satellite images.

Keywords: Image information mining, Spatial relationships, Content based im-
age retrieval, Image databases, Image retrieval, Information retrieval, Remote

sensing.



OZET

UZAMSAL ILISKILER KULLANILARAK GORUNTU
BILGI MADENCILIGI
Fatih Karakusg
Bilgisayar Miihendisligi, Yiiksek Lisans

Tez Yoneticisi: Asist. Prof. Dr. Selim Aksoy
Eyliil, 2012

Yer gozlem uydular: tarafindan diinyaya gonderilen biiyiik miktarda veri bu-
lunmaktadir ve bu uydular giinden giine diinyadaki alic1 istasyonlara yeni veriler
gondermektedir. Bu nedenle, bu verilerin madenciligi toplanan multispektral
gortintiilerin etkin iglenmesi i¢cin daha 6nemli hale gelmektedir. Bu sorun i¢in en
popiiler yaklagimlar, bu gortintiilerin cografi koordinatlar1 gibi bazi tist verileri
kullanmaktadir. Ancak bu yaklagimlar, bu gortintiilerin ne icerdigini tespit et-
mek konusunda iyi bir ¢oziim sunamamaktadir. Baz1 aragtirmalar, bu alandaki
caligmalarin odagini, iist veri tabanlh yaklagimlardan toplanan gortintiilerin icerik
bilgisini kullanan yaklagimlara ¢evirerek, bu alanda biiyiik bir adim tegkil etmek-
tedir. Bu arastirmalar, genellikle goriintiilerdeki bolge bilgisini kullanmaktadir.

Bu tezde, bolge bilgisi ile bolgelerin birbirleri ile olan uzamsal iligkilerini
kullanan kapsamli ve genisletilebilir yeni bir goriintii madenciligi sistemi
onerilmektedir. Bu sistemde, sadece bolge igerigi degil, bu bolgelerin birbiri
arasindaki iligkileri de kullamilmaktadir. Bunun igin ilk olarak, goriintiilerdeki
bolge bilgileri ¢ikartilir ve sonra bu bolgelerin sol, sag, yukari, agsagi, yakin, uzak
ve uzaklik gibi ikili iligkileri ¢ikartilir. Bu oznitelik ¢ikarma iglemi, gortintiintin
boliitlenmesinden bagimsiz genel bir siire¢ olarak tamimlanmistir. Bunlara ek
olarak, goriintii madenciligi aragtirmacilar: tarafindan siirekli yeni 6znitelikler ve
yeni yaklagimlar gelistirilmekte oldugu icin, sistemin genisletilebilir 6zellikte ol-

masi, sistem tasariminda biiytlik rol oynamigtir.

Ayrica bu tezde, yeni bir 6znitelik vektort yapist onerilmektedir. Bu yapida,
herhangi bir Oznitelik vektorii, alt-oznitelik vektorlerinden olusabilmektedir.

Onerilen bu 6znitelik vektorii yapisinda, her alt-6znitelik vektorii arama isleminde



vi

kullanilmak tizere secilebilir ve diger oznitelik vektorii yapilarimin ayni alt-
oznitelik vektorleri arasindaki kargilagtirmalarda kullanilan farkli uzaklik 6l¢iitiine
sahip olabilir. Boylelikle, bu sistem, kullanicilara, bolgelerin gesitli 6znitelikleri ve
bolgelerin birbirleri ile olan c¢esitli iligkilerinin 6zniteliklerinden hangilerini arama
yapmak icin kullanacaklarini segme olanagi saglamaktadir. Onerilen sistem, ¢ok
yiiksek ¢oziintirliikli uydu gortintiileri tizerinde, bolge tabanl erigim senaryolari

kullanilarak gosterilmistir.

Anahtar sozcikler: Goriintii madenciligi, Uzamsal iligkiler, Icerik tabanh goriintii

erigimi, Goriintii veritabanlari, Gortinti erigimi, Bilgi erigimi.
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Chapter 1

Introduction

1.1 Overview and Motivation

The amount of data that Earth observation satellites send to the Earth stations
has been dramatically increasing each day. Those images come with problems
such as how those images are stored, how those images are used for information

extraction etc.

Many researches are done on textual information of those images such as ge-
ographical coordinates, acquisition time, sensor type, etc. [1]. However, these
information are not enough for understanding what those images contain. To
understand the image, there is a need to process those images and extract con-
tent information of the images. Some region based approaches which are detailed
in Section 1.2 are developed by the researchers. Most of them are tile based ap-
proaches in which images are divided into fixed sized tiles and each tile considered
as a region. The rest of them uses segmentation of the image to extract region
information of the image. In addition to the region information, there is also a
meaningful information about regions such as spatial relationships of regions. To
extract this information, region pairs are constructed then spatial relationship
of those pair is extracted. In literature, we see very little work which uses this

information for mining of the images.



Our motivation on this study is to develop a novel image mining system that
uses both region information and their pairwise spatial relationships with other
regions. Our aim is to design the system as flexible as possible which makes the
system very open to future extensions. In this study we mainly focused on the
search part of the image mining topic, we do not work on the other parts such as

classification etc.

1.2 Related Work

When we look at the image information mining literature, we can see that works
are mainly concentrated on two approaches. First one is the oldest one, text
based approach. In this approach, textual information of the image such as user
tags, gps coordinates, address information etc. are collected mainly by people and
indexed. Users perform searches on those images by using keywords. Examples
of this approach can be seen in [2, 3, 4]. This approach is not suitable for the
mining of the remotely sensed imagery because remotely sensed images do not
have enough descriptive textual information and it is impossible to tag those huge

quantities of images by human power.

The second one is the content based approach. In this approach, instead
of textual information, searches are performed on visual features such as color,
texture, shape etc. that are collected from pixels, regions, objects etc. of im-
ages. Many systems have been developed by using this approach such as QBIC
(Query By Image Content) [5], M ARS (Multimedia Analysis and Retrieval Sys-
tem) [6, 7], Virage [8], FIDS (Flexible Image Database System) [9], KIM
(Knowledge Driven Information Mining) [1], SIM PLIcity (Semantics-Sensitive
Integrated Matching for Picture Llbraries) [10], VisualSEEK [11] and Geol RIS
(Geospatial Information Retrieval and Indexing System) [12].

MARS, FIDS and Virage systems perform searches by considering color,

texture and shape features of the whole image. KIM system is a tile based



approach in which tiles are indexed based on their color, texture and shape in-
formation. Then they are fed to the unsupervised clustering algorithm and using
user based training, labels of those clusters are determined. According to the se-
lected query tile’s label, tiles that are in same cluster with the query tile are taken
as search results. Users can give positive and negative feedback to the system
and the system continues training itself accordingly. QBIC system retrieves im-
ages by considering color, texture and shape measures of the whole image and its
tiles. SIM PLIcity system performs searches using the semantic classification of
the regions such as textured-nontextured, graph-photograph. We do not analyze
these systems in detail because they do not consider spatial relations between

regions.

In literature, there is not much content based image mining system that uses
both regions and their spatial relations with another regions. One of them is
VisualSEEK system which performs searches using color set and location infor-
mation of region pairs. Smith and Chang [11] develop this system using segmented
images. They use a relational database to store region feature vectors. In this
system, a region feature includes color set, centroid, area, width and height of
the bounding box of the region. Color set information is extracted by converting
RGB image to HSV color mapped image and quantization of HSV values using
the method explained in [13] which generates 18 hues, 3 saturations, 3 values
and 4 grays. To perform search, users can select query regions from predefined
symbols or they can sketch the shape of them. Snapshot of the search window of
VisualSEEK can be seen in Figure 1.1.
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Figure 1.1: Snapshot of the Search Window of the VisualSEEK System (Image
taken from [14])

Since their search algorithm is based on color, shape and location informa-
tion, user can enter those information using shown shapes and start the search
operation. After starting the search operation, the system firstly retrieves region
features from database and finds set of similar regions for each query region.
Then candidate regions are grouped and based on their location on the image

and comparison is made with the location information of the given query region



group. Sample search results can be seen in Figure 1.2. For instance, in the first
image, user wants images that have red rectangular region on top of the image
and in the third image, user wants images that have three yellow circular region

and their relative positions are similar to the given query region group.

[ 11, |‘—T_'.-. 1:_

Figure 1.2: Sample Search Results of the VisualSEEK System (Image taken
from [14])

Another image mining system that uses both regions and their spatial relations
is Geol RIS. Shyu et. al [12] developed this system by using both fix sized tiles
and segmented images. In tile based approach, they divide each image into 256m
x 256m tiles then they extract features of them such as spectral, texture, linear
and DMP (Derivative of Morphological Profile) features. Spectral features consist
of set of histograms of panchromatic, grayscale, RGB and near infrared data.
Texture features include uniformity of energy, entropy, homogeneity, contrast,
correlation and cluster tendency. Linear features include ratio of width and height
of a region in a tile and the angle histogram of a region in a tile. DMP feature
is a histogram of the number of objects in a tile for different structuring element

sizes.

In the object based approach, they firstly perform image segmentation using
the method DMP that is explained in [15]. Then they resize each segment mask
to 32 x 32 bits sized bitmap and store it in their database as a shape feature
of the object. In addition to shape feature, they calculate average value in each

bands of the original image with in the object mask to store spectral information



of the object. In addition to the object features, they have spatial relationship
features which include histogram of forces of object pairs. While calculating the

histogram of forces, they use the method that is explained in [16].

After the feature extraction process finishes, they index all features using k-
D trees to decrease search time. They generate indexes for each feature type
because they use different features in different search scenarios which include
Query By Example, Hybrid Query, Query Sketcher, Semantic Query and Object

Query. Those scenarios can be seen in the snapshot of the system in Figure 1.3.
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Figure 1.3: Snapshot of the Search Window of the Geol RIS System (Image taken
from [12])

First scenario that is seen in search window tabs is Query By Fxample. In this
scenario, users can select a query image from the image dataset and search for
similar images to the query image. In the Hybrid Query scenario, different than

the previous case, user can define the search center and give the radius of the

6



search area. For instance, user can search for similar images to the query image
with in 2000 meters of the Columbia College. Query Sketcher scenario is the
scenario that users can sketch shape of the regions by using the predefined symbol
library. This scenario is very similar to the search scenario of the VisualSEEK
system that we mentioned above. Another scenario in this system is Semantic
Query scenario. For this scenario, feature indexes are mined using data mining
tools and association rules are generated. Then searches are performed on those
association rules. Last scenario that GeolRIS system has is the Object Query
scenario in which region based search is performed. For instance, users can select
an airplane from existing regions library and search for other airplane regions in

the database.

1.3 Summary of Contributions

Novelty of our system comes from several features of the system. Firstly, it
uses regions not tiles. Most of the systems in literature are said to be a region
based system but they use fixed size tiles as regions. However, our system uses
segmented images and it uses segments on segmentation masks as regions. In
addition, the system uses both region features and their spatial relationships

between other regions while performing searches.

Another novelty of our system is a novel feature vector structure. As detailed
in Section 2.4, a feature vector can consist of several sub-feature vectors. Each
sub-feature vector can be included for search or excluded from search. For in-
stance, in systems in the literature you can execute a query like “find regions
that are similar to given query region”, however, in our system you can execute a
query like “find regions whose only area feature is similar to given query region”.
More complex queries can also be defined in our system by using a region group
query mechanism. An example for a region group query can be seen in Figure 1.4.

Explanations of labeled features on the figure are given in Sections 2.2 and 2.3.
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Figure 1.4: Tllustration of the Query Region Group of the Proposed System (Cir-
cles : Selected Regions, Arcs: Pairwise Relationships Between Corresponding

Regions, Boxes: Selected Sub-feature Vectors of the Corresponding Item)

In this figure, blue colored circles represent selected regions and arcs between
those circles represent pairwise relationships between selected regions. Since pair-
wise relationship features are defined in our system as one way, way of the relation
is shown as the direction of the arc. For instance, in the figure, there is a pairwise
relationship which is defined from R1 region to R2 region. Information boxes on
circles and arcs represent selected sub-feature vectors of the corresponding item
to be used during similarity calculation. Information boxes with red background
represent selected sub-feature vectors of corresponding pairwise relationships, in-
formation boxes with green background represent selected sub-feature vectors of
corresponding regions. When this query is executed, the system finds region

groups of four regions such that :



1. One region (i.e R1’) in the region group will be similar to the R1 region

based on the Area feature.

2. One region (i.e R2’) in the region group will be similar to the R2 region

based on Mean RGB and Orientation features.

3. One region (i.e R3’) in the region group will be similar to the R3 region

based on the Bounding Box feature.

4. One region (i.e R4’) in the region group will be similar to the R4 region

based on Mean R and Centroid features.

5. R1” and R2’ region pair has a pairwise relationship which is similar to the
pairwise relationship of the R1 and R2 region pair based on Right Of and

Below features.

6. R1” and R3’ region pair has a pairwise relationship which is similar to
the pairwise relationship of the R1 and R3 region pair based on the Angle

feature.

7. R4 and R1’ region pair has a pairwise relationship which is similar to the
pairwise relationship of the R4 and R1 region pair based on the Left Of

feature.

8. R2" and R3’ region pair has a pairwise relationship which is similar to the
pairwise relationship of the R2 and R3 region pair based on Above and Near

features.

Another contribution of the study is that each sub-feature vector can have a
different distance metric. For instance, orientation feature of region features has a
“Angle” distance metric and centroid feature of region features has a “Euclidean”
distance metric. By this capability, each sub-feature group is compared with a
suitable distance metric for the domain of the sub-feature vector. In traditional
feature vector approach, there is a feature vector that consists of values in different

domains and one distance metric for all values does not give effective results.



1.4 Organization of the Thesis

The rest of the thesis is organized as follows. In Chapter 2, we explain our feature
extraction method in detail. Firstly, we mention our image segmentation tech-
nique and give its algorithm. Then we explain our region features and extraction
mechanism of them. Finally, we give our pairwise relationship features and their

extraction method.

We start the Chapter 3 by giving general description of our image mining
system. Then we present the system by giving its sub-blocks such as dataset
generator, database populator and image mining program. Then we explain sub-
blocks of our system in detail. Firstly, dataset generator is examined and its sub-
blocks such as image segmentor, region feature extractor and pairwise relationship
feature extractor are explained. Then database populator is explained including
the Entity - Relationship diagram of our database. Finally, image mining program

is detailed with its class diagram and user interface.

In Chapter 4, we show some search results that are performed for different
scenarios on our system. We also show the steps such as selecting regions, se-
lecting features of selected regions, selecting region pairs and selecting features of

selected region pairs that are followed to generate these results.

Finally, we conclude our thesis and give some future works of our study in

Chapter 5.
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Chapter 2

Feature Extraction

There are two types of feature levels in our system. One is region features and
the other one is regions’ pairwise relationship features. For a remotely sensed
image, a region can be a building or a group of buildings, or a group of trees, or
a road, or a lake etc. To extract the region information of the image, we need to

perform image segmentation.

2.1 Image Segmentation

Since our system is based on the regions and their pairwise relations with the
other regions on the same image, we need to have multi-spectral image and its
segmentation results to extract region features and their pairwise relationship
features. There can be many ways of segmenting multi-spectral image like the
ones in [17, 18, 19, 15]. Any of those approaches can be chosen as an image
segmentor but as an example segmentation procedure we decided to use one of
them which gives reasonable segmentation results on very high resolution images.
Some basic information about it is given in this section then it is detailed in
Section 3.2.

We know from [20], visibility of a structure can be improved by considering
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scale information. Thus, we decided to use the approach that gives reasonable re-
sults on very high spatial resolution remote sensing images covering urban scenes.
This approach is used by Pesaresi and Benediktsson [15] which is based on the
derivative of the morphological profile (DMP).

In this approach, opening by reconstruction and closing by reconstruction op-
erations are used to find segments. To perform opening by reconstruction, firstly
image is eroded with a structuring element then morphological reconstruction is
performed with 4-connected neighborhood. To perform closing by reconstruction,
firstly image is dilated with a structuring element then morphological reconstruc-
tion of complement of image with complement of dilated image and 4-connected
neighborhood is performed. Finally complement of the reconstruction result is

calculated to get the final result.

Just like the basic morphological operators that are defined by Matheron and
Serra [21] such as erosion, dilation, opening and closing, finding a good struc-
turing element for opening by reconstruction and closing by reconstruction is an
important problem. According to our experiments, one fits all strategy does not
work for different types of regions. For instance, disc typed structuring element
of radius 2 gives better segmentation on buildings; on the other hand, disc typed
structuring element of radius 13 gives better segmentation on roads. To get bet-
ter segmentation result we decided to perform multiple segmentations on image
with the suitable parameters for building, road, vegetation etc. During experi-
ments, we realized that our segmentation method generates lots of small noisy
segments that affects execution time of our system dramatically so we decided
to have thresholding mechanism on the segment size such that if segment size
is less than a threshold ¢ (like 10), we discard it at the beginning of the feature

extraction process.

Figure 2.1 shows one example of the images in our dataset. Our dataset
is generated from 8-band multi-spectral WorldView-2 images of Ankara, Turkey
with 2 m spatial resolution by splitting those images into images of 800 x 800
pixels size. Bands of the images are ordered as Coastal (400 - 450 nm), Blue (450
- 510 nm), Green (510 - 580 nm), Yellow (585 - 625 nm), Red (630 - 690 nm),

12



Red Edge (705 - 745 nm), Near IR 1 (770 - 895 nm) and Near IR 2(860 - 1040
nm) bands. In Figure 2.1, only RGB bands such as 5%, 34 and 2°¢ bands are
displayed. This image has different types of regions such as group of buildings,

single buildings, roads, vegetation areas etc. Therefore, this is a good candidate

for testing our segmentation logic.

Figure 2.1: Example Image for Segmentation

This RGB image is converted to the HSV image at the beginning of the
segmentation. Road segmentation routine produces the results in Figure 2.2. It

uses the morphological profile of the first band of the HSV image generated by

13



the opening by reconstruction technique with disc typed structuring element of
radius 6. Figure 2.2a shows the binary mask for the roads on the example image

and Figure 2.2b shows the colored labeling results of the segments on the road

mask.
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(a) Road Mask (b) Road Labels

Figure 2.2: Road Segmentation Results of the Example Image

Building segmentation routine produces the results in Figure 2.3. It uses the
derivative of morphological profile of the first band of the HSV image generated
by the closing by reconstruction technique with disc typed structuring element of
radius 2. Figure 2.3a shows the binary mask for the buildings on the image and
Figure 2.3b shows the colored labeling results of the segments on the building

mask.
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(b) Building Labels

Figure 2.3: Building Segmentation Results of the Example Image

Different than the previous segmentation routines, we use the technique Nor-
malized Difference Vegetation Index (NDVI) [22] for the vegetation segmentation

routine. NDVI performs well on vegetation segmentation and it is calculated as

NIR - RED
NDVI = TR T RED (2.1)

where NIR is near infrared band of the multi-spectral image and RED is visi-
ble red band of the multi-spectral image. Our vegetation segmentation routine
produces the results in Figure 2.4 by thresholding the NDVI values of the pixels
with a parameter 0.6. Figure 2.4a shows the binary mask for the vegetations on
the image and Figure 2.4b shows the colored labeling results of the segments on

the vegetation mask.

15



(a) Vegetation Mask (b) Vegetation Labels

Figure 2.4: Vegetation Segmentation Results of the Example Image

Now we have separate segmentation images and for each segmentation result,
for i = {1, 2, ..., N} where N is the number of different segmentation routines

we have set S; which is defined as

Si={(z,y) [ Mi(z,y) = 1}

where M; is a binary mask of the i* segmentation routine. In addition to S;’s
we also have L; matrices which contain connected component labeling results
of the M; masks. We need to combine separate segmentation images into one
segmentation image before extraction the region information. While combining
segmentation images, we do combination on only labeled images not mask images.
Using mask images results erroneous conditions on the pixels that belong to

different segmentation masks at the same time.

Before running the combination routine, we modify label numbers of each
segmentation result as described in Algorithm 2.1 to have unique labels in all
labeled images of an image. It divides [1, R] interval into non-intersecting intervals
such that labels of each segmentation results are in the interval [minR;, maxR;]
where minR; = maxR;_1 + 1, maxR; = minR; + numO f Regions; — 1, R is the

total number of regions in all segmentation results of an image and max Ry = 0.
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Algorithm 2.1 Modify Labels Function of the Image Segmentation Routine

Input: Lis and Sis of segmentation results
Output: Updated Ls
max Label <= 0
for all L, do
for all (z,y) € S; do
Li(z,y) < Li(x,y) + max Label
end for
mazx Label <= max(L;)

end for

Then we run our combination routine. Pseudo-code of our algorithm to com-
bine different segmentation results and generate single segmentation label image,
can be seen in Algorithm 2.2. Starting from the empty label image, our algorithm
traverses all pixels and for each pixel, it looks all segmentation results whether
that pixel belongs to a region on only one segmentation result or not. If so,
assigns label of that pixel to the label of the pixel on that segmentation result.

Otherwise assigns label of that pixel as 0.

17



Algorithm 2.2 Calculate Final Segmentation Function of the Image Segmenta-

tion Routine

Input: height (height of image : scalar),
width (width of image : scalar)
Output: segm (final segmentation result : matrix)
for x =1 — width do
for y =1 — height do
if f(x,y) =1 then
segm(x,y) < h(z,y)
else
segm(x,y) <0
end if
end for
end for

return segm

This algorithm uses two external functions: f defined in equation 2.2 and h
defined in Algorithm 2.3. f function is defined as

1 if (x,y) € USZ\{U Si}
fla,y) = Lo (22)
0 otherwise

This function decides whether given pixel at (x, y) location is included in only
one segmentation result or not. If so, it returns 1, otherwise returns 0. By using
this function, our combination routine assigns labels of the pixels that belong to
more than one segmentation routine as zero which means that those pixels will

not be considered as a part of any region.

Pseudo-code of the h function can be seen in Algorithm 2.3. This function

returns the label of the region that includes given pixel at location (x, y).
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Algorithm 2.3 h Function of the Image Segmentation Routine

Input: Lis and Ss of segmentation results,
x (x coordinate of pizel : scalar),
y (y coordinate of pixel : scalar)
Output: Final label of pixel at (x, y) : scalar
for all S; do
if (z,y) € S; then
return L;(z,y)
end if
end for

return 0

Figure 2.5 shows final segmentation of the image in Figure 2.1 that is generated
by the function that is explained in Algorithm 2.2. Since we do not have the final

mask image, only the final label image is shown in Figure 2.5.
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Figure 2.5: Final Segmentation Result of the Example Image

2.2 Region Features

After performing image segmentation, we start a generic process which extracts
region features using the labeled segmentation result and the original image. Our
region features include center of mass of the region, area of the region, bounding
box of the region (i.e. smallest rectangle containing the region), orientation of

the region (i.e. angle between the x-axis and the major axis of the ellipse that
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has the same second moments as the region), and means of the each bands of the
area on the original multi-spectral image corresponding the region. In addition
to the means of original each band values, region features also contains means of

normalized values of RGB bands and mean of the intensity values of the region.

2.3 Pairwise Relationship Features

There are several different ways of finding pairwise relationship between regions
such as spread histogram [23], force histogram (F-Histogram) [16, 24] and R-
Histogram [25]. We decided to use the technique that is defined by Kwasnicka
and Paradowsk [23] to calculate some fields of our pairwise relationship feature
vector such as leftOf, rightO f, above, below.

To use this technique we need to have an angle histogram between region pairs
and it is calculated as described in Algorithm 2.4. It takes label image, labels of
the regions and the number of bins of desired angle histogram then it calculates
angle between each point of the first region and each point of the second region.
Then according to the calculated angle value of the point pair, it increments
histogram’s corresponding bin value by 1. Our histogram is defined in [—m, )
interval and calculated angle values are in interval [-m,7). Angles are positive

counterclockwise starting from the positive x-axis in Cartesian coordinates.

21



Algorithm 2.4 Calculate Histogram of Angle Between Region i and j

Input: L (final segmentation label matriz of image : matrizx),

i (label of first region : scalar),

J (label of second region : scalar),

numO f Bins (number of bins of histogram : scalar)
Output: H;; (histogram of angle between regions i and j : vector)

H;; < {0}

binWidth <= - 2rm

R; < findAllPointsO f Region(L, 1)

R; < findAllPointsO f Region(L, j)

for all (x;,y;) € R; do

for all (z;,y;) € R; do

o

val < arctan (

index <= | 2

binWidth
H;;(index) < H;j(index) + 1
end for
end for

return H;;

We store histogram of angles that are generated by this function in the pair-
wise relationship feature vector. We define a function A(i, 7, «) which gives the
histogram of angle value between regions 7 and j at angle a.. Its pseudo-code is

given in Algorithm 2.5.

Algorithm 2.5 Give Histogram of Angle Value at Angle «

Input: ¢ (label of first region : scalar),
J (label of second region : scalar),
a (angle value : scalar)
Output: val (histogram of angle value at angle « : scalar)
indexr <= p—ras
val <= H;;(index)

return val
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Kwasnicka and Paradowsk [23] define functions on a histogram of angle which
is defined in [0, 27) interval however as stated above our histogram of angle defined
in [—m, 7) interval. Therefore, we modify the boundaries of the functions to work
correctly with our histogram of angle. Using the histogram of angle between

regions, Left, Right, Below and Above functions are defined as

Y. Al a)

a€[—7/2,m/2)

Le ft(i,j) = (2.3)
> Al ja
a€[—m,m)
> A(j. 4, @)
Right(i, j) = O‘E[‘”"gu(f’”l (2.4)
(ZWE
a€l—m,m)
Z A(i, j, o
L a€gl0,m)
Below(i, j) = < (2.5)
Z Al g, @)
a€[—m,m)
Z Al g, a
.. a€g[—m,0)
Above(i, j) = < (2.6)
Z A(i, g, @)
ag[—m,m)

In addition to these angle based features, we have one more angle based feature

which is angle between centroids and it is calculated by finding angle between
—

x-axis and the vector C;C; where C; and C; are the centroids of the regions ¢ and

j. Pseudo-code of this procedure can be seen in Algorithm 2.6.
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Algorithm 2.6 Calculate Angle Between Centroids of Regions i and j

Input: L (final segmentation label matriz of image : matrizx),
i (label of first region : scalar),
J (label of second region : scalar)
Output: val (angle between x — axis and the vector CTC; . scalar)
C; < findCentroid(L, 1)
C; < findCentroid(L, j)

Yi <= Ciy

y; <= Cjy

Tj <= ij

val < arctan (2=2)
i—Tj

return val

We have another type of features in our pairwise relationship feature vector
such as distance based features. These features include centroid distance, single
linkage distance, complete linkage distance, average linkage distance, near and

far.

Let us define a function d(py, pa) which calculates Euclidean distance between

two points p; and py as

d(p1,p2) = \/(plx — P2z)? + (P1y — Pay)? (2.7)

Centroid distance is calculated by calculating Euclidean distance between cen-

troids of the two regions as explained in Algorithm 2.7.
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Algorithm 2.7 Calculate Distance Between Centroids of Regions i and j

Input: L (final segmentation label matriz of image : matrizx),
i (label of first region : scalar),
J (label of second region : scalar)
Output: val (distance between centroids of regions i and j : scalar)
C; < findCentroid(L, 1)
C; < findCentroid(L, j)
val < d(C;, C))

return val

Single linkage distance [26] is calculated as
SingleLinkageDistance(X,Y) = min d(z,y) (2.8)
zeX,yeY

This function calculates the minimum distance between any point in X region

and any point in Y region.

Complete linkage distance [27] is calculated as

CompleteLinkageDistance(X,Y) = max_d(z,y) (2.9)

zeX,yeYy

This function calculates the maximum distance between any point in X region

and any point in Y region.

Average linkage distance [28] is calculated as

1
(XY

AverageLinkageDistance(X,Y) =

> d(xy) (2.10)

zeX yeyY

This function calculates the average distance between any point in X region

and any point in Y region.

Near feature is calculated as
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1
N X V)= 2.11
car(X,Y) SingleLinkageDistance(X,Y) + 1 21

This function gives 1 if regions are touching each other; otherwise it gives a

value between 0 and 1 inverse proportional to the distance between regions.
Far feature is calculated as

SingleLinkageDistance(X,Y)

Far(X,Y) =
( ) VWidthO fImage? + HeightO f Image?

(2.12)

This function gives 1 if regions are at the corners of the image (i.e. a situation
that maximum distance can be achieved), otherwise it gives a value between 0

and 1 proportional to the distance between regions.

2.4 Distance Metrics

Since our system is a feature based system, we need to define distance metrics to
measure similarity between feature vectors. There are several ways of calculating
distance between two feature vectors using different distance metrics such as
Euclidean distance, Manhattan distance, Chebyshev distance, discrete distance,

angle distance etc. [29]

We can consider a feature vector as a point in Cartesian coordinates of n-
dimensional space so distance of two feature vectors can be calculated as distance

of two points in n-dimensional space.

Assuming that there are two points in Cartesian coordinates X =
(x1,22,...,2,) and Y = (y1, 92, - .., Yn), Euclidean distance of two points X and

Y gives the length of the line segment |XY'| and it is calculated as

n

Euclidean(X,Y) = (|z; — vi])? (2.13)
=1

7
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Manhattan distance also know as city block distance is the sum of absolute

differences of coordinate values of two points and it is calculated as

Manhattan(X,Y) = Z (le; — vil) (2.14)

=1

Chebyshev distance is the maximum absolute difference of coordinate values

of two points and it is calculated as

Chebyshev(X,Y) = max (|x; — y;|) (2.15)

Discrete distance has only two values 1 and 0 according to equivalence of two

points and it is calculated as

1 ifX#£Y

(2.16)
0 otherwise

Discrete(X,Y) = {

Angle distance is a distance between two angle based values (i.e a and ) and

it is calculated as

AngleDistance(a, ) = atan2(sin(a — (), cos(a — 3)) (2.17)

In our system we have implemented and used all of the distance metrics which
are mentioned above because we have quite different feature vectors from the
traditional approach on feature vectors. Instead of having 1-level n-dimensional
feature vectors, we have hierarchical feature vectors such that a feature vector
consists of group of sub-feature vectors. In a traditional approach, a feature

vector looks like

1-level feature
7 -\ )
f: {f17f27"'7fn}

but in our approach, a feature vector can look like
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1-level feature multi-level feature single feature
7\ 7\

7 I N A
f:{{f17f27"‘7fk}7{{fk+17"'7fl}7 fl+1 ) "afm}’ fm+1 ﬂ"')fn}
—_——— N~
1-level feature  single feature

so we can say that a feature vector is a feature group consists of several sub-feature
groups. Sub-feature groups can also includes sub-feature groups in it. In our
system, each sub-feature group can have a different distance metric which is used
to calculate the similarity between the same sub-feature group of other feature
groups. Therefore, it is possible that all of the distance calculation methods
which are formulated in Equations 2.13, 2.14, 2.15, 2.16 can be used for similarity

calculation of a feature group.

This feature vector structure comes with a problem that, distances of the sev-
eral sub-feature vectors are needed to be combined to have a single distance value
between to feature vectors. To solve this problem, we have a normalization mech-
anism on distances of each sub-feature vector that after calculating the distance
between the same sub-feature vectors of the two feature vectors, we normalize
the distance value with a value that takes all distance values of corresponding
sub-feature vector in the interval [0,1]. For instance, we normalize the centroid

distance with a length of the diagonal of the image.
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Chapter 3

Image Mining System

3.1 (General Description

Before designing the system we listed the desired capabilities and restrictions that

our system will have.

Desired capabilities are:

1. Region and Pairwise Relationship feature vector should satisfy following

conditions:

(a) A feature vector should consist of sub-feature groups.
(b) Each sub-feature group can have different distance metric.

(c) Each sub-feature group can be selected or deselected for similarity

calculation.

(d) Items of a sub-feature group can be selected or deselected for similarity

calculation.

(e) Items of a sub-feature group can have different similarity metric if they

have selected separately not as a group.

(f) Distance metric of a sub-feature group can be changed without need

for re-compilation of the image mining program.
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2. Pairwise relations can be asymmetric. (i.e. Feature vector of the (rl,r2)

pair can be different than the feature vector of (r2, rl) pair)

3. Number of bands can be different from one dataset to another therefore size

of band means can be different from one image to another.

4. System should support future dataset insertions to the database without
changing the any meta-data because of number of bands of that dataset

images.

5. System should have one distance calculator which handles all metrics.

Design restrictions are:

1. Images in same dataset must have same number of bands.
2. An image must belong to only one dataset.

3. Searches can be performed only in intra-dataset.

According to that list we design our system. Block diagram of the image

mining system can be seen in Figure 3.1.
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Image Mining System

Figure 3.1: Block Diagram of the Image Mining System

In our system, there are three main blocks which are dataset generator,
database populator and image mining program. Dataset generator takes a multi-
spectral image and generates regions and extracts feature vectors of the regions
and their pairwise relationships. Database populator gets feature vectors and
generates SQL queries to be inserted to the MySQL database. Image mining pro-
gram uses both MySQL database from the database populator and segmented

images from the dataset generator to make search on the images.

3.2 Dataset Generator

The first block of our system is the dataset generator. As seen in Figure 3.2,
dataset generator has three sub-blocks: image segmentor, region feature extractor

and pairwise relationship feature extractor.
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Dataset Generator

Pairwise

Image Region Feature Relationship
Segmentor Extractor Feature
Extractor

Figure 3.2: Block Diagram of the Dataset Generator

3.2.1 Image Segmentor

Image segmentor performs image segmentation using the logic that is explained
as an example procedure in Section 2.1. Its pseudo-code can be seen in Algo-
rithm 3.1.

Firstly it loads a multi-spectral image from the file system then it takes the
RGB bands (i.e. 5" 3" and 2"¢ bands for our dataset) of the image then it
converts the RGB color-mapped image to HSV color-mapped image. After that,
it runs the function that finds the derivative of the morphological profile (DMP)
with the first band of the HSV image. That function finds the DMP of given

image using disk typed structuring element of radius 2 and 6.

According to our experiments, DMP which is calculated by using the closing
by reconstruction technique with disk typed structuring element of radius 2 gives
reasonable results for building segmentation. On the other hand, morphological
profile (MP) by using the opening by reconstruction technique with disk typed
structuring element of radius 6 gives reasonable results for road segmentation.
For vegetation segmentation as mentioned in Section 2.1 we use NDVTI technique.
Knowing that near infrared and visible red bands of our multi-spectral images are
8" and 5" bands respectively (see Section 2.1), we apply threshold to normalized

differences of 8t and 5t bands of our multi-spectral images to calculate vegetation
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mask.

When all the sub-segmentations are finished, we run the function which is
defined in Algorithm 2.2 to generate the final segmentation result (i.e. labeled

image) and write it to the file system.

Algorithm 3.1 Pseudo-code of the Image Segmentor

Input: I's(Multi — spectral images)
Output: —
for all Image I; do
image < load(I;)
imRGB < image(:,, [5, 3, 2])
imHSV <= convertToHSV (imRGB)
//opMP is MP calculated by opening by reconstruction
//opDMP is DMP calculated by opening by reconstruction
//cIMP is MP calculated by closing by reconstruction
//cIDMP is DMP calculated by closing by reconstruction
lopM P, opDM P, cIMP, cIDMP] < findDMP(imHSV(:,:,1), 2)
//threshold function applies threshold on given matrix with a given value
buildingM ask <= threshold(cIDM P, 0)
building Label <= connectedComponent Labeling(building M ask)
lopM P, opDM P, cIMP, cIDMP] < findDMP(imHSV(:,:, 1), 6)
roadMask < threshold(opM P, 0.6)
roadLabel <= connectedComponent Labeling(roadM ask)
ndvi <= (image(:,:,8) — image(:,:,5))/(image(:, :, 8) + image(:,:,5))
vegetationM ask < threshold(ndvi, 0.6)
vegetationLabel < connectedComponent Labeling(vegetationM ask)
[finalSegmentation] <
calculate Final Segmentation(roadLabel , vegetation Label, building Label)
save( final Segmentation)

end for

Since this module is an abstract module for our system, we mentioned this

algorithm for the sake of completeness of the example approach that is given
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in Section 2.1. Additionally, functions that are used in Algorithm 3.1 such as
convertToHSV, threshold and connectedComponentLabeling are self-explanatory

functions so details of them are not given in this thesis.

3.2.2 Region Feature Extractor

Region feature extraction is generic given the result of segmentation. Pseudo-code

of this routine can be seen in Algorithm 3.2.

Firstly it loads the segmentation result that is generated by image segmentor
in Section 3.2.1. Then for each region in the image, it finds centroid, bounding-
Box, area, orientation, bandMeans, meanRGB and meanlntensity features and
generates feature vector. Finally it writes that feature vector to the file system.
We have additional field named class in feature vector which represents the class
of the region such as building, vegetation, road, car, plane, car park etc. Since we
have only segmentation of the image and do not have classification of segments,
currently it is constant and valued as 1 in our system, it is planned to be included

in the future.
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Algorithm 3.2 Pseudo-code of the Region Feature Extractor

Input: Is(Multi—spectral images),
segml!s(Segmentation label images of images)
Output: —
for all Image I; do
image < load(I;)
segmImage <= load(segml;)
for all Region r in segmImage do
centroid < findCentroid(r)
boundingBox < findBoundingBox(r)
area < findArea(r)
orientation <= findOrientation(r)
bandMeans < findBandMeans(r, image)
class <1
meanRGB < findRGBMeans(r, image)
meanlIntensity < findMeanIntensity(r, image)
featureVector.insert(centroid)
featureVector.insert(bounding Box)
featureVector.insert(area)

featureVector.insert(orientation)

(

(

(

featureVector.insert(bandMeans)
featureVector.insert(class)
featureVector.insert(meanRGB)
featureVector.insert(meanlntensity)
save( featureVector)

end for

end for

3.2.3 Pairwise Relationship Feature Extractor

Pairwise relationship feature extractor runs the functions that are defined in Sec-

tion 2.3 and generates pairwise relationship feature vector for each pair region
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in each image. Feature vector includes leftOf, rightOf, above, below, near, far,
distanceCentroid, singleLinkage, completeLinkage, averageLinkage, centroidAn-
gle and angleHistogram features. Pseudo-code of this routine can be seen in
Algorithm 3.3.

Algorithm 3.3 Pseudo-code of the Pairwise Relationship Feature Extractor

Input: Is(Multi — spectral images),
segmI!s(Segmentation label images of images)
Output: —
bin Number < 72
for all Image I; do
segmlImage < load(segml;)
for all Region r; € segmImage do
for all Region r; € segmImage do
if ¢ # j then
distance <= calculate BoundingBox Distance(segmImage,r;, 1)
if distance < T then
featureVector <
Construct PairwiseRel FeatureV ector(segmImage, r;, ;)
save( featureVector)
end if
end if
end for
end for

end for

In this algorithm we use a self explanatory function named calculate Bound-
ingBoxDistance which calculates the differences between bounding boxes of the
two regions r; and r;. Then this distance is compared with a value T to make
a decision about constructing pairwise relationship feature vector. T wvalue is
selected as 400 in our system so that pairwise relationship feature vector of two

regions whose bounding boxes are not closer than 400 pixels, is not calculated and
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stored in our database. This algorithm also uses a function named Construct-
PairwiseRelFeature Vector which extracts pairwise relationship features between

regions i and j then returns it. Its pseudo-code can be seen in Algorithm 3.4.
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Algorithm 3.4 Pseudo-code of the ConstructPairwiseRelFeatureVector function

Input: segmImage (Segmentation label image),

r; (First region),
r; (Second Region)

Output: featureVector (Pairwise relationship feature vector of regionsiand j)
hoa <= HistogramO f Angle(segmImage, i, j, binNumber)
leftOf < Left(i, j)
rightO f < Right(i,j)
above < Above(i, j)
below <= Below(i, j)
angle < Angle(segmlImage, i, j)
near < Near(r;,r;)
far <= Far(r;,r;)
distanceCentroid < DistanceCentroid(segmImage,i, j)
singleLinkage < SingleLinkage Distance(r;, ;)
averageLinkage <= AverageLinkageDistance(r;,r;)
completeLinkage <= CompleteLinkageDistance(r;,r;)
featureVector.insert(leftOf)
featureVector.insert(rightO f)
featureVector.insert(above)
featureVector.insert(below)
featureVector.insert(angle)

featureVector.insert(near)

(

(

(

(

(
featureVector.insert(far)
featureVector.insert(distanceCentroid)
featureVector.insert(singleLinkage)
featureVector.insert(average Linkage)
featureVector.insert(complete Linkage)

(

featureVector.insert(hoa)

return featureVector
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3.3 Database Populator

The second sub-block of our image mining system is the database populator
which is responsible for generating and executing SQL queries for images, region
features, pairwise relationship features etc. It is the only part of our image mining
system who has a write access to our database. Its block diagram can be seen in

Figure 3.3.

Database Populator

Figure 3.3: Block Diagram of the Database Populator

There are three sub-blocks of database populator such as database, table

creator and data inserter.

3.3.1 Database

We have MySQL database to store features and other required information for
image mining. Entity - Relationship (ER) diagram of our database is shown in

Figure 3.4 and 3.5. ER diagram is divided into two parts to increase readability.
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Figure 3.4: First Part of the ER Diagram of the Image Mining System Database
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Figure 3.5: Second Part of the ER Diagram of the Image Mining System Database

As can be seen in Figure 3.4 and 3.5, we have ImageTypes, DataSets,
Images, Regions, PairwiseRels, RegionFeatureGroups, DistanceMetrics, Pair-
wiseRelFeature Group DistanceMethods, PairwiseRelsFeatureGroups and Region-
FeatureGroupDistanceMethods tables in our database. We have designed our
database considering the capabilities and restrictions that are mentioned in Sec-
tion 3.1.

Our database satisfies the desired capability items la (i.e. Feature vector
should consist of sub-feature groups) and lc (i.e. Each sub-feature group can
be selected/deselected for similarity calculation) by giving the ability to group
columns of Regions and PairwiseRels tables with RegionFeatureGroups and Pair-
wiseRelFeature Groups tables. It also satisfies the desired capability item 1b (i.e.

Each sub-feature group can have different distance metric) by giving the ability to
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assign different distance metric id to different group with RegionFeature GroupDis-
tanceMethods and Pairwise RelFeature GroupDistanceMethods tables. It does not
restrict to have one column in a different groups (i.e. single column can be in a
different group) therefore it satisfies the desired capability items 1d (i.e. Items
of sub-feature group can be selected /deselected for similarity calculation) and 1le
(i.e. Items of sub-feature group can have different similarity metric if they have
selected separately not as a group). By storing distance metrics of the feature
groups in the database, it satisfies the desired capability item 1f (i.e. Distance
metric of sub-feature group can be changed without need for re-compilation of
the image mining program). Direction column of PairwiseRels table is exists to
satisfy the desired capability item 2 (i.e. Pairwise relations can be asymmetric).
Type of the BandMeans column of the Regions table is set to BLOB to satisfy
the desired capability item 3 (i.e. Number of bands can be different from one
dataset to another therefore size of band means can be different from one image
to another) and 4 (i.e. System should support future dataset insertions to the
database without changing the any meta-data because of number of bands of that
dataset images). Database has only one table to have distance metric definition
which DistanceMetrics table and this satisfies the desired capability item 5 (i.e.

System should have one distance calculator which handles all metrics).

In addition to desired capability items, our database also satisfies the de-
sign restriction items. DataSets table has non-primary key column named Im-
ageTypeld which determines the number of bands of the image therefore it sat-
isfies the design restriction item 1 (i.e. Images in same dataset must have same
number of bands). It also satisfies the design restriction item 2 (i.e. Image must
belong to only one dataset) because Images table has non-primary key column
named DataSetld which determines the data set of the image. Database does
not have any restriction to satisfy the design restriction item 3 (i.e. Search can
be performed only in intra-dataset), this restriction will be satisfied by the image

mining program.

It can be seen from the table definitions, for the variable length features we
use the data type BLOB which is abbreviation of Binary Large OBject that can

store a variable amount of data. We have two columns that have this type which
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are BandMeans column of the Regions table and AngleHistogram column of the
PairwiseRels table. Both BandMeans and AngleHistogram data consist of set of
doubles therefore we convert each item of them to the IEEE 754 64bit double
precision binary floating point format [30], and store those data as a byte array

in the database.

3.3.2 Table Creator

Table creator is a routine that exists in the database populator. It creates tables of
the database which is explained in Section 3.3.1. While creating tables it considers

the dependencies between tables. Its pseudo-code can be seen in Algorithm 3.5.

Algorithm 3.5 Pseudo-code of the Table Creator
Input: —
Output: —

connection < EstablishConnectionToDatabase()

CreatelmageTypesTable()

CreateDataSetsTable()

CreateImageT able()

CreateRegionsTable()

Create PairwiseRelsTable()
CreateDistance M etricsTable()

Create Region FeatureGroupsTable()
CreateRegionFeatureGroupsDistance M ethodsT able()
Create PairwiseRel FeatureGroupsTable()

Create Pairwise Rel FeatureGroupDistance M ethodsT able()

close(connection)

3.3.3 Data Inserter

Data inserter routine is responsible for populating database whose tables are

created with the routine that is explained in Section 3.3.2. Firstly, it inserts
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configuration data which is stored in tables PairwiseRelFeatureGroups, Region-
FeatureGroups, DistanceMetrics, RegionFeatureGroupDistanceMethods, Pairwis-
eRelFeature GroupDistanceMethods and ImageTypes. Then it inserts region fea-
tures and pairwise relationship features to the database. Its pseudo-code can be

seen in Algorithm 3.6.

Algorithm 3.6 Pseudo-code of the Data Inserter
Input: —
Output: —

connection < EstablishConnectionToDatabase()

PopulateCon figurationT ables()
for all Dataset D, do
InsertToDatasetsTable(D,,)
for all Image I, € D, do
InsertTolmagesT able(Iy)
segmlImage < load(segmly,)
for all Region r; € segmImage do
regionFeature <= load(regionFeature;)
InsertToRegionsTable(regionFeature)
for all Region r; € segmlImage do
if ¢ # j then
pairwiseRelationFeature < load(pairwiseRel Feature;;)
InsertToPairwiseRelsTable(pairwise Relation Feature)
end if
end for
end for
end for
end for

close(connection)

Configuration data in our database consist of distance metric definitions, fea-
ture groups of region features and pairwise relationship features; and distance

metrics of those feature groups. Defined distance metrics in our system can be
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seen in Table 3.1. Each distance metric has a unique id and a name. Formulations

of the mentioned distance metrics can be seen in Section 2.4.

Distance Metric Id | Metric Name
1 Euclidean

2 Manhattan

3 Chebyshev

4 Discrete

5 Angle

Table 3.1: Definition of the Distance Metrics in the Image Mining System

Region feature groups are defined in our database and each group has its
own distance metric for similarity calculation. Region feature groups and their
distance metrics can be seen in Table 3.2. In this table, column index refers to
the Regions table of our database, distance metric id refers to distance metric id
column of the Table 3.1.
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Group Name Group Id | Column Distance
Index Metric Id
Centroid ! i !
1 )
Centroid-X 2 4 2
Centroid-Y 3 5 2
4 6 3
Bounding Box ! !
4 8
4 9
Bounding Box UL-X | 5 6 2
Bounding Box UL-Y | 6 7 2
Bounding Box BR-X | 7 8 2
Bounding Box BR-Y | 8 9 2
Area 9 10 2
Orientation 10 11 )
Class 11 12 4
Band Means 12 3 1
13 13 1
Mean RGB 13 14
13 15
Mean R 14 13 2
Mean G 15 14 2
Mean B 16 15 2
Mean Intensity 17 16 2

Table 3.2: Groups and Distance Metrics of the Region Features
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refers to distance metric id column of the Table 3.1.

In our database, pairwise relationship feature groups are also defined and each
group has its own distance metric for similarity calculation. Pairwise relationship
feature groups and their distance metrics can be seen in Table 3.3. In this table,

column index refers to the PairwiseRels table of our database, distance metric id




Group Name Group Id | Column Distance
Index Metric Id
Left 1 6 2
Right 2 7 2
Above 3 8 2
Below 4 9 2
Near 5 10 2
Far 6 11 2
Distance Centroid | 8 13 2
Single Linkage 9 14 2
Complete Linkage | 10 15 2
Average Linkage | 11 16 2
Angle 12 17 5
Angle Histogram | 13 18 1

Table 3.3: Groups and Distance Metrics of the Pairwise Relationship Features

3.4 Image Mining Program

The last sub-block of our image mining system is the image mining program which
is responsible for communicating with the database according to the user activities
and performing search with given parameters. It is a GUI based application

developed with the Qt framework. Its block diagram can be seen in Figure 3.6.
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Image Mining Program

Figure 3.6: Block Diagram of the Image Mining Program

We have grouped all classes of the program into two packages which are Log-
icPackage and UserInterfacePackage. LogicPackage package consists of classes
that implement the logic of our system and communicate with the database which
is explained in Section 3.3. UserInterfacePackage package contains classes that
are responsible for creating GUI and interacting with user according to user’s

activities. They use classes of the LogicPackage package when needed.

3.4.1 Logic Package

First part of the class diagram of the image mining program which shows the

classes of the LogicPackage package can be seen in Figure 3.7.
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Figure 3.7: First Part of the Class Diagram of the Image Mining Program

As can be seen from Figure 3.7, LogicPackage package has BaseFeature, Fea-
ture, RegionFeature, RegionGroup, Image, PairwiseRelationsFeature, Database-

Manager, DatabaseFactory and Query classes.

BaseFeature class is an abstract class that contains a function that computes
distance between another BaseFeature typed object and stores the type id of the
type that is fed to template Feature while declaration of the Feature typed object.
Feature is a template that extends BaseFeature class and has extra fields such as
data field and distance metric field. Data field is used to store values and distance
metric field is used for distance metric differentiation of the feature sub-groups.
It has a function that computes distance between another Feature typed object

according to its distance metric field. RegionFeature class is a class that uses
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Feature class and it contains fields that correspond to the fields of the Region-
Feature table that is explained in Section 3.3. In addition to those fields, it has
usedFeatures field that stores selected feature sub-group during query generation
by the user. It has also a function named calculateDistance that calculates dis-
tance between two RegionFeature typed object using usedFeatures field of them.
Another class that uses Feature class is PairwiseRelationsFeature class. It has
fields that correspond to the fields of the PairwiseRels table that is explained
in Section 3.3. It has a usedFeatures field that is used for the same reason with
the usedFeatures field of the RegionFeature class and calculateDistance function
to calculate distance between the another PairwiseRelationsFeature typed object

based on the usedFeatures field.

RegionGroup class is designed to represent region groups that are used for
query region group and resultant region groups from search. It is also used for
calculating distance between two region groups with its calculateDistance func-
tion. If we think a region group as a graph, then regions will be vertices of this
graph and pairwise relations will be edges of this graph. Therefore, RegionGroup
class has two fields such as vertices and edges. wvertices field is a vector typed
object which stores the references of the RegionFeature typed objects and edges
fields is also a vector typed object but it stores the references of the Pairwis-
eRelationsFeature typed objects. Image class stores the data of the Images table
that is explained in Section 3.3. DatabaseManager class is the only class that
communicates with our database. All other classes that need information from
the database use this class to get information from the database. We need to use
DatabaseManager class in most of the classes we have, therefore we implement
Singleton and Factory patterns which is explained in [31] for this class. Database-
Factory class implements those patterns. It is a static class and it has a private
static reference to a DatabaseManager typed object. Other classes that need to
a DatabaseManager typed object calls the getDatabaseManager function of the

DatabaseFactory class. This function’s pseudo-code can be seen in Algorithm 3.7.
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Algorithm 3.7 getDatabaseManager Function of the DatabaseFactory class

Input: —
Output: dbManager (reference to a DatabaseManager typed object)
if dbManager = null then
dbManager < new Database M anager()
end if

return dbManager

Query class is responsible for performing search on the database with a given
query region group. It has a function named searchRegionGroups that takes a
region group and performs search then returns the list of region groups that are
sorted according to their distances to given query region. This function uses three
private functions such as findSimilarRegions, formRegionGroups and sortRegion-
Groups. findSimilarRegions function gets a region and finds the most n similar
regions to the given region according to selected features of the given region.
formRegionGroups function gets similar regions of the regions of the query region
group and generates region groups according to the pairwise relations between
regions of the query region group. sortRegionGroups function takes generated re-
gion groups by the formRegionGroups function and sorts them according to their
distance to the query region group. Finally, sorted region groups are returned by
the searchRegionGroups function. n value in the findSimilarRegions function is

set to 20 during experiments.

3.4.2 User Interface Package

Second part of the class diagram of our image mining program which shows the

classes of the UserInterfacePackage package can be seen in Figure 3.8.
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Figure 3.8: Second Part of the Class Diagram of the Image Mining Program

As can be seen from Figure 3.8, UserInterfacePackage package has Image-
Label, MainPage, SearchResultPage, AngleHistogram, PairwiseRelationFeature-

Handle and RegionFeatureHandle classes.

MainPage class is responsible for creating the main page of the image mining
program and handles events that are performed by the user on this page. Sample
screen-shot from the main page of the image mining program can be seen in

Figure 3.9.
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Figure 3.9: Sample Screen-shot from the Main Page of the Image Mining Program

MainPage class firstly retrieves the image list from the database using an
object typed DatabaseManager. Then it populates Image List list which is located
on the left part of the main page. Users can see the list of the images in the
database and select one of them to perform search. Some part of the image list

can be seen in Figure 3.10.
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Figure 3.10: Sample Screen-shot of the Image List of the Main Page

When the user selects different image from the image list, program shows the
bigger version of the image in the middle part of the main page whose title is
Image. This area is handled by the ImageLabel typed object. When the user left
clicks a region on the image area, this object finds the id of the region and shows

clicked region by darkening other regions. Result of this process can be seen in
Figure 3.11.
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Figure 3.11: Sample Screen-shot of the Clicking a Region Process on the Main

Page

This object also handles the right clicks on the region. If the user right clicks

on a region, it will create a context menu like in the Figure 3.12.
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Figure 3.12: Sample Screen-shot of the Right Clicking a Region Process on the
Main Page

Then the user can choose one of the options such as Select as search region
or View Region Features. If user chooses View Region Features option, a Region-
FeatureHandle typed object will be created and its showRegionFeature function
will be called. This function creates a dialog that user can see the values of the

features of the selected region. This dialog can be seen in Figure 3.13.
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Image

Region Id: 726

Image Id: 2

Band Means: 503.883, 338,243, 490.379, 686.748, 397,757, 758,233, 509.563, 755.99
Centroid: 80, 141

Bounding Box: 74, 134, 14, 14

Area: 103

Qrientation: 23,9583

Class Label: 1

Mean RGE: 175.767, 99,5146, 91.0291
Mean Intensity: 121.35

Figure 3.13: Sample Screen-shot of the View Region Features Dialog on the Main
Page

If the user chooses Select as search region option on the context menu, a Re-
gionFeatureHandle typed object will be created and its selectUsedItems function
will be called. This function creates a dialog that user can choose which features
will be used for searching similar regions to the selected region. This dialog can

be seen in Figure 3.14.
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[Save and Close ] | Cancel

Figure 3.14: Sample Screen-shot of the Select Region Features Dialog on the
Main Page

If the user chooses at least one of the features on the dialog and clicks Save
and Close button, the region will be selected into the query regions list and it is
displayed on the list whose title is Region List which is located on the right part

of the main page. This list can be seen in Figure 3.15.
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Figure 3.15: Sample Screen-shot of the Selected Regions List of the Main Page

If the user double clicks on any region on the list, selectUsedItems function
of the RegionFeatureHandle class will be called with the reference of the Region-
Feature typed object. This function creates a dialog that displays the selected
features of the region for similarity calculation. This dialog can be seen in Fig-
ure 3.16. User can select new features or clear selected features and when s/he

presses Save and Close button, his/her new choices are saved.
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Figure 3.16: Sample Screen-shot of the Change Selected Features Process on the
Region Feature Dialog on the Main Page

If the user right clicks on any region on the list, context menu will be displayed
like in the Figure 3.17. If View Region Features option is clicked, same action
will be performed and same dialog will be shown with Figure 3.13. If Remowve
From List option is clicked, selected region will be removed from the Region List
and it will be no more included in the search process until it is reselected like in
Figure 3.14.
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Figure 3.17: Sample Screen-shot of the Context Menu of the Selected Regions
List

When the Region List contains at least two regions, the user can define region
pairs by selecting those regions by pressing ctrl button on the keyboard. Then
a PairwiseRelationFeatureHandle typed object is created and its showPairwis-
eRelationFeature function is called. This function creates a dialog like in the
Figure 3.18
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Figure 3.18: Sample Screen-shot of the Show Pairwise Relationship Feature Dia-
log on the Main Page

Region 1 and region 2 are determined by the order of the selection of two
regions. Namely, region 1 is the region that the user selects first. Features other
than the angle histogram feature are displayed as scalar value but angle histogram
feature is decided to display as a histogram plot. If the user selects at least one

feature to be used in the similarity calculation and presses Save and Close button,
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their pairwise relationship will be added to the list whose title is Region Pairs
List. This list is located on the right part of the main page. This list can be seen
in Figure 3.19.

» i ™ L2 [

Region List Region Pairs List

713-2726

|Region 713 |

Figure 3.19: Sample Screen-shot of the Region Pairs List of the Main Page

If the user double clicks on any region pair on the list, selectUsedItems function
of the PairwiseRelationFeatureHandle function will be called with a reference of
the PairwiseRelationsFeature typed object. This function creates a dialog that
displays the selected features of the pairwise relationship feature for the similarity
calculation. This dialog can be seen in Figure 3.20. The user can select new
features or clear selected features and when s/he presses Save and Close button,

his/her new choices will be saved.
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Figure 3.20: Sample Screen-shot of the Change Selected Features Process on the

Pairwise Relationship Feature dialog on the Main Page

If user right clicks on any region pair on the list, context menu will be displayed
like in the Figure 3.21. If Remove From List option is clicked, selected region
will be removed from the Region Pairs List and it will be no more included in

the search process until it is reselected like in the Figure 3.18.
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Figure 3.21: Sample Screen-shot of the Context Menu of the Selected Region
Pairs List

If Show Regions option is clicked on the context menu, pixels that belong to
region 1 will be colored as red and pixels that belong to region 2 will be colored
as blue on the image that is displayed at the middle of the main page. Result of

this action can be seen in Figure 3.22.
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Figure 3.22: Sample Screen-shot of the Show Regions Process on the Main Page

When the user finishes to prepare a query by following above steps, s/he is
needed to press Start Search button which is located on bottom right of the main

page to start a search. It is shown in Figure 3.23.
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Figure 3.23: Sample Screen-shot of the Start Search Button of the Main Page

F

When this button is pressed, a RegionGroup typed object is created with
the selected regions and selected region pairs, and their selected features. Then
searchRegionGroups function of the Query class is called with this object and
search results are taken as a return value of this function. Finally an object of
SearchResultPage is created with resultant region groups to display search results

to the user. Sample search result page can be seen in Figure 3.24.
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Figure 3.24: Sample Screen-shot of the Sample Search Result Page of the Image

Mining Program

This page is very similar to the main page but this page is a read only page
in which users can only see the resultant region groups and they do not make
any modifications on them. Users can double click the items in Region List and
Region Pairs List and see the features of the regions like in Figure 3.13 and

features of the pairwise relationships like in Figure 3.25.
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Figure 3.25: Sample Screen-shot of the Show Pairwise Relationship Feature Dia-
log on the Search Result Page
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Chapter 4

Experiments and Results

4.1 Experiment Setup

In our system, we use 8-band multi-spectral WorldView-2 images of Ankara,
Turkey. We split those images into sub-images with 800 x 800 pixels so we have
24 images of 800 x 800 pixels size. Regions table has 53700 entries in total so
on average, we have 2237 regions in an image. PairwiseRels table has 59,742,514
entries which means that each region has 1112 pairwise relationship with other
regions on average. When we look at the average region count of the image, we
need to have 2236 pairwise relationships of a region on average but we have half of
them. This shows us that our elimination logic that is described in Section 3.2.3
works and it decreases the storage size by half and we have 30.1 GB MySQL

database.

Experiments are done on a PC with an Intel 15 Quad Core 2.67 GHz CPU,
12 GB RAM, and running 64-bit Windows 7 operating system.
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4.2 Experiments

In this section we give some search queries and their search results in several
scenarios. In the first scenario, we perform only region based search. To do
this we select two regions from one image and we do not define any pairwise

relationship between selected regions. We use one of the image in our dataset

whose id is 1. Selected image can be seen in Figure 4.1.

Figure 4.1: Selected Image for the Search Scenario 1

We select two regions from this image. The first region and its features can
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be seen in Figure 4.2.

Reqion Id:

Image Id: 1

Band Means: 402,782, 236.148, 314.829, 292,435, 126.676, 566.086, 621.29, 939.306
Centroid: 183, 660

Bounding Box: 41, 578, 233, 224

Area: 7308

Orientation: -37.242

Class Label: 1

Mean RGE: 10.7854, 18,39, 9.742561

Mean Intensity: 15.14

Figure 4.2: Selected First Region for the Search Scenario 1

This region is a vegetation area whose id is 6. The second region and its

features can be seen in Figure 4.3.
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# | Region Features

Region Id: 1503

Image Id: |

Band Means: 524.457, 362,955, 509.854, 581.52, 308.074, 558.94, 373.441, 551.771
Centraid: 239, 572

Bounding Box: 174, 457, 153, 223

Area: 2717

Orientation: -56.6149

Class Label: 1

Mean F.GB: 121.159, 108.489, 110.733

Mean Intensity: 112,532

Figure 4.3: Selected Second Region for the Search Scenario 1

This region is a part of a road and its id is 1503. When we press the start
search button, our image mining system returns 8 results and top 3 search results

can be seen in Figure 4.4, 4.5 and 4.6 respectively.
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Figure 4.4: First Result in the Search Results of the Search Scenario 1 (Image
Id:1, Region 1 Id: 7, Region 2 Id: 1503)

In the first search result, same image with the image that query region group
belongs to is returned. In this result, one region is a vegetation area which is
colored as cyan and the second region is a road area which is colored as dark

cyan.
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Figure 4.5: Second Result in the Search Results of the Search Scenario 1 (Image
1d:10, Region 1 Id: 3, Region 2 Id: 1404)

In the second search result, a region group in the image with id 10 is returned.
The first region is a vegetation area which is colored as cyan and the second region

is a road area which is colored as dark cyan.
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Figure 4.6: Third Result in the Search Results of the Search Scenario 1 (Image
Id: 24, Region 1 Id: 336, Region 2 Id: 1877)

In the third search result, a region group in the image with id 24 is returned.
The first region is a vegetation area which is colored as cyan and the second

region is a road area which is colored as dark cyan.

In the second scenario, we perform search with two regions and one pairwise
relationship from one region to other region. To do this we select two regions
from one image and we define a pairwise relationship between selected regions.
We use one of the image in our dataset whose id is 11. Selected image can be

seen in Figure 4.7.
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Figure 4.7: Selected Image for the Search Scenario 2

We select two regions from this image. The first region and its features can

be seen in Figure 4.8.
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Region Id: 2223
Image Id: 11
Band Means: 441,956, 276.08, 348.229, 373.118, 190.45, 355.35, 242.026, 369.24

Centroid: 615, 357

Bounding Box: 548, 302, 147, 108

Area: 3294

Orientation: -26,0592

Class Label: 1

Mean RGE: 44,5933, 33.868, 41.4813
Mean Intensity: 39.438

Figure 4.8: Selected First Region for the Search Scenario 2

This region is a land area whose id is 2228. The second region and its features

can be seen in Figure 4.9.
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Region Id: 2229

Image Id: 11

Band Means: 512.049, 342,773, 457.534, 436.0588, 255.519, 472,956, 320.12, 468,754
Centroid: 611, 535

Bounding Box: 552, 517, 110, 41

Area: 1117

Orientation: -16.6916

Class Label: 1

Mean RGE: 89,1826, 84,3115, 94.6352

Mean Intensity: 85.9418

Figure 4.9: Selected Second Region for the Search Scenario 2

This region is a part of a road and its id is 2229. Pairwise relationship for
this query is directed from the region with id 2229 to the region with id 2228. TIts

features can be seen in Figure 4.10.
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Figure 4.10: Defined Pairwise Relationship for the Search Scenario 2

When we press the start search button, our image mining system returns
6 results and top 3 search results can be seen in Figure 4.11, 4.12 and 4.13

respectively.
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Figure 4.11: First Result in the Search Results of the Search Scenario 2 (Image
1d:19, Region 1 Id: 1014, Region 2 Id: 1490)

In the first search result, a region group in the image with id 19 is returned.
The first region is a land area which is colored as cyan and the second region is

a road area which is colored as dark cyan.
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Figure 4.12: Second Result in the Search Results of the Search Scenario 2 (Image
1d:19, Region 1 Id: 1174, Region 2 Id: 1490)

In the second search result, a region group in the image with id 19 is returned.
The first region is a land area which is colored as cyan and the second region is

a road area which is colored as dark cyan.
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Figure 4.13: Third Result in the Search Results of the Search Scenario 2 (Image
1d:23, Region 1 Id: 1683, Region 2 Id: 1688)

In the third search result, a region group in the image with id 23 is returned.
The first region is a land area which is colored as cyan and the second region is

a road area which is colored as dark cyan.

In the third scenario, we perform search with three regions and three pairwise
relationships. To do this we select three regions from one image and we define
some pairwise relationships between selected regions. We use one of the image in

our dataset whose id is 20. Selected image can be seen in Figure 4.14.
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Figure 4.14: Selected Image for the Search Scenario 3

We select three regions from this image. The first region and its features can

be seen in Figure 4.15.

84



Fegion Id: 1542

Image Id: 20

Band Means: 548,092, 378.215, 517838, 568.882, 295.712, 523.459, 340.337, 494.467
Centroid: 577, 469

Bounding Box: 547, 386, 59, 145

Area: 2270

QOrientation: 84,3821

Class Label: 1

Mean RGE: 113.637, 112,175, 122,893

Mean Intensity: 113.324

Figure 4.15: Selected First Region for the Search Scenario 3

This region is a part of a road whose id is 1542. The second region and its

features can be seen in Figure 4.16.
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Reqion Id: 140

Image Id: 20

Band Means: 421.043, 251.476, 345.036, 323,618, 140.188, 607.675, 590.743, 878,154
Centroid: 569, 411

Bounding Box: 554, 371, 35, 78

Area: 720

Crientation: 64,9994

Class Label: i

Mean RGE: 18,9847, 32,3347, 21.9556

Mean Intensity: 27 1694

Figure 4.16: Selected Second Region for the Search Scenario 3

This region is a vegetation area whose id is 140. The third region and its

features can be seen in Figure 4.17.
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[ i '| Region Feature EE

Region Id: 1485

Image Id: 20

Band Means: 440,208, 279,701, 365.434, 308.832, 207,444, 416,484, 298,433, 459,191
Centroid: 475, 417

Bounding Box: 405, 283, 132, 230

Area: 7810

Orientation: 78.7/942

Class Label: |

Mean RGEB: 59.923, 41.77/04, 44.3534

Mean Intensity: 475047

Figure 4.17: Selected Third Region for the Search Scenario 3

This region is a land area and its id is 1485. The first pairwise relationship
for this query is directed from the region with id 1542 to the region with id 140.

Its features can be seen in Figure 4.18.
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Figure 4.18: Defined First Pairwise Relationship for the Search Scenario 3

The second pairwise relationship for this query is directed from the region

with id 140 to the region with id 1485. Its features can be seen in Figure 4.19.
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Pairwize Relation
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Figure 4.19: Defined Second Pairwise Relationship for the Search Scenario 3

The third pairwise relationship for this query is directed from the region with
id 1542 to the region with id 1485. Its features can be seen in Figure 4.20.
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Figure 4.20: Defined Third Pairwise Relationship for the Search Scenario 3

When we press the start search button, our image mining system returns
6 results and top 3 search results can be seen in Figure 4.21, 4.22 and 4.23

respectively.
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S =

Image List Image Region List

Region Pairs List

Region 105
Region 1398

Region 1404

105->1398

1404->105

1404->1398

Figure 4.21: First Result in the Search Results of the Search Scenario 3 (Image

1d:10, Region 1 Id: 105, Region 2 Id: 1398, Region 3 Id: 1404)

In the first search result, a region group in the image with id 10 is returned.

The first region is a vegetation area which is colored as cyan, the second region

is a land area which is colored as dark cyan and the third regions is a road area

which is colored as white.
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Image List Image Region List

Region Pairs List
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Region 1384

Region 1404

105->1384
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1404->1384

Figure 4.22: Second Result in the Search Results of the Search Scenario 3 (Image

1d:10, Region 1 Id: 105, Region 2 Id: 1384, Region 3 Id: 1404)

In the second search result, a region group in the image with id 10 is returned.

The first region is a vegetation area which is colored as cyan, the second region

is a land area which is colored as dark cyan and the third regions is a road area

which is colored as white.
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Region 356 356->1671
Region 1671 2147->356

Region 2147 2147->1671

Figure 4.23: Third Result in the Search Results of the Search Scenario 3 (Image
Id:11, Region 1 Id: 356, Region 2 Id: 1671, Region 3 Id: 2147)

In the third search result, a region group in the image with id 11 is returned.
The first region is a vegetation area which is colored as cyan, the second region
is a land area which is colored as dark cyan and the third regions is a road area

which is colored as white.

Execution times of the system in some search scenarios can be seen in Ta-

ble 4.1.
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Scenario| # of Query | # of Pairwise | # of Returned | Execution
Id Regions Relationships Results Time (sec)
a 1 0 19 0.651
b 2 0 8 1.268
c 2 1 14 1.332
d 2 2 14 1.341
e 3 0 13 1.904
f 3 1 4 1.914
g 3 2 4 1.922
h 3 3 2 1.953
i 4 0 40 2.882
j 4 1 15 2.889
k 4 2 7 2.964
1 4 3 3 2.981
m 4 4 3 3.022
n 4 5 3 3.123
0 4 6 3 3.142

Table 4.1: Execution Times of the System in Some Search Scenarios

In this table, the first column represents the id of the scenario that is per-
formed, the second column represents the number of regions that are selected
as query regions, the third column represents the number of pairwise relation-
ships that are defined between selected regions, the fourth column represents the
number of region groups that are returned from the system as a result of the
search, and the fifth column represents how much time that search process takes

in seconds.

If we look at the results, we can easily say that the system finishes the search
process and returns the search results in a short amount of time. By considering
the scenarios a,b,e, and i we can say that the number of query regions has a

major impact on the execution time. Scenarios i, j, k, 1, m, n and o show that the
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number of pairwise relationships also has effect on the execution time but not as

much as the number of query regions. These relationships can be seen clearly in
Figure 4.24.
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Figure 4.24: Execution Time vs # of Query Regions and # of Pairwise Relation-
ships Plot

Blue curve shows the relationship between execution time and the number of
query regions when the number of pairwise relationships is fixed. Red curve shows
the relationship between execution time and the number pairwise relationships
when the number of query regions is fixed. This plot graphically says that, the

number of query regions has much more impact on the execution time.

We have some parameters in our system which have a direct impact on the
execution time of the search such as the parameter that defines how many similar
regions will be found for each selected query region. As stated in Section 3.4.1,
this parameter is set to 20. We determine this value with the help of some
experiments. If you decrease this value too much (like 5), the system will not
return any search results most of the time. On the other hand, if you increase this

value too much (like 50), execution time of the search will increase dramatically.
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This variable also has effect on the effectiveness of the system. For instance,
let us change the scenario 2 little bit such as instead of selecting angle feature of
the pairwise relationship, let us select below feature of the pairwise relationship
which should give results such that retrieved road areas will be below retrieved
land areas. When the value of the variable is set to 20, system returns 6 results

that are shown in Figure 4.25.

o
\ e

Figure 4.25: Search Results 1-6 When 20 Similar Regions of the Query Regions

are Retrieved During Search

When the value of the variable is set to 50, system returns 46 results and top

12 of them are shown in Figure 4.26.
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Figure 4.26: Search Results 1-12 When 50 Similar Regions of the Query Regions

are Retrieved During Search

97



In those images, red colored areas represent the land areas and blue colored
areas represent the road areas. For the first case, in 1 of 6 results, the road
area is above the land area which is the undesired case. The proportion of the
undesired cases to the total number of results for this case is 1/6 = 16.6%. Since
it is located at the last, we can say that system works well on sorting the results.
For the second case, we have no undesired region groups in top 12 but we have
9 undesired region group at end of the search results list. The proportion of the
undesired cases to the total number of results for this case is 9/46 = 19.5%. We
can infer that, increasing this value may increase the proportion of the undesired
cases but since it increases the number of search results, the probability of getting

undesired case in the top results gets lower.
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Chapter 5

Conclusion and Future Work

In this thesis, we presented a novel, generic and extendable image mining system
that performs content based image retrieval (CBIR). In this system, WorldView-2
8 band multi-spectral images are used for mining. We have divided our system

into three parts such as feature extraction, database population and retrieval.

Firstly, images of our dataset are segmented using the approach that is de-
veloped by Pesaresi and Benediktsson [15]. Then features of the regions of the
images are extracted. We also extract pairwise relationship features of the regions

between each other.

Secondly, we populate those data to our MySQL database for efficient retrieval
of those features. In our database we also store some configuration data such as
definitions of the sub-feature groups and distance metrics of them. By these
definitions, our system has a novel feature vector structure such that a feature
vector can consist of several sub-feature vectors and each sub-feature vector can
have different distance metrics to be used in comparisons. In a feature vector,
there can be values which belong to the different domains. For instance, in our
region feature, we have centroid information which is in Cartesian coordinates
and orientation feature which has angle based values. Presented feature vector

structure gives ability to system that the centroid information can be compared
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using the Euclidean distance metric and the orientation information can be com-
pared using an angle based distance metric. Therefore, this structure yields us
to use feature vectors effectively in our system. In addition to this, this feature
vector structure gives us ability to exclude easily some values of the feature vector
to increase retrieval efficiency. For instance, if a user wants to retrieve regions
which are similar to a selected region based on color or area or both of them,

s/he can easily select those sub-features respectively to retrieve desired regions.

In the system, search queries can include multiple regions with different se-
lected sub-features and multiple pairwise relationships of regions between each
other with different selected sub-features. In other words, our search query is a
directed graph whose vertices are selected regions and edges are pairwise rela-

tionships of selected regions.

Our experiments show that the approach in this thesis gives promising search
results. Better segmentation results will make the system more effective. As a
future work, although we have indexing on the primary keys of feature vectors,
we will also index each sub-feature vector to improve search time of our system.
In our system, we check the distance of the bounding boxes of the regions be-
fore constructing pairwise relationship feature vector of those regions. If this
distance is above a predefined threshold, we do not extract and store pairwise
relationships of corresponding regions. This logic, decreases our preprocessing
time and storage for pairwise relationship features dramatically but as a future
work, we will change this pairwise relationship calculation and storage logic such
that we will calculate pairwise relationship of each region with two virtual points,
and pairwise relationship of any two real region will be constructed using those
relationship data of two regions with virtual regions. Therefore, our storage com-
plexity of pairwise relationships will decrease from O(N?) to O(N). One drawback
of this work is that it will increase our search time of a given query but indexing

mechanism will probably compensate it.

Another future work that we will do is to add functionality to our query
processing and handling mechanism that a group of regions can be compared

with a single object. For instance, for a query region group which consists of
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buildings, roads, vegetation areas, the system will be able to return a region that

represents a campus area.
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