
THREE-DIMENSIONAL INTEGRAL
IMAGING BASED CAPTURE AND DISPLAY

SYSTEM USING DIGITAL
PROGRAMMABLE FRESNEL LENSLET

ARRAYS

a dissertation submitted to

the department of electrical and electronics

engineering

and the Graduate School of engineering and science

of bilkent university

in partial fulfillment of the requirements

for the degree of

doctor of philosophy

By
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ABSTRACT

THREE-DIMENSIONAL INTEGRAL IMAGING BASED
CAPTURE AND DISPLAY SYSTEM USING DIGITAL
PROGRAMMABLE FRESNEL LENSLET ARRAYS

Ali Özgür YÖNTEM

PhD. in Electrical and Electronics Engineering

Supervisor: Prof. Dr. Levent ONURAL

December, 2012

A Fresnel lenslet array pattern is written on a phase-only LCoS spatial light mod-

ulator device (SLM) to replace the regular analog lenslet array in a conventional

integral imaging system. We theoretically analyze the capture part of the pro-

posed system based on Fresnel wave propagation formulation. Due to pixelation

and quantization of the lenslet array pattern, higher diffraction orders and mul-

tiple focal points emerge. Because of the multiple focal planes introduced by the

discrete lenslets, multiple image planes are observed. The use of discrete lenslet

arrays also causes some other artefacts on the recorded elemental images. The

results reduce to those available in the literature when the effects introduced by

the discrete nature of the lenslets are omitted. We performed simulations of the

capture part. It is possible to obtain the elemental images with an acceptable

visual quality. We also constructed an optical integral imaging system with both

capture and display parts using the proposed discrete Fresnel lenslet array writ-

ten on a SLM. Optical results, when self-luminous objects, such as an LED array,

are used indicate that the proposed system yields satisfactory results. The re-

sulting system consisting of digital lenslet arrays offers a flexible integral imaging

system. Thus, to increase the visual performance of the system, previously avail-

able analog solutions can now be implemented digitally by using electro-optical

devices. We also propose a method and present applications of this method that

converts a diffraction pattern into an elemental image set in order to display

them on a display-only integral imaging setup. We generate elemental images

based on diffraction calculations as an alternative to commonly used ray tracing

methods. Ray tracing methods do not accommodate the interference and diffrac-

tion phenomena. Our proposed method enables us to obtain elemental images

from a holographic recording of a 3D object/scene. The diffraction pattern can

be either numerically generated or digitally acquired from optical input. The
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method shows the connection between a hologram (diffraction pattern) of a 3D

object and an elemental image set of the same 3D object. We obtained optical

reconstructions with a display-only integral imaging setup where we used a digi-

tal lenslet array. We also obtained numerical reconstructions, again by using the

diffraction calculations, for comparison. The digital and optical reconstruction

results are in good agreement. Finally, we showed a method to obtain an ortho-

scopic image of a 3D object. We converted an elemental image set that gives

real pseudoscopic reconstruction into another elemental image set that gives real

orthoscopic reconstruction. Again, we used wave propagation simulations for this

purpose. We also demonstrated numerical and optical reconstructions from the

obtained elemental image sets for comparison. The results are satisfactory given

the physical limitations of the display system.

Keywords: Imaging systems, multiple imaging, three-dimensional image acquisi-

tion.



ÖZET

SAYISAL PROGRAMLANABİLİR FRESNEL
MERCEKCİK DİZİLERİNİN KULLANILDIĞI
İNTEGRAL GÖRÜNTÜLEME TABANLI

ÜÇ-BOYUTLU GÖRÜNTÜ ÇEKİM VE GÖSTERİM

SİSTEMİ

Ali Özgür YÖNTEM

Elektrik ve Elektronik Mühendisliği, Doktora

Tez Yöneticisi: Prof. Dr. Levent ONURAL

Aralık, 2012

Geleneksel integral görüntüleme sistemlerinde analog mercekcik dizileri kullanılır.

Biz analog mercekcik dizileri yerine, ışığın yalnızca evresini deg̃iştirebilen silikon

üzerine sıvı kristal uzamsal ışık modülatörüne yazılmış sayısal Fresnel mercek-

cik dizisi örüntüsü kullandık. Böylece, önerilen sistemin çekim kısmını Fres-

nel dalga yayılımı ilintisi kullanarak kuramsal olarak çözümledik. Çözümün

sonuçları, mercekcik dizisi örüntüsünün pikselizasyonuna ve nicemlendirilme-

sine bağlı olarak, yüksek kırınım basamaklarının ve çoklu odak noktalarının

ortaya çıktığını gösteriyor. Ayrık mercekciklerin neden olduğu çoklu odak

düzlemlerinden dolayı, çoklu görüntü düzlemleri gözlenmektedir. Ayrıca bu

mercekcik dizileri, kaydedilen imgecikler üzerinde başka bozulmalara da neden

olmaktadır. Bu mercekciklerin kullanımından doğan etkiler ihmal edildiğinde,

sonuçlar literatürde bulunanlara indirgenmektedir. Görüntü çekim kısmının ben-

zetimlerini gerçekleştirdik. İmgecikleri, kabul edilebilir görüntü kalitesinde elde

etmek mümkün olduğu görülü. Belirtilen ayrık mercekcik dizisini hem çekim

hem de gösterim kısımlarında kullanarak, görünür ışıkta çalışan bir integral

görüntüleme sistemi de kurduk. Kurulan bu sistemde, ışıklı cisimler (örneğin bir

LED dizisi) kullanılarak görünür ışıkta tatmin edici sonuçlar elde ettik. Ayrık

mercekcik dizisinden oluşan bu yeni sistem, integral görüntüleme sistemlerine es-

neklik getirmektedir. Böylece, sistemin görsel performansını artırmak için, daha

önceki analog çözümler şimdi elektro-optik aygıtlarla sayısal olarak daha kolay

gerçekleştirilebilecektir. Bir kırınım örüntüsünü, bir imgecik kümesine çeviren

bir yöntem ve bu yöntemin uygulamalarını da inceledik. Belirtilen yöntemi kulla-

narak, kırınım örüntüsünden elde edilen imgecik kümelerini bir integral görüntü
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gösterim düzeneğine yazarak 3B görüntü elde ettik. Imgecik kümeleri, genel-

likle ışın izleme yöntemi kullanılarak elde edilir. Biz ise, buna bir alternatif

olarak, imgecikleri kırınım hesaplayarak elde ediyoruz. Işın izleme yöntemleri,

ışığın girişimi ve kırınımı olgularını gösteremezler. Önerdiğimiz bu yöntem, 3B

bir cismin veya sahnenin görünür ışıktaki holografik kaydından, imgeciklerini elde

etmemize olanak sağlamaktadır. Kırınım örüntüsü sayısal olarak üretilmiş ya da

görünür ışıkta sayısal olarak çekilmiş veriler olabilir. Bu yöntem, 3B bir cis-

min hologram (kırınım örüntüsü) ile aynı cismin bir imgecik kümesi arasındaki

bağıntıyı göstermektedir. Sayısal mercekcik dizisi ile çalışan bir integral görüntü

gösterim düzeneğinde, geriçatımlar elde ettik. Karşılaştırma amacıyla, yine

kırınım hesaplamaları kullanarak, sayısal geriçatımlar da elde ettik. Sayısal ve

optik geriçatım sonuçlarının biribirleri ile uyumlu olduğu gözlendi. Son olarak,

3B bir cismin ortoskopik derinlik görüntüsü veren görüntü geriçatımını elde et-

mek için başka bir yöntem daha geliştirdik. Bu yöntem ile, yanlış derinlik

görüntüsü veren (psedoskopik) geriçatım oluşturan bir imgecik kümesini, or-

toskopik geriçatım oluşturan başka bir imgecik kümesine çevirdik. Yine, bu

amaçla dalga yayılımı benzetimlerini kullandık. Sayısal ve görünür ışıktaki

geriçatım sonuçlarını da karşılaşılaştırdık. Sonuçların kalitesinin, görüntüleme

sisteminin fiziksel sınırları dahilinde, yeterli olduğu gözlendi.

Anahtar sözcükler : Görüntüleme sistemleri, çoklu görüntüleme, üç-boyutlu

görüntü çekimi.
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Chapter 1

INTRODUCTION

We live in a world of three dimensions if we exclude time and other hyper-

dimensions. Historically, the perceived 3D scenes were painted or drawn on 2D

surfaces. Only a very few people (artists) have the ability to reflect the scenes

with perfect perspective and life-like images to visually please the onlookers.

And only some brilliant ones, like Leonardo da Vinci and Giovanni Battista della

Porta, realized the 3D perception can be reflected on the canvas [1]. However,

the sculptors had the ability to replicate the scenes in 3D. After the invention of

photography, it became possible for most of the people to capture scenes. Now,

with the breakthroughs in the imaging systems, it is available for anyone to freeze

the scene on 2D media. Moreover, we are able to record a series of these pictures

to make movies. However, taking pictures and videos in two dimensions do not

always satisfy us by the perceived reality as the original scene. We always want

to perceive the image of the real scene with all of its details. Furthermore, ani-

mating the scene as if it is touchable will add more “reality” to the image. By

replicating the original light distribution of the three dimensional scene, we would

experience the excitement as if we were really there. Moreover, we can interact

with this artificial yet the real replica. This is like sculpting the light. So, three

dimensional imaging has always been an attractive field of study among display

systems. There are various types of displays suggested to succeed this such as

holography and stereoscopy [2].
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Holography is an old technique to capture and display three dimensional scenes

[3]. In this technique, the interference of a coherent reference light source and light

scattered from the surface of an object under coherent illumination is recorded

[4,5]. By this way, not only the amplitude but also the phase information, which

inherently has the direction information, of the light is obtained. Even if the

intensity of the complex field is recorded, the 3D information is still maintained.

This is in fact like the modulation of a signal with a carrier signal [5]. This

method exactly replicates the light distribution from the original scene. It aims

to duplicate the light distribution scattered from the object, at the display end, as

if the light is coming from the scene itself when the recorded data is illuminated

by the same reference wave, creating a “true” 3D. Unfortunately, holography

has many limitations and drawbacks. First of all, the method requires coherent

illumination, that is, the light source should be based on lasers. This creates two

practical problems: due to coherence, a diffusive surface illumination creates a

random noise which is called the speckle. The direct optical reconstruction from

the holographic data by holographic means has this problem. Thus, certain image

processing techniques (filtering and averaging) are usually performed to remove

the noise and to reconstruct the data digitally [6–8]. This way, the visibility

in digital reconstructions can be improved. The other problem is the potential

hazard that lasers might cause to human eye. So, it is not desirable to use lasers

for the reconstruction, either. It may be possible to use LED illumination to

avoid laser hazards while observing the optical holographic reconstructions [9,10].

However, the reconstruction quality would be lower due to spectral properties of

the light source.

Another problem in holography is its high sensitivity to changes in phase. So,

it is hard to manufacture a holographic recording camera for general purpose of

use in our daily life. Thus, practical use of holographic displays in daily-life is not

yet feasible. Digitally synthesized holograms are commonly used to display artifi-

cial three dimensional objects. Also, digitally recorded optical holograms can be

displayed on holographic setups. However, these are limited to lab environments

at present.

Stereoscopy, which is another three dimensional capture and display method,
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is now a widely used method in theaters, home cinemas and computers; it is much

older than holography. Stereoscopy is first devised by Charles Wheatstone in 1832

although Euclid defined the idea as “To see in relief is to receive by means of each

eye the simultaneous impression of two dissimilar images of the same object” [1].

Stereoscopic techniques mimic the human visual system creating the illusion of

3D image perception while we are looking at a 2D surface. In these systems, two

pair of images are displayed on a 2D media and the images are received by the

observes’ eyes. To deliver the stereo pair of the images to the observers eyes’,

one must wear a pair of special glasses. There are certain system configurations

which use passive and active glasses. The type of the glasses used depend on the

system choice. However, all of them irritate or are cumbersome for the users.

The stereo image pairs are captured from slightly different angles of a 3D

object/scene. The resulting disparity correspond to the slightly different locations

of the eyes. The perceived images are then interpreted by the brain as if the

observer is looking at the original object. Certain problems arise while perceiving

the tree dimensional reconstruction. One associated problem is the difficulty to

adapt to the resultant three dimensional reconstruction. The adaptation problem

is referred as the accommodation-convergence mismatch [11, 12]. It creates eye

strain and fatigue in extended time of use. The other problem is the discomfort

as a result of the limited parallax that the system delivers. The system can

deliver a stereo pair of pictures that are horizontally aligned. Thus the system

provides only horizontal parallax. However, this is limited to only a certain angle.

Thus, the observer will only perceive in 3D from the same angle while moving

horizontally around the display. This is a very unnatural discomfort inherited by

the stereoscopic techniques [13].

To overcome the discomfort introduced by using the glasses, auto-stereoscopic

displays are introduced [11]. The users do not need to wear such glasses. The

idea is to put an optical structure on the display panel. There are mainly two

methods to obtain auto-stereoscopic displays: a lenticular cylindrical lens array

or a parallax barrier. In both methods, the idea is to display an interzigged

image on the display panel and separate the left and the right images using the

optical structures. In the lenticular version, the cylindrical lenses image the pixels
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behind them to the corresponding eye as left and right images. In the barrier

version, a fence structure with opaque and transparent stripes blocks or permits

the pixels behind them to be seen as left and right images by the observer. The

optical designs of the systems change according to the used method. However,

the observer is required to be in a certain location (“sweet spot”) in front of the

display to enjoy the 3D visualization [13]. These systems are still stereoscopic

systems and inherit the same problem as the systems with glasses.

Another technique, which improves the horizontal parallax of stereoscopy, is

the multi-view auto-stereoscopy. In stereoscopy we have two views and this limits

the perceived parallax. In multi-view systems, we have more than two views, that

is, there are more than two cameras, which are separated by a slightly different

angle, facing the 3D object. So, each camera provides different perspectives of the

same 3D object/scene. There exists eye-tracking systems and head-tracking sys-

tems [1,12,13]. So, depending on the position of the observer, the corresponding

view of the 3D object/scene is imaged to the observer’s eyes.

Another method, which is now quite popular, used for multi-view auto-

stereoscopic systems is integral imaging which is first proposed by Gabriel Lipp-

mann [14]. These systems use a lens array to capture the three-dimensional scene

on a two-dimensional capturing device. Each lens images a two-dimensional pic-

ture, which is called elemental image, of the three-dimensional scene. Since each

lens images from a certain direction, the three-dimensional information is in-

herently obtained. When the captured elemental images are observed through

the same lens array with proper imaging distances, one can observe the three-

dimensional image reconstruction of the original object. Since an array of small

spherical lenses are used instead of lenticular lenses, this method provides parallax

also in the vertical direction.

Despite the popularity and availability of 3D displays with glasses, there is a

strong urge to do more research on glasses-free 3D displays. Consumers demand

to view 3D images without using any worn devices since it is the natural way to

perceive in 3D. Among several approaches, we chose to work on integral imaging

systems. This dissertation presents two novel integral imaging systems.
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Long after Lippmann had proposed the integral imaging, it became a popu-

lar research topic [15] and now it is used as a 3D auto-stereoscopic capture and

display method. As CCD arrays and LCDs emerged, digital implementations of

Lippmann’s original work are also reported [16]. Chemical photographic capture

and display processes are now almost entirely replaced by these digital record-

ing and display devices. Today, the resolution and size of these digital devices

are sufficiently high for experimental capture and display of small sized 3D ob-

jects/scenes. Even if the resolution of these devices is not yet comparable to

that of chemical photographic emulsions, the perceived 3D object quality is quite

good. Such devices are getting more and more popular due to well known ad-

vantages such as flexibility and also due to the easy reproducibility, processing,

storage and transmission of the data written on these devices.

In [17, 18], the optimum design parameters are studied extensively for the

integral imaging method. The limitations of the method on the transversal and

depth resolution are analyzed in those papers. The current research focus in in-

tegral imaging is mainly on quality improvements of perceived 3D objects/scenes

by changing the physical properties of the lenslet arrays [19, 20].

There are certain problems associated with the nature of the integral imag-

ing system. The system actually samples the scene by each lens in the array.

While reconstructing, this causes a kind of aliasing, that is, we see more than

one reconstruction at different angles. This also brings us the coupled problem,

viewing angle. Since the system uses lenses with fixed physical parameters, the

zone, which we can observe the three-dimensional reconstruction, is limited. A

structure composed of a curved screen and a curved lenslet array is proposed [21]

to overcome this problem. Since it is difficult to produce such lenses, placing

a large aperture lens, which simulates a curved array, in front of a planar ar-

ray of lenses was also proposed [22]. There are also solutions that improves the

viewing angle by implementing lens switching by use of active devices like LCD

panels [23]. This problem is also overcome by an all-optical solution with the use

of telecentric relay system [24].

Limited depth of field is another issue. Lenses with fixed physical parameters
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also result in limited depth of field. The lenses can image a certain depth of

the scene in focus while other depths are out of focus. This is obviously natural

and it limits the 3D volume that the system can capture. There are certain

solutions to this problem in the literature. It is shown that by using amplitude

masks the depth of focus of the system can be increased by trading-off lateral

resolution and light throughput [19,25]. It is also possible to use phase masks on

the lenslets to improve the depth range of the system [20]. There are also other

approaches to overcome this issue. In one study, it is shown that the source of

limited depth also comes from the pixelated structure of the CCD sensor and

it is more restrictive compared to the diffraction limitations of the lenslets [26].

Another study proposes a non-uniform focal length and aperture sizes for the

lenslets in a time-multiplexed scheme to improve the depth of focus [27]. It is

also reported that the real and virtual image fields can be used to improve the

depth of focus [28].

Another problem of integral imaging is pseudoscopic 3D object perceived at

the display end. The simplest practical solution is to replicate the process once

more to obtain an orthoscopic image [15]. However, this makes the system or the

process cumbersome. There are digital methods which implements this idea by

remapping the pixels of elemental images of a 3D object [29–31]. There is another

method to solve this problem that can be implemented either digitally [16] or

optically [32]. In this method, the elemental images are rotated around their own

axes.

Even if those issues are fundamentally important to improve the perceived

image quality, the generic system did not change much. The key element of

the system, lenslet array, is still mostly an analog device. Usually, it is a fixed

component with fixed physical parameters. Most of the solutions are related to

designing the physical properties of the lenses. However, each design changes

the entire setup. Moreover, manufacturing a new lens array for each setup is a

cumbersome and expensive process. It is desirable to have a digitally controlled

optical device, which will behave as a lens array, instead of a hard lens array.

This way it is more practical to change the physical properties of the system. It

is difficult to manufacture such special lenslet arrays. It would be much easier to
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program an electronic device which would act as an electronic lenslet array.

Fortunately, it is shown that programmable lenslet arrays can easily be im-

plemented using LCoS phase-only spatial light modulators (SLMs) for adaptive

optics, as used in Hartmann-Shack sensors [33, 34]. SLMs are tiny displays with

high pixel count with small pixel size. Such devices can work in phase-only mode

so that Fresnel lenses can be written on them [35–37]. In some early studies,

magneto-optic SLMs are used to write binary Fresnel lens patterns [38]. More-

over, it is shown that, it is possible to generate such lenslet arrays [39]. It is

also mentioned in [39] that a generated lenslet array is used to image a 3D ob-

ject. However, experimental results were not given. In [40], it is presented that

electronically synthesized Fresnel lenslet arrays can be encoded on an LCD panel

for integral imaging. In that paper, they showed the potential of the idea by

applying it to their previous setup which increases the viewing angle by mechan-

ically moving the lenslet array. In theory, the electronic lenslet array replaces the

moving lenslet array. However, because of the physical limitations of the LCD

panel, it is reported that such lenslet arrays were not used in the optical experi-

ments of the pick-up process. It is also reported that perceived resolution of the

3D reconstruction with bare eye with the above-mentioned system was very low.

They suggested that smaller pixel size would give better results.

We improved the idea by using LCoS phase-only SLMs instead of a LCD panel

or other type of SLMs. The diffraction efficiency is higher than that of a LCD

panel. Furthermore, since the SLM is phase-only, it will behave as a real lens when

a Fresnel lens pattern is written on it. Of, course, we cannot write a continuous

function, in this case the Fresnel lens pattern, on a SLM. Thus, we first sample

and then quantize the resulting function and program the SLM with these pixel

values through its driving circuitry. We analyze the effects of using pixelated

and quantized lenslet arrays in an integral imaging system and found physical

parameters which affect the design of integral imaging systems using digital lenses.

Specifically, we find the analytical results for the output elemental images of the

capture stage with a self luminous 3D point cloud input. We carried the analysis

as if the source points are coherent sources. The pixelated and quantized lenslet

arrays introduce some artefacts. Two of these are multiple focal lengths due to

7



quantization and, higher-order diffractions due to the pixelated structure of the

lenslets. There is also inherent apodization due to the finite pixel size [41]. We

carry out the analysis by taking into consideration these features of pixelated and

quantized lenslet arrays and, show that when these effects are ignored, the results

simplify to the previous results given in the literature [19,25]. We run simulations

to confirm the theoretical results and they are in good agreement. Furthermore,

we show that we can construct a versatile integral imaging system by using a

programmable lenslet array which is formed by writing an array of Fresnel lenslet

phase profiles on a high definition (1920× 1080) reflective phase-only LCoS SLM

(Holoeye HEO 1080P); this replaces the conventional lenslet array. Furthermore,

we present theoretical background for the system. In our system we use a similar

scheme as in, [42], since our SLM device is also reflective type. In that system,

a concave mirror array replaces the lenslet array and the image is formed by the

help of a half mirror. The elemental images on a 2D display are integrated

at the reconstruction distance that is not on the same optical axis with the

elemental images. The half mirror folds the optical axis by 90 degrees. The

reconstructed 3D object is formed away from the half mirror. Both of the capture

and display parts of our system work with half mirrors. The elemental images and

the reconstructed images of the capture and the display systems are formed away

from the half mirrors. However, we use a 2D lenslet array phase profile which is

written on the SLM electronically instead of a concave mirror array. This way we

succeeded to implement the entire integral imaging structure as a digital system.

We believe that this approach increases the capability and flexibility of the system,

significantly. Thus all subsequent improvements to increase the system quality

can be implemented easily by electronically changing the lenslet array structure

using digital means. For example, to increase the depth of field of the system, it

is possible to generate lenslets with phase apodizations and implement the digital

counterpart of the analog solution given in [20] using phase-only SLMs. Also, it

is much easier to generate lenslets with different physical properties and use them

in the same lenslet array. Analog version of such a scheme is discussed in [27].

It is also shown that irregularly placed lenslets increase the spatial and lateral

resolution [43]. Again, it is more practical to implement irregularly arranged

lenslet arrays digitally using SLMs.

8



We also implemented the idea of using digital lenslet arrays for a display-only

setup. Integral imaging is a promising 3D capture and display system for the next

generation 3D displays. As it is mentioned above, the conventional integral imag-

ing systems are composed of two stages: a pick-up system to obtain elemental

images of a 3D object/scene and a display stage which integrates the elemental

images for reconstruction [14]. These parts are physical optical setups. These se-

tups are usually not end-to-end, that is, two setups are separate. In the capture

part, the elemental images are imaged by means of a series of lenses and a lenslet

array, on a CCD array or a digital camera. In the display setup, the obtained ele-

mental images are displayed on a LCD and the reconstruction is observed through

a lenslet array. It is necessary to match the size of the captured elemental im-

ages on the CCD to the displayed ones on the LCD in the display setup since

the physical sizes of the devices are usually different. Furthermore, the pixel size

and number of the CCD sensor matter since the quality of the reconstruction

depends on these parameters. Finally, the LCD panel in the display setup should

be able to accommodate all of the captured elemental images. To display a good

quality still 3D image or a video sequence, both setups require usual adjust-

ments and alignments (imaging distances, magnification ratios, etc.) of optical

elements. Such a work is studied rigorously in [16]. That work is an example for

the case where optically captured elemental images of a physical 3D object are

reconstructed optically at the display end. Such integral imaging systems consist

of decoupled capture and display units, and therefore, both units need careful

adjustments. For applications such as 3D gaming, 3D modeling, animation, etc.,

the only physically needed part is the display. In those systems, the elemental

images are digitally obtained for synthetic 3D objects and then displayed on an

optical display setup. Digital techniques are more flexible compared to optical

capture processes. If the elemental images are obtained by computation, optical

adjustments are needed only for the display part. Ray tracing methods can be

used to generate elemental images. There are many reported methods using ray

tracing techniques to obtain elemental images for computer generated integral

imaging systems [44–48]. The capture process, for computer generated integral

imaging systems, is performed using certain computer graphics algorithms such
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as point retracing rendering, multiple viewpoint rendering, parallel group render-

ing, viewpoint vector rendering, etc., [49]. All of these algorithms are based on

ray tracing.

In our work, as an alternative method to generate elemental images, we per-

formed diffraction calculations using wave propagation methods based on the

Fresnel kernel. To the best of our knowledge, such an approach is not reported

before. One can compute the scalar field distribution in the space using the

Fresnel propagation model [50, 51]. We can generate elemental images by first

modeling the optical system with image processing tools and then by applying

optical wave propagation principles [52]. This method enables us to implement

the “correct” simulation of optical integral imaging capture systems, since, the

wave propagation models accommodate diffraction and interference phenomena

whereas ray models do not [5,53]. Wave propagation models are especially useful

for the cases where we have holographic data of a 3D object/scene. This is in

fact an inverse problem of hologram generation from elemental images [46,54,55];

that is, we obtain elemental images from a holographic recording as in [56].

As mentioned above there are problems in the optical reconstruction of thin

holograms since lasers are used to illuminate the setups. On the other hand, inte-

gral imaging works primarily with incoherent illumination. It may be desirable to

reconstruct holographic data by an integral imaging display. A conversion from

holographic data to elemental image data is needed to reconstruct the 3D image

using incoherent light and integral imaging techniques. Such an idea is studied

in [56]. In that work, first a series of images are reconstructed at different depths,

creating a set of slices of 3D data. Then, the elemental images are generated using

another process which maps each slice to the elemental image plane. Instead of

such an approach, we directly use holographic data to display 3D images on an

integral imaging setup. For this purpose, we designed a direct pick-up integral

imaging capture system, [47]. This digital pick-up system is realized solely by

a computer program that simulates wave propagation. Lenslet arrays that we

used in the design are composed of digital synthetic Fresnel thin lenslets [52]. We

processed the input holographic data with this simulator to obtain computer gen-

erated elemental images. This way, we generate the elemental images in one step.
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We used these computer generated elemental images in a physical display setup

to reconstruct optically 3D images. In our proposed display, we used a modi-

fied version of the setup given in [52] where we replaced the analog lenslet array

with a digitally controlled synthetic Fresnel lenslet array written on a phase-only

LCoS SLM. By this procedure, we can generate elemental images digitally from

recorded holographic input data and optically reconstruct a 3D image from them

on our integral imaging display. For example, our method can be used to gener-

ate elemental images from holograms captured within a diffraction tomography

setup [57].

In some cases, diffraction calculation might be slower than ray tracing calcula-

tions. There are several fast algorithms which implement diffraction calculations

based on the Fresnel kernel [58]. Even real-time diffraction calculations are pos-

sible [59]. Indeed, one of the implementations uses the Graphical Processing

Unit (GPU) to further increase the computation speed [60]. Our elemental image

generation method is quite similar to techniques used in digital hologram gener-

ation procedures. We calculated the diffraction fields using DFT. We computed

the DFT using an FFT algorithm. It is possible to apply other abovementioned

faster algorithms to our case, as well. However, the comparison of the effects of

such different computational procedures to the performance is not a part of this

study.

Presented numerical and optical results show that the computationally gener-

ated elemental images using wave propagation principles from synthetic or phys-

ical objects can be used to successfully reconstruct 3D images. Furthermore, a

digitally controlled synthetic lenslet array can be used at the display stage setup

of an integral imaging system [40,52].

Finally, we presented a practical solution to pseudoscopic reconstruction prob-

lem. After generating the elemental images numerically, we further processed the

elemental images. The input of this new process is the elemental images that give

pseudoscopic reconstruction at the display end, and the output is the elemental

images that give orthoscopic reconstruction. The conversion process achieved by

using wave propagation tools for the simulation of the two-step optical conversion
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system [15,32,61].

In Chapter 2, we give theoretical background for wave propagation and dis-

cretization of Fresnel lenses. We present the formulation for lenslet array patterns

with certain focal lengths and describe the properties of such discrete lenslets. We

review the multiple focal points issue due to quantization and multiple diffraction

orders due to discretization. We have demonstrated the results of computer sim-

ulations and give correspondences to the theoretical results of an integral imaging

system with digital lens arrays. In Chapter 3, we present the theoretical analysis

of the capture part, of an integral imaging imaging system with a digital lens

array from a signal processing perspective and give a brief explanation for the

display system. We also demonstrate the proposed systems for both capture and

display parts of the integral imaging setup for specific physical parameters and

describe the optical setup and present the optical experiment results. In Chapter

4, we explain the method to obtain elemental images from a holographic record-

ing. Then, we present a display-only integral imaging based system which uses

the described method. We also show the comparison of numerical and optical re-

sults. In Chapter 5, we demonstrate the pseudoscopic to orthoscopic conversion

process together with the optical and numerical results. In the last chapter, we

draw our conclusions.
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Chapter 2

PRELIMINARIES: SAMPLING

OF DIFFRACTION FIELD

AND DIGITAL FRESNEL LENS

ARRAYS

Before proceeding into the analysis of an integral imaging system with digital

lenslet array, let us look at the basic tools that we used in the derivations in

the following chapters. This chapter is dedicated to the discretization of the

functions representing the propagation of light in free space and the functions

representing the phase of a single lens and an array of such lenses. We will show

the consequences of using the discrete versions in the equations. We will also

discuss physical implications of the discretization of these equations. We will

conclude this chapter with the numerical examples.

We mainly analyze the lens imaging. For this purpose, we need to choose

a tool to explain the “true” optical behavior of the system. The simplest tool

is the ray optics [5]. It explains the propagation of the light by defining rays

from a source point through optical components to the imaging point. However,

it ignores the diffraction phenomenon since the wavelength is considered to be
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Figure 2.1: Calculation of the diffraction field of a sliced 3D field.

very small compared to the optical components [3, 5]. Although it is useful,

this tool will not suffice our needs. We want to study the cases where we used

diffractive optical components. We chose the wave optics tools as the best option

considering our needs for the analysis [3, 5, 53]. There are also, electromagnetic

and quantum optics tools. However, these tools are too complicated for the needs

of our analysis. These tools provide the explanation of the effects of polarization

of light and nature of light based on photons but we will deal only by employing

scalar fields.

In wave optics, we have certain tools to explain the propagation of light in

the free space. Based on these, it is possible to obtain input-output relations for

a certain optical setup. Moreover, we can easily apply signal processing basics

to obtain such relations. This is in fact known as Fourier optics [5, 53]. Further-

more, we can easily compute the output for a certain input with signal processing

algorithms [3].
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In the general sense, we deal with 3D light fields. Calculation of the optical

field at a certain distance is always a challenge [3]. First of all, we need to find

a way to represent the 3D field. Then, based on this representation, we need to

find a good tool to calculate the field. In physical life, the 3D field is continuous

in space. One way to represent the field is to slice the field by planes. So, we

swap the continuous field with a set of 2D discrete slices as shown in Fig. 2.1.

The way we slice the field is also an issue. We choose the optical axis to be along

the z-direction. We also need to choose a reference plane. The simplest approach

would be to choose a slice of the 3D field that is perpendicular to the optical axis

as the reference plane, z = 0. The reference plane is shown as red in Fig. 2.1.

The other slices of the set will be parallel to the reference plane. And we take

many slices enough to cover the entire 3D field [62]. Here, we are interested in

the total optical disturbance that is created by the sliced 3D field on a plane at

a certain distance z = d. The relation between the field patterns on each slice

and the recording plane (shown as green in Fig. 2.1) is given by the convolution

of the input field and the impulse response of a linear shift invariant system that

represents wave propagation in free space [3,53,63]. The impulse response of the

system that gives the exact result for scalar fields by taking both propagating and

evanescent waves into account is the Rayleigh-Sommerfeld diffraction kernel [53].

However, since we are interested in the propagating components of light, the

convolution kernel for these components is defined as,

hRS
z (x, y) =

1

jλ

exp
(

j 2π
λ

√

x2 + y2 + z2
)

√

x2 + y2 + z2
cos θ (2.1)

where x, y ∈ R are the transversal spatial domain variables and λ is the wave-

length, [3]. Eq. (2.1) gives optical disturbance on a plane at a distance z due to

a 2D impulsive source on a slice.

It is generally more practical and easy to interpret the Fourier transform of

Eq. (2.1) [64, 65]. The Fourier transform of Eq. (2.1) can be found as

HRS
z (fx, fy) =







exp
[

j2π
(

1
λ2 − f 2

x − f 2
y

)1/2
z
]

,
√

f 2
x + f 2

y ≤ 1/λ

0 , else
(2.2)

where fx, fy ∈ R are the spatial frequency domain variables in cycles per unit
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distance. Eq. (2.2) is known as the transfer function of the linear shift invari-

ant system that represents free space propagation. We take HRS
z (fx, fy) = 0 for

√

f 2
x + f 2

y > 1/λ since we keep all evanescent waves out of the analysis [5]. Eq.

(2.2), is also known as the plane wave decomposition [3, 63]. Plane wave decom-

position method is also used to obtain the diffraction field between two parallel

planes. To find the, the input-output relation using the plane wave decomposition

we compute

ψz(x, y) = F−1
{

F {ψ0(x, y)}HRS
z (fx, fy)

}

in [63], where ψ0(x, y) is the input field on the reference plane and ψz(x, y)

is the output field on another plane at a distance z. F {ψ(x, y)} =
∫∞
−∞ ψ(x, y) exp [−j2π(xfx + yfy)] dxdy is the 2D Fourier transform and F−1{.}
is the inverse operator. In the spatial frequency domain, each frequency compo-

nent of the input field, F {ψ0(x, y)}, determines the coefficient of the propagating

plane waves.

Even if Eq. (2.2) seems simple, we need to deal with a simpler version of

this. This is because the function given by Eq. (2.2) is not separable (the square

root inside the brackets do not allow separability), so, it complicates the analytic

expressions. Moreover, when we try to find numerical results, this equation will

increase the computation time, significantly. So, we need to approximate this

equation.

Assume that we have propagating waves with frequencies much lower than the

cut-off frequency f 2
x + f 2

y ≤ 1
λ2 of the free space. These waves obey the paraxial

approximation. If we apply Taylor series expansion and neglect the higher order

terms in the expansion, we will eventually get the Fourier transform of continuous

Fresnel kernel

HFr
z (f) = exp

(

j
2π

λ
z

)

exp
(

−jπλzfT f
)

(2.3)

where f = [fx fy]
T [51]. This is known as the Fresnel kernel [5]. We can safely

use Fresnel diffraction, based on this kernel, for most of the optical cases. It is

an approximation with the constraint that propagating waves do not spread too

much around the optical axis as the light travels in space. Taking the inverse

Fourier transform of Eq. (2.3), we can define the 2D impulse response of the
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Fresnel diffraction from one plane to another plane as,

h2Dz (x) =
1

jλz
exp

(

j
2π

λ
z

)

exp
(

j
π

λz
xTx

)

(2.4)

where x = [x y]T , [51, 66]. For a definite distance that light travels in space

between two parallel planes, the equivalent model for this equation, is a linear

shift invariant system. So, we can use this equation to model the input-output

relations and find the analytic expressions of our imaging system. The complex

amplitude, 1
jλz

exp
(

j 2π
λ
z
)

, can be dropped from the computations whenever there

are only two planes of interest (one input and one output plane). This is because z

is a constant and therefore, this term is also constant. However, whenever there is

a volume, the depth becomes a variable, and therefore, such simplifications require

more care. For a rather thin volume the term 1
jλz

can still be approximated as

a constant. However, the phase term exp
(

j 2π
λ
z
)

is sensitive to z and cannot be

omitted for such cases. When the constants are dropped from Eq. (2.4), we are

left with the 2D quadratic phase function which is given as

~
2D
α (x) = exp

(

jαxTx
)

(2.5)

= (jλz) exp

(

−j 2π
λ
z

)

hz(x)

∣

∣

∣

∣

∣

z= π
λα

We will use Eq. (2.5) to define Fresnel lenses and lens arrays. A lens phase

function is defined as

l2D−γ(x) , exp
(

−jγxTx
)

= ~
2D
−γ(x) (2.6)

where γ = π
λf

and f is the focal length.

The purpose of the following sections is to form the theoretical background of

a conventional integral imaging setup, where an analog lenslet array is replaced

by an LCoS SLM which has an array of Fresnel lenslets written on it. Since

the SLM has a discrete nature we need to determine the 2D discrete array that

will be written on the SLM. The 2D discrete pattern of Fresnel lenslet array

written on the SLM is calculated by first sampling a quadratic phase function with

certain parameters to represent a single Fresnel lenslet, and then, by quantizing

the sample values to match the phase levels that the SLM can support, and
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finally, by replicating as many single lenslets in 2D as the SLM dimensions can

support. Before the analysis of the capture setup, we review the response of a

single sampled and quantized lenslet and also an array of such lenslets to a plane

wave illumination. For the continuous field propagation analysis, we converted

the 2D discrete pattern to a continuous field by interpolating it with the pixel

function related to the SLM.

2.1 Discrete Quadratic Phase Array Patterns

It is crucial to determine how we generate the lenslet array. Under the Fresnel

approximation, the phase pattern of a thin lens is a quadratic phase function as

given in Eq. (2.5). For the simplest case let us consider a sampled (discrete)

thin lens phase pattern written on an SLM device. If we sample Eq. (2.5), we

will obtain a generic function to represent Fresnel lenslets that can be used to

program an SLM device. Substituting x by Vn in Eq. (2.5), we get the 2D

complex discrete quadratic phase pattern

~D,α[n] , ~
2D
α (x)

∣

∣

∣

∣

x=Vn

= exp
(

jαnTVTVn
)

(2.7)

where V is the 2D-sampling matrix. For simplicity we chose a regular rectangular

sampling matrix V =

[

X 0

0 X

]

where X is the sampling period (pixel period of

the SLM) and n = [n1 n2]
T where n1, n2 are integer variables in (−∞,∞) [51,52].

The sampling of the quadratic phase function will cause a very specific type

of aliasing and naturally generates an array of Fresnel lens patterns [67]. For the

1D case, it is shown in [67] that

~α(x)
∑

n

δ(x− nX) = ~α(x) ∗
[

∑

n

(

1

X
cα,2πn/X

)

δ
(

x+
π

αX
n
)

]

(2.8)

where Cα,2πn/X = exp
[

−j (2πn/X)2

4α

]

and

~α(x) = exp
(

jαx2
)

=
√

jλz exp

(

−j 2π
λ
z

)

hz(x)

∣

∣

∣

∣

∣

z= π
λα

(2.9)
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where

hz(x) =
1√
jλz

exp

(

j
2π

λ
z

)

exp
(

j
π

λz
x2
)

(2.10)

is as given in Appendix C. Direct sampling of the quadratic phase function can be

used to generate a lenslet array. In [39], lenslet arrays are generated using such a

method. However, each lenslet in the generated array may have different phase

variation relative to its neighbor lenslet due to the parameters of the designed

array [39]. For a certain set of parameters in Eq. (2.8), the term Cα,2πn/X is

constant. Thus, it creates a different modulation for each replica of the original

Fresnel pattern. The circular profile of the Fresnel patterns do not change but

they are modulated by a different complex number. It is shown in [67] that,

by choosing the parameters properly, one can obtain a periodic phase pattern

with no phase modulations on the lenslets, so that, each lenslet will have exactly

the same Fresnel pattern as its neighbors. It is shown that, if the sampling

period is chosen to be equal to
(

π
2αr

)1/2
where r is an integer, then the constant

Cα,2πn/X becomes equal to 1, ∀n [67]. Furthermore, if the focal length is chosen as

f = N X2

λ
[52, 68]to cover the entire normalized local frequency range [−π, π), in

radians, then the impulse train will have a periodicity by a value of NX, where N

is the number of pixels along one dimension of the finite 2D discrete array which

represents a single lenslet [52]. Thus, we will have a lenslet array with identical

lenslets. We want to use identical lenslets in the array because we want to first

observe the imaging properties of a discrete lenslet. So, we need to eliminate any

phase variations due to the generation of the lenslets.

For some cases we want the freedom of placing the lenslets in the array as

we wish. Therefore, we designed a single lenslet pattern and then replicated

this pattern one after another to cover the entire SLM surface, instead. Such an

approach makes it easier to fit a certain array configuration over the finite size

SLM. Even though this method may cause phase jumps at the borders of lenslets,

and thus, some unwanted effects, such effects are negligible especially for larger

array sizes. Furthermore, generation of lenslets with special phase patterns is

easier by using this method [20].

To determine the number of lenslets, given the SLM size we need the discrete

array size of a single lenslet pattern. So, when we limit n1, n2 in Eq. (2.7) to
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be in the interval
[

−N
2
, N

2
− 1

]

, we will obtain a single lenslet. If the SLM has

N1 × N2 pixels, then the number of the lenslets will be N1

N
× N2

N
, where N1

N
and

N2

N
are integers [52].

For a setup which requires longer focal length lenslets, we can still use the

same SLM with the same lenslet array size, by keeping the lenslet size N ×N the

same; thus the Fresnel pattern becomes cropped. Therefore, we will not be able

to cover the full local frequency range of [−π, π) for longer focal length lenslets

for such a case. This will introduce blurriness since the light which would be

coming from higher angles do not exist as a consequence of cropped lens pattern,

and thus, will not be accumulated at the focal point. So, there is a trade-off

between longer focal lengths and focused point sharpness if the size of the lenslet

is kept fixed [52]. One can easily calculate the range of instantaneous frequencies,

which the lenslet can accommodate with such a larger focal length, of the sampled

quadratic phase function. For our experiments, we used several lenslet patterns

with focal lengths equal to N X2

λ
to cover the full local frequency range. In each

such pattern, we determined the value of N , which specifies f since λ and X are

fixed, and each lenslet is generated according to these parameters. Our device has

1920× 1080 (HDTV) pixels with a 8µm pixel period in each direction. We were

able to implement 3× 5, 6× 10 and 12× 20 element arrays of lenslets which have

360× 360, 180× 180 and 90× 90 pixels with 43.4mm, 21.7mm and 10.8mm focal

lengths, respectively, for the same wavelength of 532nm [52]. There are some

unused pixels on the left and right sides of the SLM with the given size and array

configurations; we evenly split this excess area to both ends. We were also able

to generate shorter focal length lenslet arrays. However, the resultant imaging

quality in the optical experiments with these lenslets were low. This is because

the higher order effects (multiple focal points and higher diffraction orders) are

dominant thus it does not behave as a good quality lens anymore [52].
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2.2 Multiple Focal Points

The SLM acts as a diffractive optical element. The pixelated structure of the SLM

causes higher diffraction orders; this is a well known effect [41,67]. However, this

is not the only effect that we observe when a discrete quadratic phase function

is written on the SLM. For writing any pattern onto the SLM we also need to

quantize the sampled pattern. The quantization is a nonlinear process and its

consequences are investigated in [69] for the quadratic phase function. Suppose

that we have a sampled and quantized Fresnel lens pattern that we want to write

on an SLM which has exactly the same number of pixels as the number of samples

of the finite size pattern. The Fresnel pattern is like a discrete diffraction pattern

of a point source at a distance f . We will call this distance the fundamental focal

point. This distance from the lens is also referred as the reference focal [70] and it

is also called the critical distance [38]. Between the lenslet and the fundamental

focal point, we have to consider the effect of both sampling and quantization

together. Quantization will cause multiple focal points over the z-axis. When

such a discrete and quantized Fresnel pattern is illuminated by a plane wave and

the modulated light is allowed to propagate along the z-axis the light will be

concentrated on bright spots on these focal points [69]. So, quantization causes

multiple focal planes while sampling causes higher diffraction orders [52, 71].

Consider the case of an infinite array of such lenslets, the phase angle of

the complex pattern, which is the sampled and quantized Fresnel lenslet array

pattern as calculated in the previous section, is written on an hypothetical infinite

size phase-only SLM. When the SLM is illuminated by a plane wave and the

modulated light is allowed to propagate further away from the fundamental focal

length on the z-axis, the periodic array of focused points will be repeated at

certain distances [52]. This phenomenon is known as the Talbot effect [72]. When

an infinite array of discrete lenslets, each with a size N × N , is written on an

infinite size SLM, so called self images of the lenslet array will periodically occur

at multiples of Talbot distance given as zT = m (NX)2

λ
= mNf on the z-axis,

where NX is the distance between two lenslets (lenslet period), and m is an

even integer [72]. Since, the input pattern will be repeated at multiples of zT ,
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fundamental focal point will also be repeated at multiples of zT . Furthermore,

between each Talbot distance at mzT and (m + 1)zT , there exist other spots at

fractions of the Talbot distance [52]. In real life, Talbot effect may or may not

be visible physically depending on the length zT and also on the lenslet array

size, and thus on the SLM size. For a sufficiently large array and short zT , it is

possible to observe this effect. For example, in our setup, it is possible to observe

the periodic focused spots created by a lenslet array pattern with a 24×40 lenslet

array where each lenslet has 45 × 45 pixels, f = 5.41mm, and the first Talbot

distance zT + f = 0.492m [52].

To relate the physical observations to theoretical analysis, let us consider a

hypothetical case: an infinite size analog mask of periodic lenslets consisting of

equally spaced impulsive elements is illuminated by a plane wave. We use the

Fresnel transform as if it is a valid diffraction model. In reality, this model is

valid only for small angle propagation (the paraxial approximation) and such a

restriction will not support impulsive patterns since they imply high frequen-

cies [52]. Even if the diffraction model is not the Fresnel model but the accurate

Rayleigh-Sommerfeld model, the free space propagating waves still does not sup-

port an impulsive pattern, since the plane wave components which superpose to

form an impulse should inevitably have both propagating and evanescent compo-

nents. Frequency components with spatial frequencies (fx, fy) on the mask with
√

f 2
x + f 2

y > 1/λ will not propagate through the space. Therefore, impulsive

function cannot be reconstructed by propagating waves. However, here we still

conduct a mathematical exercise using impulsive inputs and Fresnel propagation

to understand the associated concepts [52].

We start from a Fourier series expansion [69]. For the sake of simplicity, we

look at the 1D version of the continuous lens phase function ~−γ(x) = exp (−jγx2)
where γ = π

λf
. We will also use the Fourier transform of the quadratic phase

function. So, we define it for a generic function ~α(x) = exp(jαx2) as Hα(fx) =
(

j π
α

)1/2
exp

[

−j (2πfx)2
4α

]

, [67]. Consider that we make a change of variables u = x2.

The function b(u) = exp(−jγu) is a periodic function of u. Now, we introduce

a pointwise nonlinearity T {·} to get another periodic function φ(u) = T {b(u)}
and then, we can make a Fourier series analysis of φ(u) to find a set of coefficients
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as

ak =
1

L

∫ L

0

φ(u) exp

(

−j 2πk
L
u

)

du , (2.11)

where L is the period 2π
γ
. A commonly used nonlinearity is the staircase func-

tion which is investigated in [69]. Following the similar steps in [69], and by

substituting back for u, the Fourier synthesis can be written as

lQ(x) , φ(u)
∣

∣

u=x2
=

∑

k

ak exp

(

−j 2πk
L
x2
)

=
∑

k

ak exp

(

−j π

λfk
x2
)

=
∑

k

ak~−γk(x) (2.12)

where γk = π
λfk

and lQ(x) is the 1D quantized lenslet function. Eq. (2.12) can

be interpreted as many superposed thin lenses with different focal lengths at

fk = f
k
and different transparencies indicated by the amplitude ak. It is possible

to design a nonlinear function to achieve a desired allocation of power among

the terms of Eq. (2.12) by choosing ak’s accordingly. Usually, it is desirable to

emphasize a1 and suppress other terms. For example, it is shown in [69] that by

increasing the quantization level it is possible to increase the power contributed

to the fundamental focal point (larger a1 with respect to other ak’s). However,

there still exists power contributed to other focal points since ak’s for k 6= 1 are

not necessarily zero. Let us concentrate on the imaging properties of a quantized

lens with arbitrary ak’s. When we use such a lens to image an object, due to

multiple focal lengths, not only the main image, which is formed by the lens

with focal length f , is present, but also there exists images formed by the higher-

order lenses with smaller focal lengths [52]. However, these images which are

also smaller in size have less power as a consequence of distribution of ak’s as

discussed above, and quickly disperse when they propagate and reach the main

image plane [52, 71]. These higher order image planes are referred as the ghosts

in [71] and it is noted that |a1|2 gives the diffraction efficiency of a given SLM. We

conducted simulations related to this observation and the results are presented in

Sec. 2.3. In our experiments, the quantization is linear with equidistant 256-levels

between 0 and 255 to cover the [0, 2π) radians phase interval. Subsequently, we

convert lQ(x) to a pixelated form by sampling (multiplying by an impulse train)

it first and then convolving the result with a zero-order interpolator (hold) which
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Figure 2.2: 3 × 5 Lenslet array phase profile on the SLM, each lens has
f = 43.3mm. There are equal number of unused pixels both at left and right
edges. (Reprinted from “Integral imaging using phase-only LCoS spatial light
modulators as Fresnel lenslet arrays,” Ali Özgür Yöntem and L. Onural, J. Opt.
Soc. Am. A vol. 28, no. 11, pp.2359-2375, 2011. c©2011 OSA.)

has a width equal to the sampling period X where we assumed that there are no

gaps between the SLM pixels [52]. In case there are gaps, the analysis should be

modified by starting as presented in [70], [41]. Therefore, we can write

lS(x) =

[

p(x)lQ(x)
∑

n

δ(x− nX)

]

∗ s(x) · (2.13)

The finite size of a lenslet is represented by the aperture function p(x) =

rect( x
NX

+ 1
2
). s(x) = rect( x

X
) is the pixel function, where the rectangular function

defined as rect(x) = 1 for x ∈ [0, 1) and 0 otherwise. Fig. 2.3 shows the angle of

lS(x), modulo 2π. To create the lenslet array, we replicate the function p(x)lQ(x)

by convolving it with an impulse train; this shifts the center of each lenslet in the

array such that each lenslet is positioned one next to another:

LA(x) =

{[

p(x)lQ(x) ∗
∑

r

δ(x− rx0)

]

∑

n

δ(x− nX)

}

∗ s(x) , (2.14)

where n and r are integers [52]. In Eq. (2.14), we modeled the lenslet array such

that there are no gaps between two consecutive lenslets, and thus, the lenslet
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Figure 2.3: Illustration of a quadratic phase function and its sampled and quan-
tized version. Vertical axis shows the phase, mod 2π, while the horizontal axis
shows the spatial extent of the function. (Revised from “Integral imaging using
phase-only LCoS spatial light modulators as Fresnel lenslet arrays,” Ali Özgür
Yöntem and L. Onural, J. Opt. Soc. Am. A vol. 28, no. 11, pp.2359-2375, 2011.
c©2011 OSA.)

period is equal to the lenslet size. There are N pixels in one direction from the

center of one lenslet to next center of the next lenslet. Therefore, the lenslet array

period is x0 = NX. The reason for this choice is the finite SLM size: since we

have a limited number of pixels, we want to generate as many lenslets as we can

without wasting any pixels between the lenslets. Depending on the application,

it might be desirable to have gaps between the lenslets. However, the relation

between the pixel period and the lenslet period is critical: if this ratio is not an

integer, then the focal points from higher diffraction orders, and the multiple focal

points due to higher-order lenslets due to nonlinearity will not overlap. They do

overlap in our choice as indicated above [52].
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Now assume that the lenslet array is illuminated by a plane wave. Then,

the complex field just after the infinite size SLM will be given by Eq. (2.14).

Therefore, the field that propagates away from the SLM is

q(x) = LA(x) ∗ hz(x) =
∫

η

LA(η)hz(x− η)dη · (2.15)

There are two convolutions within the function LA(x). Using the commutative

property of the convolution operation we replace the order of the convolutions

s(x) and hz(x) in Eq. (2.15), [41]. So, above equation can be rewritten as,

q(x) =

{[

p(x)lQ(x) ∗
∑

r

δ(x− rx0)

]

∑

n

δ(x− nX)

}

∗ hz(x) ∗ s(x) (2.16)

As a consequence, it is easier to observe the focusing properties of a sampled and

quantized lenslet array and explain the effect of the rectangular pixels. Carrying

out the convolution by hz(x) and the function inside the curly brackets, where

the evaluation is given in Appendix A, we can rewrite Eq. (2.16) as,

q(x) =
∑

k

{[

P (
x

λfk
) ∗ x0

k

∑

n

δ
(

x− n

k
x0

)

]

∗
[

∑

r

ck, r(x)δ(x− rx0)

]}

∗ s(x)

(2.17)

where the distance parameter z = −fk, (i.e. we have the field at the focal dis-

tances) to show the effect of multiple focal planes. P ( x
λfk

) is the Fourier transform

of the lenslet’s pupil function scaled with x
λfk

; so, for the 1D analysis we have

been carrying out, it is given by k
X
sinc( x

X
k) where sinc(x) = sin(x)

x
. It represents

the effect on the diffraction due to the limited aperture size of the lenslet. The

constants are given as λfk
X

= NX
k

= x0

k
and ck, r(x) = akhfk(x− rx0). It is shown

in [41] that, the output of the diffraction from a single lenslet is the convolution

of the Fourier transform of the pupil function and the pixel function, which in-

troduces an inherent apodization [41]. This observation still holds for an array

of lenslets shown by Eq. (2.17), as expected [52].

In Eq. (2.17), the impulse train indexed by n is due to the sampling of the

lenslet and this introduces multiple diffraction orders. At the fundamental focal

plane, that is when k = 1, we observe that the separation of higher diffraction

orders of focused spots of a lenslet is x0. In our cases, this period matches
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the impulse train indexed by r, which is present due to the separation of the

lenslets. The interesting case occurs due to the effect of quantization since it

causes multiple focal points. Note that the impulse train indexed by n, when

k 6= 1, introduces shifts, which are a fraction of x0. So, the spots appear on the

x-axis with x0/k distance away from each other on each focal plane f/k. Since

all impulse trains are infinite in extent, we see that the focused spots at a certain

distance are periodic over the x-axis. So, Eq. (2.17) is a collection of points in

three dimensional free space [52].

Eq. (2.17) can be illustrated by Fig. 2.4, where the circles along the optical

axis of each lenslet specifies the multiple focal points, and along the x-axis, at each

focal length, periodically positioned spots are present due to higher diffraction

orders. For a single lenslet pattern in the lenslet array, any focused spot it

yields along the x-axis, except the ones that lie on its optic axis, are higher

diffraction orders at the focal planes. Thus, each lenslet creates multiple depth

focal points, together with higher diffraction orders. In other words, when the

generated Fresnel field from the impulsive pattern propagates in the free space,

at certain distances, again periodic and impulsive patterns are formed [67].

Now we look at the case of a finite size SLM. In this case, the locations of

the focused spots will not change. However, limited SLM aperture will introduce

a low pass filter over the intensities of these spots. Depending on the aper-

ture size, the intensities of the focused spots are modulated by a sinc function

W
(

x
λfk

)

= Kx0

λfk
sinc

(

x
λfk
Kx0

)

= Kk
X
sinc

(

xKk
X

)

. This is due to a rectangular win-

dow function w(x) = rect
(

x
Kx0

)

, which is the aperture function of the SLM that

contains K discrete lenses along one direction. Such a modulation will diminish

the power associated with some of these multiple focused spots and thus reduce

their visibility [52].
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Figure 2.4: Multiple focal points and higher diffraction orders. The focal points
are shown by small circles. Dashed lines show the converging waves towards
multiple focal points from a single lenslet. Solid lines show the converging waves
towards higher diffraction orders at the fundamental focal plane. (Not all lines are
shown in order not to clutter the drawing.) (Reprinted from “Integral imaging
using phase-only LCoS spatial light modulators as Fresnel lenslet arrays,” Ali
Özgür Yöntem and L. Onural, J. Opt. Soc. Am. A vol. 28, no. 11, pp.2359-
2375, 2011. c©2011 OSA.)
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2.3 Numerical Results

As we mentioned in the previous section, we performed a series of computer

simulations to show the multiple focuses and diffraction orders. First we ran the

simulations for a single lenslet. The lenslet profile is generated using Eq. (2.7).

As described in Sec. 2.1, we determined N , the total number of samples along

one dimension of the lenslet, by using the relation f = N X2

λ
where λ = 532nm

and X = 8µm. To obtain a single lenslet, we limit n1, n2 in Eq. (2.7) to be in

the interval
[

−N
2
, N

2
− 1

]

. For a lenslet with f = 14.4mm, N is equal to 120 and

for a lenslet with f = 43.3mm, N is equal to 360. We want to show the effect of

quantization on the lenslet phase (mod 2π) by mapping this data linearly between

0 and 255. The results for these two single lenslets are shown in Fig. 2.5 and Fig.

2.7 respectively [52].

We assumed a plane wave as the incident light on the lenslets whose phase

patterns are shown in Fig. 2.5 and Fig. 2.7. We performed wave propagation

simulations using the Fresnel diffraction kernel. We use the DFT method to

compute the convolution to find outputs of the discrete systems. However, our

discretized signals have a support that span both sides of the axes; i.e. n1, n2 can

take zero, positive or negative values. Therefore, we must modify the commonly

used DFT definition to operate also on such signals [52, 73]. Suppose that for a

finite length signal xD [n], n1, n2 = −N/2, · · · , N/2 − 1 we define the modified

finite length ˆDFT , XD [k] = ˆDFT {xD [n]}, k1, k2 = −N/2, · · · , N/2 − 1 as

follows: Let the periodic X̃D [k] be given by,

X̃D [k] =
N−1
∑

n1=0

N−1
∑

n2=0

x̃D [n] e−j
2π

N
kTn k1, k2 ∈ (−∞,∞) (2.18)

and k1, k2 are integers. Here, X̃D [k] and x̃D [n] are periodic exten-

sions of finite length XD [k] and xD [n], respectively, which are given

as, X̃D [k1 −N/2, k2 −N/2] = XD [(k1)modN −N/2, (k2)modN −N/2], and

x̃D [n1 −N/2, n2 −N/2] = xD [(n1)modN −N/2, (n2)modN −N/2], where n1, n2

are integers in (−∞, ∞) and consequently, XD [k] is one period over

k1, k2 = −N/2, · · · , N/2 − 1 of X̃D [k] and xD [n] is one period over n1, n2 =

−N/2, · · · , N/2−1 of x̃D [n] [73]. In order to avoid aliasing that might be caused
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by the periodicity associated with DFT, while using this method, the computa-

tion window size should be selected sufficiently larger than the signal window in

both directions. Outside the signal window, we chose to pad the computation

window with zeros (opaque borders). Thus, we compute the linear convolution

of the signals by approximating the circular convolution by padding zeros in the

computation array. Moreover, this way, we simulate the case where those points

on the object surface are the only possible source points. The Fresnel diffraction

kernel is used to model wave propagation. 2D ˆDFT and 2D ˆIDFT of the matrices

are computed using 2D FFT and 2D IFFT algorithms, respectively [52, 73].

In order to speed up the computations, we used the Fresnel kernel in the spatial

frequency domain given by Eq. (2.3). We discretize Eq. (2.3) by substituting f

with Uk and we obtain

gD,θ[k] , HFr
z (f)

∣

∣

∣

∣

f=Uk

= exp
(

−jθkTUTUk
)

(2.19)

where k = [k1 k2]
T and k1, k2 = −N/2, · · · , N/2−1, U =

[

1/(NX) 0

0 1/(NX)

]

is the 2D rectangular sampling matrix in the spatial frequency domain. N is

the total number of pixels along one side of the discrete 2D calculation array, X

is the spatial sampling period and θ = πλz and z is the propagation distance

parameter. We omitted the phase constant, which appears in Eq. (2.3), in order

not to clutter the computations [52, 73].

Let us denote the signal window by t [n]. This is centered inside the compu-

tation window, wt[n]. The output of the propagation (diffraction field) is given

by

tdi [n] =
ˆIDFT

{

ˆDFT {wt [n]} gD,χi
[k]

}

(2.20)

where n = [n1 n2]
T and k = [k1 k2]

T represent the discrete spatial domain

variables and the discrete spatial frequency domain variables, respectively, and

n1, n2, k1, k2 are integers where we choose the range for n1, n2, k1 and k2 as

[−360, 359]. The parameters χi is given as πλzi. Our computation window, is

720-sample wide in both directions which is six times the lenslet with f = 14.4mm

and two times the lenslet with f = 43.3mm [52].
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The simulation calculates the field at certain distances until the fundamental

focal point. So, we sampled the z-axis with equal separations of zi = i f
L
in the

interval
[

0, (L−1)
L

f
]

where L = 500 is the total number of samples along the z-

axis for each χi = πλzi. For each distance, zi, a 2D diffraction pattern, tdi [n],

is obtained. So, by combining all such 2D diffraction patterns, we obtain a 3D

diffraction volume. We are interested in the locations of focal points. For display

purposes, we take the 2D cross-section of this 3D field, that is, we extracted the

discrete values on the n2-axis at n1 = 0 at each z. The results of the propagation

with the constraints explained above are shown in Fig. 2.6 and in Fig. 2.8 for

lenslets with focal lengths 14.4mm and 43.3mm, respectively. We converted the

sample values in the 2D array to actual physical dimensions and labeled the axes

in the figures, accordingly. The multiple focal points and diffraction orders are

clearly seen in the xz-plane, as expected [52].

Now we proceed to simulate a lenslet array by limiting the lenslet array pattern

in the interval
[

−3N
2
, 3N

2
− 1

]

(three lenslets on each axis). Again we simulated

the propagation of the input lenslet array phase pattern illuminated by a plane

wave. As in the previous simulations, we obtained the 2D (x, z) cross-section of

the propagated field. The results of the free space propagation for this lenslet

array is presented in Fig. 2.10. Each lenslet in the array has a focal length of

14.4mm. We used the same equation, Eq. (2.20), to calculate the diffraction

field. This time, a periodic input pattern at the input yielded periodic diffraction

orders of multiple focal points [67]. The figure shows that by adding more and

more lenslets, we can observe the phenomenon as described in the analysis given

in Sec. 2.2, where the theoretical results are presented by Eq. (2.17) [52].

As mentioned in Sec. 2.2, we showed that the multiple image planes are asso-

ciated with the multiple focal length phenomenon due to nonlinearity introduced

by quantization. To show this effect, we used a 3 × 3 lenslet array, each lenslet

having a focal length of 43.3mm. The window size of the lenslet array, LAD[n], is

1080×1080 samples. The entire computation window size is 1920×1920 samples.

The lenslet array is centered in the computation array, wLA[n], of size 1920×1920

samples with zeros are padded around the lenslet array. The mask is letter “A”,

which is centered again in a computation array of size 1920× 1920 samples. The
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background is black while the letter is white. We multiplied this mask with a

normally distributed pseudorandom phase to simulate a diffuse object [52]. To

obtain the elemental images at the multiple image planes, we first computed the

propagation result, td1 [n], from the input wt[n] until the lenslet array plane, where

the propagation distance is 4f . Then, we multiplied the propagated field with the

pixelated and quantized lenslet array profile, wLA[n]. And then, we propagated

the resulting pattern, td2 [n], to two different distances 4f/3 and 4f/7 to obtain

td3 [n] and td4 [n] respectively. The entire simulation can be summarized by

td1 [n] = ˆIDFT
{

ˆDFT {wt[n]} gD,α[k]
}

,

td2 [n] = td1 [n]wLA[n] ,

td3 [n] = ˆIDFT
{

ˆDFT {td2 [n]} gD,β1
[k]

}

,

td4 [n] = ˆIDFT
{

ˆDFT {td2 [n]} gD,β2
[k]

}

· (2.21)

where α = πλ4f , β1 = πλ(4f/3) and β2 = πλ(4f/7) and where n1, n2, n3, n4 are

in the interval [−960, 959] [52]. In Fig. 2.11, the image obtained by taking the

absolute value of td3 [n] is shown. As it can be seen from the figure that there are

nine elemental images due to nine lenslets [52]. There is a background noise which

is present because of the out of focus terms, which are caused by the multiple

focal length properties of the lenslets where it is theoretically given by the term
∑

k akH−γk(
x
λg
) in Eq. (3.11), at this distance. At this image plane, which we call

the main image plane, the images of “letter A” are brighter. Thus their visibility

is not disturbingly affected by the superimposed out of focus images. When we

focus to the other distance, 4f/7, we obtain Fig. 2.12 which shows the absolute

value of td4 [n]. At this distance the “letter A” is again focused, as expected. On

this plane, we observe twenty five images. Nine of them are shown in Fig. 2.8 by

squares. These are due to the multiple focal point property of the lenslets [52].

However, there are intermediate images between the images inside the squares.

These are present due to the higher diffraction orders created by the pixelated

structure of the lenslets [52]. There are similar distortions at this imaging plane

as in the main image plane. Since on this plane the images are smaller, thus they

have small power, the out of focus fringes degrade the visibility significantly. So,

a zoomed in version of the central elemental images and the intermediate image

right to it are shown in Fig. 2.13 [52].
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Figure 2.5: Pixelated and quantized lens with f = 14.4mm. Sampling period is
8µm, λ = 532nm and array dimension is 120× 120 pixels. (Reprinted from “In-
tegral imaging using phase-only LCoS spatial light modulators as Fresnel lenslet
arrays,” Ali Özgür Yöntem and L. Onural, J. Opt. Soc. Am. A vol. 28, no. 11,
pp.2359-2375, 2011. c©2011 OSA.)
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Figure 2.6: Magnitude square of the cross-section of the field due to the pixelated
and quantized lenslet, with f = 14.4mm, under plane wave illumination. The
SLM is on the left. The bright areas indicate the multiple focal points and
higher diffraction orders. The brightest area on the right is the fundamental focal
point. (For visual purposes, we adjusted the brightness of the figure.) (Reprinted
from “Integral imaging using phase-only LCoS spatial light modulators as Fresnel
lenslet arrays,” Ali Özgür Yöntem and L. Onural, J. Opt. Soc. Am. A vol. 28,
no. 11, pp.2359-2375, 2011. c©2011 OSA.)
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Figure 2.7: Sampled lens with f = 43.3mm. Sampling period is 8µm, λ = 532nm
and array dimension is 360×360 pixels. (Reprinted from “Integral imaging using
phase-only LCoS spatial light modulators as Fresnel lenslet arrays,” Ali Özgür
Yöntem and L. Onural, J. Opt. Soc. Am. A vol. 28, no. 11, pp.2359-2375, 2011.
c©2011 OSA.)
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Figure 2.8: Magnitude square of the cross-section of the field due to the pixelated
and quantized lenslet, with f = 43.3mm, under plane wave illumination. The
bright areas indicate the multiple focal points and higher diffraction orders. The
brightest area on the right is the fundamental focal point. (For visual purposes,
we adjusted the brightness of the figure.) (Reprinted from “Integral imaging using
phase-only LCoS spatial light modulators as Fresnel lenslet arrays,” Ali Özgür
Yöntem and L. Onural, J. Opt. Soc. Am. A vol. 28, no. 11, pp.2359-2375, 2011.
c©2011 OSA.)
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Figure 2.9: Array of lenslets consisting of pixelated lenslets with f = 14.4mm.
Total array size is 360 × 360 pixels. Each lenslet in the array has the same
properties defined as in Fig. 2.5. The array can be obtained either by replicating
a single lenslet in both directions or by intentionally introducing an aliasing in the
calculation of a pattern for an array with dimensions having 360×360 pixels and
a focal length of 14.4mm. (Reprinted from “Integral imaging using phase-only
LCoS spatial light modulators as Fresnel lenslet arrays,” Ali Özgür Yöntem and
L. Onural, J. Opt. Soc. Am. A vol. 28, no. 11, pp.2359-2375, 2011. c©2011
OSA.)
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Figure 2.10: Magnitude square of the cross-section of the field due to the array
of lenslets consisting of sampled lenslets, with f = 14.4mm, under plane wave
illumination. Bright areas indicate the multiple focal points and higher diffrac-
tion orders. The brightest areas on the right are the fundamental focal points
corresponding to each lenslet. (For visual purposes, we adjusted the brightness
of the figure.) (Reprinted from “Integral imaging using phase-only LCoS spatial
light modulators as Fresnel lenslet arrays,” Ali Özgür Yöntem and L. Onural, J.
Opt. Soc. Am. A vol. 28, no. 11, pp.2359-2375, 2011. c©2011 OSA.)
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Figure 2.11: Image of the absolute value of d3[n]. There are nine elemental
images due to nine lenslets of the letter “A”. There is a background noise due
to the random phase on the input mask plus the out of focus images introduced
the multiple focal length properties of the lenslets. The noise do not effect the
images’ visibility too much. (For visual purposes, we adjusted the brightness of
the figure.) (Reprinted from “Integral imaging using phase-only LCoS spatial
light modulators as Fresnel lenslet arrays,” Ali Özgür Yöntem and L. Onural, J.
Opt. Soc. Am. A vol. 28, no. 11, pp.2359-2375, 2011. c©2011 OSA.)
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Figure 2.12: Image of the absolute value of d4[n]. The elemental images, which
are depicted inside the rectangles, of the letter “A” are seen together with the
higher diffraction orders between the elemental images. A zoomed in version of
the central elemental image is given in Fig. 2.13. We observe a similar background
noise. However, the visibility of elemental images are now degraded significantly
due to the noise. This is because of the smaller size elemental images with less
power. (For visual purposes, we adjusted the brightness of the figure.) (Reprinted
from “Integral imaging using phase-only LCoS spatial light modulators as Fresnel
lenslet arrays,” Ali Özgür Yöntem and L. Onural, J. Opt. Soc. Am. A vol. 28,
no. 11, pp.2359-2375, 2011. c©2011 OSA.)

40



Figure 2.13: (a) Zoomed in elemental image corresponding to the central part of
Fig. 2.12. (b) Zoomed in elemental image corresponding to the image right to
the central part of Fig. 2.12. (For visual purposes, we adjusted the brightness
of the figure.) (Reprinted from “Integral imaging using phase-only LCoS spatial
light modulators as Fresnel lenslet arrays,” Ali Özgür Yöntem and L. Onural, J.
Opt. Soc. Am. A vol. 28, no. 11, pp.2359-2375, 2011. c©2011 OSA.)
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Chapter 3

ANALYSIS OF INTEGRAL

IMAGING CAPTURE SYSTEM

WITH DIGITAL LENS ARRAY

3.1 Capture System Analysis

This section provides the analytical results which give the elemental images of a

3D object defined by impulsive source points. We choose to represent a 3D object

by a number of regularly located slices along the optical axis and at each slice

we have object points defined as 2D impulsive source points. In the analysis of

the capture system we start from the light which propagates from an object to

the SLM plane. The propagated field is then multiplied with the phase profile,

which is the lenslet array profile written on the SLM. Resulting field is then

propagated to the recording plane. We will also follow a similar derivation steps

as in Sec. 2.2 with the additional step of the calculation of the propagation from

the object. The object field arriving at the SLM plane replaces the plane wave

illumination used in the formulation of the previous section. Again we will use

the Fresnel based wave propagation model. For simplicity, a 3D input object is

modeled as a point cloud. Here we again assume that in the derivations the SLM
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has impulsive pixels and add the effect of rectangular pixels later. The capture

system scheme is shown in Fig. 3.1. The distance d is measured from a chosen

theoretical reference plane on which the closest point on the object to the lenslet

array plane is located. The distance g is measured from the lenslet array plane

to the CCD plane. These distances are chosen such that they satisfy the imaging

equation 1/f = 1/d+ 1/g for a single lenslet with focal length f .

The point cloud, which is the input of the system, is defined as

t(x, z) =
∑

i

tiδ(x− xi, z − zi) · (3.1)

ti’s are the complex valued source amplitudes with uniform magnitude. Therefore,

we assume that the object consists of self-luminous point sources. The complex

field just before the lenslet array is given by the sum of the convolutions of the

propagation kernel with each point source in the point cloud. We define the

propagation distance for each point as zi = d +∆zi. On the lenslet array plane,

since the physical device consists of pixels, we assume that the light falling onto

a pixel is integrated to yield a constant value. Thus, we get the propagated field

at the lenslet array plane as,

hLPzi (x) = tihzi(x) ∗ s(x) ∗ δ(x− xi)

= ti

[
∫

hzi(x− η)s(η)dη

]

∗ δ(x− xi)

= ti

[
∫

hzi(x) exp(−j2αixη)~αi
(η)s(η)dη

]

∗ δ(x− xi)

= tihzi(x)

[
∫

~αi
(η)s(η) exp(−j2αixη)dη

]

∗ δ(x− xi)

=

{

tihzi(x)

[

Hαi

(

x

λzi

)

∗ S
(

x

λzi

)]}

∗ δ(x− xi)

= [tihzi(x)V (x)] ∗ δ(x− xi)

= tihzi(x− xi)V (x− xi) (3.2)

where αi = π
λzi

= π
λ(d+∆zi)

and V (x) = (jλzi)
1/2

~−αi
(x) ∗ S

(

x
λzi

)

where we

used the Fourier transform property, Hαi

(

x
λzi

)

=
(

j π
αi

)1/2

exp
(

−j (2πx/(λzi))2
4αi

)

=

(jλzi)
1/2

~−αi
(x), for quadratic phase functions given in [67]. The propagated field

is the low pass filtered version of hg(x) by the pixel function s(x). The samples
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Figure 3.1: Capture setup (Revised from “Integral imaging using phase-only
LCoS spatial light modulators as Fresnel lenslet arrays,” Ali Özgür Yöntem and
L. Onural, J. Opt. Soc. Am. A vol. 28, no. 11, pp.2359-2375, 2011. c©2011
OSA.)
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of this field,

hLPD,i[n] , hLPzi (x)

∣

∣

∣

∣

x=nX

(3.3)

represent the discrete pixel values on the SLM. Each such sample is then mul-

tiplied by the discrete lenslet array phase distribution LAD[n], which is given

by

LAD[n] =

[

p(x)lQ(x) ∗
∑

r

δ(x− rx0)

]

x=nX

· (3.4)

The resulting discrete complex field is converted to an analog signal by convolving

with the pixel function. Next, this analog complex field is propagated for a

distance g to find the field on the recording plane. Finally, we take the magnitude

square of the field to simulate the intensity recording.

First let us look at the impulse response of the system for an impulse located

at (xi, zi). The impulse response of the capture system can be written as

qi(x) =

{

∑

n

hLPD,i[n]LAD[n]δ(x− nX)

}

∗ s(x) ∗ hg(x) · (3.5)

The pixel function, s(x), converts the discrete pattern into a continuous field by

zero-order hold interpolation. Since the systems are linear and shift invariant, we

can interchange the order of the convolutions s(x) and hzi(x) given as,

qi(x) =

{

∑

n

hLPD,i[n]LAD[n]hg(x− nX)

}

∗ s(x) · (3.6)

So, we first find the propagation result, where the details of the derivation are

given in Appendix B. The final result of the impulse response can be written as

(see Appendix B)

qi(x) = Pi

(

x

λg

)

∗ s(x) ∗
[

∑

k

akH−γk

(

x

λg

)

]

∗ xg
∑

n

δ(x− nxg) ∗Υi(x) · (3.7)

In Eq. (3.7), the last term

Υi(x) =
∑

r

c(x)

{{

v

(

x

λg

)

exp [j2β(xi − rx0)x]

}

∗δ
[

x−
(

1 +
g

zi

)

rx0 +
g

zi
xi

]}

(3.8)
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where we obtain v
(

x
λg

)

= (jλzi)~β

(
√

zi
g
x
)

s
(

− zi
g
x
)

by using again the

Fourier transform property, H−αi

(

x
λg

)

=
(

j π
αi

)1/2

exp
(

j (2πx/(λg))
2

4αi

)

=

(jλzi)
1/2

~β

(
√

zi
g
x
)

, for quadratic phase functions given in [67] and c(x) =

hg(x − rx0)tihzi(xi − rx0), is a weighted impulse train which gives the perfect

mapping (imaging) at locations
(

1 + g
zi

)

rx0− g
zi
xi of the input point to multiple

output points. This would be the imaging of a lenslet array consisting of perfect

thin lenses. However, because of the low pass filtering caused by the pixel func-

tion at the input, this term gives blurred spots. The term xg
∑

n δ(x−nxg), which
is a scaled impulse train due to sampling of the lenslets, causes multiple diffrac-

tion orders and it replicates the points at locations
(

1 + g
zi

)

rx0 − g
zi
xi where

(

1 + g
zi

)

x0 is the elemental image separation and − g
zi
xi is the image point loca-

tion. xg is given as λg
X
. Substituting (1/f − 1/d)−1 for g we get xg =

(

1
1−f/d

)

x0

which is equal to (1 + g/d)x0. For sufficiently large d and small object depth,

the elemental image separation
(

1 + g
zi

)

x0 ≈
(

1 + g
d

)

x0. So, we get nearly the

same separation periodicity for the elemental images and the higher diffraction

orders of the elemental images. For those object points near to the distance d,

we will have elemental images which are imaged well. For other object points,

which are further away from d, the separation of the higher diffraction orders

will be slightly less than the elemental images separation. This might cause

intermingled elemental images. In reality, for the central diffraction order, a hu-

man observer may not notice this effect. However, for higher orders this artefact

might be noticeable. Furthermore, these far away points might be out of focus

at the imaging plane because of the limited depth of field, caused by the term

Pi

(

x
λg

)

; this will be explained later. Thus, for a certain setup, it is possible

to obtain good elemental images by satisfying the above constraints. Moreover,

higher diffraction orders will have less intensity because of the rectangular pixels

and the SLMs’ finite size as discussed previously in Sec. 2.2. So, these artefacts

will not disturb the elemental images at the central diffraction order. The term
∑

k akH−γk

(

x
λg

)

is introduced because of the multiple focal point property of the

lenslets. In fact, this is another artefact term at the main image plane caused

by the out of focus small images formed at multiple image planes related to the

focal distances f/k of higher-order lenslets due to quantization. s(x) is the pixel
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function, which introduces an inherent apodization [41]. The first term in the

Eq. (3.7), Pi

(

x
λg

)

= P
(

x
λg

)

∗ Hθi

(

x
λg

)

, is the generalized pupil function which

takes defocussing due to different depths of the point sources at the input plane

into account. The function Hθi

(

x
λg

)

is responsible for the defocussing. P
(

x
λg

)

is

the Fourier transform of the pupil function. This function is a limiting factor for

the extent of qi(x). The constant θi is given as β + αi = −π
λ

∆zi
d(d+∆zi)

. Therefore,

the overall response of the system to the point cloud is given by

q(x) =
∑

i

qi(x) (3.9)

by adding the response of each source in the point cloud. Here we assume that

each point is a source and therefore the field on it is independent of other source

points. Finally, in order to obtain the elemental images, we simulate the intensity

recording process by taking the magnitude square of the q(x) as

I(x) = |q(x)|2 =
∣

∣

∣

∣

∣

∑

i

qi(x)

∣

∣

∣

∣

∣

2

· (3.10)

Up until now, we showed the rigorous analysis of obtaining the elemental im-

ages of 3D impulsive image points using the kernel given by Eq. (2.10). However,

we have to simplify Eq. (3.10) in order to interpret it easily. The general case

presented here can be easily reduced to simpler versions by imposing certain as-

sumptions on Eq. (3.10) related to the physical or simulation environments. First

assumption is that the object depth is small compared to the calculation distance

percentage-wise. In this case, the term 1√
jλz

in the Fresnel kernel can be assumed

to be a constant as a consequence of a rather thin volume (restricting z within

an interval with a small percentage change). So, we can leave this constant out

of our analysis. The second assumption is made on the exclusion of the phase

term exp
(

j 2π
λ
z
)

. We have to be careful on this assumption since the phase term

is more sensitive compared to the constant term 1√
jλz

. However, this term may

be still omitted if either one of two conditions are met: For the first case, suppose

that all object points are restricted to have discrete depth values, zi such that 2π
λ
zi

is an integer multiple of 2π (the trivial case is when all object points lie on the

same plane). This is a convenient and feasible restriction for computer generated
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objects since the implied restriction on zi’s result in a very small (equal to wave-

length) step size compared to the physical size of a typical object. Even if the

first condition is not satisfied, we may still drop the phase term from the kernel if

the following condition is satisfied: Suppose that the object points are diffusing,

that is, the complex amplitudes of the object points have random phase values.

The assumption here is valid for most physical and synthetic objects. Dropping

the phase term exp
(

j 2π
λ
z
)

is equivalent to a multiplication of the amplitude by

exp
(

−j 2π
λ
z
)

. But adding a constant to a random phase , which is modulo 2π

radians, will not change the uniformly distributed random characteristics of the

phase of the object complex amplitude. Such a simpler version of the Eq. (3.10)

is used in [52] with the assumption that such conditions are met.

To simplify I(x), we may further assume that the elemental images do not

overlap and P
(

x
λg

)

∗ s(x) diminishes with respect to x such that each elemen-

tal image is imaged just behind the corresponding lenslet. We also assume that

intensities of the responses of each source point can be superposed. All source

points contributes to each and every image point on the image plane. How-

ever, we assume that only one source point corresponding to that image point

has significant contribution at a particular location while the contribution from

all other points is negligible. Under the specified assumptions, the magnitude

square removes the phase terms j~β

(
√

zi
g
x
)

exp[jβ(xi−rx0)x] and c(x) in Υi(x)
(

zi
g

)

s
(

− zi
g
x
)

remains as the only convolving term in Eq. (3.10). Also, the

impulse train x2g
∑

n δ(x−nxg) introduces a constant weight, x2g, after the magni-

tude square operation. These impulses specify the locations of the imaged points.

Thus, the impulse train indicated by x2g
∑

n δ(x − nxg) and the impulse train in

Υi(x) in Eq. (3.7) can be taken out of the magnitude square operation. The spot

size of the imaged points are determined by convolution of the magnitude square

of the function Γ(x) = Pi

(

x
λg

)

∗ s(x) ∗∑k akH−γk

(

x
λg

)

and
(

zi
g

)

s
(

− zi
g
x
)

. The

Eq. (3.10), under above restrictions, is approximated as

I(x) ≈
∑

i

{

|Γ(x)|2 ∗
(

zi
g

)

s

(

−zi
g
x

)

∗ x2g
∑

n

δ(x− nxg)

∗
∑

r

δ

[

x−
(

1 +
g

zi

)

rx0 +
g

zi
xi

]

}

· (3.11)
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which is given in [52].

To confirm this result we check the case where we use an analog lenslet array.

If we have had an analog lenslet array, summation over k, the impulse train

(indexed with n) due to sampling, the convolution with the pixel function s(x)

and the low pass filtering with
(

zi
g

)

s
(

− zi
g
x
)

would be dropped in Eq. (3.11).

So, the result simplifies to the previous result given in [19], [25] which is given as

I(x) =
∑

i

{

∣

∣

∣

∣

Pi

(

x

λg

)∣

∣

∣

∣

2

∗
∑

r

δ

[

x−
(

1 +
g

zi

)

rx0 +
g

zi
xi

]

}

(3.12)

3.2 Display System

The reconstruction process is similar to the capture process where the distances

g and d are interchanged, that is, the distance between the input, in this case

a 2D plane consisting of an array of elemental images, and the lenslet array is

measured as g while the distance between the reference plane on the reconstructed

object/scene and the lenslet array is d. This is shown in Fig. 3.2. We can think

that the light distribution I(x) is input to this system. The input is only on a

single plane consisting of a point cloud whereas the output consists of several

planes. Each point in the point cloud will be reconstructed by carrying out a

similar derivation as in the Sec. 3.1. The object is perceived with a pseudoscopic

3D reconstruction, that is, the points nearer to the pickup lenses will be far away

from the reconstruction lenses forming a depth reversed object.

3.3 Optical Results

We constructed a simplified integral imaging system and conducted experiments

with this system to confirm the computer simulations and theoretical analysis

given in Sections 2.3 and 3.1, respectively. Since careful alignment of both parts

(capture and display) are needed to match the elemental images captured by

the CCD array to the LCD at the display setup to have a good reconstruction,
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Figure 3.2: Display setup (Reprinted from “Integral imaging using phase-only
LCoS spatial light modulators as Fresnel lenslet arrays,” Ali Özgür Yöntem and
L. Onural, J. Opt. Soc. Am. A vol. 28, no. 11, pp.2359-2375, 2011. c©2011
OSA.)
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we chose to construct our overall integral imaging system in one single stage as

shown in Fig. 3.3. The display part immediately follows the capture part in this

experimental setup. A picture of the setup is shown in Fig. 3.4. Furthermore, in

the optical setup, we used a green 10W 4 × 5 LED array from Edipower, as the

object instead of using a 3D object (Fig. 3.5), where we masked some LEDs to

form the letter “C” shape. LEDs fit into a square of 7× 7mm2 area. One reason

for us to choose an LED array is the undiffracted light at the output of the display.

Since the SLMs have a limited diffraction efficiency, the observable reconstruction

will have a quite limited power. When we used a passive 3D object illuminated

by an external source in the experiments, we were able to observe elemental

images on the diffuser at the elemental images plane. However, since there is an

undiffracted light at the background together with the elemental images and since

the intensities of the elemental images are lower compared to the undiffracted

light, the visibility was poor. So, it was difficult to observe the reconstruction with

these elemental images from a passive (illuminated) object at the display part of

the proposed setup. When we used the LED array we still observe the undiffracted

light at the background. But this time, intensities of the focused images are much

brighter. The other reason to use a single color 2D LED array instead of a 3D

object is the chromatic abberation introduced by the lenslets. Since, we calculated

the lenslets for a certain wavelength, 532nm, an object illuminated with a white

light causes elemental images to have chromatic abberation. There are some

proposed methods to compensate for chromatic abberation [70]. However, in our

experiments we chose to use a self-luminous object with a single color; our aim

was to check the presented analysis. A single wavelength light source from a self-

luminous LED array is easier to observe because the undiffracted light intensity

will not dominate and there will be no chromatic abberations. We used the lenslet

array given in Fig. 2.2 on both SLMs in the capture and display part.

In the capture part, the object was imaged at the object plane with a projector

lens, which is taken from an EPSON EMP TW-520 projector, to shrink the size

of the real object and to collect and confine the light into a conical volume. The

LED array is placed just behind the objective lens. The objective lens is adjusted

such that the imaging distance from the objective to the object plane is 45mm.
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The image of the LEDs covers a 4 × 4mm2 area on the image plane. The small

sized real image of the object is then imaged by the lenslet array on SLM1 to

the diffuser plane where we observed the elemental images shown in Fig. 3.7.

The distance from the object plane to the surface of SLM1 is 188mm and the

distance from the SLM surface to the diffuser is 68mm. In theory, the lenslets

should have exactly 43.3mm focal length in free space propagation. However, in

our system we use beam splitters in front of the SLMs, so, the actual focal length

of the lenslets is shifted to approximately 55.3mm. So, we first try to find the

elemental image plane (the plane where the elemental images seen the sharpest)

and place the diffuser at this plane. And then, we measured the distance from

the SLM1 surface to the diffuser and placed the second SLM, accordingly. The

elemental images fit into a rectangle of approximately 10mm×150mm area. One

elemental image size is about 2mm× 2mm. The visibility of the elemental image

set was good. As discussed in Sec. 3.1, we were also able to see the higher

diffraction orders caused by the pixelated structure of the SLM. These orders are

intermingled because of the difference between the elemental image separation

period and the higher diffraction order separation period. Because of the finite

SLM size, the intensities of the first diffraction orders are weaker than the central

order, but stronger compared to the other higher orders. We masked higher

diffraction orders even if they do not strongly affect the display part.

The display part starts from the diffuser. Since the elemental images were

imaged directly on the diffuser, we did not need any other display device like in

the conventional systems. So, we were able to observe the reconstructed image,

which is shown in Fig. 3.8, by directly looking at the second lenslet array on

SLM2. We put another diffuser at the reconstruction distance. The distance of

this diffuser to the elemental image plane is the same as the distance from the

object plane to the elemental images plane. The reason for this second diffuser

is to show that the reconstructed image is real. In fact, we were able to see

the reconstruction well with bare eye without any diffuser. The quality of the

reconstruction was quite high since we did not use a pixelated device (i.e. LCD)

to display the elemental images. However, the resulting intensity is lowered by the

beam splitters. Each beam splitter in the system lowers the input light intensity
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Figure 3.3: Experimental setup (Reprinted from “Integral imaging using phase-
only LCoS spatial light modulators as Fresnel lenslet arrays,” Ali Özgür Yöntem
and L. Onural, J. Opt. Soc. Am. A vol. 28, no. 11, pp.2359-2375, 2011. c©2011
OSA.)

by at least half and the light travels through each beam splitter twice. However,

the light intensity at the output is acceptable. This experiment showed us that

we can use phase-only SLMs with lenslet array phase pattern written on them

to replace analog lenslet arrays in integral imaging systems. Such a system can

easily be integrated into current digital projection systems.
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Figure 3.4: Top view of the optical setup: upper rectangle shows the capture
part and lower square shows the display part. In between, a small rectangle
shows the diffuser, which acts as a capture and display device, on the elemental
images plane. The object is behind the white cardboard on the right before the
projector lens. The cardboard prevents the light from the LED array to spread
everywhere. The vertical dashed line after the projector lens shows the object
plane. Dashed lines with the arrows shows the optical path. The small diffuser
after the mirror is used to show that the image at the calculated reconstruction
distance is real. (Reprinted from “Integral imaging using phase-only LCoS spatial
light modulators as Fresnel lenslet arrays,” Ali Özgür Yöntem and L. Onural, J.
Opt. Soc. Am. A vol. 28, no. 11, pp.2359-2375, 2011. c©2011 OSA.)
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Figure 3.5: LED array that we used as the object. We put a black mask over the
inner LEDs to form a (mirror image) “C” shaped object. (Reprinted from “In-
tegral imaging using phase-only LCoS spatial light modulators as Fresnel lenslet
arrays,” Ali Özgür Yöntem and L. Onural, J. Opt. Soc. Am. A vol. 28, no. 11,
pp.2359-2375, 2011. c©2011 OSA.)
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Figure 3.6: An image of the LED array on the object plane: the object is first
imaged onto this plane by a projector lens to control both the depth and the size
of the object. (Reprinted from “Integral imaging using phase-only LCoS spatial
light modulators as Fresnel lenslet arrays,” Ali Özgür Yöntem and L. Onural, J.
Opt. Soc. Am. A vol. 28, no. 11, pp.2359-2375, 2011. c©2011 OSA.)

Figure 3.7: Optically captured elemental images (“Integral imaging using phase-
only LCoS spatial light modulators as Fresnel lenslet arrays,” Ali Özgür Yöntem
and L. Onural, J. Opt. Soc. Am. A vol. 28, no. 11, pp.2359-2375, 2011. c©2011
OSA. Reprinted with permission.)
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Figure 3.8: Optical reconstruction (Reprinted from “Integral imaging using
phase-only LCoS spatial light modulators as Fresnel lenslet arrays,” Ali Özgür
Yöntem and L. Onural, J. Opt. Soc. Am. A vol. 28, no. 11, pp.2359-2375, 2011.
c©2011 OSA.)
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Chapter 4

DISPLAY OF HOLOGRAPHIC

RECORDING USING

INTEGRAL IMAGING

SYSTEM WITH DIGITAL

LENS ARRAY

In this chapter, we present the method for elemental image generation from holo-

graphic data and an integral imaging optical setup to reconstruct 3D images from

the computer generated elemental images. The holographic data may be acquired

either by optical means or computed using digital techniques. We present our

method in the following subsection. In the second subsection, we present the

algorithm and in the third subsection we present four examples. In the first ex-

ample, we obtain the elemental images of two letters at different depths. We first

generated the diffraction patterns (computer generated holograms) of the letters.

The complex diffraction pattern is then used as the input to our algorithm. The

output of the algorithm gives the elemental image set of these letters at the imag-

ing distance. For the second example, we obtain the elemental images of a 3D

pyramid shaped object. In the third example, we obtain the set of elemental
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images as the output from a digitally captured optical holographic data which is

obtained using a diffraction tomography technique [57]; the object is an epithe-

lium cell. The last example is another physical data obtained by conventional

holographic methods. In the fourth subsection, we describe the optical setup

which we used to reconstruct the 3D image from elemental images. And finally

in the last subsection, we present the results of the optical reconstructions with

the proposed optical setup. Thus, we show that the obtained elemental images

can be used for optical reconstruction. Fortunately, at least on the display side,

we do not have additional speckle noise problem since we use incoherent illu-

mination for the optical reconstructions. The object sizes and display distances

should match the optical setup requirements. Thus, the holographic data should

be further processed if the object sizes and the distances do not match the display

system. This processing is especially needed for optically captured holographic

data.

4.1 The Method

Suppose we have digitally recorded holographic data (diffraction data) of a 3D

object; a setup is shown in Fig. 4.1(a). Since, our aim is to display 3D image

of a holographically recorded object/scene data by using an integral imaging

technique, we need to convert the holographic data to elemental images. An

in-line hologram of a 3D object is related to the diffraction field of that object

[51]. This diffraction field can either be obtained digitally by calculating the

propagation of light field scattered from the object or captured by optical means.

In Fig. 4.1(a), a sketch of the diffraction pattern at z = z0 of a cube is shown.

In Fig. 4.1(b), a generic setup is demonstrated to holographically reconstruct

the 3D image of the original object. In a digital holographic display system,

diffraction field is sampled and written on a SLM. When the SLM is illuminated

by a laser light source, an observer can perceive the 3D image [74]. For the integral

imaging setup, to find the elemental images of a 3D object numerically, we used

the algorithm shown by the block diagram depicted in Fig. 4.2(c) that represents

the capture setup of a generic integral imaging system shown in Fig. 4.2(a). We
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Figure 4.1: (a) A generic sketch of holographic recording. The diffraction pattern
at z = z0 is captured. (b) A generic sketch of 3D image reconstruction from
the captured hologram. (Reprinted from “Integral imaging based 3D display of
holographic data,” Ali Özgür Yöntem and L. Onural, Opt. Express vol. 20, no.
22, pp.24175-24195, 2012. c©2012 OSA.)

assume that the light field scattered from the object is available as diffraction data

at the input. We obtained the elemental images by first calculating the Fresnel

propagation of this data to the lenslet array plane, z = d, and then by multiplying

this field by the lenslet array phase pattern, and finally, by computationally

propagating the resulting field once more by a distance z = g, where 1/g = 1/f−
1/d, f is the focal length of a single lenslet [52]. In Fig. 4.2(b), reconstruction of

the 3D image at the display part of a generic integral imaging system is shown.

The observer perceives a pseudoscopic 3D reconstruction due to the nature of

direct pick-up method used in the capture part of the integral imaging system.

It is easy to process the elemental images to set orthoscopic 3D images instead

of pseudoscopic version [16]. To relate the diffraction data of a 3D object and

the elemental images of the same 3D object, let us examine the setups in Fig.

4.1(a) and Fig. 4.2(a). Suppose that the wavelength is the same during recording

and reconstruction. In the integral imaging system, the diffraction pattern just

before the lenslet array is needed to find the elemental images as described above.
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Figure 4.2: (a) A generic integral imaging data capture setup. The diffraction
pattern in Fig.4.1 (a) is also depicted. For the same object with the same physical
dimensions, the diffraction patterns in both systems are the same. (b) A generic
Integral imaging display setup. The reconstruction is pseudoscopic due to em-
ployed direct pick-up method.(c) Designed model to calculate elemental images
from diffraction (hologram) data. (Reprinted from “Integral imaging based 3D
display of holographic data,” Ali Özgür Yöntem and L. Onural, Opt. Express
vol. 20, no. 22, pp.24175-24195, 2012. c©2012 OSA.)
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If we have the 2D diffraction field at a certain distance, we can find the 2D

diffraction field of the same object at another distance by calculating the free

space propagation. So, the field just before the lenslet array is related to the

diffraction pattern at the distance z = z0 and can be found by propagating this

diffraction field by another distance z = d−z0. However, we might have an input

diffraction pattern obtained from a holographic setup with a different wavelength

than the one used in the integral imaging display system. In that case we need

to pre-process the input data.

The impulse response of the continuous Fresnel kernel is given by Eq. (2.3).

The scalar wave propagation can be modeled as a linear shift invariant system

with the impulse response given by Eq. (2.4). Naturally, discretizations are

needed for computer simulations. For this reason we model the analog system

given in Fig. 4.2(a) as a discrete system given in Fig. 4.2(c). Here the two blocks

represent discrete linear shift invariant systems with impulse responses ~D,α [n]

and ~D,β [n]. So, we can use convolution to compute the response of the system

to a discrete input.

In the model, we first convolve the input data by the discrete kernel ~D,α [n]

where α = π
λd

and then multiply by the lenslet array phase distribution LAD [n]

and we finally obtain the elemental images by convolving the result by ~D,β [n]

where β = π
λg
. Note that we omitted the constants in the discrete versions of the

kernel in order not to clutter the computations. This is also discussed in Sec. 3.1.

The discretization issues related to diffraction are discussed in [51].

It will be helpful to have a prior information about the physical parameters

(wavelength, capture distance, capture device pixel period) of the holographic

recording process. If there is a mismatch between the recording parameters and

the display parameters, we should process the hologram to match the parameters

of these two steps. In case of a mismatch between the physical parameters of the

holographic recording step and our display, the matching process is equivalent to

equating the corresponding discrete Fresnel kernels. To find the relation between

the kernels, let us assume that ~D,α1
[n] represents the propagation associated

with the holographic input setup parameters and the kernel ~D,α2
[n] represents
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the propagation with the integral imaging setup parameters. If we equate the

quadratic phases in ~D,α1
[n] and ~D,α2

[n], we can find the relation that matches

the physical parameters. Let exp
[

jα1X
2
1n

Tn
]

be the quadratic phase in the Fres-

nel kernel representing the 2D diffraction field of the holographic setup where

α1 = π
(λ1z1)

, λ1 is the wavelength, z1 is the propagation distance, X1 is the

sampling period of the field in both directions. n = [n1 n2]
T where n1, n2 are

integers. Let exp
[

jα2X
2
2n

Tn
]

be the quadratic phase in the Fresnel kernel rep-

resenting the 2D diffraction field of the integral imaging setup where α2 =
π

(λ2z2)
.

If we equate the parameters of these functions ∀n, we get, α1X
2
1 = α2X

2
2 thus

π
(λ1z1)

X2
1 = π

(λ2z2)
X2

2 . So, we can find that z2 = z1.
λ1

λ2

.
X2

2

X2

1

[73].

During the process, we wish to first back propagate the holographic data to

a location which we call the “origin”. The origin is defined as the effective depth

of the nearest point of the object to the lenslet array. So, back-propagating the

input data by z2 is equivalent to placing the 3D object effectively at the origin as

in Fig. 4.2(a) [73]. This way we can obtain a focused elemental images set at the

output. If we do not have the prior information about the physical capture setup

parameters, we can still find the object field at the origin. This time, first we find

a focused image from the hologram by making propagations back and forth by

using our setup’s parameters. This is like a camera autofocus. When we obtain

a focused image we can determine the origin. And then we can use the complex

object field at the origin as the input data.

4.2 The Algorithm

The algorithm is given by the flowchart shown in Fig. 4.3. The input of the

algorithm is diffraction data. Additional preprocessing steps may be needed de-

pending on the nature of input data and the desired quality of the output display.

For example, if the input is not from an object with a diffusing surface, we may

need to multiply the associated field with a random phase to improve the visi-

bility at the output. Also, for the cases where the recording physical parameters

do not match with the display system parameters and where the object size is
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small compared to the display size, we may need to pre-process the data. The

procedures for such cases will be discussed in detail later in this section. However,

here we should mention that for all these cases, we first want to find the complex

object field at the origin and then apply the specified processes. Actually, this

step is not a necessity. On the contrary, we can generate the elemental images

with the given diffraction pattern directly. To cover all cases by a single uniform

step, we first back-propagate all input to the origin, and then apply the fixed

process as described in Fig.2(c). This will then directly give the elemental images

regardless of the properties of the original data.

Again, we use the DFT method to compute the convolution to find outputs of

the discrete systems as in Sec. 2.3. This time, in our examples, the signal window

sizes are chosen smaller than 1920×1920 while the computation window sizes are

chosen as 3840×3840. We choose the range for n1, n2, k1 and k2 as [−1920, 1919]

in our examples. Again wt[n] is the computational window and t[n] is centered

inside wt[n].

On the lenslet array plane, we generate the lenslet array complex phase pattern

given as in [52]. A single lenslet of the array is given by Eq. (2.7), which is

obtained by discretizing Eq. (2.6), by setting the parameter γ = π
λf

. The

discrete variables, n1, n2, are in the interval [−M/2, M/2 − 1]. Again we chose

the focal length as f =M X2

λ
to cover the entire normalized frequency range in the

interval [−π, π) radians where M is the length of one side of a lenslet. A 2D array

of lenslets, LAD[n], is generated by replicating lD,−γ [n] in both directions in a

rectangular fashion. LAD[n] is centered within the computation window wLA[n].

Also, the lenslet array is large enough to image most of the light scattered from

the object. wLA[n] is multiplied by the diffraction pattern of the object, td[n],

which is given by

td [n] = ˆIDFT
{

ˆDFT {wt [n]} gD,θ [k]
}

(4.1)

where θ = πλd.

Focal length of the lenslets is chosen such that it satisfies the imaging equa-

tion 1/f = 1/g+1/d and proper magnification ratios are obtained at the imaging

plane. To give numerical examples, we chose f = 10.8mm and d = 7f . Finally,

64



Figure 4.3: The algorithm to generate elemental images from a diffraction pattern.
(Reprinted from “Integral imaging based 3D display of holographic data,” Ali
Özgür Yöntem and L. Onural, Opt. Express vol. 20, no. 22, pp.24175-24195,
2012. c©2012 OSA.)
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we calculate the diffraction pattern due to the resulting complex field of the mul-

tiplication wLA[n]td[n] at the imaging depth, g. The resultant complex diffraction

pattern is given by

p[n] = ˆIDFT
{

ˆDFT {wLA [n] td [n]} gD,σ [k]
}

(4.2)

where σ = πλg. Taking the square magnitude of this pattern simulates the

discrete intensity recording,

I [n] = |p [n]|2 · (4.3)

As a result, we obtain computer generated elemental images of the 3D object.

4.3 The Examples

Now we will proceed with the examples of three different input diffraction pat-

terns, as a proof of the concept; we chose three examples. In the reconstructions,

we demonstrate the depth of focus, viewing angle and parallax of our display,

qualitatively. The first example is a set of two planar letters; the letters are at

different depths. Such an example is extensively used in the literature [45,46,48].

This example helps us to understand whether we are able to distinguish different

depths in the reconstructions. Also, it gives an idea about the depth of focus

of the lenslets. Our second example is an extension of the first one. We sliced

down a pyramid object to create several planar objects. This time our aim is

to show the parallax that can be obtained using our display. Since, we have a

depth variation in the object, it is easier to observe the parallax effect. The last

example presents the most important aspect of our method. We used a digitally

obtained optical diffraction tomography data as the input of our method. We

can generate elemental images even from such physical data.

In the first example, we have two different digital letters at two different

depths. One letter is located at the origin, and the other one is located at

z = −5f where f = 10.8mm. These letters are separated along the x-axis by

2.6mm. The amplitude of the object points on the letters are taken as 1 and the

other points outside the letters are 0. Let the letter located at distance z = −5f
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is represented by the computation window wt1 [n] and the other is represented

by wt2 [n]. So, we have two slices in the space. To find wt [n] we perform the

following computation:

wt [n] = ˆIDFT
{

ˆDFT {wt1 [n]R1 [n]} gD,χ [k]
}

+ {wt2 [n]R2 [n]} (4.4)

where χ = πλ(5f), Ri [n], i ∈ {1, 2}, is a random matrix with entries Ri [n] =

[rn1n2
] where rn1n2

= exp(−j2πX ) and where X is a random variable uniformly

distributed in [0, 1]. Thus, the window wt1 [n] is first multiplied by a random

phase R1 [n] and then propagated by an effective distance of 5f . The result is

added to wt2 [n] which is also multiplied by another random phase factor. The

second slice is not propagated since it is already located at the origin. The

assumption is that, the multiple diffraction effects from each slice of the object

are negligible. Thus, each slice is assumed to contribute to the diffraction field

independently of others. This is because, the multiplication with the random

phase simulates diffusing surfaces, and thus, ensures that the light traveling in the

space well scatters almost everywhere. Each object slice will block a negligible

fraction of the scattered light from previous object slices. Therefore, the light

scattered from each object slice will reach the lenslet array plane and imaged on

the recording plane. Thus, the object become visible at the reconstructions with

minimal degradation due to obstruction.

To note that, the object at z = −5f distance will be 5f in front the object at

the origin in the reconstruction. So, the object at the origin will be reconstructed

at d = 7f , which is the distance we chose while generating the elemental images,

and the other object will be observed at 12f . The generated elemental images

set is given in Fig. 4.4. The second example is a pyramid object. This time we

have several slices of a pyramid object; a sketch is shown in Fig. 4.5. Only six

slices are shown in Fig. 4.5 for clarity. However, we chose to simulate with nine

slices. Only the base part of the pyramid is a full frame. And only the tip of

the pyramid is a single square patch. At each other slice, we have square patches

located at the corners on the edges. When looking from the center, each slice

containing square patches can be seen clearly, that is, any patch do not obscure

the others including the base frame and the tip. This is a coarse quantization of

a wire-frame pyramid structure. To make a reconstruction where the tip is at the
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Figure 4.4: Computed and recorded elemental images of two letters at different
depths and positions. (We enhanced the brightness of the figure for visual pur-
poses. This is achieved by stretching the contrast. The figure is also used on the
LCD display of the integral imaging setup as is. Similar enhancement procedure
is used in Figs. 4.6, 4.8 and 4.17-4.20. In Figs. 4.17-4.20, we enhanced only
the computer simulation results.) (Reprinted from “Integral imaging based 3D
display of holographic data,” Ali Özgür Yöntem and L. Onural, Opt. Express
vol. 20, no. 22, pp.24175-24195, 2012. c©2012 OSA.)
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Figure 4.5: A sketch of the pyramid object. A square pyramid is sampled (sliced)
over the z-axis. Base part is a square frame while the edges and the tip of the
pyramid are small square patches. For display purposes we showed six slices
of the object whereas in the simulations we used nine slices. (Reprinted from
“Integral imaging based 3D display of holographic data,” Ali Özgür Yöntem and
L. Onural, Opt. Express vol. 20, no. 22, pp.24175-24195, 2012. c©2012 OSA.)
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front and the base frame is at the back, the base frame (wt0 [n]) is located at the

origin and tip (wt8 [n]) is located at z = 24mm. We chose such a size because,

we had a similar size physical wire-frame pyramid, which is also used in [75], to

compare the optical reconstructions. The base frame of this physical pyramid is

a square with an edge size of 8mm. In the simulations, the pixel size of this edge

is 960 pixels. The width of the patches and the wire-frame is 60 pixels. wt [n] is

computed as,

wt [n] =
8

∑

i=0

ˆIDFT
{

ˆDFT {wti [n]Ri [n]} gD,χ [k]
}

(4.5)

where χ = πλ(i∆) and ∆ = 24mm/8 = 3mm. Note that gD,χ [k] = 1 when

χ = 0. Fig.4.6 shows the elemental images of the pyramid object.

Figure 4.6: Computed and recorded elemental images of the pyramid object.
(We enhanced the brightness of the figure for visual purposes.) (Reprinted from
“Integral imaging based 3D display of holographic data,” Ali Özgür Yöntem and
L. Onural, Opt. Express vol. 20, no. 22, pp.24175-24195, 2012. c©2012 OSA.)

The third example is a physically captured diffraction data obtained by a

diffraction tomography technique [57]. The object is an epithelium cell, which is

mostly a transparent (phase) object. The object has a small depth compared to

the recording distance. So, it is harder to see the 3D volume and perceive the

parallax for this object. Moreover, a coherent illumination is used while obtaining
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the diffraction pattern. Furthermore, the size of the data is small pixel-wise, so,

we zoomed the input data to perceive a larger object. All of these issues are

handled as follows: To zoom the object, we interpolated the 2D signal. To do

that, we upsampled the original diffraction data, tcaptured [n], by a factor of two

in both directions (K = 2) and then low pass filtered the result and obtained

tinterpolated [n] as,

tupsampled [n] =







tcaptured
[

n1

K
, n2

K

]

, n1

K
and n2

K
are integers

0 , else

tinterpolated [n] = tupsampled [n] ∗ LPF π
K
[n]

where LPF π
K
is the low pass filter with pass band π

K
convolving tupsampled [n]. This

method does not degrade the diffraction pattern. The result can be seen in Fig.

4.7. The diffraction data was captured at a certain distance, z = z1. First, we will

propagated this data backwards to the origin as it is shown in the flowchart in Fig.

4.3. However, since we upsampled the data, the parameter η of the kernel changes

and the required propagation distance become z = K2z1
λ1

λ
X2

X2

1

. The new physical

distance parameter is affected by square of the upsampling factor since other

physical parameters related (wavelength, pixel period) to η are kept constant.

So, back propagation from the modified data will result in a distortion on the

depth of the object. For example, if the original object had a spherical shape and

we reconstruct the modified diffraction data, then the reconstructed object would

have an ellipsoidal shape. So, the object field obtained by back propagation will

now have a distorted depth values. Thus, the pre-processed signal (complex field)

becomes,

tobject [n] = ˆIDFT
{

ˆDFT {tinterpolated [n]} gD,χ [k]
}

, (4.6)

where χ = πλ
(

K2z1
λ1

λ
X2

X2

1

)

. We now, insert this signal into the center of the com-

putation window wt [n], thus, we have the diffraction field at the origin. At this

point, the complex diffraction data contains the three-dimensional information of

the object.

In order to improve the visibility of the object, and also to use the full viewing

angle of the display device, we choose to multiply the complex diffraction data

with a random phase. A diffusive surface is much more visible than a bright one.
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Moreover, the light will reach to and be imaged by most of the lenslets, increasing

the viewing angle. Here, one should be careful while doing this operation since

it might destroy the three-dimensional information. This can be visualized as

putting a diffusive glass in front of an object. The parts closer to the glass can be

seen well while the far away points will be obscure. Depending on the depth of

the object, only certain parts of the object are seen in focus if the magnitude of

this field is imaged. For this example, most of the object is in focus at the origin,

and fortunately, this operation improves the performance of our method. For

those objects that have a rather large depth, this method may not work. Even if

this step is skipped, the method would still work. However, this time, only those

lenslets closer to the center of the lenslet array will image the 3D object. The

ones at the periphery will not generate any image since the light from the object

will not reach them. This will decrease the viewing angle of the reconstructed

3D image. So, multiplication by a random phase helps us to use the maximum

viewing angle. We multiply wt [n] with a random phase R [n]. For this last

example the elemental images are shown in Fig. 4.8. Note that, the elemental

images obtained for the epithelium cell is filtered by a simple high pass filter to

sharpen the edges and enhance the details of the object. We filtered the signal by

a half band high pass filter. This improved the reconstruction quality, which is

determined by subjective assessments. All of the examples need slightly different

preprocessing. However, once we obtained wt [n], the rest of the algorithm is the

same for all cases.

For the last example, we followed the similar steps as in the previous one.

However, this time, it is not a diffraction tomography data. The hologram is

from a toy object shown in Fig. 4.9.

This time the object data size is larger than our display device pixel size. So,

we did not interpolated this data and directly used it. However, we preprocessed

the hologram data in order to remove the DC term which is present do to the

reference beam used in the capturing process. We filtered the hologram data with

a narrow band low pass filter to eliminate this and obtained tDCremoved
[n]. It is

necessary to improve the visual quality of the reconstruction. The reconstruction

of the hologram data is given in Fig. 4.10.
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Figure 4.7: (a) The amplitude picture of the diffraction pattern of the epithelium
cell. (b) The upsampled (interpolated and low pass filtered) version of (a). (The
hologram data, from which this reconstruction was obtained, was courtesy of cole
Polytechnique Fdrale de Lausanne within the Real 3D project.) (Reprinted from
“Integral imaging based 3D display of holographic data,” Ali Özgür Yöntem and
L. Onural, Opt. Express vol. 20, no. 22, pp.24175-24195, 2012. c©2012 OSA.)
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Figure 4.8: Computed and recorded elemental images of the epithelium cell. (We
enhanced the brightness of the figure for visual purposes.) (The hologram data,
from which this reconstruction was obtained, was courtesy of cole Polytechnique
Fdrale de Lausanne within the Real 3D project.) (Reprinted from “Integral
imaging based 3D display of holographic data,” Ali Özgür Yöntem and L. Onural,
Opt. Express vol. 20, no. 22, pp.24175-24195, 2012. c©2012 OSA.)

As it can be seen in the Fig. 4.10, there is noise present in the reconstruction.

This is due to the coherent light source (laser) used during the recording. The

input consists of diffusing surfaces. The complex field, tobject [n], that we insert

at the center of the computation window, wt [n], is

tobject [n] = ˆIDFT
{

ˆDFT {tDCremoved
[n]} gD,χ [k]

}

, (4.7)

where χ = πλ
(

z1
X2

X2

1

)

and z = z1
X2

X2

1

is the recording distance. This time the

wavelength is the same in both capture and display systems. With these param-

eters we obtain the elemental images shown in Fig. 4.11.

We also performed reconstruction simulations and compared them with the

optical reconstructions. To simulate the reconstructions, we computed our algo-

rithm in the reverse order. Therefore, this time the input of the algorithm is the

intensity distribution of the elemental images, I [n], at a single plane. We first

multiplied the elemental images with a random phase R [n] and then propagate

the result to a distance z = g, where the lenslet array is located. The complex
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Figure 4.9: Toy object (The hologram data, from which this reconstruction was
obtained, was courtesy of National University of Ireland, Maynooth within the
Real 3D project.)
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Figure 4.10: Reconstructed hologram of the toy object. (The hologram data,
from which this reconstruction was obtained, was courtesy of National University
of Ireland, Maynooth within the Real 3D project.)

Figure 4.11: Elemental images of the toy object. (The hologram data, from which
this reconstruction was obtained, was courtesy of National University of Ireland,
Maynooth within the Real 3D project.)
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field just before the lenslet arrays is given by

td [n] = ˆIDFT
{

ˆDFT {I [n]R [n]} gD,σ [k]
}

· (4.8)

We multiply this field with the lenslet array pattern, wLA [n], as in the previous

case. Finally, we propagate the field just after the lenslet array to a distance

z = d+∆d, where d is the closest distance from the points on the object to the

lenslet array and ∆d is the additional distance to focus on the far away object

points. We can focus at a certain plane by selecting this distance. The intensity

distribution on the focused plane is given by

r [n] =
∣

∣

∣

ˆIDFT
{

ˆDFT {wLA [n] td [n]} gD,χ [k]
}∣

∣

∣

2

(4.9)

where χ = πλ(d +∆d). The simulation results for the reconstructions are given

in Section 4.5.

4.4 The Optical Setup

The optical setup is depicted in Fig. 4.12. We display the elemental images on a

Samsung T240 monitor. The resolution of the monitor is 1920×1200 pixels. Our

elemental image set size is 1920× 1080 pixels. So, we fit the image by leaving 60

pixels from top and bottom blank. The pixel size of the monitor is 0.27mm and

the dimensions of the active area that we used was 518mm×292mm. The lenslet

array is written on a Holoeye HEO 1080P phase-only LCoS SLM, which is a high

definition 1920×1080 pixels reflective type SLM. We write 20×12 lenslets on the

SLM. Each lenslet has a size of 90 × 90 pixels with a focal length f = 10.8mm.

Pixel size of the SLM is 8µm, thus each lenslet size is 0.72mm× 0.72mm. With

that many lenslets we can only fit a lenslet array with full size lenslets to an

active area of 1800 × 1080 pixels on the SLM. The unused parts (60 pixel each)

are left blank equally on the left and right side of the SLM. Thus, the active area

size for the lenslet array was 14.4mm × 8.64mm. The lenslet array is shown in

Fig. 4.13.

Our setup is a typical integral imaging display setup. However, due to the

size difference between the lenslet array and the LCD screen, we need to scale the
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Figure 4.12: The optical setup (Reprinted from “Integral imaging based 3D dis-
play of holographic data,” Ali Özgür Yöntem and L. Onural, Opt. Express vol.
20, no. 22, pp.24175-24195, 2012. c©2012 OSA.)
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Figure 4.13: A Fresnel lenslet array pattern with 12 × 20 lenslets. Each lenslet
has a focal length of 10.8mm. We excluded the lenslet on either side of the array
since they would be cropped if we have included them. Instead we left 60 pixels
blank from either side of the array that is written on the 1920 × 1080 pixels
phase only LCoS SLM. (Reprinted from “Integral imaging based 3D display of
holographic data,” Ali Özgür Yöntem and L. Onural, Opt. Express vol. 20, no.
22, pp.24175-24195, 2012. c©2012 OSA.)

79



elemental images on the LCD screen by the help of a projector objective. For this

reason, we used a projector objective which is disassembled form a Epson EMP-

TW520 projector. Since the SLM is reflective type, we put a non-polarizing beam

splitter (NPBS) to illuminate and observe the reconstructed image. However,

the NPBS changes the focal point of the lenslets [52]. Thus, for fine tuning, we

tried to find a focused reconstruction while changing the position of the projector

objective. The reconstructions are observed at the expected distances. The entire

system, its close-up view and the view from the viewing zone perspective are

shown in Fig. 4.14, Fig. 4.15 and Fig. 4.16, respectively.

Figure 4.14: Picture of the entire optical setup. (Reprinted from “Integral imag-
ing based 3D display of holographic data,” Ali Özgür Yöntem and L. Onural,
Opt. Express vol. 20, no. 22, pp.24175-24195, 2012. c©2012 OSA.)

4.5 Numerical and Optical Results

We compared the computer simulation results and the optical reconstructions.

Here we present the results for each example given in Section 4.3.

Our first example was two letters at different depths and location. To de-

termine the focused planes we put two cards with “Bilkent University” label on

them as shown in Fig. 4.16. The card, where the label is horizontally aligned, is
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Figure 4.15: Top view of the optical setup. There is a wireframe pyramid object
next to the reconstruction zone. It is used to compare the reconstructed 3D im-
ages of the pyramid object. (Reprinted from “Integral imaging based 3D display
of holographic data,” Ali Özgür Yöntem and L. Onural, Opt. Express vol. 20,
no. 22, pp.24175-24195, 2012. c©2012 OSA.)
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located 8.4f distance away from the SLM surface. The one with the label, which

is vertically aligned, is located approximately at 13f away from the SLM surface.

When we display the elemental images in Fig. 4.4, we observed the reconstruc-

tions as in Fig. 4.17. In this figure, the top images are computer simulation

results while the bottom images are the optical reconstructions. The images on

the left shows the reconstructed object at 8.4f while the right images are the

reconstructions of the object at 13f . The letter “A” is seen sharper than the

letter “Z”. This is due to the depth of focus of the lenslets. We exaggerate the

distances to show that the system works. For a closer capture distance, for the

letter “Z”, the reconstructions would be sharper. As we explained in Sec. 4.4, the

NPBS shifts the focal distance of the lenslets. We also confirmed these shifted

location by computer simulations.

Figure 4.16: The viewing zone of the optical setup. We placed cards labeled as
“Bilkent University” at different distances in order to check the reconstruction
distances. (Reprinted from “Integral imaging based 3D display of holographic
data,” Ali Özgür Yöntem and L. Onural, Opt. Express vol. 20, no. 22, pp.24175-
24195, 2012. c©2012 OSA.)

For the second object, the pyramid, we performed two experiments. The first

experiment is to show the depth of the object and the second one is to show the

parallax. In Fig. 4.15, we show how we modified the setup. In Fig. 4.18, left

images are the computer simulation results and the right images are the optical
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Figure 4.17: 3D reconstruction from the elemental images of Fig. 4.4. At the
top, digital reconstructions are shown while at the bottom we observe the optical
counterparts. On the left side, the camera, which took this picture, was focused to
a distance 8.4f and on the right side, it was at 13f . (We enhanced the brightness
of the computer simulation results for visual purposes.) (Reprinted from “Integral
imaging based 3D display of holographic data,” Ali Özgür Yöntem and L. Onural,
Opt. Express vol. 20, no. 22, pp.24175-24195, 2012. c©2012 OSA.)
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reconstructions together with a physical wireframe pyramid object with the same

size as the reconstruction. The top two images show the focusing to the tip of the

pyramid. The depth of the object is 24mm as mentioned in Section 4.2. The base

part of the pyramid, which is located 8.4f away from the SLM surface, is shown

in focus in the bottom part of Fig. 4.18. For the parallax experiment, we shoot

photos from three different viewing angles from left to right. We focused to the

tip in order to show the parallax better. In Fig. 4.19, the top three images are

computer simulations for the parallax, while the bottom pictures are the optical

reconstructions. This effect can be seen better with the optical reconstructions.

However, the viewing angle of the system, is limited with the maximum diffraction

angle of the SLM device, ω = λ
X

= 532nm
8µm

= 0.067rad ≈ 4◦, [47, 54]. The aliased

components appear when we go to higher angles to observe the reconstruction.

This is seen both in the optical reconstruction and in the computer simulations.

Viewing angle of this system can be improved by decreasing the pixel period, X, of

the SLM device or by introducing multiple SLM circular configurations [21,22,76].

The third example was the epithelium cell object. The top image in Fig. 4.20

shows the computer simulation results. The bottom image shows the reconstruc-

tion at 8.4f . Since the object has a small depth, it is not possible to observe a

3D effect or the parallax. However, we showed with this last example that it is

possible to convert holographic recording, regardless of the acquisition method

(numerical data generation or digital recording of optical data), to elemental

images and reconstruct them successfully by numerical or optical means.

For the last example, the toy object, the numerical and optical reconstructions

of these elemental images are given in Fig. 4.21 and Fig. 4.22, respectively.
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Figure 4.18: 3D reconstruction from the elemental images of Fig. 4.6. Images at
the left are digital reconstructions. Images at the right are optical reconstructions.
The top images are focused to the tip of the pyramid object and the images at
the bottom are focused to the base of the object. It is clearly seen that the
physical (wire) object and the reconstructed 3D images match. (We enhanced
the brightness of the computer simulation results for visual purposes.) (Reprinted
from “Integral imaging based 3D display of holographic data,” Ali Özgür Yöntem
and L. Onural, Opt. Express vol. 20, no. 22, pp.24175-24195, 2012. c©2012
OSA.)

85



Figure 4.19: The pictures of the pyramid image taken from three different angles.
(All are focused to the tip of the pyramid.) The pictures at the top are the
digital reconstructions and the bottom ones are the optical reconstructions. The
pictures show the parallax and the viewing angle. (We enhanced the brightness of
the computer simulation results for visual purposes.) (Reprinted from “Integral
imaging based 3D display of holographic data,” Ali Özgür Yöntem and L. Onural,
Opt. Express vol. 20, no. 22, pp.24175-24195, 2012. c©2012 OSA.)
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Figure 4.20: Reconstruction from the elemental images of Fig. 4.8. Top picture is
the digital reconstruction whereas the bottom one shows the optical reconstruc-
tion. Since the object thickness is small relative to the reconstruction distance,
a 3D depth is not perceived. However, the planar looking thin object still floats
in 3D space. (We enhanced the brightness of the computer simulation results
for visual purposes.) (The hologram data, from which this reconstruction was
obtained, was courtesy of cole Polytechnique Fdrale de Lausanne within the Real
3D project.) (Reprinted from “Integral imaging based 3D display of holographic
data,” Ali Özgür Yöntem and L. Onural, Opt. Express vol. 20, no. 22, pp.24175-
24195, 2012. c©2012 OSA.)
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Figure 4.21: Numerical reconstructions of the elemental images of the toy object.
(The hologram data, from which this reconstruction was obtained, was courtesy
of National University of Ireland, Maynooth within the Real 3D project.)

Figure 4.22: Optical reconstructions of the elemental images of the toy object.
(The hologram data, from which this reconstruction was obtained, was courtesy
of National University of Ireland, Maynooth within the Real 3D project.)
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We also present the results of the numerical and optical reconstruction of a

STAR WARS action figure “Storm Trooper”. The elemental images are again

obtained from a physical holographic recording. The input data is similar to

the last example given in Sec. 4.3. However, the parameter in the diffraction

calculation in Eq. (4.7) is χ = πλ1

(

z1
X2

X2

1

)

. The numerical reconstruction of the

hologram data is shown in Fig. 4.23. The elemental images of the holographic

data is shown in Fig. 4.24. Finally, the numerical and optical reconstructions of

these elemental images are depicted in Fig. 4.25 and Fig. 4.26, respectively.

Figure 4.23: Digital reconstruction of the hologram of STAR WARS action fig-
ure: Storm Trooper. (The hologram data, from which this reconstruction was
obtained, was courtesy of National University of Ireland, Maynooth within the
Real 3D project.)

89



Figure 4.24: Elemental images obtained from the holographic data of the “Storm
Trooper” action figure. (The hologram data, from which this reconstruction was
obtained, was courtesy of National University of Ireland, Maynooth within the
Real 3D project.)

Figure 4.25: Numerical reconstruction of the elemental images in Fig. 4.24. (The
hologram data, from which this reconstruction was obtained, was courtesy of
National University of Ireland, Maynooth within the Real 3D project.)
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Figure 4.26: Optical reconstruction of the elemental images in Fig. 4.24. (The
hologram data, from which this reconstruction was obtained, was courtesy of
National University of Ireland, Maynooth within the Real 3D project.)
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Chapter 5

OBTAINING ORTHOSCOPIC

ELEMENTAL IMAGES FROM

PSEUDOSCOPIC ELEMENTAL

IMAGES

In this short chapter, we will present a practical solution to pseudoscopic recon-

struction problem by applying similar steps as in our numerical elemental image

generation method. We will also demonstrate the numerical and optical results.

In the results, we will use the same example as in the previous section: two letters

at two different depths.

5.1 The Pseudoscopic-Orthoscopic Conversion

Method

We introduced an intermediate conversion step by simply simulating the two-

step optical solution given by [15, 32, 61]. In the computations, we applied wave

propagation tools [52,73], instead of ray tracing methods [29–31]. Fig. 5.1 shows
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Figure 5.1: Orthoscopic reconstruction process

the steps to obtain an orthoscopic 3D reconstruction. The dashed box on the left

(colored in red) is the standard elemental image generation (capture) process.

The dashed box at the right (colored in green) shows the reconstruction (display)

process. The dashed box in the middle (colored in violet) is the pseudoscopic to

orthoscopic conversion process. The conversion process is symmetrical in terms

of the distances. The input of this process is an elemental image set which gives

a pseudoscopic reconstruction. The output is another elemental image set that

gives orthoscopic reconstruction of the original 3D object.

In our experiments, we optically reconstructed the 3D images of the objects

using our display proposed Sec. 4.4. We conducted the experiments with both

elemental image sets. For comparison, we also obtained the numerical results

using Eqs. (4.8) and (4.9). The input 3D object can either be synthetically

generated or physically obtained. The generation of the elemental images from

the input 3D object is a computational process. The model for the orthoscopic

elemental image generation is given in Fig. 5.2. In Fig. 5.2(a), the standard

operation to obtain pseudoscopic elemental images is depicted. The input to the
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Figure 5.2: Orthoscopic elemental image generation process model

model is the diffraction field located at the origin, which is the effective depth

of the nearest point of the object to LA1 as given in Fig. 5.1. This distance

is measured as d1. The input diffraction field is propagated to the lenslet array

plane using Eq. (4.1). The resultant diffraction field, td [n], is multiplied with the

window, wLA [n], containing the lenslet array pattern and then, it is propagated

once more to a distance g using Eq. (4.2). Finally, we obtain the pseudoscopic

elemental images, Ip [n], by taking the square magnitude of the resulting field,

p [n]. Until this point we have simulated the left dashed box given in Fig. 5.1.

The simulation model of the intermediate part in Fig. 5.1 is given in Fig.

5.2(b). The process is as follows: first, we multiplied Ip [n] with a random phase,

R [n]. The field, o [n], is obtained from this resultant complex field, td [n] by the

following operations:

td1 [n] = ˆIDFT
{

ˆDFT {wt[n]} gD,β′ [k]
}

,

td2 [n] = td1 [n]wLA[n] ,

td3 [n] = ˆIDFT
{

ˆDFT {td2 [n]} gD,θ′ [k]
}

,

td4 [n] = td3 [n]wLA[n] ,

o[n] = ˆIDFT
{

ˆDFT {td4 [n]} gD,β′ [k]
}

(5.1)

where β′ = πλg and θ′ = πλ(2d1 +∆). Finally, the intensity, Io [n], of o [n] gives

the orthoscopic elemental images of the original 3D object.
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Figure 5.3: Pseudoscopic elemental images

5.2 Examples and Results

This time we will slightly change the object positions. As we mentioned in Sec.

4.5, the lenslets have a limited depth of focus. So, only a certain depth of an

object/scene with a large depth will be sharply reconstructed. We exaggerated

the depths at that section. Now, we will bring the letters closer. We put the

letter “A” again at d1 = 7f and we placed letter “Z” at ∆ = 3f behind. We

separated the letters in the transversal plane, enough to distinguish the focused

and unfocused parts. Again we used the lenslet array given in Fig. 4.13. The

computed pseudoscopic and orthoscopic elemental images are given in Fig. 5.3

and Fig. 5.4 respectively.

The numerical reconstructions for these elemental images are given in Fig. 5.5.

The first row of the image is the pseudoscopic reconstructions and the second row

is the orthoscopic reconstructions. In the first column, the focused images at the

distance 7f are presented whereas in the second column, the focused images at

10f are shown.

The optical reconstructions of the elemental images are shown in Fig. 5.6.
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Figure 5.4: Orthoscopic elemental images

Figure 5.5: In the first row, numerical reconstructions of the images of the letters
using the elemental images in Fig. 5.3 are shown and in the second row, recon-
structions of the elemental images in Fig. 5.4 are depicted. The first column is
the focused images at 7f whereas the second column is the focused images at
10f .
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Figure 5.6: Optical reconstructions of the elemental images in Fig. 5.3 and Fig.
5.4 are shown. The results are placed in the same way as in Fig. 5.5.

The reconstructed images are placed in the same way as in Fig. 5.5. The results

clearly show that the method works. The usual focal shifting due to the NPBS is

observed in the optical reconstructions. So, the optical reconstruction distances

are again different from the numerical ones. However, the order of the letters on

the z-axis are preserved.
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Chapter 6

CONCLUSIONS

We proposed two integral imaging systems. These systems use diffractive opti-

cal elements unlike the conventional ones. Since the implemented systems have

digital lenslets, we have reviewed the analysis of a discrete lenslet. Such a lenslet

causes multiple focal points and higher diffraction orders of these focal points at

each focal distance. Multiple focal points are caused by the quantization whereas

the higher diffraction orders are caused by the pixelated structure.

When we look at the case of an array of such lenslets, we observe that the

multiple focal points and higher diffraction orders from each such lenslet in the

array coincide if the period of the lenslet is chosen to be equal to the lenslet size.

It is easy to numerically generate, any type of lenslet array by changing the

physical parameters like focal length, size and even the phase distribution. To re-

alize these synthetic lenslet arrays physically, we need electronically controllable

devices. One easy way to obtain such lenslet arrays is to write numerically gener-

ated Fresnel lenslet array patterns on a phase-only LCoS spatial light modulator.

As a consequence, we obtain discrete lenslet arrays.

We analyzed the capture part of such an integral imaging setup. We used

a discrete lenslet array to image 3D impulsive source points and we obtained

an elemental image set at the main image plane. There are additional image
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planes present due to multiple focal length property of discrete lenslets. These

higher-order images introduce additional artefact terms on the elemental images

in addition to the blurring as a consequence of out of focus term due to the

limited depth of focus of the lenslets. It is possible to reduce the effects of such

artefacts by selecting the focal length of the lenslets such that they cover the entire

normalized frequency range and the imaging distance (the distance between the

lenslet array and a reference plane on the closest point of the object to the lenslet

array) much larger than the object depth.

We performed wave propagation simulations of discrete lenslets based on Fres-

nel diffraction kernel. The results support the theoretical analysis. We also per-

formed a simulation to image a diffusive planar object. As it is expected, we

obtained elemental images at multiple planes. We observed the artefacts indi-

cated by the theoretical analysis on the obtained elemental images. The severity

of the artefacts are significant on the image planes at the fractions of the main

image plane.

We implemented the first proposed integral imaging setup. In order to elim-

inate alignment problems between the capture and the display setups, we con-

structed the integral imaging setup such that the display part immediately follows

the capture part and shares the elemental image plane. At the transition plane,

we placed a diffuser. The diffuser replaced the capture device (CCD) and the dis-

play device (LCD) used in the conventional setups. The crucial analog element of

the system, that is the lenslet array, was realized as a phase pattern written on a

phase-only LCoS SLM in both parts of the system. We used one such SLM at the

capture part and another one at the display part of the system. The SLMs are

reflective type. So, non-polarizing beams splitters (NPBS) are placed before the

SLMs. The NPBS shift the focal lengths of the lenslets. Therefore, theoretical

imaging distances are different than the practical ones. Furthermore, the NPBS

decreases the light throughput of the system at least by 50%. To control the

depth and size of the input objects, we placed a projector objective between the

capturing SLM and the input object. When a passive 3D object is illuminated

by an external source, because of the limited diffraction efficiency of the SLM
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device, an undiffracted light at the background together with the elemental im-

ages is visible. Furthermore, the intensities of the elemental images were lower

compared to this undiffracted light. This makes it difficult to observe the re-

construction at the display part. The lenslet array causes chromatic abberation

since a single SLM is designed to work best for a single wavelength. However,

the system successfully images a self-luminous object obtained by masking a 2D

single wavelength LED array. Experimental results show that within the physical

limitations (maximum diffraction angle, which is dependent on the pixel period

and total number of pixels) of the SLM device, a good optical reconstruction

is possible with the proposed system. Thus, we have implemented an integral

imaging system with a full digital capture and display lenslet arrays. Most of the

integral imaging systems require special type of lenslets (i.e. phase apodized) to

improve the quality of the integral imaging system. These are generally hard and

costly to manufacture. With our proposed system, it is possible to construct cost

efficient and simple integral imaging systems.

For digital applications, i.e. games, animations, etc., where we do not need

to shoot real data, we only need digital data to display on a screen. We obtained

computer generated elemental images by using wave propagation methods, in-

stead of the commonly used method ray tracing, to generate elemental images

from digitally available 3D data (synthetic or digitally recorded holographic data).

Thus, it is possible to relate holographic data to elemental images data. We

showed several examples including digitally captured holographic data.

We also used discrete lenses for our second proposed integral imaging system

which is display-only. This system uses a LCD screen to display computer gener-

ated elemental images and these elemental images are shrunk in size to match the

size of the SLM which is used to realize the discrete lenslet array. Again we placed

NPBS before the reflective type SLM. Imaging distance again changed because of

the shift of the focal length. The amount of light throughput is again lowered by

the NPBS. However, this time the severity of the optical loss is low compared to

the first system. Optical reconstructions of 3D images of synthetic and physical

objects are obtained from this display setup. Both digitally simulated recon-

structions (obtained using diffraction calculations) and optical reconstructions
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are compared for these examples. With these several examples we showed several

properties of the display, such as depth of focus, viewing angle which is limited

by the maximum diffraction angle of the SLM, transversal and depth resolution

of the display, etc. Therefore, our proposed display system and the method for

obtaining elemental images make it possible to display holographic recordings on

an integral imaging display setup.

The direct reconstruction of elemental images results in reverse depth (pseu-

doscopic) image, that is, closer object points are observed as far away points in

the image. We solve pseudoscopic image problem of the integral imaging method

by applying a modified version of our algorithm on one of the proposed solu-

tions in the previous studies. Our algorithm converts an elemental image set that

gives pseudoscopic reconstruction to another set of elemental images that gives

orthoscopic image reconstruction. Therefore, we showed that we can also use

wave propagation methods to obtain elemental images that give correct depth

information. Numerically and optically obtained reconstructions using resulting

elemental images are consistent.

Our results show that fully digital integral imaging systems are possible by

using digital lenslet arrays realized by electro-optical devices.
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Appendix A

Evaluation of Eq. (2.16)

The convolution of the function inside the curly brackets and hz(x) in Eq. (2.16)

can be written as

∫

[

p(η)lQ(η) ∗
∑

r

δ(η − rx0)

]

∑

n

δ(η − nX)hz(x− η)dη · (A-1)

Above equation can be rewritten as,

∑

r

∫

p(η − rx0)l
Q(η − rx0)

∑

n

δ(η − nX)hz(x− η)dη (A-2)

and by a change of variables as η = σ + rx0 we get

∑

r

∫

p(σ)lQ(σ)
∑

n

δ(σ + rx0 − nX)hz(x− σ − rx0)dσ

=
∑

r

∫

p(σ)lQ(σ)
∑

n

δ(σ + rx0 − nX)hz(x) exp[−j2χx(σ + rx0)]

exp[jχ(σ + rx0)
2]dσ· (A-3)

where χ = π
λz
. Notice that, x0 in the impulse train is equal to NX where N is

an integer. Therefore
∑

n δ(σ + rx0 − nX) =
∑

n δ(σ − nX) for each r. Further
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manipulations give

∑

r

∫

p(σ)lQ(σ)
∑

n

δ(σ − nX)hz(x) exp(−j2χxσ) exp(−j2χxrx0)

~χ(σ) exp(j2χrx0σ) exp(jχr
2x20)dσ

=
∑

k

ak

∫

p(σ)~−γk(σ)~χ(σ)
∑

n

δ(σ − nX)
∑

r

hz(x− rx0) exp(j2χrx0σ)

exp(−j2π x
λz
σ)dσ (A-4)

where we used Eq. (2.12) for lQ(.). The summation over k is due to the response

of multiple lenses with focal lengths fk. Above equation can be recognized as

a Fourier transform, of a product of functions, from variable σ to the spatial

domain variable x
λz
. The Fourier transform can be written as

Fσ→ x
λz

{

∑

k

akp(σ)~−γk(σ)~χ(σ)
∑

n

δ(σ − nX)
∑

r

hz(x− rx0) exp(j2χrx0σ)

}

(A-5)

where we define the Fourier transform and the inverse Fourier transform as

F (ν) = Fx→ν {f(x)} =

∫ ∞

−∞
f(x) exp(−j2πνx)dx

f(x) = F−1
ν→x {F (ν)} =

∫ ∞

−∞
F (ν) exp(j2πνx)dν

Multiplications of the functions will result in convolutions after the Fourier trans-

formation and we will get

∑

k

ak

{

P
( x

λz

)

∗ H−γk

( x

λz

)

∗ Hχ

( x

λz

)

∗ λz
X

∑

n

δ

(

x− n
λz

X

)

∗
∑

r

hz(x− rx0)δ(x− rx0)

}

in the spatial domain. We are interested in those cases where χ = γk that is

z = fk in above equation. Thus we obtain,

∑

k

ak

{

P

(

x

λfk

)

∗ H−γk

(

x

λfk

)

∗ Hγk

(

x

λfk

)

∗λfk
X

∑

n

δ

(

x− n
λfk
X

)

∗
∑

r

hfk(x− rx0)δ(x− rx0)

}
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where the convolution H−γk

(

x
λfk

)

∗ Hγk

(

x
λfk

)

= 1. The final result is thus,

q(x) =
∑

k

{[

P

(

x

λfk

)

∗ x0
k

∑

n

δ
(

x− n

k
x0

)

]

∗
[

∑

r

ck,r(x)δ(x− rx0)

]}

∗ s(x)

(A-6)

where the constants are given as λfk
X

= NX
k

= x0

k
and ck,r(x) = akhfk(x− rx0).
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Appendix B

Evaluation of Eq. (3.6)

If we expand the quadratic phase function in Eq. (3.6 ), we will get,

qi(x) =

{

hg(x)
∑

n

hLPD,i[n]LAD[n]~β(nX)exp(−j2βxnX)

}

∗ s(x)

where the summation is the so called discrete time Fourier transform [77] of the

function

u[n] = hLPD,i[n]LAD[n]~β(nX)

where u[n] is the discrete version of uc(x) = hLPzi (x)LA(x)hg(x) for x = nX, n is

an integer variable in (−∞, ∞). Using the relation between the continuous time

Fourier transform Fc(ν) of the continuous function fc(x) and the discrete time

Fourier transform F (ν̂) of the discrete function f [n] = fc(nX), that is given by

F (ν̂)|ν̂=νX = Fc(ν) ∗
1

X

∑

k

δ(ν − k
1

X
) (B-1)

where F (ν̂) =
∑

n f [n]exp(−jν̂n) and Fc(ν) =
∫∞
−∞ fc(η) exp(−j2πην)dη. We

can rewrite qi(x) as

qi(x) =

[

hg(x)Uc

(

x

λg

)]

∗ xg
∑

n

δ(x− nxg) ∗ s(x)

where xg = λg
X
. The scaled impulse train is due to sampling of the lenslets that

causes multiple diffraction orders. Up to this point we can explain the effect
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of sampled lenslets at the output plane. However, we need to further analyze
[

hg(x)Uc(
x
λg
)
]

to observe the effects of quantization. To do that, we first assume

that the tails of the replicas of the continuous Fourier transform of the function

is small so that they introduce negligible aliasing when they are summed. This is

in fact true, because while the light travels from and through the physical optical

elements, it does not spread too much in space. Thus, light cannot extend to

very high angles. It is usually confined into a certain region. This can be seen as

an inherent low pass filtering of the optical elements. Furthermore, the pixelated

physical optical elements will diffract light into higher orders while the modulated

light propagates. So, each replica will spread to a limited region and will be

separated from each other by a certain distance. These two properties will result

in reducing the aliasing components. Using the Fourier transform relations given

above in Eq. (B-1), we expand hg(x)Uc(
x
λg
) as

hg(x)Uc

(

x

λg

)

= hβ(x)

∫

hLPzi (η)LA(η)~β(η) exp(−j2π
x

λg
η)dη

= hg(x)

∫

hLPzi (η)

[

p(η)lQ(η) ∗
∑

r

δ(η − rx0)

]

~β(η) exp(−j2π
x

λg
η)dη

= hg(x)

∫

[tihzi(η − xi)V (η − xi)]

[

∑

r

p(η − rx0)l
Q(η − rx0)

]

~β(η) exp(−j2π
x

λg
η)dη

= hg(x)

∫

tihzi(η) exp(−j2αiηxi) exp(jαix
2
i )V (η − xi)

[

∑

r

p(η − rx0)l
Q(η − rx0)

]

~β(η) exp(−j2π
x

λg
η)dη ·

We make a change of variables η = σ + rx0 as in Appendix A to get

hg(x)Uc

(

x

λg

)

=
∑

r

hg(x)ti

∫

σ

hzi(σ + rx0) exp[−j2αi(σ + rx0)xi] exp(jαix
2
i )

p(σ)lQ(σ)
[

~β(σ) exp(j2βσrx0) exp(jβr
2x20)

]

exp(−j2βxrx0) exp(−j2π
x

λg
σ)V (σ + rx0 − xi)dσ
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and then we expand some of the quadratic phase functions

hg(x)Uc

(

x

λg

)

=
∑

r

hg(x)ti

∫

1√
jλzi

exp

(

−j 2π
λ
zi

)

~αi
(σ) exp(j2αiσrx0)

exp(jαir
2x20) exp(−j2αiσxi) exp(−j2αixirx0)

exp(jαix
2
i )p(σ)l

Q(σ)~g(σ) exp(j2βσrx0) exp(jβr
2x20)

exp(−j2βxrx0) exp(−j2π
x

λg
σ)V (σ + rx0 − xi)dσ

Notice that the terms hg(x) exp(−j2βxrx0) exp(jβr2x20) can be rearranged as

hg(x− rxo). And also the terms

1√
jλzi

exp

(

−j 2π
λ
zi

)

exp(jαir
2x20) exp(−j2αixirx0) exp(jαix

2
i )

can be put into the compact form hzi(xi − rx0). Rearranging the remaining

exponential terms and gathering the summation terms over the variable r we

finally get

hg(x)Uc

(

x

λg

)

=

∫

~θi(σ)p(σ)l
Q(σ)

[

∑

r

c(x)V (σ + rx0 − xi)

× exp[j2σ(θirx0 − αixi)]

]

exp(−j2π x
λg
σ)dσ (B-2)

where θi = β+αi = −π
λ

∆zi
d(d+∆zi)

and c(x) = hg(x− rx0)tihzi(xi− rx0). The above

equation can be rewritten as

Fσ→ x
λg

{[

~θi(σ)p(σ)

][

∑

k

ak~−γk(σ)

]

×
[

∑

r

c(x)V (σ + rx0 − xi) exp[j2σ(θirx0 − αixi)]

]}

·(B-3)

Since the terms inside the right brackets are multiplied, the result of the Fourier

transform will be convolution of corresponding Fourier transformed terms in the

scaled spatial domain.

The Fourier transform of the last term is a weighted impulse train which

gives the perfect mapping (imaging) at locations
(

1 + g
zi

)

rx0 +
g
zi
xi of the input

point to multiple output points. This would be the imaging of a lenslet array
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consisting of perfect thin lenses. However, because of the low pass filtering caused

by the pixel function at the input, this last term gives blurred spots. The Fourier

transform of the function inside the last right brackets is given as

Υi(x) =
∑

r

c(x)

{{

v

(

x

λg

)

exp[j2β(xi − rx0)x]

}

∗δ
[

x−
(

1 +
g

zi

)

rx0 +
g

zi
xi

]}

(B-4)

where we obtain v
(

x
λg

)

= (jλzi)~β

(
√

zi
g
x
)

s
(

− zi
g
x
)

by using the Fourier trans-

form property, H−αi

(

x
λg

)

=
(

j π
αi

)1/2

exp
(

j (2πx/(λg))
2

4αi

)

= (jλzi)
1/2

~β

(
√

zi
g
x
)

,

for quadratic phase functions given in [67]. The Fourier transform of the second

term
∑

k akH−γk

(

x
λg

)

is introduced because of the multiple focal point property

of the lenslets. In fact, this is another artefact term at the main image plane

caused by the smaller images formed at image planes related to other focal dis-

tances, f/k, of higher-order lenslets. The Fourier transform of the first term will

be Pi

(

x
λg

)

= P
(

x
λg

)

∗ Hθi

(

x
λg

)

is the generalized pupil function which takes

blurring due to different depths of the point sources at the input plane into ac-

count. The function Hθi

(

x
λg

)

is responsible for the defocussing. P
(

x
λg

)

is the

Fourier transform of the pupil function. This function is also a limiting factor for

the extent of qi(x). Finally, arranging all terms we can write qi(x) as

qi(x) = Pi

(

x

λg

)

∗ s(x) ∗
[

∑

k

akH−γk

(

x

λg

)

]

∗xg
∑

n

δ(x−nxg) ∗Υi(x) · (B-5)
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Appendix C

Derivation of 1D impulse

response of the LSI system that

represents free-space propagation

between two parallel planes

Suppose that we have a 2D input function f(x, y). We can find the response

g(x, y) of the system h2Dz (x, y) to f(x, y) at a certain distance z by simply,

g(x, y) = f(x, y) ∗ ∗h2Dz (x, y)

=

∫ ∫

f(ζ, η)h2Dz (x− ζ, y − η)dζdη

Now, assume that we only have a variation in the x direction in the input field,

but there is no variation along y. Thus, above equation becomes

g(x, y) =

∫
[
∫

cf(ζ)h2Dz (x− ζ, η)dη

]

dζ

=

∫

cf(ζ)q(x− ζ)dζ
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where q(x − ζ) =
∫

h2Dz (x − ζ, η)dη. Substituting the 2D kernel to q(x − ζ) we

obtain,

q(x− ζ) =
1

jλz
exp

(

j
2π

λ
z

)
∫

exp
{

j
π

λz

[

(x− ζ)2 + η2
]

}

dη

=
1

jλz
exp

(

j
2π

λ
z

)

exp
[

j
π

λz
(x− ζ)2

]

∫

exp
(

j
π

λz
η2
)

dη·

The integral can be calculated as by
∫∞
−∞ exp(jkx2)dx =

√
π√

−jk
. If we substitute

π
λz

for k, we will get the result of the integral as
√
jλz. Thus, we will obtain

q(x− ζ) = 1√
jλz

exp(j 2π
λ
z) exp

[

j π
λz

(x− ζ)2
]

and therefore, 1D calculation kernel

becomes hz(x) =
1√
jλz

exp(j 2π
λ
z) exp

(

j π
λz
x2
)

.
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