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ABSTRACT

UTILIZING QUERY LOGS FOR DATA REPLICATION
AND PLACEMENT IN BIG DATA APPLICATIONS

Ata Türk

Ph.D. in Computer Engineering

Supervisor: Prof. Dr. Cevdet Aykanat

September, 2012

The growth in the amount of data in todays computing problems and the level

of parallelism dictated by the large-scale computing economics necessitates high-

level parallelism for many applications. This parallelism is generally achieved

via data-parallel solutions that require effective data clustering (partitioning) or

declustering schemes (depending on the application requirements). In addition

to data partitioning/declustering, data replication, which is used for data avail-

ability and increased performance, has also become an inherent feature of many

applications. The data partitioning/declustering and data replication problems

are generally addressed separately. This thesis is centered around the idea of

performing data replication and data partitioning/declustering simultenously to

obtain replicated data distributions that yield better parallelism. To this end,

we utilize query-logs to propose replicated data distribution solutions and ex-

tend the well known Fiduccia-Mattheyses (FM) iterative improvement algorithm

so that it can be used to generate replicated partitioning/declustering of data.

For the replicated declustering problem, we propose a novel replicated declus-

tering scheme that utilizes query logs to improve the performance of a parallel

database system. We also extend our replicated declustering scheme and pro-

pose a novel replicated re-declustering scheme such that in the face of drastic

query pattern changes or server additions/removals from the parallel database

system, new declustering solutions that require low migration overheads can be

computed. For the replicated partitioning problem, we show how to utilize an

effective single-phase replicated partitioning solution in two well-known applica-

tions (keyword-based search and Twitter). For these applications, we provide the

algorithmic solutions we had to devise for solving the problems that replication

brings, the engineering decisions we made so as to obtain the greatest benefits

from the proposed data distribution, and the implementation details for realis-

tic systems. Obtained results indicate that utilizing query-logs and performing
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replication and partitioning/declustering in a single phase improves parallel per-

formance.

Keywords: replication, iterative improvement, query-log-aware, partitioning,

declustering.



ÖZET

SORGU GÜNLÜKLERİ KULLANARAK VERİ
ÇOKLAMA VE YERLEŞTİRME PROBLEMLERİNİN

ÇÖZÜMÜ

Ata Türk

Bilgisayar Mühendisliği, Doktora

Tez Yöneticisi: Prof. Dr. Cevdet Aykanat

Eylul, 2012

Günümüz hesaplama sistemlerinin işlemesi gereken veri miktarlarındakı artış ve

hesaplama sistemleri altyapı ve ekonomileri sebepleri ile uygulamaların çoğunda

yüksek seviyede paralleleştirme gerekmektedir. Bu paralleleştirme genellikle veri-

paralel çözümlerle gerçekleştirilir ki bu çözümler de efektif veri gruplama (par-

titioning) ve veri dağıtma (declustering) yöntemleri gerektirir. Veri gruplama

ve dağıtma yöntemlerinin yanında, gerek kullanılabilirliği gerekse performansı

arttırma adına veri çoklama yöntemleri de sıkça kullanılmaya başlanmıştır. Veri

bölümleme ya da dağıtma ve veri çoklama problemleri genellikle iki farklı aşamada

çözümlenmeye çalışılırlar. Bu tezdeki çalışmalar, veri bölümleme/dağıtma ve veri

çoklama problemlerinin tek bir aşamada yapılması sureti ile daha etkin çoklanarak

bölümlenmiş/dağıtılmiş sistemler elde edilmesi fikri üzerine yoğunlaşmıştır. Bu

amaçla, bölümleme sistemlerinde yaygın olarak kullanılan Fiduccia-Mattheyses

(FM) yinelemeli iyileştirme algoritması çoklama işlemini de kapsayacak şekilde

genişletilmiştir. Bu algoritma kullanılarak sorgu günlükleri kullanan veri ta-

banı uygulamalarının performansını arttıracak bir çoklamalı veri dağıtma sis-

temi önerilmiştir. Ayrıca bu çoklamalı veri dağıtma sisteminin sorgu desen-

lerinde değişimler, yeni sunucu ekleme ya da çıkarma işlemleri gibi durum-

lar karşısında mümkün olduğunca az veri taşımaşı yaparak kendini adapte

etmesini sağlayan genişletme ve ilaveler önerilmiştir. Daha sonra, çoklamalı

bölümleme problemi için geliştirilen tek-aşamalı çoklamalı bölümleme aracı,

yaygın olarak bilinen iki uygulama (kelime bazlı arama ve Twitter) üzerinde test

edilmiştir. Elde edilen sonuçlar sorgu günlükleri kullanımının ve çoklama ile veri

bölümleme/dağıtma işlemlerinin tek aşamada yapılmasının parallel performansı

arttırdıgını göstermektedir.

Anahtar sözcükler : çoklama, yinelemeli ilerleme, sorgu-geçmişi-bilinçli,
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bölümleme, dağıtma.
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I’d like to thank to my brother Buğra just for being my brother, really, just for

being. Our bond has always been something to draw strength for me and always

will be.

I would like to thank to my colleague Reha Oğuz Selvitopi for his invaluable
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Chapter 1

Introduction

In the last decade, the amount of data generated has simply exploded. Following

the “digital revolution” of 1980s, the “mobile and social data revolution” of early

2000s resulted with the accumulation of unprecedented amounts of public data

in the form of text, voice, image, and video and the associated miscellaneous

such as web logs, query logs, search indexes, friendship graphs and GPS logs.

Applications spanning and serving in more than a few continents have reshaped

the design and functioning of data centers housing these applications. The scale

of the problems encountered while serving these applications along with the trend

change in chip design technologies have turned “good parallelism” from a “plus”

first into “norm” and then into a “must” in application design.

In this thesis, our aim is to improve the parallel performance of large-scale

applications by deciding on the placement and replication of data. Improved data

placement and replication enables reduction of parallelization overhead through

better computational load balancing and/or reduced communication overheads.

We plan to focus on utilization of query logs collected by large-scale applications

for this purpose. We believe that any application that generates responses to

user queries must make use of its query logs in determining data placement and

replication strategies.

1



Depending on the specifics and requirements of applications and the under-

lying parallel architecture utilized to serve the application, the placement and

replication requirements may differ. For example, in an online analytical process-

ing (OLAP) type of application, utilizing query logs to place related data together

(clustering) to minimize communication overheads might be desirable, whereas

in an I/O bound online transaction processing (OLTP) type of application, uti-

lizing query logs to place related data separate from each other (declustering) to

minimize individual query response times might be preferable.

In some applications, clustering and declustering might even need to be used

in synchrony by grouping related data in certain application levels and distribut-

ing in certain other levels. Consider an I/O intensive application that spans a

few datacenters. There are a number of different levels for the data placement

and replication in such a framework: datacenter-level, rack-level and finally node-

level. Arranging data placement so that response generation for each query can

be performed within a single datacenter would reduce query response times sig-

nificantly, since cross datacenter communication is quite costly. Similarly, within

a datacenter, clustering related data into the same racks also makes sense, since

generally, cross-rack communication is also costly [1]. On the other hand, within

a datacenter rack, scattering the data items that are likely to be queried together

to multiple nodes would produce better load balancing and would probably be

faster than clustering them in a single node, since this enables parallelism in disk

access costs. Furthermore, generally in-rack network bandwidth is high and for

a node, accessing the disk of another node in the same rack is not much costlier

than accessing its own disk [1]. Add to these perplexing clustering and decluster-

ing requirements the necessity for replication and the desire to utilize replication

for improving performance and you end up with a difficult data replication and

placement problem, i.e., the problem of deciding which data items to replicate

and where to place those data items. Furthermore, in certain applications, even

decisions related with which replica to use in answering queries affects system

performance, thus, replica selection problem, which is tightly coupled with data

placement and replication problem may need to be addressed.

In this thesis we separately show how solutions to replicated declustering and

2



replicated clustering problems can improve the performance of parallel applica-

tions. Interestingly, our solutions to both the replicated clustering and replicated

declustering problems are developed by extending the main ideas of the same

algorithm: The Fiduccia-Mattheyses (FM) heuristic. FM heuristic [2], originally

proposed for efficiently bipartitioning circuit hypergraphs, is a linear-time itera-

tive improvement algorithm that is utilized effectively in graph and hypergraph

partitioning. FM-like iterative improvement algorithms also found use in many

different areas such as declustering schemes [3, 4]. One of the main contributions

of this thesis is to propose FM-like iterative improvement heuristics both for the

replicated declustering and the replicated clustering (partitioning) problems. FM

algorithm classically supports only move-based neighborhood definitions and it-

erates over the solution space using this operation. Our replicated FM algorithms

extend the neighborhood definitions of the FM algorithm to include replication

and unreplication operations. Extending FM heuristics to support replica place-

ment opens an avenue of possibilities in various areas and in this thesis we discuss

only four of such studies where this extended heuristic is put to good use.

In Chapter 2, we first propose a query-log aware FM-like replicated iterative

improvement heuristic for the two-way declustering problem. We also provide

simple closed-form expressions for computing the cost of a query in a two-way

replicated declustering. Utilizing these expressions, we avoid usage of expensive

network-flow based algorithms for the construction of optimal query schedules.

By recursively applying our two-way replicated declustering algorithm we obtain a

K-way replicated declustering. Our unreplication algorithm prevents unnecessary

replications to advance to the next levels in the recursive framework. We then

propose an efficient multi-way replicated refinement heuristic that considerably

improves the obtained K-way replicated declustering via multi-way move and

multi-way replication operations. In this iterative algorithm, we adapt a novel

idea about multi-way move operations and obtain an efficient greedy multi-way

move/replication scheme that enables us to avoid many of the complexities due

to the increase in the number of servers. We also present an efficient scheme

to avoid the necessity of computing the optimal schedules of all queries at each

iteration of our multi-way refinement algorithm. The proposed scheme enables us

3



to compute the optimal schedules of all queries just once, at the beginning of the

multi-way refinement, and then update the schedules incrementally according to

the performed operations.

In Chapter 3, we enhance our replicated declustering scheme so as to make

it more scalable, a most desirable property for large-scale applications. This

proposed re-declustering scheme supports fast and effective computation of new

declustering solutions under serious query pattern changes, server additions or

server removals. To this end, we first propose a novel weighted bipartite matching

model that given a newly proposed replicated declustering solution for a dataset,

and an existing replicated mapping of the data items in the dataset to the servers

of a parallel database system, optimally computes a matching of the overlapping

subsets in the replicated declustering solution to servers such that the number

of data item migrations necessary to realize the new solution is minimized. We

then propose a novel abstraction scheme that enables the encoding of migration

operations necessary to realize the new solution as queries. This abstraction

enables the use of a our K-way replicated declustering scheme of Chapter 2 for

the solution of re-declustering problem with minor extensions. All in all, we

propose a three-phase log-utilizing replicated re-declustering scheme that strikes

a balance between the objectives of query cost and migration cost reductions

in Chapter 3.

In a work which is not presented in this thesis ([5]), we had shown how our

ideas in Chapter 2 could be applied to the replicated clustering problem. [5] also

presents how to utilize these ideas in a multi-level framework and presents the

multi-level replicated clustering tool rpPaToH, which can be used for replicated

hypergraph partitioning. In this thesis, we show how two well-known applications,

namely keyword-based query processing and Tweeter can benefit from the use of

log-aware replicated clustering (Chapters 4 and 5 respectively).

More specifically, in Chapter 4, we implement a successful parallel keyword-

based query processing system that utilizes a replicated inverted index and we

provide details of our implementation and the reasons behind our design choices.
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We show how our index replication approach based on replicated hypergraph par-

titioning [5] outperforms classic replication approaches. We also propose various

heuristic solutions for the replica selection problem in query processing.

On the other hand, in Chapter 5, we consider the simplest of online social

networks, Twitter, which serves tweet reading and tweeting functionalities over

the intrinsic social relations of its users. We propose a novel temporal activity

hypergraph model to represent the multi-way relations between user actions in

Twitter, which we partition via rpPaToH and replicate and distribute the user

data according to the result of this replicated partitioning. We compare the

results of our replicated partitioning scheme with circular replication schemes

used in distributed hash tables to show that the proposed scheme can greatly

increase locality.

In Chapter 6, we conclude with a brief listing of the accomplishments of this

thesis and discussions of the obtained results. We also note that two of the four

studies discussed in this thesis are works on replicated declustering, whereas the

other two are works on replicated clustering and we briefly discuss how these two

antipodal problems (the declustering and partitioning problems) with conflicting

objectives can arise together in todays big-data computing settings, leaving the

meshing of two solutions as future work.
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Chapter 2

Query-Log Aware Replicated

Declustering

Data declustering and replication can be used to reduce I/O times related with

processing of data intensive queries. Declustering parallelizes the query retrieval

process by distributing the data items requested by queries among several disks.

Replication enables alternative disk choices for individual disk items and thus pro-

vides better query parallelism options. In general, existing replicated declustering

schemes do not consider query log information and try to optimize all possible

queries for a specific query type, such as range or spatial queries. In such schemes,

it is assumed that two or more copies of all data items are to be generated and

scheduling of these copies to disks are discussed. However, in some applications,

generation of even two copies of all of the data items is not feasible, since data

items tend to have very large sizes. In this chapter we assume that there is a

given limit on disk capacities and thus on replication amounts. We utilize exist-

ing query-log information to propose a selective replicated declustering scheme,

in which we select the data items to be replicated and decide on their schedul-

ing onto disks while respecting disk capacities. We propose and implement an

iterative improvement algorithm to obtain a two-way replicated declustering and

use this algorithm in a recursive framework to generate a multi-way replicated

declustering. Then we improve the obtained multi-way replicated declustering by

6



efficient refinement heuristics. Experiments conducted on realistic datasets show

that the proposed scheme yields better performance results compared to existing

replicated declustering schemes.

2.1 Introduction

2.1.1 Related work

Data declustering is a data scattering technique used in parallel-disk architectures

to improve query response time performances of I/O intensive applications. The

aim in declustering is to optimize the processing time of each query requested

from a parallel-disk architecture. This is achieved by reducing the number of

disk accesses performed by a single disk of the architecture while answering a

single query. Declustering has been shown to be an NP-complete problem in

some contexts [6], [4].

Declustering is widely investigated in applications where large spatial data

are queried. In such applications, queries are in the form of ranges requesting

neighboring data points, and hence, related declustering schemes try to scatter

neighboring data items into separate disks instead of exploiting query log infor-

mation. For a good survey of declustering schemes optimized for range queries

see [7] and the citations within.

There are some applications that also query very large data items in a random

fashion and in such applications utilization of query log information is of essence

for efficient declustering [6], [4], [3]. In [6], the declustering problem with a given

query distribution is modeled as a max-cut partitioning of a weighted similarity

graph, where data items are represented by vertices and an edge between two

vertices implies that corresponding data items appear in at least one common

query. In [4] and [3], the deficiencies of the weighted similarity graph model are

addressed and hypergraph models which encode the total I/O cost correctly are

proposed.
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Data replication is a widely applied technique in various application areas

such as distributed data management [8] and information retrieval [9, 10] to

achieve fault tolerance and fault recovery. Data replication can also be exploited

to achieve higher I/O parallelism in a declustering system [11]. However, while

performing replication, one has to be careful about consistency considerations,

which arise in update and delete operations. Furthermore, write operations tend

to slow down when there is replication. Finally, replication means extra storage

requirement and there are applications with very large data sizes where even two-

copy replication is not feasible. Thus, if possible, unnecessary replication has to

be avoided and techniques that enable replication under given size constraints

must be studied.

When there is data replication, the problem of query scheduling has to be

addressed as well. That is, when a query arrives, we have to decide which repli-

cas will be used to answer the query. A maximum-flow formulation is proposed

in [12] to solve this scheduling problem optimally. There are replicated declus-

tering schemes that aim to minimize this scheduling overhead [13, 14], while

minimizing I/O costs. A variation of this problem arises when replicas are as-

sumed to be distributed over different sites, where each site hosts a parallel-disk

architecture [15]. This variation can be modeled as a maximum flow problem as

well.

Most of the existing replicated declustering schemes proposed for range queries

are discussed in [16, 17]. There are some replicated declustering schemes proposed

for arbitrary queries as well ([18], [19]). All of these schemes ([16], [17], [18], [19])

assume items with equal sizes and they also assume that all data items will be

requested equally likely and thus generate equal number of replicas for all data

items. Furthermore, they replicate all data items two or more times.

In [18], Random Duplicate Assignment (RDA) scheme is proposed. RDA

stores a data item on two disks chosen randomly from the set of disks and it is

shown that the retrieval cost of random allocation is at most one more than the

optimal cost with high probability (when there are at least two-copies of all data

items). In [15, 20], Orthogonal Assignment (OA) is proposed. OA is a two-copy
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replication scheme for arbitrary queries and if the two disks that a data item is

replicated at are considered as a pair, each pair appears only once in the disk

allocation of OA. In [19], Design Theoretic Assignment (DTA) is proposed. DTA

uses the blocks of a (K, c, 1) design for c-copy replicated declustering using K

disks. A block and its rotations can be used to determine the disks on which

the data items are stored. Even though both OA and DTA can be modified to

achieve selective replication, they do not utilize query log information. However,

with the increasing usage in GIS and spatial database systems, such information

is becoming highly available, and it is desirable for a replication scheme to be able

to utilize this information. A simple motivating example for utilizing query-logs

can be found in Section 2.3.

2.1.2 Contributions

In this work we present a selective and query-log aware replication scheme which

works in conjunction with declustering. The proposed scheme utilizes the query

log information to minimize the aggregate parallel query response time while

obeying given replication constraints due to disk sizes. There are no restrictions

on the replication counts of individual data items. That is, some data items

may be replicated more than once while some other data items may not even be

replicated at all.

We first propose an iterative-improvement-based replicated two-way declus-

tering algorithm. In this algorithm, in addition to the replication operation that

we proposed in [21], we successfully incorporate unreplication operation to the

replicated two-way declustering algorithm to prevent unnecessary replications.

We also provide simple closed-form expressions for computing the cost of a query

in a two-way replicated declustering. Utilizing these expressions, we avoid usage

of expensive network-flow based algorithms for the construction of optimal query

schedules. By recursively applying our two-way replicated declustering algorithm

we obtain a K-way replicated declustering. Our unreplication algorithm prevents

unnecessary replications to advance to the next levels in the recursive framework.
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We then propose an efficient multi-way replicated refinement heuristic that

considerably improves the obtained K-way replicated declustering via multi-way

move and multi-way replication operations. In this iterative algorithm, we adapt

a novel idea about multi-way move operations and obtain an efficient greedy

multi-way move/replication scheme. We also present an efficient scheme to avoid

the necessity of computing the optimal schedules of all queries at each iteration of

our multi-way refinement algorithm. The proposed scheme enables us to compute

the optimal schedules of all queries just once, at the beginning of the multi-

way refinement, and then update the schedules incrementally according to the

performed operations.

The rest of the chapter is organized as follows. Section 2.2 presents the no-

tation and the definition of the problem. A motivating example is provided in

Section 2.3 and the proposed scheme is presented in Section 2.4. In Section 2.5,

a running example demonstrating move, replication and unreplication gain up-

dates can be found. The details of the algorithms used in the proposed replicated

declustering scheme are presented in Section 2.6. In Section 2.7, detailed com-

plexity analyses of the recursive replicated declustering and multi-way replicated

refinement phases of our algorithm are presented. Section 2.8, contains exper-

iments and comparisons of the proposed approaches with two state-of-the-art

replications schemes.

2.2 Notation and Definitions

We are given a dataset D with |D| indivisible data items and a query set Q with

|Q| queries, where a query q∈Q requests a subset of data items, i.e., q⊆D. Each

data item d∈D can represent a spatial object, a multi-dimensional vector or a

cluster of data records depending on the application. s(d) indicates the storage

requirement for d and s(D′) =
∑

d∈D′ s(d) indicates the storage requirement for

data subset D′. Query information can be extracted by either application usage

prediction or mining existing query logs, with the assumption that future queries

will be similar to older ones. In a few applications, it is more appropriate to
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Table 2.1: The notations used in this chapter

Symbol Description
D Dataset
Q Query set
K Total number of disks
Dk Set of data items assigned to disk k

Cmax Maximum storage capacity of a disk
di A data item in the dataset

s(di) Storage requirement for data item di

q A query in the query set
|q| Number of data items requested by q

f(q) Frequency of q in Q
r(q) Response time for q
tk(q) Response time of disk k for q

Sopt(q) Optimal scheduling for q
ropt(q) Optimal response time for q
RK A K-way replicated declustering

Tr(RK , Q) Parallel response time of RK for Q
Tropt(Q) Optimal parallel response time for Q

TrO(RK , Q) Parallel response time overhead of RK for Q
gm(d) In a two-way replicated declustering phase,

reduction to be observed in the overall query
processing cost, if d is moved to the other disk.

gr(d) In a two-way replicated declustering phase,
reduction to be observed in the overall query
processing cost, if d is replicated in both disks.

guX
(d) In a two-way replicated declustering phase,

reduction to be observed in the overall query
processing cost, if a replica of d is deleted
from disk DX .

vg(d) Number of queries requesting d such that the
disk(s) that d resides in serve(s) more than
optimal number of data items for these queries.

gm(d, k) In a K-way replicated declustering phase,
reduction to be observed in the overall query
processing cost, if d is moved to disk k.

gr(d, k) In a K-way replicated declustering phase,
reduction to be observed in the overall query
processing cost, if d is replicated in disk k.

apply declustering such that items that have common features are stored on

separate disks [22, 23, 24]. However, even in such applications, each query can be

considered as a set of features and the discussions in the following sections still

hold.

In a given query set Q, two data items are said to be neighbor if they are

requested together by at least one query. Each query q is associated with a

relative frequency f(q) which indicates the probability that q will be requested.

Query frequencies can be extracted from the query log. We assume that all disks
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are homogeneous and the retrieval time of all data items on all disks are equal

and can be accepted as one for practical purposes.

Definition K-Way Replicated Declustering: Given a set D of data items, K ho-

mogeneous disks with storage capacity Cmax, and a maximum allowable replica-

tion ratio r, RK = {D1,D2, . . . ,DK} is said to be a K-way replicated declustering

of D, where Dk ⊆ D for 1≤k≤ K, ∪K
k=1Dk = D, and RK satisfies the following

feasibility conditions for 1 ≤ k ≤ K, when each decluster Dk is assigned to a

separate disk:

• Disk capacity constraint: s(Dk) ≤ Cmax

• Replication constraint:
∑

1≤k≤Ks(Dk)≤ (1 + r)×s(D).

The optimal schedule for a query q minimizes the maximum number of data

items requested from a disk for q. Given a replicated declustering RK and a query

q, an optimal schedule Sopt(q) for q can be calculated by a network-flow based

algorithm [12] in O(|q|2×K) time, if we assume homogeneous data item retrieval

times. Sopt(q) indicates which replicas of the data items will be accessed during

processing q.

Definition Given a replicated declustering RK , a query q and an optimal sched-

ule Sopt(q) for q, response time r(q) for q is:

r(q) = max
1≤k≤K

{tk(q)}, (2.1)

where tk(q) denotes the total retrieval time of data items from disk Dk that are

requested by q. Under homogeneous data item retrieval times assumption, tk(q)

can also be considered as the number of data items retrieved from Dk for q.

Definition The total parallel response time of a replicated declustering RK for

a query set Q is:
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Tr(RK , Q)=
∑

q∈Q

f(q)r(q). (2.2)

Definition A replicated declustering RK is said to be strictly optimal for a query

set Q iff it is optimal for every query q ∈ Q, i.e., r(q) = ropt(q),∀ q ∈ Q, where

ropt(q) = ⌈|q|/K⌉. (2.3)

Total parallel response time of a strictly optimal replicated declustering is called

Tropt(Q) and is:

Tropt(Q) =
∑

q∈Q

f(q)ropt(q). (2.4)

Definition The total parallel response time overhead of a replicated declustering

RK for a query set Q is:

TrO(RK , Q)=Tr(RK , Q)− Tropt(Q). (2.5)

Definition K-Way Replicated Declustering Problem: Given a set D of data

items, a set Q of queries, K homogeneous disks each with a storage capacity

of Cmax, and a maximum allowable replication ratio r, find a K-way replicated

declustering RK of D that minimizes the total parallel response time Tr(RK , Q).

Note that minimizing Tr(RK , Q) is equivalent to minimizing TrO(RK , Q), since

Tropt(Q) is a constant.
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2.3 A motivating example for query-log aware

replicated declustering

In this section we provide a motivating example for query-log aware replicated

declustering. In Fig. 2.1(a), we have a dataset D and three common queries

requested from this dataset. Fig. 2.1(b) shows a 2-copy replicated declustering

of D performed by a replicated declustering algorithm that is unaware of query

logs. As seen in Fig. 2.1(b), the costs of queries q1, q2, and q3 are the same with

their costs prior to replication, thus replication has no positive effect for these

queries. However, as seen in Fig. 2.1(c), by selectively replicating data items to

reduce the costs of common queries it is possible to reduce the overall cost by

performing much less amount of replication.

2.4 Proposed Approach

We propose a two-phase approach for solving the K-way replicated declustering

problem. In the first phase, we use a recursive replicated declustering heuris-

tic to obtain a K-way replicated declustering. We should note that, by allowing

imbalanced two-way declusters in this phase, we are able to obtain K-way declus-

terings for arbitrary K values. In the second phase, we use a refinement heuristic

to improve the K-way replicated declustering obtained in the first phase. In the

following two subsections we provide the details of operations performed in these

phases. A detailed complexity analysis of the recursive replicated declustering

and multi-way replicated refinement phases will be presented in Section 2.7.

2.4.1 Recursive replicated declustering phase

The objective in the recursive replicated declustering phase is to evenly distribute

the data items of queries at each two-way replicated declustering step of the re-

cursive framework. That is, at each two-way step, we try to attain optimal
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Figure 2.1: A dataset D = {d1, d2, d3, d4, d5, d6, d7, d8, d9} and a 3-disk system,
where q1 = {d1, d3, d5}, q2 = {d4, d6, d8}, q3 = {d2, d7, d9} are three common
queries.
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response time ropt(q) = ⌈|q|/2⌉ for each query q as much as possible. This objec-

tive is somewhat restrictive and it will not completely model the minimization of

the objective function for the K-way replicated declustering problem. But it is

expected to produce a “good” initial K-way replicated declustering for the multi-

way refinement phase. The even query distribution obtained after the recursive

replicated declustering phase is assumed to avoid a bad locally optimal declus-

tering by providing flexibility in the search space of the multi-way refinement

scheme.

2.4.1.1 Two-way replicated declustering

The core of our recursive replicated declustering algorithm is a two-way replicated

declustering algorithm. In this algorithm, we start with a given (and possibly

randomly generated) initial feasible two-way declustering of the dataset D, say

R2 = {DA,DB}, and iteratively improve R2 by three refinement operations de-

fined over the data items: Namely move, replication and unreplication operations.

In order to perform these three operations we consider four different gain values

for each data item d:

• move gain (gm(d)): the reduction to be observed in the overall query process-

ing cost, if d is moved to the other disk,

• replication gain (gr(d)): the reduction to be observed in the overall query

processing cost, if d is replicated to the other disk,

• unreplication-from-A gain (guA
(d)): the reduction to be observed in the overall

query processing cost, if a replica of d is deleted from DA,

• unreplication-from-B gain (guB
(d)): the reduction to be observed in the overall

query processing cost, if a replica of d is deleted from DB.

Unreplication gains are only meaningful for data items that are replicated. Sim-

ilarly, in a two-way declustering, move and replication gains are only meaningful

for data items that are not replicated. Thus, for any data item, only two gain

values need to be maintained.
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A two-way replicated declustering R2 = {DA,DB} can be considered as par-

titioning the dataset D into three mutually disjoint parts: A, B, and AB, where

part A is composed of the data items that are only stored in disk DA, part B

is composed of the data items that are only stored in disk DB, and part AB is

composed of the data items that are replicated. In this view,

DA = A ∪ AB and DB = B ∪ AB. (2.6)

A variable State(d) is kept to store the part information of each data item d.

For each query q, we maintain a 3-tuple

dist(q) = (|qA| : |qB| : |qAB|), (2.7)

where |qA|, |qB|, and |qAB| indicate the number of data items of q in parts A, B,

and AB, respectively. That is,

qA = q ∩ A , qB = q ∩ B and qAB = q ∩ AB. (2.8)

The total number of data items requested by query q is equal to: |q| = |qA| +

|qB|+ |qAB|.

Using the above notation, the retrieval times of a given query q from disks

DA and DB can be written as follows, without loss of generality assuming that

|qA| ≥ |qB|:

tA(q) =







⌈|q|/2⌉ if |qAB| ≥ (|qA| − |qB|)− 1

|qA| otherwise

tB(q) =







⌊|q|/2⌋ if |qAB| ≥ (|qA| − |qB|)− 1

|qB|+ |qAB| otherwise
(2.9)
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Here the “|qAB|≥(|qA|−|qB|)−1” condition corresponds to the case in which there

are enough number of replicated data items requested by q that can be utilized

to achieve even distribution of q among DA and DB. The “otherwise” condition

corresponds to the case for which even distribution of q among the disks is not

possible. In the former case, the replicated data items requested by q will be

retrieved from DA and DB in an appropriate manner to attain even distribution,

whereas in the latter case, all of the replicated data items requested by q will

be retrieved from DB to minimize the cost of query q. Hence, for a two-way

replicated declustering R2={DA,DB}, the cost r(q) of q can be computed with

the following closed-form expression:

r(q) =







⌈|q|/2⌉ if |qAB| ≥ (||qA| − |qB||)− 1

max(tA(q), tB(q)) otherwise.
(2.10)

The simple closed-form expressions given in Equations 2.8, 2.9, and 2.10 for com-

puting r(q) enable us to avoid constructing the optimal schedules for the queries

throughout the iterations of the two-way replicated declustering algorithm. That

is, r(q) in Equation 2.10 gives the cost of query q that can be attained by an

optimal schedule for q, without constructing Sopt(q) through costly network-flow

based algorithms.

It is clear that optimizing the cost function given below at each two-way

replicated declustering step will optimize the “goodness” criteria explained at

Section 2.4.1:

cost(R2)=
∑

q∈Q

f(q)(r(q)− ⌈|q|/2⌉). (2.11)

Our overall two-way replicated declustering algorithm works as a sequence of

two-way refinement passes performed over all data items. In each pass, we start

with computing the initial operation gains of all data items. Then, we iteratively

perform the following computations: find the data item and the operation that

produces the highest reduction in the cost; perform that operation; update gain

values of neighboring data items; lock the selected data item to further processing
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to prevent thrashing.

We perform these computations until there are no remaining data items to

process. We restore the declustering to the state where the best reduction is

obtained during the pass and we start a new pass over the data items if the

obtained improvement in the current pass is above a threshold or if the number

of passes performed is below some predetermined number. Once we obtain a two-

way declustering, we can recursively apply our two-way declustering algorithm on

each of these declusters to obtain any number of declusters. A running example

demonstrating move, replication and unreplication gain updates can be found in

Section 2.5.

All operations are kept in priority queues keyed according to their gain values.

The priority queues are implemented as binary heaps. For a two-way declustering,

we maintain six heaps: Two heaps for storing the move operations of data items

from part A to B and from part B to A, two heaps for storing the replication

operations of data items from part A to B and from part B to A, and two heaps

for storing the unreplication operations of replicated data items from part A and

from part B.

In our two-way replicated declustering algorithm, we start with calculating the

initial move, replication and unreplication gains of all data items (Section 2.6,

Algorithm 2) . After initializing the gains, we retrieve the highest gains and

the associated data items for each operation type and by comparing these gains

we select the best operation to perform. If there are any possible unreplication

operations which do not increase the total cost of the system (i.e., with zero

unreplication gain), those unreplication operations are performed first. After we

finish possible unreplications, we compare the gains to be obtained by move and

replication operations. If the gains are the same, we prefer to perform move

operations. Recall that each data item is eligible for two types of operations and

thus has two related gain values. So, after deciding on the best operation to

perform, we remove the data item from the two related heaps by extractMax and

delete operations.
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After performing an operation (move, replication or unreplication) on a data

item d∗ , we may need to update the gains of operations related with the data

items that are neighbor to d∗ (Section 2.6, Algorithms 3, 4, and 5). For any

data item d, we have gr(d)≥ gm(d), hence, in a pass, the number of replication

operations tend to outweigh the number of move operations. A similar problem

had been observed when replication was used for clustering purposes in the VLSI

literature and one of the solutions proposed was the gradient methodology [25].

We adopt this methodology by permitting solely move and unreplication opera-

tions until the improvement obtained drops below a certain threshold and only

after that we perform replication operations.

2.4.1.2 Query splitting

At the end of a two-way replicated declustering R2 = {DA,DB} of a dataset

and query set pair {D, Q}, we split the queries of Q among the obtained two

sub-datasets as evenly as possible so that split queries correctly represent the

optimizations performed during that two-way replicated declustering step. That

is, an R2 is decoded as splitting each query q ∈ Q into two sub-queries

q′ ⊆ q ∩ DA and q′′ ⊆ q ∩ DB, (2.12)

such that the difference ||q′| − |q′′|| is minimized. The split queries q′ and q′′

are added to sub-query sets QA and QB, respectively so that further two-way

declustering operations can be recursively performed on {DA, QA} and {DB, QB}

pairs.

Recall that the optimizations performed during a two-way replicated declus-

tering assume that queries will have optimal schedules with regard to that of two-

way replicated declustering, and even splitting of queries ensures that. Also recall

that constructing the optimal schedule of a query q in a replicated declustering

system requires network-flow-based algorithms. However, for two-way replicated

declustering this feat can be achieved by utilizing the item distribution dist(q) of

q and the value of r(q), which can be computed via the closed form definitions
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given in Equations 2.7–2.10. We know that in an optimal splitting according to

the optimal schedule, the size of q′ should be |q′| = tA(q) and the size of q′′ should

be |q′′| = tB(q).

Consider the three-way partition of query q into qA, qB, and qAB (according

to Equation 2.8) induced by the two-way replicated declustering. It is clear that

data items in qA will go into q′ and data items in qB will go into q′′, so all that

remains is to decide on the splitting of the data items in qAB according to an

optimal scheduling. Let us call the replicated data items that will go into q′ as

q′AB and the replicated data items that will go into q′′ as q′′AB. That is,

q′ = qA ∪ q′AB and q′′ = qB ∪ q′′AB, (2.13)

Since we want to enforce a splitting such that |q′| = tA(q) and |q′′| = tB(q), we

can say that

|q′AB| = tA(q)− |qA| and |q′′AB| = tB(q)− |qB| = |qAB| − |q
′
AB|. (2.14)

Any splitting of the data items in qAB that respects the size constraints given

in Equation 2.14 satisfies the optimality condition. In our studies we assign the

first tA(q)− |qA| items of qAB to q′ and the remaining items of qAB to q′′. Other

assignment schemes can be explored for better performance results.

Figure 2.2: Splitting of a query q according to a two-way replicated declustering
R2 = {DA,DB}.

A sample splitting of a query q with eight data items is given in Fig. 2.2.
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According to Equation 2.9, for q, tA(q) = 4 and tB(q) = 4, hence |q′| = 4 and

|q′′| = 4. Since, for q, |qA| = 3, |qB| = 2, |qAB| = 3, by Equations 2.13 and 2.14, we

can say that |q′AB| = tA(q)− |qA| = 1 and |q′′AB| = tB(q)− |qB| = 2. Any splitting

of qAB according to these size constraints satisfies the optimality condition, and

according to our assignment scheme q′AB = {d6} and q′′AB = {d7, d8}. Hence,

q′ = qA ∪ q′AB = {d1, d2, d3, d6} and q′′ = qB ∪ q′′AB = {d4, d5, d7, d8}.

2.4.2 Multi-way replicated refinement

Our multi-way replicated refinement scheme starts with the K-way replicated

declustering of the dataset D, say RK = {D1, . . . ,DK}, generated by the recursive

replicated declustering scheme described in Section 2.4.1. We iteratively improve

RK by multi-way refinement operations K-way move and K-way replication. In

order to perform these operations we maintain the following gain values for each

data item d:

• K-way move gain (gm(d, k)): the reduction to be observed in the overall query

processing cost, if d is moved to disk k,

• K-way replication gain (gr(d, k)): the reduction to be observed in the overall

query processing cost, if d is replicated in disk k.

If we were to maintain the above gain values for all data items, we would need

approximately 2×(K−1) gain values for each data item, because a data item

can be moved or replicated from its current source disk(s) to any of the disks

that does not already store it. Instead of this expensive schema, we adapt an

efficient greedy approach that was proposed for unreplicated declustering in [3]

to support multi-way refinement and we develop a multi-way refinement heuristic

suitable for replicated declustering. Our heuristic can perform multi-way move

and replication operations. The approach in [3] was based on the observation

that a move operation can be viewed as a two-stage process, where in the first

stage the data item d∗ to be moved is assumed to leave the source disk and in

the second stage d∗ arrives at the destination disk. The first stage represents

the decrease in the load of the source disk due to the relief in processing of the
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queries related with d∗, resulting with a decrease in the cost. The second stage

represents the increase in the load of the destination disk due to the excess in

processing of the queries related with d∗, resulting with an increase in the cost.

Here we extend this efficient greedy approach to support both multi-way move

and replication selection operations. Our adapted schema requires maintenance

of only a single gain value (virtual leave gain) for each data item d.

Virtual leave gain vg(d) indicates the number of queries requesting d such that

the disk(s) that d resides in serve(s) more than optimal number of data items for

these queries. That is, the virtual leave gain of a data item d that resides on disk

Ds is:

vg(d) =
∑

q∈Q+(d,s)

f(q), where (2.15)

Q+(d, s) = {q ∈ Q : d ∈ q ∧ ts(q) > ropt(q)} (2.16)

That is, each query q that requests data item d contributes f(q) to vg(d), if the

number of data items in q that are retrieved from disk Ds is greater than the

optimal response time ropt(q) of q. This means that it is possible to improve

the distribution of query q through moving or replicating data item d to an

appropriate destination disk Dz. Thus, virtual leave gain is an upper bound on the

actual move or replication gain. We should note here that our definition of virtual

leave gain is different from that of [3] in order to support correct computation

of multi-way move and multi-way replication operations. A running example

demonstrating virtual leave gain updates can be found in Section 2.5.2.

Our overall K-way replicated declustering refinement algorithm works as a

sequence of multi-way passes performed over all data items. Before starting the

multi-way refinement passes, as a preprocessing step, we compute the optimal

schedules for all queries once and maintain these schedules in a data structure

called OptSched. The process of initial optimal schedule calculation is performed

using network-flow based algorithms [12]. OptSched is composed of |Q| arrays,

where the ith array is of size |qi| and stores from which disks the data items of qi

23



are answered in the optimal scheduling. OptSched is kept both to identify bot-

tleneck disks for queries and also to report the actual aggregate parallel response

time of the replicated declustering produced by the recursive declustering phase.

A bottleneck disk for a query q is the disk from which q requests the maximum

number of data items (and hence determines response time r(q)).

In a multi-way refinement pass, we start with computing the virtual leave

gains of all data items (Section 2.5.2, Algorithm 6). At each iteration of a pass,

a data item d∗ with the highest virtual leave gain is selected. The K−1 move

and K−1 replication gains associated with d∗ are computed (Section 2.5.2, Algo-

rithm 7), the best operation associated with d∗ is selected and performed if it has

a positive actual gain and if it obeys the given capacity constraints, and then the

virtual leave gain values of the neighboring data items of d∗ are updated (Sec-

tion 2.5.2, Algorithm 8). Also the optimal schedules of each query that requests

d∗ is considered for update in constant time by investigating possible changes in

the bottleneck disk of that query. We perform these passes until the obtained

improvement is below a certain threshold or we reach a predetermined number

of passes.

2.5 Examples for two-way and multi-way refine-

ment schemes

In this section, the running of our two-way and multi-way refinement schemes are

demonstrated.

2.5.1 Two-way refinement scheme example

In the sample query set and two-way declustering given in Fig. 2.3(a), the query

distribution for q3 is dist(q3) = (2 : 1 : 1), since q3 requests d2 and d3 which are in

part A, d7 which is in part B, and d4 which is replicated and hence in part AB.

Likewise, in Fig. 2.3(a), the retrieval times of query q3 from disks DA and DB
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Figure 2.3: Gain values of operations defined over the data items and item dis-
tributions of queries for a sample two-way declustering with 8 data items and 3
queries.
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are tA(q3) = 2 and tB(q3) = 2, respectively. The cost of the two-way replicated

declustering R2 in Fig. 2.3(a) is cost(R2) = r(q1) + r(q2) + r(q3) = 3 + 4 + 2 = 9.

In Fig. 2.3, the effect of move (Fig. 2.3(b)), replication (Fig. 2.3(c)) and un-

replication (Fig. 2.3(d)) operations on the gains of data items, the item distri-

bution of queries and the total cost of the replicated declustering are exampled

over a sample initial two-way declustering given in Fig. 2.3(a). In Fig. 2.3(a), the

move gain of d6 is gm(d6) = 1 and after the move of d6 from DB to DA, the cost of

the declustering reduces by one as shown in Fig. 2.3(b). Similarly, in Fig. 2.3(b),

the replication gain of d3 is gr(d3) = 1 and after the replication of d3 from DA

to DB, the cost of the declustering reduces by one more as shown in Fig. 2.3(c).

In Fig. 2.3(c), the unreplication-from-B gain of d4 is guB
(d4) = 0 and after the

unreplication of d4 from DB, the cost of the declustering remains the same as

shown in Fig. 2.3(d).

Note that the cost of the declustering reduces by one after the move in com-

pliance with the move gain of d6. Fig. 2.3(c) shows the changes in data item gains

and query distributions after the replication of d6 from DB to DA. Note that the

cost of the declustering reduces by one after the move in compliance with the

move gain of d6.

2.5.2 Multi-way refinement scheme example

We present a running example of how our multi-way refinement scheme works

over the sample query set and three-way declustering given in Fig. 2.4(a), In

Fig. 2.4, the virtual leave gains of data items and the actual move gains of the

data item with the highest virtual leave gain are displayed. In Fig. 2.4(a), d3 and

d4 both have a virtual leave gain of two, which is the highest virtual leave gain.

We select d4 and compute its actual move and replication gains. Replicating d4

to DC provides the highest actual gain (gr(d4, C) = 2). Fig. 2.4(b) displays the

query distribution and the changes in the virtual leave gains after the replication.

Note that the cost of the declustering reduces by two after the replication in

compliance with the replication gain of d4 to DC . In Fig. 2.4(b), d7 and d8 both
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Figure 2.4: Virtual leave gain values of data items and actual gain of the highest
virtual leave gained data item for a sample three-way declustering with 8 data
items and 3 queries.
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have a virtual leave gain of one, which is the highest virtual leave gain. We

select d7 and compute its actual move and replication gains. Moving d7 to DA

provides the highest actual gain (gm(d7, A) = 1). Fig. 2.4(c) displays the query

distribution and the changes in the virtual leave gains after the move operation.

2.6 Details of Selective Replicated Assignment

Algorithms

In this section, we present the details of the algorithms used in our Selective

Replicated Assignment (SRA) scheme.

2.6.1 Recursive replicated declustering algorithms

Algorithm 1: DeltaCalculation(Query q, Part p).

Require: q ∈ Q, p ∈ {A, B}
1: if |tA(q)− tB(q)| < tAB(q) then
2: if |q|%2 = 0 then
3: return ∆← 0
4: else
5: return ∆← 1
6: else
7: if tp(q) < |q| − tAB(q)− tp(q) then
8: return ∆← 2× tp(q) + 2× tAB(q)− |q|
9: else

10: return ∆← 2× tp(q)− |q|

In SRA algorithms, delta (∆) of a query relative to a part, which is a notion

that relates to the difference between the cost of a query from its optimal distribu-

tion cost, is frequently used. Part information decides on the sign of the ∆ value.

∆ of a query q is positive for the part that q requires more data items, whereas

it is negative for the part it requires less data items. ∆ calculation is given in

Algorithm 1. For a given query q, if the query item distribution is such that all

replicas will not be requested from the same disk (i.e., |tA(q)− tB(q)| < tAB(q)),

then it is possible to distribute the query as evenly as possible by utilizing the
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replicas, hence ∆ is either zero or one depending on the query size. This case is

covered in lines 1–5. In lines 6–10, the case where all replicas will be requested

from one disk is handled. In this case the replicated data items are thought as

fixed to that part, and ∆ is calculated accordingly. For example, for the sample

dataset given in Fig. 2.3(a), ∆ of q2 for part A is -2 and for part B is 2.

Algorithm 2: Initialize gains.

Require: (D,Q), Π2 = {DA,DB}
1: for each query q ∈ Q do
2: tA(q)← tB(q)← tAB(q)← 0
3: for each data item d ∈ q do
4: k ← State(d), tk(q)← tk(q) + 1
5: for each data item d ∈ D do
6: if State(d) 6= AB then
7: gm(d)← gr(d)← 0, k ← State(d)
8: for each query q that contains d do
9: ∆← DeltaCalculation(q, k)

10: if ∆ ≥ 2 then
11: gm(d)← gm(d) + f(q), gr(d)← gr(d) + f(q)
12: else if (∆ = 0) ∧ (2(tk(q) + tAB(q)) = |q|) then
13: gm(d)← gm(d)− f(q)
14: else if ∆ ≤ −1 then
15: gm(d)← gm(d)− f(q)
16: else if State(d) = AB then
17: guA

(d)← guB
(d)← 0

18: for each query q that contains d do
19: if tA(q) ≥ tB(q) + tAB(q) then
20: guB

(d)← guB
(d)− f(q)

21: else if tB(q) ≥ tA(q) + tAB(q) then
22: guA

(d)← guA
(d)− f(q)

Algorithm 2 is used in calculating the initial move, replication and unrepli-

cation gains of all data items. After calculating query item distributions of all

queries (lines 1–4), we calculate the move and replication gains of unreplicated

data items (lines 6–15). In lines 8–15, we update the gains of each data item via

investigating each query q that requests it. Lines 10–11 handles the case where

∆ of the investigated query is greater than or equal to 2. In this case, the move

and replication gains of data item d increases by f(q), since moving or replicating

d to the other part would reduce the cost of that query by f(q). Lines 12–13

handles the case where ∆ equals to 0 and all replicated data items are retrieved

from the same disk in which d resides. In this case, the move gain of d is reduced

by f(q) since moving d would increase the cost of investigated query by f(q),
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however, the replication gain of d does not change since for that particular query,

it is possible to use one of the replicas in the other part. Lines 14–15 handles

the case where ∆≥−1. This means that for query q, the number of data items

requested from the disk in which d resides is very small compared to the number

of data items requested from the other disk, hence the gain of moving data item

d from its current part to the other part is reduced by f(q) (line 15). In lines

16–22 of Algorithm 2, unreplication gains of replicated data items are calculated.

We update unreplication gains by investigating each query. If all replicated data

items are retrieved from disk DB, we reduce the unreplication gain of the replica

of d from DB (lines 19–20), whereas if all replicated data items are retrieved

from disk DA, we reduce the unreplication gain of the replica of d from DA (lines

21–22).

Algorithm 3 is used to update the gains of necessary data items after moving

data item d∗ from part A to part B. In lines 3–28, the algorithm handles un-

replicated data items. In lines 4–16, the data items that are initially at the same

part with d∗ are handled. For those data items, if ∆ = 3 (lines 5–6), reduction

of move and replication gains by f(q) is sufficient. If ∆ = 2 (lines 7–12), again

reduction of replication gain by f(q) suffices, but the move gain requires special

care. If there is at least one replicated data item requested by q, then reduction

of move gain by f(q) is sufficient (lines 9–10), otherwise reduction of move gain

by 2f(q) is necessary since ∆ will be zero after the move (lines 11–12). Lines

13–14 handles the case where ∆ = 1 and all replicated data items are retrieved

from DA. In this case, the move gain is reduced by f(q) since after the move of

d∗, ∆ becomes -1 and the move of d would increase the cost of investigated query

by f(q), however, the replication gain does not change since for that particular

query the replication of d from A to B would not change ∆. Lines 15–16 handles

the case where ∆=0 and only one replicated data item is retrieved from B. In

this case, the move gain is reduced by f(q) since after the move of d∗, ∆ is still

0 (since we can use the replica in part A) but further moves from A to B (e.g.,

moving d) would increase the cost of query q by f(q), however, the replication

gain does not change.

In Algorithm 3, lines 17–28 updates the gains of data items that are initially
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Algorithm 3: Update gains after a move to DB.

Require: (D,Q), Π2 = {DA,DB}, State(d∗) = A
1: for each query q ∈ Q that contains d∗ do
2: ∆← DeltaCalculation(q, A)
3: for each unreplicated, unlocked data item d ∈ q do
4: if d ∈ DA then
5: if ∆ = 3 then
6: gm(d)← gm(d)− f(q), gr(d)← gr(d)− f(q)
7: else if ∆ = 2 then
8: gr(d)← gr(d)− f(q)
9: if tAB(q) ≥ 1 then

10: gm(d)← gm(d)− f(q)
11: else
12: gm(d)← gm(d)− 2f(q)
13: else if ∆ = 1 ∧ (tA(q) + tAB(q) = tB(q) + 1) then
14: gm(d)← gm(d)− f(q)
15: else if ∆ = 0 ∧ |q| = 2(tB(q) + 1) then
16: gm(d)← gm(d)− f(q)
17: else if d ∈ DB then
18: if ∆ = 1 ∧ (tA(q) + tAB(q) = tB(q) + 1) then
19: gm(d)← gm(d) + f(q)
20: else if ∆ = 0 then
21: if tAB(q) = 0 then
22: gm(d)← gm(d) + 2f(q), gr(d)← gr(d) + f(q)
23: else if |tA(q)− tB(q)| = tAB(q) then
24: gm(d)← gm(d) + f(q)
25: if tB(q)− tA(q) = tAB(q) then
26: gr(d)← gr(d) + f(q)
27: else if ∆ = −1 then
28: gm(d)← gm(d) + f(q), gr(d)← gr(d) + f(q)
29: for each replicated, unlocked data item d ∈ q do
30: if tB(q) + tAB(q) + 2 > tA(q) ≥ tB(q) + tAB(q) then
31: guB

(d)← guB
(d) + f(q)

32: if tA(q)− tB(q) = 1 then
33: guA

(d)← guA
(d)− f(q)

34: if |tA(q)− tB(q)| < tAB(q) ≤ |tA(q)− tB(q)− 2| then
35: guA

(d)← guA
(d)− f(q)

36: tA(q)← tA(q)− 1, tB(q)← tB(q) + 1
37: State(d∗)← B, Locked(d∗)← 1
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in part B. In lines 18–19, the case of ∆ = 1 and the replicas of replicated data

items of q are all retrieved from disk DB is examined. In this case, after the

move of d∗ to DB, ∆ becomes -1 and moves from B to A become viable (they

will not increase the cost of q), this explains the increase in the move gain of d.

Lines 21–22 covers the case where ∆=0 and none of the data items requested by

the query is replicated. In this case, since there is no replication, after the move

of d∗, ∆ becomes -2 and thus the move gains of data items in disk DB that are

neighbor to d∗ via q increase by 2f(q) (move gain changes from -f(q) to f(q)).

However, the replication gain only increases by f(q) (since it changes from 0 to

f(q)). Lines 23–26 indicate the case where ∆ = 0 and the replicas of replicated

data items of q are all retrieved from the same disk. In this case, after the move

of d∗ the move gain of d increases by f(q). Specifically, if the replicated data

items of q are all retrieved from disk DA (lines 25–26) then the replication gain

increases as well, since after the move ∆ will be -1 and replication of d from B to

A will reduce the cost of the query. The case where ∆ of the query is equal to -1

is examined in lines 27–28. In this case, after the move of d∗, ∆ will be -2, hence

both replication and move from DB to DA will improve the cost of the query.

In Algorithm 3, lines 29–36 updates the unreplication gains of replicated data

items that are neighbors to d∗. For a specific query q that requests d∗, if the

replicated data items of q are all retrieved from disk DB and the number of these

items is greater than tA(q)− tB(q)− 2, then unreplication of d from DB becomes

viable for q (lines 30–33). Specifically, if tA(q)− tB(q) = 1 then unreplication of d

from DA increases the cost of q by 1 (lines 32–33), hence unreplication gain of d

from DA is reduced by f(q). Lines 34–35 handles the case where after the move

of d∗ to B, the replicas of replicated data items of q will all be retrieved from disk

DA. In this case, unreplication of d from DA will increase the cost of q by 1.

Algorithm 4 updates the gains of necessary data items after replicating a

data item d∗ from DA to DB. In lines 3–11, the algorithm updates the gains of

unreplicated neighbors of d∗. In lines 4–6, the gains of data items that are stored

in DA are updated. If ∆=3 or ∆=2, after the replication of d∗, query q will start

retrieving d∗ from DB and ∆ will reduce to 0 or 1, hence the move and replication

gains of data items from DA to DB will reduce. In lines 7–11, the gains of data
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Algorithm 4: Update gains after a replication to DB.

Require: (D,Q), Π2 = {DA,DB}, State(d∗) = A
1: for each query q ∈ Q that contains d∗ do
2: ∆← DeltaCalculation(q, A)
3: for each unreplicated, unlocked data item d ∈ q do
4: if d ∈ DA then
5: if ∆ = 3 ∨∆ = 2 then
6: gm(d)← gm(d)− f(q), gr(d)← gr(d)− f(q)
7: else if d ∈ DB then
8: if ∆ = 1 ∧ (tA(q) = tAB(q) + tB(q) + 1) then
9: gm(d)← gm(d) + f(q)

10: else if ∆ = 0 ∧ (tA(q) = tAB(q) + tB(q)) then
11: gm(d)← gm(d) + f(q)
12: for each replicated, unlocked data item d ∈ q do
13: if tB(q) + tAB(q) + 2 > tA(q) ≥ tB(q) + tAB(q) then
14: guB

(d)← guB
(d) + f(q)

15: tA(q)← tA(q)− 1, tAB(q)← tAB(q) + 1
16: State(d∗)← AB, Locked(d∗)← 1

items that are stored in DB are updated. Lines 8–9 handle the case where ∆=1

and the replicated data items of q are all retrieved from DB. Lines 10–11 handle

the case where ∆=0 and the replicated data items of q are all retrieved from DB.

In these cases, prior to the replication of d∗, moves from DB to DA would increase

the cost of q, but after the replication, such moves will not affect the cost of q,

hence the move gain of d is increased. In lines 12–14, the unreplication gains of

unlocked and replicated data items are updated. If the replicated data items of

q will all be retrieved from disk DB and −1≥∆≥ 2, then after the replication

of d∗ to DB, unreplicating a replicated data item from DB becomes viable (lines

13–14).

Algorithm 5 updates the gains of necessary data items after unreplicating a

replica of d∗ from DA. In lines 3–13, the algorithm updates the gains of unrepli-

cated data items. In lines 4–8, for each query q that requests d∗, we investigate

whether the unreplication of d∗ from DA removes the flexibility in moving d∗’s

neighboring data items from A to B. If this is the case so, we reduce the move

gains of such data items by f(q). Lines 9–13 cover the case where the unrepli-

cation increases the cost of the query by increasing the number of data items

retrieved from DB. In this case, the move and replication gains of unreplicated

data items in part B are increased by f(q). In lines 14–16, the unreplication
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Algorithm 5: Update gains after unreplication from DA.

Require: (D,Q), Π2 = {DA,DB}, State(d∗) = AB
1: for each query q ∈ Q that contains d∗ do
2: ∆← DeltaCalculation(q, A)
3: for each unreplicated, unlocked data item d ∈ q do
4: if d ∈ DA then
5: if ∆ = 0 ∧ 2 ≤ tA(q) + tAB(q)− tB(q) ≤ 3 then
6: gm(d)← gm(d)− f(q)
7: else if ∆ = 1 ∧ tA(q) + tAB(q)− tB(q) = 1 then
8: gm(d)← gm(d)− f(q)
9: else if d ∈ DB then

10: if ∆ = 0 ∧ (tA(q) + tAB(q) = tB(q)) then
11: gm(d)← gm(d) + f(q), gr(d)← gr(d) + f(q)
12: else if ∆ = −1 then
13: gm(d)← gm(d) + f(q), gr(d)← gr(d) + f(q)
14: for each replicated, unlocked data item d ∈ q do
15: if |tB(q)− tA(q)| < tAB(q) ≤ tB(q)− tA(q) + 2 then
16: guA

(d)← guA
(d)− f(q)

17: tB(q)← tB(q) + 1, tAB(q)← tAB(q)− 1
18: State(d∗)← B, Locked(d∗)← 1

gains of unlocked and replicated data items are updated in the case where af-

ter the unreplication of d∗ the replicas in DA are being used. In this case, the

unreplication-from-A gains of replicated data items decreases.

2.6.2 Multi-Way Replicated Declustering Algorithms

Algorithm 6: Initialize virtual leave gains.

Require: (D,Q), ΠK = {D1, . . . ,DK}
1: for each query q ∈ Q do
2: ropt(q)← ⌈|q|/K⌉
3: r(q)← max1≤k≤K{tk(q)}
4: for each data item d ∈ D do
5: vg(d)← 0
6: for each query q ∈ Q that contains d do
7: k ← getRequestedDisk(q, d)
8: if tk(q) > ropt(q) then
9: vg(d)← vg(d) + f(q)

Algorithm 6 describes how we initialize the virtual leave gains of data items.

In line 2 we set the optimal retrieval time of each query and in line 3 we calculate

the maximum number of documents retrieved for query q from each disk. The
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for loop between lines 4–9 computes the virtual leave gain value (vg(d)) for all

data items. We first initialize the virtual leave gain of a data item d to 0 (line

5) and then, for each query q that requests d, we determine from which disk q

requests d (line 7). If the number of data items requested by q from that disk is

higher than ropt(q), we increase the virtual leave gain of d by f(q) (line 9). Note

that an O(|q|)-time getRequestedDisk(q, d) operation is required to find which

replica of d is used for answering q by examining the OptSched data structure.

Algorithm 7: Compute actual gains.

Require: (D,Q), ΠK = {D1, . . . ,DK}, d
∗ ∈ Ds

1: for each disk Dk, k ∈ {1 . . .K}, k 6= s do
2: gm(d∗, k)← 0, gr(d

∗, k)← 0
3: if d∗ is replicated to disk Dk then
4: continue
5: for each query q that contains d∗ do
6: if d∗ is not replicated then
7: if ts(q) = r(q) ∧ r(q) > ropt(q) then
8: if tk(q) < r(q)− 1 then
9: gm(d∗, k)← gm(d∗, k) + f(q)

10: gr(d
∗, k)← gr(d

∗, k) + f(q)
11: else if tk(q) ≥ r(q) then
12: gm(d∗, k)← gm(d∗, k)− f(q)
13: else
14: m← getRequestedDisk(q, d∗)
15: if tm(q) = r(q) ∧ r(q) > ropt(q) then
16: if tk(q) < r(q)− 1 then
17: gr(d

∗, k)← gr(d
∗, k) + f(q)

Algorithm 7 computes the actual gains obtained by moving or replicating a

data item d∗ ∈ Ds to any other disk. For each candidate disk Dk, the algorithm

initially sets the actual move gain (gm(d∗, k)) and the actual replication game

(gr(d
∗, k)) to 0 (line 2). If d∗ is already replicated in Dk (lines 3–4) we do not

need to compute any gains, otherwise, we check each query q requesting d∗. We

first check whether d∗ is replicated (line 6). If it is not and if the data items

requested by q are not optimally distributed and disk Ds is among the bottleneck

disks of q (line 7), we increase the actual move and replication gain of d∗ to Dk

(lines 9–10) by f(q), unless the number of data items requested from Dk will

increase above r(q). If that is the case (lines 11–12), we reduce actual move gain

gm(d∗, k) by f(q). If d∗ is replicated (lines 13–17) we find the disk from which it is

retrieved for query q (line 14). If the disk from which d∗ is requested a bottleneck
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disk for q and if the number of data items requested from that disk is larger than

the optimal distribution of q, then we increase the actual replication gain of d∗

to Dk by f(q), unless Dk will become a bottleneck disk after this replication.

Algorithm 8: Update virtual leave gains after a move or replication from
Ds to Dz.

Require: (D,Q), ΠK = {D1, . . . ,DK}, d∗ ∈ Ds, opType
1: if opType = replication then
2: replicate d∗ to Dz and lock
3: else
4: move d∗ to Dz and lock
5: for each query q ∈ Q that contains d∗ do
6: s← getRequestedDisk(q, d∗)
7: if opType = replication ∧ ts(q) ≤ tz(q) then
8: continue
9: else

10: setRequestedDisk(q, d∗, z)
11: ts(q)← ts(q)− 1, tz(q)← tz(q) + 1
12: for each unlocked data item d ∈ q do
13: m← getRequestedDisk(q, d)
14: if ts(q) = ropt(q) ∧m = s then
15: vg(d)← vg(d)− f(q)
16: if tz(q) = ropt(q) + 1 ∧m = z then
17: vg(d)← vg(d) + f(q)

Algorithm 8 updates the virtual leave gains of unlocked data items that are

neighbor to d∗, after moving or replicating d∗ from Ds to Dz. Parameter opType

indicates whether we are performing a move or a replication. In lines 5–17,

we check each query q that requests d∗. We first find the disk from which d∗

is requested for query q (line 6). If d∗ is being replicated and the number of

documents requested from disk Ds for query q is less than that of Dz, there is no

need for update due to query q (lines 7–8). Otherwise, we set the optimal disk

to retrieve d for q to Dz (line 10). If prior to the operation, the number of data

items requested from Ds was larger than those of Dz, we update the ts(q) and

tz(q) values (line 11). The for loop in lines 12–17 updates the virtual leave gain

of each data item d that is neighbor to d∗. If d is requested from Ds for q and

the number of data items requested from Ds is equal to ropt(q), then virtual leave

gain of d is reduced by f(q) (lines 14–15). If d is requested from Dz for q and the

number of data items requested from Dz is equal to ropt(q) + 1, then the virtual

leave gain of d is increased by f(q) (lines 16–17).
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2.7 Complexity Analysis

In this section, we provide detailed complexity analyses of the recursive replicated

declustering and multi-way replicated refinement phases of our algorithm.

2.7.1 Recursive replicated declustering phase

In the recursive replicated declustering phase, initial gain computations (Algo-

rithm 2) take O(2 ×
∑

q∈Q |q|) = O(
∑

q∈Q |q|) time for each two-way refinement

pass. This is because, each data item has two gains (either gm and gr or guA
and

guB
), and for each data item d, we check all the queries by which d is requested

to identify the initial operation gains of d. After selecting the best operation to

perform and the related data item, we perform an extractMax for the selected

operation, and delete the other operation gain related with the data item. Thus,

at each pass, at most |D| extract-max and at most |D| heap-delete operations

are performed. When an operation is performed on a data item, the operation

gains of its neighboring data items must be investigated for possible updates

(Algorithms 3, 4, 5). In the implementation of gain update operations, we use

increase-key or decrease-key operations in max-heaps. If an operation is invoked

on every data item during an FM-like pass, every query q incurs at most |q|2

updates in total. Note that this |q|2 upper bound is very loose since when an

operation is performed on a data item d requested by a query q, only in a handful

of conditions (that are determined by changes in ∆ values of q) the update of the

gain values of the other data items requested by q is necessary. Since we don’t

update the gains of previously iterated data items in a pass, after each operation,

the maximum number of updates reduces by one.

When all operations are considered, in one two-way refinement pass, at most

(|q| × (|q| − 1)/2) × 2 ≈ |q|2 gain update operations will have to be performed

on the data items of a query q in the worst case. (Each data has two gains,

hence the multiplication by two). Totally, it makes O(
∑

q∈Q |q|
2) gain update

operations in each two-way refinement pass. Thus, the gain update cost of a

37



two-way refinement pass is O(
∑

q∈Q |q|
2 × lg|D|). The total cost of a two-way

refinement pass is O(|D| × lg|D|+
∑

q∈Q |q|
2 × lg|D|) ≈ O(

∑

q∈Q |q|
2 × lg|D|) for

practical purposes. We limit the number of passes to 10 for a recursive replicated

declustering step and in practice the number of passes rarely reaches to 10.

The worst-case analysis above is valid for the first two-way replicated declus-

tering where there are no replications initially. We proceed with the analysis of

the recursive replicated declustering by investigating the complexity in the lev-

els of the recursion tree. We assume that maximum allowable replication occurs

after the first two-way replicated declustering step, which is a worst case sce-

nario. So at each recursion level the sum of the sizes of the sub-datasets will

be at most |D|(1 + r). Under a balanced declustering assumption, at the ℓth

recursion level, two-way declustering processes will be applied on 2ℓ sub-datasets

each of size O(|D|(1 + r)/2ℓ). If we ignore the decrease in the query sizes due

to the query splitting process, the aggregate cost of 2ℓ two-way declustering pro-

cesses at the ℓth recursion level will be O(2ℓ × |D|(1 + r) ×
∑

q∈Q |q|
2), leading

to an overall cost of O(K × lg(|D|(1 + r)) ×
∑

q∈Q |q|
2). However, for practical

purposes, considering the decrease in the query sizes due to the query splitting,

the aggregate cost of 2ℓ two-way declustering processes at the ℓth recursion level

will approximately be O(|D|(1 + r) ×
∑

q∈Q |q|
2), leading to an overall cost of

O(lg(K)× lg(|D|(1 + r))×
∑

q∈Q |q|
2).

2.7.2 Multi-way replicated refinement phase

Multi-way replicated refinement phase has a preprocessing step where we compute

the optimal schedules for all queries. This preprocessing takes O(
∑

q∈Q(|q|2×K)

time.

The complexity analysis of each multi-way refinement pass is as follows: In ini-

tial virtual leave gain computation, since we have a single gain for each data item,

the complexity is similar to the initial gain computation of a two-way replicated

declustering. The only difference roots from the getRequestedDisk(q, d) opera-

tion that takes O(|q|) time. Thus, calculating the virtual gains of every item takes
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O(
∑

q∈Q |q|
2) time. We build a heap from the virtual leave gains in O(|D|) time.

We select the data item with the maximum virtual leave gain in O(log(|D|) time.

Then we compute its actual move and replication gains for the remaining K − 1

disks and decide where to move or replicate according to this actual gains. In

total, actual gain calculations for all data items take O(
∑

q∈Q |q|×K) time. After

performing the operation that has the highest actual gain, we update the virtual

leave gains of neighboring data items as well as the item distributions of all related

queries. Updating virtual leave gain of a data item takes O(lg|D|) time, since we

store virtual leave gains in a max-heap. Similar to the recursive replicated declus-

tering phase, we may need to update the virtual leave gains at most |q|2 times in

a multi-way refinement pass, leading to a O(
∑

q∈Q |q|
2× lg|D|) complexity. In the

worst case, the total cost of virtual leave gain updates is O(
∑

q∈Q |q|
2 × lg|D|).

Updating query item distributions takes a total of O(
∑

q∈Q |q|) time. Thus, in a

multi-way refinement pass, the total cost for updates is O(
∑

q∈Q |q|
2 × lg|D|).

We limited the number of passes in multi-way refinement to 10, thus, when we

take the preprocessing, virtual leave gain initialization, actual gain computation

and virtual leave gain update stages into account, the total cost for multi-way

refinement is O(
∑

q∈Q |q|
2×K)+O(

∑

q∈Q |q|
2)+O(

∑

q∈Q |q|×K)+O(
∑

q∈Q |q|
2×

lg|D|), which is equal to O((K + log|D|)×
∑

q∈Q |q|
2).

2.8 Experimental Results

In this section, we present the results of experiments conducted to compare

the performance of the proposed Selective Replicated Assignment (SRA) scheme

against the state-of-the-art Random Duplicate Assignment (RDA) and Orthogo-

nal Assignment (OA) schemes. RDA and OA are selected since they are known

to perform good for arbitrary queries. Also it is possible to modify these ap-

proaches for selective replication. We modified both RDA and OA to support

partial replication, and improved RDA such that it utilizes query logs and selects

the most frequently requested data items and replicates them at random disks.

We call this modified version the Most Frequent Assignment (MFA) scheme.
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In our comparisons we used 9 datasets: Airport, Bea, Face, FR, HH, Ntar,

Park, Place90, and State. The properties of these datasets are presented in

Table 2.2. The datasets are taken from [3] and divided into 4 groups. As described

in [3], the Face dataset is a collection of gray-scale face images containing 144

images from the MIT image database [26], 300 images from PEIPA [27] and

400 images from the ORL image database [28]. These 844 images are used to

construct an image retrieval system using the algorithm described in [24]. In this

algorithm, the significant pixels of the images are extracted by multi-resolution

wavelet analysis and a number of significant pixels are kept as signature for each

image. Thus, each pixel location defines a relation among the images (data items)

that contain the pixel in their signature files. As a query is a signature (i.e., a set

of pixel locations), the set of all possible pixel locations in the images constitutes

the query set.

The second group of datasets consists of multi-feature point data used for

function-approximation experiments [29]. The HH and FR datasets contain 22784

and 40768 points in 16 and 10 dimensions, respectively. These datasets are in-

dexed into a grid directory with cell size restricted to 16 points as described in [30].

The resulting grid directory contains 1638 data pages (data items) for HH and

3338 data pages for FR. A set of synthetic rectangular and diagonal queries is

generated assuming Gaussian distribution for both query sides and centers for

each dataset.

Other datasets consist of GIS data collected from the National Transportation

Atlas Databases [31]. The Airport and Place90 datasets contain two-dimensional

point data. Airport contains the public use airports and landing facilities in the

US. Place90 contains place locations from the 1990 Census Master Area reference

file. Airport, containing 6735 points, is indexed into a grid file of 1176 pages with

cell capacity of 8 points. Similarly, Place90, containing 23651 points, is indexed

into a grid file of 3382 pages. The Park, Ntar, State and Bea datasets contain two-

dimensional polygon data. The bounding box of every polygon is considered as a

data item for these datasets. Park contains the national parks, Ntar contains the

national transportation analysis regions, Bea contains the economic areas, and

State contains the US boundaries with integrated shorelines. A set of synthetic
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Table 2.2: Properties of datasets.

Class D |D| |Q| Average
Dataset query size

Image Face 844 1024 23.1

Func. Approx. HH 1638 2000 43.3
FR 3338 10000 10.0

GIS (Point) Airport 1176 5000 22.8
Place90 3382 12000 17.9

GIS (Polygon) Park 1022 4000 20.1
Ntar 8952 10000 29.2
Bea 10674 20000 26.8
State 10827 10000 33.5

rectangular and diagonal queries are generated for the GIS datasets as for the

function-approximation datasets.

While testing the performance of MFA and SRA, the query sets for all datasets

except Face are divided into two equal parts. The first half is used for replication

and declustering and the second half is used for testing the performance. The

query set for Face is composed of all possible queries so it is fully used while

declustering and testing of Face.

All of the algorithms used in the experiments are implemented in C pro-

gramming language, and experiments are conducted on a 2GHz Intel Core Duo

machine with 2MB L2 cache and 2GB DDR2 667 MHz memory.

Query processing performances of the compared algorithms are tested on

K=16, 24, 32 disks and the allowed overall replication ratio is varied from 10% to

100%. With 9 different datasets, 3 different disk counts, and 10 different repli-

cation ratio values, we present the results of 270 different experiment instances.

For each SRA experiment instance, we report the average of 10 runs, since we

use randomly generated initial feasible two-way declusterings in our replicated

declustering phase.

The query processing performance of a given algorithm is evaluated in terms
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of the average retrieval overhead per query induced by the resulting replicated

declustering. Here, average retrieval overhead per query (arO) for a given repli-

cated declustering of a dataset and a query set is defined as total response time

overhead (Equation 2.5) divided by the number of queries. That is,

arO(Q) = TrO(RK , Q)/|Q|. (2.17)

Table 2.3: Arithmetic averages of the arO values for K=32 disks over the nine
datasets.

percent distribution of replication ratio
among recursive replicated declustering

and multi-way refinement phases
w.out with
unrep. unreplication

% rep. 100–0 100–0 80–20 60–40 40–60 20–80 0–100
10% 0.40 0.31 0.29 0.27 0.24 0.23 0.21
20% 0.36 0.28 0.25 0.22 0.19 0.16 0.15
30% 0.32 0.22 0.23 0.19 0.15 0.12 0.11
40% 0.25 0.19 0.20 0.18 0.12 0.09 0.09
50% 0.19 0.15 0.15 0.14 0.10 0.06 0.07
60% 0.15 0.12 0.13 0.13 0.09 0.05 0.06
70% 0.12 0.09 0.11 0.11 0.09 0.04 0.05
80% 0.10 0.07 0.09 0.09 0.08 0.03 0.04
90% 0.07 0.05 0.07 0.07 0.08 0.03 0.03
100% 0.06 0.04 0.06 0.06 0.07 0.02 0.02

In Table 2.3, we present the arithmetic averages of the average retrieval over-

head of SRA over the nine datasets with increasing replication ratio, where the

allowed replication ratio is distributed between the recursive replicated decluster-

ing and multi-way refinement phases according to the percentage values displayed

over the columns. For example, the column header 80–20 indicates that the recur-

sive replicated declustering phase is allowed to utilize 80% of the replications and

the multi-way refinement phase is allowed to utilize 20% of the replications. The

values in the table indicate the retrieval overhead of the replicated declusterings

obtained by SRA under the given replication distribution.

The second column of Table 2.3 is introduced to justify the usage of un-

replication operation in recursive replicated declustering phase. Note that the
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100%–0% replication-distribution scheme provides an approach where replication

is only performed in recursive replicated declustering phase. The third and sec-

ond columns of Table 2.3 show the performance of such a system where unreplica-

tion operation is utilized and not utilized, respectively. By comparing these two

columns we can observe that embedding unreplication operation always improves

the performance of the recursive replicated declustering phase.

As seen in Table 2.3, especially for low replication ratios (between 10% to

30%), the average results obtained by SRA are best when the given replication

amount is fully utilized in the multi-way refinement phase (0%–100% replication-

distribution). However, for higher replication ratios (between 40% to 100%), best

results are obtained in the 20%–80% replication-distribution scheme. These re-

sults indicate that, for small allowed replication ratios, performing replications

at a later phase, that is during the K-way declustering phase, brings more gain,

whereas for higher allowed replication ratios, performing a small percent of the

replications at an earlier phase, that is during the recursive bipartitioning phase,

has a more positive effect on the overall SRA performance. Since 20%–80%

replication-distribution scheme has better results for more experiment instances,

the results reported for SRA in the following figures are obtained with this

replication-distribution scheme. The good results observed for the 0%–100% and

20%–80% replication-distribution schemes point to the success of our multi-way

replicated refinement algorithm. The fact that 20%–80% replication-distribution

scheme, which is a combination of recursive replicated declustering and multi-

way replicated refinement schemes most of the time outperforms the 0%–100%

scheme, which is an approach where replication and declustering is decoupled

demonstrates the need for our recursive replicated declustering algorithm.

Figs. 2.5 and 2.6 display the individual performances of the algorithms over

each of the nine datasets for K = 16, 24, 32. In the figures, variation of the arO

values of algorithms with increasing replication ratio is presented. Closer points

to x-axis mean better average retrieval times.

As seen in Figs. 2.5 and 2.6, SRA has better (smaller) average retrieval time

than MFA and OA for all experiment instances. While comparing MFA with
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Figure 2.5: Average retrieval overhead vs replication ratio figures for the Face,

HH, FR, Airport, Place90 datasets
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Figure 2.6: Average retrieval overhead vs replication ratio figures for the Park,

Ntar, Bea, State datasets
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OA, MFA performs much better than OA in seven of the nine datasets. Only in

Face and Park datasets OA performs slightly better than MFA. We observe that

with increasing replication amount, the deviation of OA from the strictly optimal

declustering decreases linearly, whereas in both MFA and SRA we observe a

quadratic decrease. These results point to the importance of using query logs in

improving performance, since MFA also makes use of query logs by replicating

frequently requested items.

As seen in Figs. 2.5 and 2.6, the performance gap between the proposed SRA

algorithm and the existing MFA and OA algorithms decreases with increasing

replication amount. But SRA performs considerably better than the other algo-

rithms even for 100% replication.

As seen in Figs. 2.5 and 2.6, SRA has better (smaller) average retrieval time

than MFA and OA for all experiment instances. While comparing MFA with

OA, MFA performs much better than OA in seven of the nine datasets. Only in

Face and Park datasets OA performs slightly better than MFA. We observe that

with increasing replication amount, the deviation of OA from the strictly optimal

declustering decreases linearly, whereas in both MFA and SRA we observe a

quadratic decrease. These results point to the importance of using query logs in

improving performance, since MFA also makes use of query logs by replicating

frequently requested items. An analysis of the Figs. 2.5 and 2.6 reveals that the

performance gap between the proposed SRA algorithm and the state-of-the-art

MFA and OA algorithms decreases with increasing replication amount. However,

as also seen in the figure, SRA still performs considerably better then MFA and

OA even for high replication amounts.

An analysis of the arithmetic averages of the average retrieval overheads and

the running times of the MFA, OA and SRA over the nine datasets with increas-

ing replication ratio reveals that, for K =16, 24 and 32 disks, even with low

replication ratios such as 10%, SRA achieves very low overheads and to achieve

similar overheads MFA requires around 70%, whereas OA requires around 90%

replication.

Table 2.4 shows the standard deviation values computed over the costs of
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Table 2.4: Standard deviation values of SRA over the 9 datasets.

% replication Face HH FR Airport Place90 Park Ntar Bea State
10% 0.54 0.45 0.15 0.35 0.24 0.23 0.07 0.31 0.14
20% 0.49 0.29 0.10 0.24 0.18 0.05 0.00 0.06 0.01
30% 0.36 0.15 0.06 0.17 0.12 0.01 0.02 0.02 0.02
40% 0.26 0.06 0.03 0.10 0.06 0.02 0.01 0.02 0.02

K=16 50% 0.18 0.03 0.03 0.07 0.05 0.00 0.01 0.02 0.02
60% 0.12 0.07 0.02 0.04 0.03 0.00 0.01 0.02 0.00
70% 0.08 0.04 0.02 0.03 0.03 0.00 0.01 0.02 0.01
80% 0.08 0.08 0.03 0.03 0.04 0.00 0.00 0.01 0.01
90% 0.08 0.06 0.03 0.03 0.04 0.03 0.00 0.01 0.00
100% 0.04 0.06 0.02 0.03 0.03 0.03 0.00 0.01 0.00
10% 0.43 0.52 0.09 0.29 0.18 0.20 0.25 0.39 0.28
20% 0.40 0.42 0.07 0.24 0.14 0.06 0.09 0.12 0.13
30% 0.40 0.30 0.05 0.18 0.12 0.00 0.12 0.09 0.18
40% 0.30 0.25 0.04 0.14 0.08 0.06 0.03 0.14 0.12

K=24 50% 0.26 0.17 0.03 0.10 0.06 0.02 0.02 0.12 0.03
60% 0.15 0.15 0.02 0.08 0.05 0.02 0.03 0.07 0.04
70% 0.12 0.14 0.00 0.05 0.05 0.02 0.02 0.05 0.04
80% 0.09 0.16 0.02 0.06 0.05 0.03 0.01 0.03 0.04
90% 0.09 0.12 0.01 0.05 0.04 0.05 0.02 0.03 0.02
100% 0.06 0.14 0.02 0.06 0.06 0.04 0.01 0.03 0.01
10% 0.34 0.44 0.03 0.21 0.11 0.12 0.06 0.25 0.18
20% 0.34 0.36 0.02 0.16 0.09 0.02 0.02 0.08 0.08
30% 0.31 0.22 0.02 0.13 0.07 0.00 0.09 0.10 0.14
40% 0.21 0.14 0.00 0.08 0.06 0.03 0.03 0.15 0.09

K=32 50% 0.22 0.12 0.00 0.06 0.04 0.00 0.03 0.14 0.03
60% 0.15 0.12 0.00 0.04 0.04 0.00 0.01 0.11 0.03
70% 0.10 0.10 0.00 0.06 0.04 0.00 0.01 0.04 0.03
80% 0.06 0.14 0.00 0.03 0.02 0.00 0.00 0.04 0.02
90% 0.10 0.11 0.01 0.04 0.04 0.00 0.01 0.03 0.02
100% 0.07 0.12 0.00 0.06 0.02 0.02 0.01 0.03 0.02

individual queries for the datasets when SRA is used. As seen in the table,

the confidence interval of the results produced by SRA becomes narrower as the

replication ratio increases, which is expected since with high replication ratios

the declusterings found by SRA approaches to optimal ones. By investigating

Fig. 2.5, Fig. 2.6, and Table 2.4 we can observe that even the confidence interval

of the solutions produced by SRA remain below the averages of the solutions

produced by MFA and OA.
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Chapter 3

Re-Declustering for Elasticity in

Parallel Databases

Due to fast changing dynamics of many applications, ever increasing data storage

requirements, and big data processing economics, parallel database systems are

forced to migrate into cloud computing settings, an environment which demands

support for elasticity from its tenants. Supporting changes in server counts, which

may invalidate the previously computed declustering solutions, can also enforce

the re-computation of the declustering solution. The re-declustering problem

can be observed even in conventional parallel database settings. Due to high

failure rates of conventional disks and commodity servers, constantly checking

the integrity levels of disks and removing/replacing malfunctioning disks might be

necessary or because of the fast increase rates of data stored in parallel database

systems, database admins may need to introduce new servers in order to increase

both capacity and performance of the system.

In Chapter 2, we proposed a replicated declustering scheme that utilizes query

logs to selectively replicate and distribute data items and and show that this

scheme outperforms existing replicated declustering schemes in the presence of

query logs and especially under low replication constraints. Similarly, there are a
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number of declustering and replicated declustering solutions relying on optimiza-

tions utilizing query logs [4, 32, 3, 33, 34]. However, in an approach that is based

on query logs, due to possible changes of query patterns with time, the initial

declustering solution may become obsolete. A re-computation of the declustering

solution (re-declustering) might be necessary. Furthermore, realizing this newly

computed re-declustering requires data migrations.

To recount, all the above mentioned three reasons, namely:

a. changes in data access patterns (significant pattern changes in query logs),

b. planned server removal due to reducing demand or for maintenance reasons,

and

c. planned server addition to increase capacity and/or performance of the

system

may enforce a re-declustering of the data items.

The re-declustering problem can be solved via running the replicated declus-

tering scheme from scratch. However, in parallel disk systems often the sizes of

the stored data items are quite large and thus, such a “scratch-remap” method

that does not respect the existing disk placement of data items can cause un-

acceptable amounts of data migrations. Note that, performing a declustering

process from scratch is not costly in itself since this computation is performed in

memory, however, realizing the new mapping dictated by this new declustering

can be quite time consuming and applications may suffer significantly during this

long remapping process, as data migrations are quite costly.

In this chapter, we present the following contributions:

• We propose a novel weighted bipartite matching model that given a dataset,

a newly proposed replicated declustering solution for this dataset, and an

existing replicated mapping of the data items in the dataset to the servers of

the parallel database system, provides a matching of the overlapping subsets
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in the replicated declustering solution to servers such that the number of

data item migrations necessary to realize the new solution is minimized.

Proposed model can compute the migration minimizing matching optimally

even when the number of overlapping subsets and the number of servers are

different, thus supporting server additions or removals.

• We also propose a novel abstraction scheme that enables the encoding of mi-

gration operations necessary to realize the new solution as queries. Through

this abstraction, given a newly proposed replicated declustering solution, a

query workload to be performed over the system, and and an existing (old)

replicated declustering solution, it becomes possible to reduce query pro-

cessing and migrations costs together. This abstraction also enables the

use of a state-of-the-art replicated declustering scheme to be used for the

solution of re-declustering problem with minor extensions.

• We propose extensions to an efficient and effective iterative improvement

scheme that improves query processing costs of a replicated declustering

solution so that this extended scheme not only improves query processing

costs but also reduces migration amounts as well.

• We propose a three-phase log-utilizing replicated re-declustering scheme

that suggests a new replicated declustering solution over any existing repli-

cated declustering solution such that the new solution strikes a balance

between the conflicting objectives of reducing query processing costs and

reducing migration costs. The proposed re-declustering scheme enables op-

timizations to query processing costs when changes in query-log patterns,

disk additions, or disk removals are performed, while considering migration

costs.

The organization of this chapter is as follows. In Section 3.1, we present the no-

tations used in this chapter and the problem definition. Proposed re-declustering

algorithm is presented in Section 3.2. Section 3.3 presents and discusses the con-

ducted experiments where we compare the SRA algorithm proposed in Chapter 2

with the re-SRD algorithm proposed in this chapter. We provide a brief overview

of the related literature in Section 3.4.
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Table 3.1: Notations used in this chapter in addition to those presented in Ta-
ble 2.1.

Symbol Description
Sk Server k
Sk Data items in server Sk

RSP (D) A Replica-to-Server Placement strategy for
the data items in D

rss(d) Replica-Server-Set for data item d, i.e.,
the set of servers holding a replica of d

3.1 Notations and Problem Definition

Just like in Chapter 2, we assume a dataset D and a query set Q with |D|

indivisible data items and |Q| queries, respectively, and a query q∈Q is a subset

of D. Again, each query q has a frequency f(q) that shows the number of times

q is requested in Q. We also assume that all server disks are homogeneous and

the retrieval time of all data items on all disks are equal and can be accepted as

one for practical purposes. The notations used in this chapter are presented in

Table 3.1. As you can see in the table, we introduced the RSP (D): A Replica-to-

Server Placement strategy for the data items in D and rss(d): Replica-Server-Set

for data item d, in other words, the set of servers holding a replica of d notations

in addition to the other notations presented in Chapter 2. We also introduced the

Sk: Server k, notation to distinguish parallel database servers from each other.

These notations are introduced since unlike in Chapter 2, in this chapter, the

placement of data subsets to different servers cause different migration costs.

Definition Replicated Re-Declustering Problem: Given a set D of data items, a

set Q of queries, K homogeneous servers each with a storage capacity of Cmax,

a replica-to-server placement scheme RSPold(D) showing the current mapping

of data items in D to the servers, and a maximum allowable replication ratio

r, the Replicated Re-Declustering Problem tries to find a new replica-to-server

placement scheme RSPnew(D) subject to the server capacity constraints with the

objective of minimizing a metric defined over the total parallel response time of Q
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and the total amount of data item migrations needed to realize the new mapping

RSPnew(D).

Depending on the reason for re-declustering we may have the following three

scenarios for the server counts of the new replica-to-server placement scheme:

a. A re-declustering due to query log changes will be performed. In this sce-

nario, the number of servers in the old and new placement schemes are

equal.

b. A re-declustering due to the removal of a set of servers will be performed.

Assuming that the set of servers to be removed is Srem, and the number of

servers to be removed is |Srem| = ∆K, the number of servers in the new

placement schemes is equal to K −∆K.

c. A re-declustering due to addition of a set of servers will be performed.

Assuming that the set of servers to be added is Sadd, and the number of

servers to be added is |Sadd| = ∆K, the number of servers in the new

placement scheme is equal to K + ∆K.

Note that in the Replicated Re-Declustering Problem there are two conflicting

objectives, namely the minimization of total parallel response time and the mini-

mization of total data item migrations. As with most multi-objective problems, a

solution to this problem must also strike a balance between these two conflicting

objectives. We also provide a mechanism to fine-tune the balance between these

two objectives and shall further discuss this mechanism in Section 2.4.2.

3.2 Proposed Approach

In order to address the K-way replicated re-declustering problem, we propose

a three-phase approach. In the first phase, a recursive replicated declustering

heuristic, which reduces query processing times for queries without paying any

attention to migration costs, is utilized to divide the data items in the dataset
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D into desired number of (K −∆K, K, or K + ∆K) possibly overlapping sub-

sets. In the second phase, a one-to-one data-subset-to-server mapping scheme

that maps the subsets obtained at the end of the first phase to the servers is

proposed. This mapping is performed in a way that minimizes the total amount

of data migrations. Here, we show how to formulate the one-to-one data-subset-

to-server mapping problem as a weighted bipartite matching problem, which we

solve optimally. In the third phase, a multi-way migration-aware replicated re-

finement heuristic is used to further reduce both the query processing times and

the amount of necessary migrations.

We should remind here that until the end of third phase no actual data item

migration is performed. Migrations are realized only after all the computations

are performed in memory and the final replica-to-server placement RSPnew(D) is

computed.

3.2.1 Initial Replicated Declustering Phase

In this phase, our aim is find a “good” replicated declustering solution for the

given query workload and the desired number of servers. The previous mapping

and the previous number of disks are disregarded in this phase. Assuming that

K is the target number of servers in the new setting, at the end of this phase,

K possibly overlapping subsets of the dataset D, say RK = {D1, . . . ,DK} is

obtained. To this end, we utilize the recursive replicated declustering schema

proposed in [34], since this scheme is known to successfully reduce query response

costs of queries in the presence of query logs. However, it is possible to use any

replicated declustering scheme in this phase.

In the recursive replicated declustering schema proposed in [34], a two-way

replicated declustering algorithm is recursively applied to obtain the desired num-

ber of overlapping subsets. The two-way replicated declustering algorithm starts

from a given initial randomly generated two-way declustering, and iteratively

improves this two-way declustering via move, replication and unreplication oper-

ations so as to optimize the query processing times of the queries in Q.
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(a) A new replicated declustering due to
query changes is performed. Weighted
bipartite graph model for mapping the
parts of the new declustering to disks.
The weight of the matching is 1+1+2=4.
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Figure 3.1: Weighted bipartite matching model indicates how many migrations
are necessary to realize the new declustering. For example in (b), to realize the
new declustering, d2 has to migrate from SC to SA and d1 has to migrate from
SA to SB. The numbers on the edges indicate edge weights and the matchings
are indicated with thick edges.
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3.2.2 Minimum Weighted Bipartite Matching

In this phase we propose a one-to-one data-subset-to-server mapping scheme that

maps the K overlapping subsets (RK = {D1, . . . ,DK}) generated in the first

phase to the servers. This mapping is done considering the old replica-to-server

placement scheme RSPold(D), which shows the current distribution of data items

among the servers. For the clarity of discussions let us assume that Sk indicates

the set of data items stored in server Sk. That is, Sk = {di : Sk ∈ rss(di)}.

A mapping of an overlapping subset Dx to a server Sy implies that Sy will store

and serve the data items in the subset Dx. This may require some data items

to be replicated to Sy and the objective is to find the mapping that requires the

minimum amount of replications. We perform this mapping by first formulating

the this problem to the minimum weighted bipartite matching (MWBM) problem,

and then by retrofitting the solution of the MWBM as a mapping. The optimal

solution to MWBM also minimizes the amount of data migrations incurred by

the current mapping. The optimal solution to MWBM is computed using the

network flow codes developed from [35].

The complete bipartite graph G = (VD,VS, E) that is used for matching is

constructed as follows. We are given the overlapping subsets obtained in the first

phase and the existing mapping of data items to servers. For each overlapping

subset Di∈RK there is a vertex in VD and for each server Sj in the system there

is a vertex in VS. Each vertex of the first set is connected to every vertex of

the second set, thus the bipartite graph is complete. The edge cost of the edge

between the vertex of an overlapping subset Di and the vertex of a server Sj is set

to the number of data item migrations necessary to make the contents of server

Sj same with to the contents of overlapping subset Di. That is,

cost(edge{Di, Sj}) = |Di\Sj|. (3.1)

After generating the complete bipartite graph G, we solve the MWBM problem.

The obtained minimum weighted perfect matchingM = {(vi, vj) : vi∈VD ∧ vj∈

VS} between the vertex sets VD and VS induces an overlapping-subset-to-server

mapping and the cost of this matching indicates the amount of migration to be
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performed due to this mapping. In other words, if (vi, vj) ∈M, then this implies

that vertex set Di is mapped to server Sj.

The construction of the MWBM model for the three different re-declustering

scenarios we mentioned before are further explained with examples in the fol-

lowing sections. In the example bipartite graphs, for each overlapping subset Di

there is a vertex at the left side (indicated with squares) and for each server Sj

there is a vertex at the right side (indicated with triangles). For the clarity of

presentation, the examples in the following sections show addition or removal of

single servers. However, extending our matching schemes to support addition

or removal of multiple servers is quite straightforward and how these extensions

might be performed are briefly discussed at the end of each subsection.

3.2.2.1 Data item access patterns change

In this scenario, it is assumed that a re-declustering due to query log changes

is being performed and thus the number of servers in the old mapping and the

number of overlapping subsets that is obtained at the end of first phase are

equal. Fig. 3.1(a) demonstrates an example for the MWBM model used for the

case where a re-declustering is performed due to query log changes. We are given

the overlapping subsets R3 = {DA,DB,DC} obtained in phase one and the data

item distribution of the old declustering M old
3 . The edge costs are determined

according to Eq. 3.1. For example, the cost of edge (DA, SB) is 2 since if we were

to map DA to SB, to realize this mapping, we would need to migrate d1 and d2

to SB. The computed minimum weighted matching is marked with bold edges in

the example and for this case has a total cost of four.

3.2.2.2 Removal of server Sk

In this scenario, it is assumed that a re-declustering due to a server removal is

being performed and thus the number of servers in the old declustering (K) is

one more than the number of overlapping subsets (K − 1) that is obtained at
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the end of first phase. In the complete bipartite graph G = (VD,VS, E), for each

overlapping subset Di∈RK−1 there is a vertex in VD and for each server Sj 6= Sk

there is a vertex in VS.

Fig. 3.1(b) demonstrates an example for the MWBM model used for the

planned removal of a server. In this example, we assume that server SC will be

removed from the system. We are given the overlapping subsets R2 = {DA,DB}

obtained by the new declustering (computed in phase one) and the data item

distribution of the old declustering M old
3 . In the bipartite graph, for each over-

lapping subset Di ∈ R2 there is a vertex at the left side and for each server Sj

in the system there is a vertex at the right side. The edge costs are determined

according to Eq. 3.1. For example, the cost of edge (DB, SB) is 2 since if we were

to map DB to SB, to realize this mapping, we would need to migrate d2 and d6

to SB. The computed minimum weighted matching has a total cost of two.

Note that for removal of ∆K servers, the number of overlapping subsets ob-

tained at the end of first phase would be K − ∆K and in the bipartite graph

model just not adding vertices for the removed servers suffices. At first look, not

adding vertices for the removed servers is counter intuitive since there may be

data items residing only in these servers. However, since the overlapping subsets

obtained at the end of first phase covers all the data items and due to the edge

cost definition, the migration costs of these data items are accounted for.

3.2.2.3 Addition of a server

In this scenario, it is assumed that a re-declustering due to a server addition is

being performed and thus the number of servers in the old declustering, let us

say K, is one less than the number of overlapping subsets that we is obtained

at the end of first phase. In the complete bipartite graph G = (VD,VS, E), for

each overlapping subset Di ∈ RK+1 there is a vertex in VD and for each server

Sj in the system there is a vertex in VS. In addition, there is one more pseudo-

vertex in VS that represents the server to be added to the system. The edge costs

are determined according to Eq. 3.1. All edges of the pseudo-vertex for SX are
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weighted with the number of elements in the respective overlapping subsets, since

those many items will have to be migrated to SX in case of a matching.

Fig. 3.1(c) demonstrates an example for the MWBM model used for server

addition. In this example, we assume that server SX will be added to the system.

We are given the overlapping subsets R3 = {DA,DB,DC} obtained in phase one

and the data item distribution of the old declustering M old
2 . The edge costs are

determined according to Eq. 3.1. For example, the cost of edge (DC , SB) is set

to 0 since if we were to map DC to SB, to realize this mapping, we’d not need to

migrate any data items. The computed minimum weighted matching has a cost

of four. Also note that all edges of the pseudo vertex for the newly added server

SX has a weight of 3 since SX is assumed to be empty and all the overlapping

subsets has a size of 3.

Note that for addition of ∆K servers, the number of overlapping subsets

obtained at the end of first phase would be K + ∆K and in the bipartite graph

model just adding ∆K pseudo vertices with appropriate weighting to the vertex

set VS of the bipartite graph suffices.

3.2.3 Migration-aware multi-way replicated refinement

In this section we propose a multi-way replicated refinement scheme that im-

proves both query processing and migration costs. Note that there is a trade-off

between the objective of minimizing data migration costs and the objective of

minimizing query processing costs. However, basically they both try to minimize

the costs associated with I/O operations, and hence, assuming unit data item

sizes, the costs associated with migration and query processing can be combined

and minimized within the same optimization objective.

In order to perform the optimization of both objectives in coordination, we

propose an abstraction scheme that enables us to represent migration operations

as queries. The proposed scheme is as follows. For each server Sk, we introduce a

pseudo data item dSk
(in total we introduce K pseudo data items). These pseudo
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Old Mapping:
SA : {d1, d3, d6}
SB : {d3, d4, d5}
SC : {d2, d3, d6}
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DC : {d4, d5, d6}
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d4 d5

d3

SA SB

SC

Figure 3.2: A sample 3-way replicated declustering and the newly added server
data items (dSA

, dSB
, dSC

) and migration queries (md1
, . . . ,md6

).

data items are placed into their respective servers and they cannot be moved or

replicated (they are fixed). Then for each data item di, we introduce a pseudo

query mdi
, which is used to model the migration costs associated with di. The

pseudo query mdi
is assumed to be requesting all replicas of di and all pseudo

data items corresponding to the servers that do not have a replica of di in the

old mapping. No matter the number of data items requested by mdi
, the optimal

response time ropt(mdi
) of mdi

is set to one. The pseudo data items and migration

queries are defined such that, if a migration query mdi
requests more than one

data item from a server Sk, than this means that di must be migrated (replicated

or copied) to server Sk.

Fig. 3.2 shows a sample 3-way replicated declustering and the newly added

migration queries and server data items. For the clarity of the figure, we do

not present the regular queries in this figure. In the figure, there is a migration

query for each data item and the data items that these queries demands are set

according to the procedure explained above. For example, the migration query

md5
is connected to d5 and the pseudo vertices dSA

and dSC
for servers SA and

SC , since these servers do not contain data item d5 in the old mapping. Note that

in Fig. 3.2 we did not illustrate migration query md3
as well, since it is already
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replicated in all servers in the old mapping and hence it cannot cause any data

item migrations. Appropriately, if we were to illustrate md3
, we would always see

that it has optimal response time of one.

Recall that the migration cost of the replicated declustering obtained at the

end of phase two is the weight of the matching computed by the minimum

weighted bipartite matching algorithm. Starting with this initial migration cost,

proposed algorithms in this section try to reduce the overall migration and query

processing costs.

The tuning between the objectives of minimizing migration and query pro-

cessing costs can be performed by adjusting the frequency of migration queries.

For example, one might argue that a migration query must have a frequency that

is equal to at least two, since each migration requires a disk read from the source

disk and a disk write at the destination disk.

After representing the migration of each data item as a separate query and

setting the frequency of such queries appropriately, the number of objectives

we try to optimize reduce from two to one, namely the minimization of query

processing costs. This abstraction scheme also enables the utilization of a suc-

cessful multi-way replicated refinement scheme proposed in Chapter 2. Via this

multi-way replicated refinement scheme, we further improve the K-way replicated

declustering obtained in the first two phases. The only changes we make in the

multi-way refinement algorithms presented in Chapter 2 are slight modifications

to the initial gain calculations and actual gain computations.

In the K-way refinement, for a migration query, if a move or a replication

operation increases the number of data items requested from a server from one

to two, then the gain of that move or replication operation is reduced by the cost

of a data item migration. Similarly, for a migration query, if a move operation

decreases the number of data items requested from the server that the data item

was residing in from two to one, then the gain of that move operation is increased

by the cost of a data item migration. Note that a replication operation can not

decrease the migration cost.
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3.3 Experimental Results

In our comparisons we used the same datasets described in Chapter 2. While

testing the performance of the proposed query-log and mapping aware selective re-

declustering scheme (re-SRD), the query sets for all datasets are divided into two

equal parts. The first half is used for finding an initial replicated declustering of

data items to disks using the SRA scheme proposed in Chapter 2. This mapping is

used as the old (initial) data-item-to-disk mapping. In the experiments assuming

query changes, the second half of the query sets are used as the new query set.

In the experiments assuming disk addition or removal, on the other hand, query

pattern changes are not assumed and the re-declustering problem for the same

query set with increased or decreased number of disks is addressed.

All of the algorithms used in the experiments are implemented in C pro-

gramming language, and experiments are conducted on a 2GHz Intel Core Duo

machine with 2MB L2 cache and 2GB DDR2 667 MHz memory.

Query processing and migration requirement performances of the re-SRD

scheme for the case where query pattern changes are observed is compared with

the SRA algorithm on K=16, 24, 32 disks and the allowed overall replication ratio

is varied from 10% to 100%. With 9 different datasets, 3 different disk counts,

and 10 different replication ratio values, we present the results of 270 different

experiment instances. For each SRA and re-SRD experiment instance, we re-

port the average of 10 runs, since both algorithms use randomly generated initial

feasible two-way declusterings in their replicated declustering phase.

Query processing and migration requirement performances of the re-SRD

scheme for the case where disk addition and disk removal is performed is also

compared with running the SRA algorithm from scratch for each new disk set-

ting. The weighted bipartite matching scheme proposed in Section 3.2.2 is also

utilized to match the newly obtained replicated declustering solution of SRA

with the old mapping so as to minimize the migration costs of scratch-remap

SRA scheme. We call this migration optimized SRA scheme mo-SRA.
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Figure 3.3: Average retrieval overhead and migration cost performances of re-
SRD with changing migration query frequencies. The figures are for the query
pattern change experiments on the Face dataset, K = 16, and replication ratio
40%.

The query processing performance of a given algorithm is evaluated in terms

of the total number of migrations necessary to realize the mapping generated

by the algorithm and the average retrieval overhead per query induced by the

resulting replicated declustering.

Our first set of experiments evaluates the efficiency of the proposed query-log

and mapping aware selective re-declustering scheme (re-SRD) in tuning between

migration and query processing costs. Fig. 3.3 displays the change we observe in

query processing overheads and total number of migrations with changing migra-

tion query frequencies for the Face dataset, K = 16, and replication ratio 40%.

As seen in the figure, when we increase the frequency of the pseudo-queries added

for representing migrations, the total number of migrations decrease significantly,

whereas the aro values increase slightly. We should note here that similar results

are obtained with the other datasets especially for replication ratios of 40% or

lower. These results clearly show that the pseudo-query frequency parameter of

re-SRA can successfully be used as a knob to tune the two objectives of the re-

declustering problem. Depending on the requirements of applications, database

admins can determine the value of migration query frequencies, e.g., high when

migration is very costly and low when an increase in query processing costs is
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Figure 3.4: Average retrieval overhead performance of the replicated declustering
schemes with respect to replication ratio. The figures are for the query pattern
change experiments on the Bea dataset for K = 16.

unacceptable.

In the remaining of our experiments we fixed the pseudo-query frequencies to

three with the assumption that migration of a data item is equivalent to three

disk read operations. This is based on the idea that a migration, whether it be

a move or replication, requires one disk read, one network transfer and one disk

write operation, and these three operations has to be performed sequentially.

In Fig. 3.4, the performance of re-SRD is compared with the SRA and two

other replicated declustering schemes, namely OA [15, 20] and MFA [34], in re-

ducing average retrieval overheads over the bea dataset for K = 16. The OA and

MFA schemes are selected since they are known to perform good for arbitrary

queries. As seen in the figure, re-SRD performs slightly worse than SRA in re-

ducing the average retrieval overheads, however, it performs significantly better

than OA and MFA. This is expected since the sole objective of SRA is reducing

average retrieval overheads whereas re-SRD also considers migration cost mini-

mization. We should note that the results for other datasets display quite similar

results and thus are not displayed here due to space considerations.

63



0 10 20 30 40 50 60 70 80 90 100
percent replication ratio

0

1000

2000

3000

4000

5000

6000

nu
m

be
r 

of
 m

ig
ra

ti
on

s 
(a

vg
 o

f 9
 d

at
as

et
s)

SRA (avg number of migrations)
re-SRD (avg number of migrations)

Query Pattern Change
K=16

0 10 20 30 40 50 60 70 80 90 100
0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

0,5

0,55

ar
o 

va
lu

es
 (

av
g 

of
 9

 d
at

as
et

s)

SRA (aro)
re-SRD (aro)

0 10 20 30 40 50 60 70 80 90 100
percent replication ratio

0

1000

2000

3000

4000

5000

6000

nu
m

be
r 

of
 m

ig
ra

ti
on

s 
(a

vg
 o

f 9
 d

at
as

et
s)

SRA (avg number of migrations)
re-SRD (avg number of migrations)

Query Pattern Change
K=24

0 10 20 30 40 50 60 70 80 90 100
0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

0,5

0,55

ar
o 

va
lu

es
 (

av
g 

of
 9

 d
at

as
et

s)

SRA (aro)
re-SRD (aro)

0 10 20 30 40 50 60 70 80 90 100
percent replication ratio

0

1000

2000

3000

4000

5000

6000

nu
m

be
r 

of
 m

ig
ra

ti
on

s 
(a

vg
 o

f 9
 d

at
as

et
s)

SRA (avg number of migrations)
re-SRD (avg number of migrations)

Query Pattern Change
K=32

0 10 20 30 40 50 60 70 80 90 100
0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

0,5

0,55

ar
o 

va
lu

es
 (

av
g 

of
 9

 d
at

as
et

s)

SRA (aro)
re-SRD (aro)

Figure 3.5: Average retrieval overhead and average number of migrations vs
replication ratio figures for the datasets in the case of query pattern change
experiments.
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Figure 3.6: Average retrieval overhead and average number of migrations vs
replication ratio figures for the datasets in the case of server removal experiments.

In Fig. 3.5, the performance of re-SRD is compared with SRA in terms of

their performance in reducing average retrieval overheads and migration costs in

the case of query pattern changes for K = 16, 24, 32 servers. Both the aro values

and the number of migrations are averaged over the nine datasets. As seen in the

figure, re-SRD aro results are slightly worse than that of SRA. However, re-SRD

achieves significant reductions in migration costs. On average, re-SRD performs

43% less migrations than SRA. As also seen from the figure, with increasing

replication ratio and increasing server counts, the total number of migrations

slightly increase as expected.

A thorough analysis of Fig. 3.5 reveals that the effect of replication ratio to

the performances of re-SRD and SRA are almost the same and changing the

replication ratio does not change the relative performance of re-SRD and SRA.

In the further experiments on server addition and removal, we fix the replication

ratio parameter to 50% for the clarity of presentations. We should note that

changing this parameter does not change the arguments we make in the following

discussions.

Fig. 3.6 illustrates the aro and number of migration performances of SRA and

re-SRD schemes for the case where server removals from the parallel database is

being performed. In this experiment we assume that the number of servers are
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Figure 3.7: Average retrieval overhead and average number of migrations vs
replication ratio figures for the datasets in the case of server addition experiments.

decreased from 24 to 16 via single server removals. After each removal, re-SRD

generates a mapping respecting the previous data item assignments, whereas

the mapping of SRA is constructed from scratch discarding the previous item

mappings. As seen in the figure, the total number of migrations in re-SRA is

significantly lower than that of SRA. As expected, SRA achieves lower aro values.

Fig. 3.7 illustrates the aro and number of migration performances of SRA and

re-SRD schemes for the case where server additions to the parallel disk system is

being performed. In this experiment we assume that the number of servers are

increasing from 16 to 24 via single server additions. After each server addition, re-

SRD generates a mapping respecting the previous data item assignments, whereas

the mapping of SRA is constructed from scratch discarding the previous item

mappings. As seen in the figure, the total number of migrations in re-SRA is

significantly lower than that of SRA. As expected, SRA achieves lower aro values.

3.4 Related Work

Most of the existing re-declustering literature is about data availability issues and

imbalanced load prevention schemes in case of failures. There are a few works
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that tries to address changes in access frequencies as well.

One of the earliest declustering approaches is chained declustering [36], a

scheme that assumes the servers are aligned over a ring and places replicas of data

items onto consecutive servers over the ring. Chained declustering provides high

availability and good load balance in the event of disk failures (if these failures

do not occur on adjacent nodes). A more recent study ([37]) that stems from

chained declustering and suggests which nodes can be closed/removed on purpose

in a chain-declustered system for energy efficiency can be considered relevant to

our discussions. Unfortunately, these approaches do not utilize query logs and

provide a fixed assignment of data items to servers. Thus, they do not propose

new data assignments under changing query workloads or addition/removal of

disks.

In [38], an approach that tries to provide scalability for hash-based distributed

files is discussed. Dynamic addition and removal of data items (records in a file)

and changing query patterns are considered. The scalability issues are addressed

via bucket (data item group) splits and migrations. Automatic server addition

schemes to maintain fixed response times are also discussed, However, the ap-

proaches in [38] do not consider replication.

An automized data migration tool called Aqueduct that reacts to changing

data access patterns by migrating “hot” data items is described in [39]. The

Aqueduct system features a feedback control loop that regulates the speed of the

data migration in the parallel disk system while hiding performance impact on

the system. This approach is similar to our approach in the sense that it tries

to ensure that the migration operations do not have a negative impact on query

processing performance. However, unlike our approach which tries to strike a

balance between migration and query processing costs, the schema in [39] tries

to achieve this by performing migration only when all I/O requests are served.

Another paper that uses replication and migration for improving throughput and

load balancing is [40]. This approach, which is called DORA, assigns data items

dynamically and integrates replication of files into the assignment to effectively

distribute requests on “hot” data items across all servers of the system. DORA
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has schemes for dynamic replica removal for “cold” files. Both works listed above

can adapt to query pattern changes via dynamic assignments, however, non of

them consider server addition or removal operations to the parallel database sys-

tem.
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Chapter 4

Query Processing in Replicated

Inverted Indexes

Due to recent advances in big-data processing and serving technologies, utiliz-

ing term-partitioned indexes in parallel query processing systems became a vi-

able alternative. In term-partitioned inverted indexes, replication of inverted

lists associated with the most frequent terms is employed to improve the per-

formance of the query processing system. In this chapter, we adopt a recently

proposed replicated-hypergraph-partitioning-based approach for generating repli-

cated, term-partitioned indexes and evaluate the performance of this approach

against state-of-the-art partitioning and replication schemes. We also discuss

various scheduling schemes that are required when replication is involved. We

investigate these schemes on a realistic parallel query processing system We pro-

vide extensive experimental analysis performed up to 32 processors to show that

proposed schemes are superior to the state-of-the-art alternatives.

4.1 Introduction

In this chapter, we present our approaches in implementing a parallel query

processing system that supports term-based distribution and replication. Even
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though search systems are used extensively, and the internal working structures

of such systems are more or less known generally, we found that algorithmic

and engineering-wise decision made during the implementation of such systems

greatly effect the overall performance.

In state-of-the-art search engine systems, document-based inverted index dis-

tribution is preferred over the term-based distribution due to the following two

reasons: (i) following a parallel crawling phase, building a document-based dis-

tributed index becomes easier than building a term-based distributed index, (ii)

document-based distributed indexes achieve better load-balancing performance

during query processing. However, due to recent advances in big-data processing

technologies, it is possible to build term-based distributed inverted indexes in

acceptable times [41]. Furthermore, the load-balancing inferiority of term-based

distributed indexes can be alleviated via replication schemes. Thus, together

with replication, term-based distribution becomes a viable alternative to doc-

based distribution.

In this chapter, we consider a parallel query processing system utilizing a

term-partitioned inverted index where replication of terms are applied to improve

performance. Our contributions are fourfold:

• We implement a successful parallel query processing system and we provide

details of our implementation and the reasons behind our design choices.

• We utilize a successful replication approach based on replicated hypergraph

partitioning, which was recently proposed in [5]. Our experimental results

demonstrate that this approach is much more successful than the state-of-

the-art partitioning and replication schemes.

• When there is replication, the problem of selecting the replica to be used

in query processing arises. We show that this problem can be reduced

to the set-cover problem. Furthermore, we propose various heuristics for

scheduling replicated terms.

• We provide extensive experimental studies performed up to 32 processors

70



on our parallel query processing system and report performance analysis

with respect to various different metrics.

This chapter is organized as follows: In Section 4.2, we provide the necessary

background. In Section 4.3, we describe the details of our parallel query process-

ing system. In Section 4.4, we investigate the performance of various existing

partitioning and replication schemes. In Section 4.5, we discuss scheduling issues

in replicated term-partitioned indexes. In Section 4.6, we compare investigated

methods and algorithms over the proposed parallel query processing system and

discuss the results. Finally, in Section 4.7, we briefly review the related literature.

4.2 Background

4.2.1 Basics of Query Processing

The main objective of query processing is to find out the relevant documents to

a user query q = {t1, t2, . . . , tn} and display them to the user. A set of relevant

documents {d1, d2, . . . , ds} for q is returned back to the user according to the result

of various similarity calculations [42] between the documents in the collection

and the query, where the found relevant documents are sorted in non-increasing

order with respect to used similarity measure. We use the widely accepted tf-

idf weighting scheme together with the vector space model [43] for similarity

calculations. However, any other similarity measure can easily be integrated into

our system.

Since it is not practical to make the similarity calculations directly using the

raw document contents, documents are first converted into an inverted index [44,

45], L = {(t1, I1), (t2, I2), . . . , (t|T |, I|T |)}. In the inverted index data structure,

each term ti in the vocabulary of the collection has an associated inverted list Ii,

which contains a set of postings Ii = {p1, p2, . . . , pn}. Each posting pj of the

inverted list associated with term ti is a tuple (dj, wj), where dj is the id of a

document that contains ti and wj [46] is the relevance between the document dj
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and the term ti.

There are several phases (possibly interleaving) of query processing: creation,

update, extraction, selection, and sorting [47]. After a query is submitted for

processing, an accumulator is created to store the similarity scores for the docu-

ments. An entry in an accumulator array A is notated with aj = (dj, sj), where

sj is reserved for storing the final similarity score of dj with respect to used sim-

ilarity measure. During update phase, inverted lists corresponding to the terms

in the query are fetched from the disk and the entries in the accumulator are

updated accordingly. The update of these entries changes with respect to used

document matching logic, which can be AND (conjunctive mode) or OR (disjunc-

tive mode). In AND logic, only the documents that include all query terms are

matched, whereas in OR logic, the documents that include at least one of the

query terms are matched. The score sj for aj is simply computed by adding wj

values of the corresponding postings for dj in the inverted lists of the terms of

the query:

sj =
∑

tk∈qi∧pj∈Ik

wj.

Then, the nonzero entries in the accumulator are extracted and the documents

with the top s scores are selected. Finally, the selected documents are sorted in

non-increasing order of their similarity scores (sj) and returned back to the user

in this order. The reader is referred to [47] for an extensive analysis of alternative

sequential query processing implementations.

4.2.2 Term-Based Parallel Query Processing

In term-based index distribution, the inverted index L is partitioned into K pair-

wise disjoint subsets L1, . . . ,LK , where K is the number of index servers in the

parallel query processing system. Formally,

L =
K
⋃

k=1

Lk, Li ∩ Lj = ∅ for 1 ≤ i < j ≤ K. (4.1)

Each index server ISk is responsible for maintaining the sub-index Lk, where

Lk = {(ti, Ii) : ti is assigned to ISk}.
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Table 4.1: Notations used in this chapter.

Symbol Description
T Terms in the collection, the lexicon
D Documents in the collection
K Number of index servers
ISk kth index server
ti A term in the collection
dj A document in the collection
L The set of inverted lists
Lk The terms and their inverted lists associated with ISk

Ii The inverted list associated with ti
pj A posting in an inverted list

(dj, wj) The document and the weight associated with pj

q or qi A user query
qk
i The subquery generated for ISk

P k
i The partial answer set for qi constructed by ISk

A Accumulator array
aj An entry in the accumulator

(dj, sj) The document and the score associated with aj

Or The queue of receptionist
Qk The queue of ISk

r Maximum partial answer set size for an index server
s The number of documents to be returned to the user

The assignment of terms and their inverted lists to index servers can be performed

in various ways. This process has a crucial effect on the performance of the

parallel system and must be done carefully. We discuss this issue in great detail

in Section 4.4.

A common technique used in improving performance of the parallel query pro-

cessing systems is replication of terms and their inverted lists. When replication

of terms and their inverted lists are allowed, a term and its inverted list can be

assigned to more than one index server. Thus, the constraint Li ∩ Lj = ∅ for

1 ≤ i < j ≤ K in Equation 4.1 is no more valid. Fig. 4.1 shows an example

of term-based index partitioning with replication included. Hereafter, whenever

we use term replication, we actually mean the replication of that term and its

inverted list.
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t7 → d1, d4, d7

t1 → d4, d7, d8

t5 → d6, d9

t8 → d3, d8

IS1 IS2 IS3 IS4

t1 → d4, d7, d8

t2 → d2, d5, d7

t7 → d1, d4, d7

t3 → d1, d9

t7 → d1, d4, d7

t1 → d4, d7, d8

t4 → d3, d4

t5 → d6, d9

t6 → d3, d5, d10

t4 → d3, d4

Figure 4.1: An example of term-based partitioning for T = {t1, . . . , t8} (|T | = 8),
D = {d1, . . . , d10} (|D| = 10) on four index servers (K = 4). There are four
replicated terms, t1, t4, t5, and t7. Each index server has a local sub-index that
consists of terms and inverted lists that it is assigned to. For example, for IS2,
we have L2 = {(t1, I1), (t3, I3), (t4, I4), (t7, I7)}. A term and its inverted list are
given in the form of ti → Ii. The weight values of the documents in the postings
are omitted for clarity.

4.3 Parallel Query Processing

Our target parallel query processing system is a shared-nothing parallel archi-

tecture with K index servers and a single central receptionist, where the central

receptionist and each index server are running on separate nodes. Interprocessor

communication and coordination are achieved via explicit message passing. A

PC cluster forms a typical case of our target architecture. In this setting, we

focus on the central broker parallel query processing scheme, which is by large

the standard coordination approach utilized in parallel search systems.

The central broker (CB) parallel query processing scheme is a master-slave

type of architecture. In a typical CB scheme, there is a single receptionist (mas-

ter), which collects the incoming user queries and forms subqueries from them to

be sent to the corresponding index servers (slaves). The index servers are respon-

sible for generating partial answer sets to the received subqueries using their local

inverted indices. The generated partial answer sets are later merged/updated into

a global answer set at the receptionist, forming the answer set for the query, which

is then sent back to the user. In this section we propose algorithms that run on

the receptionist and the index servers for the CB scheme and give implementation

level details for these algorithms.
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Figure 4.2: A snapshot of a parallel query processing system in CB scheme.
There are four index servers and a single receptionist. The index servers’ lo-
cal indices (L1,L2,L3,L4}) correspond to the term-based partitioning given in
Fig. 4.1. There are 11 queries submitted to the receptionist. Two of them (q1 and
q2) are already answered and thus not in the system, two of the submitted queries’
(q3 and q4) PASs are in Qr, five of them (q5, q6, q7, q8 and q9) are being processed
at the index servers and two of them (q10 and q11) have just been received from
users which are in Qr.

Before starting to process user queries, the receptionist and the index servers

allocate and initialize necessary data structures. In this phase the receptionist

creates a trie (aka radix tree or prefix tree), in which it keeps the terms in the

collection and their associated ids. Upon receiving a query, the id of a query term

is accessed from this trie in O(ℓ) memory accesses where ℓ is the length of that

term. The receptionist also contains a term-to-index server map (simply referred

to as map), which contains information about the assignment of terms to index

servers in a term-based partitioning. The receptionist and the index servers use

a queue while processing user queries. The queue maintained by the receptionist

(Qr) contains queries received from the users and the partial answer sets (PASs)

received from the index servers, whereas the queue maintained by each index

server (Qk at ISk) contains only the subqueries received from the receptionist.
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Fig. 4.2 shows a snapshot of a parallel query processing system in central

broker architecture that uses the term partitioning given in Fig. 4.1. A subquery

of a query qi that is constructed for ISk is denoted as qk
i and the partial answer

set (PAS) generated for this query by ISk is denoted as P k
i . In the figure, the

receptionist maintains three basic structures, a trie, a map and a queue that

contains queries received from users as well as partial answer sets received from

index servers. An entry in the map at the receptionist indicates whether ISk

stores ti. For example, t4 is stored at two index servers IS2 and IS3 (see Fig. 4.1).

In the map at Fig. 4.2, these corresponding entries are displayed as shaded. As

mentioned, the queues at index servers contain only subqueries received from

receptionist.

4.3.1 Index Server Algorithm

Our index server algorithm (Algorithm 9) consists of a single infinite while loop

(lines 1–18) in which the index server

1. periodically probes for incoming subqueries,

2. receives incoming subqueries,

3. produces PASs for subqueries,

4. and sends the generated PASs to the receptionist.

As the first action of its loop, ISk probes for incoming subqueries from the re-

ceptionist and if the probe value is true, receives the incoming subquery and

enqueues it to its queue Qk (lines 3–5). When a subquery is dequeued from Qk,

ISk processes the postings in the inverted lists of the subquery terms and up-

dates the scores of documents in its accumulator array (A). The update of the

accumulator array (lines 9–11) changes with respect to used document matching

logic.

As an example consider a subquery q1
i = {t1, t7} received by IS1 for the

term-based partitioning given in Fig. 4.1. In AND logic, the partial answer set
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Algorithm 9: CB algorithm running on Index Server ISk.
Input: matchingLogic, r

while true do1

PROBE whether a subquery is received from the receptionist2

if PROBE = true then3

Receive subquery qk
i

4

ENQUEUE(Qk,qk
i
)5

if Qk 6= ∅ then6

qk
i ← DEQUEUE(Qk)7

A ← ∅ ⊲ Initialize the accumulator array8

foreach ti ∈ qk
i

do9

foreach pj = (dj , wj) ∈ Ii do10

Update the aj = (dj , sj) entry in A with respect to given matching logic11

if matchingLogic = AND then12

P k
i
← SELECT all nonzero entries in A13

else if matchingLogic = OR then14

P k
i ← SELECT nonzero entries with top r scores in A15

SORT P k
i with respect to document ids16

WAIT for previous send to finish17

SEND P k
i

to the receptionist18

P 1
i generated by IS1 will include the common documents in the inverted lists

t1 → {d4, d7, d8} and t7 → {d1, d4, d7} which are d4 and d7, and the summation

of the weight values of these documents in the postings of the corresponding

subquery terms. In OR logic, the partial answer set will include the documents in

the union of these inverted lists which are d1, d4, d7 and d8, and the summation

of the weight values of these documents in the postings of the corresponding

subquery terms. The update of entries in the accumulator array (lines 9–11)

is performed in such a way that after the update is complete, if the document

matching logic is AND, the non-zero scoring documents are the ones which are in

the intersection of the inverted lists of the subquery terms, and if the document

matching logic is OR, the non-zero scoring documents are the ones which are in

the union of the inverted lists of the subquery terms.

For a query, the update of document scores begins at the index servers and

finishes at the receptionist since an entry aj = (dj, sj) ∈ A may be existent in

two or more PASs for qi that are sent by different index servers. In this case, the

sj values need to be summed up at the receptionist to compute the final score for

dj. Due to this observation, the index servers sort the entries of the PASs using

document ids as keys. This design choice is made so as to reduce the bottleneck

at the receptionist by reducing its merge-and-update cost, at the expense of

increasing the computational load at the index servers. Long accumulator arrays
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sent from index servers to the receptionist induce high communication volume as

well as high computational cost at the receptionist due to the merge-and-update

operations.

To alleviate this problem for OR document matching logic, we adopt a slight

modification of the accumulator limiting approaches mentioned in [48], where we

restrict our PAS size to r by selecting top r documents with respect to their scores

in each index server. As mentioned in the literature, this restriction does not

degrade the query processing quality. Note that for AND document matching logic,

the size limitation of PASs can have a great negative impact on the correctness and

the quality of the returned answers, thus we do not limit the size of PASs in AND

logic. The reasons behind this phenomenon are explained later in Section 4.3.2

in receptionist algorithm.

Returning to Algorithm 9, if document matching logic is AND (lines 12–13),

all non-zero entries in the accumulator array are selected for the PAS P k
i . If

document matching logic is OR (lines 14–15), the nonzero entries with top r scores

are selected for P k
i in linear time. Then the index server sorts P k

i (line 16) with

respect to document id fields of the entries, enabling the receptionist to merge-

and-update PASs efficiently. Finally, the index server waits for previous send

operations to finish and then sends P k
i to the receptionist (lines 17–18).

4.3.2 Receptionist Algorithm

Our receptionist algorithm (Algorithm 10) also contains an infinite while loop

(lines 1–32). Within the infinite loop, the receptionist

1. continuously checks if any queries or PASs are received,

2. forms subqueries from queries and sends them to index servers,

3. merges and updates PASs,

4. and displays the final answer sets to users.
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Algorithm 10: CB algorithm running on the receptionist.
Input: matchingLogic, s

while true do1

TEST whether any queries are received from clients2

if TEST = true then3

foreach received query q do4

ENQUEUE(Qr,q)5

foreach index server ISk do6

TEST whether a P k
i is received from ISk7

if TEST = true then8

ENQUEUE(Qr,P k
i )9

if Qr 6= ∅ then10

x← DEQUEUE(Qr)11

if x.type = query then12

Let the dequeued query be qi13

foreach ISk do14

qk
i ← ∅15

qmap ← SCHEDULE(qi,map)16

foreach term t ∈ qi do17

k ← qmap[t]18

qk
i
← qk

i
∪ {t}19

foreach ISk do20

if qk
i 6= ∅ then21

SEND subquery qk
i

to ISk22

else if x.type = PAS then23

Let the dequeued PAS P k
i belong to qi sent by ISk24

if matchingLogic = AND then25

A[i]← INTERSECT and UPDATE A[i] with P k
i26

else if matchingLogic = OR then27

A[i]← COMBINE and UPDATE A[i] with P k
i

28

if P k
i

is the last PAS for qi then29

A[i]← SELECT entries in A[i] with top s scores30

SORT A[i] with respect to score fields31

DISPLAY A[i] to client32

As the first action within this while loop, the receptionist checks for incoming

queries from users, and if any queries have been received, it enqueues them to

its queue Qr (lines 2–5). Similarly, it checks for incoming PASs from each index

server, and if any PASs have been received, it enqueues them to the same queue

(lines 6–9).

The receptionist dequeues an item from its queue (line 11) and takes different

actions depending on the type of the item dequeued. If the dequeued item is

a query (lines 12–22), the receptionist first parses the query terms in order to

find their ids using the trie. It then forms subqueries and sends them to the

corresponding index servers (lines 14–22). The subquery forming process includes

another procedure called SCHEDULE, which basically, given a query and a map,

returns the set of index servers that will process the given query.

79



As an example, consider q5 = {t1, t5, t7} whose subqueries are already

formed and distributed as shown in Fig. 4.2. Supposed that the call to

SCHEDULE(q5,map) returned {IS4, IS3, IS4} which is assigned to variable

qmap. This means t1 will be processed on IS4, t5 will be processed on IS3, and

t7 will be processed on IS4. With this information, the subqueries are formed as

q1
5 = ∅, q2

5 = ∅, q3
5 = {t5}, and q4

5 = {t1, t7}. The non-empty subqueries q3
5 and q4

5

are then sent to IS3 and IS4, respectively. Note that since replication is involved

in term-based partitioning, there are possibly multiple ways to form subqueries.

In the example of scheduling terms of q5, all query terms t1, t5, and t7 could be

scheduled to IS4, or in an alternative scheduling t1 could be scheduled to IS1,

t5 could be scheduled to IS3, and t7 could be scheduled to IS2. We investigate

different scheduling heuristics in Section 4.5.

If the dequeued item is a PAS (lines 23–32), the receptionist first retrieves

the id of the query that this PAS belongs to (line 24). We adopt a two-way

merge-and-update algorithm for forming an answer set from received PASs for

qi. In this approach, if the received PAS is the first one for qi, then it becomes

the initial accumulator array (A) for that query. Otherwise, the received PAS

is merged-and-updated with the existing accumulator array immediately after

it has been received. Clearly, before the last two-way merge, not all the scores

are complete and the extraction and selection operations cannot be initiated for

forming the final answer set that will be sent back to the user.

The two-way merge-and-update algorithm can be considered as an extension

of the merge operation used in mergesort algorithm, which merges two sorted

sub-lists into a sorted list in linear time. Like the merge operation, the algorithm

advances two pointers over two document-id sorted accumulator arrays. In both

AND and OR logic, if the two pointed entries’ document ids are the same, their

scores are added and stored as a single entry in the resultant array. If they are

not the same, in AND logic, since only common documents must be matched, the

entry with the small document id is discarded, whereas in OR logic, since we take

the union of the documents, the score value of the entry with smaller document

id is directly stored in the resultant array.

80



For example, consider the query q4 = {t1, t4, t7} whose all PASs are already in

the queue of the receptionist in Fig. 4.2. Assume t1 is scheduled to be processed

at IS2, t4 is scheduled to be processed at IS3, and t7 is scheduled to be processed

at IS4. Given this information, the PAS contents regarding q4 in Qr are P 2
4 =

{d4, d7, d8}, P 3
4 = {d3, d4}, and P 4

4 = {d1, d4, d7}. The first PAS for q4 in Qr

is P 2
4 , thus the accumulator array for q4 at the receptionist will be initialized

to {d4, d7, d8}. The next PAS to be processed for q4 is P 4
4 , and the last one is

P 3
4 . For AND logic, only the common documents will form the next accumulator

array, thus after processing P 4
4 the accumulator array will include {d4, d7}, and

after processing P 3
4 the accumulator array will only include {d4}. For OR logic,

union of the PASs will form the next accumulator array, thus after processing

P 4
4 the accumulator array will include {d1, d4, d7, d8}, and after processing P 3

4

the accumulator array will include {d1, d3, d4, d7, d8}. Note that in the update

of common documents, the score values of these documents are summed (they

are omitted for clarity). This example clearly illustrates why index servers need

to send all of their computed PASs in AND logic: the receptionist is not only

responsible for adding scores of the documents (as in OR logic), but also for

selecting only the common documents that exist in all PASs of qi.

The algorithm proceeds with merging-and-updating the dequeued PAS with

the accumulator array with respect to document matching logic (lines 25–28) as

mentioned above. If this PAS is the last PAS for qi, it means the answer set

is ready to be sent back to the user. In this case, the receptionist selects the

documents with top s scores in the accumulator array, sorts these documents

with respect to score values, and then displays them to the user (lines 29–32).

4.4 Analysis of Index Partitioning and Term

Replication Schemes

In this section, we explain commonly used methods for achieving partitioning

and replication in parallel query processing systems as well as recently proposed,
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novel hypergraph-partitioning-based (HP-based) methods for achieving partition-

ing and replicated partitioning [5] of inverted indexes.

4.4.1 Bin-packing-based Index Partitioning

In the bin-packing-based index partitioning scheme, each term is associated with

a certain weight such as frequency of that term in the query log or its inverted

list length. Assigning a term to an index server corresponds to assigning the

load associated with that term to that index server. Thus, obtaining a balance

on the cumulative weights of the terms assigned to index servers corresponds to

balancing the loads of these index servers. Obtaining a term-partitioned inverted

index while minimizing the load (e.g. storage, computational, etc.) imbalance

among the index servers can be reduced to the minimum makespan scheduling

problem [49] as mentioned in [50] if the index servers are identical. In this re-

duction, the terms correspond to tasks, the weights of terms correspond to task

lengths, and index servers correspond to processors. In this way, minimizing

the makespan corresponds to minimizing the load imbalance in term-partitioned

indexes.

Minimum makespan scheduling problem is known to be NP-hard [51], and

thus, is generally addressed with heuristics. In parallel information retrieval sys-

tems, a best-fit decreasing heuristic that is generally used in bin-packing problem

(hence the name) is reported to give good load balance values [52, 53] for ob-

taining term-partitioned indexes. This heuristic is also used in [50] to allocate

documents to servers.

In the bin-packing heuristic for term-partitioned indexes, the weight associ-

ated with each term is generally either the inverted list length of that term, or

the number of queries containing this term if the query log is utilized [52, 53]. If

inverted list lengths are used, then this is equivalent to balancing the storage load

of the index servers. However, if query term frequencies are used, we actually try

to balance the number of term accesses performed in each index server. Note that

if query term frequencies are used, there may remain several terms that need to
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be assigned to index servers which do not occur in the query log. To distribute

such unqueried terms, it is possible to follow the same bin-packing scheme given

in [53] that utilizes inverted list lengths of terms.

4.4.2 Most Frequent Term Replication

A common and widely used approach for replication in parallel query processing

systems is the replication of most frequent terms [52, 53]. In this scheme, a

certain amount of most frequent terms (with their inverted lists) are replicated in

each index server. As mentioned in Section 4.4.1, the frequency of a term can be

interpreted as either its inverted list length or the number of queries containing

this term if query log is utilized. Generally, the terms having longer inverted lists

or more query term appearances have higher priorities for replication. Note that

the most frequent term replication is independent of the underlying partitioning

scheme.

The motivation behind the most frequent term replication is that the repli-

cation of high frequency terms, which are the most probable causes of load im-

balance, is likely to improve the overall performance of the system in terms of

average response time and query throughput. This is because by replicating such

terms, we prevent bottlenecks in the system via distributing the loads of the

highly accessed terms evenly among all index servers. Thus, the most frequent

term replication improves the performance of the parallel query processing system

via using replication as a load balancing tool.

4.4.3 Hypergraph-partitioning-based Index Distribution

A recently proposed, efficient index distribution scheme is HP-based index distri-

bution. In this scheme, a hypergraph is constructed by utilizing the information in

past query logs. Then, this hypergraph is partitioned for the given number of in-

dex servers to obtain an index distribution. Formally, given a query log consisting

of m queries q1, . . . , qm, and the terms that appear in each query qj ={t1, . . . , tr}
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for j = 1, . . . ,m, a hypergraph H= (V ,N ) is constructed where the queries cor-

respond to the nets and the terms (with their inverted lists) correspond to the

vertices of the hypergraph. More specifically, a query qj ={t1, . . . , tr} in the query

log is modeled by a net nj and the terms of this query are modeled by vertices

v1, . . . , vr, where the vertices connected by nj correspond to terms that occur in

qj. Thus, if there are m queries and a total of n distinct terms that appear in the

query log, the corresponding hypergraph will consist of m nets and n vertices.

After partitioning H and obtaining a partition Π = {V1, . . . ,VK}, the part Vk is

mapped to index server ISk and each vi ∈ Vk associated with ti and its inverted

list is stored in ISk. From now on, when presenting hypergraphs in figures, we

use ti for representing vertices and qj for representing nets.

Fig. 4.3 shows a four-way partition obtained using hypergraph partitioning for

the hypergraph constructed from four queries and eight terms. After obtaining a

four-way partition, the vertices (which correspond to terms) in obtained parts are

assigned to the corresponding index servers which are illustrated in Fig. 4.3 as

IS1, IS2, IS3, and IS4. The connectivity set of a net qj indicates the index servers

that will participate in answering this query. For example, the connectivity set

of q3 is {IS2, IS3, IS4}. Thus, these index servers will participate in answering

q3.

In the hypergraph model we utilize, the weight of a vertex associated with

ti is assigned the number of queries that contain ti in the query log. In other

words, we use query term frequencies as vertex weights. Therefore, maintaining

balance in hypergraph partitioning corresponds to balancing the number of term

and inverted list accesses performed by each index server.

We assign unit costs to nets and use connectivity metric for cutsize compu-

tation to correctly capture the number of index servers involved in answering a

query. In this model, the cutsize of a partition Π corresponds to the total number

of index servers involved in answering the queries in the log. Thus, we try to min-

imize the total number of index servers that are involved in answering queries,

which is especially useful for AND document matching logic. That is because if a

query can be answered from a single index server in AND logic, the inverted lists
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Figure 4.3: A four-way partitioning of the hypergraph constructed from queries
q1 = {t1, t2}, q2 = {t1, t5, t7}, q3 = {t3, t4, t8}, and q4 = {t6, t8}.

will be ANDed (intersection) and the resulting PAS will be quite small which will

in turn lead to a small communication volume. This is not valid for OR logic since

when the inverted lists are ORed (union) in an index server, the resulting PAS will

be larger. However, this is not a problem in our implementation because we limit

the PAS size in OR logic (Section 4.3.1). Thus, we can avoid large communication

volumes in OR logic.

4.4.4 Replicated Hypergraph-partitioning-based Index

Distribution

A recent study that addresses replication in hypergraphs is discussed in [5], and a

tool named rpPaToH that is capable of replicating vertices of an undirected hyper-

graph to improve the target objective via utilizing a given amount of replication

is proposed. In [5], generation of term-partitioned replicated inverted indexes is

given as an example for the use of rpPaToH.

We apply the same approach used in [5] to replicate vertices in the hyper-

graph model introduced in 4.4.3, utilizing rpPaToH. In this way, replication can

directly be used to improve the objective modeled by the hypergraph partitioning.

This forms the main difference of our approach compared to the most frequent

85



q3

q4

IS1 IS2

IS3 IS4

t7

t2

t1

t7

t4

t3

t1

t1

t5

t7

t8t6

t5

t4

q1

q2

Figure 4.4: A four-way replicated partition of the hypergraph constructed from
the same query set given in Fig. 4.3. The terms t1, t4, t5, and t7 are replicated.
The replicated vertices are shown as shaded. The pins of the nets to the replicated
vertices are illustrated as dashed lines.

term replication mentioned in Section 4.4.2. By using a hypergraph partition-

ing model and performing vertex replication during partitioning, we can actually

address a particular objective while maintaining balance on a certain criterion

(see Section 4.4.3 for the objective and balance constraint of the used hypergraph

model in this work). Moreover, using replicated hypergraph partitioning allows

us to replicate terms in a finer granularity compared to the most frequent term

replication, which replicates frequent terms to all index servers. Instead of repli-

cating frequent terms to all index servers greedily, we replicate terms to the index

server(s) where they are most “needed” according to the defined objective. Note

that, in index servers, the replication of terms and their inverted lists has only

storage overhead and does not incur any additional computational cost neither

in most frequent term replication nor in replicated hypergraph partitioning.

Fig. 4.4 shows a four-way replicated partition of the hypergraph given in

Fig. 4.3. As seen from the figure, t1 is replicated in IS1, IS2, and IS4, t4 is

replicated in IS2 and IS3, t5 is replicated in IS3 and IS4, and t7 is replicated

in IS1, IS2, and IS4. Replicating terms in a parallel query processing system

carries the scheduling problem within itself. When a replicated term is requested

by a query, the central broker has to make a scheduling decision about which

index server will be used to process that replicated term. For example, consider

q1 = {t1, t2} in Fig. 4.4. The replicated term t1 has three replicas and it can
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be processed by IS1, IS2, or IS4, whereas t2 has to be processed in IS1 since it

is not replicated and has only one replica. Making this decision can affect the

performance of the parallel query processing system significantly and thus must

be handled very carefully. We investigate the scheduling problem in Section 4.5.

4.5 Investigated Query Scheduling Heuristics

When there are replicated terms, the problem of selecting which replicas to use

arises. Depending on the selection made, the scheduled subqueries can change

dramatically. Recall that to schedule queries, we maintain a map of term-to-

index-server assignment at the central broker. As mentioned in Section 4.4.3,

the investigated hypergraph model tries to minimize the number of index servers

involved in answering a query. In this way the communication volume, which

is one of the most important factors that determines the overall performance

of a parallel query processing system, can be reduced. By using the scheduling

flexibility provided by replication, we can also balance the load of the index

servers. This section introduces algorithms to schedule replicated terms. The

spectrum of algorithms presented in this section have both extremes. In one

extreme we only consider minimizing the number of index servers involved in

answering a query, and in the other extreme we only consider balancing the load

of the index servers using dynamic information about them. We also propose a

hybrid scheme that mediates these two extremes.

To see how influential scheduling decisions can be in minimizing the number

of index servers involved in answering a query, consider q2 in Fig. 4.4. When

the central broker is to form subqueries for this query, it can select from several

options. One of them is q1
2 = {t1}, q

2
2 = ∅, q3

2 = {t5}, and q4
2 = {t7}, which

requires three index servers to answer this query. Another approach would be to

schedule q2 as q1
2 = ∅, q2

2 = ∅, q3
2 = ∅, and q4

2 = {t1, t5, t7}, which schedules all

terms to IS4 and requires only one index server for answering q2.
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Figure 4.5: The schedule obtained after running the set-cover-based scheduling
heuristic on the replicated partition and the queries given in Fig. 4.4. Note that
after scheduling and selecting instances of the replicated terms for the queries,
the dashed pins in Fig. 4.4 became normal pins.

4.5.1 Reduction to Set Cover Problem and Set-Cover-

Based Scheduling

In this section, we show that minimizing number of index servers involved in

answering a single query in replicated and term partitioned indexes can be reduced

to the set cover problem. We follow the approach mentioned in [5] where the same

problem is solved for the final cutsize computation in replicated partitioning for

undirected hypergraphs.

Before showing how this reduction is done, we need to eliminate the non-

replicated terms requested by a query since there exist only a single instance of

a non-replicated term and it is obvious which index server is going to process

it. An immediate observation following this proposition is that, since we have

to use certain index servers for non-replicated terms of a given query, we can

(and should) try to schedule the replicas of the replicated terms occurring in this

query to these index servers, if possible. In this way, we do not increase the

number of index servers involved in answering the given query after scheduling

non-replicated terms while choosing replicas of the replicated terms.

For example, consider q1 = {t1, t2} in Fig. 4.4. The IS1 has to involve in
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answering this query since it is the only index server that stores t2. However,

there are three alternatives for t1, which are IS1, IS2, and IS4. The above-

mentioned observation simply tells us to schedule t1 to one of the index servers

that are already used for processing non-replicated terms, which is IS1 in this

case. By doing so, we do not increase the number of index servers involved in

answering this query while scheduling replicated terms of it. After eliminating

non-replicated terms and replicated terms whose replicas we can schedule to the

index servers we use for non-replicated terms, we are left only with the replicated

terms which we cannot process at already chosen index servers. This case can

be seen for q2, all of whose terms are replicated and cannot be scheduled to the

index servers chosen for non-replicated terms.

In such cases, for the remaining replicated terms, the scheduling problem

reduces to the set cover problem which is known to be NP-complete [54]. Again,

consider q2 in Fig. 4.4. If we model this query and its unscheduled replicated terms

with the set-cover problem, the ground set for this query becomes S = {t1, t5, t7},

and we want to cover this set by using minimum number of sets (which correspond

to index servers) among the possible sets we can use for the selection of replicas:

SIS1
= {t1, t7},SIS2

= {t1, t7},SIS3
= {t5}, and SIS4

= {t1, t5, t7}. Obviously, the

optimum value is one, which is the selection of the set SIS4
(thus the index server

IS4) to answer q2.

Based on the mentioned observation, in the set-cover-based scheduling heuris-

tic, we first schedule the non-replicated terms of a query. Then, replicated terms

of this query are checked whether any of them has replicas in the index servers

that are going to be used for the non-replicated terms. If so, these replicas are

used. If there remain any replicated term(s) which cannot be scheduled using the

method mentioned above, the scheduling of such replicated terms can be reduced

to the set cover problem. Since this problem is NP-complete, a simple heuris-

tic [55] is adopted to obtain a schedule for the remaining replicated terms. In each

iteration, this heuristic simply selects the index server that contains the largest

number of uncovered replicas so far, and then removes the currently covered repli-

cas from all index servers. This process is repeated till there remains no uncovered

replicated terms. This heuristic has an approximation ratio of ln (n)+1 [55], where
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n is the total number of elements in the ground set constructed for this query.

Fig. 4.5 illustrates the schedule obtained using set-cover-based scheduling on

the replicated partition and the queries given in Fig. 4.4. Recall that the central

broker maintains a map structure which is also shown in the figure. For q1 =

{t1, t2}, after scheduling non-replicated term t2 to IS1, since the replicated term

t1 can be scheduled to the index server(s) selected for the non-replicated term(s),

t1 is scheduled to IS1, and the subqueries are formed respectively because there

are no more terms to schedule. Since q2 ={t1, t5, t7} terms which are all replicated,

we use the above-mentioned heuristic for scheduling. As seen in the figure, IS4

contains the largest number of replicas. Thus, in the first iteration, IS4 is selected.

After using replicas from IS4, there remain no more replicas to cover, so we are

done for q2. Using the set-cover-based scheduling for the remaining two queries

in a similar manner, we schedule q3 to IS2 and IS4, and q4 to IS3 and IS4.

4.5.2 Dynamic Load Balancing

In this scheme, the central broker makes the scheduling decision using dynamic

information about the index servers. As in set-cover-based scheduling, we use

the flexibility provided by the replicas of the replicated terms while scheduling.

However, instead of scheduling to minimize the number of index servers involved

in answering a query, the central broker schedules replicated query terms to the

index servers with the current minimum load. To do this, it is enough for the

central broker to maintain a simple array of size K that contains information

about how many subqueries exist in the queue of each index server at a given

time. Using this information, the central broker can dynamically schedule the

replicated terms of a query to minimally loaded index servers. In this way, it

may be possible to achieve a better load balance (on disk IOs, communication

volume, etc.) than the set-cover-based scheduling, although it is likely that this

scheme will incur a higher communication volume.
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4.5.3 Hybrid Scheduling

Set-cover-based scheduling may suffer from high load imbalance whereas dynamic

scheduling can suffer from high communication volume. An idea would be to use

both scheduling heuristics by assigning certain weight of importance to them.

This allows us to use a mixture of these heuristics by following a trade-off be-

tween the benefits and drawbacks of them. This hybrid algorithm may have a

higher communication volume and a better load balance than the set-cover-based

scheduling, and a worse load balance and a lower communication volume than

the dynamic scheduling. However, by obtaining a trade-off between them, we

expect the hybrid scheduling to have a lower average response time and higher

throughput compared to both scheduling heuristics.

Both the set-cover-based and dynamic scheduling heuristics provide an or-

dered list of index servers as output. The order of an index server in these

ordered lists is called its rank. In our approach, we use the ranks provided by

both of these heuristics to schedule terms of a query to index servers. For a term

of a query, let rS and rD be one-to-one and onto functions that return the rank

of each index server for the set-cover-based and dynamic scheduling heuristics,

respectively. We combine these two ranks using a hybrid scheduling parameter α

as follows:

rank(i) = α× rS(i) + (1− α)× rD(i), for 1 ≤ i ≤ K,

where we select the index server with the smallest rank. After selecting an index

server, necessary data structures are updated and this process is repeated till all

terms of the given query are scheduled. If α=1.0, hybrid scheduling is equivalent

to the set-cover-based scheduling, whereas if α=0.0, it is equivalent to dynamic

scheduling. In order to identify good α values, we use parameter sweep techniques

for both AND and OR document matching logics.

91



4.6 Experimental Results

In this section, we conduct experiments for comparing the proposed (replicated)

partitioning schemes and scheduling heuristics. For this purpose, we implemented

a real-time parallel query processing system called repl-ABCServer whose details

are explained in Section 4.3. In our experiments, we first identify good hybrid

scheduling parameters for both AND and OR logics, and then using these parame-

ters, we conduct extensive experiments for varying number of index servers and

replication amounts. The proposed schemes and heuristics are mainly tested for

two important performance metrics, the average response time of a query (ART),

and the number of queries processed per second (THR), the throughput. We also

present results for other measures such as average number of processors (ANP)

involved in answering a query, imbalance values and communication volumes.

4.6.1 Experimental Setup

The dataset used in the experiments is crawled from USA edu sites and consists

of 1, 883, 037 documents and 787, 221, 688 terms with 3, 325, 075 of them being

distinct. From this dataset, 20, 000 synthetic queries are generated to be used

as the query log for the (replicated) partitioning schemes we investigate. The

generated queries follow a zipfian distribution and each query contains two to

four terms since approximately 80% of all queries have four or less terms [56]

and 65% of them have two to four terms. We exclude single term queries since

scheduling of single term queries does not change the overall communication vol-

ume. These queries can easily be scheduled by taking the load balance concerns

into consideration during query processing. The query log used for (replicated)

index partitioning schemes is further utilized in the evaluation of these schemes

using repl-ABCServer. In other words, after obtaining a (replicated) partition

of the inverted index with the help of the query log using one of the methods

given in Section 4.4, repl-ABCServer is run to answer the queries in the same

query log with one of the scheduling heuristics given in Section 4.5. To measure
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the peak performance of the system, we use 5, 000 arbitrary warm-up and cool-

down queries (apart from 20, 000 queries) whose statistics are not included in the

results.

The experiments are conducted on a homogeneous cluster environment that

consists of 34 nodes connected with a 1 GB Ethernet. We use one of these nodes

as the receptionist, one of them as the query submitter and the remaining nodes

as the index servers. Each node has a single processor with 3.00 GHz of clock

speed, 2 GB RAM, and 1 MB cache. The query submitter simulates 50 users that

concurrently submit queries to the receptionist. It is assumed that a user does

not submit another query till it receives the answer of the last query it submitted.

repl-ABCServer is implemented in C and uses MPI for passing messages

in the cluster. It is capable of processing queries over a replicated and term-

partitioned inverted index. It can process queries in AND and OR document

matching logic and supports the proposed query scheduling heuristics given in

Section 4.5 via parameters provided during initialization of the system.

In our experiments, we evaluate four basic (replicated) index partitioning

schemes described in Section 4.4: BP (Bin-packing-based Index Partitioning),

BP+MF (Most Frequent Term Replication), PaToH (Hypergraph-partitioning-based

Index Distribution), and rpPaToH (Replicated Hypergraph-partitioning-based In-

dex Distribution). These schemes are tested for four different number of index

servers K = 4, 8, 16, and 32. For testing replicated partitioning schemes, three

replication amounts are considered, no replication, 10% replication, and 25%

replication. Note that the replication amount stands for the percentage of terms

and their inverted lists that are replicated. When replication is involved, its

amount is indicated in parenthesis with the used scheme, such as rpPaToH (10%),

meaning rpPaToH is used for obtaining a replicated partition with 10% replication

amount. The imbalance value is set to 20% both for PaToH and rpPaToH.
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4.6.2 Selection of the Hybrid Scheduling Heuristic Pa-

rameter

The proposed hybrid scheduling heuristic which combines the set-cover-based

and the dynamic scheduling heuristics is tested for varying α values. Recall that,

when α = 1.0, hybrid scheduling is equivalent to the set-cover-based scheduling

and when α = 0.0, it is equivalent to the dynamic scheduling. In our experiments,

for both AND and OR document matching logics, α is varied from 0.0 to 1.0 with 0.1

increments to observe the trade-off between the minimization of communication

volume (set-cover-based) and the minimization of load imbalance (dynamic), and

these objectives’ impacts on the evaluated metrics. Six schemes are evaluated for

ART, THR, and ANP metrics: BP, BP+MF (10%), BP+MF (25%), PaToH, rpPaToH

(10%), and rpPaToH (25%). Only the results for K = 16 are presented here

since the results for other K values (4, 8, and 32) exhibit similar characteristics.

Whenever performance of a scheme is mentioned, it is actually meant the ART

and THR metrics, and not the ANP metric. In addition, since a lower ANP

value does not necessarily indicate a better performance, only the ART and THR

metrics are considered for the selection of the hybrid scheduling parameter. ANP

values are presented to illustrate how good PaToH and rpPaToH schemes optimize

their objectives and what kind of a relationship exists between the scheduling

heuristics and the ANP values.

The results obtained by running repl-ABCServer with the above-mentioned

configuration are illustrated in Fig. 4.6. As seen in the figure, as expected, the per-

formances of BP and PaToH do not change as α varies since there is no replication

in these schemes and this means that there is no flexibility during the scheduling

process. PaToH performs a little better than BP which can be attributed to its

better exploitation of the query log.

An analysis of the ART and THR results presented in Fig. 4.6 reveals that

replication is indeed beneficial: BP+MF schemes always perform better than BP and

rpPaToH schemes always perform better than PaToH. As the replication amount

increases, replicated partitioning schemes obtain lower ART and higher THR val-

ues. If we compare BP+MF and rpPaToH, rpPaToH outperforms BP+MF for almost
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Figure 4.6: The average response time, throughput, and average number of pro-
cessors for AND and OR document matching logics for 16 index servers (K = 16)
and varying α.

all α values in both AND and OR logic. This is mainly due to two reasons: (i)

rpPaToH tries to minimize the communication overhead while balancing the com-

putational load whereas BP+MF only considers computational load balance, and

(ii) rpPaToH is able to perform replication in a finer granularity compared to most

frequent term replication.

As seen in Fig. 4.6, the OR logic obtains lower ART and higher THR values

compared to AND logic for all schemes. This is mainly due to two reasons: (i)

AND logic incurs higher communication volume compared to OR logic since we do

not limit PAS sizes in AND logic while we do in OR logic (see Section 4.3.2 for a

detailed explanation of this), and (ii) the receptionist in AND logic usually has

to perform more computation since the PASs it receives in AND logic are usually

longer. Thus, it can be said that the receptionist is more loaded in AND logic

which throttles the performance of the system.

The first row of Fig. 4.6 presents the results for AND logic. For all replicated
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partitioning schemes, the best results (ART and THR) are observed when α = 1.0,

which means the standalone set-cover-based scheduling performs the best for AND

logic. This is basically due to high communication overhead incurred in AND logic

which makes the receptionist a bottleneck. The set-cover-based scheduling aims

to minimize this overhead by minimizing the number of index servers involved in

answering a query and consequently reducing the load of the receptionist. Hence,

it can be said that the set-cover-based scheduling is a better alternative for AND

logic since it reduces the communication overhead so dramatically that the load

balancing issues become secondary. Thus, in the rest of the experiments, α is set

to 1.0 for AND logic.

The second row of Fig. 4.6 presents the results for OR logic. For almost all

replicated partitioning schemes, the best results (ART and THR) are observed

when α is around 0.6, which implies that a combination of set-cover-based and

dynamic scheduling is optimal. This may be attributed to the following facts.

Recall that, in OR logic, as opposed to AND logic, we take the union of the inverted

lists instead of intersecting them and we limit the PAS sizes. Thus, the PASs do

not incur as much communication volume as they do in AND logic. For this reason,

it can be suggested that in OR logic, up to the point where α is around 0.6, the

receptionist constitutes a bottleneck due to communication overhead whereas for

higher α values, the index servers constitute a bottleneck due to load imbalance.

For OR logic, setting α = 0.6 for hybrid scheduling heuristic strikes a good balance

between reducing communication overhead of the receptionist and balancing the

index server loads. Thus, in the rest of the experiments, α is set to 0.6 for OR

logic.

As seen in the third column of Fig. 4.6, ANP values of all replicated parti-

tioning schemes steadily decrease as α gets closer to 1.0. This is because the

set-cover-based scheduling heuristic’s sole purpose is to reduce the number of

index servers involved in answering queries using the flexibility provided by the

replication. Since this flexibility is not present in BP and PaToH, the ANP values

do not change as α varies for these two schemes. It is evident that the higher the

replication amount, the lower the ANP values in replicated partitioning schemes.

This can be seen by comparing the BP-based and PaToH-based schemes among
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Figure 4.7: Communication volume values for AND and OR document matching
logics and varying number of index servers (K).

themselves. This is expected since when the replication amount increases, the

opportunity for reducing the number of processors involved in answering a query

also increases. Note that the ANP figures for AND and OR logic are identical since

the scheduling process does not depend on the used document matching logic.

PaToH’s ANP values in the third column of Fig. 4.6 are quite noteworthy since

its objective is the minimization of the ANP. Although PaToH does not utilize any

replication, it can outperform replicated partitioning scheme BP+MF in obtaining

lower ANP values. Note that PaToH can also outperform rpPaToH when dynamic

scheduling is used (0.0 ≤ α ≤ 0.2) since this scheduling heuristic may opt to

increase ANP in favor of reducing imbalance. PaToH obtains lower ANP values

due to its superior partitioning quality compared to both rpPaToH schemes at low

α values. However, lower ANP values do not indicate better ART and THR values

as seen in Fig. 4.6 where PaToH is outperformed by most of the other schemes.

This is due to the high communication imbalance of PaToH (Section 4.6.5).
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4.6.3 Communication Volume

This section presents the communication volume values of six schemes BP, BP+MF

(10%), BP+MF (25%), PaToH, rpPaToH (10%), and rpPaToH (25%) for both AND

(α=1.0) and OR (α=0.6) logic with varying number of index servers, K =4,8,16,

and 32. The basic unit of communication volume for the results given in Fig. 4.7

is an accumulator entry (aj = (dj, sj)) that consists of a four byte document id

field and a four byte score field, making up to eight bytes. The communication

volume incurred by the receptionist while distributing subqueries to index servers

is not included since this quantity is the same for all tested schemes.

The communication volume values are illustrated in Fig. 4.7. The first obvious

observation is that all schemes incur lower communication volumes in OR logic

compared to AND logic, which is basically due to limitation of PAS sizes in OR

logic. Another immediate observation is that as K increases, the communication

volume incurred by any scheme also increases. This is due to the increase in the

average number processors (ANP) (see third column of Fig. 4.6), which implies a

query is being processed at more index servers as K increases. Since the number of

index servers involved in answering a query increases, the communication volume

also increases regardless of the used document matching logic.

As seen from Fig. 4.7, rpPaToH (25%) achieves the lowest communication vol-

ume for all K in both AND and OR logics. For the replicated partitioning schemes,

the communication volume of rpPaToH (10%) and rpPaToH (25%) are lower than

those of BP+MF (10%) and BP+MF (25%), respectively. This shows that rpPaToH,

when coupled with the right hybrid scheduling heuristic, is better at utilizing

replication to reduce the communication volume compared to BP+MF. PaToH out-

performs BP+MF (10%) at K = 16, and both BP+MF (10%) and BP+MF (25%) at

K =32 in OR logic, since the partitions obtained by PaToH incur lower communi-

cation overhead compared to BP+MF that utilizes replication and makes a certain

majority of its scheduling decisions in order to reduce the communication volume.

This is not observed in AND logic since the communication volume reduction ob-

tained by the replication using scheduling heuristics are so significant that PaToH

cannot even get close to the replicated schemes.

98



 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

4 8 16 32

A
R

T
 (

m
se

c)

K (number of index servers)

AND logic (α = 1.0), ART 

BP
BP+MF (%10)
BP+MF (%25)

PaToH
rpPaToH (%10)
rpPaToH (%25)

 0

 20

 40

 60

 80

 100

 120

 140

4 8 16 32

T
H

R
 (

nu
m

be
r 

of
 q

ue
rie

s/
se

c)

K (number of index servers)

AND logic (α = 1.0), THR 

BP
BP+MF (%10)
BP+MF (%25)

PaToH
rpPaToH (%10)
rpPaToH (%25)

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

4 8 16 32

A
N

P
 (

nu
m

be
r 

of
 p

ro
ce

ss
or

s/
qu

er
y)

K (number of index servers)

AND logic (α = 1.0), ANP 

BP
BP+MF (%10)
BP+MF (%25)

PaToH
rpPaToH (%10)
rpPaToH (%25)

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

4 8 16 32

A
R

T
 (

m
se

c)

K (number of index servers)

OR logic (α = 0.6), ART 

BP
BP+MF (%10)
BP+MF (%25)

PaToH
rpPaToH (%10)
rpPaToH (%25)

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

4 8 16 32

T
H

R
 (

nu
m

be
r 

of
 q

ue
rie

s/
se

c)

K (number of index servers)

OR logic (α = 0.6), THR 

BP
BP+MF (%10)
BP+MF (%25)

PaToH
rpPaToH (%10)
rpPaToH (%25)

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

4 8 16 32

A
N

P
 (

nu
m

be
r 

of
 p

ro
ce

ss
or

s/
qu

er
y)

K (number of index servers)

OR logic (α = 0.6), ANP 

BP
BP+MF (%10)
BP+MF (%25)

PaToH
rpPaToH (%10)
rpPaToH (%25)

Figure 4.8: The average response time, throughput, and average number of pro-
cessors for AND (α = 1.0) and OR (α = 0.6) document matching logics for varying
K values.

4.6.4 Weak Scaling Performance

This section presents the evaluation of six (replicated) partitioning schemes,

BP, BP+MF (10%), BP+MF (25%), PaToH, rpPaToH (10%), and rpPaToH (25%) in

terms of ART, THR, and ANP metrics for varying number of index servers,

K = 4, 8, 16, 32. These schemes are tested for AND (with α = 1.0) and OR (with

α = 0.6) document matching logics. We present the weak scaling results, i.e., the

data size and the number of processes that concurrently submit queries are kept

constant while K is varied.

The results of the experiments for the above-mentioned configuration are il-

lustrated in Fig. 4.8. All schemes are expected to perform better (ART and

THR) since the amount of work per index server decreases as K increases. This

expected pattern is observed up to K = 16. However, when K increases from 16

to 32, the ART and THR values of the replicated schemes stabilize. Our detailed

analysis reveals that when K increases from 16 to 32 in replicated schemes, the
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computation, communication and IO times of index servers roughly halve as ex-

pected. However, the idle times of the index servers increase significantly, forming

up to 60% of the servers’ total running time. This indicates that the (replicated)

partitioning schemes successfully distribute the index server loads, however, the

receptionist cannot cope with the increase in the concurrently received PASs.

Thus the receptionist becomes a bottleneck after K = 16 and determines the

performance of the system for the replicated partitioning schemes. It should be

noted that there is also a significant increase in idle times of the index servers

for BP and PaToH as well. However, since the amount of communication volume,

and thus the index server loads for these schemes are quite high, increasing the

number of index servers still improves the performance of the system by reducing

the index server loads.

As seen from ART and THR metrics in Fig. 4.8 up to K = 16, the perfor-

mances of all schemes increase more dramatically in OR logic compared to AND

logic. This is because when K is doubled, the communication volumes in AND

logic incurred by all schemes increase by a higher factor than they do in OR logic

(see Fig. 4.7). Therefore, the schemes in OR logic obtain a better performance

speedup. For example, when K varies from 4 to 8, the communication volume of

rpPaToH (10%) increases by a factor of 2.31 in AND logic whereas it increases only

by a factor of 1.22 in OR logic, and when K varies from 8 to 16, the communica-

tion volume of rpPaToH (10%) increases by a factor of 1.76 in AND logic whereas

it increases only by a factor of 1.13 in OR logic. Thus, rpPaToH (10%) obtains a

better speedup in OR logic as seen in ART and THR metrics of Fig. 4.8.

The third column in Fig. 4.8 displays the ANP results for varying K values.

For all schemes, as K increases, the ANP values of all schemes increase steadily.

That is because the data size is kept constant while K increases, and as K

increases, it is more probable that the terms requested by a query will not belong

to the same index server. Note that the ANP figures for AND and OR logic are not

identical as for the case in Fig. 4.6 since the hybrid scheduling parameters used

for these document matching logics are not the same.
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Table 4.2: Communication volume, disk access, and disk IO imbalance (%) values for varying K and AND and OR document
matching logics.

Imbalance (%)

Communication Volume Disk Access Disk IO

Scheme Logic K =4 K =8 K =16 K =32 K =4 K =8 K =16 K =32 K =4 K =8 K =16 K =32

BP AND 5.4 13.7 36.9 82.5 0.6 1.5 3.1 4.3 4.6 15.5 37.8 82.1
OR 0.4 1.3 4.5 7.6 0.6 1.5 3.1 4.3 4.6 15.5 37.8 82.1

BP+MF (10%) AND 1.3 18.8 36.9 82.5 8.9 13.5 17.2 9.1 18.0 32.6 59.9 46.6
OR 0.2 0.2 0.9 6.9 1.4 3.0 1.9 3.6 2.6 6.9 14.3 31.3

BP+MF (25%) AND 0.5 5.6 29.5 35.2 4.0 18.4 22.2 20.0 5.6 37.8 61.7 46.6
OR 0.4 0.2 1.4 1.3 0.8 1.4 3.1 3.7 3.3 3.4 10.4 23.6

PaToH AND 106.6 159.9 122.3 170.8 20.1 19.0 8.5 4.8 100.2 138.6 111.8 141.6
OR 26.4 33.5 24.5 23.5 20.1 19.0 8.5 4.8 100.2 138.6 111.8 141.6

rpPaToH (10%) AND 1.2 1.9 1.8 1.6 6.4 36.4 14.6 27.0 8.6 8.7 7.2 12.5
OR 0.3 23.0 3.0 4.4 1.7 23.8 7.6 17.8 2.0 13.7 26.1 55.3

rpPaToH (25%) AND 0.5 1.2 1.6 4.0 8.3 34.0 11.4 23.5 7.0 21.5 20.3 18.8
OR 0.2 12.0 0.3 0.4 4.3 14.0 7.5 8.6 6.5 5.0 11.4 22.1
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4.6.5 Imbalance

In this section, communication volume, disk access, and disk IO imbalance values

of six (replicated) partitioning schemes, BP, BP+MF (10%), BP+MF (25%), PaToH,

rpPaToH (10%), and rpPaToH (25%) are presented. The results for AND and OR

document matching logics are reported for four K values, 4, 8, 16, and 32. As

mentioned, PaToH’s and rpPaToH’s imbalance in partitioning are both set to 20%.

Note that both BP- and PaToH-based schemes balance on the term frequencies,

where a term’s frequency is given by the number of queries that contain this

term (Section 4.4). Hence, this is equivalent to balancing the number of disk

accesses (not the disk IO) performed by each index server. There is a rough

relation between the number of disk accesses and the disk IO performed by an

index server. The strength of this relation decreases with increasing variance in

the inverted list lengths.

Table 4.2 displays imbalance values for communication volume, disk access

and disk IO. As seen from table, all schemes have generally lower imbalance in

OR logic compared to AND logic. This is because, for communication volume, the

PAS sizes are limited to a fixed size in OR logic, which makes the sizes of the sent

messages by the index servers roughly equal. OR logic generally obtains lower

imbalance in disk access and disk IO since the scheduling heuristic parameter α

is set to 0.6 for OR logic whereas it is set to 1.0 for AND logic. This implies that the

OR logic uses a certain amount of dynamic information in its scheduling decisions

whose aim is to balance the load of the index servers.

Another immediate observation that can be inferred from Table 4.2 is that

BP-based schemes generally obtain better disk access imbalance compared to their

PaToH-based counterparts since obtaining a balance on disk access is the objective

of BP-based schemes whereas it is the constraint of PaToH-based schemes. Note

that for some experiment instances, rpPaToH’s disk access imbalance is greater

than 20% although it is set to obtain replicated partitions up to this value. This

is due to the different utilization of replication in computing imbalance during

partitioning and making scheduling decisions.
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In AND logic, especially in partitioning schemes that do not utilize replication

(BP and PaToH), we can claim that the imbalance in disk IO would probably

be reflected in communication volume imbalance. This is due to the fact that

since we have short queries consisting of two to four terms, it is very probable

that if all terms of a query are not processed at the same index server, each

index server will process a single term of this query. Note that in AND logic,

processing of a single term incurs the same IO and communication costs. High

disk access imbalance of PaToH causes high disk IO imbalance, which in turn

causes high communication imbalance. This relation between disk access, disk

IO, and communication imbalance is not as prominent when there is replication

since replication can be utilized for balancing loads of the index servers. For BP

and PaToH, disk access and disk IO imbalance for both AND and OR logics are the

same since although α is set to different values for both logics, there is no freedom

in scheduling a query term to different index servers. Thus, the query terms are

assigned to the same index servers in both AND and OR logic and the same disk

access and disk IO imbalance values are obtained.

4.7 Related Work

In this section, we discuss the most commonly used approaches for replication

in parallel information systems. In [57], the authors analyze caching and partial

replication to improve the performance of parallel information retrieval systems.

In their approach, they replicate the documents requested by previous queries

(thus, using a query log) to a distinct server, which is called the partial replica.

This partial replica is further used to answer the future queries if possible. In

their work, they show that the replication is able to reveal access locality of the

queries.

In [58], the performance of clustered and replicated IR systems are investi-

gated. In their work, a document-based index distribution is assumed and a sim-

ulation environment is used to compare these two systems. In their approach, a

replicated system consists of identical distributed systems, where each distributed
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system contains all collection and the brokers decide which replica will be used

for a given query. On the other hand, a clustered system consists of disjoint sets

of documents, where each cluster can be distributed or replicated. Their experi-

ments show that the clustered system does not outperform the replicated system

and the brokers and the network can be bottleneck in both of these systems.

In Google cluster [59], which consists of hundreds of commodity machines,

replication is mainly used for performance (i.e. throughput) and availability.

The index is partitioned in a doc-based manner and replication is used in all

levels of the cluster architecture including the hardware-based solutions (RAID),

the cluster itself and across the clusters.

The authors of [52] use the query log to obtain information about term fre-

quencies which is further utilized for the distribution and replication of terms to

index servers. Their term distribution approach is based on a heuristic that is

generally used for the bin-packing problem. In their replication method, they

replicate a certain amount of most frequent terms and their inverted lists to all

index servers. Performing term distribution and replication as mentioned, they

show that they can achieve better load balancing for term-based partitioned in-

dexes.

Another recent research utilizing query logs is [53]. As in [52], they first dis-

tribute the terms based on a bin-packing heuristic using index servers as bins and

terms as items. For the remaining terms which do not appear in query log, they

distribute them to the index servers so that each index server possesses approx-

imately equal number of terms. They also investigate replication by replicating

a certain percentage of most frequent terms to all index servers. Thus, by using

query logs to obtain a better term distribution and replication, they are able to

achieve improvements in response time and throughput.
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Chapter 5

Partitioning and Replication for

Social Networks

In this chapter, we propose to model the interactions among social network users

via a novel temporal activity hypergraph and then perform a replicated parti-

tioning of this temporal hypergraph to deduce a user partitioning. Our aim is

to minimize the communication overheads of parallel systems used in social net-

works. We focus on the Twitter application, but we believe the proposed modeling

can be applied in defining the multi-way interactions of other social networking

systems as well.

5.1 Introduction

Social networks have fast-growing, ever-changing dynamic structures and strict

availability requirements which led to development of non-orthodox solutions

such as NoSQL systems. These systems use data partitioning and replication to

achieve scalability and availability and this is generally achieved via hash-based

partitioning and random replication of data. This approach ensures availability

and a certain extent of scalability, however, since it ignores the relations among

the data, it may lead to unnecessary replications and communication loads while
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responding to user queries.

In order to alleviate these deficiencies, partitioning of friendship graphs [60,

61] and replication of the data associated with the users that are neighbor to

partition borders have been proposed [61, 62]. Unfortunately, since friendship

graphs exhibit power-law distributions and tightly-coupled community structures,

partitioning of these graphs are quite difficult and the replications proposed by

these models lead to excessive replication amounts. Furthermore, these graphs

do not consider the temporal locality existing in user actions. In retrospect,

a partitioning scheme based on partitioning of activity graphs involving simple

time relations have been proposed [63], but replication in such graphs has not

been investigated. Furthermore these graph-based schemes try to capture the

interactions between social network users via two-way relations. However, the

most common queries in social networks such as requesting the latest Tweets

of users being followed or requesting the latest news-feeds of Facebook friends

involve fold-like operations that require gathering of data from multiple users to

a single user.

In this chapter, we propose a thorough remodeling of the partitioning and

replication schemes for social networks. To this end, we focus on the Twitter ap-

plication and we propose to model the multi-way relations between user actions

in Twitter via a novel temporal activity hypergraph. Then, we propose to per-

form a replicated partitioning of this hypergraph (via utilizing a state-of-the-art

replicated hypergraph partitioning tool that performs partitioning and replica-

tion together, thus combining the benefits of these two schemes) and replicate and

distribute the user data according to the result of this replicated partitioning. We

compare the communication requirements of our replicated partitioning scheme

with a distributed hashing based partitioning replication scheme. Our results

indicate that proposed temporal hypergraph model can significantly increase the

number of queries that can be locally answered, thus reducing the communication

overhead.
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5.2 Background

5.2.1 Hypergraph Partitioning

A hypergraph H= (V ,N ) is defined as a set V of vertices and a set of N nets

(hyperedges), where each net connects a number of distinct vertices. The vertices

connected by a net nj are said to be its pins and denoted as Pins(nj). A cost c(nj)

is assigned as the cost of a net nj ∈ N . In both graphs and hypergraphs, multiple

weights w1(vi), w
2(vi), . . . , w

M(vi) may be associated with a vertex vi∈V.

Π = {V1,V2, . . . ,VK} is said to be a K-way partition of a given hypergraph

H if each vertex part Vk of Π is a nonempty subset of V , parts are pairwise

disjoint, and the union of the K parts is equal to V . The K-way HP problem can

be defined as finding a K-way vertex partition Π that optimizes a partitioning

objective defined over the edges and nets that connect more than one part while

satisfying a given partitioning constraint.

In HP problem, the partitioning constraint is to satisfy multiple balance cri-

teria on part weights, i.e.,

Wm(Vk) ≤ Wm
avg(1 + ǫm), for k=1, . . . , K; m=1, . . . ,M. (5.1)

Here, for the mth constraint, the weight Wm(Vk) of a part Vk is defined as the

sum of the weights wm(vi) of the vertices in Vk, Wm
avg is the average part weight,

and ǫm is the maximum allowed imbalance ratio.

In a partition Π of hypergraph H, a net is said to connect a part if it has at

least one pin in that part. The connectivity set Λ(nj) of a net nj is the set of

parts connected by nj. The connectivity λ(nj)= |Λ(nj)| of a net nj is the number

of parts connected by nj. A net nj is said to be cut if it connects more than one

part (i.e., λ(nj) > 1) and uncut otherwise. In the HP problem, the partitioning

objective is to minimize the connectivity−1 metric

χ(Π) =
∑

nj∈Ncut

c(nj)(λ(nj)− 1), (5.2)
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defined over the set Ncut of cut nets.

HP problem is known to be NP-hard [64, 65]. However, there are successful HP

tools (e.g., hMETIS [66], and PaToH [67]) that implement efficient and effective

heuristics.

5.2.2 Replicated Hypergraph Partitioning and rpPaToH

In the Replicated Hypergraph Partitioning Problem, we are given an undirected

hypergraph H = (V ,N ) an imbalance ratio ǫ, and a replication ratio ρ and we

want to find a K-way covering subset of V , ΠR ={V1,V2, . . . ,VK} that minimizes

the cutsize (Eq. 5.2) while satisfying the following constraints.

• Balancing constraint: Wmax ≤ (1 + ǫ)Wavg, where Wmax =max1≤k≤KW (Vk)

and Wavg =(1+ρ)W (V)/K.

• Replication constraint:
∑K

k=1 W (Vk) ≤ (1 + ρ)W (V)

rpPaToH [68, 5] is a novel tool that performs replicated hypergraph parti-

tioning. rpPaToH is capable of replicating vertices of an undirected hypergraph

during partitioning in order to improve a target objective under given balancing

and replication constraints.

5.2.3 Twissandra: An Educational Twitter Clone

Twissandra [69], is an example project that provides a fully-working Twitter clone

based on Cassandra. The Twissandra schema used to represent Twitter data

model is simple but in terms of partitioning and distribution decisions scaling

Twissandra carries most fundamental problems observed in scaling Twitter.

The Twissandra data model consists of six column families:
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• USER: Holds user information; the key for each row is the username and

columns hold user details such as passwords.

• FRIENDS: Holds the users that are followed by a user (friends); the key for

each row is the username and columns are the usernames of the friends,

which are the users followed by the user in the row key.

• FOLLOWERS: Holds the followers of a user; the key for each row is the user-

name and columns are the usernames of the users which follow the user in

the row key.

• TWEET: Holds the tweets; the key for each row is a unique tweet ID and

columns are the tweet body and the username of the tweeting user.

• TIMELINE: Holds the tweets of friends a user is following; the key for each

row is the username and column names are timestamps and column values

are tweet IDs.

• USERLINE: Holds all the tweets by a given user; the key for each row is the

username and column names are timestamps and column values are tweet

IDs.

,

Using this data model, it is possible to model many functionalities in Twissan-

dra. However, the main operations we will investigate here will be the creation

of a tweet (a tweet write) and a getting the timeline of a specific users tweets

(viewing/reading tweets in homepage). The first operation is performed when a

user tweets and it requires insertion of a tweet to the TWEET cf, the addition of

the unique tweet ID into the USERLINE cf of the tweeting user, and the addition

of the unique tweet ID into the TIMELINE column families of the followers of the

tweeting user. The second operation is performed when a user connects to the

Twitter and checks the latest tweets of his friends. Here, a “friend” is somebody

that a user follows. It requires a lookup for the latest tweet IDs of a user in his/her

respective row at the TIMELINE cf and then retrieval of the tweets for those tweet

IDs from the TWEET cf. We choose to model these two operations since they are
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performed quite frequently in Twitter and they are costly operations. Since we

do not have user access logs in our datasets and only user tweet information, we

make the assumption that each user reads his/her recent tweets before tweeting.

5.3 Temporal Activity Hypergraph Model

In this section we describe how to construct the temporal activity hypergraph

model Htmp
act =(V ,N ) from a log of a social graph among a set of social network

users and a log of interactions (tweets in this case) among these users. A replicated

partitioning of this hypergraph will be used in the replicated placement of these

data in a parallel system serving the Twissandra application and this placement

will be inspected in terms of its’ efficiency in serving new tweet read requests of

the sort where a user reads his/her friends latest tweets.

We assume that the logs contain information on the timing of actions. Just

like in [63], we divide our logs into time periods and utilizing the logs of previous

periods, try to figure the pattern and frequency of actions that will happen in

the current time period and partition/replicate data according to this prediction.

The time periods can be months, weeks, days, or even hours. We value actions

that occurred in recent periods more than older actions and value all actions

that occurred in the same period equally. The selection of these time periods

determine the frequency of partitioning.

Our replicated partitioning scheme proposes a horizontal partitioning of the

Twissandra column families. In particular, we propose a user partitioning scheme

and this user partitioning induces a partitioning on all cfs of Twissandra. It is

easy to see that a partitioning on users easily induces a row-based partitioning on

the USER, FRIENDS, FOLLOWERS, TIMELINE, and USERLINE column families since

the row keys for all these cfs are the username. The partitioning of TWEET cf is

performed according to the username of the tweeting user. In the end, each user’s

personal information, friends, followers, userline, timeline and tweets are stored

on the same server(s).
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5.3.1 Model Construction

In this section we describe the construction of our temporal activity hypergraph

model Htmp
act = (V ,N ). In Htmp

act , for each user ui there is a vertex vi ∈ V. A

user request for the latest tweets of his/her friends is called an activity. For each

activity aj, where a user ui requests for the latest tweets of his/her friends, there

is a net nj∈N , which connects vi and the vertices for the friends of user ui. i.e.,

for an activity aj of a user ui,

Pins(nj) = {vk : vk = vi ∨ uk ∈ friends(ui)}, (5.3)

where friends(ui) indicate the set of users followed by user ui. Note that two

nets connecting the same set of vertices are called identical nets and such nets

can be represented with a single net by adding the costs of the two nets. Note

also that if the set friends(ui) of a user ui does not change, all the activities of

ui will generate identical nets.

The weight w(vi) of a vertex vi is set to reflect the amount of activity user

ui performs. That is, it is related to the number of times the user logs in to the

system to check for tweets. The cost c(nj) of a net nj is set to reflect the closeness

of the activity to current time. The closer an activity to current time, the higher

its cost. Temporality comes into play in setting vertex weights and net costs.

Just like in [63], we use a decay function to set an order of precedence among

activities in different time periods such that activities in recent periods have

higher importance and thus, the costs of nets representing these recent activities

have higher values and the weight of vertices representing users who are active in

the recent periods are high.

5.3.2 Replicated Partitioning of the Model

Maintaining the partitioning constraint of balanced part weights is expected to

balance the number of read requests received by the processors in the current

time period, whereas the partitioning objective of reducing the cutsize minimizes

the number of servers involved in answering a read query.
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As an example to illustrate the construction of our temporal activity hyper-

graph model, consider the following sample log of activities that occurred in

different time periods in the past. For the ease of demonstration, let us assume

that our system displays only the most recent three tweets of their friends to

users, all users are equally active and hence vertices have equal weights, and the

decay factor is two (as in exponential smoothing), meaning that the net for an

activity in a time period has half the cost of a net for an activity in the next

period.

• activity a1: in time period t1 user u1 connects and reads the tweets of users

u2, u3 and u4.

• activity a2: in time period t1 user u2 connects and reads the tweets of users

u3, u4 and u5.

• activity a3: in time period t3 user u2 connects again and this time reads

the tweets of users u3 and u5 (it may be that friends of t3 are not tweeting

very frequently, so he may receive less than three tweets).

• activity a4: in time period t4 user u4 connects and reads the tweets of users

u1, u5 and u6.

• activity a5: in time period t4 user u9 connects and reads the tweets of users

u6, u7 and u8.

Fig. 5.1 shows the temporal activity hypergraph model for the above-given

sample log of activities and Fig. 5.2 shows a 3-way partition of this temporal

activity hypergraph model. In the figures, user vertices are represented via empty

circles and activity nets are represented with dots. In Fig. 5.2, replicated vertices

are indicated via dot-lined red circles. As equal user activities and hence unit

vertex weights are assumed, in Fig. 5.2, the part weights for the three parts are

equal to four. Since only net n4 remains in the cut, the cut according to Eq. 5.2

would be c(n4)(λ(n4)− 1) = 8× (3− 1) = 16.
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Figure 5.1: Temporal activity hypergraph model Htmp
act for the sample log.

Considering a decay factor of two, the costs of nets can be set as follows:
c(n1) = c(n2) = 1, c(n3) = 4, and c(n4) = c(n5) = 8.
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Figure 5.2: A 3-way replicated partition of the Htmp
act for the sample log. The

dashed, red-filled circles indicate replicated vertices.

5.4 Experimental results

In our experiments we made use of the Twitter dataset from [70]. This dataset

was crawled from Twitter between October 2006 - November 2009 and there are a

total of 465.107 distinct users in the dataset. Among these users there are 836.541

social relationships (follower, followed by, etc) and the dataset contains a total

of 25.378.846 tweets. Within this dataset, we made use of 8.105.164 tweets that

were made between October 2008 - September 2009. These tweets were made

and viewed by 107.562 users.

For each tweet we generated a read query assuming that the tweeter views
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Table 5.1: Comparison of cut values for DHT and RHP.

K RHP (100% repl.) RHP (200% repl.) DHT (2-copy) DHT (3-copy)
4 173.704 4.434 2.894.605 295.852
8 725.298 351.736 5.659.987 3.891.994
16 1.069.189 754.042 6.929.248 6.105.297
32 1.265.268 1.066.924 7.509.313 7.125.869
64 1.426.434 1.277.756 7.810.679 7.625.661
128 1.536.381 1.417.860 7.956.350 7.869.601
256 1.664.307 1.587.719 8.031.091 7.990.493
512 1.795.868 1.705.728 8.065.724 8.044.932
1024 2.120.683 1.954.846 8.085.462 8.071.713

his/her latest tweets prior to tweeting. The read queries are generated considering

the interactions between Twissandra cfs as described in Section 5.2.3.

We constructed the temporal hypergraph model for the generated read queries

as described in Section 5.3 and performed a replicated partitioning of this hyper-

graph as described in Section 5.3.2 We tried to assess the reduction in commu-

nication via our replicated hypergraph partitioning based replicated partition-

ing scheme (RHP) as compared to the circular-replication/distributed-hash-table

(DHT) scheme generally applied in NoSQL systems. As communication metric,

we counted the number of queries that can not be answered locally and requires

coordination among the processors. We tested our system with 100% and 200%

replication ratios and the DHT scheme with 2-copy and 3-copy replications.

As seen in Table 5.1, the RHP scheme significantly reduces the number of

queries that requires coordination among processors. In other words, RHP in-

creases the locality in queries in comparison to DHT. Another interesting obser-

vation we make from Table 5.1 is that, the positive effect of increasing replication

ratio (e.g., from 100% to 200% r from 2-copy to 3-copy) diminishes with increas-

ing number of processors. This is probably due to the fact that, as the number

of processors increase, the data becomes very dispersed and it becomes difficult

to gather data such that query responses can be generated locally. As seen in the

table, for 1024 processors, even in the RHP scheme, around 25% of the queries

require coordination.
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5.5 Related Work

Large-scale data and fast data growth trends of many Web 2.0 applications sup-

ported the development of NoSQL (Not Only SQL) solutions as an alternative to

RDBMS (Relational Database Management Systems) [71]. RDBMS are not de-

signed to scale on multiple nodes, or rather they are not designed to scale cheaply,

whereas NoSQL approaches are designed for i) cheap scalability, ii) fast read and

write, iii) batch data processing and iv) easy column addition/removal [72]. On

the other hand, they lack important helpful features such as SQL support and

transaction reporting.

NoSQL databases can be grouped according to their data model, query prop-

erties, concurrency control, partitioning, replication and consistency features. Ac-

cording to data model, they can be grouped into four classes:

• Key-Value databases: In this data model, data is stored in maps or dictio-

naries, which are accessed via unique keys. Only way to access data is via

these keys, which complicates value-based queries. Amazon Dynamo [10],

Project Voldemort [73], Redis [74], Scalaris [75] and Membase [76] utilize

this data model.

• Document Stores: In this data model, key-value pairs are stored in docu-

ments and each document has a unique key. Unlike key-value databases,

this model supports value-based multi-attribute queries. CouchDB [77],

MongoDB [78], Terra Store [79], and Riak [80] utilize this data model.

• Distributed Column Stores, C-Store: This data-model is optimized for ac-

cessing multiple rows for a given column. Note that this is orthogonal to

classic RDBMS. Google BigTable [81], HBase [82] and HyperTable[83] uti-

lize this data model. Cassandra [84] also uses C-Store data model with the

addition of super-columns, an extra layer over columns that groups multiple

columns that will be stored together.

• Graph Databases: This data model is designed for applications that re-

quire graph-traversal-type queries over highly-connected data. Neo4j [85],
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GraphDB[86], Sesame [87], and BigData [88] utilize this data model.

There are recent studies indicating the deficiencies of the partitioning and

replication methodologies used in NoSQL systems. [89] proposes a graph-

partitioning-based database partitioning scheme for OLTP-type Web applica-

tions. In this method, data items are represented via nodes, transactions are

modeled via edges, and the partitioning objective is minimizing the number

of servers involved in processing a transaction. Unfortunately, the replication

scheme proposed in [89] is quite costly since it requires K times replication of

each data vertex prior to partitioning, K being the desired number of partitions.

[60] proposes alternative partitioning schemes based on graph-partitioning,

modular-optimization and random partitioning. Partition qualities are justi-

fied in metrics such as the number of internal messages or dialogs and tests are

performed over datasets collected from Twitter and Orkut. For small partition

counts, graph-based approaches are shown to perform superior, whereas for large

partition counts, modular optimization algorithms are shown to perform better.

Interestingly, when the partition counts increase, random partitioning perform

as good as graph-partitioning. [61] extends the works in [60] so that replication

is also considered. Proposed replication scheme (one-hop replication) replicates

all data items that are in partition boundaries. That is, data items that might

be required in multiple servers are replicated to all of those servers. Unfortu-

nately, this replication scheme enforces too much replication to be of practical

use. [62] is an extension of these two studies with an alternative partitioning

scheme. However, still the one-hop replication scheme is used for replication.

[63] propose graph-partitioning based models for efficient query processing in

time-dependent social network queries such as collecting status updates of friends.

Their activity prediction graph model enables handling of power-law relations

that are consistently observed in almost all social network data features via pro-

ducing lighter tailed interactions. Unfortunately, this study does not address the

replication problem.
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Chapter 6

Conclusions

In this thesis we proposed query-log-aware FM-like iterative improvement solu-

tions to replicated declustering and replicated clustering problems. Chapters 2

and 3 are related with improving the performance of replicated declustering

schemes, whereas Chapters 4 and 5 are related with improving the performance

of parallel keyword-based search and Twitter applications via query-log-aware

replicated clustering.

In Chapter 2, we proposed an effective K-way replicated declustering scheme

that utilizes a given query distribution. To this end, we first proposed an iterative-

improvement based two-way replicated declustering scheme, which iteratively im-

proves the quality of a two-way replicated declustering. We recursively applied

this two-way scheme to obtain a K-way replicated declustering. We then pro-

posed an efficient and effective multi-way refinement scheme that can perform

multi-way move and replication of data items. With this scheme, we further im-

proved the quality of the obtained K-way declustering and improved the balance

if possible. Presented results indicated the merits of utilizing query logs in partial

and selective replication. We showed that the proposed scheme achieves much

better results compared to state-of-the-art replicated declustering schemes, many

times achieving optimal overall response time with less than 100% replication

ratio.
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In Chapter 3, we proposed an effective three-phase replicated re-declustering

framework that utilizes a given query distribution and an exiting data item to

server mapping to minimize query processing and data migration costs. The first

phase of this framework generated a replicated declustering solution via utilizing

the query logs. In this phase, any log-utilizing replicated declustering algorithm

can be utilized. We chose our recursive replicated declustering algorithm de-

scribed in Section 2.4.1 since it was shown to perform good. For the second

phase, we proposed a weighted bipartite matching model that matches any repli-

cated declustering solution to the servers in the system. This model finds the

matching that causes the minimum number of data migrations. For the third

phase, we proposed a multi-way refinement scheme that not only improves the

query processing costs of the replicated declustering solution obtained in the first

two phases, but also reduces the migration costs of the final mapping. To enable

optimization of the two conflicting minimization objectives (query processing and

migration cost minimization), we proposed an abstraction scheme that enabled us

to represent data migrations as queries. This scheme also contains a mechanism

for maintaining a balance between query processing cost reduction and migration

cost reduction objectives. Using this scheme also enabled the usage of multi-way

refinement scheme proposed in Section 2.4.2 for the solution of the replicated

re-declustering problem. Obtained results indicated the merits of the proposed

re-declustering scheme. Compared to the replicated declustering scheme we pro-

posed in Chapter 2, the proposed framework generated results with significantly

lower migration costs with slightly higher query processing costs.

In Chapter 4, we adopted our recently proposed replicated-hypergraph-

partitioning-based approach for generating replicated, term-partitioned in-

dexes [5] and evaluated the performance of this approach against state-of-the-

art partitioning and replication schemes. We also discussed various scheduling

schemes that are required when replication is involved. We investigated these

schemes on a realistic parallel query processing system providing extensive ex-

perimental analysis performed up to 32 processors to show that proposed schemes

are superior to the state-of-the-art alternatives.

In Chapter 5, we proposed a query-log-aware replicated partitioning scheme
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for the Twitter application. The proposed replicated partitioning scheme models

the multi-way relations between social network user actions via a novel tempo-

ral activity hypergraph and then utilizing the rpPaToh tool we developed in [5],

decides on the distribution of user data. We compare the results of our repli-

cated partitioning scheme with circular replication schemes used in distributed

hash tables. The obtained results indicate that the proposed scheme can greatly

increase locality.

Though replicated clustering and replicated declustering seem antagonistic

problems, in modern data serving facilities where datacenter-, rack- and node-

level data placement problems arise, clustering the data in the datacenter- and

rack-levels and declustering the data in the node-level is appropriate. Since our

log-aware FM-like iterative improvement solutions for the replicated clustering

and replicated declustering problems are based from the same roots, we believe

they can be used in harmony under such a setup. As future work, we plan to

consider the benefits of utilizing our log-aware FM-like iterative improvement

solutions over the full datacenter stack.
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