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ABSTRACT

MODELING OF FLEXIBLE NEEDLE INSERTION IN
MOVING TISSUE

Aslı Deniz Güven

M.S. in Computer Engineering

Supervisors: Asst. Prof. Dr. Selim Aksoy and Asst. Prof. Dr. Uluç Saranlı

August, 2012

Steerable needles can be used for minimally invasive surgeries to reach clinical

targets which were previously inaccessible by rigid needles. Using such flexible

needles to plan an insertion for these procedures is difficult because of the nonholo-

nomic motion of the bevel-tip needles and the presence of anatomical obstacles.

In this work, we take into consideration another property of such procedures

being the tissue motion as well as these. For instance in a minimally invasive

cardiac surgery one should take into account the effect of the heart’s beating

motion on the needle during its insertion or in any other procedure the effect

of human breathing. In this thesis, we develop a motion model for a bevel-tip

needle such that it can be inserted within in any tissue under a motion which can

be characterized by a time-dependent diffeomorphism. We then explore motion

planning under periodic motion of a homogeneous, planar tissue where we use

the Rapidly-exploring Random Trees (RRTs) method with the developed model

to explore the tissue. While we perform the planning, we aim that the needle

reaches a target area in the tissue while avoiding obstacles which are actually tis-

sue segments that we want to avoid getting in contact with and intuitively follow

the same motion of the tissue.

Keywords: Needle steering, minimally invasive surgery, path planning, kinematic

modeling, RRT.
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ÖZET

HAREKETLI DOKUDA ESNEK IĞNE
INSERSIYONUNUN MODELLENMESI

Aslı Deniz Güven

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Asst. Prof. Dr. Selim Aksoy ve Asst. Prof. Dr. Uluç Saranlı

Ağustos, 2012

Yönlendirilebilir iğneler minimal invaziv cerrahi içerisinde daha önce sabit iğneler

ile ulaşılması mümkün olmayan klinik hedeflere ulaşmak için kullanılabilirler.

Minimal invaziv cerrahide bu tip esnek, yönlendirilebilir iğnelerin bir inser-

siyon için kullanımı, anatomik engellerin bulunmasının yanısıra iğne hareketinin

holonomik olmayışı sebebiyle de oldukça güçtür. Bu çalışmada biz, bu tür cer-

rahi içerisinde görülen bir diğer özelliği, dokunun kendi hareketini de göz önünde

bulundurarak bu insersiyon problemini ele alıyoruz. Örneğin, bir minimal invaziv

kalp ameliyatı esnasında kalp atışlarının ya da bir başka cerrahi işlem sırasında

nefes alıp verme hareketinin iğne üzerindeki etkileri insersiyonu gerçekleştirecek

kişi tarafından göz önünde bulundurulması gereken doku hareketlerindendir. Bu

tez dahilinde biz, hareketi zamana bağlı bir difeomorfizm ile tanımlanabilen

dokularda gerçekleştirilen iğne insersiyonunun hareket modelini geliştiyor ve bu

model ile birlikte kullandığımız bir planlama yöntemi ile, RRT, periyodik bir

harekete sahip olan, homojen ve iki boyutlu bir doku için hareket planlaması

gerçekleştiriyoruz. Bu planlamayı yaparken amacımız, iğnenin doku içerisinde

belirlenmiş hedef bir bölgeye ulaşması ve bunu yaparken de yine aynı dokuya ait,

dolayısıyla doku ile aynı harekete sahip bölümlerine, yani engellere, iğnenin temas

etmemesidir.

Anahtar sözcükler : Yönlendirilebilir iğneler, minimal invaziv cerrahi, yol planla-

ması, kinematik modelleme, RRT .
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Chapter 1

Introduction

1.1 Motivation

Advancements in surgery have focused on minimizing the invasiveness of surgical

procedures, in which surgeons operate through smaller openings hence reducing

the pain and trauma, yielding fast recovery times and thereby shorter hospital

stay for the patients who undergo these surgeries [5, 18, 20, 17]. However, along

with its advantages, minimally invasive surgery (MIS) has some drawbacks in-

cluding reduced sight and direct eye coordination. During recent years, several

minimally invasive robotic systems (MIRS), such as the daVinciTM system from

Intuitive Surgery Inc.[10] and ZeusTM from Computer Motion Inc.[9], have been

developed, capable of overcoming various challenges faced by surgeons. These

systems are open to use preoperative planning data, they increase precision and

also they make new surgery techniques possible, such as minimally invasive beat-

ing heart surgery [20].

In addition to their use in MIRS systems, steerable needles have the potential

to enable entirely new MIS procedures by allowing needles to reach previously

inaccessible locations of the body [12]. Needles with tip asymmetry are steerable

since they deflect upon insertion into soft tissue [26]. There are three types of

tip asymmetry which makes the needle steerable: bevel, pre-bend, and pre-curve

[26] as shown in Figures 1.1.a, 1.1.b and 1.1.c, respectively. All of these steerable

needles travel in curved paths within the body. Therefore, they can be steered to

2



CHAPTER 1. INTRODUCTION 3

(a) (b) (c)

Figure 1.1: Al illustration of three types of tip asymmetry: (a)bevel, (b)pre-bend,
(c) pre-curved.

reach some pre-defined locations while avoiding contact with the others by simply

traveling around them.

According to [26], bevel-tip flexible needles are the most studied steerable

needles. They were developed by Webster and his colleagues, characterized as

steerable needle due to their nature of following a curved path depending on the

bevel-angle [12, 13]. Using these bevel-tip needles to perform a manual insertion in

MIS is a difficult task not only because of the presence of anatomical obstacles and

reduced sight but because manually steering these flexible needles is challenging

due to the complexity of the needle path as well as the limitations of human

manual controls under the kinematic constraints originated by the shape of the

needle. Perceptual demands on surgeons for dealing with these difficulties are

high, which is the primary reason for robotic devices to control the insertion of

these needles with higher precision.

When it comes to autonomously controlling a steerable needle with a robotic

device, a needle model should be derived so that the needle controller can predict

and plan the insertion. When the first flexible needle model was developed,

a kinematic model for needle insertion within a rigid, homogeneous and planar

tissue was also introduced [12]. This was, in their own words, the first step toward

active needle steering.

In a real needle insertion during a minimally invasive surgery, there are many

things to consider: The deformation of the soft tissue when the needle is pushed

within, the torsional friction between the needle and the tissue, effect of respira-

tion and for instance in a minimally invasive cardiac surgery the effect of the heart

beating. Following Webster’s first model, many other researchers have developed

kinematic and mechanical models to address cases such as soft tissue deformation

[2, 11], torsional effects [25] and others, which we will later describe in Chapter
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2 in more details. This made it possible for the planners, whose aim is to find

a sequence of needle controls to steer it to a desired location while avoiding the

anatomical obstacles, to be applicable for needle insertion.

1.2 Problem Statement & Contributions

This thesis explores the modeling and planning for a bevel-tip, flexible needle,

considering needle insertion for more realistic scenarios for minimally invasive

cardiac surgery. We take into consideration the periodic motion of the tissue

due to effects such as heart beating or breathing, and develop a kinematic needle

model applicable for these scenarios. In fact, the kinematic motion model that

we develop in this work is applicable for a bevel-tip needle insertion within a

tissue whose state, as we will describe in Chapter 3, can be captured by any

known diffeomorphic mapping. We leave this mapping non-specific increases its

applicability, which we illustrate with different examples of tissue movements.

For instance, as in the work of Webster et al, the tissue state which is rigid and

stationary can be captured by the mapping, or it can capture a state in which

the tissue stretches linearly with time, or as we have mentioned, the mapping can

represent the state of the tissue in a minimally invasive cardiac surgery where it

stretches back and forth in time. After we present the kinematic motion model

for a flexible, bevel-tip needle, we then present a sampling-based motion planner

based on the Rapidly-exploring Random Trees (RRTs) to quickly explore 2D

environments with obstacles and obtain a feasible insertion path with the shortest

length.

The main contribution of this thesis is hence a 2D kinematic motion model

for the insertion of a bevel-tip flexible needle within a tissue undergoing a time-

dependent deformation. To the best of our knowledge, previous work in needle

steering and planning considered only rigid tissue insertion for both planar(2D)

and general(3D) problems as well as deformations within soft tissues, but have not

addressed any tissue motion in modeling and planning. Therefore, we propose

the first kinematic needle model which is applicable to needle insertion under

such tissue motion. Other minor contributions include modifications to the RRT

algorithm so that it quickly explores the environment by expanding for all possible

needle orientations at once, and an extension of the RRT algorithm to consider
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time as part of the needle configuration.

1.3 Thesis Organization

The thesis chapters are organized as follows:

Chapter 2 : Prior work on the topic of tissue modeling, needle modeling and

path planning for steerable needles are presented in this chapter.

Chapter 3 : This chapter describes our proposed kinematic model for a bevel-

tip, flexible needle for various tissue states including one where the tissue is

under a periodic motion as one is in a minimally invasive cardiac surgery.

Restriction are that the tissue we model the insertion within is an homo-

geneous, planar one which does not deform due to needle insertion forces.

Simulations are presented for the validation of the model.

Chapter 4 : This chapter presents the use of a known planning algorithm, the

Rapidly-exploring Random Trees (RRTs), using the kinematic needle model

developed in Chapter 3. Multiple simulations are performed for planning

in various planning environments.

Chapter 5 : Thesis contributions and results are summarized, and the future

directions to improve the modeling are discussed.



Chapter 2

Background & Related Work

In this chapter, we present key concepts of needle insertion and steering in two

sections. First, we will present the modeling of needles and tissues in Section 2.1

and then we will present in Section 2.2 the planning algorithms developed for

needle insertions which are based on these models.

2.1 Modeling

2.1.1 Tissue Modeling

Modeling of soft, deformable tissues are generally of importance to surgical sim-

ulations and trainings, and path planning methods. This section presents an

overview of tissue models which have been presented in the literature.

Before we proceed on to prior work in tissue modeling, let us define two key

concepts in the methodology of modeling soft tissues: First things is that, con-

tinuum mechanics is the study of deformation or motion of a continuous material

under the action of forces. And secondly, finite element method (FEM) is a tech-

nique which is used to simulate soft tissue deformation by solving the equations of

continuum mechanics. FEM is a mathematical method to discretize a continuous

problem [28].

6
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Modeling of Linear Elastic Tissues

Even though biological tissues and large deformations will involve non-linear

effects, linear elasticity accurately models small deformations [14], such as the

ones which occur in needle insertion. The main reason that linear elastic modeling

is preferred is because the computational cost is low and equations remain quite

simple.

DiMaio and Salcudean presented soft tissue deformation models by measur-

ing planar tissue deformations during a rigid needle insertion in an experimental

system [6]. They characterized the relationship between the forces applied to

the tissue by the needle and the corresponding deformations using a linear elas-

tostatic model. This model, which is characterized by two parameters, namely

Young’s Modulus and the Poisson Ratio, was an approximation to predict tissue

deformations in planar tissues. In this work, they have mentioned that given

a suitable measurement method for 3D tissue deformations, their models and

modeling methodology is applicable to 3D without much difficulty. DiMaio and

Salcudean were also the first to develop an interactive linear elastic needle and its

coupling tissue model [7]. As in their previous work, their models were based on

the measurements of planar tissue deformations and the needle insertion forces.

They solved the model as a coupled needle and tissue models to account for needle

deflection during the insertion. Both in these works of DiMaio and Salcudean,

the tissue was represented as a finite element mesh to perform simulations. These

works are a fine example of gathering data from an experiment system and ap-

proximate the soft tissue deformations by using this experimental data in a not

so complicated FEM-based approach.

As DiMaio and Salcudean, Alterovitz et al developed a soft tissue model

defined by a 2D mesh [2]. They approximated soft tissues as linearly elastic,

homogeneous, isotropic materials and they have set the parameters (Young’s

modulus and Poisson ratio) accordingly. In doing so, they computed the elastic

forces using FEM and forces exerted by the needle to find the deformation of the

tissue. As a difference to the work of DiMaio and Salcudean, Alterovitz et al

considered a flexible needle insertion into this deformable tissue. In one of their

following work, they extended this model in 3D by representing the tissue as a

tetrahedral mesh and again modeling its elasticity by a finite element method [3].
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In conclusion, these prior works give examples of considering the deformation

problem of a soft tissue as characterizing the tissue as a finite element mesh and

then solving the equations of deformation using FEM.

Modeling of non-linear Elastic Tissues

Non-linear elastic models for tissues are a better way to represent human

tissues. Ayache et al developed a deformable tissue model based on non-linear

elasticity and FEM [24]. This model was valid for large deformations thereby

solving the problems related with linear elasticity which, as we have mentioned,

is accurate for small deformations.

Misra et al described the effects of normal forces during shearing of tissue

which is a consequence of non-linearity of the material and are not present in

linear elastic models [19]. They have pointed out that this normal forces could

be significant depending on the tissue type and explored the Poynting effect for

myocardial tissue. This effect describes the interaction of both shear and normal

forces during shearing.

For further reading, Nealen et al presents physically based deformable models

in [21] where they cover a wide range of methods to model deformable objects.

2.1.2 Needle Modeling

Devising a model for a needle is to devise a mathematical model of the needle

kinematics or mechanics. This is a prerequisite of needle planning, which we will

present in the next section, for the planner should know where and in which state

the needle is going to be throughout an insertion.

To date in needle modeling, soft tissue interaction, deformation and needle

flexibility have been considered but no prior work have considered modeling needle

kinematics or dynamics under tissue motion.
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Needle Modeling in Rigid Tissue

Webster et al designed and experimentally validated a nonholonomic model

for steering a flexible, bevel-tip needle in rigid, homogeneous 2D tissue [12]. The

bevel-tip needle was to be steered from the base with two velocity inputs, insertion

speed and rotation speed and their kinematic model of the needle was devised

for these two inputs with respect to time. They have assumed that the rotation

of the needle and its insertion is not to be performed simultaneously. In such a

case, they have showed that bevel-rip needles follow a constantly-curved circular

path where the curvature depends on a physical property of the needle which is

the angle of the bevel.

Using the flexible needle developed by Webster et al, Reed et al developed

a model of needle under the effect of torsional friction [25]. They have shown

that some lag can be introduced between the base of the needle and its tip due to

torsional friction and have developed their model and a controller for the torsional

dynamics to alleviate the angle lag, hence enhancing the steerability of flexible

needles.

Recently, Ko et al developed a new type of steerable needle: a needle with a

programmable-bevel and presented the kinematic model of this needle [15]. The

needle is composed of two interlocked segments which are connected to each other

with a spacial interlocking mechanism. Based on this unique design, bevel angle

of the flexible probe can be changed by simply sliding one segment on the other,

creating an offset which determines the bevel angle. Through this, the needle can

follow constantly-curved paths of any curvature as long as the segments preserve

their position with respect to each other.

Needle Modeling in Deformable Tissue

For an insertion into a soft, planar tissue, Alterovitz et al developed a bevel-

tip, flexible needle model which specifies its insertion velocity, cutting force re-

quired at the tip of the needle and static and dynamic coefficients of friction that

exists between the tissue and the needle [2]. As we have mentioned in Section

2.1.1, Alterovitz et al modeled the tissue as a 2D mesh in this work and they also

modeled the needle as a line segment which was actually denoted by the edges of

triangle elements in the deformed tissue mesh. They updated the material mesh

in consideration of the needle kinematics given by Webster et al [12] and updated
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the mesh accordingly. In their following work, they carried this work one step

further and modeled the needle in 3D [3], climbing one step further towards a

real surgical simulation.

2.2 Planning

When planning for needle insertions, goal is intuitively to steer the needle to a

target location without touching the anatomical obstacles. This is acquired by

searching for a feasible set of needle controls, a feasible path, which can drive the

needle to that target location. In this section, we present planning algorithms for

needle insertions in the area of medical robotics.

Planning in Rigid Tissues

Alterovitz et al considered a planning problem for a bevel-tip, flexible nee-

dle in 2D where they also introduced uncertainty in motion direction due to

differences in patients and difficulty in predicting needle-tissue interactions [1].

They developed a motion planner where they formulated the planning problem

as a Markov Decision problem. They introduced uncertainty using probability

distributions and calculated the probability of reaching a target location using

Dynamic Programming. The introduction of uncertainty to the planning problem

clearly increased the problem’s similarity to a real surgical insertion where the

planning environment, in other words a patient’s body, can differ from one person

to the other and so the effects of the insertions.

Xu et al considered the planning problem of steerable needles in 3D [27]. They

assumed a rigid tissue which contains spherical obstacles and applied a sampling-

based motion planning algorithm, the Rapidly-exploring Random Trees (RRTs),

to quickly explore the environment. They also planned for a feasible entry point

where they modified the RRT to use backchaining, in other words they reversed

the planning problem to find a feasible path from the target to the entry point

in the negative control space. Their approach of finding a feasible entry point is

important for it surely affects the success of an insertion.

Patil and Alterovitz also developed a planning algorithm to explore a 3D

environment assuming a rigid tissue using an RRT [22]. They combined the RRT
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with a reachability-guided sampling heuristic, relaxed the constraints of constant-

curvature trajectories and offered a speed-up of orders of magnitude. With this

speed-up they allowed the obstacles to be defined interactively, computing the

the motion plans for the updated environment in under 1 second. Their work is

an important fact due to its property of being interactive, for they offer instant

changes in decision which might actually occur in a surgical operation.

Duindam et al presented a different solution to the motion planning problem

using inverse kinematics both for 2D and 3D environments along with reacha-

bility and path complexity analyses [8], where Lobaton et al followed a different

approach in path planning for bevel-tip needles: Instead of sampling needle con-

figurations as in standard sampling methods, they sampled constant-curvature

circles and generated feasible transitions between these sampled circles [16]. Then

they have formulated their problem as finding a minimum directed Steiner tree.

Planning in Deformable Tissues

In planning for a bevel-tip needle within a planar, deformable tissue, Al-

terovitz et al formulated the planning problem as a constrained nonlinear opti-

mization problem [2]. As a result, their algorithm computed locally optimal entry

point and orientation, and an insertion distance which can compensate predicted

tissue deformations and reach the target. Their planner did not accept a rotation

to change the bevel orientation and therefore they applied the planner to the two

meaningful orientations in 2D: bevel-right and bevel-left.

Hauser et al considered a problem of reaching to a target in 3D deformable

tissue, though they did not considered obstacles [11]. They presented a feedback

controller which steers the needle along helical paths within the workspace and

the control policy for steering the needle was: find the helical path which mini-

mizes the distance to the target. They mentioned that in the presence of simple

obstacles, it is possible for the controller to avoid them by simply excluding them

from the workspace.

Patil et al presented a simulator for soft tissue taking into account the un-

certainty in deformation, noisy sensing and unpredictable actuation [23]. They

used a sampling based planner along with a simulator to correspond for tissue

deformations and generated a set of plans based on the expected deformations.

Then they have selected the plan which has the highest estimated probability
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to avoid obstacles and reach the goal. This work is important for taking into

interactions which actually happen in real life, therefore the solution they offer is

a one which takes the scope of prior work and extends it closer for applications

in real life.



Chapter 3

Modeling Needle Motion in

Moving Tissue

3.1 Problem Definition

Figure 3.1: An illustration of the bevel-tip needle. Due to asymmetrical forces
acting on the needle tip, it follows a circular path of radius r as shown in dashes.

In this chapter, we consider the modeling of a steerable needle inserted into

a planar tissue. The needle we take into consideration is a flexible needle with

an asymmetric bevel-tip as shown in Figure 3.1. In particular, when the needle

is pushed towards the tissue, the bevel tip causes the needle to feel asymmetric

forces. This results in the needle bending in the direction of the bevel-tip as it

13
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moves further into the tissue.

In modeling the tissue in which the needle is inserted, we consider the possi-

bility of having different physical states at different times. For instance, we would

like to model insertion when the tissue is deforming under the effect of breathing

with a periodic motion. This model will also comprise the case when the tissue

is stationary, reducing the problem to earlier investigations on needle modeling.

To express the different states of the tissue, we define two separate represen-

tations. The first representation is the real representation, Tr, which reflects the

actual state of the tissue in a given time. For instance, if a tissue under periodic

motion is represented in Tr, we would see the tissue motion as we would in real

life. We define the second representation to be the canonical representation, Tc,

which is a snapshot of the tissue at a specific time. The relationship between

these two representations is such that Tc can be mapped into Tr through a time-

dependent diffeomorphism. Denoting this diffeomorphism with ψ : Tc ×< → Tr,

we can say that any state in Tr can be captured in Tc through ψ. As shown in

Figure 3.2, let pc ∈ Tc. Then we can define the mapping ψ such that at any

time t, pc can be mapped to a real point, pr ∈ Tr, through ψ. In other words

pr = ψt(pc) .

Figure 3.2: An illustration of the tissue in both of its representations. A point
pc ∈ Tc is mapped to pr ∈ Tr through the time dependent diffeomorphism ψ.

In conclusion, we state our problem as the modeling of a bevel-tip needle

within a planar tissue whose state can be described by a time-varying ψ. If such



CHAPTER 3. MODELING NEEDLE MOTION IN MOVING TISSUE 15

a mapping exists, then we will devise our needle model in Tc, where the tissue

appears stationary with respect to time and using ψ, will simulate the needle

insertion in Tr.

3.1.1 Compensation of Tissue Motion

Before we proceed, we should mention an important assumption about our prob-

lem. We assume that the tip of the needle is always in contact with the furthest

point in the tissue to which it has reached along the way. In other words, we

want the needle tip to remain stationary with respect to the tissue. When the

tissue expands or contracts, the path length of the needle trajectory will change,

requiring the driving robot to adjust needle insertion length accordingly. There-

fore, we assume that the needle driver compensates the tissue motion by pushing

and pulling the needle in synchrony with the tissue motion. This compensation is

done by calculating the distance to pull or push the needle. We omit the details

of this compensation, which can easily be derived by computing the path integral

along the image of the needle trajectory in the real space.

3.2 Needle Modeling in Canonical and Real Tis-

sue Spaces

As we have mentioned in Section 3.1, we would like to derive a motion model

for a highly flexible needle with an asymmetric tip as shown in Figure 3.1. In

deriving our model, we begin by defining the configuration of the needle. It should

intuitively be clear that the progress of the needle as it is pushed into the tissue is

primarily determined by the position and the orientation of its tip. Consequently,

we define the configuration of the needle as the vector q := [ xnt, ynt, θnt ], where

xnt and ynt give the horizontal and vertical positions of the needle tip, whereas

θnt gives the orientation of the needle right at its tip relative to the x-axis in the

counterclockwise direction. We also define the tip position in a single vector as

pnt := [ xnt, ynt ]. Then we can rewrite the configuration as q = [ pnt, θnt ].

In Section 3.1, we described two representations for the tissue and mentioned
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that we will formulate the needle model in Tc. The model that we describe will

be used to predict needle configuration as a function of time based on insertion

velocity and needle orientation. Consequently, we need to think of these repre-

sentations to properly define a configuration for the needle. As they are now Tr

and Tc are related in terms of positions through ψ, but a position is not enough to

define the configuration for the needle. It denotes the tip position, but as we have

mentioned a configuration also holds an angle to denote the tip angle. Therefore

we define two new configuration spaces for the needle tip as ℵc := Tc × S1 and

ℵr := Tr × S1.

We now define an extended map, ψ̄, such that both positions and orientations

of the needle tip in ℵc and ℵr can be associated through ψ̄ in these newly defined

configuration spaces. We define this new extended mapping ψ̄ as, ψ̄ := ℵc×< →

ℵr, qr = ψ̄t(qc) = ψ̄t

([
pc

θc

])
.

Figure 3.3: An illustration of the two different configuration space representations
for the needle. Needle tip in ℵc is shown as pc, whereas needle tip in ℵr is shown
as pr. Angles corresponding to the two representations are also shown as θc and
θr. Configuration of a needle is mapped from ℵc to ℵr by the mapping ψ̄.

Intuitively, in this extended mapping ψ̄, tip positions can be mapped using ψ.

What we need to find is how to relate the angles in ℵc and ℵr. Let us denote the

mapping of the angles with ψat , then we can denote the mapping of configurations

in ℵc and ℵr as follows, qr =

[
pr

θr

]
= ψ̄t

([
pc

θc

])
=

[
ψt(pc)

ψat (θc)

]
.

Now we can proceed to define ψat . Let pc be the position of the needle tip in
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ℵc. We define another point p′c which is obtained by an infinitesimal displacement

along the needle direction as shown in Figure 3.3. In other words, for a fixed time

t, p′c = pc + ∆`

[
cos(θc)

sin(θc)

]
. Mapping this point to the real workspace we then

have

p′r = ψt(p
′
c)

= ψt

(
pc + ∆`

[
cos(θc)

sin(θc)

])
.

Using a Taylor expansion, we can rewrite p′r as

p′r = ψt(pc) +∇ψt

∣∣∣∣
pc

(p′c − pc) + H.O.T. (3.1)

= ψt(pc) +∇ψt

∣∣∣∣
pc

(
∆`

[
cos(θc)

sin(θc)

])
+ H.O.T. , (3.2)

where H.O.T. stands for higher order terms in the Taylor expansion.

Finally, using the following definition for θr and (3.2) we can write

θr := lim
∆`→0

∠(p′r − pr) (3.3)

= lim
∆`→0

∠

(
∇ψt

∣∣∣∣
pc

(
∆`

[
cos(θc)

sin(θc)

]))
(3.4)

= lim
∆`→0

∠

(
∆` ∇ψt

∣∣∣∣
pc

[
cos(θc)

sin(θc)

])
. (3.5)

Since we are considering an angle and it is independent of the length of the

displacement we can write

θr = ∠

(
∇ψt

∣∣∣∣
pc

[
cos(θc)

sin(θc)

])
= ψa

t (θc) . (3.6)

This completes the mapping of a needle configuration from ℵc to ℵr. Now,

from defining the mapping between representations, we can move on to deriving

the needle motion model in ℵr.



CHAPTER 3. MODELING NEEDLE MOTION IN MOVING TISSUE 18

3.3 Modeling Nedle Motion in a Moving Tissue

3.3.1 Notation

Before we proceed to the motion model of the needle, let us first introduce the

notation relevant to the derivations. We denote with κ, the curvature of the

path which the needle follows if the tissue were stationary. Note that when the

tissue is stationary, κ only depends on the physical properties of the needle,

more specifically, the bevel angle. Therefore, whenever we mention κ, we mean

the curvature which purely depends on the bevel-angle. We then define k, as

the curvature of the path which the needle tip follows throughout the insertion

within a moving tissue. Naturally, if tissue has no motion of its own, then k = κ.

On the other hand, if the tissue has any non-stationary motion or deformation,

then k will reflect the effect of the tissue motion in addition to the stationary κ.

In fact, if κ = 0 then k will only be determined by the tissue motion itself.

In two dimensions, the needle tip can have one of two bevel orientations: left

or right. We formalize this observation in the form of a flag, s ∈ {−1, 1} where

the values −1 and 1 correspond to left and right orientations, respectively.

Finally, in Section 3.1 we have mentioned that the needle is inserted with

constant velocity, we denote the speed of the insertion relative to the tissue in the

real space by v.

Note that among these, κ and v are assumed to be known a priori since the

bevel-angle of the needle is fixed and the insertion speed is controlled by the

driver and therefore can be known beforehand.

3.3.2 Motion Model in the Canonical Tissue Space

For a stationary tissue, needle motion can easily be modeled as a constant curva-

ture path [12, 2] with either bevel-left or bevel-right orientations. But for a time

varying deforming tissue, even though κ stays constant for its motion in the tissue

itself, k changes since the needle tip is deviated by the motion of the tissue. In

other words, both the insertion of the needle and its deviation due to the tissue
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motion are observed at the same time in ℵr. In modeling this behavior, we focus

on the instantaneous motion model where the motion of the needle is defined

through the derivative of the needle configuration dqr/dt at any given time.

In Section 3.2, we defined the map ψat such that a needle configuration can be

mapped from ℵc to ℵr. In this section, we will introduce the motion model for

the bevel-tip needle based on these two mappings. As a consequence, we will be

able to relate dpc/dt and dθc/dt to dpr/dt and dθr/dt, respectively.

Let us first derive the relation between dpr/dt and dpc/dt. By using the

definition of ψt, we can write

dpr
dt

=
d

dt
(ψt(pc)) (3.7)

=
∂ψt(pc)

∂t
+
∂ψt(pc)

∂pc

dpc
dt

(3.8)

=
∂ψt(pc)

∂t
+∇ψt

∣∣∣∣
pc

dpc
dt

(3.9)

= Vt + V r
n , (3.10)

where we identify Vt as the term related to the motion of the tissue and V r
n as

the term related the needle motion in ℵr, denoting the tip velocity relative to

the coordinate frame in ℵr. As we mentioned in Section 3.1, we assume that the

needle is pushed into the tissue at a speed that will maintain a constant velocity

for the needle tip in ℵr. Since this term V r
n is related to this known constant

scalar, which we denote with v, we can obtain dpc/dt from the following equality,

v

[
cos(θr(t))

sin(θr(t))

]
= ∇ψt

∣∣∣∣
pc

.
dpc
dt

(3.11)

Renaming the Jacobian for convenience with J := ∇ψt

∣∣∣∣
pc

, we use it to rewrite

(3.11) as

v

[
cos(θr(t))

sin(θr(t))

]
= J

dpc
dt

. (3.12)

Using the control input v, J and (3.12) we can then obtain dpc/dt as,

dpc
dt

= J−1 v

[
cos(θr(t))

sin(θr(t))

]
. (3.13)
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We are now in a position to derive the relation between dθc/dt and dθr/dt.

Let us define wc(t) :=

[
cos(θc(t))

sin(θc(t))

]
, to denote the direction of the needle tip

in Tc. We can now define wr(t) := J(t) wc(t) to denote the tip direction in ℵr.
Using wc and wr, we can write (3.6) as,

θr = ∠(J(t) wc(t)) (3.14)

= ∠ (wr(t)) (3.15)

= atan(wrx , wry). (3.16)

Using (3.16), we can find dθr/dt as,

dθr
dt

=
d

dt
(atan(wrx , wry)) (3.17)

= ∇atan
(
∂J

∂t
wc(t) + J

∂wc
∂t

)
, (3.18)

where

∂J

∂t
=
∂∇ψt

∂t

∣∣∣∣
t,pc

+

∂∇ψt

∣∣∣∣
pc

∂pc

∂pc
∂t

, (3.19)

∂wc
∂t

=

[
−sin(θc(t))

cos(θc(t))

]
∂θc
∂t

. (3.20)

Defining u(t) :=

[
−sin(θc(t))

cos(θc(t))

]
and using (3.19) and (3.20) to rewrite (3.18),

we have

dθr
dt

= ∇atan
(
∂∇ψt

∂t

∣∣∣∣
t,pc

wc(t) +

∂∇ψt

∣∣∣∣
pc

∂pc

∂pc
∂t

wc(t) + J u(t)
∂θc
∂t

)
.

We have explained that the curvature of needle motion relative to the tissue,

κ, stays constant due to its nature of being dependent only on the bevel-angle

and therefore the rate of change of tip’s angle due to pure needle insertion is equal

to κvs in ℵr. To obtain dθc/dt, we need to find the components corresponding

to pure needle motion in (3.21) and set these terms to be equal to this change.

Note that the latter two terms in parenthesis in (3.21) multiplied by∇atan, are
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the terms related to the needle motion itself and therefore should be set to κ. In

other words

κvs = ∇atan
(∂∇ψt

∣∣∣∣
pc

∂pc

∂pc
∂t

wc(t) + J(t) u(t)
∂θc
∂t

)
,

= ∇atan
∂∇ψt

∣∣∣∣
pcx

∂pcx

∂pcx
∂t

wc(t) (3.21)

+ ∇atan
∂∇ψt

∣∣∣∣
pcy

∂pcy

∂pcy
∂t

wc(t) (3.22)

+ ∇atan J(t) u(t)
∂θc
∂t

. (3.23)

Now let us define

k1 := ∇atan
∂∇ψt

∣∣∣∣
pcx

∂pcx

∂pcx
∂t

wc(t),

k2 := ∇atan
∂∇ψt

∣∣∣∣
pcy

∂pcy

∂pcy
∂t

wc(t),

k3 := ∇atan J(t) u(t).

Note that k1, k2 and k3 are all scalars. Therefore we have dθc/dt computed as,

dθc
dt

=
κvs− (k1 + k2)

k3

. (3.24)

These derivations complete the instantaneous needle motion model in the

canonical space ℵc.

3.4 Verification of the Model

In Section 3.3 we modeled the motion of the needle in (3.13) and (3.24). In this

section, we present simulation results to qualitatively verify this motion model.
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3.4.1 Simulation Environment and Parameters

We have used Matlab to implement the motion model and obtain simulation re-

sults for needle insertion. In order obtain the needle trajectory, we have used the

ode45 Runge-Kutta integrator provided with Matlab. Numerically integrating

the differential equations (3.13) and (3.24), we were able to obtain needle con-

figurations in ℵc for a needle insertion once the control inputs, namely κ and v,

were specified. Having obtained the configurations of the insertion path, we have

used ψt to obtain the insertion data in ℵr. The time interval between successive

configurations during the integration was kept below 10−3s to ensure numerical

accuracy.

3.4.2 Insertion with Identity Mapping

When the mapping ψ is identity, i.e. ψt(pc) = [xc, yc]
T = pr, the motion model

given in Section 3.3 should reduce to dθc/dt = dθr/dt and dpc/dt = dpr/dt. In

this section, we first give the analytical validation for this reduction and then we

present simulation results, for numerical comparison with prior work.

First, let us start with the reduction of dpc/dt. From Section 3.3 we know that

dpc/dt = J−1 v[cos(θr(t)), sin(θr(t))]
T and for an identity mapping, J = I2 =

J−1. Therefore, we simply have dpc/dt = v[cos(θr(t)), sin(θr(t))]
T = dpr/dt. For

dθc/dt, let us find the scalars k1, k2 and k3 given in Equation (3.24). Since there

are no terms in J related to the positions in ℵc scalars k1 and k2 reduce to 0.

Therefore we only need to find k3 which is given as k3 = ∇atan J(t) u(t). As we

have stated J = I2 and recall from Section 3.3 that u = [−sin(θc(t)), cos(θc(t))]
T ,

then by substituting the gradient of atan in its place we have

k3 =

[
−sin(θc)

cos2(θc) + sin2(θc)

cos(θc)

cos2(θc) + sin2(θc)

] [
1 0

0 1

] [
−sin(θc)

cos(θc)

]
= 1.

This yields dθc/dt = (κvs− (k1 + k2))/k3 = κvs = dθc/dt. Due to this reduction

configurations obtained in ℵc are equal to the ones mapped to ℵr.

We have performed two insertions with the identity mapping, one for an in-

sertion where the needle orientation is kept constant during the insertion and

another where the orientation is changed in the middle. For the first experiment,
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Figure 3.4: An illustration of needle insertion into a stationary tissue with κ =
0.0468, v = 1 cm/s and qinit = [0 , 0 , 0]. Bevel-orientation of the needle is kept
constant during the insertion. The needle followed a circular path with radius
21.3cm. The insertion of point of the needle is shown with a cross where the
needle-tip is shown with a circle.

we set v to be 1 cm/s and κ to be 0.0468 to simulate the insertion Webster et

al performed with a needle of the same curvature [12]. Needle was inserted with

initial configuration qinit = [0, 0, 0]T and its orientation was kept constant during

the insertion. As shown in Figure 3.4, the needle followed a circular arc of radius

21.3cm as in the experiments Webster et al performed in their work [12].

For the second experiment, we have performed a double-bend insertion where

the bevel orientation is changed in the middle of the insertion. We used the same

initial configuration, insertion speed and curvature as in the first experiment. The

results of this insertion are shown in Figure 3.5 and Figure 3.6. Figure 3.5 shows

needle at the end of the insertion and Figure 3.6 (a) and Figure 3.6 (b) show the

tip angle and the curvature values throughout the insertion respectively.

3.4.3 Insertion with Linear Constant Tissue Scaling

In this experiment, we simulated the insertion of a bevel-tip needle into a tissue

which is stretched to twice of its initial size and into another which is compressed

to half of its initial size. Note that the stretching and the compressing of the

tissue is done before insertion and hence, in terms of needle kinematics, the tissue



CHAPTER 3. MODELING NEEDLE MOTION IN MOVING TISSUE 24

0 5 10 15 20 25 30

−14

−12

−10

−8

−6

−4

−2

0

2

4

Needle in ℵ r

y 
(c

m
)

x (cm)

Figure 3.5: An illustration of needle insertion into a stationary tissue with κ =
0.0468, v = 1 cm/s and qinit = [0 , 0 , 0]. Bevel orientation of the needle
is changed from bevel-right to bevel-left in the middle of the insertion. The
insertion point of the needle is shown with a cross where the needle-tip is shown
with a circle.
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Figure 3.6: (a) Angle and (b) curvature trajectories for the double-bend insertion
plotted as a function of insertion time.
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is no different that a stationary one. In other words while inserted into this

tissue, the needle should follow a constant-curvature path in ℵr, since in terms

of needle, the tissue is equivalent to a stationary one and the needle is not aware

of it being in a stretched or compressed state. The state of the tissue is captured

in ℵc through ψ.
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Figure 3.7: An illustration of needle insertion into a stretched tissue. The needle
is inserted into the tissue for 30 seconds with a constant velocity of 1 cm/s, where
the needle curvature is set to be 0.0468. The entry point for the needle is shown
with a cross where the needle-tip is shown with a circle. (a) shows a snapshot of
the needle in ℵc at the end of the insertion, whereas (b) shows the needle in ℵr.

In Figure 3.7, we show the needle at the end of the insertion while the tissue

preserves its stretched state. Figure 3.7 (a) shows the view of the needle in ℵc
and Figure 3.7 (b) in ℵr, respectively. Note that the needle path in ℵc shows

the effect of stretching done on the tissue. As we have defined ℵc to capture the

initial state of the tissue, we could check the validity of this result intuitively.

Imagine that we let loose the stretching on the tissue right after the insertion,

then with our assumption of the compensation of the tissue motion being present,

the needle view would in fact be just like the view as shown in Figure 3.7 (a).

Similar to insertion into a stretched tissue, when the tissue is compressed

before the insertion, the canonical representation would then capture the com-

pression in ℵr and therefore we should see the needle following a path which is
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Figure 3.8: An illustration of the needle insertion into a compressed tissue. Needle
is inserted into the tissue for 30 seconds with a constant velocity of 1 cm/s, where
the needle curvature is set to be 0.0468. Part (a) shows the needle at the end of
the insertion ℵc whereas part (b) shows the needle in ℵr.

wider as shown in Figure 3.8 (a). Again as in the stretched case we can predict

the results shown in Figure 3.8 following the idea that if the tissue in ℵr is relaxed

to go back to its initial state then the view of the needle would be the one as

shown in Figure 3.8 (a). Simulation results confirm this intuition, qualitatively

verifying that the time-independent parts of the motion model are correct.

In Figures 3.9 and 3.10, we show the angle of the tip throughout insertion

for both of expanded and compressed tissue experiments as well as correspond-

ing curvature values for the path that the needle tip has followed. Note that

as we have mentioned, whether the tissue is stretched or compressed the nee-

dle perceives it as a stationary one. Therefore, the needle view as well as the

corresponding tip angles and curvature values in ℵr for both of the experiments

give the same results. The differences appear for curvature and angle values in

ℵc. Figure 3.9 shows the angle of the tip for both of the experiments in ℵc and

ℵr. Note that the values in ℵr coincides. Therefore as shown in Figure 3.10 the

curvature values in ℵr coincides as well.
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Figure 3.9: Angle of the needle tip throughout the insertion. We display the angle
values for the needle in both of the representations, ℵc and ℵr, for an insertion
into a stretched tissue as well as an insertion into a compressed one.
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Figure 3.10: Curvature values obtained for insertion into a compressed and a
stretched tissue in both ℵc and ℵr.
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Figure 3.11: Tip trace of the needle during the insertion.

3.4.4 Needle Insertion for Time Dependent Tissue Motion

3.4.4.1 Linear Motion

As a first test for a time dependent mapping, we simulated needle insertion into

a tissue which stretches linearly with time. In other words, we define the state of

the tissue with the linear mapping

ψt :

[
xr

yr

]
=

[
(0.05 + t)xc

yc

]
.

First, we set κ to zero, making the steerable needle a rigid one, and insert the

needle with initial configuration qinit = [0, 0, π/4] into this linearly stretching

tissue.

Figures 3.11.a and 3.11.b show the positions followed by the tip of the needle

throughout insertion in ℵc and ℵr, respectively. Note that the distance between

the positions in ℵc decreases, where the ones in ℵr gets further away from each

other as time progresses. Intuitively, this result shown in Figure 3.11 looks similar

to the ones we have obtained in Section 3.4.3. Think of that result we have

obtained for the insertion into a stretched tissue, we have seen in Section 3.4.3

that the tissue in ℵc reflected the tissue state in ℵr by needle configurations

which are closer to each other more than they are in Tr. Here, we have something
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Figure 3.12: Angles of the needle tip throughout the insertion.

similar. Instead of a tissue which is stretched at a constant rate we now have a

rate which grows with time. Therefore, as the tissue in ℵr get wider and wider,

this state of the tissue will be captured in ℵc where we see the configurations

getting tighter and tighter. Another way to interpret the results shown in Figure

3.11 is that since the insertion speed is kept constant in ℵr and Jacobian of the

mapping gets larger in time, the correct reflection of the configurations getting

farther away from each other in ℵr should in ℵc be the ones just as shown in

Figure 3.11 (a) which are closer to each other. Note that the assumption we

have made of the compensation of the tissue is important here, in other words to

capture only the effect of the tissue growth we need to make sure that the tip of

the needle is kept in contact with the last contact point by the needle driver.

We have shown the values that the tip angle takes throughout insertion and

the curvature of the path it had followed, namely k in Figures 3.12 and 3.13,

respectively. Note that since the needle curvature is kept constant we have a

zero curvature in ℵr and the curvature changes in ℵc corresponds only to the

stretching of the tissue. We have also shown the curvature of the final state of

needle in Figure 3.14, note that this reflects the curvature of the needle which is

0.

To make the simulation more clear, we show snapshots from the insertion in

ℵr. Figure 3.15 illustrates the the tip trajectory as well as the view of the needle

at different times during the insertion, where the insertion speed of the needle is

10 cm/s all the way through.
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Figure 3.13: Curvature values for the path followed by the needle tip.
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Figure 3.14: Curvature values along the needle body at its final state, at the end
of insertion.
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Figure 3.15: Snapshots from a needle insertion into a linearly stretching tissue.
Tissue is denoted by blue crosses where the tip trace is shown in blue dots. Needle
is shown in a solid black line where the entry point is denoted with a black cross
and the needle-tip with a circle. Snapshots are taken in ℵr where the needle is
inserted with 10 cm/s constant velocity into the stretching tissue.
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3.4.4.2 Periodic Mapping

Finally, we have tested our motion model for an insertion into a tissue which is

under a periodic motion. As in the linear case, tissue is fixed by one end and is

under a motion which stretches and compresses the tissue in a periodic manner.

The mapping to capture this motion is

ψt :

[
xr

yr

]
=

[
(1 + Asin(wt))xc

yc

]
,

where A denotes the amplitude and w the frequency of the periodic motion.

As the first experiment, we have inserted a rigid needle with initial configura-

tion qinit = [0, 0, π/4]. The speed for the insertion is set to be 10 cm/s and A and

w of the tissue motion to 0.2 and 2 Hz respectively. We show the configurations

that the tip have been during the insertion in Figure 3.16 and snapshots from the

insertion of the needle are shown in Figure 3.17. The needle is inserted within

the tissue for 8 s and note that since we have set w to be 2 Hz we see one full

period in ≈ 3s as shown in Figure 3.18 where we have displayed the x values of

the needle tip in ℵr.
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Figure 3.16: Tip trace of the needle-tip during the insertion into a tissue under
periodic motion. (a) shows the tip trace in ℵc. (b) shows the tip trace in ℵr.

As the second experiment we have tested an insertion when the needle cur-

vature κ = 0.0468. As the initial configuration for this insertion we have set
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Figure 3.17: Snapshots taken in ℵr where the needle is inserted with 10 cm/s
constant velocity for insertion under periodic motion. Tissue is denoted by blue
crosses where the path followed by the tip is shown with blue dots and the needle
as a solid line.
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Figure 3.18: x values which are taken by the needle tip in ℵr for the insertion
under periodic motion.

qinit = [0 , 30 , 0]. The speed for the insertion is set to be 10 cm/s and A and

w of the tissue motion to 0.2 and 2 Hz respectively. We show the configurations

that the tip have been during the insertion in Figure 3.19 and the final stated of

the needle in both representations in Figure 3.20. The needle is inserted within

the tissue for 4 s and note that since we have set w to be 2 Hz we see one full

period in ≈ 3s as in the previous experiment. We have displayed the angle values

of the needle tip throughout the insertion in Figure 3.21 and the corresponding

curvature values in Figure 3.22. Finally, we have shown the curvature of the

needle body at the end of the insertion in Figure 3.23.
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Figure 3.19: Tip trace of the needle-tip during the insertion into a tissue under
periodic motion. (a) shows the tip trace in ℵc. (b) shows the tip trace in ℵr.
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Figure 3.20: Final view of the needle at the end of insertion. (a) shows the needle
view in ℵc. (b) shows the needle view in ℵr.
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Figure 3.21: Angles of the needle tip throughout the insertion.
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Figure 3.22: Curvature values for the path followed by the needle tip.
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Figure 3.23: Curvature values along the needle body at its final state, at the end
of insertion.



Chapter 4

Planning for Needle Motion in

Moving Tissue

In this chapter, we consider the problem of motion planning for the bevel-tip

flexible needle in a tissue which is under periodic motion. We choose this scenario

for the tissue so that it could, for instance, represent the effect of the heart

beating during a cardiac surgery, or the effect of breathing in any other procedure

with needle insertion. We present the use of a known planning algorithm, the

Rapidly-exploring Random Trees (RRTs), using the needle insertion model we

have developed in Chapter 3.

4.1 Problem Definition

Since we have derived the needle model in a 2-D space, planning is also considered

only in 2-D as well. For the sake of simplicity, we keep the tissue fixed along one

side, so the tissue stretches back and forth along one axis. The actual state of the

tissue is represented in ℵr and ℵc represents its idle state. The movement of the

tissue is captured by ψt =

[
(1 + Asin(wt))xc

yc

]
where A denotes the amplitude

and w, the frequency of the periodic motion. Obstacles in the tissue are defined to

be polygonal, representing segments of tissue which we want the needle to avoid

38
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getting in contact with. Due to their nature of being regions from the moving

tissue, the obstacles also follow the periodic motion of the tissue. The needle is

inserted into the tissue from an initial entry point to reach a target area in the

tissue, while avoiding contact with these obstacles. The motion planning problem

is to find a sequence of control parameters. For the 2-D case, this is a sequence

of bevel orientations and how long they are maintained, such that the needle is

guided to the target area.

4.2 Motion Planning Using RRT

Steering bevel-tip needles requires considering nonholonomic constraints: The

needle can only be inserted along the tip direction, in other words in the y-

direction as shown in Figure 3.1 and not in the x-direction. We chose to use

Rapidly-exploring Random Trees since they are suitable for path planning prob-

lems which involve nonholonomic constraints.

We will introduce the details of implementing the algorithm later in this sec-

tion but mainly, we initialize the root node of the tree with the initial configura-

tion of the needle. Then following the RRT algorithm, a reachable, collision-free

configuration is randomly sampled to grow the tree from the nearest existing node

until the whole space is covered or a number of trials, n, are reached or the tree

cannot grow anymore due to the obstacles blocking it way.

Nodes of the tree will contain a needle configuration as well as the time in

which that particular configuration is reached during the insertion. For instance,

this time property, tj, for the jth node of the tree will denote the time at which the

configuration of the jth node is reached. This property of the node is important

to capture the movement of the tissue for this movement is a time-dependent one.

The distance between the nodes is determined by how long the needle is

inserted while following a specific orientation. This time in between the nodes is

kept constant while the tree is generated and we denote this as ti. Note that using

ti, we obtain time properties of each node simply by adding it to the parent’s time

value.
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As a planning decision to explore the environment more quickly, when a ran-

dom configuration is generated and the closest node in the tree is found we gen-

erate two children nodes from that node; one obtained by inserting the needle

with bevel-right orientation during ti s and another obtained by inserting the

needle with bevel-left orientation during ti s. Recall that bevel-orientation was

captured by a flag s ∈ {−1, 1} where the values −1 and 1 correspond to left and

right orientations, respectively.

Having defined the properties of a node in the tree, we now give the algorithm

to build an RRT from qinit. This algorithm is developed by adapting the RRT

algorithm given in [4] to capture the time property of the tissue movement and

our decision of growing two children nodes to expand the tree more quickly. Since

we have developed the motion model of the needle in ℵc the planning also takes

place in the same configuration space.

Algorithm 1 Build an RRT from qinit

1: procedure BuildRRT(qinit, n)
2: T ← qinit
3: for i = 1 to n do
4: pick q randomly from ℵc
5: Extend(T,q)
6: end for
7: end procedure

8: procedure Extend(T , q)
9: qnear ← closest-node(T ,q)
10: qright ← motion-model(qnear,tnear,−1)
11: qleft ← motion-model(qnear,tnear,−1)
12: if qright is collision-free then
13: T.add-child(qright,qnear)
14: end if
15: if qleft is collision-free then
16: T.add-child(qleft,qnear)
17: end if
18: end procedure

Algorithm 1 repeatedly expands the tree T from qinit by generating a random

collision-free configuration q and growing the tree towards it. While growing the

tree from qnear towards q, local planner uses the instantaneous motion model



CHAPTER 4. PLANNING FOR NEEDLE MOTION IN MOVING TISSUE41

developed in Chapter 3 to obtain new configurations qright and qleft simply by

using two different values of the flag s. Note that when we find the closest

node in the tree, qnear, to a random configuration, we only look at the Euclidean

distance between the positions. At that point, the angle value in that random

configuration is not important for the angle of any newly added configuration to

the tree only depends on the parent node’s tip angle.

Last thing to mention about the implementation of the RRT is that we do not

uniformly generate random configurations but instead we generate biased random

configurations, where it is guaranteed that in a certain number of generations, a

number of configurations will definitely be in the target area.

Last thing to do in the planning is to perform a search for a feasible path in

the tree. For this, we have implemented A* search [4] to find the shortest feasible

path in the tree, if such a feasible path exists. We have kept the number of trials,

n, big enough to ensure wide coverage of the configuration space so that when

we would perform A* search to obtain the shortest feasible path in the tree, we

would know that this is not a local minimum. In other words, tree is grown wide

enough so that there are no nodes which are not expanded and may lead to a

shorter path. We have followed such an approach since the motion planning is

considered to be a solution to a medical problem and therefore the shortest and

fastest solution is the one which would be preferred in those procedures.

4.3 Simulation Experiments

We have tested our planning approach with various experiments where as the

first step we have built an RRT in ℵc and then searched for the shortest feasible

path, if one such path exists. Then if the search returned with such a path, we

have mapped the control inputs to ℵr and obtained the insertion simulation of

the needle in ℵr where the movement of the tissue as well as the obstacles are

shown as well.
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4.3.1 Simulation Environment and Parameters

As in testing the motion model in Chapter 3, we have used Matlab to implement

the RRT and obtain simulation results for planning a needle insertion. When gen-

erating new nodes to add to the tree we have used our motion model developed

in Chapter 3, where we simply generated an insertion of ti s with initial config-

uration being the parent node’s configuration and s, taking its value depending

on which child to generate.

In the experiments we have set the κ and v for the needle as 0.0468 and 1 cm/s,

respectively. We have set ti to be 4s and for the amplitude and frequency of the

tissue motion we have selected the values 0.2 and π/24Hz, respectively. We have

selected such a frequency value so that the tissue stretches back and forth to

reach its idle state in 48s. This gives in illustrative results with a ti value of 4s.

We have generated multiple test environments manually where we have placed

the obstacles and the target area within each of the environments by a script we

have written again in Matlab.

4.3.2 Experiment with a Single Obstacle

As the first experiment, we have considered planning of an insertion while the

target area is blocked by a single obstacle as shown in Figure 4.1.

The tree is generated in ℵc with an initial configuration qinit = [0, 0, π/3]T .

The shortest feasible path found in the tree, as shown in Figure 4.1, is mapped to

ℵr and there as the tissue moves with time we have the control input sequences

denoting which orientation the needle should be at which times. Through this

sequence we can control the needle to be driven from qinit to the target area,

avoiding contact with the obstacle.

Snapshots from the insertion is shown in Figure 4.2 where keep in mind that

the assumption of the compensation of the tissue motion we have made in Chap-

ter 3 is present, so that the needle tip preserves its last contact point. This is

important we want the needle to stay in the target area once it reaches there.
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Figure 4.1: An illustration of the RRT generated in ℵc after n = 400 iterations
with qinit = [0 0 π

3
]T . Entry position of the needle is shown with a blue dot

and the initial angle with a red, dashed line segment. Target area is shown as a
rectangular area with a cross at its center. The path in the tree drawn in blue is
the shortest feasible path found to drive the needle from qinit to the target.
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(a) Initial state of the tissue at t=0s
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(b) t=16s. Tissue stretches forth.
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(c) t=32s. Tissue stretches back.
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(d) t=44s. Target is reached.

Figure 4.2: Snapshots of the needle insertion in ℵr. Tissue is denoted as blue
crosses, target area with a dashed square. We have shown the entry point of the
needle with a blue dot and the initial angle with a black, dashed line segment.
Needle reaches its target in 44s.
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4.3.3 Experiment with Multiple Obstacles

As the second experiment, we have tested the planner while the target was behind

two obstacles. In this experiment, we have tested two different initial configu-

rations where for one of them a feasible path is found and for the other RRT

stopped growing due to the presence of the obstacles and therefore the needle did

not reach the target.

With qinit = [0, 0, π/3]T the tree is generated in 162 steps and then it

stops since it had reached the maximum growth size, in other words there are

no configurations to add to the tree since the branches are either blocked by

the obstacles or the workspace boundary the algorithm stops and searches for a

shortest, feasible path. Figure 4.3 shows the tree after 162 trials as well as the

path found to direct the needle to the target area. Snapshots from the insertion

are shown in Figure 4.4, where the needle reaches the target area in ℵr within

48s.

In this same experiment, if we change the initial configuration of the needle

to be qinit = [0 0
−π
3

]T , then as shown in Figure 4.5 the needle grows for 278

iterations but then it is blocked by the obstacles and the workspace boundary so

it stops before reaching to the target area.

This brings out the issue of finding an initial configuration which makes the

tree to grow to reach the target or another one to find the optimal initial config-

uration to find the optimal path of shortest length. This is not an issue we have

covered in this work, but since the topic occurred here we wanted to mention the

problem.

4.3.4 Experiment with Narrow Space

As in the previous example with multiple obstacles we have tested this workspace

with different initial configurations. Here, as in the previous example we present

a success case and a failure case.

Figure 4.6 shows the tree and the shortest path found when qinit = [0 0 0]T .

The tree passes through the gap, covering the area behind the obstacles where the
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Figure 4.3: RRT generated in ℵc in n = 162 iterations with qinit = [0 0 π
3
]T .

Entry position of the needle is shown with a blue dot and the initial angle with
a red, dashed line segment. Target area is shown as a rectangular area with a
cross at its center. The path in the tree drawn in blue is the shortest feasible
path found to drive the needle from qinit to the target.
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(a) Initial state of the tissue at t=0s

0 10 20 30 40 50 60 70
−25

−20

−15

−10

−5

0

5

10

15

20

25

x (cm)

y 
(c

m
)

(b) t=12s. Tissue is at its most stretched state.
forth.
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(c) t=24s. Tissue stretches back to idle state.
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(d) t=36s.Tissue is at its most compressed state.
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(e) t=48s. Tissue at idle state.Target is reached.

Figure 4.4: Snapshots of the needle insertion in ℵr with qinit = [0, 0, π/3]T .
Tissue is denoted as blue crosses, target area with a dashed square. We have
shown the entry point of the needle with a blue dot and the initial angle with a
black, dashed line segment. Needle reaches its target in 48s.
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Figure 4.5: RRT generated in ℵc in n = 278 iterations with qinit = [0 0 −π
3

]T .
Entry position of the needle is shown with a blue dot and the initial angle with
a red, dashed line segment. Target area is shown as a rectangular area with a
cross at its center. Tree is blocked by the obstacles and the workspace boundary
before it reaches the target area.
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Figure 4.6: RRT generated in ℵc in n = 500 iterations with qinit = [0 0 0]T . Entry
position of the needle is shown with a blue dot and the initial angle with a red,
dashed line segment. Target area is shown as a rectangular area with a cross at
its center. The path in the tree drawn in blue is the shortest feasible path found
to drive the needle from qinit to the target.
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Figure 4.7: RRT generated in ℵc in n = 210 iterations with qinit = [0 0 π
3
]T .

Entry position of the needle is shown with a blue dot and the initial angle with
a red, dashed line segment. Target area is shown as a rectangular area with a
cross at its center. Tree is blocked by the obstacles and the workspace boundary
before it reaches the target area.

target area resides in, in 500 iterations. Though, as shown in Figure 4.7 when we

change the initial configuration to be qinit = [0 0
π

3
]T , tree stops growing before

even reaching the gap between the obstacles.

Snapshots from the insertion in ℵr are shown in Figure 4.8 where the needle

reaches its target, passing the gap between the obstacles in 48s.

4.3.5 Experiment with Complex Obstacle

As the final experiment, we have preferred to test the planner with a single,

complex obstacle as shown in Figure 4.9. We have placed the target area such

that it is covered by the obstacle except one side to increase the difficulty of
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(a) Initial state of the tissue at t=0s
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(b) t=12s. Tissue is at its most stretched state.
forth.
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(c) t=24s. Tissue stretches back to idle state.
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(d) t=36s.Tissue is at its most compressed state.
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(e) t=44s.
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(f) t=48s. Target is reached.

Figure 4.8: Snapshots of the needle insertion in ℵr with qinit = [0 0 0]T . Tissue
is denoted as blue crosses, target area with a dashed square. We have shown
the entry point of the needle with a blue dot and the initial angle with a black,
dashed line segment. Needle reaches its target in 48s.
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Figure 4.9: RRT generated in ℵc in n = 1000 iterations with qinit = [0 0
2π

5
]T .

Entry position of the needle is shown with a blue dot and the initial angle with
a red, dashed line segment. Target area is shown as a rectangular area with a
cross at its center. The path in the tree drawn in blue is the shortest feasible
path found to drive the needle from qinit to the target.

the task. As in the previous cases, selection of the initial configuration plays a

part of successfully growing the tree to the target though in this case due to the

complexity of the obstacle even the slightest change in the angle effects the result.

Figure 4.9 shows the tree grown in 1000 iterations with qinit = [0 0
2π

5
]T .

With this initial configuration tree reaches the target and the path found in it

is shown in Figure 4.9 whereas, when we change the initial angle to be
5π

14
then

tree cannot reach the target in, again, 1000 iterations as shown in Figure 4.10.

We have shown the snapshots from the insertion in ℵr in Figure 4.11 where

the needle reaches its target in 112s. This insertion corresponds to the path found

in the tree shown in Figure 4.9, when qinit = [0 0
2π

5
]T . In this case, the needle
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Figure 4.10: RRT generated in ℵc in n = 1000 iterations with qinit = [0 0
5π

14
]T .

Entry position of the needle is shown with a blue dot and the initial angle with
a red, dashed line segment. Target area is shown as a rectangular area with a
cross at its center. Tree is blocked by the obstacles and the workspace boundary
before it reaches the target area.

had one orientation change: Starting from bevel-left orientation as the initial

orientation, the needle then changes the orientation to bevel-right after the first

4s and preserves it until the end of the insertion.
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(a) Initial state of the tissue at t=0s
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(b) t=20s
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(c) t=44s
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(d) t=72s
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(e) t=92s
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(f) t=112s. Target is reached.

Figure 4.11: Snapshots of the needle insertion in ℵr with qinit = [0 0 0]T . Tissue
is denoted as blue crosses, target area with a dashed square. We have shown
the entry point of the needle with a blue dot and the initial angle with a black,
dashed line segment. Needle reaches its target in 112s.



Chapter 5

Conclusion & Future Work

5.1 Conclusion

In this thesis, we presented a kinematic model for a bevel-tip flexible needle

insertion within a tissue of state which can be captured by a time-dependent

diffeomorphism. As general as this diffeomorphism can be, so as the developed

needle model.

Based on this needle model, we presented a solution for a needle insertion

into a planar tissue which is under a periodic motion. We modified a sampling-

based planner to quickly explore the workspace of the needle to find a feasible

path which will direct the needle to a goal position and avoid the obstacles which

follow the same periodic motion of the tissue.

5.2 Discussion

Throughout this thesis, when we talked about changing the bevel-orientation we

were aware that the time of changing the orientation might affect insertion. This

is only an issue if this time is not neglectable in terms of the frequency of the

tissue motion. Note that if the time of changing the orientation is big in terms

of that frequency, than one should wait for the needle to complete a full cycle to

55



CHAPTER 5. CONCLUSION & FUTURE WORK 56

be at that specific state in which the decision of orientation change is made.

5.3 Future Work

In this work, we have manually generated the obstacles and formed the workspace.

One alternative to this could be to randomly generate polygonal obstacles. In

this way, one can generate many workspaces and by testing the planner with

these workspaces, a success rate can be acquired.

Also, when we generated the RRT we have kept the time between the nodes

fixed. This time can be considered as a parameter and in future work this might

help finding the optimal path by generating a set of trees with different time steps

in-between the nodes.

Another thing to note is that, as we have mentioned in the corresponding

sections in Chapter 4, finding the optimal entry point when applying the planning

is very important for finding a feasible path for as shown in the experiments, initial

position and the angle of the needle may lead to a tree which is blocked by the

obstacles before reaching the goal. Therefore, this is an important fact to be

considered in the future work.

Finally, in this work we have considered that the tissue, as it can be in a

movement, remains undeformed with respect to the needle. To improve reality

the model could be developed such that the insertion is done with a soft tissue

which can be in any state defined by a time-dependent diffeomorphism. And

from that step, the direction for this work could be to develop a mechanical

model instead of a kinematic one.
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