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Approved for the Graduate School of Engineering and Science:

Prof. Dr. Levent Onural
Director of the Graduate School

ii



ABSTRACT

IMAGE PROCESSING METHODS FOR
COMPUTER-AIDED INTERPRETATION OF

MICROSCOPIC IMAGES

Musa Furkan Keskin

M.S. in Electrical and Electronics Engineering

Supervisor: Prof. Dr. A. Enis Çetin

September, 2012

Image processing algorithms for automated analysis of microscopic images have

become increasingly popular in the last decade with the remarkable growth in

computational power. The advent of high-throughput scanning devices allows

for computer-assisted evaluation of microscopic images, resulting in a quick and

unbiased image interpretation that will facilitate the clinical decision-making pro-

cess. In this thesis, new methods are proposed to provide solution to two image

analysis problems in biology and histopathology.

The first problem is the classification of human carcinoma cell line images.

Cancer cell lines are widely used for research purposes in laboratories all over

the world. In molecular biology studies, researchers deal with a large number

of specimens whose identity have to be checked at various points in time. A

novel computerized method is presented for cancer cell line image classification.

Microscopic images containing irregular carcinoma cell patterns are represented

by subwindows which correspond to foreground pixels. For each subwindow,

a covariance descriptor utilizing the dual-tree complex wavelet transform (DT-

CWT) coefficients as pixel features is computed. A Support Vector Machine

(SVM) classifier with radial basis function (RBF) kernel is employed for final

classification. For 14 different classes, we achieve an overall accuracy of 98%,

which outperforms the classical covariance based methods.

Histopathological image analysis problem is related to the grading of follicular

lymphoma (FL) disease. FL is one of the commonly encountered cancer types in

the lymph system. FL grading is based on histological examination of hematoxilin

and eosin (H&E) stained tissue sections by pathologists who make clinical deci-

sions by manually counting the malignant centroblast (CB) cells. This grading
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method is subject to substantial inter- and intra-reader variability and sampling

bias. A computer-assisted method is presented for detection of CB cells in H&E-

stained FL tissue samples. The proposed algorithm takes advantage of the scale-

space representation of FL images to detect blob-like cell regions which reside in

the scale-space extrema of the difference-of-Gaussian images. Multi-stage false

positive elimination strategy is employed with some statistical region properties

and textural features such as gray-level co-occurrence matrix (GLCM), gray-level

run-length matrix (GLRLM) and Scale Invariant Feature Transform (SIFT). The

algorithm is evaluated on 30 images and 90% CB detection accuracy is obtained,

which outperforms the average accuracy of expert hematopathologists.

Keywords: Cancer Cell Line Classification, Dual-Tree Complex Wavelet Trans-

form, Covariance Descriptors, Follicular Lymphoma Grading, Scale-Space Repre-

sentation, Centroblast Detection, Blob Detection, Scale Invariant Feature Trans-

form.



ÖZET

MİKROSKOPİK GÖRÜNTÜLERİN BİLGİSAYAR
DESTEKLİ YORUMLANMASI İÇİN İMGE İŞLEME

YÖNTEMLERİ

Musa Furkan Keskin

Elektrik ve Elektronik Mühendisliği Bölümü, Yüksek Lisans

Tez Yöneticisi: Prof. Dr. A. Enis Çetin

Eylül, 2012

Hesaplama gücündeki kayda değer büyüme ile birlikte, imge işleme algorit-

malarının mikroskopik görüntülerin otomatik analizinde kullanımı son on yılda

giderek popüler hale gelmiştir. Yüksek işlem hacimli tarama cihazlarının or-

taya çıkışı mikroskopik görüntülerin bilgisayar destekli yorumlanmasına imkan

tanımıştır. Bu gelişme, klinik karar alma süreçlerini kolaylaştıracak olan hızlı

ve objektif görüntü yorumlama sonucunu doğurmuştur. Bu tezde, biyoloji ve

histopatoloji alanlarından iki görüntü analizi problemine çözüm üretme amacıyla,

yeni yöntemler sunulmuştur.

Bu problemlerden ilki, insandan elde edilen kanser hücre çizgi görüntülerinin

sınıflandırılmasıdır. Kanser hücre çizgileri tüm dünyada laboratuvarlarda

araştırma amacıyla yaygın bir biçimde kullanılmaktadır. Moleküler biyoloji

çalışmalarında araştırmacılar, ait olduğu sınıf sürekli olarak doğrulanması

gereken çok sayıda numune ile çalışmaktadır. Kanser hücre çizgi görüntülerinin

sınıflandırılması için özgün bir bilgisayar destekli yöntem sunulmuştur. Düzensiz

kanser hücre paternleri içeren mikroskop görüntüleri, önplan piksellerine karşılık

gelen yerel pencereler ile temsil edilmiştir. Her yerel pencere için, çift-ağaç

karmaşık dalgacık dönüşümü (DT-CWT) katsayılarını piksel öznitelikleri olarak

kullanan bir kovaryans tanımlayıcısı hesaplanmıştır. Sınıflandırma amacıyla RBF

çekirdekli Destek Vektör Makinası (SVM) kullanılmıştır. 14 farklı sınıf için,

% 98 ortalama doğruluk oranı elde edilmiştir, ki bu klasik kovaryans tabanlı

yöntemlerden daha iyi bir sonuçtur.

Histopatolojik görüntü analizi problemi ise foliküler lenfoma (FL) hastalığının

derecelendirilmesi ile ilgilidir. FL, lenf sisteminde sık karşılaşılan kanser
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çeşitlerinden biridir. FL derecelendirmesi, hematoksilin ve eozin (H&E) ile leke-

lendirilmiş doku parçalarının patologlar tarafından histolojik incelemeye tabi tu-

tulması ile gerçekleştirilir ve patologlar kötü huylu sentroblast (CB) hücrelerini el

ile sayarak klinik kararlar alırlar. Bu derecelendirme yöntemi, gözlemci içinde ve

gözlemciler arasında ciddi bir değişkenlik ve örnekleme kaynaklı hatalar ile karşı

karşıyadır. H&E lekeli FL doku örneklerinde CB hücrelerinin tespiti amacıyla

bilgisayar destekli bir yöntem sunulmuştur. Önerilen algoritma, Gauss farkı

görüntülerinin ölçek-alan uçdeğerlerinde yer alan blob benzeri hücre bölgelerini

tespit etmek için, FL görüntülerinin ölçek-alan temsilinden faydalanmaktadır.

Bazı istatistiksel bölge öznitelikleri ve gri-düzey birliktelik matrisi (GLCM), gri-

düzey sıra-uzunluk matrisi (GLRLM) ve Ölçek Değişimsiz Öznitelik Dönüşümü

(SIFT) gibi dokusal öznitelikler kullanılarak, çok aşamalı yanlış alarm eleme

stratejisi uygulanmıştır. Algoritma, 30 görüntü üzerinde değerlendirilmiş ve %90

CB tespit doğruluk oranı elde edilmiştir. Bu oran, uzman hematopatologların

ortalama doğruluk oranından üstündür.

Anahtar sözcükler : Kanser Hücre Çizgisi Sınıflandırılması, Çift-Ağaç Karmaşık

Dalgacık Dönüşümü, Kovaryans Tanımlayıcıları, Foliküler Lenfoma Derece-

lendirilmesi, Ölçek-Alan Temsili, Sentroblast Tespiti, Blob Tespiti, Ölçek

Değişimsiz Öznitelik Dönüşümü.
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Chapter 1

Introduction

Computer-aided clinical image analysis has attracted huge interest from both sig-

nal processing and medical researchers due to its potential to surmount the chal-

lenges associated with the subjective examination of microscopic images. Quanti-

tative tools for characterization of biomedical images mitigate the effects of inter-

and intra-reader variability on diagnosis and complement the clinical decision

by acting as a second reader. Computer-assisted diagnosis (CAD) systems can

prevent pathologists from wasting their time on image regions where decisions

can be made in a straightforward manner; the percentage of the benign prostate

biopsies in the U.S. is around 80%, which may be handled by computerized image

analysis, leaving more space for pathologists to deal with challenging cases [1].

Biologists would also need automated tools to discriminate between a large num-

ber of different cell types since the biochemical tests performed for identification

of cells may be very costly. The goal of this thesis is to develop new algorithms

for computer-aided analysis of biomedical images by employing image processing

and machine learning techniques. The main objective is to devise automated

methods for feature detection, extraction and classification that would provide

robust interpretation of biological and histopathological images.

In this thesis, two different microsopic image analysis problems are considered.

The first part of the thesis focuses on the discrimination of human carcinoma cell

line images which are widely used in molecular biology studies. The identity of
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cancer cell lines that are employed in cancer research needs to be verified recur-

ringly during a research project. Distinct morphologies of different types and

even sub-types of cancer cells reflect, at least in part, the underlying biochemi-

cal differences, i.e., gene expression profiles [2]. The morphology of cancer cells

can infer invasiveness of tumor cell and hence the metastatic capability. Hu-

man cancer cell lines are also utilized in drug screening and development [3].

Hence, mislabeling cell lines or failure to recognize any contamination may lead

to misleading results. It is of vital importance to incorporate an automated mor-

phological analysis tool for cancer cells during molecular biology research, that

will enable the correct detection and labelling of different cell lines. The change

in morphologies upon treatment with agents that induce cellular responses such

as cell death or cell growth arrest can also be distinguished with such algorithms

[4]. Currently, short tandem repeat (STR) analysis is being used as a standard

for the authentication of human cell lines. However, this process takes a long

time and has to be carried out by an expert. Automated analysis, on the other

hand, will provide the scientists a fast and easy-to-use tool that they can use in

their own laboratories to verify their cell lines.

In this thesis, dual-tree complex wavelet transform (DT-CWT) based feature

extraction and classification method is developed to differentiate distinct types

of cancer cell line images. DT-CWT is a recently developed image decomposi-

tion method that possesses orientation selectivity and shift invariance properties

lacking in the classical discrete wavelet transform. It has been used in a va-

riety of signal and image processing tasks including denoising [5], classification

[6], texture analysis [7], compression [8] and watermarking [9]. In DT-CWT,

two maximally decimated discrete wavelet transforms are executed in parallel,

where the wavelet functions of two different trees form an approximate Hilbert

transform pair, thereby leading to a directionally selective and shift invariant

transform [10]. Region covariance descriptors are utilized to construct feature

matrices from DT-CWT complex coefficient magnitudes in detail subbands at

several decomposition scales. In the region covariance framework each pixel is

mapped to a set of pixel properties whose covariances are measured and used

2



as a region descriptor [11]. It is experimentally observed that the proposed DT-

CWT based algorithm generates distinctive features and is superior to classical

covariance based methods.

The second microscopic image analysis problem that is addressed in the the-

sis concerns histopathology imagery. Follicular lymphoma (FL) grading using

computer-assisted image analysis is investigated. FL is a cancer type arising in

the lymphatic system and it is one of the most commonly encountered lymphoid

malignancies in the western world [12]. As recommended by World Health Or-

ganization, grading of FL relies on histological examination of hematoxilin and

eosin (H&E)-stained tissue sections by pathologists who manually count the av-

erage number of large cancerous cells called centroblasts (CB) in ten standard

microscopic high-power fields (HPF) and assign each FL case to one of the three

grades based on the average CB count per HPF [13]. Qualitative evaluation of FL

images by human readers poses serious problems such as inter- and intra-observer

variability and sampling bias [14]. Since the choice of ten HPFs for counting CBs

is random, heteregenous distribution of malignant cells would make the grading

method biased. Moreover, manual counting is a time-consuming and laborious

task for pathologists. Computer-aided FL prognosis system is highly required in

a clinical setting to guide the pathologist and help reach more accurate clinical

decisions. In the literature, model-based intermediate representations (MBIR)

are employed to model the distribution of cytological components in FL images

and perform grading on an image level [15]. Adaptive likelihood [16] and local

fourier transform (LFT) [17] based cell segmentation approaches are also utilized

for FL grading.

A new algorithm is proposed in this thesis for computer-aided detection of

CB cells in FL images using scale-space representations, which can be defined as

the collection of images obtained by successive convolutions with a scale-space

kernel. The intuition behind this approach is that CB and non-CB (centrocyte)

cells appear as dark blob-like regions in each channel of the H&E stained RGB

images of FL. Utilizing the fact that scale-space extrema of the difference-of-

Gaussian images correspond to blob-like structures in the image [18], a modified

version of the Scale-Invariant Feature Transform (SIFT) algorithm [19] is used

3



to identify salient regions, which, in this case, are CB and non-CB cells. Iden-

tification of candidate CB regions is followed by false positive reduction stages.

Most of the false positives can be eliminated based on size information inherently

provided by the scale-space processing. At later stages, statistical region fea-

tures, co-occurrence and run-length properties and SIFT descriptor encoding the

texture distribution are employed to further reduce the number of non-CB cells.

A comparative analysis of different feature sets points to the fact that SIFT is

effective in feature detection, but is outperformed by other texture descriptors in

the phase of feature extraction from cell regions. Sensitivity of the whole system

is found to be better than the average sensitivity of six expert board-certified

pathologists.

The rest of the thesis is organized as follows. Chapter 2 presents the DT-CWT

and covariance based image classification framework developed for differentiation

of human cancer cell lines. In Chapter 3, a computer-assisted method utilizing

the scale-space image representation is proposed to detect centroblast cells for

follicular lymphoma grading. In the last chapter, conclusions are made and the

contributions are highlighted.
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Chapter 2

Human Cancer Cell Line

Classification in Microscopic

Images

Cancer cell lines are cancer cells derived from human body, which are cultivated

in a laboratory environment. They may proliferate in time and spread over dishes

where they were first seeded. Human cancer cell lines constitute essential research

instruments in scientific molecular biology studies [20, 21]. They are widely uti-

lized in cancer research and drug discovery. However, use of cell lines suffers

greatly from cross-contamination with other cell lines [22], misidentification and

over-subculturing [21], which may lead to misleading, irrelevant research results

and wasting of millions of dollars invested in cancer research [23]. The frequency

of inter- and intra-species cross-contamination can be as high as 18-35% and cell

misidentification rate can reach up to 18% [24, 25], which are deemed intolera-

ble in the area of cancer and drug research where consequences on human life

can be tremendous. Therefore, the identity of cancer cell lines have to be con-

firmed continuously throughout the course of the research being conducted. Short

tandem repeat (STR) profiling was proposed as a method for cell line authentica-

tion to preclude data misinterpretation, thereby eliminating the aforementioned

5



Figure 2.1: Sample cancer cell line image from BT-20 class viewed at 20× mag-
nification

problems associated with the use of cancer cell lines [26]. STR profiling is cur-

rently an international reference standard for identification of human cell lines.

However, applying STR method takes a long time and an expert is required to

carry out STR profiling. In addition, STR is a very costly process, necessitating

efficient and rapid tools that can perform the task of cell identification in an

automated manner. Computer-assisted identification of cancer cells can alleviate

the burden of manual labeling, eliminate disadvantages of STR and thus facilitate

cancer research. Figures 2.1 and 2.2 show sample human cancer cell line images

of type BT-20 and MV, respectively, acquired with Olympus CKX41 inverted

microscope.

In this chapter, an image classification framework based on dual-tree com-

plex wavelet transform (DT-CWT), directional difference scores and covariance

features is proposed to automatically classify human cancer cell line images be-

longing to 14 different classes. Covariance descriptors obtained through the use

of DT-CWT coefficients and directional difference scores are classified using the

6



Figure 2.2: Sample cancer cell line image from MV class viewed at 20× magni-
fication

multi-class Support Vector Machine (SVM) [27] classifier. The performance of

the proposed algorithm is compared with the classical covariance descriptors.

The rest of the chapter is organized as follows. In Section 2.1, related work

on cancer cell line classification in microscopic images is presented. Section 2.2

describes the image segmentation and subwindow selection procedure used in

extracting regions-of-interest (ROIs) from cell line images. In Section 2.3, DT-

CWT and covariance based feature extraction methods applied to human cancer

cell line images are proposed. Classification strategy is described in Section 2.4.

Cancer cell line image dataset used in the experimental studies is introduced in

Section 2.5 and experimental results and observations are presented in Section

2.6. MATLABTM R2012a computational environment is used for experimental

studies and simulations.
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2.1 Related Work on Cancer Cell Line Classifi-

cation

Previous work on computerized identification of cancer cell lines is limited as

STR analysis has become the standard way of checking the identity of cell lines

in molecular biology community. Modelling of cell morphology has been studied

by several groups, for example for fission yeast in [28] and for escherichia coli

bacteria in [29]. In the fission yeast case, differential expression of protein affects

the cell size and, therefore, cell fate, while in the escherichia coli case, the topo-

logical organization is analyzed with respect to the underlying signaling network.

In [30], Bayesian classification algorithm exploiting the sparsity in a transform

domain for differentiation of cell line images is proposed in which eigenvalues of

the conventional covariance descriptor computed from fixed-size image blocks are

used as features. We incorporate the complex wavelet transform into region co-

variance descriptors for feature extraction from microscopic images. In addition,

a new set of features based on directional differences is proposed and used in

covariance descriptors.

In Subsection 2.1.1, DT-CWT is briefly explained. Detailed description of DT-

CWT based features is presented in Section 2.3. In Subsection 2.1.2, directional

difference scores are proposed and explained. In Subsection 2.1.3, covariance and

normalized covariance based methods are presented, which will be used in Section

2.3 for encoding complex wavelet subbands of cell line images.

2.1.1 Dual-Tree Complex Wavelet Transform

Wavelet theory has been providing a basis for many signal processing applications

over the years. It has been introduced by the pioneering works of Daubechies [31],

Mallat [32] and Grossman et al. [33]. Wavelets can be defined as dilated, trans-

lated and rotated versions of a locally oscillating prototype function, that are used

to represent signals in both time and frequency domains at multiple decomposi-

tion levels. The discrete wavelet transform (DWT), which is aimed at processing
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Figure 2.3: Filterbanks for the dual-tree complex wavelet transform

discrete-time signals, can be implemented using orthogonal or biorthogonal fil-

terbanks and can be efficiently exploited for signal analysis. A computationally

efficient implementation of the wavelet transform is provided by lifting structures

[34]. Wavelets have proved useful in a broad range of applications, including

image and video coding [35, 36], audio compression [37], speech recognition [38],

texture classification and retrieval [39, 40] and denoising [41]. Recently, motion

detection [42], and fire and flame detection [43] algorithms based on wavelet do-

main analysis of video were proposed.

The classical DWT has several limitations hampering its effectiveness in signal

and image analysis, such as shift variance and lack of directionality [10]. When the

input is shifted slightly, the discrete wavelet coefficients may change significantly.

Higher dimensional DWT is implemented using separable filterbanks along each

dimension and thus fails to capture directional information except at 0 and 90

degrees, for example, for a 2D DWT. To overcome such limitations of DWT, the

dual-tree complex wavelet transform (DT-CWT) was proposed whereby two filter

pairs are used in parallel to decompose a given signal [44].

DT-CWT has recently emerged as a promising alternative to the classical

DWT in a variety of signal and image processing tasks including denoising [5],

classification [6], texture analysis [7], compression [8] and watermarking [9]. DT-

CWT has desirable properties such as shift invariance, directional selectivity and
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lack of aliasing. In the dual-tree CWT, two maximally decimated DWTs are

executed in parallel in a way that enables the wavelet functions of two different

trees to form an approximate Hilbert transform pair [10]. These two wavelet

trees are named real and imaginary trees, respectively. Low-pass analysis filters

in real and imaginary trees must be offset by a half-sample in order to have one

wavelet basis as the approximate Hilbert transform of the other wavelet basis [45].

Analyticity allows one-dimensional DT-CWT to be approximately shift-invariant

and free of aliasing artifacts often encountered in DWT-based processing. Two-

dimensional DT-CWT is also directionally selective in six different orientations,

namely, {±15,±45,±75}. Analysis filterbanks for one-dimensional DT-CWT are

shown in Figure 2.3.

In the biomedical image analysis literature, DT-CWT is used to predict the

histological diagnosis of colorectal lesions in colonoscopy images by employing a

probabilistic framework where a joint statistical model for complex wavelet coef-

ficient magnitudes is proposed [46]. In [47], authors model the marginal distri-

butions of DT-CWT coefficient magnitudes by Rayleigh and Weibull probability

density functions to classify the zoom-endoscopy images for colorectal cancer di-

agnosis. In [48], MR images of human brain and wrist are classified using textural

features extracted via DT-CWT decomposition.

Cancer cell line images contain significant amount of oriented singularities.

Attributes like orientation selectivity and shift invariance render DT-CWT a

good choice for the processing of microscopic images with lots of edge- or ridge-

like singularities. As a part of this thesis, microscopic cancer cell line images

are represented in complex wavelet domain. It is explained in Section 2.3 how

coefficients in this domain are exploited for cell line image analysis.

2.1.2 Directional Differences

In order to account for the large morphological variation of the images in our

dataset, we evaluate differences between pixels in various directions. Inspired by
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the local binary pattern (LBP) approach [49], a new directional feature computa-

tion approach is introduced for texture characterization. Consider a point p1 on a

two-dimensional function I(x, y). Now consider a second point p2. The Euclidean

distance between p1 and p2 is d and p2 lies on line that has an orientation of angle

α with respect to the x-coordinate, i.e., p2 lies on a circle whose center point is

p1 and has a radius d. The difference between p1 and p2 can be written as

T (d, α) = |I(x, y)− I(x+ d · cosα, y + d · sinα)| (2.1)

Now consider we want to compute a couple of difference values for equidistant

concentric circles where the largest circle has radius R and the smallest has radius

R/A, where A is an integer with values ranging from [1, R]. When the parameters

R and A are fixed, the equation (2.1) can be rewritten as

T (i, α) =

∣∣∣∣I(x, y)− I(x+ i
R

A
· cosα, y + i

R

A
· sinα)

∣∣∣∣ (2.2)

where i ∈ 1, 2, ..., A. We can compute a score for each α value by computing a

function with respect to i, as

sα = Fi(T (i, α)) (2.3)

In this thesis, Fi is chosen to be the median function. In that case, sα is

simply the median of all the differences between the center pixel and the points

at distances iR
A

at the fixed orientation α. sα is computed for each pixel of the

image and these scores are used as features in covariance matrix computation.

For each input image, eight output images of the same size are generated as the

result of the function Fi, corresponding to 8 different orientations when the radius

d is chosen as 5 in the experiments. In Section 2.3, directional difference scores

are used in covariance descriptors for cancer cell line image analysis.

2.1.3 Covariance Descriptor

Region covariance provides a powerful descriptor for representing image regions,

which was proposed by Tuzel et al. [50]. It has attained a great deal of interest
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from computer vision community. Covariance descriptors enable the combination

of different features over an image region of interest. In the region covariance

framework each pixel is mapped to a set of pixel properties whose variances

and correlations with one another are utilized in a covariance matrix as region

descriptor. Given an intensity image I of size m×n, we define a mapping ϕ from

image domain to feature domain as

F (i, j) = ϕ(I, i, j) (2.4)

where each pixel (i, j) in I is mapped to a set of features and F is the m× n× d

dimensional feature function. Let fi,j, 1 ≤ i ≤ m, 1 ≤ j ≤ n, be the d-dimensional

feature vectors extracted for the (i, j)th pixel of the image. Then, the covariance

matrix of the image I can be computed as

C =
1

N − 1

m∑
i=1

n∑
j=1

(fi,j − µ)(fi,j − µ)T (2.5)

where N = m × n and µ is the mean of the feature vectors inside the region I,

which can be calculated as

µ =
1

N

m∑
i=1

n∑
j=1

fi,j (2.6)

The covariance matrix is symmetric positive-definite and of size d× d. There

exists a very efficient multiplier-less implementation of covariance descriptors,

called co-difference matrices, which have been shown to yield comparable perfor-

mances to the original ones [51].

In [50], covariance features are employed for object detection and texture clas-

sification tasks. Each object region is represented by five overlapping subregions

and a covariance matrix is constructed from each subregion. Pixel features used

in constructing covariance matrices include pixel x and y coordinates, R, G and

B values from the RGB space, first and second derivatives of the image intensity

in both x and y directions. Desired object locations are determined in the tar-

get image by executing an exhaustive search, where generalized eigenvalue-based

dissimilarity measure is employed to compute the distance between covariance
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matrices. In [52], pedestrian detection is achieved by encoding positive and neg-

ative pedestrian regions via covariance descriptors. Spatio-temporal covariance

descriptors representing spatio-temporal blocks of video are proposed in [53] for

flame detection. [54] uses covariance features to describe one-dimensional speech

signals for speech emotion classification. Covariance descriptors are utilized for

classification of colonic polyps in CT colonography images [55].

Feature vectors extracted from each pixel must be selected taking into account

the specific properties of the application domain. It may be adequate to use

image intensity, color values and derivatives in x and y directions in detection

tasks such as object detection, pedestrian detection and flame detection, whereas

biomedical images require more sophisticated approaches that can encode ROI’s

in a discriminative manner. Feature vectors used in this thesis will be detailed in

Section 2.3.

2.2 Image Segmentation and Subwindow Selec-

tion

In this chapter, ROI extraction process from cancer cell line images is described.

First, image segmentation is performed to obtain cellular regions and then ROI’s

are selected from foreground cellular regions.

The images in our dataset exhibit a large amount of background. Clearly, the

background is not discriminative. Therefore, we address the issue of segmenting

the images into foreground and background before calculation of covariance matri-

ces from image patches. For our dataset, a simple thresholding scheme like Otsu’s

method [56] does not provide satisfactory segmentation results, since foreground

pixels have a large variance and may therefore have values higher and lower than

the background pixels. Hence, the distribution of cellular and background com-

ponents is modeled using a Gaussian mixture model. The mixture parameters

Θ = (αF , αB, µF , µB, σF , σB) are estimated using the expectation maximization

(EM) algorithm [57], where αF , µF , σF and αB, µB, σB are mixing weights,
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mean and variance of the distributions of foreground and background pixels, re-

spectively. EM is an iterative algorithm that obtains the maximum likelihood

estimates of distribution parameters using training samples. This is achieved by

assuming the existence of additional hidden parameters. In the expectation step,

the expectation of the complete-data log-likelihood is calculated with respect to

the hidden data y given the observations x and the current estimates Θ(i−1) as

follows:

Q(Θ,Θ(i−1)) = E[log p(x, y|Θ)|x,Θ(i−1)] (2.7)

where x denotes pixel values and y denotes the mixture component that generates

the pixel value. In the maximization step, a new parameter set Θ is determined

that maximizes the expectation in Equation (2.7):

Θ(i) = argmax
Θ

Q(Θ,Θ(i−1)) (2.8)

After the parameter estimation process is finished, the posterior probability of

each pixel x can be computed as

p(ci|x) =
αip(x|ci)P (ci)∑

j

αjp(x|cj)P (cj)
, (2.9)

where i denotes foreground or background components and p(x|ci) = N(x;µi, σi)

is the value of the Gaussian distribution parametrized by the mean and variance of

the corresponding component. For segmentation, x is assigned to the component

that yields the higher posterior probability.

The resulting image obtained by EM segmentation of the image in Figure 2.1

is shown in Figure 2.4(a). As can be seen from the result, the image is noisy.

Hence, a morphological closing operation is applied, followed by median filtering.

Figure 2.4(b) illustrates the final image mask obtained after closing and median

filtering.

Once the foreground cellular regions are identified via segmentation, ROI’s can

be selected from those regions. Since cancer cell line images contain lots of flat,

background-like regions, it is not reasonable to compute the covariance matrix

over the whole image region. Exclusion of background regions in covariance
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(a) EM segmentation (b) EM segmentation followed by closing and
median filtering

Figure 2.4: Image masks obtained (a) after EM segmentation and (b) after closing
and median filtering on top of EM output using the image in Figure 2.1

computation helps to increase the class separability in classification. We propose

to use random subwindow selection method for cancer cell line images [58]. Each

image is represented by possibly overlapping s square subwindows selected at

random locations and with random edge lengths. The edge length of the largest

possible subwindow is equal to that of the shorter edge of the image, while the size

of the smallest possible subwindow is 10 times lower than that of the largest one.

We enforce a foreground percentage constraint on the selected subwindows to

avoid gathering background regions. A randomly chosen subwindow is discarded,

if its foreground percentage is below a threshold, which is determined to be 50%.

Random window selection process continues until the total number of windows

becomes s. We compute a covariance matrix for each subwindow and an image

is represented by s covariance matrices. Random subwindow selection process is

illustrated in Figure 2.5 for a sample cancer cell line image. Random sampling

approach avoids the need to scan the whole image to regularly take samples, which

is computationally expensive, and provides scale-invariance of analysis windows

by considering cells of any size for processing.
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Figure 2.5: Random subwindow selection process on a sample cancer cell line
image

2.3 DT-CWT and Covariance Based Feature

Extraction

In this section, DT-CWT based feature extraction technique that employs covari-

ance descriptors is proposed for cancer cell line images. DT-CWT is a recently

developed image decomposition method that possesses orientation selectivity and

shift invariance properties lacking in the classical DWT. In the literature, it was

used for texture analysis and classification, video compression and image water-

marking [6, 7, 8, 9].

In contrast to the real DWT, two sets of filters are employed in the two trees,

which are called real and imaginary trees, respectively. Two different DWTs

are executed in parallel in dual-tree structure where the real part of DT-CWT

is provided by the first one and the imaginary part by the second one. The

reasoning behind the use of dual-tree is to obtain an analytic complex wavelet at
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the end:

ψc(t) = ψh(t) + jψg(t) (2.10)

where ψh(t) and ψg(t) denote wavelet functions of real and imaginary trees, re-

spectively. If ψc(t) is approximately analytic (has support on only one-side of the

frequency axis), the resulting transform can possess the properties such as lack of

aliasing, directionality and shift invariance just like the Fourier transform whose

complex basis functions are analytic [10]. For ψc(t) to be approximately analytic,

it is required that one wavelet basis is the approximate Hilbert transform of the

other wavelet basis:

ψg(t) ≈ H{ψh(t)} (2.11)

In order to satisfy the condition in (2.11), low-pass analysis filters in real and

imaginary trees must be offset approximately by half-sample [45]:

g0[n] ≈ h0[n− 0.5] (2.12)

In the literature, two low-pass filters are jointly designed such that half-sample

delay, perfect reconstruction and finite support conditions are simultaneously

satisfied, using several filter design methods [10]. Q-shift filters are employed

in this thesis for DT-CWT decomposition. Analysis q-shift filters for real and

imaginary trees are shown in Table 2.1 [59].

Analysis
h0 h1 g0 g1filters

Q-shift

0.0248 -0.0808 -0.0808 -0.0248
0 0 0 0

filter
-0.0624 0.4155 0.4155 0.0624

coefficients
0.1653 -0.5376 0.5376 0.1653
0.5376 0.1653 0.1653 -0.5376
0.4155 0.0624 -0.0624 0.4155

0 0 0 0
-0.0808 -0.0248 0.0248 -0.0808

Table 2.1: Impulse Response of Kingsbury’s 8th Order Q-shift Analysis Filters
for the Dual-Tree CWT

Two-dimensional (2D) extension of DT-CWT is used for analysis of cancer cell

line images. 2D DT-CWT of an image is obtained by four real separable trans-

forms [60]. Real-part and imaginary-part analysis filters are applied successively
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Figure 2.6: 2D analytic complex wavelet obtained from two 1D analytic complex
wavelets

to rows and columns of the image. Implementation details for 2D DT-CWT [10]

are as follows. Let ψ(x) = ψh(x)+jψg(x) denote an approximately analytic com-

plex wavelet in the Fourier domain. The 2D separable wavelet ψ(x, y) = ψ(x)ψ(y)

obtained by row-column implementation can be expressed as

ψ(x, y) = [ψh(x) + jψg(x)][ψh(y) + jψg(y)] (2.13)

= ψh(x)ψh(y)− ψg(x)ψg(y) + j[ψg(x)ψh(y) + ψh(x)ψg(y)] (2.14)

Since ψ(x) is analytic, it is supported only on one side of the frequency axis.

Hence, the multiplication of these two analytic wavelets results in a 2D complex

wavelet that has support only on one quadrant of the 2D frequency domain. This

process is illustrated in Figure 2.6, in which boxes represent 2D Fourier domain

idealized diagrams of the wavelet functions where the functions are supported on

white regions and have no support on black regions. The real part of this 2D

complex wavelet is given by

ℜ{ψ(x, y)} = ψh(x)ψh(y)− ψg(x)ψg(y) (2.15)

which is implemented by taking the difference of high-pass subbands of the real

and imaginary trees in a separable row-column processing.

Real wavelets should be symmetric with respect to the origin; hence, taking

the real part of the resulting spectrum in Figure 2.6 yields the 2D real oriented

wavelet as shown in Figure 2.7. It highlights image structures oriented at 45o,

and thus is oriented at −45o. The real part of the 2D complex wavelet ψ2(x, y) =

ψ(x)ψ(y) yields a 2D wavelet oriented at 45o since taking the conjugate would
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Figure 2.7: Oriented 2D wavelet given by the real part of the analytic 2D wavelet

move the support to the left side of the frequency plane, thereby generating a 2D

complex wavelet supported only on the 2nd quadrant of the plane similar to the

procedure in Figure 2.6. For other four orientations, the following four complex

2D wavelets should be employed: ϕ(x)ψ(y), ψ(x)ϕ(y), ϕ(x)ψ(y), and ψ(x)ϕ(y).

If the aforementioned procedure is repeated by taking imaginary parts of the

2D complex wavelets instead of real parts, six real and imaginary orientations,

{±15,±45,±75}, are obtained. 2D DT-CWT implementation scheme is shown in

Figure 2.8. As seen from the figure, four separable transforms, FHH , FHG, FGH ,

FGG, are executed in parallel for 2D DT-CWT decomposition, where FAB denotes

row-column separable transform with the filterbank A used for row processing and

the filterbank B used for column processing.

The 1st level 2D DT-CWT subbands are obtained by taking the sum and

difference of respective subbands shown at the output of filterbanks in Figure 2.8.

Twelve 2D DT-CWT detail subband images are computed as follows:

d1,2 = xh0h1 ± xg0g1 (2.16)

d3,4 = xh1h0 ± xg1g0 (2.17)

d5,6 = xh1h1 ± xg1g1 (2.18)

d7,8 = xg0h1 ± xh0g1 (2.19)

d9,10 = xg1h0 ± xh1g0 (2.20)

d11,12 = xg1h1 ± xh1g1 (2.21)

where each of the six orientations corresponds to two detail subbands, one of

them being real and another being imaginary. Low-pass subbands, xh0h0 , xh0g0 ,

xg0h0 and xg0g0 , are fed to the next level row filters for further processing at higher
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Figure 2.8: Implementation scheme of the 2D DT-CWT. Four real separable
DWT’s are employed in 2D DT-CWT.

decomposition levels. At each decomposition level, we obtain a total of sixteen

subbands consisting of six real detail subbands, six imaginary detail subbands

and four approximation subbands. Two-dimensional dual-tree decomposition is

an oversampled transform with a redundancy factor of 4 (2d for d-dimensional

signals). A sample image and its 2nd level 2D DT-CWT subbands are shown

in Figures 2.9 and 2.10, respectively. In Figure 2.10, the first row contains the

approximation subbands and the remaining rows contain the detail subbands

at six different orientations. In our work, we perform three-level 2D DT-CWT

decomposition of each biomedical image of size m×n and use the detail subband

coefficients. Each subband at the ith level is of sizem/2i×n/2i. The original image

I(x, y) is decimated by 8 in both directions to obtain a single intensity image

Ia(x, y) which represents the original image. Let W
R,(i)
θ (x, y) and W

Im,(i)
θ (x, y)

denote, respectively, the real and imaginary part of the ith level complex wavelet

coefficient at the position (x, y) corresponding to directional detail subbands at

orientation θ, where θ ∈ {±15,±45,±75}. The magnitude of the complex wavelet
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coefficient is then given by

M
(i)
θ (x, y) =

√
W

R,(i)
θ (x, y)2 +W

Im,(i)
θ (x, y)2 (2.22)

Figure 2.9: Sample image.

In this thesis, covariance descriptors are utilized to encode cancer cell line im-

age windows in complex wavelet domain. Complex wavelet coefficient magnitudes

in detail subbands are used as pixel features in covariance computation. Conven-

tional covariance approach includes only gray-scale and color values, and their

derivatives in horizontal and vertical directions, which limits the discriminatory

power of the covariance representation. Augmenting covariance matrices with

directional information through the use of 2D DT-CWT may help to enhance

the classification accuracy. Directional difference scores introduced in Subsection

2.1.2 are also included in the feature vectors.

Intensity value, first and second order derivatives in horizontal and vertical

directions are also included in the feature vector in addition to DT-CWT and

directional difference features. 1st, 2nd and 3rd level DT-CWT coefficients are

tested to observe the effect of decomposition level on classification performance.

With

M
(i)
θ (x,y) = [M

(i)
θ1
(x, y)...M

(i)
θ6
(x, y)], (2.23)

and

sα(x,y) = [sα1(x, y) ... sα8(x, y)] (2.24)

where θ1...θ6 corresponds to the six orientations of DT-CWT detail subbands
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{±15,±45,±75}, M (i)
θ (x, y) is as defined in Equation (2.22) and α1...α8 corre-

spond to the eight orientations of directional difference score estimation, the fol-

lowing feature mapping functions are employed to compute covariance matrices:

ϕ1(I, x, y) =

[
Ia(x, y)

∣∣∣∣∂Ia∂x
∣∣∣∣ ∣∣∣∣∂Ia∂y

∣∣∣∣ ∣∣∣∣∂2Ia∂x2

∣∣∣∣ ∣∣∣∣∂2Ia∂y2

∣∣∣∣ ]T (2.25)

ϕ2(I, x, y) =
[
Ia(x, y) M

(1)
θ (x,y)

]T
(2.26)

ϕ3(I, x, y) =

[
Ia(x, y)

∣∣∣∣∂Ia∂x
∣∣∣∣ ∣∣∣∣∂Ia∂y

∣∣∣∣ ∣∣∣∣∂2Ia∂x2

∣∣∣∣ ∣∣∣∣∂2Ia∂y2

∣∣∣∣ M
(1)
θ (x,y)

]T
(2.27)

ϕ4(I, x, y) =

[
Ia(x, y)

∣∣∣∣∂Ia∂x
∣∣∣∣ ∣∣∣∣∂Ia∂y

∣∣∣∣ ∣∣∣∣∂2Ia∂x2

∣∣∣∣ ∣∣∣∣∂2Ia∂y2

∣∣∣∣ M
(1)
θ (x,y) sα(x,y)

]T
(2.28)

ϕ5(I, x, y) =
[
Ia(x, y) M

(2)
θ (x,y)

]T
(2.29)

ϕ6(I, x, y) =

[
Ia(x, y)

∣∣∣∣∂Ia∂x
∣∣∣∣ ∣∣∣∣∂Ia∂y

∣∣∣∣ ∣∣∣∣∂2Ia∂x2

∣∣∣∣ ∣∣∣∣∂2Ia∂y2

∣∣∣∣ M
(2)
θ (x,y)

]T
(2.30)

ϕ7(I, x, y) =

[
Ia(x, y)

∣∣∣∣∂Ia∂x
∣∣∣∣ ∣∣∣∣∂Ia∂y

∣∣∣∣ ∣∣∣∣∂2Ia∂x2

∣∣∣∣ ∣∣∣∣∂2Ia∂y2

∣∣∣∣ M
(2)
θ (x,y) sα(x,y)

]T
(2.31)

ϕ8(I, x, y) =
[
Ia(x, y) M

(3)
θ (x,y)

]T
(2.32)

ϕ9(I, x, y) =

[
Ia(x, y)

∣∣∣∣∂Ia∂x
∣∣∣∣ ∣∣∣∣∂Ia∂y

∣∣∣∣ ∣∣∣∣∂2Ia∂x2

∣∣∣∣ ∣∣∣∣∂2Ia∂y2

∣∣∣∣ M
(3)
θ (x,y)

]T
(2.33)

ϕ10(I, x, y) =

[
Ia(x, y)

∣∣∣∣∂Ia∂x
∣∣∣∣ ∣∣∣∣∂Ia∂y

∣∣∣∣ ∣∣∣∣∂2Ia∂x2

∣∣∣∣ ∣∣∣∣∂2Ia∂y2

∣∣∣∣ M
(3)
θ (x,y) sα(x,y)

]T
(2.34)

where the first and second order intensity derivatives are calculated using the

filters [−1, 0, 1] and [1,−2, 1], respectively. Sizes of the covariance matrices ob-

tained by using the above feature vectors are shown in Table 2.2. ϕ1 is used

to evaluate the performance of the conventional covariance descriptors including

only intensity and color values and their derivatives, as in [11, 61]. The 1st level

DT-CWT coefficient magnitudes in detail subbands are tested in ϕ2, ϕ3 and ϕ4,

with intensity, first and second order intensity derivatives and directional differ-

ence scores, respectively. The effect of the 2nd and 3rd level DT-CWT coefficients

are tested in the remaining feature vectors.

Covariance matrices are calculated for each subwindow of the image as ex-

tracted in Section 2.2. [11] proposes to use the generalized eigenvalue based
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Figure 2.10: Second level 2D DT-CWT subbands of the image in Figure 2.9

distance metric for calculating the dissimilarity of two covariance matrices as the

Euclidean distance is meaningless for covariance matrices, which do not lie in

Euclidean space. Kullback-Leibler (KL) divergence is used in [62] for comparing

covariance matrices. However, both distance metrics are computationally expen-

sive and require an extensive amount of time for distance calculation in huge

datasets, as is the case with our dataset. Therefore, covariance matrices are vec-

torized and classified in the resulting feature space using SVM [61]. We adopt

the vectorization approach and include only the upper or lower diagonal elements

of the covariance matrix in classification.

In [63], normalized covariance descriptors are introduced and utilized for real-

time wildfire detection. We also test the normalized covariance matrices in cancer

cell line classification. Each entry Ĉ(i, j) of a normalized covariance matrix is
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Table 2.2: Sizes of the Covariance Matrices Used

Mapping Function ϕ1 ϕ2 ϕ3 ϕ4 ϕ5 ϕ6 ϕ7 ϕ8 ϕ9 ϕ10

Matrix Size 5× 5 7× 7 11× 11 19× 19 7× 7 11× 11 19× 19 7× 7 11× 11 19× 19

obtained from the covariance matrix C as follows:

Ĉ(i, j) =


√
C(i, j), if i = j
C(i,j)√

C(i,i)C(j,j)
, otherwise

(2.35)

2.4 Classification Algorithm

For each subwindow sampled from images as explained in Section 2.2, a covari-

ance matrix is computed using Equation (2.5) for each of the feature mapping

functions in (2.25)-(2.34). The image signature is composed of s covariance ma-

trices of the same size. Each class is represented by s×#(images in each class)

covariance matrices. Covariance matrices are symmetric positive-definite and do

not lie in the Euclidean space; so, they are vectorized resulting in d(d + 1)/2-

dimensional feature vectors for d × d matrices. Proposed by Boser et al. [64],

SVM is a supervised machine learning algorithm that learns the decision bound-

aries between classes using separating hyperplanes. LIBSVM library [27] is used

for SVM implementation. A multiclass SVM classifier is trained with RBF kernel

in the d(d + 1)/2-dimensional vector space using the training points. For each

test subwindow, the corresponding covariance descriptor is vectorized and fed into

the trained SVM model for prediction. Therefore, there exist s labels for each

microscopic image corresponding to s subwindows, and the image in question is

assigned the label that gets the majority of votes among s labels. The above

process is re-executed using normalized covariance matrices defined in Equation

(2.35) instead of covariance matrices.
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2.5 Cancer Cell Line Image Dataset

The dataset used in this study consists of 280 microscopic human carcinoma cell

line images with each of the 14 classes having 20 images. Images in the dataset

were acquired at 10x, 20x and 40x magnifications; thus, we have a total of 840

images in the dataset. The size of each image is 3096 × 4140 pixels. 7 classes

belong to breast cancer cell lines and the other classes belong to liver cancer.

Each cell type has a specific phenotype in terms of nuclei (spherical vs. ovoid),

nucleoli (prominent vs. hardly noticeable), size (large vs. small) and shape

(round vs. cell pods) [65]. The names of the cancer cell lines used in our study

are shown in Table 2.3. Aggressive cancer cells with metastatic properties switch

from an epithelial-like (epithelioid) morphology to a spindle-shaped fibroblast-

like (fibroblastoid) morphology during epithelial-mesenchymal transition (EMT),

which is an indication of the invasiveness and metastatic capability of cancer

cells. While epithelioid cells have polygonal shape with regular dimensions and

sharp boundaries, fibroblastoid cells have elongated shapes and are bipolar or

multipolar.

Table 2.3: Names of Cancer Cell Lines Used in This Study

Breast cancer Liver cancer
cell line cell line

BT-20 Focus
Cama-1 Hep40

MDA-MB-157 HepG2
MDA-MB-361 Huh7
MDA-MB-453 MV
MDA-MB-468 PLC

T47D SkHep1

6 hepatocellular carcinoma (Focus, Hep40, Huh7, Mahlavu, PLC, SkHep1),

1 hepatoblastoma (HepG2) and 7 breast cancer (Cama-1, MDA-MB-157, MDA-

MB-361, MDA-MB-453, MDA-MB-468, T47D, BT-20) cell lines were seeded into

dishes with 20% confluency and grown at 37oC under 5% CO2 in standard Dul-

becco’s modified Eagle’s medium (DMEM) supplemented with 10% FBS, 1%
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Non-Essential Aminoacid and 1% penicillin/streptomycin (GIBCO Invitrogen)

up to 70% confluency. The cell lines used in this study were original and verified

by STR analysis. Pictures were taken with Olympus CKX41 inverted microscope

using Olympus DP72 camera with 10x, 20x and 40x objective.

2.6 Experimental Results

Feature vectors extracted via DT-CWT decomposition and covariance matrices

are experimented on the cancer cell line image dataset mentioned in Section 2.5.

We adopt a 20-fold cross-validation strategy for the experiments. The dataset is

divided into 20 disjoint subsets and each subset consisting of 14 images is used

exactly once as the test set. For k = 1...20, the kth subset is formed by taking

the kth indexed image of each class. We run 20 experiments, choosing each

image as the test image only once for each class, and obtain the average image

classification accuracy over 20 runs. The number of selected random subwindows

is taken to be s = 100. The above experiment is performed for both covariance

and normalized covariance matrices, and for ten different mapping functions in

(2.25)-(2.34). Separate experiments are carried out for three different datasets

associated with the magnification factors 10x, 20x and 40x, respectively.

Experimental results are presented on three different tables corresponding

to three different magnifications. Both image classification accuracies and sub-

window classification accuracies are shown on tables. Subwindow accuracies are

computed for the sole purpose of obtaining the intermediate results; what is im-

portant is the accuracy of classification on an image level which is accomplished

by majority voting among the selected subwindows. Tables 2.4-2.6 present over-

all image and subwindow classification accuracies of 14 different classes over the

cancer cell line image datasets at 10x, 20x and 40x magnifications, respectively.

The highest image accuracy in each of these tables is highlighted in bold.

The experiments indicate that the normalized covariance matrices are more
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Table 2.4: Overall Image and Subwindow Classification Accuracies in (%) of the
Covariance and Normalized Covariance Methods for 10x Cancer Cell Line Image
Dataset

Feature Covariance Method Normalized Covariance Method
Mapping Image Subwindow Image Subwindow
Function Accuracy Accuracy Accuracy Accuracy

ϕ1 89.6 59.6 90.4 61.0
ϕ2 83.2 55.8 88.9 59.1
ϕ3 94.6 68.0 95.4 68.0
ϕ4 97.5 70.6 98.2 74.1
ϕ5 82.1 55.3 87.9 59.3
ϕ6 96.1 68.6 96.8 69.4
ϕ7 96.8 70.1 98.6 75.0
ϕ8 81.8 55.1 86.4 59.3
ϕ9 95.7 68.8 96.8 69.4
ϕ10 96.8 71.1 98.9 75.0

discriminative than the classical covariance matrices as both the image and sub-

window classification accuracies improve in almost all cases when normalization is

performed. The best overall image recognition rates for 10x, 20x and 40x datasets

are 98.9%, 97.5% and 96.4%, respectively, all obtained by normalized covariance

method.

For all the magnification factors, the feature mapping function ϕ10 containing

19 features leads to the highest image classification accuracy. It includes the 3rd

level DT-CWT detail subband complex coefficient magnitudes and directional

difference scores in addition to intensity and intensity derivatives. It is observed

that ϕ4 and ϕ7, which include 1st and 2nd level DT-CWT coefficients, respec-

tively, as the only difference from ϕ10 are the best or the second best functions

in all datasets. This shows that discriminative ability of the covariance descrip-

tor increases as more features are included in the feature vector from which the

covariance matrices are constructed. For instance, ϕ2 is a subset of ϕ3, which

is a subset of ϕ4; when intensity derivatives and directional difference scores are

sequentially added to the feature vector, the algorithm becomes more accurate.

However, the effect of DT-CWT decomposition level on classification performance

is not pronounced since the accuracy of image classification only slightly differs

among feature mapping functions corresponding to different DT-CWT levels such

27



Table 2.5: Overall Image and Subwindow Classification Accuracies in (%) of the
Covariance and Normalized Covariance Methods for 20x Cancer Cell Line Image
Dataset

Feature Covariance Method Normalized Covariance Method
Mapping Image Subwindow Image Subwindow
Function Accuracy Accuracy Accuracy Accuracy

ϕ1 86.8 58.9 87.9 60.3
ϕ2 82.1 56.3 90.4 60.3
ϕ3 92.1 68.1 93.9 68.9
ϕ4 95.7 71.5 97.5 74.6
ϕ5 82.9 56.3 88.9 59.6
ϕ6 91.8 68.9 96.1 70.0
ϕ7 96.1 72.0 97.5 74.9
ϕ8 82.9 56.4 89.3 59.9
ϕ9 91.8 68.7 96.1 70.1
ϕ10 96.4 72.0 97.5 75.0

as ϕ2, ϕ5 and ϕ8.

Conventional covariance method represented by ϕ1 is generally outperformed

by DT-CWT based covariance descriptors ϕ2, ϕ3, ϕ5, ϕ6, ϕ8 and ϕ9. Directional

information is embedded into covariance representation by the use of subband

coefficients of DT-CWT, which possesses orientation selectivity. The experimen-

tal results demonstrate that classical covariance descriptors fail to capture the

textural characteristics of cancer cell line images and result in unsatisfactory

classification performance, whereas the proposed DT-CWT based covariance ap-

proach is well suited for the task of recognizing human cancer cell line images.

Exploitation of directional information at six different orientations through the

use of DT-CWT boosts the image recognition accuracy. Approximate shift in-

variance property of DT-CWT also adds a certain level of robustness to feature

extraction step since it is capable of accurately localizing singularities without

causing undesirable positive and negative oscillations around them.

The length of the feature vector corresponding to ϕ10, which achieves the

highest success rate, is 19 × 20/2 = 190, as seen from Table 2.2. 66-length

feature vector of ϕ9 leads to an accuracy of 96.8% for 10x dataset, causing 2.1%

performance reduction. Hence, depending on the type of application, either the
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Table 2.6: Overall Image and Subwindow Classification Accuracies in (%) of the
Covariance and Normalized Covariance Methods for 40x Cancer Cell Line Image
Dataset

Feature Covariance Method Normalized Covariance Method
Mapping Image Subwindow Image Subwindow
Function Accuracy Accuracy Accuracy Accuracy

ϕ1 73.9 51.3 81.8 52.7
ϕ2 71.8 50.2 81.8 56.7
ϕ3 89.3 62.4 92.9 65.5
ϕ4 92.5 64.9 96.4 70.3
ϕ5 72.9 50.7 90 60.7
ϕ6 89.3 63.8 92.9 67.1
ϕ7 92.9 65.3 95.7 71.4
ϕ8 73.2 50.9 90.4 60.8
ϕ9 88.6 63.8 93.2 67.2
ϕ10 92.9 65.4 96.4 71.6

classification accuracy or the speed of the algorithm must be compromised. It

takes approximately 20 seconds to classify a cancer cell line image acquired at 20x

magnification with a MATLAB implementation using ϕ10, where the computation

of directional difference scores lasts 8 seconds. Utilizing ϕ9 instead of ϕ10 for

feature extraction provides 8 seconds improvement in speed while degrading the

accuracy by 2%. With a C++ implementation, average image classification time

for both cases can drop below a second, which suggests that real-time application

is possible. If the biologist that will use the developed system prioritizes speed

(accuracy), the functions ϕ3, ϕ6 or ϕ9 (ϕ4, ϕ7 or ϕ10) can be preferred for feature

computations.

Experimental results in Tables 2.4-2.6 indicate that the proposed cancer cell

line image recognition algorithm provides promising classification accuracies and

can be used as a reliable decision maker for laboratory studies. Based on the

magnification at which the cell line images are acquired, the best feature vector

can be selected by taking into account the trade-off between speed and accuracy

of the resulting algorithm.
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2.7 Summary

The proposed automated system for human breast and liver cancer cell line im-

ages can aid the biologist as a second reader and avoid the need for costly and

time-consuming biochemical tests. Our approach aims to carry out the automated

analysis by extracting a feature vector from the images. DT-CWT and region

covariance based computational framework is successfully applied to classify the

cancer cell line images. These feature parameters reflect the large morphological

diversity of the images. Notice, however, that our software learns the specific co-

variances of these features from the training set, so the model for each image class

is not rigid and therefore allows for larger variation in the image data, while main-

taining its high effectivity. We adopt a covariance-based approach by exploiting

pixel-level attributes to construct local region descriptors encoding covariances

of several attributes inside a region of interest. Pixel attributes are extracted

using directional difference scores and the 2D DT-CWT coefficients. Since back-

ground regions occur frequently in a cancer cell line image, we randomly sample

subwindows from the foreground image regions after foreground-background seg-

mentation and each microscopic image is represented by covariance matrices of

certain number of subwindows sampled randomly from the whole image. Finally,

an SVM classifier is trained to learn the class boundaries. Promising classification

results are obtained by our experiments, which reveal the ability of the proposed

features to characterize breast and liver carcinoma cell line textures.

It is experimentally demonstrated in this study that discrimination of 14

different classes of human cancer cell lines can be accomplished with high

accuracy. We have developed a classification software utilizing the above-

mentioned methods to be used by biologists. The software can be tested

at http://signal.ee.bilkent.edu.tr/cancerCellLineClassificationEngine.html. The

work presented in this chapter is published in [66, 67, 68].
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Chapter 3

Detection of Centroblasts in

Follicular Lymphoma Images

Using Scale-Space Representation

This chapter deals with the problem of centroblast (CB) detection in follicular

lymphoma (FL) images. FL is a cancer of the lymphatic system and it is one of

the commonly encountered lymphoid malignancies in the western world. FL is a

B-cell lymphoma that has a follicular center cell origin [15, 69]. FL patients may

require highly variable treatments depending on the level of aggressiveness of the

disease. Aggressive (fast-growing) FL should be exposed to early treatment using

aggressive chemotherapy, whereas treatment may not be necessary for indolent

(slow-growing) FL, in which case patients have higher chances of survival [15].

Therefore, accurate treatment of FL is of vital importance, which relies on accu-

rate risk assessment of the disease. FL risk stratification is currently performed by

histological examination of FL tissue samples, as recommended by World Health

Organization (WHO) [13]. According to this grading method, pathologists man-

ually count the average number of malignant cells called centroblasts (CB) in ten

standard microscopic high-power fields (HPF) randomly selected from hematox-

ilin and eosin (H&E) stained FL tissue sections. FL grading is then performed

based on the average CB count per HPF as follows: grade I (0-5 CB/HPF), grade
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II (6-15 CB/HPF) and grade III (16 CB/HPF or higher).

Qualitative visual assessment of FL slides is a time-consuming and diligent

task, and subject to substantial inter- and intra-reader variability [14]. Visual

image interpretation by human readers also suffers from the sampling bias, which

is caused by the random choice of ten HPFs in counting CB cells. The histological

grading method tends to be biased, especially if the distribution of malignant cells

exhibits high heterogeneity, thereby leading to inconsistent and unreliable clinical

decisions that may misguide patient treatment. Computerized image analysis, on

the other hand, allows for exploitation of quantitative features extracted from FL

images and reduces the subjectivity in clinical decision-making process. Quanti-

tative FL image analysis tools can potentially guide pathologists to review only

relevant areas of the microscopic tissues or only slides with relevant information,

which would alleviate the sampling bias. Computer-aided FL grading system is

highly required in a clinical setting to help pathologists in this difficult task. A

sample H&E-stained FL image is shown in Figure 3.1 and typical CB and non-CB

cells are shown in Figure 3.2(a) and 3.2(b), respectively.

In this chapter, a new algorithm based on scale-space image representation

is presented for computer-aided detection of CB cells in H&E stained FL tissue

samples. Blob-like cellular structures in FL images are detected by deriving the

scale-space extrema of the difference-of-Gaussians (DoG) pyramid as used in the

well known Scale-Invariant Feature Transform (SIFT) algorithm. For classifi-

cation of the detected cells, statistical region features, gray-level co-occurrence

matrices (GLCM), gray-level run-length matrices (GLRLM) and SIFT descriptor

are utilized and the resulting feature vectors are trained using a quadratic dis-

criminant analysis (QDA) classifier. Elimination of false positives is achieved in a

two-stage procedure where size information provided by the scale of the detected

blobs is exploited in the first stage and the trained QDA model is used to further

refine the detection process. The detection performance of the proposed system

is compared with a direct application of the SIFT algorithm and with human

readers.

The rest of the chapter is organized as follows. In Section 3.1, related work on
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Figure 3.1: Sample image of H&E-stained FL tissue sections at 40x magnification.

computer-aided FL grading is presented. Section 3.2 describes the major steps

of the CB detection procedure. Image binarization and DoG based blob-like cell

detection algorithm is presented in Section 3.3. It is explained in Section 3.4 how

classification of the detected cells is achieved. Finally, Section 3.5 presents the

experimental results.

3.1 Related Work on Follicular Lymphoma

Grading

Various computerized methods have been devised to carry out a quantitative

analysis of FL images. Model-based intermediate representations (MBIR) are
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(a) CB (b) non-CB

Figure 3.2: Sample images of a typical (a) centroblast cell and (b) non-centroblast
cell.

employed to model the spatial distribution of cytological components in FL im-

ages and perform grading on an image level [15]. In MBIR, cytological regions

are represented by ellipses and some geometric measures are introduced to de-

scribe the topological and morphological tissue characteristics. Some topological

measurements include the number of neighboring nuclei and cytoplasm compo-

nents for each nuclei, closest distance to a nuclei and a cytoplasm component for

each nuclei, and average distance to neighboring cytoplasm components for each

cytoplasm. Morphological features include major axis length, minor axis length

and area of the ellipse, whose statistical parameters such as mean, standard de-

viation and skewness are used for analysis. These measurements summarize the

FL image content and suffice to perform grading of FL images without count-

ing CBs. Adaptive cellular likelihood based cell segmentation and gray-level

run-length matrix (GLRLM) method is proposed to identify cellular regions and

to differentiate CB cells from non-CB cells [16]. Locally adaptive thresholding

strategy is used in combination with fast radial symmetry transform to separate

clustered cells. In [17], local image patch descriptors are obtained by extracting

the averaged local Fourier transform (LFT) features from a color space, called

the most discriminant color (MDC) space, which is determined by iterative op-

timization of color space transformation and projection matrices with respect to

Fisher-Rao discrimination criterion. Touching-cell splitting algorithm based on

concave point detection and iterative cell-clump splitting is proposed to refine the

segmentation obtained through MDC. [70] utilizes the Fourier spectrum of the

cell regions combined with PCA to extract color texture features and classify CB

and non-CB cells on cropped image regions. Mean shift algorithm combined with
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hierarchical grouping is used in LUV color space for segmentation of individual

cells [71]. Area, nuclear to cytoplasm ratio, mean and standard deviation of the

intensity range within the cell are utilized as features for CB classification. In

[72], follicles are detected in the first stage from immunohistochemically (IHC)

stained microscopy images using the homogeneity feature of the co-occurrence

matrix and then CB cells are identified in the resulting follicular regions.

3.2 The Detection Procedure

In this thesis, computerized detection of CB cells is accomplished by consider-

ing cellular regions as blob-like structures, which can be detected by scale-space

image representation. Constituting an approximation to LoG method [73], DoG

pyramid proposed in the SIFT algorithm [74, 19] is used for blob-like cellular

region detection. Scale-space extrema points of the DoG pyramid yield the de-

sired cell locations and sizes determined from the scale of detection. A simulated

image with blobs of different sizes and a real FL image are shown in Figure 3.3

along with the detection results obtained by deriving the scale-space extrema of

the DoG images.

There are several biomedical image analysis studies in the literature, that

model the cell detection problem as a blob detection problem. In [75], multi-

scale LoG filtering is performed to detect seed points for the subsequent initial

segmentation of nuclear images based on local-maximum clustering. Fixed-scale

LoG blob detector was used in [76] and [77] to detect and count nuclei in retinal

images. This approach has the disadvantage of requiring the adjustment of the

diameter of the LoG filter, which is impractical in situations where cells of varying

sizes have to be handled, as is the case in FL. LoG filtering based automated cell

detection algorithm in IHC stained tissues was presented in [78]. This method also

needs to match the scale of the LoG filter to cell size and thus applies a number of

LoG filters with different scales, leading to a computationally expensive process.
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(a) Simulated image

Number of detected blobs: 4

(b) Blobs detected on simulated image

(c) FL image patch

Number of detected blobs: 39

(d) Blobs detected on FL image patch

Figure 3.3: Sample simulated (a) and real (c) images along with the detection
results (b), (d) indicating the blob-like structures in the images by using red
circles whose radius is determined from the scale at which the blob is detected

We propose a novel blob-like cell detection approach incorporating an effec-

tive image binarization step that boosts the performance of feature detection as

applied in SIFT. Unlike [75] and [78] where LoG-based blob detection is carried

out as a step that reinforces previous and/or subsequent steps for segmentation,

we utilize DoG for scale-space blob detection from the binarized image without

having to achieve the segmented cell boundaries. Unlike [76], [77] and [78] where

fixed-scale LoG filters are employed for blob-like cell detection, our approach uses

a multi-scale blob detector, allowing us to extract cells of various sizes from dif-

ferent levels of the DoG pyramid, which is computationally more efficient than

applying different size LoG filters repeatedly. Identification of candidate CB re-

gions using scale-space approach is followed by false positive reduction stages.

Size information, which is an innate property of the scale-space processing, is
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sufficient to eliminate most of the false positives. To refine the detection proce-

dure, statistical and textural features are employed to further reduce the number

of false positive cells, which is explained in Section 3.4. Major components of the

proposed image analysis algorithm for CB detection are shown on Figure 3.4. In

the training phase, CB and non-CB cells are manually cropped from the training

set. Statistical and textural features are extracted from the cropped regions and

the resulting feature vectors are trained using a QDA classifier. In the testing

phase, multi-scale blob detection is carried out on the binarized FL images and

the detected cells retained after size-based FP elimination are classified using the

trained QDA model.

Training
Crop ground-truth CB cellsCrop ground-truth CB cells

Crop non-CB cells

Statistical and textural
feature extraction

QDA classifier
training Model

Testing

Input image
Nonlinear filtering based

image binarization
Scale-space pyramid construction

and blob detection

False positive elimination
based on size

False positive elimination
using the trained model

CB
candidates

Figure 3.4: Image processing pipeline for the proposed CB detection system.

3.3 Centroblast Detection via Scale-Space Ap-

proach

In this section, the steps of the proposed centroblast detection algorithm utilizing

DoG based scale-space image representation are described in detail.

FL images are composed mostly of small cleaved cells called centrocytes and

larger non-cleaved cells called centroblasts in addition to extracellular material.

Due to the characteristics of the H&E staining, CB and non-CB cells appear
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to be dark blob-like regions in each channel of the RGB FL image. We aim to

detect those dark structures in a relatively lighter colored surroundings by using

the scale-space extrema of the difference-of-Gaussian (DoG) images as in [74].

DoG, however, fails to reveal the cellular image structures in FL as CB cells

often exhibit heterogeneous tissue characteristics, resulting in poor CB detection

performance. In order for the Gaussian blob detector to function properly, the

input image structures should be distinguishable from the background so that

desired cells will not be missed. We propose an image binarization step to allow

for an easier identification of cellular regions. In Section 3.3.1, we demonstrate

how FL image binarization using nonlinear filtering contributes to the accuracy

of cell detection and in Section 3.3.2 we explain the procedure for constructing

scale-space pyramids and detecting blob-like cell structures.

3.3.1 Nonlinear Filtering Based FL Image Binarization

The performance of cell detection procedure may be degraded by spatial tissue

characteristics of centroblast regions comprising more nucleoli components than

non-centroblast regions, thereby making them less differential with respect to

background. Hence, it is possible to miss some CB cells in the detection phase

if the scale-space pyramid is built from the original image without taking into

account the specific cell properties. An image binarization methodology is applied

to capture the highest number of cellular regions in FL images.

Standard deviation filtering is performed on the gray-level image I(x, y) by

computing the standard deviation of a square region around each pixel. I(x, y)

is divided by the resulting image S(x, y) to obtain the image

J(x, y) =
I(x, y)

S(x, y)
(3.1)

where flat regions are amplified and intensity values are normalized with respect

to local variance. Then, the image

H(x, y) = I(x, y) + cJ(x, y) (3.2)

where c is a constant multiplier chosen as c = 3, is likely to have foreground and
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(a) Original image (b) Binarized image

Figure 3.5: Detection results for a sample image patch showing (a) the original
version and (b) the binarized version

background that can be readily discriminated, as compared to the original image

I(x, y) since the nonlinear filtering and normalization operations performed above

help emphasize the distinction between cellular regions and the background. We

subtract the Gaussian smoothed version Hl(x, y) of H(x, y) from itself to obtain

a high-frequency image

Hh(x, y) = H(x, y)−Hl(x, y) (3.3)

on which Otsu thresholding [56] is performed. Morphological opening is applied

to the resulting binary image to obtain the input image from which scale-space

pyramid is constructed.

Hispathological tissue specimens belonging to FL possess certain characteris-

tics that make it difficult to capture the targeted CB cells. An important differ-

ence between CB and non-CB cells is that CB has a rough and irregular texture

as opposed to almost homogeneous texture observed in non-CBs. It is therefore

necessary to devise an algorithm that forces CB cells to stand out from their

surroundings. The abovementioned binarization algorithm accomplishes this by

performing standard deviation filtering, normalization and thresholding opera-

tions, taking into account the CB cell morphology. Detection results on both the

original and the binarized versions of a small image patch are shown in Figure

3.5. In this figure, green circles represent ground-truth CB locations marked by

at least three out of six pathologists and red circles indicate locations detected

by scale-space representation with radius showing the scale at which the blob
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is detected. CB cell in Figure 3.5(a) has an irregular texture and can not be

identified by direct application of DoG method. In binarized image in Figure

3.5(b), it can be easily distinguished from the background and detected using

DoG method. Large blobs falsely identified in Figure 3.5(a) due to merging of

several blobs in coarser scales of the pyramid are eliminated in the binary image

3.5(b). The proposed binarization approach provides a noticeable distinction be-

tween cellular regions and background, which is lacking in the original image due

to morphological properties of CB cells. Figure 3.6 depicts the detection results

for both the original image and the binarized image of a larger region. As can be

seen from the results, two CB cells missed in detection from the original image

can be distinguished if CB detection is carried out on the binarized image. These

examples demonstrate that standard deviation filtering based image binarization

may boost the performance of the CB detection process.

3.3.2 Detection of Cells Using Scale-Space Image Repre-

sentation

Proper localization of CB cells in FL largely depends on the capability of the

detection method to identify candidate regions with high accuracy. The first

step in CB/non-CB classification is the detection of candidate CB regions that

will then be subject to statistical and textural analysis for discrimination of CBs

from non-CBs. In [16], Sertel et al. employ the expectation maximization (EM)

algorithm to fit a Gaussian mixture model to the distribution of cellular and

extracellular components. Using the posterior probability of each pixel belonging

to cellular components, a cellular-likelihood image is generated on which adaptive

thresholding is performed to obtain the binary image consisting of candidate cell

regions.

In this study, we bypass the step of precise segmentation of candidate cellular

structures by attempting to detect the centers of cells without the need to de-

termine the exact cell boundaries. To this end, we propose to take advantage of

the scale-space theory, specifically, the linear scale-space representation [79], for
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(a) Detection results using the original image

(b) Detection results using the binarized image

Figure 3.6: Cellular region detection results for a sample image patch using (a)
the original image and (b) the binarized image
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identification of salient locations that are likely to correspond to cellular regions.

Scale-space theory provides a convenient framework for analysis and derivation

of image components, objects, etc. from different scales. Scale-space of an image

can be obtained by convolving the image with a scale-space kernel parametrized

by the scale variable [80]. Lindeberg [73], Koenderink [80] and Babaud et. al. [81]

has proved that the Gaussian kernel is the only scale-space kernel that satisfies

the conditions as stated by scale-space axioms, such as linearity, shift invariance,

semi-group structure and non-creation of local extrema. Formally, linear scale-

space representation L(x, y; σ) of a given image I(x, y) is given by the solution

to the heat diffusion equation [18]

∂σL = σ∇2L (3.4)

where the initial condition is L(x, y; 0) = I(x, y). The solution is found to be the

convolution of a rotation-invariant Gaussian function G(x, y; σ) parametrized by

the scale with the image I(x, y):

L(x, y;σ) = G(x, y; σ) ∗ I(x, y) (3.5)

where the Gaussian kernel is given by

G(x, y; σ) =
1

2πσ2
e−

(x2+y2)

2σ2 (3.6)

It has been demonstrated in [18] that scale-space extrema of the scale-normalized

Laplacian of Gaussian σ2∇2L correspond to blob-like structures in the image,

which can be defined as regions appearing darker or brighter than the back-

ground [82]. In the well-known Scale-Invariant Feature Transform (SIFT) algo-

rithm, Lowe [19] has proposed to use the difference-of-Gaussian function as an

approximation to the scale-normalized Laplacian of Gaussian for the purpose of

detecting salient locations in the image, namely, the keypoints.

Localization of candidate cell regions in FL images is accomplished by build-

ing the scale-space pyramid as in [74]. The input image is first interpolated by a

factor of 2 before pyramid construction to retain high-frequency details, thereby

restricting the frequency spectrum of the image to [0, π/2] range. This would

prevent the loss of fine details in successive smoothing and downsampling opera-

tions performed at each level of the pyramid. Let Ii(x, y) denote the input image
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at the ith level of the pyramid. Ii(x, y) is smoothed using the Gaussian kernel to

obtain the smoothed image Lsi(x, y):

Lsi(x, y;σ) = G(x, y; σ) ∗ Ii(x, y) (3.7)

Lsi(x, y) is smoothed using the Gaussian kernel with the same σ to obtain the

image Lgi(x, y):

Lgi(x, y; σ) = G(x, y;σ) ∗ Lsi(x, y; σ) (3.8)

The effective smoothing factor of Lgi(x, y) is σ
√
2. The difference-of-Gaussian

image is obtained by computing the difference of the Gaussian smoothed images:

Di(x, y; σ) = Lgi(x, y;σ)− Lsi(x, y; σ)

= (G(x, y;σ
√
2)−G(x, y; σ)) ∗ Ii(x, y)

where the ratio between the Gaussian kernels is
√
2. The scale parameter is

selected to be σ =
√
2 as in [74]. For the next level of the pyramid, Lgi(x, y)

is subsampled by a factor of 1.5 using bilinear interpolation to obtain the image

Ii+1(x, y) that would be input to the next pyramid level.

Performing the above operations, we construct the difference-of-Gaussians

pyramid {Di(x, y;σ)}Ni=1, which constitutes a scale-space representation of the

input image using N levels. Scale-space extrema of the scale-space function

{Di(x, y; σ)}Ni=1 yield the desired blob-like image structures, which, in case of

FL, correspond to centroblast and non-centroblast regions. Since scale-space

minima (maxima) reveal dark (bright) blobs in a bright (dark) environment [82],

we search for local minima points in scale-space as the green channel of the

RGB image is used as the intensity image. For each pixel, scale-space minima of

{Di(x, y; σ)}Ni=1 are derived by first comparing the center pixel to its 8 neighbors

at the same pyramid level [74]. If it is a minimum at this scale, we proceed to

the lower level to find the corresponding point and compare the target pixel to

9 neighbors including the corresponding point and its 8 neighbors. If the target

pixel is still a minimum, the same procedure is applied for the upper level. Scale-

space extrema locations thus found are acknowledged as candidate CB regions

for further processing.
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3.4 Cell Classification

Cellular region detection via scale-space approach provides candidate locations

for CB cells. Each detected cell is associated with a certain location and scale

determined by the spatial position and scale of the scale-space extremum point.

A scale-space extremum detected at Dĩ(x̃, ỹ; σ), 1 ≤ ĩ ≤ N , defines a blob with

radius

rĩ(x̃, ỹ) =
(σ
√
2 + σ)

2
(1.5)ĩ−1 (3.9)

by taking the average of the consecutive scales Lgĩ
(x, y; σ) and Lsĩ

(x, y;σ) between

which the blob is detected, and with spatial position

(
(1.5)ĩ−1

2
x̃,

(1.5)ĩ−1

2
ỹ) (3.10)

The inner cell texture and scale-space size information may constitute significant

prognostic clues facilitating the discrimination of CBs from non-CBs among the

detected cells. Size information and textural and statistical region properties are

utilized in a two-stage false positive elimination procedure to classify CB and

non-CB cells.

3.4.1 FP Elimination Using Size Information

In the first stage, we refine our estimates of CB cells based on the a-priori knowl-

edge about the CB cell sizes. The radius of the cellular structures in FL images is,

in general, between the range 6 and 30. Thus, after scale-space extrema selection,

only those blobs whose radius is in the range [6, 30] are taken into consideration as

possible CB cells. One of the most essential differences between CB and non-CB

cells is that CBs are generally larger than non-CBs. We aim to reduce the false

positive rate by restricting the acceptable range to [10, 30]. Hence, the first stage

false positive elimination is performed as

Cĩ(x̃, ỹ) =

{
CB, if rĩ(x̃, ỹ) ∈ [10, 30]

nonCB, otherwise
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where Cĩ(x̃, ỹ) is the scale-space blob detected at Dĩ(x̃, ỹ; σ). We employ the

radius information conveyed inherently by scale-space processing to alleviate the

number of false positive cells.

3.4.2 Statistical Features

In the second stage, statistical region features, such as mean, variance, entropy,

skewness and kurtosis, along with the gray-level co-occurrence matrix (GLCM)

and gray-level run-length matrix (GLRLM) properties are computed to form

a feature vector that encodes the spatial arrangement of cellular regions in a

statistical and textural framework. Skewness and kurtosis have been shown to

constitute distinctive features in detection of microcalcifications in mammogram

images [83]. Second and third order statistics were utilized in biomedical signal

processing to characterize the sleep spindles occurring in electroencephalogram

(EEG) records of human sleep [84]. All these features are extracted from a circular

region R around each detected point. Let p(x) denote the probability density

function of the intensities in R. The pdf p(x) is estimated from pixel values and

used in discrete form. For each detected cell that is not eliminated in the first

stage, we estimate the following statistical parameters:

µ =

∫
x∈R

xp(x) dx, (3.11)

σ2 =

∫
x∈R

(x− µ)p(x) dx, (3.12)

h =

∫
x∈R

−p(x) log p(x) dx, (3.13)

γ1 =

∫
x∈R

(
x− µ

σ
)3p(x) dx, (3.14)

and

γ2 =

∫
x∈R

(
x− µ

σ
)4p(x) dx (3.15)

where µ, σ2, h, γ1 and γ2 denotes the mean, variance, entropy, skewness and the

kurtosis, respectively.
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3.4.3 Textural Features

GLCM is a 2-D matrix representation of image texture proposed by Haral-

ick et al. [85]. It is a 2-D histogram of neighboring image pixels in one of the

four directions {0, π/4, π/2, 3π/4}. Each entry p(i, j) of a co-occurrence matrix

is computed as the number of times the gray-levels i and j are neighbors in a spe-

cific direction. Four different GLCMs of an 8-level quantized region are computed

for four directions, and four properties, namely, contrast, correlation, energy and

homogeneity, are extracted from each 8-by-8 GLCM. These features are averaged

over four directions and we obtain four GLCM features for each detected region.

Proposed by Galloway [86], GLRLM characterizes the texture of a region

by computing the gray-level runs and constructing a 2-D matrix representa-

tion. Each entry p(i, j) of a run-length matrix can be obtained as the number

of runs of gray-level i in a specific direction with run length j. We compute

four different GLRLMs of an 8-level quantized cellular region for four different

angles {0, π/4, π/2, 3π/4} and derive eleven run-length features averaged over

these angles, which are, namely, short-run emphasis, long-run emphasis, gray-

level nonuniformity, run-length nonuniformity, run percentage, low gray-level run

emphasis, high gray-level run emphasis, short-run low gray-level emphasis, short-

run high gray-level emphasis, long-run low gray-level emphasis and long-run high

gray-level emphasis.

3.4.4 SIFT Descriptor

SIFT descriptor [19] is also utilized in the second stage as an alternative to sta-

tistical and textural features in false positive elimination. As blob-like cellular

structures are detected using a modified version of the feature detection part of

the SIFT algorithm, we can compute SIFT descriptors on detected scale-space

extrema locations, namely, the keypoints in SIFT terminology.

Each keypoint is first assigned an orientation computed from the local image

46



neighborhood. This would provide rotation invariance by subtracting the orien-

tation from the descriptor representation. For each detected point, the Gaussian

smoothed image Lsi(x, y;σ) at a certain scale i that corresponds to average cell

size in FL is used to calculate the gradient magnitude and orientation images,

respectively:

m(x, y) =
√
a2 + b2, (3.16)

and

θ(x, y) = arctan(
b

a
) (3.17)

where

a = (Lsi(x+ 1, y)− Lsi(x− 1, y)), (3.18)

and

b = (Lsi(x, y + 1)− Lsi(x, y − 1)) (3.19)

We construct an orientation histogram weighted by gradient magnitudes of each

sample, using the gradient orientations of local neighborhood around the detected

point. Peak detection is performed on the orientation histogram to obtain the

local image orientation.

In the descriptor computation part, 8-bin orientation histograms are created in

each of the 16 4-by-4 subregions contained in 16-by-16 region of Lsi(x, y;σ) around

the keypoint. Each sample is again weighted by its gradient magnitude. SIFT

keypoint descriptor is obtained as the collection of 16 8-bin orientation histograms

representing the image content over 4-by-4 subregions in the neighborhood of the

keypoint. Hence, it is a 128 element feature vector for each detected blob. VLFeat

library [87] is used for SIFT implementation.

3.4.5 Classifier Learning

As shown in Figure 3.4, positive (CB) and negative (non-CB) samples are man-

ually cropped from the training images in the training phase to generate a clas-

sification model. Statistical features and GLCM, GLRLM and SIFT properties

are calculated in cropped cell regions. CB cells are cropped from ground-truth

locations that are marked by at least two out of six pathologists and non-CB cells
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are selected among those cells that are not marked by any of the pathologists. A

scatter plot of the 20 features containing statistical, GLCM and GRLRM features

in 2D principal component analysis (PCA)-reduced space is shown in Figure 3.7,

where the two dimensions correspond to the two eigenvectors with the largest

eigenvalues. Figure 3.8 depicts the same plot for SIFT features. Quadratic dis-

criminant analysis (QDA) classifier is used to learn the decision boundary between

CB and non-CB cells. In the testing phase, feature vectors extracted from the

detected cells retained after the 1st refinement stage are fed to the learned model

to obtain the classification labels. Both CB and non-CB cells of the training set

are modeled as Gaussian distributions with arbitrary covariance matrices, and

Bayesian classification is performed. The cost matrix of this QDA classifier is

parametrized by the cost of assigning a non-CB sample to CB as

Cost(p) =

[
0 p

1 0

]
(3.20)

where the parameter p determines the decision boundary and balances the tradeoff

between sensitivity and number of false positives.
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Figure 3.7: Scatter plot of statistical and textural (GLCM and GLRLM) features
extracted from cropped cells of training images
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Figure 3.8: Scatter plot of SIFT features extracted from cropped cells of training
images

3.5 Experimental Results

The proposed CB detection algorithm is evaluated on a dataset of 30 H&E stained

high-power field images of FL which shows a heteregenous character. Each image

has size 1353x2168 and is digitized at 40x magnification by an Aperio Scope XT

Scanner (Aperio, San Diego, CA). Six expert board-certified hematopathologists

have created the ground-truth by individually marking the CB cell locations.

Therefore, the proposed algorithm is evaluated against six different ground-truths,

each consisting of cells identified by at least n out of six pathologists where n is

ranging from one to six.

The first 15 images are used as training images and the remaining ones as

test images. Ground-truth CB cells from the training images are cropped from

locations marked by at least n pathologists. Non-CB cells are manually selected

from cell locations where no pathologist identifies a CB. In the training phase,

statistical, GLCM, GLRLM and SIFT features are computed in a circular region

of radius 12 pixels around the center point for both CB and non-CB cells. In the

testing phase, we compute these features in a circular region of radius 12 pixels
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around the detected scale-space extremum point.

We first evaluate how exploitation of the size information of the detected

scale-space blobs improves the CB detection procedure. In Section 3.4, range of

radius values valid for cells in FL images is changed from [6, 30] to [10, 30] to

get rid of small non-CB cells in the 1st false positive elimination stage. Results

of this stage are shown in Table 3.1, in which Npath denotes the number of

pathologists required to verify a cell, CB denotes the number of CB cells detected

by our algorithm divided by the total number of CB cells, Sensitivity denotes the

percentage of the detected CB cells among all CB cells, FP denotes the number

of false positives and, normal range and restricted range correspond to [6, 30]

and [10, 30], respectively. The findings presented here are averaged over 15 test

images. These results demonstrate that multi-scale blob detection based on DoG

provides valuable information that helps to reduce the number of false positives

by almost 88% without compromising the sensitivity of the system much. For

instance, if we require the consensus of at least four pathologists to verify a CB

cell, sensitivity is reduced by 2.3% while the number of false positives decreases

by 87.6%.

Table 3.1: Results of the 1st FP Elimination Stage

normal range restricted range

Npath CB Sensitivity (%) FP CB Sensitivity (%) FP

1 306/337 90.8 3642 174/337 51.6 448

2 139/148 93.9 3653 129/148 87.2 451

3 78/82 95.1 3657 75/82 91.5 455

4 43/43 100 3660 42/43 97.7 457

5 17/17 100 3661 16/17 94.1 459

6 1/1 100 3663 1/1 100 460

We also investigate the effect of the proposed image binarization strategy

on the detection results. Table 3.2 shows the results of the 1st FP elimination

stage without using image binarization. Comparative analysis of Tables 3.1 and
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3.2 leads to the observation that the sensitivity of the system without applying

binarization is far below that when binarization is applied before DoG based

blob-like cell detection. In case of the consensus of at least four pathologists,

for instance, the sensitivity without binarization in the restricted range is 67.4%

whereas it is 97.7% if binarization is performed, with almost the same number of

FPs.

Table 3.2: Results of the 1st FP Elimination Stage Without Binarization

normal range restricted range

Npath CB Sensitivity (%) FP CB Sensitivity (%) FP

1 306/337 90.8 3257 158/337 46.9 442

2 140/148 94.6 3268 106/148 71.6 446

3 77/82 93.9 3272 62/82 75.6 449

4 40/43 93 3275 29/43 67.4 451

5 15/17 88.2 3277 10/17 58.8 452

6 1/1 100 3278 0/1 0 453

Secondly, the effect of the 2nd FP elimination stage on sensitivity and the

number of FPs is explored. We compare the performance of five different sets of

feature vectors as described in Table 3.3. The first four feature vectors are used in

a scenario where DoG based scale-space blob detection is performed on binarized

images as described in this paper. The last feature vector, which we denote by

direct SIFT, is again the SIFT descriptor, but used in a scenario where blob

detection is performed on original images, which is basically a direct application

of SIFT.

Figures 3.9-3.11 show the ROC curves plotted for the sensitivity versus the

number of false positives in test set as the parameter in Equation (3.20) is chang-

ing, evaluated with respect to six different ground-truths. The findings presented

on these plots are averaged over 15 test images. Ten different p values are used

to plot the curves, but the range of these values differs among five feature vec-

tors. Examining the ROC curves generated from training images in each of the
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Table 3.3: Feature Sets Used in Cell Classification

Feature Sets Features Number of features

Feature Set 1 (FS1) Statistical and GLCM 9

Feature Set 2 (FS2) Statistical and GLRLM 16

Feature Set 3 (FS3) Statistical and GLCM and GLRLM 20

Feature Set 4 (FS4) SIFT 128

Feature Set 5 (FS5) Direct SIFT 128

five cases, we attemp to determine a range for p that yields reasonable trends in

sensitivity-FP trade-off. Once an acceptable range for p is found, we identify the

optimum decision point, which corresponds to one of the values assumed by p, in

sensitivity-FP plot from the training set. As a general rule, it is enforced that at

least 40 FPs must be eliminated in return for a 1% decline in sensitivity. These

optimum points are indicated by green circles in Figures 3.9-3.11.

As can be seen from the results, Feature Set 1 (FS1) outperforms all other

feature vectors in all of the six cases. Using statistical and GLCM features, it is

possible to attain 97% sensitivity with approximately 230 FPs for Npath = 4,

and 91% sensitivity with approximately 210 FPs for Npath = 3. It is observed

that all three feature vectors that we have proposed (FS1, FS2 and FS3) are

clearly superior to the SIFT descriptor, which could not reduce the number of

FPs down below 350 in any of the six cases. Furthermore, direct application

of SIFT descriptor, direct SIFT, leads to poor detection performance, with 75%

sensitivity versus 450 FPs for Npath = 3 as the best result. This proves that

FL image binarization applied prior to scale-space blob detection is of crucial

importance in CB detection. Our system is capable of detecting approximately

90% of the CB cells with an approximate FP rate of 200/3000 ≈ 7%, substantially

reducing the search space of pathologists.

SIFT descriptor is particularly well suited for computer vision tasks such as

object detection [19], but it may not be as effective in the field of microscopic

image analysis. Experimental results suggest that combination of GLCM and
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Figure 3.9: ROC curve of average sensitivity (%) versus average number of false
positives in the test set for (a) Npath = 1 and (b) Npath = 2
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Figure 3.10: ROC curve of average sensitivity (%) versus average number of false
positives in the test set for (a) Npath = 3 and (b) Npath = 4
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Figure 3.11: ROC curve of average sensitivity (%) versus average number of false
positives in the test set for (a) Npath = 5 and (b) Npath = 6
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statistical features leads to a more robust detection performance as compared to

SIFT. GLCM and GLRLM are both convenient for texture analysis and classifi-

cation, whereas SIFT, which relies on gradient orientation histograms, tends to

be more descriptive for real-world objects and scenes. Since cellular regions in FL

images can be regarded as texture, the performance of SIFT is lower than GLCM

and GLRLM based features in local cellular region representation, which is also

confirmed by our experiments. Moreover, 128-length SIFT feature vector is much

more computationally expensive in both feature computation and classification

stages than the proposed feature sets. Utilizing keypoint detection part of SIFT

in candidate cell detection and FS1 for elimination of FPs in cell classification

yields the best detection results.

Finally, we assess the accuracy of human readers, the pathologists who have

marked the dataset. Similar to the performance evaluation of the computer-

aided detection algorithm, the performance of pathologists is evaluated against

six ground-truths created by pathologists themselves. Table 3.4 presents the

average sensitivity and the average number of FPs of six pathologists evaluated

in six different cases depending on the minimum number of pathologists required

to verify a CB cell. The results presented in Table 3.4 are averaged over 30 images

in the dataset and then averaged over pathologists. It can be observed that the

proposed computerized CB detection system, which achieves 97% sensitivity for

Npath = 4, outperforms the accuracy of human readers, which is 75% based on

the same ground-truth. However, the number of FPs generated by the algorithm

(200-250) is higher than those generated by human readers (5-6).

Table 3.4: Accuracy of Human Readers

Npath 1 2 3 4 5 6

Average Sensitivity (%) 26.2 52.7 65.5 75.6 85.4 95.8

Average FP 1.9 2.2 3.8 5.3 6.8 8.2
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3.6 Summary

A novel computerized cell detection algorithm is presented for accurate identifi-

cation of malignant CB cells in FL images. The proposed algorithm utilizes the

scale-space representation of FL images to detect blob-like cellular structures.

Directly applying the scale-space DoG pyramid of SIFT to original FL images

results in unsatisfactory CB detection performance due to the specific textural

characteristics of CB regions. We introduce an image binarization strategy that

successfully surmounts this problem by achieving the differentiation of CBs from

surroundings in the binarized image. False positive reduction strategies incorpo-

rate size constraints and statistical and textural features on candidate CB regions.

Experimental results indicate that the accuracy of our computer-aided CB de-

tection system is higher than the SIFT algorithm. Furthermore, the proposed

system outperforms the accuracy of human readers, thereby signaling the need

for the development of quantitative analysis tools for histopathology imagery.
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Chapter 4

Conclusions

In this thesis, new image processing methods are proposed for two different mi-

croscopic image analysis problems. The first problem concerns the classification

of human cancer cell line images. Cancer cell lines are derived from cancerous

regions of the human body and utilized in cancer research and drug discovery

studies. Researchers need to deal with a large number of specimens in laboratory

experiments and verify the identity of cell lines frequently. Classical methods

developed for cell line authentication are costly and time-consuming, and an ex-

pert is required to carry out the biochemical tests. A computational framework

employing image processing and machine learning techniques is developed for au-

tomated classification of cancer cell line images. In the second part of the thesis,

the problem of centroblast detection in follicular lymphoma images is investi-

gated. FL is a lymphoid malignancy commonly encountered in the western world

and grading of FL is performed by pathologists who count the large malignant

centroblast cells and stratify the FL case into three different grades based on the

average number of centroblast in microscopic high-power fields. This method is

subject to significant inter- and intra-reader variability and sampling bias. A new

computerized method is proposed to detect centroblasts, which would facilitate

the FL grading process.

Discrimination of cancer cell line images consisting of 14 classes is achieved by

using the DT-CWT coefficients combined with the region covariance framework.
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2D DT-CWT decomposition is applied to cell line images and magnitudes of co-

efficients at directional detail subbands are calculated and used as pixel features

in covariance representation. A new feature called directional difference scores is

proposed and included in covariance descriptor computations. Random subwin-

dows are sampled from the whole image and covariance matrices are computed

for each local window containing foreground cellular regions. It is experimentally

observed that covariance features provide distinctive image representation for

cancer cell line dataset, especially when combined with DT-CWT and directional

difference score features. Orientation selectivity property of DT-CWT is shown

to enhance the recognition rate in a considerable manner, thereby outperform-

ing the conventional method of covariance feature extraction using only intensity

and derivative features. Classification of extracted features are performed in the

feature space obtained by vectorizing the covariance matrices, which are sym-

metric positive-definite, and SVM classifier is employed to determine the class

boundaries. In addition, normalized version of covariance descriptors are tested

on the same dataset and found to be more successful than classical covariance

descriptors. Eliminating the disadvantages of conventional cell line verification

methods, the proposed computerized system can be reliably utilized in laboratory

studies. Our tool provides an automated, time- and cost-efficient analysis of can-

cer cell morphology to classify different cancer cell lines using image processing

techniques, which can be used as an alternative to the costly short tandem repeat

(STR) analysis.

A new computer-assisted method based on scale-space image representation

is developed for FL grading. Detection of candidate centroblast cells is achieved

based on the observation that cellular regions in FL images appear as dark blob-

like structures in a relatively brighter environment. Scale-space blob detection

method as applied in the SIFT algorithm uses the scale-space extrema of the

difference-of-Gaussians pyramid constructed from successive convolutions of the

input image with a Gaussian kernel. Direct application of this method fails over

FL images due to the textural characteristics of centroblast regions, which re-

quire a more sophisticated approach. An image binarization strategy is proposed
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and applied on FL images prior to scale-space blob detection algorithm, and ex-

perimentally shown to be effective in making centroblast regions more salient,

thus improving the sensitivity of the detection system. To refine the detection

procedure, statistical and textural analysis is carried out on the detected cells.

Statistical features including mean, variance, entropy, skewness and kurtosis, two

texture descriptors, namely, gray-level co-occurrence matrix and gray-level run-

length matrix, and SIFT descriptor are employed to represent cellular regions in

the feature space. Experimental results suggest that combination of statistical

and textural features is quite successful in centroblast detection and outperforms

the SIFT descriptor. These features have also smaller length and therefore lower

computational complexity as compared to SIFT. Furthermore, experiments for

evaluating the performance of pathologists marking the dataset demonstrate that

the proposed algorithm provides better results than expert pathologists in cen-

troblast detection.
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