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ABSTRACT

ELECTRONIC STRUCTURE OF GRAPHENE UNDER

THE INFLUENCE OF EXTERNAL FIELDS

Selcen İslamoğlu

Ph.D. in Physics

Supervisor: Prof. Dr. Oğuz Gülseren

August 2012

In this thesis, the electronic structure of graphene under the influence of exter-

nal fields such as strain or magnetic fields is investigated by using tight-binding

method. Firstly, we study graphene for a band gap opening due to uniaxial strain.

In contrast to the literature, we find that by considering all the bands (both σ

and π bands) in graphene and including the second nearest neighbor interactions,

there is no systematic band gap opening as a function of applied strain. Our re-

sults correct the previous works on the subject. Secondly, we examine the band

structure and Hall conductance of graphene under the influence of perpendicu-

lar magnetic field. For graphene, we demonstrate the energy spectrum in the

presence of magnetic field (Hofstadter Butterfly) where all orbitals are included.

We recover both the usual and the anomalous integer quantum Hall effects de-

pending on the proximity of the Dirac points for pure graphene and the usual

integer quantum Hall effect for pure square lattice. Then, we explore the evo-

lution of electronic properties when imperfections are introduced systematically

to the system. We also demonstrate the results for a square lattice which has a

distinct position in cold atom experiments. For the energy spectrum of imper-

fect graphene and square lattice under magnetic field (Hofstadter Butterflies), we

find that impurity atoms with smaller hopping constants result in highly localized

states which are decoupled from the rest of the system. The bands associated

with these states form close to E = 0 eV line. On the other hand, impurity

atoms with higher hopping constants are strongly coupled with the neighboring

atoms. These states modify the Hofstadter Butterfly around the minimum and

maximum values of the energy and for the case of graphene they form two self

similar bands decoupled from the original butterfly. We also show that the bands

and gaps due to the impurity states are robust with respect to the second order

hopping. For the Hall conductance, in accordance with energy spectra, the local-

ized states associated to the smaller hopping constant impurities or vacancies do
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not contribute to Hall conduction. However the higher hopping constant impuri-

ties are responsible for new extended states which contribute to Hall conduction.

Our results for Hall conduction are also robust with respect to the second order

interactions.

Keywords: Graphene, tight-binding method, point defects, vacancies, strain,

magnetic field, Hofstadter Butterflies, Hall conductance, 2D electronic systems .



ÖZET

GRAFENİN ELEKTRONİK YAPISININ DIS.

ALANLARIN ETKİSİ ALTINDA İNCELENMESİ

Selcen İslamoğlu

Fizik, Doktora

Tez Yöneticisi: Prof. Dr. Oğuz Gülseren

Ağustos 2012

Bu tezde grafenin elektronik yapısının mekanik gerinim veya manyetik alan

gibi dış alanların etkisiyle nasıl değiştiği sıkı-bağlanım metoduyla incelenmiştir.

Öncelikle grafenin tek eksenli gerinim altında enerji bant açıklığı gösterip

göstermediğini inceledik. Literatürden farklı olarak, grafenin bütün bant-

ları (hem σ hem π bantları) düşünüldüğünde ve ikincil komşu etkileşimleri

hesaba katıldığında grafende uygulanan gerinimin fonksiyonu olarak değişen

bir bant açıklığı görülmemektedir. Bizim sonuçlarımız bu alandaki önceki

çalışmaların sonuçlarını düzeltmektedir. İkinci olarak, grafenin bant yapısını ve

Hall iletkenliğini grafen yüzeyine dik manyetik alanın etkisi altında inceledik.

Grafenin manyetik alan altındaki enerji bant yapısını (Hofstadter Kelebeği) tüm

orbitaller dahilinde gösterdik. Saf grafen için olağan ve kuraldışı, saf kare ağ

örgüsü için de olağan tamsayı kuantum Hall etkilerini gözlemledik. Daha sonra,

elektronik özelliklerinin sisteme sistematik olarak dahil edilen safsızlıklara göre

değişimini çalıştık. Ayrıca, soğuk atom deneylerinde önemli bir yere sahip olan

kristal kare ağ örgüsüne ait sonuçları da benzer şekilde elde ettik. Kusurlu grafen

ve kare ağ örgüsünün manyetik alan altındaki enerji tayfı (Hofstadter Kelebek-

leri) için, küçük sekme katsayısına sahip kusurlar, yüksek oranda yerel olarak

konumlanmış ve sistemin geri kalanından ayrılmış öz-değerlik durumlarına sebe-

biyet vermektedir. Bu durumlarla ilişkili bantlar E = 0 eV çizgisine yakın olarak

biçimlenmiştir. Diğer taraftan, büyük sekme katsayısına sahip kusurlar ise komşu

atomlarla yüksek oranda bağlaşıma girmişlerdir. Bu öz-değerlik durumları Hofs-

tadter Kelebekleri’ni enerji değerlerinin en küçük ve en büyük olduğu bölgelerde

değişikliğe uğratmakta ve grafen söz konusu olduğunda özgün kelebekten tama-

men ayrılmış iki adet öz-benzeş bant oluşturmaktadır. Ancak, kusur öz-değerlik

durumları nedeniyle oluşan bantlar ve bant açıklıkları ikinci derece sekmeye karşı

dirençlidir. Hall iletkenliği için de, enerji tayfındaki değişikliklerle uyumlu olarak,
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küçük sekme katsayısına sahip kusur ve boşluklar kökenli yüksek oranda yerel

olarak konumlanmış öz-değerlik durumlarının Hall iletkenliğine katkıda bulun-

madıkları soylenebilir. Fakat, görece büyük sekme katsayısına sahip kusur atom-

ları Hall iletkenliğine katkıda bulunan yersizleşmiş yeni öz-değerlik durumlarının

oluşmasına neden olmaktadır. Hall iletkenliği hesaplarımızın sonuçları da ikinci

derece etkileşimler karşında kalıcıdır.

Anahtar sözcükler : Grafen, sıkı-bağlanım metodu, noktasal kusurlar, eksiklik-

ler, gerinim, manyetik alan, Hofstadter Kelebekleri, Hall iletkenliği, İki boyutlu

elektronik sistemler .
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Chapter 1

Introduction

Carbon is the basic element of Nature. Various structures having carbon atoms

have been popular fields of research through the last few decades. Among these

systems, two dimensional (2D) graphene, composed of only carbon atoms, has a

basic and a unique position in order to examine the other carbon-based systems

[1]. It became experimentally accessible after the isolation as single layer by me-

chanical exfoliation [2, 3]. As a result, it is one of the systems that attracted the

most attention in recent years. There are several works that concentrate on the

electronic and mechanical properties of graphene [4, 5, 6, 7]. The band struc-

ture of graphene was determined in 1947 [8]. Graphene exhibits several unusual

properties because of the Dirac points appearing in its band structure. The π

bands due to the pz orbitals of graphene form conic shapes and the conduction

and valance bands touch each other at Dirac points. These bands of graphene are

unique in 2D electronic systems, where the relativistic quantum mechanics gov-

erns the system due to the linear dispersion of Dirac cones. The behavior of Dirac

fermions under magnetic fields and electrostatic potentials is a popular interest

for researchers [4, 5, 9, 10, 11, 12]. One of the main consequence of graphene’s

band structure is the observation of anomalous integer quantum Hall effect in low

magnetic fields which was predicted by earlier calculations [12, 13]. Soon after

the discovery of the anomalous integer quantum Hall effect in graphene [5, 14],

many theoretical studies discussing the Hall conductance in low magnetic field

1



CHAPTER 1. INTRODUCTION 2

regime were reported [15, 16, 17, 18, 19].

One of the most popular questions asked by researchers is whether it is pos-

sible to apply band gap engineering on graphene. To investigate this point, the

effects of uniaxial strain on graphene’s band structure has been determined theo-

retically as well as experimentally [20, 21, 22, 23, 24, 25, 26]. The most interesting

result was reported by Castro-Neto et al. which indicated that it is possible to

obtain a band gap opening in graphene by applying ∼ 24 % uniaxial strain due

to the merging of the Dirac cones [27, 28]. They have used the nearest neighbor

tight-binding method which is a very practical approach and it is capable of in-

vestigating the electronic structure in a smart way. The analytical tight-binding

method applied to graphene was published in 2002 [29]. However, in that pa-

per, the only bonds under consideration were the π bonds, and the calculation

contained only the 1st nearest neighbors, since this level of approximation was

thought to provide information about the one-dimensional nanotube band struc-

ture. Since the band structure of graphene is not composed of only π bonds, we

provide a detailed calculation about the band structure which contains σ bonds

as well as the π bonds.

The effects of the external field induced changes on the electronic structure of

graphene is a very interesting and promising problem. In this thesis, we concen-

trate on two external fields: strain and magnetic field which can be investigated

by the tight-binding method. Firstly, we demonstrate the results of 2nd near-

est neighbor tight-binding approach applied to single-layer graphene under strain

which has an opposing result to what was reported in the literature. Another re-

cent study suggests that, with 26.5% of uniaxial strain the system develops a 45.5

meV band gap [30]. We claim that, it is impossible to get a band gap opening in

monolayer graphene by applying uniaxial strain. Secondly, we examine graphene

and a square lattice which is also a 2D system under magnetic field. The choice of

the square lattice is due to its simple yet representative nature. Moreover it also

has a unique position in cold atom experiments and calculations [31, 32, 33, 34].

We use tight-binding method again up to second order interactions through which

we obtain the energy spectra under magnetic field (Hofstadter Butterflies) and
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the Hall conductance values. In addition we demonstrate the effects of lattice im-

perfections on the electronic structure when the system is subjected to magnetic

field.

Graphene is composed of a layer of hexagonally arranged carbon atoms, which

has a structure similar to honeycomb. It is a sp2 hybridized structure, in which

the hybridization of one s orbital with two p orbitals (px and py) leads to the

formation of σ bonds among the carbon atoms. As a result of this, graphene has

a trigonal planar geometry with carbon atoms which are separated by 1.42 Å.

The remaining p orbital (pz) which is perpendicular to the plane of consideration,

is responsible for the covalent bonding to upper or lower layer neighboring atoms

which has a consequence of the formation of π bonds. In this thesis, we mostly

concentrated on the electronic structure due to π bonds which are the leading

features for magnetic field considerations, however for the case of strain the σ

bonds have an important role.

In 2D, the Bloch electrons display an unusual behavior under magnetic field.

When there is a perpendicular magnetic field applied to the system the spectrum

has a fractal structure which depends on the magnetic flux, the chemical potential

and the temperature. The fractal nature of this spectrum originates from two

different length scales competing with each other: The length scale of the unit

cell which is governed by the lattice constant and the magnetic length of the

system. This competition gives rise to the phenomenon called “frustration” [35].

This unique spectrum is actually a phase diagram of the system with infinitely

many phases. The spectrum consist of recursive subbands which form phase

boundaries around the gaps. This structure of bands and gaps is generated by

the adiabatic changes in the magnetic flux and the chemical potential. The

number of subbands is dependent on some number connected to the magnitude

of the magnetic field. Hypothetically, this number “q” can be represented as a

function of the fraction of magnetic flux per plaquette penetrating into the system

to flux quanta. This ratio actually is the ratio of two characteristic periods of

the system: period of a single electron in a state with crystal momentum 2πh̄/a,

“a” is being simply the lattice constant and the other period is the reciprocal of

the cyclotron frequency [36]. The energy spectrum of these electrons display a
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self-similar structure. The primary work was performed by Douglas R. Hofstadter

in 1976, which concentrates on the square lattice and later these unique spectra

have been called by his name: The Hofstadter Butterflies [36] for several 2D

electronic systems. Several works concentrated on the energy spectra of various

examples of the 2D lattices, such as square, triangular, hexagonal, and honeycomb

lattices [37, 38, 39, 40, 41, 42, 43]. Although graphene is a non-Bravais lattice,

with two atoms in its basis, it still represents a fractal energy spectrum under

magnetic field.

The Hofstadter Butterfly has another interesting property. It gives informa-

tion about the magnetotransport properties of the system. Each gap in the energy

spectrum has a certain Hall conductance value within a gap. These values are

associated to every gaps and they stay constant within the gaps. These constant

values of Hall conductance indeed correspond to the Hall conductance plateaus

when the conductance is plotted as a function of Fermi Energy. The conductance

values of the gaps can be determined by the Diophantine equation whose solu-

tions are known as Chern numbers [44] for the square and honeycomb lattices as

long as the Fermi energy or the chemical potential lies in a gap. The relation

between the Hall conductance and the Chern numbers originates from the topo-

logical aspects of the Hall conductance. However, since the Diophantine equation

is no longer valid when there are imperfections in the system, we use a general

Kubo formula for Hall conductance calculation which gives results regardless of

the position of the Fermi energy.

The thesis is organized as follows: In the first chapter, we demonstrate the

general methodologies that we used in our calculations. Then, we concentrate

on the electronic behaviors of graphene under two external fields: Strain and

perpendicular magnetic field. For the magnetic field, we also studied the square

lattice. Moreover, we monitor the changes on the energy spectra and the Hall

conductance as a function of imperfections introduced to the systems periodically

for both graphene and the square lattice.



Chapter 2

The Tight-Binding Method

2.1 The Tight-Binding Approximation—Overview

Tight-binding approximation -also referred to as Linear Combination of Atomic

Orbitals (LCAO)- is one of the simplest tools for calculating band structures. In

this method, the orbitals which are based on atomic states are used as a basis for

the expansion of the crystal wavefunction. Since the crystal wavefunctions are

tightly bound to the atoms, the name “tight-binding” was given for this method.

Suppose that the orbital set φl(r − ti) is centered at the position of the ith

atom, denotes the set of atomic wavefunctions where ti is the position of the ith

atom and l is one of the angular momentum characters such as s, p, d and etc.

Then, we can use this set of wavefunctions as a basis for expanding the crystal

wavefunctions {χkli
(r)} which obey the Bloch’s theorem:

χkli
(r) =

1√
N

∑

R′

eik·R′

φl(r − ti − R′) , (2.1)

N is the number of unit cells in the crystal,

5
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χkli
(r + R) =

1√
N

∑

R′

eik·R′

φl(r + R − ti − R′)

=
1√
N

∑

R′

eik·(R′−R)eik·Rφl(r + R − ti − R′)

= eik·R 1√
N

∑

R′

eik·(R′−R)φl(r − ti − (R′ − R))

= eik·R 1√
N

∑

R′′

eik·R′′

φl(r − ti − R′′)

= eik·Rχkli
(r), (2.2)

and R′′ = R′ − R is just another lattice vector. The single particle eigenstates

can be expanded via these functions as follows:

ψ
(n)

k =
∑

i,l
c
(n)

kil(r)χkli
(r). (2.3)

Under these circumstances the single particle Schrödinger equation now becomes:

Hspψn
k(r) = ǫkψ

n
k(r);

∑

i,l
[〈χkmj

|Hsp|χkli
〉 − ǫ

(n)

k 〈χkmj
|χkli

〉]c(n)

kli
= 0 (2.4)

Now, we have two sets of integrals to deal with. The first one 〈χkmj
|χkli

〉 are

“overlap matrix elements” which can be defined as follows

〈χkmj
|χkli

〉 =
1

N

∑

R′
,R′′

eik·(R−R′′
)〈φm(r − tj − R′′)|φl(r − ti − R′)〉

=
1

N

∑

R,R′

eik·R〈φm(r − tj)|φl(r − ti − R′)〉

=
∑

R
eik·R〈φm(r − tj)|φl(r − ti − R)〉

The 1/N factor drops out since there is no more explicit dependence on R′ owing

to crystal symmetry. In a similar manner one can calculate the second integral
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〈χkmj
|Hsp|χkli

〉;

〈χkmj
|Hsp|χkli

〉 =
∑

R
eik·R〈φm(r − tj)|Hsp|φl(r − ti − R)〉 (2.5)

One of the main approximations behind the tight-binding theory is “the or-

thogonal basis approximation”, which approximates by a diagonal one i.e. the

overlap matrix (represented by S), elements to be nonzero if and only if they are

acting for the same orbitals on the same atom such that;

〈φm(r − tj)|φl(r − ti − R)〉 = δlmδijδ(R) . (2.6)

In fact this is just a useful assumption, since if the overlap matrix elements

were to be strictly zero for different orbitals, then we would have no interactions

among the nearest neighbors. For the Hamiltonian matrix elements we have a

similar situation, if they are acting for the same orbitals on the same atom we

get the “on-site” energies:

〈φm(r − tj)|Hsp|φl(r − ti − R)〉 = δlmδijδ(R)ǫl (2.7)

If the orbitals are on different atoms but these atoms are located at the nearest

neighbor sites which are represented by vector dnn;

〈φm(r − tj)|Hsp|φl(r − ti − R)〉 = δ((tj − ti − R) − dnn)Vlm,ij (2.8)

we obtain the Vlm,ij “hopping matrix elements”. The on-site energies and the

hopping matrix elements and the overlap matrix elements are parameterized and

tabulated [45, 46].

For generalized tight-binding method, the off-diagonal elements of the overlap

matrix S are not necessarily non zero. In the presence of non zero values for

overlap matrix elements, the energy eigenvalues are the solutions of:

det(H − SE) = 0 .

However, this equation can be reduced to orthogonal tight-binding method:

det(H − IE) = 0 , (2.9)
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by Löwdin transformation. In our tight-binding calculations our parameter are

modified in accordance with the generalized tight-binding, however we solve

Eq. 2.9.

2.2 Tight-Binding Method for Mono-layer Graphene

Graphene has a hexagonal lattice structure which can be constructed by two

lattice vectors,

~a1 =
a
√

3

2
x̂+

a

2
ŷ (2.10)

~a2 =
a
√

3

2
x̂− a

2
ŷ (2.11)

where a is the distance between the carbon atoms. The reciprocal lattice vectors

can be calculated from the basis vectors. In addition, graphene has two identical

atoms in its basis, which are labeled as atoms type A and type B, as shown in

Figure 2.1.

According to the tight-binding method, the Hilbert space which is spanned

by the atomic-like orbitals is able to describe the wavefunction solutions of the

Schrödinger equation [45]. These wavefunctions satisfy Bloch’s Theorem due to

the translational symmetry. Under these circumstances, the tight binding Hamil-

tonian for graphene can be written as an 8×8 matrix, including the interactions

of one s and three p orbitals. A convenient way to visualize this matrix is writing

it as a composite of four blocks according to the consideration of atoms A and B.

H =





HAA HAB

HBA HBB



 , (2.12)

Each of HAA, HAB, HBA, and HBB are 4×4 matrices denoting the orbital

interactions of atom A with itself, atom A and atoms B, atom B atoms A, and

atom B with itself, respectively. The eigenvalues of this Hamiltonian give the

desired energy values. In our calculations, we did not take the overlap matrix into

account, since its already implemented through the parameter we use. For more
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Figure 2.1: Graphene in real and reciprocal space. The nearest neighbors of atom
A0 up to 2nd order are presented in the first picture. The high symmetry points
used in the construction of a route in drawing the band structure are shown in
the second figure.

accurate energy values, instead we took our calculations two steps further via

inclusion of px and py orbitals and also the second nearest neighbor interactions

into the calculations in comparison to the similar work done before [27]. As an

example to the components of the main Hamiltonian matrix given in equation

2.12, HAA and HAB are displayed below.

HAA =

















〈2SA|H|2SA〉 〈2SA|H|2PA
x 〉 〈2SA|H|2PA

y 〉 〈2SA|H|2PA
z 〉

〈2PA
x |H|2SA〉 〈2PA

x |H|2PA
x 〉 〈2PA

x |H|2PA
y 〉 〈2PA

x |H|2PA
z 〉

〈2PA
y |H|2SA〉 〈2PA

y |H|2PA
x 〉 〈2PA

y |H|2PA
y 〉 〈2PA

y |H|2PA
z 〉

〈2PA
z |H|2SA〉 〈2PA

z |H|2PA
x 〉 〈2PA

z |H|2PA
y 〉 〈2PA

z |H|2PA
z 〉

















HAB =

















〈2SA|H|2SB〉 〈2SA|H|2PB
x 〉 〈2SA|H|2PB

y 〉 〈2SA|H|2PB
z 〉

〈2PA
x |H|2SB〉 〈2PA

x |H|2PB
x 〉 〈2PA

x |H|2PB
y 〉 〈2PA

x |H|2PB
z 〉

〈2PA
y |H|2SB〉 〈2PA

y |H|2PB
x 〉 〈2PA

y |H|2PB
y 〉 〈2PA

y |H|2PB
z 〉

〈2PA
z |H|2SB〉 〈2PA

z |H|2PB
x 〉 〈2PA

z |H|2PB
y 〉 〈2PA

z |H|2PB
z 〉
















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Figure 2.2: The orientations of py orbitals for nearest neighbor atoms A0, B1,
B2, and B3

When there is no strain in the system, 〈2PA
y |H|2PB

y 〉 can be thought as a

sum of 〈2PA0
y |H|2PB1

y 〉, 〈2PA0
y |H|2PB2

y 〉, and 〈2PA0
y |H|2PB3

y 〉, since atom type

A labeled as “A0” in Figure 2.1 has only three nearest neighbors of atom type

B. Since the px and py orbitals are oriented with some angle (α) with respect

to each other due to the structure of the lattice as sketched in Figure 2.2, the

individual matrix elements should be calculated by decomposing the orbitals into

σ and π components. As an example the matrix element 〈2PA
y |H|2PB

y 〉 can be

decomposed as follows:

〈2PyA0|H|2PyB1〉 = (−Vppσ cos2 α1 + Vppπ sin2 α1)e
i~k·~b1

〈2PyA0|H|2PyB2〉 = (−Vppσ cos2 α2 + Vppπ sin2 α2)e
i~k·~b2

〈2PyA0|H|2PyB3〉 = Vppπe
i~k·~b3 , (2.13)

where, Vppσ and Vppπ are the interaction parameters between the σ and π or-

bitals, respectively, and ~b1 and ~b2 are the reciprocal lattice vectors. The general

expressions for these interactions can be found in the References [45, 47]. The

energy-band diagram of graphene can be viewed via Fig. 2.3, where all the orbitals

are considered. We use the parameter set given in Table 2.1 for graphene.
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Figure 2.3: The energy-band diagram of graphene when all the orbitals are taken
into account.

Nearest neighbour Next nearest neighbour
On-site interaction interaction
energies parameters parameters
ǫ2s -7.3 Vss -4.30 V 2

ss -0.18
ǫ2p 0.0 Vsp 4.98 V 2

sp 0.0
Vppσ 6.38 V 2

ppσ 0.35
Vppπ -2.66 V 2

ppπ -0.10

Table 2.1: Tight–binding interaction parameters for graphene from Ref. [46]. All
values are in eV. ǫ2s and ǫ2p are the self interactions of the s orbital and the
p orbitals. Vss and Vsp are the interactions of s orbital with the neighboring s
orbital, s orbital with the neighboring p orbital, respectively. Vppσ and Vppπ are
the interactions of σ and π orbitals with the neighboring σ and π orbitals.
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2.3 Calculation of the Fermi Level

In order to determine whether there is a band gap or not, one should be able

to calculate the Fermi level. Fermi level is defined as the energy of the topmost

filled level in the ground state of the N electron system [50]. For the most general

case, we can define a density of levels per unit volume g(ε) so that the general

expression for a variable q can be written as:

q =
∫

dεg(ε)Q(ε) (2.14)

where, q can be defined for two separate cases. If q is the electronic number

density n, then Q(ε) = f(ε), where f(ε) is the Fermi Dirac distribution function;

if q is the electronic energy density u, then Q(ε) = εf(ε) [51]. The density of

states (or levels) can be easily obtained from the band diagram. However, for

this purpose the selection of the k points requires great importance. Rather than

calculating the band diagram through a certain route composed of high symmetry

points in the reciprocal lattice, one should sample all the k points located in the

1st Brillouin zone. The details about the sampling of the Brillouin zone can be

found in Ref. [52]. After the calculation of the band diagram, the DOS (density of

states) information can be obtained basically via the consideration of the number

of states per unit volume and per unit energy window. With the number of

electrons fixed at n and the assumption that the system is at 0 K, the equation

2.14 reduces to :
∫ Ef

−∞
D(ε)dε = n, (2.15)

with Ef is the Fermi level, since for 0 K f(ε) is 1. The integration limits originate

from the definition of the Fermi level. This numerical integral can be performed

iteratively, and as a result the value for the Fermi level can be estimated, easily.

In the band diagrams represented throughout the remaining pages, the Fermi

level is set to 0 eV.
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2.4 Imperfections in 2D Electronic Systems

The imperfections can be natural parts of solid state systems formed accidentally

as well as ingredients introduced in the cold atomic systems intentionally by re-

designing the optical lattice or by including several atomic species as in recent

experiments [81, 82, 83]. We model both the square lattice and graphene with

impurities to observe the changes in their magneto-transport properties under

the influence of perpendicular magnetic field. The tight-binding method which

is a sufficient tool both for the calculation of the energy spectrum (Hofstadter

Butterflies) as a function of magnetic flux φ divided by flux quantum φ0 and the

Hall conductance still serves well for the systems with impurities. The method-

ology is the same as with the one outlined in the previous sections except for

some points. First, we define the imperfections as impurity atoms replaced by

the original atoms of the basis and vacancies where there exists no atoms. These

considerations bring regulations in the hopping parameters. For impurity atoms

we simply change the first and the second nearest neighbor hopping parameter

of the imperfection, and for the vacancy case they simply become 0. The second

difference from the pure cases is that in order to achieve reasonable concentra-

tions of impurities by forbidding the system to become an alloy, we enlarge the

unitcell. By doing this we are able to work with systems which have arrays of

imperfections distributed periodically as imperfection lattices over the remaining

lattices. However since the system size is enlarged the calculation cost increases.

The size of the Hamiltonian in the magnetic field increases in accordance with

the number of atoms considered.



Chapter 3

Electronic Structure of Graphene

under Uniaxial Strain

3.1 Tight-Binding Method under the influence

of Uniaxial Strain

Since graphene has many independent electronic and mechanical properties which

attract the interest of scientists around the world, an investigation into the unified

electro-mechanical properties is of great interest. There have been many inves-

tigations about the mechanical properties such as elasticity [23] and resistance

to elastic deformations both by ab-initio calculations and several experiments

[21, 48]. In addition, the effects of strain were observed via the Raman Spectra,

where with the application of strain the Raman peaks shift and may even be split

into sub-peaks [20].

In our calculations, we concentrated on the effects of the uniaxial strain on the

band diagram of mono-layer graphene. A simple sketch (Figure 3.1) for this was

published in Reference [27]. In order to implement the strain information into the

calculations, we first developed an algorithm for the change in the positions of

the atoms with respect to the applied strain. This geometric algorithm contains

14
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Figure 3.1: The schematic view of strain applied to graphene. The picture is
taken from V. M. Pereira, A.H. Castro Neto, N.M. Peres, arXiv: 0811.4396v3
[cond-mat.mtrl-sci], 2009 (Ref. [27]).
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the information of the amount of the strain and also the direction through the

strain was applied. This re-scaling process basically depends on the change in

the vectors under applied strain. The generalization of this fact can be done by

considering a general vector ~υ0 which is not initially under strain. This vector ~υ0

transforms into a new vector ~υ with the applied strain by:

~υ = (1̄ + ε̄) · ~υ0

ε̄ = ǫ





cos2 θ − σ sin2 θ (1 + σ) cos θ sin θ

(1 + σ) cos θ sin θ sin2 θ − σ cos2 θ



 , (3.1)

where 1̄ is the unit matrix, ε̄ is the strain tensor, ǫ is the amount of strain which

is just a ratio of amount of elongation or compression divided by the initial length

(ǫ being positive or negative, respectively), σ is Poisson’s ratio, and θ is the angle

between the plane of the atoms and the applied strain. All the vectors in the

system were subjected to this strain transformation. Within this formulation

strain has a first order effect on the bond lengths and the atomic distances.

However, when we look at the interaction parameters between the orbitals, we

can claim that strain has a second order influence on these parameters. In order

to scale, we simply used two transformations, one is an exponential scaling given

Ref. [27], and the other is simply square scaling;

V new
ppσ = Vppσe

−β( l
a0

−1)
, (3.2)

V new
ppσ = Vppσ(

l

a0

)2, (3.3)

where l is the new bond length, a0 is the initial one, β is the scaling parameter

and decay rate extracted from the experimental results [49].

3.2 Energy Spectrum of Strained Graphene

When we consider graphene without strain it is easy to calculate the energy bands

from tight-binding Hamiltonian. However when there is stress applied to system,

the main Hamiltonian should be reconstructed in order to implement this stress

information into the calculation. The easiest way to introduce stress to a system is
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modifying the Hamiltonian and lattice parameter with strain. Strain is a unitless

measure of stress, it is the amount of elongation or compression divided by the

initial length. It changes sign due to being an elongation or compression strain.

There are several consequences of uniaxial strain applied to a (2D) system:

• Due to the strain, all the vectoral quantities in the real space, including

the primitive lattice vectors, the distance between the atoms should be re-

arranged by the strain tensor as shown in Eq. 3.1. The atoms change their

initial positions, and the bond-distances change as a result of that. Since

the strain uniform and uniaxial, and we are studying the bulk electronic

properties, the lattice vectors should also be modified to expand the calcu-

lations among the infinite surface.

• As a result of changes in real space, all the vectors and distances in the

reciprocal space should be modified, too. Similarly, the reciprocal lattice

vectors, the coordinates of high symmetry points are all altered due to

strain.

• Due to the contraction or elongation in the inter-atomic distances, the inter-

action parameter must be subject to a scaling algorithm. The main scaling

types are already given in Eq. 3.2 and Eq. 3.3.

• Due to the change of the positions of the atoms, the orientations of the

atomic orbitals with respect to each other are also modified. The angles

between the orbitals should be subjected to modifications as a function of

strain.

In our analysis, we used the tight-binding method with the first and the also

with the second order interactions. We also tested both the square scaling the

exponential scaling of the orbital interaction parameter. We also considered the

isotropic case, where the orbital interaction parameter are the same for all bond

directions. In addition to that, we also studied the anisotropic case in which the

orbital interaction parameter are different among the different bond directions.
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The main calculations for this chapter involves the sets of parameter itemized

below:

• Several strain values; “ǫ” the amount of strain percentage is scanned for

0, 5, 10, 15, 20, 25, 30 and 35 %.

• Different Poisson’s ratios “σ” were used: −0.300, −0.250, −0.200, −0.180,

−0.170, −0.165, −0.160, −0.150, −0.140, −0.130, −0.120, −0.110, −0.100,

−0.05, 0, and 0.300, 0.250, 0.200, 0.180, 0.170, 0.165, 0.160, 0.150, 0.140,

0.130, 0.120, 0.110, 0.100, 0.05.

• And also several angles through which strain is applied to the plane of

graphene: 0, π/2, π/3, π/6, π/12, 9π/180, 17π/180, 23π/180.

3.2.1 Energy-Band Structure of Strained Graphene

As it is mentioned in section 3.1, we introduced uniaxial strain to the system.

According to this information, all the vectoral quantities are transformed. When

plotting the band diagram we also modified the coordinates of the high sym-

metry points and the distance between them which comes automatically as a

consequence of the change in the coordinates. Secondly, due to change in the

inter-atomic distances, the interaction parameter are also rescaled. There are

two main scaling methods, one is exponential scaling, the other one is square

scaling for which the explicit representations were given in Equations 3.2 and

3.3. We tested both of them. And also we tried two different conditions, one the

scaling functions differ for each directions by the change of one variable β, and

for the second condition we considered it to be the same for the all directions

which corresponds to the isotropic case. In Ref. [1] β is reported to be 3, 3.14,

and 4.

The angle θ which represents the angle of strain direction to the graphene

surface, corresponds to 0 degrees for the armchair direction and the horizontal

axis coincides with the armchair direction. We scanned the reported values for

θ, the symmetric angles for graphene as well as some values for the chiral angles.
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For the case of choice for the value of the Poisson’s ratio σ, we performed

a wide range of calculation between the values −0.300 and 0.300 since there is

no strict information about the ratio for mono-layer graphene reported in the

literature. The most common value for σ is 0.165 [84] but it is stated that this is

the measured value for graphite [1, 85]. However, many researchers are using this

value in their calculations. Also there is another reported range for graphene’s

Poisson’s ratio which is said to be lie in between 0.10 and 0.14 [86]. In order to

convince ourselves, we tested a wide range for the parameter.

Since we try to obtain a band gap opening as a result of strain, we test

graphene for the strain amounts between 0 to 35 % through which the graphene

is able to stay unbuckled.

The last point we concentrated on is to preserve the lattice structure through

applying strain in the chiral angles, since the lattice may not be defined anymore.

To check this condition, we defined chiral and translational vectors corresponding

to the desired values for angles in other words for the pairs (m,n) commonly used

by researchers working on nanotubes. For a net to define a lattice, these vectors

should be perpendicular to each other. With the effect of strain these vectors

change as well, but they should still be perpendicular to each other. We have

written an algorithm which keeps the track of this information. It came out that

in none of our calculations we are losing the lattice.

For the basic angles 0, 30, 60 and 90 degrees we obtain the following results:

There is a band gap between 10 and 25% of strains for 30 and 60 degrees, as shown

in Fig. 3.2. When the amount of strain is increased to 30%, the conduction and

valance bands intersect the Fermi level which can be viewed via Fig. 3.3 . And

this behavior is similar for all the Poisson’s ratio in the neighborhood of 0.165

and −0.165 when 1st nearest neighbors are considered and the scaling scheme

chosen to be as exponential. When we insert the 2nd nearest neighbors into the

calculations there is no systematic behavior of a band gap opening and evolving

with the increase of strain applied. Instead there is a random 0.5 eV gap opening

due to the orientations of the bands for 30 degrees and for the 15% strain. For

square scaling in both the 1st and the 2nd nearest neighbors interactions there is
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Figure 3.2: Energy-band diagram of graphene with 1st nearest neighbors tight-
binding method under 25% strain applied with θ = 300 with Poisson’s ratio
σ = −0.165 and the decay rates were scaled with exponential scaling to be the
same for all directions.

no opening, either.

We also examined 9π/180, 17π/180, 23π/180 degrees. For the 1st nearest

neighbor interactions in the exponential scaling scheme, there is a band gap of

almost 1.0 eV up to 30% strain. At 30% the gap closes with the conduction band

intersecting the Fermi Level. However, when the 2nd nearest neighbors calculated

both with exponential and square scaling there is no band gap. These results are

displayed in Fig. 3.4 through Fig. 3.17 on following pages.
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Figure 3.3: Energy-band diagram of graphene with 1st and the 2nd nearest neigh-
bors tight-binding method under 30% strain applied with θ = 300 with Poisson’s
ratio σ = −0.165 and the decay rates were scaled with exponential scaling to be
the same for all directions.
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Figure 3.4: Poisson’s ratio versus energy-band gap for θ = 00, with exponential
scaling and same hopping constants (decay rates) for all directions for the 1st

nearest neighbors.

Although it has always been a dream for researchers to apply band gap engi-

neering on graphene via tuning the uniaxial strain, it seems clearly that uniaxial

strain is not able to generate a band gap opening in the monolayer graphene,

unlike the case in bilayer graphene. With the scanning of the parameters like the

amount and geometrical orientation of strain, and Poisson’s ratio in the proper

limits, we conclude that monolayer graphene is not a suitable candidate for the

tuning of the gap energy via the application of uniaxial strain. However, under

the strain, monolayer graphene remains semi-metallic, and the changes occur in

band diagram can lead to exotic results in its electron transport properties.
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Figure 3.5: Poisson’s ratio versus energy-band gap for θ = 00, with exponential
scaling and different hopping constants (decay rates) for all directions for the 1st

nearest neighbors.



CHAPTER 3. STRAINED GRAPHENE 24

Figure 3.6: Poisson’s ratio versus energy-band gap for θ = 300, with exponential
scaling and same hopping constants (decay rates) for all directions for the 1st

nearest neighbors.
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Figure 3.7: Poisson’s ratio versus energy-band gap for θ = 300, with exponential
scaling and different hopping constants (decay rates) for all directions for the 1st

nearest neighbors.
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Figure 3.8: Poisson’s ratio versus energy-band gap for θ = 600, with exponential
scaling and same hopping constants (decay rates) for all directions for the 1st

nearest neighbors.
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Figure 3.9: Poisson’s ratio versus energy-band gap for θ = 600, with exponential
scaling and different hopping constants (decay rates) for all directions for the 1st

nearest neighbors.
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Figure 3.10: Strain versus energy-band gap for σ = 0.300, with exponential
scaling and different hopping constants (decay rates) for all directions for the 1st

nearest neighbors tabulated for several angles.
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Figure 3.11: Strain versus energy-band gap for σ = 0.300, with exponential
scaling and same hopping constants (decay rates) for all directions for the 1st

nearest neighbors tabulated for several angles.
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Figure 3.12: Strain versus energy-band gap for σ = −0.300, with exponential
scaling and different hopping constants (decay rates) for all directions for the 1st

nearest neighbors tabulated for several angles.
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Figure 3.13: Strain versus energy-band gap for σ = −0.300, with exponential
scaling and same hopping constants (decay rates) for all directions for the 1st

nearest neighbors tabulated for several angles.
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Figure 3.14: Strain versus energy-band gap for σ = 0.165, with exponential
scaling and different hopping constants (decay rates) for all directions for the 1st

nearest neighbors tabulated for several angles.
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Figure 3.15: Strain versus energy-band gap for σ = 0.165, with exponential
scaling and same hopping constants (decay rates) for all directions for the 1st

nearest neighbors tabulated for several angles.
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Figure 3.16: Strain versus energy-band gap for σ = −0.165, with exponential
scaling and different hopping constants (decay rates) for all directions for the 1st

nearest neighbors tabulated for several angles.
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Figure 3.17: Strain versus energy-band gap for σ = −0.165, with exponential
scaling and same hopping constants (decay rates) for all directions for the 1st

nearest neighbors tabulated for several angles.



Chapter 4

Hofstadter Butterflies of Square

Lattice and Defective Square

Lattice

4.1 Energy Spectrum Under the Influence of

Perpendicular Magnetic Field

The Tight-binding method also acts as a sufficient and viable tool for monitoring

the electronic behavior of the systems under the influence of perpendicular mag-

netic field. The energy spectrum of a 2D system displays a variety of properties

when subjected to magnetic field. The most famous work for the energy spectrum

of 2D electrons in a square lattice was performed by D. R. Hofstadter in 1976 [36].

He used the tight-binding method in order to calculate the energy spectrum. In

his work he modified the momentum through the Peierls Substitution [53], and

as a result of that the wavefunctions are also modified in terms of new magnetic

field oriented phases. The magnetic field brings nothing new to the usual tight

binding method but it introduces interactions between the atoms in the magnetic

unit cell, not only through the unit cell. In the subsections below, both the pure

square lattice and the defected square lattice are subjected to a perpendicular

36
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a1

a2

(ma, na)

(ma, na+1)

(ma-1, na) (ma+1, na)

(ma, na-1)

(ma+1, na+1)(ma-1, na+1)

Figure 4.1: Square Lattice with 1 atom in its basis. The lattice vectors are given
by a1 = a~x and a2 = a~y. Each atom is identified by (m,n) pair of indices.

magnetic field. The energy spectrum of both display intriguing unique butterfly

like structures so called the Hofstadter Butterflies.

4.1.1 Square Lattice with a Single Atom in the Basis

We start by reviewing the pure case which was first discussed by Hofstadter [36].

Within the tight-binding approximation, the single band Hamiltonian for the

Schrödinger equation of a square lattice with lattice constant a, for one atom in

the unit cell is equal to:

H = t{e−ikxa + eikxa + e−ikya + eikya}, (4.1)

where the exponential factors arise due to the interactions of the first nearest

neighbors. The coefficient t is the hopping (orbital interaction) term which has

units of energy. Henceforth, we will express all energies in units of t, effectively

setting t = 1. The geometric configuration can be viewed from Fig. 4.1 where one

can observe that the atom with label (ma, na) interacts with the atoms of labels

(ma+1, na), (ma−1, na), (ma, na+1), and (ma, na−1). The corresponding lattice

vectors ~a1 and ~a2 satisfy the equation ~R(ma,na) = ma ~a1 + na ~a2, where ~R(ma,na) is
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Figure 4.2: The magnetic unit cell of the square lattice where q atoms are con-
nected.

the position vector of the atom labelled by (ma, na). When we introduce the

magnetic field into the system, we use the Peierls Substitution which shifts the

momentum by the vector potential of the magnetic field:

h̄k → h̄k − e~A

c
.

For a perpendicular magnetic field, we choose the Landau gauge which gives a

vector potential in the y direction as a function of x, ~A = (0, Bx, 0). With this

choice of gauge, only the hopping strengths in the y direction gain additional

phase factors e−2πi e
h̄

∫ ~A·~dl, where the integral is evaluated along the line connect-

ing the two atoms. With the addition of the phase factors originating from the

magnetic field, we have a new Hamiltonian:

H ′ = t{e−ikxa + eikxa

+ e−ikyae
2iπma

φ
φ0 + eikyae

−2iπma
φ

φ0 },

with φ = Ba2, magnetic field times the area of the unit cell, and φ0 is the flux

quanta h/e. Now, the Schrödinger equation becomes:

H ′ψ = t{ψ(ma − 1, na) + ψ(ma + 1, na)

+ ψ(ma, na − 1)e
2iπma

φ
φ0

+ ψ(ma, na + 1)e
−2iπma

φ
φ0

= εψ(ma, na).
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Figure 4.3: The Hofstadter Butterfly spectrum for square lattice with q = 501,
and t = 1.0 [43]

If we make the substitution ψ(ma, na) = ϕ(ma)e
ikyana , we get a new equation

known as Harper’s equation [54]:

εϕ(ma) = tϕ(ma − 1) + tϕ(ma + 1)

+ 2tϕ(ma)cos(2πma
φ

φ0

− kya) (4.2)

We set the ratio between the amount of flux through a plaquette and the flux

quanta to be equal to α, and let this α to be represented as a fraction of two

co-prime integers such that α = φ/φ0 = p/q. The values of ma ranges from 1 to

q as a result of q atoms being connected to each other in the magnetic unit cell.

This magnetic unit cell for square lattice can be visualized via Fig. 4.2, where the

magnetic unitcell vectors are expressed in terms of the unitcell vectors and the

integer q.

However, when we try to solve this recursive equation for ϕ(1), we have ϕ(0)



CHAPTER 4. SQUARE LATTICE IN MAGNETIC FIELD 40

term on the right-hand side. Similarly, as we setma to bema = q, we have ϕ(q+1)

term on the right hand side. In order to obtain solutions to this equation, we

have to stay within the boundaries we decided for ma which spans the values from

1 to q. For this purpose, we apply the Bloch condition which can be expressed

as; ϕ(m+ q) = ϕ(m)eiqkxa. By use of this boundary condition, we end up with a

matrix equation. This supercell matrix is called the Am matrix;

























ϕ1

ϕ2

...

ϕq−1

ϕq

























=

























2tcos(2π φ
φ0

) t 0 · · · te−iqkxa

t 2tcos(4π φ
φ0

) t · · · 0

0 t 2tcos(6π φ
φ0

) t
...

...
...

. . . . . . t

teiqkxa 0 · · · t 2tcos(2qπ φ
φ0

)

















































ϕ1

ϕ2

...

ϕq−1

ϕq

























,

(4.3)

and the eigenvalues of this matrix has the famous butterfly shape given in Fig. 4.3.

4.2 Defective Square Lattice

We use the tight-binding method for the square lattice where the 1st and the

2nd nearest neighbor interactions are both included in order to model the (2D)

electronic system in a magnetic field, with impurities or vacancies. The perpen-

dicular magnetic field applied to the (2D) system brings out additional phase

factors [53] to the usual tight-binding terms. In addition, the magnetic field

changes the periodicity of the system leading to a larger “magnetic unit cell”.

Once the tight-binding system is revised with the magnetic field, we end up with

a new magnetic field tight-binding Hamiltonian, which is described by the Am

matrix [36]. Its eigenvalues and the eigenvectors give the desired energies and

wavefunctions, respectively.

For a pure system, square lattice with a single atom basis works well, and

it produced many results about the Hofstadter Butterflies and the Hall conduc-

tances [77, 80, 87]. There are also studies [88] on the effect of 2nd nearest neighbor
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Figure 4.4: The unit cells for the configurations: (a) One atom in the basis. The
corresponding lattice vectors are ~a1=x̂a and ~a2=ŷa, where a = 1 is the lattice
constant. (b)Rectangular unit cell aligned horizontally : Two atoms in the basis
with an asymmetric choice of unit cell. The corresponding lattice vectors are
~a1=2ax̂ and ~a2=aŷ. (c)Rectangular unit cell aligned vertically : Asymmetric unit
cell choice of square lattice which contains again two atoms but with different
unit vectors. The corresponding lattice vectors are ~a1 = x̂a and ~a2 = ŷ2a. (d)
Square lattice which contains four different atoms in the unit cell. The lattice
vectors are ~a1 = x̂2a and ~a2 = ŷ2a [43]

interactions which breaks the bipartite symmetry, and as a result of that the Hof-

stadter Butterfly is no longer symmetric around E = 0.

For the impurity and vacancy cases the tight-binding method with single atom

in the basis is not enough to realistically model the case. One has to have at least

two atoms in order to treat one of them as an impurity or vacancy. However

for this scenario, we get a 50% of impurity or vacancy in terms of concentration

which is similar to a super lattice rather than impurity. In order to overcome

this obstacle, one should choose the unit cell as large as possible. In this thesis,

we propose a method which enables direct access to the Am matrix. This matrix

is obtained by the tight-binding method under the perpendicular magnetic field,

which can be written in the form of the well-known Harper’s equation [54]. We

show how to generate the Am matrix efficiently for enlarged supercells of square

lattice. In order to establish the method for enlarged systems which include a

point defect with reasonable density, we present the cases starting from a small

single atom unit cell to an enlarged unit cell including nine atoms. Although we

are discussing the specific case for the square lattice, our methods are applicable



CHAPTER 4. SQUARE LATTICE IN MAGNETIC FIELD 42

to all kinds of lattice geometries.

4.2.1 Enlarged Unit Cell

Assume that, we have a square lattice with 2 atoms in its basis, labelled by A

and B are arranged as shown in Fig. 4.4(b). For this case, different from Eq.

(4.1), we have the matrix representation for the Hamiltonian:

H =





HAA HAB

HBA HBB



 ,

These independent matrices have the information for the orbital interactions

between the types of atom located at the nearest neighboring sites. For example,

HAA has three terms; the self interaction term of type A atom, and plus two

terms for the interaction of neighboring type A atoms. Due to the addition of

the magnetic field, there will be phase factors for only those interactions which

are aligned with the vector potential in the y direction. We can expand the

Hamiltonian with the phase factors arising from the magnetic field under these

circumstances;

HAA = t{eikyae−iθ + e−ikyaeiθ} + ε2p,

HAB = t{eikxa + e−ikxa},

where ε2p is the self interaction term of pz orbitals. Since the Hamiltonian must

be a Hermitian matrix, HBA is the complex conjugate of HAB. The extra expo-

nential terms in HAA can be defined as follows;

eiθ = e
−2πi

∫ ~Rma,na
~Rma,na−1

~A·~dl
,

= e2πi(2a2Bma) e
h̄ = e

2πi φ
φ0

ma ,

Due to the change in the area of the unit cell, now we have φ = 2Ba2, which is

doubled compared to the square lattice with one atom in its unit cell. Another

difference from the previous calculation is, we have a column vector for the ϕ(ma)

which we prefer to denote as

Ψ(m) =





ϕ(ma)

ϕ(mb)




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According to these considerations, the Eq. (4.2) is now a matrix equation:

Ψ(m) = UmΨ(m) +WmΨ(m− 1) + VmΨ(m+ 1), (4.4)

with Um, Wm, and Vm are all matrices, instead of single coefficients in the pure

case. Explicitly,

Um =





2tcos(2παm− kya) t

t 2tcos(2πα(m+ 1/2) − kya)



 ,

Wm =





0 t

0 0



 , Vm =





0 0

t 0





We apply the Bloch condition to the wavefunctions, and as a result, we have the

Am matrix as follows:

Am =

























U1 V1 0 0 · · · 0 W ∗
1

W2 U2 V2 0 0 · · · 0

0 W3 U3 V3 0 · · · 0
...

...
. . . . . . . . . . . .

...

V ∗
q 0 0 · · · 0 Wq Uq

























. (4.5)

Rectangular unit cell aligned horizontally

For a system of atoms arranged as in Fig. 4.4(b), it is somehow easy to perform

this calculation, however we are offering a simple and compact method in order

to construct the Am matrix just from the geometry. Therefore, it is enough to

calculate the phase factors due to the perpendicular magnetic field on top of the

simple tight-binding methodology. As pointed out previously, only the hopping

in y-direction is modified by the magnetic field. Since we have two types of atoms

in the unit cell, and the periodicity of the phase factors in the m direction is q, the

dimensions of the Am matrix is 2q × 2q. We start by generating the Am matrix

as a 2q × 2q null matrix. The first element (1, 1) of the matrix Am will be due

to the interaction of A atom labelled by (ma = 1) with the A atoms with the

same label (ma = 1). As there are two A type atoms with labels (ma = 1) in the

first nearest neighborhood there is a term 2tcos(2π φ
φ0

−kya) in the Am(1, 1). Our
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next term will be Am(1, 2), which have the value t due to the interaction between

atom type A labelled with (ma = 1) and atom type B labelled by (mb = 1). The

element of matrix Am with index (1, 3) is equal to 0, since we do not consider

such a long range interaction. Similarly, Am(1, 4) is equal to 0, as well as the rest

of this row. In order to include the 2nd nearest neighbors or even higher order

hopping, we would have to calculate longer range tight-binding terms. In the

next row, the same procedure is repeated but for this case we are concentrating

on the interactions between the atom B(mb = 1) and A(ma = 1), B(mb = 1),

A(ma + 1) = A(2), B(mb + 1) = B(2). So we have

Am(2, 1) = t, Am(2, 2) = 2tcos(2π
φ

φ0

(1 + 1/2) − kya),

Am(2, 3) = t, Am(2, 4) = 0.

Again this row spans all the values between m = 1, 2, ..., q. The rest of the rows
can be calculated by carrying out the same steps from ma to ma + q, and we end
up with:

Am =













2tcos(2π
φ

φ0
− kya) t 0 0 0 · · · 0

t 2tcos(2π
φ

φ0
(1 + 1/2) − kya) t 0 0 · · · 0

0 t 2tcos(4π
φ

φ0
− kya) t 0 · · · 0

.

.

.

.

.

.
. . .

. . .
. . .

. . .
.
.
.

0 0 0 · · · 0 t 2tcos(2π
φ

φ0
(q + 1/2) − kya)













.

(4.6)

Now we have to apply the Bloch condition to the wavefunctions ψ(ma + q−1) =

eikxqaψ(ma−1), through which we determine the topmost right-hand side and the

bottommost left-hand side of the matrix Am. Let us start with the bottommost

entries Am(2q − 1, 1), Am(2q − 1, 2), Am(2q, 1), and Am(2q, 2), which represent

the interactions of A(ma + q−1) with A(ma) and B(mb); and B(mb + q−1) with

A(ma) and B(mb), since we have to have q elements in each row and column.

Thus,

Am(2q − 1, 1) = 0 · eikxqa, Am(2q − 1, 2) = 0 · eikxqa,

Am(2q, 1) = t.eikxqa, Am(2q, 2) = 0 · eikxqa.

The eigenvalues of the Am give the energy as function of flux which is a real
physical observable, so Am is Hermitian, i.e Am(i, j) = A∗

m(j, i), so we obtain the
resulting Am:

Am =













2tcos(2π
φ

φ0
− kya) t 0 0 0 · · · te−ikxqa

t 2tcos(2π
φ

φ0
(1 + 1/2) − kya) t 0 0 · · · 0

0 t 2tcos(4π
φ

φ0
− kya) t 0 · · · 0

.

.

.

.

.

.
. . .

. . .
. . .

. . .
.
.
.

teikxqa 0 0 · · · 0 t 2tcos(2π
φ

φ0
(q + 1/2) − kya)













.

(4.7)
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Figure 4.5: The organization scheme for Am matrix shown for two kinds of atoms
in the unit cell [43].

This scheme for the generation of the Am matrix can be viewed via Fig. 4.5,

which is suitable for our case of enlarged unitcell aligned horizontally. The rows

and the columns are reserved for the atoms of corresponding labels. The entries

of the Am matrix are the interactions of the atoms which has the index correlated

with the labels of the atoms.

Rectangular unit cell aligned vertically

If we have a similar geometric alignment seen in the Fig. 4.4(c), we can easily

generate the Am matrix by following the steps as we did for Fig. 4.4(b). The only

things we should know additionally are the phase factors. We have te
π φ

φ0
−kya

terms in addition to the tight-binding terms between the atom A(ma) and atoms

B(mb), and also in between the atom B(mb) and atoms A(ma). Different from

the previous example, here we have a 4qx4q Am matrix because of the periodicity
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Table 4.1: The scheme for the interactions between the atoms [43].

1st N. N. 2nd N. N.
Atom Label Interactions Interactions

Atom A B,D C
Atom B A,C D
Atom C B,D A
Atom D A,C B

of the exponential factor with 2q, and we have two different types of atoms.

Am =















0 2tcos(π
φ

φ0
− kya) t 0 · · · te−ikx2qa 0

2tcos(π
φ

φ0
− kya) 0 0 t 0 · · · te−ikx2qa

t 0 0 2tcos(2π
φ

φ0
− kya) 0 · · · 0

0 t 2tcos(2π
φ

φ0
− kya) 0 0 · · · 0

teikx2qa
.
.
.

. . .
. . .

. . .
. . .

.

.

.

0 teikx2qa 0 · · · t 2tcos(4qπ
φ

φ0
− kya) 0















,

(4.8)

A more general example: Square lattice of 4 atoms in the unit cell with

the second nearest neighbor interactions

Now, suppose that we have a square lattice in which we have four different atoms

oriented as shown in Fig. 4.4(d). For this case, since we have four different atoms,

we have the wave vectors as;

Ψ(m) =

















ϕ(ma)

ϕ(mb)

ϕ(mc)

ϕ(md)

















,

and also we have a 4x4 block Hamiltonian;

H =

















HAA HAB HAC HAD

HBA HBB HBC HBD

HCA HCB HCC HCD

HDA HDB HDC HDD

















,
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If we consider both the first and the second nearest neighbor interactions, we

have the interaction scheme showed in the Table 4.1. For example, the atom A

will have the 1st order interactions with two atoms labelled by B and two atoms

labelled by D; and also it will have the second order interaction with 4 atoms

all labelled by C. We have the phase factors due to the magnetic field through

the interactions which align in the y direction as well as the ones which have a

non-zero y direction component. As as result, to speak in terms for the atom

A(ma), we will have:

2cos(π
φ

φ0

ma − kya) = θ(AD1)

for the interaction with D atoms, and

2cos(π
φ

φ0

(ma − 1/4) − kya) = θ(AC2)

for the interaction with the atoms labelled by C(mc − 1), and in addition

2cos(π
φ

φ0

(ma + 1/4) − kya) = θ(AC1)

due to the interaction with the atoms labelled by C(mc). In addition, let us denote

the second order tight-binding interaction coefficient as t′. After incorporating

the Bloch condition, and calculating the magnetic phase factors for the rest of

the atoms, we can write the Am matrix:

Am =

















0 t t′θ(AC1) tθ(AD1) 0 0 · · · 0 0 te−ikx2qa t′θ(AC2)e−ikx2qa

t 0 tθ(BC1) t′θ(BD1) t 0 · · · 0 t′θ(BD2) 0 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. · · · 0 · · ·
.
.
.

.

.

.

0 0 0 0 0 · · · 0 · · ·

t′θ(CA1)eikx2qa 0 0 teikx2qa 0 · · ·
. . .

. . .
.
.
.

.

.

.

0 0 0 0 · · · t′θ(BD2) tθ(DA1) t′θ(DB1) t 0

















.

(4.9)
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Figure 4.6: Magnetic unit cell of square lattice with 9 atoms in the basis of the
unit cell, and 27q atoms in the basis of the magnetic unit cell. The encircled
atoms with label “E” are treated as impurity or vacancy [43].

4.2.2 Square Lattice of 9 Atoms in the Basis

With the scheme outlined above, we can expand our unit cell as needed. We

use an enlarged unit cell composed of 9 atoms to model impurities or vacancies,

corresponding to a point defect concentration of 1/9 ≃ 11%. We label the atoms

with the letters “A,B,...,E,...,H,I”. We pick the fifth one with label “E” and treat

it as a vacancy or impurity by modifying its hopping constants. We leave the

remaining atoms with the usual square lattice 1st order hopping constant t = 1.0,

and the 2nd order hopping constant is set to 0.05 which is almost on the same

order with the 2nd nearest neighbor calculations done by Y. Hatsugai and M.

Kohmoto [88].

Due to the change in the magnetic phase factors, now our system is 3q periodic,

and since we have 9 atoms in the basis, the resulting Am matrix has the dimension

of 27q×27q. The magnetic unit cell for the corresponding case is given in Fig. 4.6.

With the similar procedure performed in subsection 4.2.1, we easily generate

the Am matrix, with or without the next nearest neighbor hopping. We alter
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Figure 4.7: Energy (in the units of “t”) versus α = p/q = φ/φ0 defined as the flux
per enlarged unitcell, results in the Hofstadter Butterflies for the corresponding
cases: (a) “E” is a vacancy with tE = 0.0. (b) “E” is an impurity with tE = 0.25.
(c) “E” is an impurity with tE = 0.50. (d) “E” is an impurity with tE = 0.75.
(e) All of the atoms are the same with tE = 1.00. (f) “E” is an impurity with
tE = 1.50 [43].
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Figure 4.8: Energy (in the units of “t”) versus α = p/q = φ/φ0 defined as the flux
per enlarged unitcell, results in the Hofstadter Butterflies. Both the 1st and the
2nd nearest neighbor interactions are considered, for the corresponding impurity
and vacancy cases: (a) “E” is a vacancy with tE = 0.0 and ttE = 0.0. (b) “E” is
an impurity with tE = 0.25 and ttE = 0.025. (c) “E” is an impurity with tE =
0.50 and ttE = 0.025. (d) “E” is an impurity with tE = 0.75 and ttE = 0.025.
(e) All of the atoms are the same with tE = t = 1.00 and ttE = tt = 0.05. (f)
“E” is an impurity with tE = 1.50 and ttE = 0.075 [43].

the hopping constant of the interactions involving atom labelled “E” in the Am

matrix. The eigenvalues of the Am matrix for all the k-points in the magnetic

Brillouin zone as a function of α = φ/φ0 gives the Hofstadter Butterfly in the

presence of the point defects.
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Atomic Positions Atomic Positions

(a) (b)

Figure 4.9: (Color online) | ψ |2 plots of the localized state wavefunction as a
function of atomic positions of the atoms whose labels are within the boundaries
of the magnetic unit cell. The first plot is for the atom “E” which is close to
being a vacancy, i.e. tE = 0.005. The dirac delta like shaped peaks correspond to
the positions of the atom “E”. Since q = 3, there are 9 atoms with label “E” in
the magnetic unit cell. The second one has tE = 0.50. As the hopping constant
increases, the wavefunction expands more among the other atoms [43].

4.3 Hofstadter Butterflies of Defective Square

Lattice

We follow the procedure that we described in the Subsection 4.2.1 for the mod-

elling of an impurity or a vacancy located on a lattice point (substitutional posi-

tions) of the square lattice. The unit cell as well as the magnetic unit cell can be

viewed in Fig. 4.6. In this figure, the atom treated as an impurity or a vacancy

is labelled with “E”. As a first step, we consider only the 1st nearest neighbor

interactions. We label the nearest neighbor hopping constant for atom “E” as

tE, again measured in units of t. We alter this parameter, tE, in the range from

1.5 to 0.001 for the impurity cases, while we obtain the vacancy case for tE = 0.

Note that, we get the pure case when tE = 1.0, corresponding to the case where

all the atoms are the same. The impurity or the vacancy case replacing 1 atom

out of 9 atoms corresponds to a defect concentration on the order of 11%.

After diagonalizing the Am matrix we get the energy eigenvalues as a function
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of α = φ/φ0. The Hofstadter butterflies for selected values of parameter tE are

plotted in Fig. 4.7. The range of α defined as the flux per enlarged unitcell is

set from 0 to 18, in accordance with the results where we include the 2nd order

interactions. As displayed in Fig. 4.8 for the latter case, there is an extra envelope

like periodicity within the butterflies. The pure case with tE = 1.0 labelled by

(f) is the same spectrum plotted for a single atom in Fig. 4.3. The only difference

between these two plots is the periodicity in α because α in our notation is the

magnetic flux per enlarged unitcell. In both of the spectra, there is a zero energy

band which divides up the graph horizontally in two identical parts. This is

a consequence of the bipartite symmetry of the square lattice. When we set

tE = 0.75, we see a different spectrum with new gaps and bands formed as shown

in Fig. 4.7(d). For the case where we reduce tE to 0.50, we see the emerging of

dome shaped gaps around α = 4.5 and α = 13.5 with an energy value of ± 0.8

as plotted in frame (c). Within these gaps, Hall conductance is zero as discussed

in the next section. A sequence of bands are formed between the dome shaped

gaps which are symmetric about E = 0. These bands are clearly related to

states localized around the impurity. As we continue to reduce tE, i.e. tE = 0.25

showed in Fig. 4.7(b), we see that these gaps become more elliptic compared to

Fig. 4.7(c). We also note that the “impurity bands” between the domes approach

to the horizontal energy line E = 0. One limit of impurity case is the vacancy,

where tE = 0, and its spectrum displayed in Fig. 4.7(a), show elliptic gaps around

E = 0. Moreover, the “impurity bands” now collapse to the E = 0 line, signifying

that the impurity is decoupled from the rest of the system. In the opposite limit

we also consider the impurity with a stronger hopping constant. We examine

this situation for tE = 1.50 and display the corresponding Hofstadter Butterfly

in Fig. 4.7(f). For this strongly coupled impurity, the spectrum is modified near

the maximum and the minimum energy values. Hence, the bands due to the

impurity states appear near E = ±4 as clearly seen in the Fig. 4.7(f). The low

energy structure (E ∼ 0) remains mostly unmodified by the presence of strongly

coupled impurity.

The effect of the 2nd nearest neighbor interactions on the Hofstadter Butterfly

was thoroughly examined in Ref. [88]. Inclusion of the next nearest neighbor
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interactions are important for two reasons: First they would be present in a solid

state system and also in a cold atom system as long as the optical lattice is not

too deep. Second, even if they are weak, such interactions break the bipartite

symmetry of the lattice. As a result the spectrum is no longer symmetric about

E = 0. Thus by including the next nearest neighbor interactions, we make sure

that the results for our impurities are robust with respect to the breaking of the

bipartite symmetry. As we introduce second order hoppings, the butterfly loses

its mirror symmetry around α = 4.5 and α = 13.5 lines. The gaps and bands

gain positive (negative) shifts for α > 4.5 (α < 4.5). This shift is reversed near

the α = 13.5 line. As a result of the self similar structure of the butterfly, similar

shifts appear at other principal rational fractions with even denominators. In

addition to that, the spectrum gains a new envelope like periodicity. In order to

display this new periodicity, we plotted our butterflies as a function of α from

0 to 18. The corresponding spectra for different impurity cases is presented in

Fig. 4.8. While the width of gaps and bands change, there is no qualitative

difference in the number and the location of the gaps when compared to Fig. 4.7.

Most importantly, the dome shaped gaps and impurity bands observed with only

first order interactions are robust with respect to second order hopping. These

structures are shifted in accordance with the general spectrum, nonetheless their

general properties remain unaltered.



Chapter 5

Hofstadter Butterflies of

Graphene and Defective

Graphene

5.1 Graphene in Perpendicular Magnetic Field

In Section 2.2, we have given a brief description of tight-binding method for

graphene , which is in a neutral state such that there is no external field per-

turbation to the system. Since we are working with magnetic field, we should

introduce this external field to our algebra. We assume that, we have a magnetic

field ~B acting in the z direction which is perpendicular to the plane of consid-

eration. The magnetic field will act in a manner to modify the momentum and

also the wave vector; h̄k → h̄k − e
~A
c

which is called the Peierl’s substitution. In

order to simplify the calculations, we chose the Landau gauge with the vector

field ~A = (0, Bx, 0). If we rearrange our terms of the Hamiltonian for graphene

which has 4 atoms shown in Fig. 5.1 we will get;

HAC = Vppπe
ikxa/2e−ikya

√
3/2e

−2πi e
h̄

∫ ~Rmc,nc
~Rma,na

~A·~dl
,

HAD = Vppπe
ikxa/2eikya

√
3/2e

−2πi e
h̄

∫
~Rmd,nd+1

~Rma,na

~A·~dl
(5.1)

54
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Figure 5.1: Asymmetric unitcell choice of graphene which contains 4 atoms. The
corresponding lattice vectors are ~a1=x̂3a/2 + ŷa

√
3/2 and ~a2=ŷ2a

√
3

+ Vppπe
−ikxae

−2πi e
h̄

∫
~Rmd−1,nd+1

~Rma,na

~A·~dl
, (5.2)

where the integrals are taken through the smallest geometric distance between the

atoms. The vector ~Rmα,nα with α = a, b, c, d is the vector denoting the distance of

atom labelled by the usual graphene and CNT indices (mα, nα) from the origin.

For instance,

~Rma,na = ma ~a1 + na ~a2; (5.3)

These exponentials containing line integrals bring phase factors originating

from the magnetic field applied. As a result, after integrating over the lines

joining the atoms and also converting all the (mα, nα) pairs into (ma, na) pairs,

we obtain exponential terms as a function of ma -as a result of chosen gauge- and

directly proportional to the magnetic field.

HAC = Vppπe
ikxa/2e−ikya

√
3/2ei e

h̄
πBa2 3

√
3

2
(ma+1/6),
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HAD = Vppπe
ikxa/2eikya

√
3/2e−i e

h̄
πBa2 3

√
3

2
(ma+1/6) + Vppπe

−ikxa (5.4)

If we introduce the flux quanta φ0 = h/e and the magnetic flux φ = 3
√

3Ba2

magnetic field times the area of the unitcell, then we get a neater expression:

HAC = Vppπe
ikxa/2e−ikya

√
3/2e

i π
2

φ
φ0

(ma+1/6)
,

HAD = Vppπe
ikxa/2eikya

√
3/2e

−i π
2

φ
φ0

(ma+1/6)
+ Vppπe

−ikxa (5.5)

The term eikxa/2e−ikya
√

3/2 can be written as a representation of the atomic wave-

function ϕ(mc, nc). If we assume that ϕ(x, y) = ϕ(x)eikyy ,and we rewrite the

Schödinger equation in terms of the modified elements of the Hamiltonian by

unifying the exponential expressions and changing them into the form of the

wavefunctions, we end up with Harper’s equation [54] which implies the matrix

equation;

Ψm = UmΨm + VmΨm+1 +WmΨm−1, (5.6)

where Ψm is a column vector with:

Ψm =

















ψ(ma)

ψ(mb)

ψ(mc)

ψ(md)

















(5.7)

The Harper’s equation is a recursive matrix equation, which can be expressed by

three main matrices Um, Wm and Vm, where we have used a short-hand notation

for the exponential factors. For instance, ϑAC is equal to e−ikya
√

3/2e
i π
2

φ
φ0

(ma+1/6)
.

The explicit form of the matrices is given below:

Um =

















0 0 Vppπe
iϑAC Vppπe

iϑAD

0 0 Vppπe
iϑBC Vppπe

iϑBD

Vppπe
iϑCA Vppπe

iϑCB 0 0

Vppπe
iϑDA Vppπe

iϑDB 0 0

,

















(5.8)
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Wm =

















0 0 0 Vppπ

0 0 Vppπ 0

0 0 0 0

0 0 0 0

















Vm =

















0 0 0 0

0 0 0 0

0 Vppπ 0 0

Vppπ 0 0 0

















Let us assume that the ratio of flux over flux quanta φ/φ0 is equal to p/q, where

p and q are two integers and their ratio is equal to α. The terms like ei π
2

p
q
(ma+1/6)

are periodic with ma with the periodicity 4q. Since if we have ma = ma + 4q,

then ei π
2

p
q
(ma+1/6) → ei π

2
p
q
(ma+1/6)e2πi where e2πi is equal to 1. So the index, ma

runs over all the numeric values of 4q. For ma is equal to 1, Eq. 5.6 becomes a

recursive equation Ψ1 = U1Ψ1+V1Ψ2+W1Ψ0, and for ma is equal to 4q it becomes

Ψ4q = U4qΨ4q + V4qΨ4q+1 + W4qΨ4q−1. Since we have 4q lattice points i.e. 16q

atoms are connected, we can apply Bloch condition onto the wavefunctions in the

x direction;

ψ(ma + 4q) = eikxa1x4qψ(ma). (5.9)

According to the equation 5.9, we obtain ψ(0) = e−ikxa1x4qψ(4q) when we set ma

to be 0. Similarly, if we set ma = 1 we find the value for ψ(4q+ 1) which is equal

to eikxa1x4qψ(1). As a result, we have a new matrix equation;

























Ψ1

Ψ2

...

Ψ4q−1

Ψ4q

























=

























U1 V1 0 0 · · · 0 W ∗
1

W2 U2 V2 0 0 · · · 0

0 W3 U3 V3 0 · · · 0
...

...
. . . . . . . . . . . .

...

V ∗
4q 0 0 · · · 0 W4q U4q

















































Ψ1

Ψ2

...

Ψ4q−1

Ψ4q

























, (5.10)

with W ∗
1 = e−ikxa1x4qW1 and V ∗

4q = eikxa1x4qV4q. The huge matrix is called the Am

matrix which has the dimensions of 16qx16q. Since this is a eigenvalue equation,

the eigenvalues will give the desired energies as a function of flux (φ/φ0). For

irrational values of α = φ/φ0, the spectrum takes the form of the Hofstadter

Butterfly. This irrational case corresponds to the case in which p and q are

mutually prime.



CHAPTER 5. GRAPHENE IN MAGNETIC FIELD 58

Figure 5.2: The Hofstadter Butterfly spectrum for graphene with the pz orbitals.
Only the 1st nearest neighbor interactions are included. The tight-binding pa-
rameter are displayed in Table 2.1 and q = 501.
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The Hofstadter Butterfly of graphene with only the pz orbitals are displayed

in Fig. 5.2 which is the solution of Eq. 5.2.1. The spectrum shows a self similar

character with infinite number of bands and gaps.

All-orbital calculations

Up to know, we have discussed the well-known tight binding approximation for

graphene under perpendicular magnetic field. We only included the pz orbitals

in our calculations in accordance with the literature. In order to obtain more ac-

curate results for the energy flux dependence, we have to consider all the orbitals

(s, px, py, pz) since they all contribute to the band structure. The difference be-

tween the all orbits calculation and the only pz orbitals calculation is, we do not

have single values for the elements of the Hamiltonian matrix given in equation

(2.12), instead we have sub-matrices for which we have given two examples in

equations 2.13 and 2.13. For this case, we have sub-matrix elements in the form

of 〈2P β|H|2P β〉 where P stands for all s, px, py and pz orbitals; and β denotes the

letter index of the atoms (A, B, C, and D). As an example the matrix element

〈2PA
x |H|2PD

y 〉 is given by:

〈2PA
x |H|2PD

y 〉 = −(Vppπ + Vppσ)sin(π/6)cos(π/6)eikxa/2eikya
√

3/2

+ 0.e−ikxa. (5.11)

The energy spectrum for graphene under the influence of perpendicular mag-

netic field with all orbitals are considered is displayed in Fig. 5.3.

5.2 Defective Graphene

Although the Hofstadter Butterfly for perfect graphene is well understood, the

effect of impurities on this spectrum is less investigated. As any real sample

would contain a concentration of point defects, it is important to systematically

study their influence on electronic structure. The first study of such point defects

considered the effect of vacancies on the Landau Levels of graphene [89]. It has
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Figure 5.3: The Hofstadter Butterfly spectrum for graphene with all of the or-
bitals [42]. Both the 1st and the 2nd nearest neighbor interactions are included.
The tight-binding parameter are displayed in Table 2.1.
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been shown that vacancies introduce new states between the Landau Levels and

the presence of a vacancy lattice introduces extra bands to the spectrum. In this

thesis, we present a systematic study in which both vacancies and impurities are

considered. Furthermore, we investigate the evolution of impurity bands with

coupling strength.

The tight-binding methodology works well for the energy spectrum calculation

of graphene as a function of magnetic flux [40]. In the case of the Hofstadter

Butterflies, the usual unit cell of graphene with two atoms in the basis is enough

to model the fractal energy spectrum. In this study, we investigate the effects

of substitutional point defects such as vacancy or impurity on the electronic

structure. We treat one of the atoms in the unit cell as a vacancy with zero

hopping constants, or an impurity atom with different hopping constants from

rest of the lattice. The effect of impurities can be modelled by introducing a dilute

impurity lattice which requires the study of larger unit cell. In order to study

defects with low concentration, in this paper, we use an enlarged unit cell which

has 8 atoms in the basis. For this case, we obtain an impurity concentration

of 1/8 = 12.5%. In such a large unit cell there is no direct hopping between

impurities even in the presence of second order interactions. We also point out

that our method is applicable to any general defect concentration.

The section is organized as follows: First, we outline the adoption of the tight-

binding methodology to graphene described within an enlarged unit cell. Then,

we label one of the atoms in the enlarged unit cell as an impurity or vacancy

as was briefly outlined in Chapter 2. We change the hopping constant(s) of this

defect atom and present the resulting butterflies as two main sets of different im-

perfection scenarios: Only the first nearest neighbor interactions are considered,

and both the first and the second nearest neighbor interactions are considered.

5.2.1 Enlarged Unit Cell of Graphene

Since we have 8 atoms in the unit cell, as shown in Fig.5.4, the tight-binding

Hamiltonian is an 8 × 8 matrix:
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Figure 5.4: Enlarged unit cell for graphene which is suitable for point defect
calculations. The lattice vectors are: ~a1=x̂3a+ ŷa

√
3 and ~a2=ŷ2a

√
3 [42].

H =
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
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.

Each element of this matrix gives the interaction terms between the atoms with

corresponding labels. The elements of the tight-binding matrix are scalar expres-

sions when we consider only the pz orbitals. If we take all the orbitals into account,

then each of the elements is a matrix itself rather than a scalar expression. We

introduce the magnetic field to the system by the Peierls substitution:

h̄k → h̄k − e~A

c
.

For convenience, we use Landau Gauge to describe the perpendicular magnetic

field with a vector potential ~A = (0, Bx, 0). Since the wave vectors are modified,
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we have new phase factors due to the magnetic field which are in the line integral

form:

eiϑmagnetic = e
−2πi e

h̄

∫ ~Rmα,nα
~Rmβ,nβ

~A·~dl

,

where ~Rmα,nα = mα ~a1 +nα ~a2 with α, β are the labels of the atoms in the enlarged

unit cell, and the integral is to be evaluated through the line connecting the

neighboring atoms. We introduce the flux quanta as φ0 = h/e and the amount of

flux passing through the enlarged unit cell as φ = 6
√

3Ba2. So, the normalized

magnetic flux can be expressed as φ/φ0 = p/q, with two co-prime integers p and

q. By rewriting the atomic wavefunctions in the separable form along x and y

directions i.e. ϕ(x, y) = ϕ(x)eikyy we end up with the phase factors in new and

neater forms. For instance:

eiϑBG = e
−iky | ~a2|+i π

2
φ

φ0
(ma+5/12)

.

All the phase factors due to the 1st order interactions are in the same form, except

the additive fractions to ma in the parenthesis. This occurs due to conversion

of all the other labelled indices to the ones of atom labelled “A”. Under these

circumstances, we have a new matrix equation which can be called generalized

Harper’s equation [54] involving three matrices:

Ψm = UmΨm + VmΨm+1 +WmΨm−1, (5.12)

where Ψm is a vector:

Ψm =











































ψ(ma)

ψ(mb)

ψ(mc)

ψ(md)

ψ(me)

ψ(mf)

ψ(mg)

ψ(mh)
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,
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and Um, Wm, Vm are the matrices shown below when we consider only the first

order interactions and the pz orbitals:

Um =











































0 0 0 0 0 0 Vppπ 0

0 0 0 Vppπe
iϑBD 0 0 Vppπe

iϑBG Vppπ

0 0 0 Vppπ 0 0 0 0

0 Vppπe
iϑDB Vppπ 0 Vppπe

iϑDE 0 0 0

0 0 0 Vppπe
iϑED 0 Vppπ Vppπe

iϑEG 0

0 0 0 0 Vppπ 0 0 0

Vppπ Vppπe
iϑGB 0 0 Vppπe

iϑGE 0 0 0

0 Vppπ 0 0 0 0 0 0
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,

Wm =




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


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0 0 0 0 0 Vppπe
iϑAF 0 Vppπe

iϑAH

0 0 0 0 0 0 0 0

0 0 0 0 0 Vppπe
iϑCF 0 Vppπe

iϑCH

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
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,

Vm =






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
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






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
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0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Vppπe
iϑFA 0 Vppπe

iϑFC 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Vppπe
iϑHA 0 Vppπe

iϑHC 0 0 0 0 0
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.

The index ma is periodic in q with a period of 4q. Hence, our new Hamiltonian

is a 32q×32q matrix with 8 atoms in the enlarged unit cell and each is connected

to 4q atoms. Eq. 5.6 is a periodic equation where m runs from 1 to 4q. However,

when m = 1 we have Ψ0, and similarly when m = 4q we get Ψ4q+1. Since we have
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the periodic boundary conditions, we have to retain these wavefunctions within

the magnetic unit cell via Bloch’s condition:

ψ(ma + 4q) = eikxa1x4qψ(ma).

As a result, we have a new matrix called Am matrix which is our new Hamilto-

nian:

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
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The eigenvalues of this Am matrix generate the Hofstadter-Rammal Butterfly

when plotted as a function of p/q = α. A similar procedure can be carried out in

order to introduce the second order interactions. The second order interactions

produce new phase factors and alter the Um, Wm, and Vm matrices by modifying

the phase factors for previous elements and generating new non zero entries.

For a more accurate description, the second order interactions are important

even though their values are small. To go one step further, we can also take all

the orbitals (s, px, py and pz) into account. This will enlarge Am matrix to a

128q × 128q matrix due to having four orbitals for each of the 8 atoms. The

resulting butterfly with the second order interactions is presented in Fig. 5.3,

which includes many bands, so it is more complicated than the one with only

pz orbitals. Note that in this study, we use the well established tight-binding

parameter for graphene listed in Table 2.1. This complicated energy spectrum is

not transparent enough to study the effects of the impurities. Since the aim of

this paper is to understand the effects of the point defects, from now on we just

concentrate on the pz orbitals as in previous studies.

5.3 Hofstadter Butterflies of Defective Graphene

The energy spectrum for pure graphene is obtained in the previous section. Now,

we concentrate on the effects of the impurities by modifying the Am matrix. The
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Hofstadter butterflies for the range of impurity hopping strengths are displayed

in Figures 5.5 and 5.6 which constitute the results of this work.

The pure cases for up to first and second nearest neighbor interactions are

displayed in panel (c) of both figures. The horizontal axes denotes the magnetic

flux α which is from 0 to 24. This difference in α range occurs for two reasons.

First of all, we enlarged our unit cell, as a result of that the amount of magnetic

flux per unit cell is increased. Secondly, the 2nd order interactions bring an extra

envelope-like periodicity to the butterflies. In order to visualize the butterflies

through one whole period, we have to span more α = p/q when we consider

the second order interactions. For the sake of comparison between the first and

the second order interactions, we prefer to plot the butterflies of the first order

interactions with the same range of α in accordance with the 2nd order results.

We created the basis for the calculation of the Hofstadter butterflies for

graphene with point defects. By treating one of the eight atoms as a vacancy or

an impurity we obtain a concentration of 12.5% as explained above. We choose

the atom labelled by “E” as an imperfection. The vacancy case corresponds to

the case where atom “E” has zero hopping constant(s). Similarly, by changing the

hopping constant(s) involving the interactions among atom “E”, we can monitor

effects of different substitutional impurities on the electronic structure.

5.3.1 First Nearest Neighbors

The Hofstadter butterflies of graphene with point defects can be seen in Fig. 5.5

for the first order interactions. As we mentioned before, the pure case is given

by label (c). This is the usual Hofstadter butterfly for graphene. Since we have

only the first nearest neighbor interactions, the spectrum is symmetric around

E = 0 eV . When we introduce an impurity to the system with a smaller hopping

constant of V E
ppπ = 3

4
Vppπ, given in Fig. 5.5(d), we see new formations of gaps and

bands especially at regions close toEmin and Emax. Near α = 2 and E ≃ ±4, there

is a formation of new gaps. In addition, the bands in the region 1 ≤ E ≤ 3 eV

(and also symmetric region with respect to E = 0 eV line), and α lying in
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(a) (b) (c)

(f)(e)(d)

(g) (h)

Figure 5.5: The Hofstadter Butterfly spectra of graphene with point defects with
the first order interactions. (a) Impurity with larger hopping constant, V E

ppπ =
2Vppπ. (b) Impurity with large hopping constant, V E

ppπ = 3
2
Vppπ. (c) Pure case

with all of the atoms are Carbon atoms, V E
ppπ = Vppπ. (d) Impurity with smaller

hopping constant, V E
ppπ = 3

4
Vppπ. (e) Impurity with smaller hopping constant,

V E
ppπ = 1

2
Vppπ. (f) Impurity with smaller hopping constant, V E

ppπ = 1
4
Vppπ. (g)

Impurity with smaller hopping constant, V E
ppπ = 1

5
Vppπ. (h) Vacancy case where

the atom “E” is missing, V E
ppπ = 0 [42].
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between 3 and 4, start forming separate groups and these groups have tendencies

to approach E = 0 eV line. Since the spectrum is periodic, the same structure

can be observed for the values of α with a period of 4. As we reduce the hopping

constant of atom “E” to one half of the usual tight-binding parameter, we observe

that those groups form distinct ’bat’ shaped regions within a large gap as seen in

frame (e). We see the similar behavior for the bands at around E = ±5 eV . For

those regions, there also new gap formations and the bands start to group. We

continue to reduce V E
ppπ to the one forth and the one fifth of the of Vppπ and the

corresponding spectra are given in frames (f) and (g), respectively. For those

graphs, we observe that, the central bands lying around E = 0 eV line with α is

between 1 and 4 are shrank down, and the ’bat’ like shaped group start to merge to

E = 0 eV . We also observe that, the central gaps are in approximately triangular

shapes. The same sharpening of the gap boundaries can be observed for other

large gaps. When we go to the limiting case, where V E
ppπ = 0 given by frame (h),

we obtain the vacancy case [89]. For this case, the boundaries of the central and

large gaps are sharpened and they gain a more triangular shape. Also the shrank

down bands and the ’bat’ like shaped groups have now collapsed to the E = 0 eV

line. So we see that, the new formations of gaps and bands are due to impurity

atoms. As the hopping constant of this impurity atom is reduced to smaller

values, these new bands are decoupled from the rest of the system. In addition to

that the impurity atom reduces the scale of energy. We also remark that, these

states due to the point defects (impurity or vacancy), are highly localized on the

defect atoms which are not expected to contribute to the conduction. The other

limit for the impurities is the case where the impurity atom has a larger hopping

constant than the rest of the atoms. We start with the impurity atom located

at the position of atom label “E” with stronger hopping constant Vppπ = 3
2
Vppπ,

shown in the frame (b). We see a formation of larger gaps at around Emin and

Emax and bands within these regions are already grouped together. When we

go one step further to frame (a) by fixing the hopping constant of the impurity

to V E
ppπ = 2Vppπ, we come across with the ribbon like spectra located at the top

and the bottom of the original spectrum. These ribbons have their own gaps and

bands and they are totally separated from the rest of the spectrum. Hence we can

see that the lattice of impurity atoms with such high hopping constant produce
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their own self similar Butterfly. Such a separate impurity band at the extrema of

the spectrum would be expected to modify the magnetotransport properties of

the system.

5.3.2 First and Second Nearest Neighbors

In general, the second nearest neighbor interactions bring an extra envelope-like

periodicity to the Hofstadter butterflies [88]. By implementing the next nearest

neighbor interactions into the calculations, we break the bipartite symmetry of

the lattice, hence the spectrum is no longer symmetric around E = 0 eV . The

Hofstadter butterflies with second order interactions are presented in Fig. 5.6

with the same sequence of defect atom hopping constants of Fig. 5.5. We observe

that the general characteristics of the spectra are the same and concentrate on

the differences. The gaps and bands are shifted with respect to each other, and

the central E = 0 eV line is broken due to the loss of bipartite symmetry. We

see the same gaps and bands evolving as a function of impurity hopping constant

strengths. So we can claim that, the gaps and bands due to the impurity atom for

the first order interactions are robust to addition of the second order interactions.

For the standard second order hopping strengths as listed in Table 2.1, major

gaps in the spectrum remain open. Thus, conductance values in these major

gaps should not be effected by the second order hopping.

5.3.3 Impurity States

As the major qualitative features in the spectra calculated above are due to

impurity states we investigate the nature of these states in more detail. These

impurity states appear near E = 0 eV for t′ < t (t′ = V E
ppπ is the hopping

strength of the impurity atom, t = Vppπ is the hopping parameter for the rest of

the system.)and at the extrema of the spectrum for t′ > t as discussed. Thus we

calculate the probability distribution in real space for two states: One closest to

E = 0 eV and one at the minimum energy. Our results are plotted in Fig 5.7(a)

and (b). For t′ > t (frame (a)) we see that the impurity state is not strictly
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(a) (b) (c)

(d) (e) (f)

(h)(g)

Figure 5.6: The Hofstadter butterfly spectra of graphene with point defects for the
first and second order interactions. (a) Impurity with larger hopping constants,
V E

ppπ = 2Vppπ, and V 2(E)
ppπ = 2V 2

ppπ. (b) Impurity with large hopping constants,

V E
ppπ = 3

2
Vppπ, and V 2(E)

ppπ = 3
2
V 2

ppπ. (c) Pure case with all of the atoms are

Carbon atoms, V E
ppπ = Vppπ, andV 2(E)

ppπ = V 2
ppπ. (d) Impurity with smaller hopping

constants, V E
ppπ = 3

4
Vppπ, and V 2(E)

ppπ = 3
4
V 2

ppπ. (e) Impurity with smaller hopping

constants, V E
ppπ = 1

2
Vppπ, and V 2(E)

ppπ = 1
2
V 2

ppπ. (f) Impurity with smaller hopping

constants, V E
ppπ = 1

4
Vppπ, and V 2(E)

ppπ = 1
4
V 2

ppπ. (g) Impurity with smaller hopping

constants, V E
ppπ = 1

5
Vppπ, and V 2(E)

ppπ = 1
5
V 2

ppπ. (h) Vacancy case where the atom

“E” is missing, V E
ppπ = 0, and V 2(E)

ppπ = 0 [42].
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(a)

(b)

Figure 5.7: The values of |Ψ|2 which give the projection of probabilities of the
wavefunctions on to the atomic positions are displayed as a function of impurity
hopping strengths. The parameter are set to p = 1 and q = 5, kx = ky = 0. The
dotted vertical lines display the special cases: Vacancy and pure cases. (a)The
eigenvalues for those eigenvectors are close to extremum of the energy spectrum.
(b)The eigenvalues for those eigenvectors are close to E = 0 eV line. Note that
there are several degenerate states near 0 eV and we plot probabilities for only
one of them [42].
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Figure 5.8: The change of band structure with respect to impurity hopping
strength is displayed. The parameter are set to p = 78 and q = 31, kx = ky = 0.
The pure case is represented via red dotted line, and the limiting value where
the impurity bands start to leave the remaining spectrum is determined to be
t′/t ≃ 1.16. [42]



CHAPTER 5. GRAPHENE IN MAGNETIC FIELD 73

localized on the “E” atom. In the limit of t′ −→ ∞ the probability to be on

the “E” atom is 0.5 and its nearest neighbors have probability 0.5/3 each. We

see that these limiting values are asymptotically approached in Fig. 5.7(a). This

state is separated in energy from the bulk of the spectrum forming ribbon-like

structures observed in the Hofstadter Butterflies, asymptotically approaching to

±
√

3t′ as seen in Fig. 5.8. For t′ < t (frame (b)) we observe rapid localization

of the impurity state validating our observation regarding the spectra around

E = 0 eV . The vacancy case merits more discussion as the impurity atom is not

only decoupled from the system, but totally removed. Thus, in our calculation for

the vacancy case we exclude the eigenvalue corresponding to this unphysical state

from our spectra. However the absence of the atom modifies states which are not

localized on the impurity but are close to 0 eV in energy. In Fig. 5.5(h), all the

bands are closed up on E = 0 eV line, in contrast to Fig. 5.6(h) where we observe

a self similar behavior of energy spectrum near E = 0 eV line. It is important to

emphasize that the states at 0 eV in Fig. 5.5(h) are not unphysical impurity states

but collapsed bands. The reason for this collapse is that the interactions of the

remaining atoms with the pseudo atom cancel each other exactly for eigenstates

respecting bipartite symmetry for the nearest neighbor case. For these states the

breaking of the bipartite symmetry is especially important as their self similar

nature can only be observed when their energy can deviate from 0(Fig. 5.6(h)).

It is important to understand the evolution of impurity states as a function

of impurity hopping strengths and determine the critical values for t′/t at which

major gaps open. We display the behavior of bands as a function impurity hop-

ping strength in Fig. 5.8 including the next nearest neighbor hopping for a fixed

value of magnetic field. In this figure, it is easy to discern states associated with

the impurity atoms by their strong variation with the impurity hopping constant.

We see that, the width of the spectrum does not change significantly between the

vacancy and pure case limits. We observe modifications in the bands and creation

of new gaps within this region. However when go to the strong coupling limit,

two bands from the top and the bottom of the energy leave the remaining spec-

trum and exhibit their own self similar structures.(Corresponding to the ribbons

observed in Figures 5.5 and 5.6 frames (a).) The critical value for the separation
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is V E
ppπ/Vppπ = V 2(E)

ppπ /V 2
ppπ ≃ 1.16.

The reason for the self similar structure within impurity bands and gaps is

that we introduce the impurities to the system in a periodic way. In reality the

impurities are scattered randomly over the entire sample. For such a sample we

believe that these separated bands would still exist, however the gaps and the

bands would be blurred and the bands would lose their self similar structure due

to the random distribution of the impurities.

In summary, we examine the effect of imperfections on the electronic structure

of graphene in the presence of perpendicular magnetic field. We use the tight-

binding method with both the first and the second nearest neighbor interactions

are included within an enlarged unit cell. We also show the Hofstadter butterfly

for pure graphene including all the orbitals. For the defect cases, the impurity

atoms with smaller hopping constant(s), result highly localized states, and these

states produce new gaps and bands in the energy spectra. As the hopping con-

stant(s) of the impurity atom is reduced down to zero, we see that the bands are

decoupled from the rest of the spectrum and they merge at the symmetry line

where E = 0 eV . So, these kind of impurities reduce the energy scale, and they

mostly modify the spectrum around E = 0 eV . In contrast to this case, when

the impurity atom has a larger hopping constant, the bands and gaps due to the

impurity atom are totally separated from the original energy spectrum. These

new gaps and bands produce their own self similar collection of bands arranged

into a ribbon. Such impurities also increase the overall energy scale. The sec-

ond nearest neighbor interactions break the bipartite symmetry of the lattice and

bring a new periodicity to the energy spectrum. The effect of impurity atoms on

the energy spectrum are the same in the sense of new gaps and bands except for

small shifts, when we consider the next nearest neighbor hopping.



Chapter 6

Hall Conductances for Defective

Square Lattice and Graphene

6.1 Integer Quantum Hall Effect

The Hall effect was discovered and earned its name by Edwin Hall in 1878 by

performing an experiment to test Maxwell’s statement that the mechanical force

acting on a conductor does not alter the electric current however it causes changes

on the conductor itself [55]. He found out by the observation of a change in the

potential difference between the lateral edges of his conductor (a gold leaf) that

the magnetic field totally alters the charge distribution as well as the electric

current mechanisms. This transverse voltage difference is called the Hall voltage

and the Hall conductance is given by the ratio of current to the Hall voltage.

In his experimental survey first he tried to test Maxwell’s statement by using a

metal bar which he failed, then he changed the metal bar with a gold leaf. The

second choice worked well which indicates that the Hall effect is dependent on

the properties of the material that is used. With a Hall setup one can examine

the current carriers of specific materials.

The quantization of Hall effect under certain experimental conditions for 2D

electronic systems made Klaus von Klitzing awarded the 1985 Nobel prize in

75
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Physics. In the collaborative paper published in 1980 by Klaus von Klitzing,

Michael Pepper and Gerhard Dorda [56], it is stated that in such systems the

Hall conductance σxy is quantized to integer multiples of e2/h simultaneously

with vanishing longitudinal conductance, σxx, irrespective of the imperfections in

the sample. It is also stated that this situation can be observed over a finite range

of the parameters the magnitude of the magnetic field and the carrier concentra-

tion [57]. The quantization of the Hall conductance in the units determined by

two fundamental physical quantities lead to high accuracy for defining the fine

structure constant and also used in building up a new resistance standard.

It was shown by Ando [58] that the presence of an isolated impurity does not

effect the Hall current. The connection of Hall conductance quantization to the

nature of the states in a 2D electronic system was also appointed by Prange [59] in

1981. In his work, he demonstrated that an isolated δ-function impurity does not

effect the Hall conductance. He states that the remaining delocalized states can

carry enough current to compensate the loss [59]. It was then R. B. Laughlin [60]

who showed the quantization can be derived from the gauge invariance of the

Hamiltonian of the system. He used a model consisting of a thin metal ribbon

bent into a ring in a magnetic field which is perpendicular to the surface at every

point. The density of states (DOS) profile of the system without disorder displays

a sequence of δ-functions each corresponding to Landau levels. If disorder is

introduced to the system the δ-functions will be broadened into bands of extended

states separated by localized states. In his model Ando fixes the Fermi energy in

a mobility gap, i.e. located between the bands of extended states. The increasing

of the flux induces a potential difference between the edges of the ring. This is

simply an indicator of the charge transfer as observed in the classical Hall effect.

However, the Hamiltonian of the system is gauge is invariant under the change

of magnetic flux φ by flux quanta φ0 = e2/h. By an increase of φ a flux quanta

φ0 the system is converted back to its initial state. However, finally a number n

of electrons are transported form one edge to another of the ring in accordance

with increase of the potential difference between the edges. As a result one cycle

of the pump transferring n electrons is the adiabatic change in the flux by one

flux quantum. Ando also stated that, the change in the total electronic energy
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of the system induced by a cycle of the pump (φ → φ + φ0) is due to forcing of

the filled states toward one edge of the ribbon. If all the states in the system

are localized states, then there will be no change in the total electronic energy of

the system. They are the extended states which are responsible for the integer

quantization of the Hall effect [57, 60].

The localization and non-localization nature of the states was developed by

Anderson [61]. He demonstrated that if a quantum mechanical system is disor-

dered enough, the states will be localized in space. For the electrons in those

systems, the mean free path is shortened due to disorder and the hopping of elec-

trons is blocked for the limiting case. From this point of view, the localization

length can be considered as the decaying and eventually vanishing of the electrons

transmission probability. However, for a slightly disordered system there might be

some states remaining which are considered to be extended states, through which

the transmission still exists. These kind of states contribute to the conduction

even at zero temperature. The extended and localized states are separated from

each other at the boundaries by mobility edges at where the nature of the states

can not be deduced either localized or extended. The theory of localization for

the non-existence of the extended states in 2D contradicts with the experimen-

tal and calculation results of the Integer Quantum Hall Effect (IQHE). Later it

was shown that the strength of magnetic field is responsible for the occurring ex-

tended states, hence the non zero values for Hall conductance [62, 63]. The Hall

conductance changes its value when it passes through mobility edges, it displays a

stair-like behavior with sharp steps positioned at the single values energy belong-

ing to the mobility edges [64]. Through the constant valued plateaus the system

is considered to be in an insulating phase. Among these regions the longitudinal

conductivity σxx vanishes and the Hall conductance σxy is quantized.

There are various ways to calculate the Hall conductance. When the Fermi

level is in an energy gap, the value of the Hall conduction is expressed in terms

of the famous Thouless-Kohmoto-Nightingale-den Nijs (TKNN) integers [44, 65]

times e2/h. The whole picture for the conductance can be calculated by either

Streda [66] formula originating from the linear response theory, or by the Kubo

formalism. Several works have been published which have concentrated both
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on the Hall conduction and the Hofstadter Butterflies for the cases of square,

triangular, kagomé and honeycomb lattices [37, 67, 68, 69, 70, 71, 72, 73, 74, 75,

76]. In this thesis, we used the Kubo formula to calculate the value of the Hall

conductance continuously regardless of Fermi energy lying in a gap or in a band

for a single value of φ/φ0 = p/q [44, 65]:

σxy =
ie2

A0h̄

∑

Eα<Ef

∑

Eβ>Ef

(∂Ĥ/∂kx)αβ(∂Ĥ/∂ky)βα − (∂Ĥ/∂ky)αβ(∂Ĥ/∂kx)βα

(Eα − Eβ)2
,

(6.1)

where A0 is the area of the plaquette, the energies with indices α and β denote the

energies of the states with lower and higher than the Fermi energies, respectively.

The values of kx and ky span the magnetic Brillouin zone which is the reciprocal of

the magnetic unitcell. This is a more general way of Hall conductance calculation

where the method of Diophantine equation fails for the systems with impurities

and even for graphene. In general the Diophantine equation associated to the rth

gap of the energy spectrum is given as a function of two integers with a fixed

value of φ/φ0 = p/q:

r = ptr + qsr, (6.2)

with a constraint specific to the lattice for the absolute value of the integer tr.

For square lattice this constraint is tr ≤ q/2 and each gap has an integer in-

variant “Chern number” which has a connection to Diophantine equation via

Cs = −tr [77]. However, for graphene the validity of the constraint is already

vanished even for the pure graphene, so the Chern numbers should be calculated

by numerically or by Kubo formalism which gives the Hall conductances for all

values of the Fermi Energy.

6.2 Topology in Hall Conductance

In 2D electronic systems the Brillouin zone is also confined into two dimensions.

The real space lattice points on which the atoms are positioned can be represented

in terms of the cartesian coordinates, the Brillouin zone due of this lattice is
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the reciprocal lattice of the real lattice. The coordinates are determined by the

reciprocal lattice vectors which simply span the values of the wavevectors kx and

ky. This Brillouin zone in 2 dimensions can be regarded as a 2-torus T2. The

eigenstates come as the solutions to the Harper’s equation can be considered as

the principle fiber bundles.

The First Chern numbers are the topological invariant integrals of the U(1)

fiber bundles formed by the wave functions over the magnetic Brillouin zone,

i.e. they remain invariant under small deformations of the curvatures. For the

special case of edge states, they describe the number of windings of a fiber bundle

(edge state) over the manifold, base space . This can be related to the quantum

mechanics. The Berry’s phase rise up due to the curvature of the parameter space.

If we transport an eigenstate adiabatically through a loop in the parameter space

(our parameter space contain the magnetic flux and the chemical potential for

instance) it will end up with the physically same state however the wave function

will gain a phase factor. As it is mentioned before the probability of finding

the particle in either of the states will remain the same since the phase factors

have the structure eiθ where θ ∈ R. The loop in the parameter space can be

visualized as an intersection of two areas: The area inside the loop and the

area surrounding the loop. The phase mismatch due to the parallel transport is

given by the integrals of the curvatures through the area inside and area outside

simply related to the Chern numbers [35]. Let us assume that the eigenstate

has a phase eiθ1 after transporting around such a loop in clockwise direction. If

we transport our initial eigenstate in the counter-clockwise direction it will have

another phase e−iθ2 , where the minus sign appears due to the oppositeness of

the transportation direction. Since the state itself does not change at all during

this kind of transportation, eiθ1 + eiθ2 = 1 urging that θ1 + θ2 = 2π × n, where

n ∈ Z. This integer multiple n is simply the first Chern number. The reason

why n being an integer is behind the fact that the eigenstate must turn to itself

after accomplishing a loop adiabatically in the parameter space. Otherwise, the

initial eigenstate will be converted to other physical state. Another reason for

the Chern numbers to be integers is that Chern class is an integer valued linear

map through its mathematical definition.
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As we mentioned above, we use the Kubo formula (Eq. 6.1) for the Hall

conductance. The topological aspect of Hall conductance can also be visual-

ized through this equation. The wavefunctions ψα(~k) are indeed composed of an

exponential factor function of the reciprocal lattice vectors kx and ky and a peri-

odic function ukxky(x, y) which carries the gauge information. We choose Landau

gauge through the vector potential is given in y direction. Under these circum-

stances, the periodic function is periodic in y direction. Now, let us translate this

wavefunction first parallel to kx direction by ~G1. Since kx and ky both lie in the

first Brillouin zone, only the transformations with the reciprocal lattice vectors

~G1 and ~G2 will enhance the periodic part of the wavefunction ukxky by a phase

factor:

ukxky+ ~G1
= eiδ(kx+ ~G1)ukxky ;

since in x direction q times periodicity atoms are connected, as a consequence of

magnetic unit cell. Now, let us translate in ky direction by ~G2:

ukxky+ ~G2
= eiδ(kx)ukxky ,

where translating along ky direction is independent of ky due to the definition of

u. These two consecutive translations regardless of their turn should end up with

the matched phase factors as:

δ(kx + ~G1) = δ(kx) + 2πn,

where n is an integer [78].

If the phase of the state |ϕα(~k)〉 is well defined through the Brillouin zone

such that there are no boundaries in the Brillouin zone, then the Hall conduc-

tance yields 0. As a consequence of that one can propose the energy band Eα(~k)
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associated to the state |ϕα(~k)〉 does no contribute to the Hall conduction. The

states corresponding to this case are the localized states. The Chern numbers,

as well as the Hall conductance are not altered by localized states. The zero’s of

these kind of wavefunctions are confined in space [57]. Since the Chern numbers

are topological invariants they are robust to small deformations of the Hamilto-

nian. As a result of that the Hall conductance displays constant values (plateaus)

through the region of localized states, they have step-like sharp changes in be-

tween theses plateaus. In addition to that, due to Chern numbers being integers

they do not change smoothly. The non-zero values of the Hall conduction occurs

when the phase of the state |ϕα(~k)〉 can only be determined on some open subsets

on the base space i.e. {U1, U2, ..., Uk}. The non-triviality of the wavefunctions and

in other words the phase ambiguity of the wave functions over the magnetic Bril-

louin zone is responsible for the non zero values of Hall conductance [77, 79, 80].

The states associated with this definition are the extended states. They are the

states which contributing to Hall conductance, such that they are the ones which

carry the Hall current. The Chern numbers have their jumps between successive

integer values through these kind of states. In the systems that are studied in

this thesis, have the structure that, each Landau Band has the extended states

at the center of the band which are separated by continuum of localized states.

6.3 Hall Conductances for Defective Square

Lattice

In solid state experiments, its now a standard method to measure the Hall con-

ductance by a four terminal strip. In a cold atom setting, in general, such methods

are unavailable as there is no way to make contacts to the cold atom system. One

way to overcome this difficulty is to make a scattering type of measurement by

letting the cold atom cloud oscillate in a shallow external trap [90]. However, as

long as the quantized Hall conductances are concerned, it has been shown that

measuring the response of the density of the system to the external magnetic

field yields a direct measurement of the Hall conductance by the virtue of Streda
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Figure 6.1: Hall conductivities (in the units e2/h) as a function of Fermi Energy
(in the units of “t”) with the 1st order interactions where α is set to p/q = 13/3:
(a) “E” is an impurity with tE = 0.001. (b) “E” is an impurity with tE = 0.25.
(c) All of the atoms are the same with tE = t = 1.00. (inset) The region of
the spectrum enclosed by a rectangle is zoomed in. (d) “E” is an impurity with
tE = 1.50 [43].

formula [91]. Thus, in both cases the effects of impurities on the conductance

should be experimentally accessible. Hence, it is important to calculate the Hall

conductance in an impure system to understand these experiments. The Hall

conductance of the square lattice over all energy values whose range is given by

the Hofstadter Butterfly can be calculated by using the Kubo formula [44] for a

single value of φ/φ0 = p/q:

σxy =
ie2

A0h̄

∑

Eα<Ef

∑

Eβ>Ef

(∂Ĥ/∂kx)αβ(∂Ĥ/∂ky)βα − (∂Ĥ/∂ky)αβ(∂Ĥ/∂kx)βα

(Eα − Eβ)2
,

(6.3)

where the velocity operators are defined as the partial derivatives of the Hamilto-

nian with respect to wave vectors. In addition to two summations for the energy
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Figure 6.2: Hall conductivities (in the units e2/h) as a function of Fermi Energy
(in the units of “t”) with the 2nd order interactions where α is set to p/q = 13/3:
(a) “E” is a vacancy with tE = 0.0 and ttE = 0.0. (b) “E” is an impurity with
tE = 0.25 and ttE = 0.025. (c) “E” is an impurity with tE = 0.50 and ttE = 0.025.
(d) All of the atoms are the same with tE = t = 1.00 and ttE = tt = 0.050. (inset)
The region of the spectrum enclosed by a rectangle is zoomed in. (e) “E” is an
impurity with tE = 1.50 and ttE = 0.075 [43].
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eigenvalues smaller than and greater than the fixed Fermi energy respectively,

there is another implied summation over the whole magnetic Brillouin zone. Al-

though, the Hall conductance in a gap for a pure system can be calculated via

the Diophantine equation which results the famous TKNN integers [44], in the

impurity case the calculation does not simplify to a Diophantine equation. So we

calculate the Hall conductance explicitly through the Kubo formula, Eq. (6.6).

When the Fermi energy lies within a gap, we find that the Hall conductance is an

integer multiple of e2/h, verifying our numerical procedure. Kubo formula also

allows us to calculate the Hall conductance even when Fermi energy lies within

a band.

The sweeping of Fermi energy is an indirect representation of the potential

difference that should be present in the system in order to observe a non zero

conduction. The similar procedure was carried for the triangular and Kagomé

lattice under the influence of staggered magnetic field, and also for the square

lattice with multiorbital interactions [69, 70].

The Hall conductances for various impurity cases (with the same impurity

concentration displayed in Chapter 4) are displayed as a set in Fig. 6.1. These

graphs show Hall conductances in the units of e2/h, as a function of Fermi energy

for the single value of α = φ/φ0 = p/q = 13/3 calculated as above. Again

we have the pure case with tE = t = 1.0 labelled by (c), in which we see the

usual step like quantized integer Hall conductance. It is symmetric around Fermi

energy EFermi = 0, and we observe successive integer sequence of conductance in

agreement with the Diophantine equation of the Hofstadter Butterfly. When we

look at the conductance spectrum in frame (b) where tE is set to tE = 0.25, we

see a deformed conductance, however we can see the constant conduction Hall

plateaus around EFermi = 0. We observe new Hall plateaus with Hall conductance

σxy = 0 centered at EFermi = ±0.5 which are within the dome shaped gaps

discussed in Hofstadter spectrum. For the case of tE = 0.001 (frame a), we see

that the ±e2/h conductance plateaus for EFermi = ±0.5 are narrowed down as

the dome shapes become more elliptic. Under these circumstances, a vacancy or

an impurity with a smaller hopping constant in the unit cell bears new states

that are highly localized on the defect atom. These localized states can not
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contribute to the conduction, significantly. By setting the hopping parameter of

the atom “E” to a value smaller than the rest of the atoms in the unit cell, we are

disabling (or blocking for the vacancy case) the hopping of the electrons through

this defect atom. The norm of a representative wavefunctions of E = 0 energy is

plotted through a cut through the magnetic unitcell in Fig. 4.9. The two plots for

tE = 0.005 and tE = 0.50 demonstrate the localization of the impurity states as

tE is decreased. We see that, the wavefunctions are highly localized on the point

defect. When the impurity is strongly coupled, i.e. tE = 1.50, the main change

in the spectrum was observed near the extremal energies due to presence of new

gaps. These impurity gaps have Hall conductance ±e2/h as shown in Fig. 6.1(d).

We can infer an impurity atom with higher hopping constant interacts more with

the neighboring atoms creating a delocalized impurity state as a result of which

new constant conductance Hall plateaus are created.

The Hall conductances for different impurity scenarios in the presence of the

next nearest neighbor interactions are given in Fig. 6.2. The Hall conductance

spectra are no longer symmetric around EFermi = 0, as bipartite symmetry is

broken. The widths of the gaps are now changed, when we look at the energy

spectrum along a vertical line which has α = p/q = 13/3. Second order in-

teractions do not change the nature of the impurity states. They are highly

localized and do not contribute significantly to the conductance. Similarly for

an impurity atom with a high hopping constant, the new conduction plateaus

with conductance ±e2/h are also robust with respect to the next nearest neigh-

bor hopping. When magnetic bands of the Hofstadter Butterfly are extremely

narrow, our direct calculation through the Kubo formula requires extremely fine

k-point meshing. Thus, in regions with many small gaps, our results show scat-

tered values for conduction. However, such fine meshes are not required for the

calculation of conduction within large gaps or for impurity states.
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6.4 Hall Conductances for Defective Graphene

6.4.1 Anomalous Integer Quantum Hall Effect in Graphene

A special case of IQHE is the Anomalous Integer Quantum Hall effect which can

be observed in graphene. Graphene displays different Hall conductance behaviors

through the Fermi energies that spans the energy window for high magnetic

fields. For pure graphene, the energy spectrum is symmetric around E = 0

eV. This symmetry is a common result for the systems which have a bipartite

symmetric lattice. The energy eigenvalues come as pairs (E,−E). The bipartite

symmetry is a result of the situation when the lattice can be considered as a

union of two sublattices. In addition, all the interactions take place between

these two sublattices, i.e. only inter-sublattice interactions. Since graphene has

2 atoms in its basis, its lattice can be thought of a composition of two sublattices

belonging to two kinds of atoms. When we look at the Hall conductance plot

as a function of Fermi energy (by use of bipartite symmetry, from E = Emax

to E = 0 eV) in graphene we see that there are two Hall conductance regimes

separated by van Hove singularity regions. Starting from E = EmaxeV to van

Hove singularity region the usual IQHE is observed. The Hall conductance takes

values with σxy = 2ne2/h with n = ..., 3, 2, 1, 0. However beyond this region to

E = 0 eV there is distinct character of IQHE where σxy = 2(2n+ 1)× e2/h with

n = ..., 3, 2, 1, 0. The factor 2 arises due to the spin degeneracy. The reason for

this anomalous behavior is the Dirac fermions in graphene.

When there is a magnetic field acting on 2D electronic system with a Bravais

lattice, the energy levels are quantized in a series of equally spaced Landau levels

for the motion of particles acting perpendicular to the field:

En = E ± h̄wc(n+ 1/2), n = 0, 1, 2, ... (6.4)

where wc is the cyclotron frequency. These systems can be described by non-

relativistic quantum mechanics where the Schrödinger equation is satisfied. How-

ever, the lattice structure of graphene is different. It has non-Bravais lattice com-

posed of two triangular Bravais lattices. The band structure of graphene displays
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Dirac cones of conduction and valance bands touching each other at Dirac points.

These bands have linear dispersion where E = ±vF h̄k with vF is the Fermi ve-

locity. Energy being linearly dependent on the velocity turns the non-relativistic

quantum mechanical system into a relativistic quantum mechanical system. The

Schrödinger equation is not satisfied any more but the Dirac equation is the equa-

tion through the system is defined. The Dirac points occur due to the internal

degrees of freedom which cause a chirality. The solutions to the Dirac equation

governing the system come as pairs with opposite chiralities: Particle and anti-

particle pairs. As a result of that, the Landau level spectrum is changed with

respect to Eq. 6.4.:

En = sgn(n)
√

2eh̄v2
F |n|B, n = ...,−2,−1, 0, 1, 2, ... (6.5)

The Dirac fermions with a Berry’s phase π result the shifting of Hall conduc-

tance values leading Anomalous Integer Quantum Hall Effect. However since the

Hall conductance plot (Fermi energy vs. Hall conductance) shows two distinct

regimes for graphene, the Dirac equation can not be generalized for all the Fermi

energy values in the energy window. The explanation above stays valid up to

van Hove singularities where the bands have saddle points and as a result of that

they intersect the Brillouin zone boundaries perpendicularly. Beyond that region

the system is characterized by Schrödinger equation [19, 42].

6.4.2 Hall Conductances for Graphene and Defective

Graphene

Graphene, after the isolation as single layer by mechanical exfoliation [2, 4], is

one of the mostly studied systems in recent years. Graphene exhibits several

unusual properties because of the Dirac points constituent of its band structure.

For example, the unconventional quantum Hall effect was predicted in earlier

calculations [12, 13]. Soon after the discovery of the anomalous integer quan-

tum Hall effect in graphene [5, 14], many theoretical studies discussing the Hall
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Figure 6.3: (a) Magnetic unit cell of graphene, in which 4q atoms are connected.
The unit cell with basis of two atoms is indicated within the smaller parallelogram.
(b) Larger magnetic unit cell of graphene suitable for point defect calculations
through which 32q atoms are connected. The unit cell has eight atoms in the
basis shown within the boundaries of smaller parallelogram, and the atom with
label “e” is the defect atom.

conductance in low magnetic field regime were reported [15, 16, 17, 18, 19]. Ya-

sumasa Hasegewa and Mahito Kohmoto calculated the Hall conductance for the

plateaus from the Streda formula [15]. They found the Hall conductances are

given by σxy = 2ne2/h with n = ..., 3, 2, 1, 0, in the high magnetic field regime

where the additional factor of 2 arises from the spin degeneracy. In this paper, we

follow the tight-binding approximation for the honeycomb lattice in the presence

of magnetic field. After the diagonalization of the Hamiltonian, we use the corre-

sponding eigenvalues and the eigenvectors in the Kubo formula to calculate the

Hall conductance. We come up with σxy = 2ne2/h with n = ..., 3, 2, 1, 0 for high

magnetic field limit. Similarly, in the lower magnetic field regime, we observe

the anomalous integer quantum Hall effect given by σxy = 2(2n+ 1)× e2/h with

n = ..., 3, 2, 1, 0. Our results for pure graphene are in accordance with experi-

ments and previous calculations.

However, no real sample is defect free. Even in the cleanest material there

are point defects like impurities or vacancies. These defects might be introduced

intentionally in order to improve some materials property [92, 93, 94, 95]. There-

fore, it is essential to understand the effect of these defects on properties like
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magnetoconductance. Here, we investigate in detail the evolution of conductance

with respect to presence of point defects such as vacancy and impurity atoms in

graphene. The effect of uniform on-site disorder on graphene quantum Hall effect

was investigated on a graphene ribbon [96]. A disorder model more relevant to

graphene can be constructed by explicitly introducing impurities with modified

hopping strength in a supercell approach. In this chapter, we present such a

model in which we obtain a 12.5% concentration by treating one atom as a point

defect out of eight atoms in the enlarged unit cell. By altering the hopping con-

stant(s) of this impurity atom, we model different impurity atoms in graphene,

and by setting the hopping constant(s) to 0, we model the vacancy case. We

show that, the impurity atoms with smaller hopping constant than the rest of

the atoms result in highly localized states which do not provide contribution to

Hall conductance. However, the impurity atoms with higher hopping constant

produce delocalized states which form their own bands.

The section is organized as follows: In the following subsection, we summa-

rize the Kubo formalism for the calculation of the Hall conductance for pure

graphene. Then we model graphene with point defects. Lastly, we discuss the

Hall conductances for perfect and imperfect graphene.

Pure Graphene

Graphene has a honeycomb lattice structure with two atoms in its unit cell. The

bond distance is 1.42 Å, and each atom has 3 nearest neighbors. We considered

the isotropic case, in which the hopping parameter for the pz orbitals interacting

with the nearest neighbors is equal to −2.66 eV, and −0.1 eV for the next nearest

neighbors [46].

When the well known tight binding method is applied with the Peierls sub-

stitution [53] for the Landau gauge ~A = (0, Bx, 0) we end up with the Harper’s

equation [54]. By applying the Bloch condition Harper’s equation is written as

an eigenvalue equation where the 4q × 4q Am matrix is the Hamiltonian. The

elements of this matrix are composed of the interactions over the entire magnetic
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unit cell, shown in Fig. 6.3(a).

The amount of flux per unit cell is given by φ = p
q
φ0, where the flux quantum

φ0 = h/e. We consider the cases for which p and q are mutually prime integers.

The system has a new unit cell under the magnetic field, which is called the

magnetic unit cell. In this unit cell, due to the magnetic periodicity, and the basis,

now 4q atoms are connected as shown in Fig. 6.3(a). We have new lattice vectors

for this case, which have lengths depending on the parameter q. As we increase

q, our magnetic unit cell is enlarged as opposed to the magnetic Brillouin zone.

Increasing q has another consequence such that, it yields lower magnitude for

the magnetic field. Since we have to solve eigenvalue equations among the whole

Brillouin zone, increasing q brings computational cost for the diagonalization,

however our magnetic Brillouin zone scales down with q, requiring summation

over less k-points. The eigenvalues of the Am matrix are the energy eigenvalues,

which yield the Hofstadter butterflies for graphene as a function of flux α = p/q

[36, 40].

Once the eigenvalues and corresponding eigenstates are obtained, Hall con-

ductance can be calculated from the Kubo formula [44]:

σxy =
ie2

A0h̄

∑

Eα<Ef

∑

Eβ>Ef

(∂Ĥ/∂kx)αβ(∂Ĥ/∂ky)βα − (∂Ĥ/∂ky)αβ(∂Ĥ/∂kx)βα

(Eα − Eβ)2
.

(6.6)

The derivative expressions are the velocity matrix elements. The sums over ener-

gies above and below the Fermi energy also imply a summation over the magnetic

Brillouin zone. The energy eigenvalues are grouped into occupied (α) and un-

occupied (β) states. So, by changing the Fermi energy we can calculate the

Hall conductance for a given system. This sweep of Fermi energy corresponds

to the change in the gate voltage in the usual quantum Hall experiments. Sim-

ilar calculations based on this approach have been carried out for other lattice

geometries [69, 70].
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Figure 6.4: (a)The Hall conductance spectrum for graphene with q = 3 and
p = 1. The plateaus have the constant conductances proportional to n × e2/h,
where n = +2,−2,+2,−2, 0. (b) The Hall conductance spectrum for graphene
with q = 5 and p = 1. The plateaus have the constant conductances proportional
to n×e2/h, where n = +2,+4,+6,−2,+2,−6,−4,−2, 0. (c) The Hall anomalous
conductance spectrum for graphene with q = 15 and p = 1. The plateaus around
EF = 0 have the constant conductances proportional to n × e2/h, where n =
−6,−2,+2,+6,. The steps have conductance values as a set of even integers.
(d) The Hall anomalous conductance spectrum for graphene with q = 25 and
p = 1. The plateaus around EF = 0 have the constant conductances proportional
to n × e2/h, where n = −10,−6,−2,+2,+6,+10. The insets are the density of
states data.
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Graphene with Point Defects

In the previous subsection we assume that graphene has a defect free structure.

However, in real world any material has defects such as impurity atoms and

vacancies. These imperfections may appear in the crystal structure naturally,

also might be deliberately introduced [97, 98, 99, 100, 101]. We model a defect

atom by changing its hopping constant(s). If one of the atoms in the usual basis

of graphene with 2 atoms is modified we end up with a composite structure like

an alloy with a concentration of 50%. In order to reduce this concentration to

reasonable values, we use a 2 × 2 unit cell as shown in Fig. 6.3(b). Thus with

this enlargement we obtain a defect concentration of 12.5%. The defects in our

system

are well separated (∼ 10 Å) but form a regular lattice.

The natural defects are of course randomly scattered throughout the sample.

However, as long as the defect concentration is low, the main effect of defects

on transport is through their action as individual scatterers. Thus in this paper,

we model the impure system by considering a regular lattice of point defects

as explained above. As long as the point defects create states which are well

localized, they can be modelled by enlarging the unit cell [102]. Furthermore, the

Hall conductance is a very robust physical quantity as it can be related to certain

topological invariants [44, 17, 60, 103]. We expect our model closely represents

the properties of randomly scattered impurities as long as the conditions above

are met.

The enlarged unit cell is shown in Fig. 6.3(b). The smaller parallelogram in

which the atoms are labelled a, b, c, ..., h and index 1 is the enlarged unit cell. The

tight-binding procedure is similar to the usual unit cell of graphene, however since

we have 8 atoms, our Hamiltonian is now an 8 × 8 matrix. All the elements of

this matrix contain the pz orbital interactions between the first nearest neighbors

and the second order neighbors, if necessary. The magnetic field is introduced to

system via Peierls substitution with Landau gauge. Different from the previous

calculation in Subsection 6.4.2, the magnetic phase factors are now 4q periodic.
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Figure 6.5: Integer quantum Hall conductance for graphene with point defects,
only the first order interactions are considered. For all of the calculations α =
p/q = 7/3 (a) V E

ppπ = 2Vppπ, (b) V E
ppπ = 3

2
Vppπ, (c) V E

ppπ = Vppπ, (d) V E
ppπ = 3

4
Vppπ,

(e) V E
ppπ = 1

2
Vppπ, (f) V E

ppπ = 1
4
Vppπ,(g) V E

ppπ = 0
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Figure 6.6: Integer quantum Hall conductance for graphene with point defects,
both the first and the second order interactions are considered. For all of the
calculations α = p/q = 7/3 (a) V E

ppπ = 2Vppπ and V 2(E)
ppπ = 2V 2

ppπ, (b) V E
ppπ = 3

2
Vppπ

and V 2(E)
ppπ = 3

2
V 2

ppπ, (c) V E
ppπ = Vppπ and V 2(E)

ppπ = V 2
ppπ, (d) V E

ppπ = 3
4
Vppπ and

V 2(E)
ppπ = 3

4
V 2

ppπ, (e) V E
ppπ = 1

2
Vppπ and V 2(E)

ppπ = 1
2
V 2

ppπ, (f) V E
ppπ = 1

4
Vppπ and

V 2(E)
ppπ = 1

4
V 2

ppπ,(g) V E
ppπ = 0 and V 2(E)

ppπ = 0
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As a result of that and having 8 atoms in the basis, we end up with a 32q×32q Am

matrix. When the Kubo formula is applied on the eigenvalues and eigenvectors of

Am matrix which is now our magnetic Hamiltonian, we get the Hall conductance

as a function of Fermi Energy and magnetic field. We define α as α = p/q = φ/φ0,

with φ0 is the flux quantum and φ is the amount of flux per enlarged unit cell.

We calculate the Hall conduction in the presence of point defects up to second

nearest neighbors for pz orbitals.

By changing the ratio α by means of changing q, one can work either in the

low or high magnetic field regimes. For the high magnetic field regime, we see a

similar behavior of the Hall conductance to the square lattice case. The value of

Hall conductance is given by the Chern numbers, which come as the solutions for

the Diophantine [44, 87] equation when the Fermi energy lies in the gaps. For the

square lattice the hall conductance σxy is given as n × e2/h, with n = +1,−1, 0

when q = 3 for the Fermi energy is in a gap. The case for the graphene is slightly

different than this; for the single value of q = 3, the Hall conductance is given by

σxy = n× e2/h with n = +2,−2,+2,−2, 0. The Hall conductance in major gaps

of the spectrum is displayed in Fig. 6.4(a) in units of e2/h.

Similarly when we have q = 5 given in Fig. 6.4(b), we have the conductances

as n = +2,+4,+6,−2,+2,−6,−4,−2, 0. This behavior of Hall conductance

is similar to the results of the square lattice except for the extra factor of 2

originating due to the spin degeneracy in graphene. However, the most interesting

case arises when the magnetic field is reduced in magnitude. For both q = 3

and q = 5, we are still working with really high order magnetic field. In the

experiments performed in 2005 [5, 14], the anomalous quantum hall effect was

observed for the magnetic fields on the order of 10T.

This strange behavior of conductance is that, it is equal to 2(2n+1)e2/h, where

n is 0, 1, 2, 3, ..... We see that this anomalous quantum Hall regime can be probed

even with q = 15. The corresponding conductance is displayed in Fig. 6.4(c).

With setting q to 15 we observe two plateaus around −3 eV ≤ EF ≤ 0 eV with

the conductances are given by −2(2n+1)e2/h, with n = 0, 1. A similar structure

appears within 0 eV ≤ EF ≤ 3 eV, with Hall conductances 2(2n+ 1)e2/h, where
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n = 0, 1. These plateaus are surrounded by scattered-like conductance values,

due to the van Hove singularities in the density of states. As we look from the

bottom limit of the EF , we see the step like increasing conductance which is the

electron-like conductance behavior. Each step increases the conductance by a fac-

tor of two in this region where the gaps are wider than the bands [17]. The same

behavior has a mirror image for the Fermi energies on the positive axis as a result

of bipartite symmetry of the lattice, since we are just considering the first order

interactions. For this case, the observed behavior is the hole-like conductance

behavior. The similar spectrum can be seen for q = 25 displayed in Fig. 6.4(d),

where the anomalous quantum Hall conductance plateaus have the constant con-

ductances with −2(2n + 1)e2/h and 2(2n + 1)e2/h where n = 0, 1, 2. It is also

reported that the Hall conductances are given by multiples of Chern numbers

when the Fermi energy lies in a gap [17]. In that study, they divide Fermi energy

axis into intervals with respect to the magnitude of the hopping constant. They

give the value of the Hall conductance as different functions of Dirac-Landau

level indices depending on the which interval Fermi energy lies within (×2 due

to the spin degeneracy). Although they calculate the Hall conductances for the

entire energy region, they are able to find the value of the Hall conductance only

when the Fermi energy lies in a gap. However Kubo formula allows us to cal-

culate the Hall conductance regardless of the position of the Fermi energy. As

reported in Ref. [17], Hall conductance displays qualitatively different behavior

in the energy range between the van Hove singularities.(See Fig. 6.4(d).) The

change of electron-like conduction into anomalous integer quantum Hall conduc-

tion (anomalous integer quantum Hall conduction into hole-like conduction on

the positive Fermi energy axis) occurs at the region of van Hove singularities.

At those regions, calculation of Hall conductance requires very fine meshing of

k-points, as a result of that our conduction values show a scattered structure.

However, two main regimes of Hall conduction, integer quantum Hall effect and

anomalous integer quantum Hall effect can still be observed clearly. We achieve

the anomalous integer quantum Hall effect for graphene when the magnitude of

the magnetic field is reduced, also we observe “even” integer quantum Hall effect

through higher magnetic fields. When the magnetic field magnitude is reduced

by means of increasing the value of q, we see 5 different behavior regions. As
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starting from the smallest value of the EF , the first region is the electron-like

conduction region, the second one is the scattered conductance region due to the

van Hove singularities for the corresponding region of the density of states, then

comes the anomalous quantum Hall effect region with the neighbor of the other

van Hove singularities region, and lastly comes the hole-like conduction region.

We examine the effects of point defects on the Hall conductance for two cases:

First with only the nearest neighbor interactions are considered, and second when

next nearest hopping is also included. The results for the first nearest neighbors

are given as a set of impurity hopping constant strengths in Fig. 6.5. The conduc-

tance values are distributed symmetrically over right and left hand sides of the

entire region of Fermi energy as a result of lattice bipartite symmetry [40]. Since

the Hall conduction is calculated for a single value of α, we set it to α = p/q = 7/3.

We tried to keep q as small as possible due to being a parameter that defines the

size of Am matrix (32q× 32q) to be diagonalized. We model several scenarios for

atom with label “e” being different atoms or just a vacancy located at the atomic

position of one of the Carbon atoms. Frame (a) corresponds to the case where

the atom “e” is an impurity with twice the usual hopping constant. The integer

quantum Hall effect with even steps can be observed. The frame (c) is the pure

case where all the atoms including the atom “e” are Carbon atoms. One of the

differences between frames (a) and (c) is that, the widths of the plateaus are

narrowed down in frame (a) with respect to the pure case. Also, this impurity

atom modifies the conduction at the bottom and top regions of the Fermi energy

scale. This larger hopping constant impurity brings out new conduction plateaus

at around Ef ≃ −10 eV and Ef ≃ 10 eV with Hall conductance of −2e2/h and

2e2/h separated from the ones in the pure case with plateaus of 0 Hall conduc-

tance, respectively. A similar behavior still survives when the hopping constant

of atom “e” is reduced to 3
2
Vppπ, given in frame (b). This additional Hall plateaus

occur due to increase in the interaction of the impurity atom with the neighboring

atoms. The states due to this kind of impurity appear to be delocalized and they

contribute to Hall conduction.

The rest of the frames in Fig. 6.5 constitute a second set where the atom

“e” is again an impurity but this time its hopping constant is reduced to several
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(a)

(b)

Figure 6.7: Portion of Hofstadter butterflies for graphene with point defects. The
Hall conduction values of main gaps are scripted on the graphs. (a) First order
interactions, atom with label “e” has V E

ppπ = 1
4
Vppπ. (b) Both the first and the

second order interactions are involved, atom with label “e” has V E
ppπ = 1

2
Vppπ and

V 2(E)
ppπ = 1

2
V 2

ppπ
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fractions of the rest of the atoms. The frame (d) represents the case of impurity

with V E
ppπ = 3

4
Vppπ. We see that there are still plateaus with 0 Hall conduction

in −5 eV ≤ Ef ≤ −2.5 eV (and 2.5 eV ≤ Ef ≤ 5 eV ), but this time they

are not followed by ±2e2/h conduction plateaus. In addition, the plateaus with

conduction values of −6e2/h and 6e2/h in the regions −7.5 eV ≤ Ef ≤ −5 eV and

5 eV ≤ Ef ≤ 7.5 eV are reduced to −4e2/h and 4e2/h. Moreover, the constant

conduction of −2e2/h and 2e2/h lying in the regions −6.4 eV ≤ Ef ≤ −4.6 eV and

4.6 eV ≤ Ef ≤ 6.4 eV for the pure case, now split with a plateau of 0 conductance.

This splitting is increasing as we keep reducing the hopping parameter of atom

“e” seen in frames (e) and (f), and it has its maximum width in frame (g), where

atom “e” is the vacancy. When we look at the general trend of Hall conduction

in frames (e) and (f), we see that the conduction is suppressed with respect to

the pure case. As we end up with the vacancy case shown in the last frame,

there remain only the plateaus with −2e2/h, 2e2/h and 0 conductance. We can

state that, by reducing the hopping constant of atom “e”, we are interrupting

the conduction mechanism. The states due to this kind of impurity appear to be

highly localized on the defect atoms in the entire magnetic unit cell, as a result of

that they have no contribution to the conductance, rather they suppress the Hall

conduction mechanism. As the impurity states are highly localized, our results

should not be modified by the random distribution of defects.

The Hall conductance in the presence of the second order interactions is de-

picted in Fig. 6.6 as a complementary set to Fig. 6.5. Due to the breaking of the

bipartite symmetry of the lattice by introducing the 2nd order interactions, the

conductance values are no longer symmetrically distributed over the whole region

of Fermi energy. Similar to the previous calculation the value of α is equal to 7/3.

We observe that the Hall conductance values are robust with respect to the second

order interactions in graphene. However the widths of the plateaus are changed

as the widths of the gaps and bands are modified. The larger hopping constant

impurity results in new nonzero Hall conduction values, by modifying conduction

values at around the bottom and the top regions of the Fermi energy. Similar to

the first order calculations, the impurity atoms with smaller hopping constants

do not contribute to Hall conduction. Their presence suppress the conduction,
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Figure 6.8: The change in the band structure of impure graphene as a function
of impurity hopping strengths. p = 80 and q = 31, both the first and the second
neighbor interactions are considered. The conduction values for the dotted lines
can be visualized from Fig. 6.6.

and as we keep reducing the hopping constants, we only get conduction plateaus

with −2e2/h, 2e2/h and 0 conductance. In Fig. 6.7 portions of Hofstadter But-

terflies for imperfect graphene is displayed with Hall conductances indicated in

the major gaps. In Fig. 6.7(a), only the first order interactions are assumed to

exist. The x-axis has the values for α = p/q = φ/φ0, where φ is the amount

of magnetic flux per enlarged unit cell. The atom “e” has its hopping strength

as one forth of the other atoms. The corresponding Hall conduction is given in

Fig. 6.5(f) for α = 7/3. The gaps with Hall conduction ±6e2/h,±4e2/h is ob-

served in the neighborhood of Ef = 0 eV, which is not observed in Fig. 6.5(f) as

only a single α value is considered. Fig. 6.7(b) is the case when the second order

interactions are involved. The breaking of bipartite symmetry result in shifting

of gaps and bands with respect to E = 0 eV line. This specific case is the case

which has the impurity atoms with V E
ppπ = 1

2
Vppπ and V 2(E)

ppπ = 1
2
V 2

ppπ. The same

±6e2/h,±4e2/h valued conduction gaps are still there. Regardless of the effect

of second order interactions, the widths of these gaps are larger in comparison

with Fig. 6.7(a). Hence, our claim of suppression of the Hall conductance -by
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means of narrowing of the plateaus- increases with the reduction of the hopping

constant of the impurity atom is once again verified.

The effect of impurity atoms on the energy can be visualized via Fig. 6.8. We

take α = p/q = 80/31 ≃ 2.58, and consider both the first and the second order

interactions. We can keep track of the conduction values for the gaps roughly from

Fig. 6.6 for the vertical dotted lines. Since the Hall conductance is a topological

invariant within a gap, its value does not change unless the bands cross. Thus

the conductance value within the major gaps can be easily discerned from the

calculation at a single t′/t value. The impurities with smaller hopping constants

modify the Hofstadter Butterfly mostly around E = 0 eV line. We see that as

the impurity hopping strengths are increased up to Vppπ = t = t′, we see new gap

and band formation around that region. In addition the width of the spectrum is

constant for t′/t ≤ 1. However, the spectrum displays unusual behavior beyond

this point. For the impurities with greater hopping constants, some bands are

separated from the rest of the energy spectrum around the minimum and the

maximum. The original spectrum mostly remains intact. As we increase the

hopping strength to higher values, we see that these bands gain their own self-

similar structure separated by zero conductance gaps from the original spectrum.

This separation happens roughly around t′/t = 1.2. Beyond t′/t ≥ 1.5, the bulk

of the spectrum remains unchanged while two impurity bands further separate

increasing the 0 conductance gaps. The Hall conduction plateaus with σxy =

±2e2/h presented in Fig. 6.6 are located within these bands. As a result, we

observe that the higher hopping constant impurities produce their own self similar

band by modifying the energy spectrum around the top and the bottom values

of the energy. A shortcoming of our model is the periodic arrangement of the

defect atoms. This periodic arrangement results in well defined σxy = ±2e2/h

conduction plateaus within these separated bands and their overall self similar

behavior. However, in a real sample the impurities would be distributed over

the system randomly. Although this randomness would disturb the self similar

structure of these bands, it is not expected to significantly modify their energies.

As beyond t′/t ≥ 1.5, the impurity bands are separated from the bulk of the

spectrum by large gaps their behavior should be mostly independent. These
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independent bands would still survive under randomness, however one would

not expect Hall conduction plateaus within these bands, or any well defined self

similarity with regard to defect states.

The anomalous integer quantum Hall effect can be observed for impure

graphene, too. However, modelling graphene with point defects of reasonable

concentration requires high computational cost. We model defects with 12.5%

concentration, which needs a 32q × 32q matrix diagonalization. In order to see

anomalous quantum Hall effect which happens at large q ≥ 15 (Fig. 6.4), we

should have larger values for q, which automatically increases the computation

time enormously with the sufficient amount of k-point meshing.

In conclusion, we applied Kubo conductance formula to graphene in order

to investigate the magnetoconductance properties. For pure graphene our results

clearly display the usual and the anomalous quantum Hall effects even though our

magnetic fields are much higher than the usual experimental values. This physical

limitation for the magnitude of the magnetic field can be overcome by some

other indirect methods. For example, it was reported that [104], the shear strain

applied to graphene results in a pseudo magnetic field. There is an extra phase

factor arising due to the shear strain, which makes the problem identical with the

magnetic field application from the point of view of the tight binding method. Our

calculations show that even when the magnetic field is large enough to preclude

a continuum Dirac equation description of electronic conduction, anomalous and

normal integer quantum Hall effects are present for graphene. Anomalous Hall

effect is always sandwiched between the usual Hall effect regions with van Hove

singularities marking the boundaries between them.

The point defects which are natural ingredients of graphene have interesting

effects on the Hall conduction. The defect atoms with smaller hopping constants

do not have major contributions to Hall conductance. The states originating from

these weakly coupled impurity atoms are highly localized on the defect atoms.

This localization is at its maximum for the vacancy case. On the other hand, by

increasing the hopping constant of the impurity atoms we increase the interaction

of these sites with the neighboring ones. Hence, the states corresponding to
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strongly coupled impurities are delocalized. Such delocalized states form separate

bands at the extrema of the spectrum creating large, 0 Hall conductance gaps.

The bulk of the spectrum and corresponding magnetoconductance properties are

not modified by these impurity states.



Chapter 7

Conclusions

In thesis we examined the electronic properties of graphene when it is subjected

to external fields. The two example to the external fields we demonstrate were the

mechanical strain and the magnetic field. The initial idea for applying strain to

graphene was risen due to the possibility of band gap engineering for graphene.

A work done by Ref. [27] suggested that it is possible to obtain a band gap

opening when there is uniaxial strain acting on graphene. In their study they

also used the tight-binding methodology however they neither had the second

order interactions nor the σ bands due to the remaining orbitals other than pz

orbitals. In our calculations we see that, the second order interactions as well

as the σ bonds have critical value in this problem. In contrast to what they

reported, the gap opening due to uniaxial strain for the π bands when there is

only first order interactions take place in the system, is actually closed down by

other bands crossing the Fermi level. Unfortunately, we propose that graphene is

not a suitable material for band gap engineering with a mechanical strain field.

The electronic response of graphene to magnetic field is also investigated dur-

ing this study. For the problem of response of 2D electronic systems to a per-

pendicular magnetic field, we started with a simpler lattice configuration “square

lattice”. We examined the energy spectrum of square lattice under magnetic

field which is the Hofstadter Butterfly. We also demonstrate the integer quan-

tum Hall conductance for the square lattice. In addition to the calculations of

104
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the pure systems, we also show the effects of imperfections (impurities or vacan-

cies) introduced to the system periodically and systematically on the Hofstadter

Butterfly and Hall conductances. This problem of imperfections is also applied

to graphene. The results of imperfections for both lattice configurations are the

same: The impurity atoms with smaller hopping constants modify the Hofstadter

Butterfly around E = 0 eV. They cause formations of new gaps and bands mostly

around this region. However, the smaller hopping constant impurities and also

the vacancies do not contribute to Hall conductance since they are responsible

for the formations of highly localized states. Rather than that they suppress the

Hall plateaus and the new gaps due to these kind of impurities have zero Hall

conductance. However when there are impurities with higher hopping constants,

the Hofstadter Butterfly is modified around the extrema of the energy. The new

gaps and bands due to the imperfections are mostly located around these regions.

Differently from the previous impurity constant regime, these new formations are

due to the extended states created by the higher hopping constant impurities.

For graphene, we observe that if the hopping constant of the impurity atom is

high enough, two impurity bands leave the bulk of the spectrum and form their

own self-similar structure. The gaps in these bands and the gaps around the ex-

trema of the energy for the square lattice have non-zero Hall conductance values.

We conclude that the higher hopping constant impurities result extended states

which contribute to Hall Conductance.
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